
The NTNU Cyborg

Exploring Visualisations and Behaviour

Johanne Døvle Kalland

Supervisor:
Associate Professor Sverre Hendseth

Assisting Supervisor:
PhD Candidate Martinius Knudsen

TTK4550 - Engineering Cybernetics, Specialisation Project
Department of Engineering Cybernetics

Autumn 2019

Task Description

The Cyborg project is currently undergoing work that when done will allow the robot
to drive autonomously around in Glassgården at NTNU, while showcasing visualisations
of the neural activity of the nerve-cells at St. Olav’s Hospital. It may also run several
different animations depending on its current mood. The work in this project focuses
on improving software and documentation of existing work, as well as examine possible
behaviours to be implemented on the Cyborg. The student shall:

• Reevaluate the Cyborg as it was at the start of this work.

• Re-frost the LED-dome so the internal LEDs do not show.

• Improve the documentation of the Cyborg, therein collect all code into one reposi-
tory on GitHub and start work on updating the Cyborg’s wiki.

• Examine possibilities for behaviours to be implemented on the Cyborg, including
animations on the LED dome, physical movement and moods.

• Explore strategies on how to work with Legacy code, and the consequences of those.

Preface

This project is written at the Department of Engineering Cybernetics at the Norwe-
gian University of Science and Technology for the NTNU Cyborg project in the course
TTK4550 - Engineering Cybernetics, Specialisation Project. The Cyborg project is de-
veloping a robot connected to live neural cells grown at St. Olav’s Hospital in Trondheim.
The purpose of this work has been to continue the development of the cyborg, especially
the LED-dome and the behaviour.

I would like to thank Sverre Hendseth for his guidance in writing this report, and
Casper Nilsen and Lasse Göncz for being great coworkers on the project, and people to
bounce ideas off of.

Abstract

The goal of this report has been to gain knowledge about the cyborg in the NTNU
Cyborg project, both for the work done this semester and for a future masters thesis.
The NTNU Cyborg project aims to create a robot able to communicate with living nerve
tissue, which will then be able to serve as a mascot for the university. A big part of
the focus of this work has been prestudies, entertaining possible ideas and reading code,
not so much implementing new software. At the beginning of my work, the cyborg was
already far along to becoming a functioning mascot, though there is work yet to be done.
Some of that work done this semester has been to implement two new animations, as well
as making the LED-dome of the cyborg less transparent, in addition to several smaller
improvements.

As the project is being worked on by students for their specialisation project and
masters theses, proper documentation of the work being done is essential. Work on a
wiki collecting all relevant documentation has been started. The reason being not having
to read through the abundance of reports written through the roughly five years the
project has been active. There already exists one general and more superficial wiki. The
new is more directed towards the software. Starting work on a project that has run for
many years is not easy. As such, in the interest of making it easier for future me and
other students, part of the task was to examine methods of working with legacy software
and what legacy software is.

Contents

Task Description i

Preface ii

Abstract iii

1 Introduction 1
1.1 The NTNU Cyborg Vision . 1
1.2 Previous Work with the NTNU Cyborg 2
1.3 Other Ongoing Work . 3

1.3.1 Replacing the Navigation Stack 3
1.3.2 Creating a GUI website . 3

1.4 Work not mentioned any further . 4

2 Background 5
2.1 Hardware . 5

2.1.1 Cyborg Base - Pinoeer LX . 5
2.1.2 LED-Dome . 6
2.1.3 Mode Selector Box . 6
2.1.4 MEA2100 - System Micro-electrode Array 7
2.1.5 NodeMCU ESP-32S . 7

2.2 Software . 8
2.2.1 FreeRTOS . 8
2.2.2 Arduino IDE . 10
2.2.3 Software with the Pioneer LX Base 10

2.3 ROS - Robotic Operating System . 10
2.3.1 The Concepts of ROS . 11

2.4 SMACH - State MACHine . 13
2.4.1 Creating a SMACH State Machine 14

2.5 Cyborg Software Structure . 15

iv

3 Legacy Software 19
3.1 The Definition of Legacy Software . 19
3.2 Approaching Legacy Code . 19

3.2.1 Unfamiliar Code . 20
3.3 The Mechanics of Change . 21
3.4 Changing Software . 22

3.4.1 Changing the Code Quickly . 23
3.4.2 How to Add a Feature . 23

3.5 Dependency-Breaking Techniques . 24

4 Reevaluating the Cyborg 26
4.1 Previously Proposed Tasks . 26
4.2 Discussion of Proposed Tasks . 28

4.2.1 The Cyborg in General . 29
4.2.2 The State Machine . 30
4.2.3 Behaviour . 30

5 Visualisations 32
5.1 Battery Visualisation . 32
5.2 Roadwork Visualisation . 35

6 Minor Additions to the Cyborg 37
6.1 Udev Rules for Accessing USB Connections 37
6.2 Creation and Update of Wiki on GitHub 38
6.3 Making a power cable for testing of the LED Dome 38
6.4 Refrosting the LED dome . 39

7 Discussion 43
7.1 My Work with Legacy Software . 44

8 Conclusion 45

Appendices 46

A Figures and Diagrams 47
A.A Diagrams . 48
A.B LEDs on the Dome . 49

References 49

Chapter 1

Introduction

The work in this project has been carried out as a part of the project NTNU Cyborg. The
NTNU Cyborg is a joint project between the Department of Engineering Cybernetics, the
Department of Computer Science, and the Department of Neuromedicine and Movement
Science at the Norwegian University of Science and Technology. The development of the
project is driven by both PhD and MSc students and NTNU researchers. In addition,
students from the Cyborg Village in Experts in Teamwork have worked on specific tasks
set by either the project in general or by students working on their master’s thesis. To
grow the neural cells, a Micro-Electrode Array (MEA) is used. This array can both read
impulses and send them. There are two different terms when working on the project.
The robot is used about the hardware that is moving about in Glassgården, while the
cyborg is the whole project hardware and software which, most importantly, includes the
neural cells at St. Olav’s Hospital and the connection between them. Though it must be
mentioned, that they are used interchangeably.

The work presented in this report will explore the robot at the onset of my work and
the possible behaviours to be implemented in the future, what legacy software is and
how the theory about legacy software can be used by future students, and continue the
work of improving the documentation of the cyborg project. With my work, we hope to
bring the cyborg closer to its goal. The work in the specialisation project is in itself a
way to further the development of the cyborg, but also a preparation for the work on the
master’s thesis.

1.1 The NTNU Cyborg Vision

The long term goal of the project is to enable communication between a robot and
living nerve cells, to better understand the cognitive processes and consciousness. The
electrical output of the neural cell network and simulating environmental feedback, a

1

1.2. Previous Work with the NTNU Cyborg

closed-loop system is created and the hope is that the network will operate and learn

in its environment. With the ability to roam Glassgården and choose its behaviour

depending on the current mood, it can become a mascot for both NTNU as a whole, but

also the more speci�c departments. A mascot can be used on stands, taken to di�erent

promo events, or roam Glassgården interacting with bypassers and changing behaviour

depending on di�erent factors and external input. It will be able to navigate around

obstacles, recognising people and showing o� visualisations of a live feed of the activity

of the neural cells through a server. The hope is to peak the technological interests

of potential new students and to bring NTNU to the forefront of international research

within these disciplines.

1.2 Previous Work with the NTNU Cyborg

There have been several students working on the cyborg during the last years. All have

been working on it as part of their master's theses and/or specialisation project. Last

year the cyborg was stripped of all unnecessary components to make a base on which the

cyborg can be further developed. Other previous work have involved a sel�e stick, an iris,

arms for the cyborg, face recognition, an arti�cial muscle and an Xbox Kinect. A quick

explanation of the last years' work is presented below.

2019 - Collected all non-redundant parts of the cyborg into a working base for further

development. The motivation was a simpler software structure. Old modules were

improved, some kept as they were, and new modules were developed and added

such as the behaviour module [5][4].

2018 - Contributed with incremental improvements to the robotics part of the cyborg.

The now unused controller system based on behaviour trees was developed. The goal

was to represent a more realistic behaviour than the existing system at that time.

A program to visualise the behaviour tree while running was also developed. Lastly,

a system for object detection and a classi�cation system using neural networks was

added [17].

2017 - A controller for the robot was made, as earlier modules were able to simultaneously

run di�erent modules. This controller is the basis for the current controller and is

a state machine controller. It used a PAD emotion state model to decide the mood

and what to other modules to run. A navigation module using ROSARNL was also

implemented [3]. Work was also done to ready the cyborg for presentations. This

became the Presentable Robot, and at the same time introduced the idea of a core

2

1.3. Other Ongoing Work

on which students could implement their projects. This is where the, at that time

called Startup Box now Mode Selector Box, was made [32].

2016 - Work on implementing speech recognition was done this year. This to have the

robot communicate with the public. Research was done to examine what the best

option for a speech recognition tool would be, and also to convert speech to text.

The result was it being able to hold a conversation with informative and humorous

answers [14].

(a) 2017 (b) 2018 (c) 2019

Figure 1.1: Previous iterations of the robot.

1.3 Other Ongoing Work

1.3.1 Replacing the Navigation Stack

Lasse Göncz has been working on replacing the navigation stack of the cyborg, as last

year MobileRobots closed down [12]. ARNL is the package now being replaced by the

ROS navigation stack. Thoughros-arnl still exists MobileEyes and Mapper3 does not

and are replaced byrviz and rqt . Thus the cyborg is less dependent on old and dated

proprietary code.

1.3.2 Creating a GUI website

Casper Nilsen has created a GUI module to monitor the cyborg. In the future, possible

use of this can be to send commands to the cyborg, not just to see its state, position and

3

1.4. Work not mentioned any further

behaviour [20]. It is designed for the possibility of adding features. He has also created

a guide on how to set it up.

1.4 Work not mentioned any further

ˆ At the beginning of my work with the cyborg, all our computers had to be set up

to be able to run the same software as the cyborg. There existed a setup script,

but it only included what needed to be installed and not the correct versions. This

became a bit of a problem as the commands from the script then installed the latest

versions if nothing else was speci�ed. A fair amount of work was needed to �nd

the right versions. One example of this was the installation �le of ARIA gave us

a version that, when built, gave an error saying a �le was missing. After some

research on this, we ended up copying the �le from the cyborg.

ˆ Starting work on an already established system is a maturation process. As a part

of this work was to get to know and understand the cyborg, and the way to do that

is to take time as help. It is therefore mentioned here.

ˆ Some time was also used to tidy up the software and code on the cyborg. Anything

not in use and therefore redundant such as code left after testing was deleted,

though the cyborg was not reinstalled.

4

Chapter 2

Background

2.1 Hardware

Here, the parts of the hardware of the cyborg which have been relevant for the work in

this report are presented.

2.1.1 Cyborg Base - Pinoeer LX

Figure 2.1: The Pioneer LX robot.

Image courtesy of [26]

The base of the Cyborg is a mobile robot platform

called Pioneer LX from MobileRobots [19][18]. It

is a general-purpose indoor platform designed to be

able to work around people and is based on the

Adept Lynx AIV, also from MobileRobots. It serves

as the moving and navigation platform and main

computer for the Cyborg on which everything else

is mounted. Some software libraries are included

which are mentioned further in section 2.2.3. The

robot is made for easy integration of custom acces-

sories and sensors and is programmable. Two of the

reasons it was chosen are because it can carry up to

60 kg and run both Windows and Linux on the on-

board computer. It also features di�erent sensors

such as a laser to map its surroundings. Other features are:

ˆ Intel D252 64-bit dual-core 1.8GHz CPU and an integrated graphics processing

unit.

ˆ 2 GB DDR3 RAM

5

2.1. Hardware

ˆ Wireless Ethernet connection.

ˆ Front- and rear-facing sonar sensors, and front bumper panel.

ˆ SICK S300 laser scanner.

ˆ Several USB 2.0 ports, a VGA monitor port, 16 In/16 Out digital I/O, and 4 In/4

Out analogue I/O.

ˆ 60 Ah battery, capable of powering the robot for 13 hours.

ˆ Charging and docking station which allows the robot to charge itself.

ˆ Joystick for manual steering and control.

2.1.2 LED-Dome

The LED-dome is an essential part of the Cyborg. Without it, the cyborg would be just

another robot driving around and would not be as striking as it is now. In �g. 1.1c the

LED-dome can be seen on top of the robot body. The dome is made up of two plastic

shells, the inner and the outer. On the outside of the inner shell, strips of LEDs of the

type WS2812B have been glued in a zig-zag pattern amounting to791� 3 RGB LEDs.

Each of them is individually addressable. The byte-array sent to the LED-controller from

the dome control ROS node can be accessed the same way as any other array in Python.

A graphical overview of the LEDs can be found in �g. A.2 in section A.B. The outer shell

is made of VIVAK PETG and was vacuum formed along with the inner shell and then

frosted using sandpaper. The process of making the LED-dome can be found in [2]. The

dome is controlled by a 5V PWM-signal and requires an external power supply of 5V as

the LED-controller is not able to produce the su�cient power needed.

It is important to di�erentiate between the LED-dome, the LED-controller and the

ROS node controlling the LED-dome, as it is easy to be confused. In this reportLED-

dome will be used for the hardware that is the dome,LED-controller will be used for

the hardware that is controlling the LED strips, andcontroller node will be used for the

ROS node. Be aware thatLED-controller might also be used for the software on the

LED-controller as it is not part of the ROS node.

2.1.3 Mode Selector Box

The Mode Selector box started as the Startup Box made by Jørgen Waløen for his master's

thesis [32] that ran the scripts corresponding to the choices at start-up. These choices

6

2.1. Hardware

were ARIA Demo by MobileRobots and launch of the ROS nodes. He wrote a library in

C for the Arduino Nano and OLED screen, compiled it with a Make�le and uploaded it

with avrdude. Last spring the box was updated so it would be able to switch between

modes without the need to shut down the whole robot in between. In addition, another

mode was added, ARNL. As this change added functionality outside the scope of its

original name, the box was renamed Mode Selector box. A description of all changes

made in 2019 can be found in [5].

2.1.4 MEA2100 - System Micro-electrode Array

Figure 2.2: Standard electrode num-

bering of the 60-electrode MEA.

The MEA2100-system is made by Multichannel

Systems and is a versatilein vitro system made

for extracellular recording from microelectrode ar-

rays [29]. It can record cardiac or neuronal cultures,

stem cells, or cardiac or brain slices. MEA technol-

ogy is a powerful tool in electrophysiology research

and is based on an idea from the 1970s. The system

gives real-time feedback from 60-channels with a 24-

bit resolution. Every electrode in the MEA2100-

systems is bidirectional, meaning that it is possible

to stimulate the cells on each electrode. Neural cells

are grown in the MEA system at the neuroscience

department at St. Olav's and provides the data

used for visualisation on the LED-dome. The sys-

tem interprets and sends the signals through a computer, which then sends it to the

cyborg over a server.

2.1.5 NodeMCU ESP-32S

The NodeMCU ESP-32S is a development board made by NodeMCU [21] based on the

ESP-WROOM-32 module by Espessif Systems [28]. The board has a 32-bit double-core

architecture with a clock speed of 240 MHz. It has a USB Micro-B connection used for

writing to and reading from the board in addition to power. It operates with 3.3V and

has 38 I/O pins which support a variety of uses and protocols such as UART, PWM, and

output from the on-board DA-converter. Earlier, instead of the NodeMCU ESP-32, the

LED-controller was an Arduino Mega 2560 which was replaced in the spring of 2019.

7

2.2. Software

Figure 2.3: NodeMCU ESP-32S. Im-

age courtesy of [22].

Directly from NodeMCU, the ESP-32 runs Lua

TOS real-time system and is programmed in Lua

using the Lua IDE. Lua RTOS is designed with

three-layers with a Lua interpreter on top, a real-

time micro-kernel in the middle, and at the bottom

a hardware abstraction layer. The middle layer is

powered by FreeRTOS. Installing a minor add-on

for the Arduino IDE, allows for programming of the

EPS-32 in Arduino IDE with the Arduino program-

ming language [13], changing out the top layer. This

allows for much easier usage of the ESP-32 as there

is no need to learn another programming language. The Arduino code is only run on one

core. Because the ESP-32 has two cores, programming has to be done using FreeRTOS

tasks and methods. Otherwise, only one core will be utilized.

Together with the ESP-32, the LED-controller consists of a small circuit with a CMOS-

bu�er. This is because the LED strips require a 5V PWM-signal to operate while the

ESP-32 only provides a 3.3V signal. Therefore a level conversion is needed. The reason

a bu�er is used and not a passive converter is because a pull-up resistor is to slow to

handle the high operating frequency of the LEDs. The type of bu�er used is a quad

bus bu�er of the type 74VHCT125AT. A detailed description of how the software of the

LED-controller works can be found in [4].

2.2 Software

All code for the cyborg can be found on the NTNU Cyborg's GitHub page [31]. There

each ROS node contains aREADME�le explaining the basic details of the node. More in

depth documentation can be found in the wiki.

2.2.1 FreeRTOS

FreeRTOS is a real-time operating system made for use in embedded systems. The idea

was to design an os which would need very little space in the memory, allowing for fast

execution. It is distributed for free under the MIT License [16]. FreeRTOS contains meth-

ods for parallel threads, tasks, timers, mutexes, semaphores, and to prioritise threads.

For the cyborg, a small install of the NodMCU ESP-32 is needed in the Arduino IDE to

program with FreeRTOS. This because the ESP-32 is already running FreeRTOS in the

middle layer, as mentioned in section 2.1.5. To give a quick introduction to the methods

8

2.2. Software

used on the LED-controller some examples are given and explained. A further description

of FreeRTOS' methods can be found in [11].

1 xTaskHandle xHandle ;

2 stat ic unsigned char ucParameter ;

3

4 xTaskCreate (

5 vTaskLoop , // Loop - funksjon

6 " TaskNavn " , // Task navn

7 STACK_SIZE , // Stack str

8 & ucParameter , // Peker brukt som parameter ti l task

9 PRIORITY , // Pr iot i teten

10 &xHandle , // Task handle som det returneres til

11 0) ; // Core running the task

12

13 void vTaskLoop (void * parameter){

14 for (;;) {

15 /* Task kode her */

16 }

17 }

18 vTaskDelete (xHandle) ;

ˆ The �rst line sees a task created. A task handle is like a reference for the task to

be used to delete or create it.

ˆ vTaskLoop is the main loop of the task, and works like theloop()-function on

Arduinos. It will run as long as the associated task exists.

ˆ vTaskDelete takes the handle of a task and deletes it.

ˆ xTaskCreate creates the task. If one or several of the parameters taken by the

function is not needed, they can be sent asNULL.

ˆ The parameter here declared asucParameter must exist for the entire lifetime of

the task. In this case, it is then declared as a static.

FreeRTOS contains several conventions for naming constants, functions, and more.

The two most used are the pre�xes of the functionsxTaskCreate and vTaskLoopin the

examples above. The pre�xv means that the return type of the function isvoid , x

denotes some result, which is often a handle for a task or a queue [8].

9

2.3. ROS - Robotic Operating System

2.2.2 Arduino IDE

The Arduino IDE (integrated development environment) supports coding on a massive

number of development boards, not only those made by Arduino. It uses Arduinos own

language which is a mix of C and C++. It provides a large number of built-in libraries, as

well as any modi�ed libraries which have to be open-source. With the installed add-on,

the ESP-32 can be programmed with the IDE using C/C++ and FreeRTOS.

2.2.3 Software with the Pioneer LX Base

The Pioneer LX robot comes with several pre-installed and useful tools, some of whom are

mentioned here. ARIA is open-source, while some are free, but most must be purchased.

Since MobileEyes was discontinued one of the biggest issues have been the accessibility

of these tools. Changing this is the work of [12] brie�y mentioned in section 1.3.1.

ˆ ARNL - Advanced Robot Navigation and Localisationis built on top of ARIA,

made by MobileRobots. It is a set of software packages and used for localisation

and navigation, keeping track of where the robot is and allowing the robot to receive

a give speci�c destination.

ˆ ARIA - Advanced Robot Interface for Applicationscan dynamically control a

robot's heading, velocity, and other motion parameters, and can receive operat-

ing data sent by the platform. All this is done through its high-level infrastructure

or low-level commands.

ˆ MobileSim - Simulator

ˆ Mapper3 - Maps needed in ARNL can be edited and converted to the right format

with this tool.

ˆ MobileEyes - Provides a GUI for the robot base. It can remotely control and

monitor the Pioneer LX, in addition to create maps. The program can be run from

a computer and connect to the robot via the network.

2.3 ROS - Robotic Operating System

ROS is an open-source robotics middleware. It provides services designed like those of an

operating system, though is in itself not an operating system. It is a �exible framework for

working with and developing robot software [24]. ROS works well with modular systems

as each node can be removed, added or edited without a�ecting the others, and for control

10

2.3. ROS - Robotic Operating System

of distributed systems. Nodes of the same robot can be run on di�erent hardware and

written in di�erent languages as ROS is language- and platform-independent. All this

allows for easy scalability. Their main goal is to provide support and easy reuse of code

for research and commercial use.

Since its initial release in 2007, the amount of packages ready for download has been

steadily growing. There are now two di�erent versions ROS and ROS2. ROS releases one

new release every two years, while ROS2 does so every six months. The lack of real-time

support in the �rst version of ROS has been addressed in ROS2, which also has support

for Windows. ROS does not have a core beyond the general structure the same way other

operating systems do. Users can con�gure tools and libraries to �t their application area

and robot.

2.3.1 The Concepts of ROS

ROS contains many di�erent methods and concepts. Many of which are used on the

cyborg. The most important concepts are presented here.

ROS Master

The ROS Master is an integral part of any ROS system. It can be run with theroscore or

roslaunch commands, which loads the Master along with the other essential parts. The

Master provides registration and naming services, as well as keeping track of subscribers

and publishers. Its role is to make all information needed by the nodes available. The

parameter server is also provided by the Master, but it will not be described in detail

here.

Nodes

Nodes are the processes of ROS that perform any computation, connected by the com-

munication streams services, topics or the parameter service to form a graph. They can

be compared to atoms connected to form molecules, and are the part that makes ROS

so modular. They can easily be restarted in the case of a crash and can be switched out

just as easily. Nodes communicate peer-to-peer through the communication streams and

can identify each other by name the same way a Unix system uses a �le path to locate

a �le. ROS nodes are part of a package. Most often each package contains only one

node, usually with the same name as the package, but that is not a must. A package can

contain as many nodes as needed.

11

2.3. ROS - Robotic Operating System

Topics

Topics are the channels nodes use to send messages over to communicate. Topics are de-

�ned by name, just like messages. They are asynchronous and follow a publish-subscribe

model, where there is no limit to the number of topics a node can subscribe and publish

to. A node can publish on a topic it is also subscribing to. Nodes are not aware of the

other nodes they are communicating with, or if anyone has received the messages sent.

To receive data from another node, nodes subscribe to the relevant topic. Using the

commandrostopic in the terminal yields information about which topics exist, which

nodes are subscribing and publishing to them, and what type of message types are used.

Because topics are asynchronous, if synchronous messages are needed, it is often better

to use services. In Python, a publisher and subscriber are created by writing:

1 bool_pub = rospy . Publ isher (" topic_name " , bool , queue_size = 10)

2 rospy . Subscriber (" topic_name " , bool , cal lback_funct ion)

3

4 bool_pub . publ ish (message)

The �rst line declares that the node is publishing messages of the typebool on

the topic named topic_name. Queue_size is used to limit the amount of messages in

case a subscriber cannot receive them fast enough. The second line declares a sub-

scriber to the same topic. Every time a message is received on the topic, the function

callback_function is called and takes the received message as an argument. The last

line is used to publish a new message to the topic.

Messages

Messages are naturally enough, messages, used to communicate between the nodes. They

are sent over topics by apublisher in a node and received by asubscriber . A message

contains simple data structures such as string, int, bool, �oat, and arrays of primitive

types. They can also support arbitrarily nested structures and arrays. Structs in C are

quite similar to messages. Messages can also be used to send �elds of data and constants

to help interpret the data �eld. Two or more nodes sending and receiving the same

message have to use a de�ned name of the message type. Otherwise, they will think they

are using two di�erent message types. This will also mean that one or both will not be

able to publish or subscribe to a topic, as they are de�ned with a speci�c message type

to be used. A typical message can look something like this:

1 Header header

2 int8 CHARGING_UNKNOWN = -1

3 int8 CHARGING_NOT = 0

4 int8 CHARGING_BULK = 1

12

2.4. SMACH - State MACHine

5 int8 CHARGING_OVERCHARGE = 2

6 int8 CHARGING_FLOAT = 3

7 int8 CHARGING_BALANCE = 4

8

9 bool [] array_of_bools

10 int charging_state

11 f loat32 charging_percent

Initialising a message can be done by writing:

1 message = MessageType ()

2 message .data = value

Where the �rst line initialises a message of the typeMessageType()and the second

line assigns a value to the argumentdata. In ROS there are many standard message types

in the library std_msgs. When de�ning a message type, they are stored in.msg �les in

a subfolder calledmsg/ in one of the packages using the message type. When doing this,

the message �les have to be added to theCMakeLists.txt �le for that speci�c package.

This so they can be translated to source code.

2.4 SMACH - State MACHine

SMACH is a task-level architecture for creating complex robot behaviour. It is an open-

source Python library and can be used to construct concurrent and hierarchical state

machines. SMACH is useful when you want a robot to execute a complex plan of which

all states and transitions can be explicitly described [27]. It allows for fast prototyping,

complex state machines and introspection. If your system has unstructured tasks, is low-

level or, as they state on their documentation page, when you want to smash something,

then SMACH is not the best option. SMACH is not dependent on ROS and can be

used separately, but theexecutive_smach stack allows for integration with ROS. It also

includes integration of theactionlib package, which is a part of ROS.

SMACH has two main interfaces,Containers and States. Containers are a collection

of one or more states and are the implementation of execution policy. The containers have

a �at database to pass data between and coordinate states. The states in a container

are stored like a dictionary. The most important job of the container is to de�ne the

transitions between states, and also what to do if a state wants to preempt another.States

can mean di�erent things depending on the context. In SMACH, a state corresponds to

a state of execution of some task and all potential outcomes of that execution. The

states are di�erent from traditional state machines in that they describe what the system

is doing locally, not the con�guration of transitions between states. A SMACH state

13

2.4. SMACH - State MACHine

machine can be nested, meaning that one state machine can be a state in itself.

2.4.1 Creating a SMACH State Machine

The following is an example of how to implement a SMACH state machine with two

states:

1 sm = smach . StateMachine (outcome = [" outcome3 " , " outcome4 "])

2 sm. userdata . sm_variable = 0

3

4 with sm:

5 smach . StateMachine .add (" State1 " , State1Func (some_function , arg1) ,

6 t ransi t ions = { " outcome1 ":" State2 " ,

7 " outcome2 ":" outcome3 "} ,

8 remapping = { " state1input " : " sm_variable " ,

9 " state1output " : " sm_variable " })

10

11 smach . StateMachine .add (" State2 " , State2Func () ,

12 t ransi t ions = { " outcome1 ":" State1 "} ,

13 remapping = { " state2input " : " sm_variable " ,

14 " state2output " : " sm_variable " })

15

16 outcome = sm. execute ()

The �rst line declares a state machine with the namesm and its outcomesoutcome3

and outcome4. The container is made on the fourth line, and adds the statesState1 and

State2 on lines 5 and 11, respectively. Transitions are naturally enough the transitions

from one outcome to another outcome or state. Remapping is not necessary but a good

practice. It makes it easier to follow the �ow of the code and not confuse variables used in

states and state machines. To implementState1 from the previous example you inherit

the state.Statebase class:

1 class State1Func (smach . State) :

2 def __ini t__ (self , funct ion_inputted , arg) :

3 # state ini t ia l izat ion

4 smach . State . __ini t__ (self ,

5 outcomes = [" State2 " , " outcome3 "] ,

6 input_keys = [" state1input "] ,

7 output_keys = [" state1output "])

8 self . var = arg

9 self . func = funct ion_inputted

10

11 def execute (self , userdata) :

12 # state execution

13 if userdata . input == 1:

14

2.5. Cyborg Software Structure

14 return " outcome1 "

15 else :

16 return " outcome2 "

The class is initialised in the �rst __init__ function and the state is initialised in

the second. There the outcomes, input keys and output keys are set. The initialisation

functions must not block further execution. Any other variables the state uses are set after

the second, but still in the �rst initialisation function. The execute function is where the

behaviour of the state is implemented.Execute can block for as long as needed. When

returning from this function the current state �nishes executing.

2.5 Cyborg Software Structure

The cyborg consists of many modules, and from experience, I can say that it might be

hard to get a grasp of the overwhelming amount of code the �rst time seeing it. Here

is therefore a quick explanation of each node. Figure 2.4 is a simpli�ed class diagram of

the whole cyborg, with published and subscribed to topics. Figure 2.5 shows the relation

between ROS nodes and topics. Both can also be found on the NTNU wiki [30].

Audio - A ROS node in charge of playing audio �les, and also contains text-to-speech

functionality.

Behaviour - A ROS node that adds and executes behavioural presets. It exploits the

emotional state of the cyborg and provides emotional feedback. New behavioural

con�gurations are added in thebehavior.launch �le. Also decides what future

states to execute.

Event Scheduler - A ROS node which provides functionality related to publishing

scheduled events. It also monitors other system events like low battery.

Primary States - Gathers action server states too complex for the behaviour module,

and states that do not produce outputs. Can execute state changes, and provides

emotional feedback to the controller. A ROS node.

Command - A ROS node, implemented, but not in use at the moment. It is a command

module run on an external computer to monitor the cyborg.

Controller - The main state machine on the cyborg which manages all other nodes.

Organises all actions in the state machine, handles the emotional system and mo-

tivator. Also a ROS node.

15

2.5. Cyborg Software Structure

Navigation - A ROS node which handles all high-level navigational execution on the

cyborg through the action server.

Mode Selector - Not a ROS node, but contains the code used on the external box used

to choose which mode the cyborg should run.

LED Dome - Controls the behaviour of the LED-dome and sends output to the LED-

controller to set the LED strips. It does not choose the di�erent visualisation modes,

but receives them on the topic/cyborg_visual/domecontrol from the behaviour

module.

ROS Arnl - A ROS node developed by MobileRobots which handles communication

between the robots sensors, actuators and navigation library, and the rest of the

ROS nodes.

ROSARIA - A ROS node and provides a ROS interface for most MobileRobots bases

such as the Pinoeer LX.

16

2.5. Cyborg Software Structure

Figure 2.4: A simpli�ed class diagram of the whole cyborg. From the NTNU wiki [30].

17

2.5. Cyborg Software Structure

Figure 2.5: Overview of the di�erent ROS topics and nodes on the cyborg. Oval modules

are nodes and the rectangles are topics. Outgoing arrows from the nodes are publishers and

incoming are subscribers.

18

Chapter 3

Legacy Software

3.1 The De�nition of Legacy Software

I want to start this chapter by looking at what legacy code is. Legacy code is often

thought of as either just old code, something you have not written yourself and inherited

with a system or the code of a system you have bought. The last one can easily be

mistaken for proprietary software code, which is actually non-free software that someone

holds the property rights too. Also known as closed-source code. Some de�ne legacy code

as code you have gotten from someone else, often someone who no longer works on the

project. For example, you start in a new job and you get some software from someone

else in the company, or your company has gotten the software from another company. It

is somebody else's code, that you must change. I will mostly base this chapter on the

methods presented in Michael Feathers' book, and it is a recommended reading for anyone

working on larger software projects. There seems to be a consensus among developers

that Jonathan Boccara and Feathers books are the leading books on this subject.

3.2 Approaching Legacy Code

When I think of the word legacy code, I also think of code inherited from somebody,

often a mess of hard to understand and tangled spaghetti code. In the computing in-

dustry, it is often used for code that is di�cult to change, like when a feature cannot be

added without breaking another logic. Wikipedia describes it as code that is no longer

supported or manufactured [15]. In his book "Working E�ectively with Legacy Code",

Michael Feathers states that to him"legacy code is just code without tests"([9], p. xvi).

His opinion is that you can have a clean and well-written code, but with the tests, you

can change your code and then verify that it works much quicker. Jonathan Boccara

19

3.2. Approaching Legacy Code

presents de�nes legacy code by three qualities in his book "The Legacy Code Program-

mer's Toolbox" [7]. Firstly it is hard to understand, secondly you are not comfortable

changing it, and thirdly it is code you are somehow concerned with.

Boccara states that there are two mindsets when approaching legacy code, the natural

mindset and the e�ective mindset. Most often it is the e�ective mindset that works best,

while the natural mindset tends to get stuck. Being annoyed by poorly written code is a

primal reaction but being a software developer, your job is to be rational. The code you

are annoyed by is still code you have to work with and is the reason the application is

the way it is. For better or worse. Complaining will not make it better, and it creates

a negative mindset. Like for many things in life, do not complain about something you

do not intend to improve. The legacy code you have been handed is now your code,

and taking ownership of it is not the same as taking the blame for whatever thing you

disagree with.

3.2.1 Unfamiliar Code

Familiarising oneself with unfamiliar code, especially legacy code is daunting. Just read-

ing code can make you dizzy and when the documentation poor it is not helping. There

are many ways of gaining understanding, but they take e�ort and most people are just

looking for the most immediate way to understand.

One technique is to start drawing. Take notes and draw the connections between

each module and its important features. They are just sketches and do not have to be

full-blown UML, although they do make a basis from which it is easier to create UML

diagrams. It can also help to redraw your �rst notes into something more coherent. There

is no guidance for how to draw code, and while it may be tempting to use proper UML

syntax, just using something you can understand later is key. Another technique is listing

markup. It is especially useful with long methods. The way it is used depends on the

type of code you work with. The four main activities of listing markup are separating

responsibilities, understanding method structure, extracting methods, and understanding

the e�ects of a change. When separating responsibilities it is often smart to use colour

markers to group things, and if some belong together you can indicate that by putting

a special symbol next to them. To help understand the structure or e�ects of a change

marking the methods in some way is helpful.

One of the most helpful techniques isscratch refactoring. Just start moving things

around. Reorganise it in a way you understand. Do not go back and check things after

taking it out. It is a great way of stripping the system down to its essence. There is one

problem though. If you do not have any tests and you make a mistake when refactoring,

20

3.3. The Mechanics of Change

it can lead to you having a false understanding of the system. Lastly, if there is any

unused code. Delete it. It will only get in the way.

3.3 The Mechanics of Change

The reasons for changing software in the �rst place can be many and varied, but there

are four main reasons.

ˆ Adding a feature

ˆ Fixing a bug

ˆ Improving the design

ˆ Optimising resource usage.

Features are what users depend on and the behaviour they provide is the most important

thing about software. Bugs can be errors in the code, code that does not behave correctly,

or they can be more blurred. An example can be when a client wants a button moved from

right to left. Is that a bug or adding and removing features? Depending on the perspective

it can be both. When improving design, we use a method called refactoring. Instead of

rewriting chunks of code or doing code cleanup, we are making small, incremental changes

supported by tests. Lastly, optimising is closely related to refactoring. But the reason

being improving the usage of resources, like faster memory access or less mobile data

usage.

There are two primary ways to change software according to Feathers:Edit and Pray

or Cover and Modify. Edit and Pray is what most people would naturally do. They

would make sure to understand the code, plan their changes and implement them. Then

they test and poke around to make sure nothing else was a�ected.Cover and Modify

uses a safety net of tests like a cover over the existing code to make sure no changes we

do a�ects the code negatively.

One person rarely works alone on a big project, and di�erent people write code dif-

ferently. Teams will then rarely have clean code making the tests even more important.

Adding a test is a way of changing the code, and when changing the code we need to ver-

ify that those changes did not negatively a�ect existing behaviour, to that we need tests.

A little dilemma right there and Feathers calls this theLegacy Code Dilemma. If there

already was good test coverage in the code and continuous integration and updating.

Chances are it is not that big of a deal, but without them, it gets worse.

21

3.4. Changing Software

So what is testing? It is the process of executing some code with the purpose of �nding

errors and bugs. There are several di�erent types of tests like unit tests, performance

tests, integration tests and acceptance tests. To mention a few. For work with legacy

code, unit tests are the most important. They test small, localised parts of the code

and gives instant feedback. If unit tests do not run fast, they are not proper unit tests.

Feathers proposes theLegacy Code Change Algorithm:

ˆ Identify change points

ˆ Find test points

ˆ Break dependencies

ˆ Write tests

ˆ Make changes and refactor

One method to hide legacy problems is to use APIs. Using them the architecture

becomes such that you can switch out what happens when the APIs are called without

worrying about the "outside". This is an old method in software development, but the

important aspect is to organise and maintain what happens when they are called. To

continually update them. The Strangler Pattern describes this gradual change well. Over

time, the original legacy service disappears and the new code takes over [10].

One more important concept presented by Feathers isseams. Which are de�ned as

"a place where you can alter behaviour in your program without editing in that place"

([9], p. 31). Seams enable you to separate pieces of code under testing but also enables

you to check and verify the behaviour of the code. There are methods and tricks to

make the code testable, some more obvious than others. To make code unit testable you

need to cut dependencies and introduce barriers. The two main reasons beingsensing

and separation. Sensing by executing a piece of code and check and verify its e�ects,

and separation to isolate the speci�c parts of the code to be able to test it. Breaking

dependencies can be hard to do safely.

3.4 Changing Software

Changing software can be tricky. Especially if you are short on time. Generally, there is

a loss of quality when quantity is prioritised. Feathers opinion is that writing test might

feel slow in the beginning, but ultimately you will save time by not having to �x bugs

and debugging becoming more convenient.

22

3.4. Changing Software

3.4.1 Changing the Code Quickly

When you need to make changes but cannot a�ord or do not have the time to break

dependencies or get tests in place, there are still some useful techniques. They have to be

used carefully because you add tested code, and unless you cover existing code you are

not testing its use. The �rst technique is calledSprout Methodand can be used when a

new feature has to be added and is all new code. It is easy to include a test when writing

this new code and should be used when the new code can be seen a distinct piece of work.

The next technique isSprout Class. It is useful when objects cannot be created because

of some tangled dependency. The complexity of implementing new code with theSprout

Class is its main disadvantage but requires less invasive changes. The third technique

is calledWrap Method. It can add behaviour to an existing method, without increasing

the size of it. The last technique is theWrap Class and is the class level version of the

Wrap Method. It adds new behaviour to an existing class instead of a method by using

Extract Implementer and Extract Interface. This technique of creating objects of a class

that wraps another class is called theDecorator Pattern.

3.4.2 How to Add a Feature

The most powerful technique on how to add features isTest-Driven Development(TDD).

You write a test case that is sure to fail for a method that will solve some problem. If you

can write a test case for this nonexistent method, you have cemented your understanding

of what this nonexistent method should do. TheTest-Driven Development Algorithmis

de�ned as:

1. Write a failing test case

2. Get it to compile

3. Make it pass

4. Remove duplication

5. Repeat

When using the TDD algorithm for legacy code, we can extend it by adding an item

before number one:get the class you want to change under test. The key with TDD is

that it allows you to focus on either refactoring or writing code.

TDD is not the only technique for adding features. With object-oriented programming

there is an option to use inheritance to introduce features without modifying the class

directly. After the feature is added it can be integrated. The key technique for doing

23

3.5. Dependency-Breaking Techniques

this is called Programming by Di�erence. It is used much in the 80s but it became less

popular when developers noticed that inheritance can be fairly troublesome if overused.

Programming by di�erence lets you introduce variations quickly, and then capture the

new behaviour.

3.5 Dependency-Breaking Techniques

There are many di�erent techniques for breaking dependencies in software, and this is not

an exhaustive list at all. All mentioned below preserves behaviour, and are technically

refactorings used to get tests in place.

Adapt Parameter - transforms an external interface into an internal interface, and

often used when you for some reason cannot useExtract Interface on a parameter's

class or when the parameter is hard to fake. Be aware that adapt parameter does

not preserve signatures. It can be risky to make invasive changes without tests in

place.

Break Out Method Object - the idea is to move long methods into new classes.

Objects are created using that new class and are called method objects. After

using this method it is often easier to write tests for the new class than the old.

De�nition Completion - when your programming language has the ability to declare

a type one place and de�ne it in another, it can be used to break dependencies.

Usually, this method is only recommended for the worst dependency situations.

Encapsulate Global References - tries to encapsulate all globals that are used or

modi�ed near each other into the same class. If you �nd that the new class name

is already in use, consider renaming one of the classes. Start with data or small

methods, and move to larger methods once tests are implemented.

Expose Static Model - similar to Break Out Method Object, but used when the method

you are working with is smaller and does not use instance data. If a method does

not use any instance data, make it static until you �gure out what class it belongs

to.

Extract and Override Call - an ideal method to break dependencies on static methods

and global variables. Useful when there are a limited number of calls against a

global. It a refactoring method.

24

3.5. Dependency-Breaking Techniques

Extract and Override Factory Method - also a refactoring method, used to get

around classes that are hard to test because they initialise lots of objects in their

constructor. This method is not possible to use in C++ as C++ does not allow

virtual function calls to resolve functions in derived classes.

Extract and Override Getter - introduces a get function for the instance variable that

you want to replace with a fake object. Often used when theExtract and Override

Factory Method cannot be used. Be aware that it is important to delete the testing

instance, and to be conscious of object lifetime issues.

Extract Implementer - turns a class into an interface by drawing it out and putting

the contents of the class into a new implementation class.

Extract Interface - you create an interface for a class and the declarations of all the

methods. Then implement the interface to separate or sense, and to test you pass

a fake object to the class. It is considered one of the safest techniques, and often

the best choice when breaking parameter dependencies. When you cannot extract

an interface from another interface, you will have trouble using this method.

25

Chapter 4

Reevaluating the Cyborg

At the beginning of my work with the cyborg, I had to familiarise myself with �ve years

worth of work. This is not a trivial task as the system is complex and includes several

new tools. Last year an e�ort was made to make the robot more coherent and leaner. All

redundant code and software were removed, leaving only that needed to create a basis on

which to build the cyborg. The master's thesisThe Cyborg v3.0[5] collected information

about most of the modules, and improvements needed to �nalise the cyborg. I agree

wholeheartedly with the statement that'every robust system needs proper documentation

in order for it to be easily understood and properly maintained.'([5], p. 27). This chapter

aims to review the status of the cyborg at the onset of this project, point out issues that

need improving, and suggest directions to take the behaviour module in. Both with

regards to the documentation and further development of the software. It seeks to carry

on the work of making a robust platform on which the cyborg can continue to grow. This

platform has now been started but minor additions, as well as bigger changes, are needed

to �nalise it. Hopefully, the cyborg project will continue for many years, thus needing

in-depth and organised documentation.

4.1 Previously Proposed Tasks

Former students have proposed several tasks to be done to satisfy the goals of the cyborg

project. They are presented below with comments on their status.

Recovery Behaviour - where the cyborg would be able to restart itself if it gets stuck,

loses track of its location, or similar. All without human intervention. A part

of this was suggested to be to publish a message to the new GUI website where

noti�cations could be enabled so that someone could come and help, should it ever

need human help.

26

4.1. Previously Proposed Tasks

Docking Behaviour - the Pioneer LX robot is delivered with automatic docking which

is used by the navigation module, but the behaviour when it is there is still missing.

When to dock and leave the dock is not implemented. A new docking behaviour

has to be implemented with the replacement of the navigation stack.

Emotion Con�guration Guide - the emotional feedback for behaviours is now chosen

by the coder before running. A set of tuning guidelines detailing how to set emotions

in the controller or an implemented function for the cyborg to set these by itself is

needed. This is related to an upgrade in the state machine.

Change Navigation Stack - because of the issues with Mobile Robots closing down

changing the navigation stack will remove all proprietary code. This has been the

work of Lasse Göncz in his specialisation project [12].

New Visualisations - as the cyborg roams Glassgården it will become repetitive quickly

if there is not a great array of animations to choose from. Work on this has been

started and two new implementations can be seen in chapter 5.

More Advanced State Machine - the current state machine works, but for similar

reasons more visualisations are needed, so is the state machine in need of upgrading.

Change to ROS2 - ROS2 provides software for object detection which can not be found

in ROS. As this is not in use at the moment, upgrading ROS has not been a priority.

Though if it is to be used as the system is now, a bridge between ROS and ROS2

has to be used. Migrating entirely to ROS2 would mean an overhaul of the rest

of the cyborg as well. The reasons being that ROS2 does not work with Python

2.7 used now, among other things. The operating system would most likely need

updating too.

Integrated Object Detection - object detection has been implemented previously, but

is not in use at the moment. All hardware needed for object detection has already

been acquired.

Computer Upgrade - the cyborg sometimes struggles with handling di�erent tasks such

as navigation and visualisation of neural data, and will need an upgrade sometime.

Previously, when using object detection was implemented, a Jetson Tegra TX1 was

used to run that module. Unfortunately, running two computers at the same time

on the same system presents some complications. It would be preferred to use

only one, and the current computer is not capable of running things such as object

detection.

27

4.2. Discussion of Proposed Tasks

Refrost the LED-dome - the LED-dome disperses the LEDs to some degree but the

strips are still visible, which is undesirable. This has been done and is presented in

section 6.4.

Update Text-to-Speech Functionality - the text-to-speech module used now is a

Python library speech synthesizer calledespeak. It works but sounds horrible. A

recommended replacement is either IMB's Watson text-to-speech or Google Cloud

text-to-speech. Both are online and works a great deal better than the one currently

in use. An online text-to-speech engine would also mean less processing power

needed from the robot.

Create a GUI - the exists a very simple node that monitors the cyborg's state, its

previous state, emotional state, and more. This has not been used much and had

to be run on a separate computer while the cyborg was running. To better monitor

the cyborg and its behaviour, a new GUI is needed. Casper Nilsen has been working

in implementing a new GUI in his specialisation project.

4.2 Discussion of Proposed Tasks

Many of the tasks mentioned above have been started or are already scheduled to be

implemented the next semester. It is worth mentioning that since the development of the

software on the cyborg is done mainly by students, the progress is not always smooth,

and di�erent students may have di�ering opinions of the methods to use. Thus the tasks

being focused on also di�er.

Lasse is working on the replacement of the navigation stack, and with that done,

implementation of a recovery and docking behaviour will be possible to implement. It

will need implementation in more than just the navigation, because the states to execute

these behaviours are still missing, meaning they need to be added to the controller module

as well. Casper is developing a GUI remote control, which will have many di�erent

possibilities. It may be used as a remote control, either directly or indirectly. It will be

able to show the cyborgs state and position. Another possibility is a live camera feed

from the camera used for object detection. If there is an event in Glassgården, a project

manager may be able to use the website to tell the cyborg not to roam around at di�erent

times during that day, so to not interfere with the event and steal the spotlight.

After the cyborg was stripped of all redundant and unused software, the structure

of the software was changed, and the documentation was also updated. Though all this

28

4.2. Discussion of Proposed Tasks

information was not stored in a database of some sort to make it even easier to access.

Because of this, we all agreed that collecting all software in one GitHub repository and

the documentation in the repository's wiki page was necessary. The documentation will

need updating every time there a change is done, which is the whole point. Instead of

having lots of reports to read to �nd the information you need, you go to the speci�c

page in the wiki. This wiki should also include what di�erent parts are and do, and how

to change them. In addition to the proposed GitHub wiki, there already exists a more

general wiki [30]. My opinion is that this has not been kept properly up to date, though

some parts are more recently updated than others. There are diagrams used in several of

the reports and masters theses that are very useful for the system as it is now. I would

have liked for them to have been added to the general wiki as well, as they illustrate the

layout of the whole system and more speci�c parts. Diagrams are an important tool for

graphically present the connections in a system.

4.2.1 The Cyborg in General

The cyborg in general is far on its way to becoming the mascot it is supposed to be,

even though there is still a way to go. To aid in the setup of students' working computer

the setup script needs to be updated. As I mentioned in the introduction chapter, a

fair amount of work was needed to get the right setup. Because of this, it should be

updated to include the right versions of everything that needs to be installed. These

dependencies should also be included in the documentation for each node and module.

After several years of work by di�erent students, the robot has not been reinstalled many

times. Especially after MobileRobots closed down, in fear of losing software on it. Even

though the software structure has been reorganised and redundant code removed, there

were many old versions of the code outside of the ROS workspace, many used for testing.

A quick cleanup was needed, freeing up space on the robot as well.

The Mode Selector Box stopped working during the semester, and it has not been

properly looked at. The suspicion is that the hardware has failed in some way since the

software has neither been changed or re-uploaded. Hardware-wise it is in need of an

upgrade regardless, as most parts are kept in place by glue.

Computer vision and object detection have been implemented previously, and while it

is not in use now the applications are many. The main though behind the use of computer

vision is to avoid objects in combination with the LIDAR already in use, and to interact

with people. The cyborg tends to get stuck because of the joints between the tiles in the

�oor, and object detection can be used to improve this by telling the cyborg that there

is indeed nothing in front of it.

29

4.2. Discussion of Proposed Tasks

4.2.2 The State Machine

As the state machine is now, it organises and coordinates all ROS nodes. Actions from

ROS' actionlib servers are organised into states. The state machine features an emotion

system, motivator and a database. The emotion system is based on a PAD emotion

state model and handles the cyborg's mood. The motivator decides what other modules

to run when scheduled or external events are unavailable. Even though the controller

works, it changes between behaviours very quickly. Too fast to do much. In 2018 a

new way to implement a control system was proposed and uses behaviour trees [17].

Either in a combination with a conventional state machine or alone. Behaviour trees are

mathematical models of execution plans often used in game development. Instead of the

building blocks being states, they are simple tasks. Those simple tasks are then used to

construct very complex tasks by combining them in a tree fashion. Another key element

with behaviour trees is its ease of human understanding making them less prone to errors.

Another possibility is to use a cognitive architecture or an AI. A system using an AI of

some sort could be able to learn new behaviours, have better emotional intelligence, and

when to be most active during the day depending on the public's activity. This would

require more computational power, but also someone with more experience in that �eld

to implement. But this is not something to prioritise at the moment. The main reason to

upgrade the state machine is to have a more natural and realistic behaviour of the cyborg.

How the mentioned methods of implementing the state machine would be in�uenced by

the work with the neural cells and their continuous connection to the robot has not been

investigated.

4.2.3 Behaviour

The cyborg can potentially do a lot of fascinating and cool things when roaming Glass-

gården. At the beginning of this project, it had three di�erent animations in addition

to the visualisation of MEA data. This was combined with movement and sound e�ects.

Most often the movement was just wandering around, not going to a place in particular.

Since the cyborg is supposed to move about, it will also need navigation as part of its

behaviours. It may be to move to a particular position or to move in a preset pattern.

These will need to be investigated and programmed once the new navigation stack is

complete. There is also a need for more animations for the LED-dome to accompany new

behaviours. The possibilities are almost endless, but we run the risk of them being very

complex at the moment as there is no mapping function for the LEDs on the dome.

We could also borrow some ideas from Star Wars in the form of R2-D2 and BB-8.

These droids do not talk back to people when asked about something or talked to in

30

4.2. Discussion of Proposed Tasks

general. Even though some people seen to understand them, to understand the general

idea of their responses only beeps are needed. This is one direction to take the cyborg,

instead of having something more similar to Amazon's Alexa or Apple's Siri.

An idea to improve the behaviour of the cyborg is to implement a return event to be

sent upon completion of a behaviour preset execution. This would be needed anyway if

the cyborg is to navigate to a speci�c position in Glassgården as part of a behaviour. A

return-event would remove the need for timers or counters used to change behaviours and

would enable the cyborg to do something else before the motivation module decides it is

bored of doing the same thing. But it would also complicate the state machine. Previously

it has been suggested to divide the behaviour presets into several di�erent launch �les,

as the current has grown quite big and will continue to grow as more possibilities of

behaviour are added.

If the state machine is changed the behaviour module might need to change too. More

information about the use of behaviour trees in ROS can be found in [25] and [6].

Right now we have no feedback to the neural cells of the cyborg. Though it is im-

plemented on their side of the connection, the cyborg sends no feedback. Nor is there

an implemented live connection to the cells. When shown MEA data on the robot it

is done from a prerecorded �le, but the possibility to send both ways are there. The

MEA data is not used to a�ect the emotion and behaviour at the moment, but that is

one other use of the data in addition to visualisation of it. The data would then need

some kind of processing to extract features before it is used to set emotions or choose

behaviours. As an interesting side note, the cyborg's emotions could be visualised on the

LED-dome using di�erent colours to visualise each emotion. Visualising the emotions is

not dependent on the MEA data, and could be implemented today with the emotions

already in place. The present emotions are not speci�ed as happy, angry, sad, or similar,

but rather using the PAD emotion model where three numerical dimensions Pleasure,

Arousal, and Dominance are used to represent all emotions. There are many possibilities

when deciding the direction to go with the behaviour.

31

Chapter 5

Visualisations

There is a need for more animations for the cyborg. To give it more options to choose

from when driving around. After studying the existing code I have made two more, as

seen in section 5.1 and section 5.2 further down. It took some trial and error since as

of now there is no mapping-function for the LEDs on the LED-dome. To �nd the exact

LEDs needed for a speci�c visualisation, I found there are two ways to approach this:

either choose some random indexes of the LEDs and then see what happens, or count

forward to those needed. When coding, I chose a combination. Choosing approximately

how something would look, and where each light needed to be, and then counting the

rows and columns roughly, eventually �ne-tuning the indexes. For easier guessing and

counting I felt the need to make a graphical visualisation of each LED's index, which can

be seen in �g. A.2.

An important issue to keep in mind while making visualisations is that the LED strips

need a fair bit of power. If all 791 would be on at full power most of the time, the battery

would be drained considerably fast. Thus they cannot be used at full power, something

that should not be necessary either, as 791 LEDs at full power equals something similar

to a massive �ashlight. There have also been done some minor adjustments to some of

the existing visualisations. Among them changing thesiren animation so that the stripe

where the halfway point of the LEDs is is not in the middle, but rather at the edge

where two stripes meet. Small changes like this give a more complete and higher quality

feel, even though it is not something consciously thought of when seeing it. Theeyes

animation has also been altered. Previously the eyes were looking straight up towards

the ceiling. Now they have been moved a bit so that they look more forward than up.

5.1 Battery Visualisation

32

5.1. Battery Visualisation

Figure 5.1: Visualization of the

robot charging. Here the charge is

around 80 percent.

This animation will go along with a coming be-

haviour where the cyborg navigates to its charging

station or is placed there, and the ensuing charging

is then visualised using this animation. It may also

be used to show when the cyborg has a low battery

percentage. The reason for this is to still make the

cyborg somewhat interesting even though it is just

charging. The small battery drainage in�icted, and

thus the extra time needed, by the LEDs being on

has been deemed so low that it is negligible.

The �le added to neural_interpreter is called

charge.py , and it subscribes to the ROS topic

rosarnl_node/battery_status published by the ROS

noderosarnl . The reason the battery charge per-

centage is not passed as an argument to the function

is that domecontrol() reset the value after passing

it to charge(). Meaning the next time it passed the battery percentage it would be zero.

The LEDs are updated more often than the callback function received a new value to set,

the result being that they blinked so quickly it was impossible to discern. The array is

also �ushed each iteration so that it is possible to show the battery declining. The code is

explained further down. The LED-dome is �lled with green as the battery is charged, or

emptied as it is drained. To further get across to people watching what this visualisation

is, there is a small red battery at the top. All those green LEDs have to be disengaged,

because the red blends with the green making it hard to see. Unfortunately, red-green

colourblind people will not be able to appreciate this visualisation.

1 import system . sett ings as sett ings

2 import rospy

3 import math

4 from rosarnl .msg import BatteryStatus

5

6 class Charge :

7 def __ini t__ (self) :

8 self . rate = rospy .Rate (3)

9 self . isStat ic = False

10 self . battery_charge = 0.0

11 self . leds_charged = 0

12 self . red_battery = [245 , 246 , 247 , 281 , 280 , 279 , 278 , 277 ,

313 , 317 , 350 , 346 , 381 , 385 , 418 , 414 , 449 , 450 , 451 , 452 , 453]

13

33

5.1. Battery Visualisation

14 subscr iber_battery_status = rospy . Subscriber (" / rosarnl_node /

battery_status " , BatteryStatus , self . bat tery_status_cal lback)

15

16 def battery_status_cal lback (self , message):

17 self . battery_charge = message . charge_percent

18

19 def render (self , input_data , output_data) :

20 if not sett ings . CHANGE_REQUESTED :

21 for i in range ((sett ings . LEDS_TOTAL *3) -1) :

22 output_data [i] = 0

23

24 self . leds_charged = int ((self . battery_charge * (sett ings .

LEDS_TOTAL /100.0)) //1)

25 for leds in range (self . leds_charged):

26 output_data [leds *3+1] = 10

27

28 for x in self . red_battery :

29 output_data [x *3+1] = 0

30 output_data [x *3] = 10

31 self . rate . sleep ()

ˆ The imported �les mathand rospy are built in libraries in Python and ROS, respec-

tively. System.settings contains de�nitions for the LED-dome andBatteryStatus

is the message type sent fromrosarnl on the topic battery_status. The battery

charge value is a �oat32.

ˆ The function __init__() on line 7 sets the values for the class.Rospy.Rate() is

used to keep a speci�c rate for a loop-fuction, and takes an int argument in Hz. The

Self.isStatic variable is checked by theexecute-function on the state machine to

determine if the animation needs updating while running. Thered_battery variable

contains the indexes of the LEDs that make up the small battery.

ˆ Line 14 makes the subscriber to therosarnl_node/battery_status topic. Every time

a message is received the callback function will run.

ˆ The callback function is declared on line 16 and sets the variablebattery_charge to

the new battery percentage received.

ˆ Render() checks if the state machine has ordered the state to change. If false, the

wholeoutput array is reset and then it calculates the number of green LEDs needed

and iterates through setting the correct amount. Theoutput array contains791� 3

values, where every third is a red. Every visualisation is required to call its main

function render by the implementation of domecontrol.py.

34

5.2. Roadwork Visualisation

ˆ The last loop iterates throughred_battery and resets all indexes in the array to 0

to turn o� the green and then to 10 to turn on red.

5.2 Roadwork Visualisation

Figure 5.2: The roadwork visualisation

without the outer dome of the LED-dome.

After making the �rst visualisation the under-

standing of the system and its context grew,

making it easier to implement another. An an-

imation previously suggested be made was a

roadwork animation. To get an orange light

from the LEDs, we need a combination of sev-

eral. An interesting fact when working with

light and colours is that the reason red, green

and blue is because they are additive colours.

This means that they are emitting light, and

the more you combine the lighter the accumu-

lated colour becomes. This contrasts to sub-

tractive colours, like those used when paint-

ing, where the bases are red, yellow and blue,

and when combined they become darker. Be-

cause there is no orange LED on the strips,

a quick Google search resulted in the code

RGB(255,140,0) for a deep orange.

Unfortunately, this code turned out to be too yellow, in addition to the light being

too powerful. Hence I started by cutting all values by half and experimented with com-

binations until satis�ed with the colour code RGB(150,40,0). This is fairly similar to the

colour found on building sites and road construction vehicles.

1 class Roadwork :

2 def __ini t__ (self) :

3 self . rate = rospy .Rate (3)

4 self . isStat ic = False

5 self . previous_l ight = False

6

7 def render (self , input_data , output_data) :

8 if not sett ings . CHANGE_REQUESTED :

9 if self . previous_l ight :

10 for i in range ((sett ings . LEDS_TOTAL /2) +5) :

11 output_data [i *3] = 0

12 output_data [i *3+1] = 0

35

5.2. Roadwork Visualisation

13 for i in range (sett ings . LEDS_TOTAL /2+5 , sett ings .

LEDS_TOTAL):

14 output_data [i *3] = 150

15 output_data [i *3+1] = 40

16

17 self . previous_l ight = False

18

19 else :

20 for i in range ((sett ings . LEDS_TOTAL /2) +5) :

21 output_data [i *3] = 150

22 output_data [i *3+1] = 40

23 for i in range (sett ings . LEDS_TOTAL /2+5 , sett ings .

LEDS_TOTAL):

24 output_data [i *3] = 0

25 output_data [i *3+1] = 0

26

27 self . previous_l ight = True

28

29 self . rate . sleep ()

ˆ The same way the battery animation sets the variables, they are set in theinit -

function. Previous_light is used to turn on and o� the LEDs, every other time

on the halves of the dome. The initial value of this variable hardly matters as the

opposite value means the opposite half of the dome is lit up �rst.

ˆ Render also works the same way as any other render-function, only the content is

di�erent.

ˆ Line 9 checksprevious_light and depending on the value di�erent for-loops are run.

The only di�erence being which half of the LEDs are turned on and o�. The reason

for the +5 is so that a strip is not cut in two, as mentioned before.

36

Chapter 6

Minor Additions to the Cyborg

There were several improvements, both minor and more comprehensive, done this semester.

Some of those are collected in this chapter and presented below.

6.1 Udev Rules for Accessing USB Connections

Previously there existed a function for the Arduino Mega named_find_arduino_port

which did not work when the LED-controller was changed to the ESP-32. The path was

then hard-coded, and if a device was unplugged it was a nuisance to be sure you had the

correct port. Because of this, I decided to implement some udev rules for the cyborg.

Udev rules are �exible and powerful and can be used to rename a device to whatever is

needed from the default. They can change permissions and ownership of device nodes,

rename network interfaces, launch a script when a device node is deleted or created,

among many other things. The use, in this case, became to rename the path to a speci�c

device to a predetermined name based on the info a computer reads of a device. On the

wiki page on NTNU Cyborg's GitHub is an in-depth explanation of how udev rules are

made and used.

The LED-dome has now been namedLED_dome, and the Mode Selector boxmode_selector_box.

I also made a rule for the Zed stereo camera as this will hopefully be implemented in

the not too distant future. The udev rule �le has been saved in/etc/udev/rules.d/

as 90_cyborg_usb_rules.rules . If any of the devices is switched out, the rule for that

speci�c device needs to be altered to be able to �nd it.

37

6.2. Creation and Update of Wiki on GitHub

6.2 Creation and Update of Wiki on GitHub

The wiki page on GitHub has not been used for previous work on the cyborg. There

are many reasons for this. People working in repositories from their own GitHub page,

every node has had its own repository, and possibly because people generally do not think

writing documentation is fun. This year though, we have tried using theProjects page

on GitHub to organise, instead of using Trello. Using this means that we can connect

issues to di�erent projects as things to do, and is generally very similar to Trello. Also,

all currently active repositories have been added to one big repository which contains

all code for the cyborg. Having one instead of several makes it easier to know which is

actually in use. Each student then makes a branch to work on and merges that with the

master when what they are working on is implemented and tested.

As the wiki on GitHub is still undergoing updates, it is my suggestion that the wiki

contains references to where each author wrote about their implementations as well as

detailed information about the code and how to change or update it. This means that

there will be overlaps and the same information both places, but it is my view that

the wiki should contain the information and documentation needed to start using the

code, and if more reading is needed, then it can be found in the referenced theses and

reports. The other wiki [30] at NTNU's servers should then contain overall information

about what the project does, though not as thorough as [23], and information about the

hardware and software used on the cyborg. This way there will be a logical separation

between the websites and what can be found there. In addition, the project uses Box as

a closed drive to store previous project reports and masters theses, among other things

such as images, videos and sample MEA data to mention some.

6.3 Making a power cable for testing of the LED Dome

Earlier there existed a power cable used for testing, but over the summer that has either

been misplaced or thrown away. As further development of the LED dome was planned

and we were several students working on the cyborg robot, there was a need for another

power cable. Making this cable became a nice introduction to some of the hardware on

the cyborg. Especially how the LED-dome is structured. Finding the right papers and

documentation on the robot to read to �nd more information.

The main reason the cable is needed is that the ESP-32 cannot provide enough power

from its pins to power the 791 LEDs on the LED-dome. The LED strips require a 5V

supply and can draw several amperes. Meaning that the cable has to be sturdy enough

to be able to handle up to around 10A. Though this is not a cable for continuous use in

38

6.4. Refrosting the LED dome

Figure 6.1: Power cable used in testing the LED-dome away from the robot.

a home, and 10A is in the rarer ranges of uses. The robot should be able to provide 30A

which is more than enough. During testing the LED-dome has drawn up to around 10A.

The connectors on the LED-dome are of the type 2-pin Molex, the female being on the

robot and the male on the cable. Meaning that the new power cable needed the female

connectors. They were hard to �nd, and as I did only have male connectors and did not

want to wait another week on ordering and shipping, a little ingenuity was needed. At

Omega Verksted they had female 4-pin Molex connectors with a 90-degree angle on the

conductive part sticking out at the back. As only two of the pins were needed I removed

the excess pin's conductive parts, and straightened out and cut the two others to the

right length. This meant that the male connectors could be �tted on both sides of the

female connectors. Fortunately, the pin terminals on the male connectors were just the

right size so that they gave a tight �t, and does not need to be secured with tape or

otherwise. As this is to be used for testing on a desk, I did not see the need to try and

secure the cable more than necessary. The new cable can be seen in �g. 6.1. The black

coloured cables are naturally for ground, while the orange is power.

6.4 Refrosting the LED dome

The LED-dome is made from a clear plastic material called VIVAK PETG, but as it was

unwanted to be able to see the insides, the dome was frosted by an EiT group in the spring

39

6.4. Refrosting the LED dome

of 2019 [1]. They tested several di�erent methods. First, they used sandpaper, but the

method was discarded for being too coarse. Another method was sandblasting, while it

gave a smoother �nish it also looked dirty and not intentional and was also discarded. The

last option was a frosting spray which gave satisfactory results but was easily scratched.

As such, they tried applying a layer of clear lacquer on top. Unfortunately, this resulted

in the frosting spray turning clear again. Ultimately they ended on wet sandpaper with

grit 150. Their results can be seen in the report mentioned above. With this in mind,

I took a turn on refrosting the LED dome. All of these tests, mine and by the EiT

group were tested on scraps and then the chosen method was used on the inside of the

outer dome. My �rst take was to try sandblasting again, as it might look di�erent on a

bigger scale than 10x10 cm area. The next idea was googling other methods of frosting

something. The Google search came up with a lot of di�erent frosting sprays for use

on windows. But seeing as they are meant to inhibit looking in from the outside, they

are quite thin and things close to the window would be possible to see from the other

side. Which is the main problem of the LED-dome. The LED strips are closer than a

centimetre from the outer dome. This thought process gave me the idea of using a less

transparent spray, like the white used for painting the body of the cyborg.

Figure 6.2: Testing of white spray-paint on a piece of Plexiglas. The right side has a coat of

paint thicker than the left.

I used two pieces of Plexiglas to test di�erent methods of spraying with white paint.

The piece in �g. 6.2 was �rst sanded with 240 grit, wet and dry, and then painted. The

right side can be seen to be a shade whiter than the left, the reason being a thicker layer

40

6.4. Refrosting the LED dome

Figure 6.3: Testing of white spray-paint on a piece of Plexiglas. The left side was painted and

then dabbed with paper, and the right side is paint with a coat of transparent spray on top.

of paint. Testing with an already sanded piece gave an idea of what the dome might

look like when painted as it is already frosted with sandpaper. The other piece, seen in

�g. 6.3 was painted the same way on both sides and then dabbed with some paper on

the left, while the right got a coat of clear lacquer on top. As seen from the image the

dabbing did not work very well, and the extra coat of lacquer might have helped protect

against scratches but did little else. It was therefore decided that just painting would

be satisfactory. If any bubbles or imperfections should occur during painting, as long as

they are not signi�cant, they would only be possible to detect from the inside or when

holding the dome up to a bright light source. This because the painting was done on the

inside.

After giving the dome a coat of white and holding it up to the light it is possible

to see that the paint is not entirely even. This should not be a problem in use and is

impossible to spot when the dome is assembled. Without buying another can of paint

to add another coat, there is not much to do about the unevenness. In the after image,

we cannot see the LED strips, only each individual light. If one wished to not be able

to make out each individual LED I can see two options. Either lay additional layers of

white paint, but risk it being too little opaque and needing to turn up the intensity of

the LEDs draining the battery faster. Or increasing the distance between the two domes.

The light will then blend better making it less sharp. An issue with this is that it is not

possible to increase the distances everywhere without making a new dome. That is just

41

	Task Description
	Preface
	Abstract
	Introduction
	The NTNU Cyborg Vision
	Previous Work with the NTNU Cyborg
	Other Ongoing Work
	Replacing the Navigation Stack
	Creating a GUI website

	Work not mentioned any further

	Background
	Hardware
	Cyborg Base - Pinoeer LX
	LED-Dome
	Mode Selector Box
	MEA2100 - System Micro-electrode Array
	NodeMCU ESP-32S

	Software
	FreeRTOS
	Arduino IDE
	Software with the Pioneer LX Base

	ROS - Robotic Operating System
	The Concepts of ROS

	SMACH - State MACHine
	Creating a SMACH State Machine

	Cyborg Software Structure

	Legacy Software
	The Definition of Legacy Software
	Approaching Legacy Code
	Unfamiliar Code

	The Mechanics of Change
	Changing Software
	Changing the Code Quickly
	How to Add a Feature

	Dependency-Breaking Techniques

	Reevaluating the Cyborg
	Previously Proposed Tasks
	Discussion of Proposed Tasks
	The Cyborg in General
	The State Machine
	Behaviour

	Visualisations
	Battery Visualisation
	Roadwork Visualisation

	Minor Additions to the Cyborg
	Udev Rules for Accessing USB Connections
	Creation and Update of Wiki on GitHub
	Making a power cable for testing of the LED Dome
	Refrosting the LED dome

	Discussion
	My Work with Legacy Software

	Conclusion
	Appendices
	Figures and Diagrams
	Diagrams
	LEDs on the Dome

	References

