
Johanne D
øvle Kalland

The N
TN

U
 Cyborg - Behaviour M

odule &
 Behaviour Trees

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Johanne Døvle Kalland

The NTNU Cyborg 4.0

The Behaviour Module & Behaviour Trees

Master’s thesis in Cybernetics and Robotics

Supervisor: Associate Professor Sverre Hendseth,

PhD Candidate Martinius Knudsen

June 2020

Johanne Døvle Kalland

The NTNU Cyborg 4.0

The Behaviour Module & Behaviour Trees

Master’s thesis in Cybernetics and Robotics
Supervisor: Associate Professor Sverre Hendseth,
PhD Candidate Martinius Knudsen
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Task Description

The main goal of all the work done with the Cyborg, whether that is develop-
ing a new module, creating new hardware or improving parts of the previous
system, is to create a better and more advanced Cyborg than before. The
work in this thesis focuses on the behaviour of the Cyborg and its LED-dome
and audio module, and is combined with the work done by fellow students to
bring the Cyborg closer to a state where it is ready for demonstrations and
to act as a mascot for NTNU.

The student shall:

• Reevaluate the Cyborg as it was at the start of this thesis.

• Look at how a system can be implemented on the Cyborg using be-
haviour trees, evaluate different behaviour tree libraries, and compare
them to the existing previous use of behaviour trees on the Cyborg.

• Investigate how the use of psychology and colour can make the Cyborg
more attract more attention, and how it affects people’s emotions.

• Implement PAD values for each of the behavioural presets in the be-
haviour launch file.

• Create a complete setup-file and a requirements file for the Cyborg
software system.

• Expand the Cyborgs library of behavioural presets and create new ani-
mations for the LED-dome and add new audio files to the Audio node.

i

ii

Preface

This thesis is written at the Department of Engineering Cybernetics at the
Norwegian University of Science and Technology for the NTNU Cyborg
project in the course TTK4900 - Engineering Cybernetics, Master’s The-
sis. The Cyborg project is developing a robot connected to live neural cells
grown at St. Olav’s Hospital in Trondheim. The purpose of this work has
been to continue the development of the cyborg with special attention to the
behaviour module. The work in this thesis is a continuation of the author’s
specialisation project from the autumn of 2019 [23].

I would like to thank Sverre Hendseth for his guidance in writing this re-
port, Martinius Knudsen for his support regarding all aspects of the Cyborg,
and Casper Nilsen, Lasse Göncz and Ole Martin Brokstad for being great
coworkers on the project and people to bounce ideas off of.

The Covid-19 situation occurred in the middle of the work with this
thesis and created a unique situation, not just for everyone working on their
master’s theses, but for our society as a whole. This meant that physical
access to the Cyborg was no longer possible as NTNU was mostly shut down
and students and employees ordered to shelter-at-home. Because of this,
some parts of the work took a different direction than previously planned.

iii

iv

Abstract

The NTNU Cyborg project aims to create a cyborg by enabling communi-
cation between a robot and living nerve cells. This cyborg will then become
a mascot for both the Norwegian University of Science and Technology and
the departments involved. This thesis adds incremental improvements to the
robotics part of the project, while also investigating the future possibilities
of the Cyborg.

Since the project’s creation, many students have created and implemented
numerous parts, both hardware and software. Because of this, many of those
older implementations use libraries that have reached their end of life. The
amount of work needed to bring the Cyborg up to date with the latest re-
leases of those dependencies and for it to use Ubuntu 20.04 Focal Fossa and
ROS Noetic Ninjemys has been evaluated. A file listing all the Cyborg’s
dependencies and software has been created. This file doubles as documen-
tation, listing all libraries and their versions needed, and as a setup script for
installing the Cyborg on a new system. In studying the possibilities of up-
grading the software and collecting all libraries, a reevaluation of the Cyborg
as it was at the onset of this thesis was done. As this thesis studies the use
of behaviour trees on the Cyborg, the behaviour module has been examined.
Because the behaviour trees are not ready to replace the current module, the
list of behavioural presets has been expanded and they have had PAD values
added. Different behaviour tree libraries were investigated and they were
compared to the library used on the Cyborg previously. The usage of colour
and how it impacts people’s perception of the Cyborg and emotions they can
trigger was studied. This lays a groundwork and works as a reference work
for future application of colour in implementing behaviours and interpreters
for the LED-dome.

v

vi

Sammendrag

Prosjektet NTNU Cyborg has som mål å muliggjøre kommunikasjon mellom
en robot og levende nerveceller. Cyborgen vil da fungere som en maskot
for NTNU og instituttene som deltar i prosjektet. Denne oppgaven bidrar
med inkrementelle forbedringer til robotikkdelen av prosjektet i tillegg til å
undersøke fremtidige løsninger for Cyborgen.

Mange studenter har jobbet på prosjektet siden opprettelsen av prosjek-
tet, og har implementert utallige deler, både programvare og maskinvare.
På grunn av dette bruker mange av de tidligere delene biblioteker som ikke
lengre blir videreutviklet. For å få Cyborgen over på nyere programvare, da
spesielt Ubuntu 20.04 Focal Fossa og ROS Noetic Ninjemys, kreves det mye
arbeid og dette har blitt evaluert i tillegg til om det er verdt å oppdatere. En
fil som inneholder alle biblioteker som brukes har blitt laget og den fungerer
som dokumentasjon på biblioteker og hvilke versjoner som brukes. Videre
fungerer den som et skript som kan kjøres for å installere alt som trengs for
å kjøre Cyborgen på en ny pc. På begynnelsen av arbeidet ble det tatt en
evaluering av Cyborgen for å gjøre rede på hva det var ønskelig at det ble job-
bet med, eventuelt om noe skulle fjernes. Denne oppgaven undersøker også
bruken av adferdstrær på Cyborgen og om de kan erstatte oppførselsmodulen
som er i bruk nå. En enkel implementasjon av et tre ble laget, men det er ikke
klart til å fullstendig erstatte den nåværende modulen. Modulen bruker en
liste med forhåndsbestemte oppførsler, men bare en håndfull av disse hadde
PAD verdier å sende som tilbakemelding til følelses modulen etter at de var
utført. Alle har nå fått PAD verdier, med unntak av noen få hvor de ikke
er nødvendige. Bruken av farger og hvordan de påvirker folks oppfatning
av Cyborgen og hvilke følelser de kan utløse ble undersøkt. Denne under-
søkelsen kan fungere som et oppslagsverk for fremtidige anvendelse av farger
i implementasjoner av oppførsel og animasjoner for LED-hodet til Cyborgen.

vii

viii

Contents

Task Description i

Preface iii

Abstract v

Sammendrag vii

1 Introduction 3
1.1 Ongoing Work . 4
1.2 Previous Work with the Cyborg 5
1.3 Work Not Mentioned Any Further 6

2 Background 9
2.1 Hardware . 9

2.1.1 The Cyborg Base - Pioneer LX 9
2.1.2 Led-Dome . 10
2.1.3 Mode Selector Box . 11
2.1.4 MEA2100 - System Microelectrode Array 11
2.1.5 NodeMCU ESP-32S 12

2.2 Software . 13
2.2.1 FreeRTOS . 13
2.2.2 Arduino IDE . 15
2.2.3 Software with the Pioneer LX Base 15

2.3 Cyborg Software Structure . 16
2.4 ROS - Robotic Operating System 17

2.4.1 The Concepts of ROS 20
2.5 PAD Emotional State Model 27

ix

Chapter Contents

2.6 Finite State Machines . 29
2.6.1 Concepts . 29
2.6.2 Trade offs . 30
2.6.3 In ROS . 31

2.7 Behaviour Trees . 31
2.7.1 Key Concepts . 32
2.7.2 Trade offs . 33

2.8 SMACH - State MACHine . 34
2.8.1 Creating a SMACH State Machine 35

3 Reevaluation of the Cyborg 37

4 The Software Structure 41
4.1 The Cyborg’s Current Structure 41

4.1.1 Controller . 42
4.1.2 Behaviour . 43
4.1.3 Event Scheduler . 44
4.1.4 Primary States . 44
4.1.5 Navigation . 45

4.2 Previous Work with Behaviour Trees 46
4.3 Behaviour Specifications . 46
4.4 The New Structure . 48

5 The Behaviour Module 51
5.1 Evaluation of Behaviour Tree Implementations 52

5.1.1 Behaviour Trees and the Cyborg 56
5.2 Psychology of the Cyborg . 56

5.2.1 Colours and Psychology 57
5.3 Adding A Behaviour to Behaviour Tree 61
5.4 Proposed New Behaviours . 62
5.5 Finding PAD Values to Represent Emotional Feedback 64

6 New Interpreters for the LED-dome 69
6.1 Update of Eyes . 69
6.2 Race Stripes . 70
6.3 Startup and Suspension . 71

x

Chapter Contents

6.4 How To Add New Interpreters 74

7 Other Tasks 75
7.1 Updating ROS and Ubuntu 75
7.2 Setup Script . 78
7.3 Audio . 81

8 Discussion 83
8.1 Proposed Tasks for Future Work 86

9 Conclusion 89

Appendices 91

A Setup Script 93

B Audio Files 101

References 103

1

Chapter Contents

2

Chapter 1

Introduction

The NTNU Cyborg is a joint project between the Department of Engineering
Cybernetics, the Department of Neuromedicine and Movement Science, and
the Department of Computer Science at the Norwegian University of Science
and Technology. Its goal is to develop a cyborg which uses living nerve tissue
which communicates with a robot, which is to be used as a research plat-
form and a mascot for both NTNU and the participating departments. The
development of the project is done by PhD and MSc students and super-
vised by NTNU researchers and professors. The nerve tissue is grown on a
Micro-Electrode Array (MEA) at St. Olav’s Hospital and previous students
have created a two-way communication channel over the internet between
them and the robot which is located at NTNU campus Gløshaugen. The
MEA enables us to read the tiny changes in voltage created by the cells. It
can also stimulate the cells giving the possibility for a feedback-loop with
the robot. The project utilises ROS (Robotic Operating System) as its base
for the software where packages are modular and can be removed or added
with relative ease. The robot is built on a base called Pioneer LX from Mo-
bileRobots, with a shell created for the Cyborg added on top of the base.
While there is a distinction between the names robot and Cyborg, they are
often used interchangeably, and because it does not have an official name it
is mostly called the Cyborg.

The work done this spring is aimed at continuing our own work, while at
the same time building on other students work from previous years. Here,
the main goal has been to create a smoother experience of the Cyborg as

3

Chapter 1.1. Ongoing Work

well as updating existing and adding new software, and through this bring
the project closer to its final state.

Presented in this report are the implementations of new LED-dome inter-
preters and audio files, and propositions for different behaviours they can be
used in. The possibilities for upgrading ROS and Ubuntu and what impact
that could have on the Cyborg are investigated. The libraries and depen-
dencies used on the Cyborg are collected into a requirements file and a setup
script which can be run to install the Cyborg on a new system. Different
behaviour tree libraries are studied and compared, and a proposition for how
a behaviour tree can be implemented are presented. A study of the psychol-
ogy of colours and their effect of people’s emotions will be presented and the
results can as a reference work for future application of colour in the Cyborgs
LED-dome interpreters.

1.1 Ongoing Work

Described here is the work that has been done in parallel to this thesis by
other students working on the NTNU Cyborg project.

The Navigation Stack

The work done with the navigation stack has been to continue the re-implementation
of the navigation system and optimising the localisation performance. Be-
cause the navigation stack was using proprietary code, it is now based on the
ROS navigation stack using ROS nodes that together perform path planning,
obstacle avoidance, localisation and mapping. [17]

Object Detection

A computer vision module designed for the Cyborg has been implemented
on a Jetson TX1 development board and uses a ZED stereo camera for a
live video feed. The module is designed to detect humans to pave the way
for the Cyborg to become a socially intelligent robot. Objects detected by
the module can be used in the controller and behaviour modules to trigger
specific behaviours, for example, interact with people. It can also be used

4

Chapter 1.2. Previous Work with the Cyborg

when navigating and provide the Cyborg with an additional form of obstacle
detection. [7]

GUI Module

The goal of the work with the website was to support remote monitoring
and control of the Cyborg, as well as increasing the level of automation of
the robot. The website is implemented as a cloud-based, reactive single-page
application. It allows the Cyborg to be manoeuvred remotely and in real-
time with an interactive map using either keys or the on-screen joystick. The
GUI also allows for changing the state in the behaviour system, SMACH
state machine and changing the mode of operation. [34]

1.2 Previous Work with the Cyborg

This section is based on a similar section from the author’s specialisation
project. Changes such as the work done during the three specialisation
projects in the autumn of 2019 have been added.

There have been several students working on the cyborg during the last
years. All have been working on it as part of their master’s thesis and/or
specialisation project. Last year the cyborg was stripped of all unnecessary
components to make a base on which the cyborg can be further developed.
Other previous work have involved a selfie stick, an iris, arms for the cy-
borg, face recognition, an artificial muscle and an Xbox Kinect. A quick
explanation of the previous years’ work is presented below.

Autumn 2019 - Because major parts of the navigation system on the Cy-
borg consisted of proprietary code, an effort to develop a new navigation
stack was begun, and show to be working in the simulator. A proof-
of-concept website was created as a replacement for the Mode Selector
box, in addition to creating a remote GUI interface for the Cyborg.

Spring 2019 - Collected all non-redundant parts of the cyborg into a work-
ing base for further development. The motivation was a simpler soft-
ware structure. Old modules were improved, some kept as they were,
and new modules were developed and added such as the behaviour
module [5][4].

5

Chapter 1.3. Work Not Mentioned Any Further

Spring 2018 - Contributed with incremental improvements to the robotics
part of the cyborg. The now unused controller system based on be-
haviour trees was developed. The goal was to represent a more real-
istic behaviour than the existing system at that time. A program to
visualise the behaviour tree while running was also developed. Lastly,
a system for object detection and a classification system using neural
networks was added [30].

Spring 2017 - A controller for the robot was made, as earlier modules
were able to simultaneously run different modules. This controller is
the basis for the current controller and is a state machine controller.
It used a PAD emotion state model to decide the mood and what
to other modules to run. A navigation module using ROSARNL was
also implemented [3]. Work was also done to ready the cyborg for
presentations. This became the Presentable Robot, and at the same
time introduced the idea of a core on which students could implement
their projects. This is where the, at that time called Startup Box now
Mode Selector Box, was made [51].

Spring 2016 - Work on implementing speech recognition was done this
year. This to have the robot communicate with the public. Research
was done to examine what the best option for a speech recognition tool
would be, and also to convert speech to text. The result was it being
able to hold a conversation with informative and humorous answers
[25].

1.3 Work Not Mentioned Any Further

As the Cyborg is a project worked on by many students over several years
there will always be some work that is done to combine those projects, which
is not necessarily part of the main work. Some of this work includes fixing
minor and major errors that might occur, merging different work branches
into each other and improving upon minor details from previous work. The
work in this thesis has been no exception. When integrating the work done
with the website and the new navigation stack reached points where they
could be added to the other software, work was needed to change the existing

6

Chapter 1.3. Work Not Mentioned Any Further

software which used or depended on the new parts so that they would work
properly together.

7

Chapter 1.3. Work Not Mentioned Any Further

8

Chapter 2

Background

This background chapter is based on the same chapter from the author’s
specialisation project from the autumn of 2019 [23]. As most of the hardware
and software used on the Cyborg have not changed. New sections covering
new software and hardware have been added.

2.1 Hardware

Here, the parts of the hardware of the cyborg which have been relevant for
the work in this thesis are presented.

2.1.1 The Cyborg Base - Pioneer LX

Figure 2.1: The Pioneer LX
robot. Image courtesy of [41].

The base of the Cyborg is a mobile robot
platform called Pioneer LX from MobileR-
obots [32][31]. It is a general-purpose indoor
platform designed to be able to work around
people and is based on the Adept Lynx AIV,
also from MobileRobots. It serves as the
moving and navigation platform and main
computer for the Cyborg on which every-
thing else is mounted. Some software li-
braries are included which are mentioned
further in section 2.2.3. The robots are

9

Chapter 2.1. Hardware

made for easy integration of custom acces-
sories and sensors, and is programmable.
Some of the reasons it was chosen were because it is able to carry up to
60 kg and the on-board computer can run both Windows and Linux. It also
features different sensors such as a laser to map its surroundings. Other
features are:

• Intel D252 64-bit dual core 1.8GHz CPU and an integrated graphics
processing unit.

• 2 GB DDR3 RAM

• Wireless Ethernet connection.

• Front- and rear-facing sonar sensors, and front bumper panel.

• SICK S300 laser scanner.

• Several USB 2.0 ports, a VGA monitor port, 16 In/16 Out digital I/O,
and 4 In/4 Out analogue I/O.

• 60 Ah battery, capable of powering the robot for 13 hours.

• Charging and docking station which allows the robot to charge itself.

• Joystick for manual steering and control.

2.1.2 Led-Dome

The led-dome is an essential part of the Cyborg. Without it, the cyborg
would be just another robot driving around and would not be as striking as
it is now. In fig. 2.2 the led-dome can be seen on top of the robot body. The
dome is made up of two plastic shells, the inner and the outer. On the outside
of the inner shell, strips of LEDs of the type WS2812B have been glued in a
zig-zag pattern amounting to 791·3 RGB LEDs. Each of them is individually
addressable. The byte-array sent to the led-controller from the domecontrol
ROS node can be accessed the same way as any other array in Python. The
outer shell is made of VIVAK PETG and was vacuum formed along with
the inner shell and then frosted using sandpaper. The process of making the

10

Chapter 2.1. Hardware

led-dome can be found in [1]. The dome is controlled by a 5V PWM-signal
and requires an external power supply of 5V as the led-controller is not able
to produce sufficient power.

Figure 2.2: The Cyborg with
the led-dome.

It is important to differentiate between
the led-dome, the led-controller and the
ROS node controlling the led-dome, as it
is easy to be confused. In this report led-
dome will be used for the hardware that is
the dome, led-controller will be used for the
hardware that is controlling the LED strips,
and controller node will be used for the ROS
node. Be aware that led-controller might
also be used for the software on the led-
controller as it is not part of the ROS node.

2.1.3 Mode Selector Box

The Mode Selector box started as a start-
up box made by Jørgen Waløen for his mas-
ter’s thesis [51] that ran the scripts corre-
sponding to the choices at start-up. These
choices were ARIA Demo by MobileRobots
and launch of the ROS nodes. He wrote a
library in C for the Arduino Nano and OLED screen, compiled it with a
Makefile and uploaded it with avrdude. Last spring the box was updated so
it would be able to switch between modes without the need to shut down
the whole robot in between. Another mode, called ARNL, was also added. As
this change added functionality outside the scope of its original name, the
box was renamed Mode Selector box. A description of all changes made in
2019 can be found in [5].

2.1.4 MEA2100 - System Microelectrode Array

The MEA2100-system is made by Multichannel Systems and is a versatile
in vitro system made for extracellular recording from microelectrode arrays

11

Chapter 2.1. Hardware

[47]. It can record cardiac or neuronal cultures, stem cells, or cardiac or
brain slices. MEA technology is a powerful tool in electrophysiology research
and is based on an idea from the 1970s. The system gives real-time feedback
from 60-channels with a 24-bit resolution. Every electrode in the MEA2100-
systems is bidirectional, meaning that it is possible to stimulate the cells on
each electrode. Neural cells are grown in the MEA system at the neuroscience
department at St. Olav’s and provides the data used for visualisation on the
led-dome. The system interprets and sends the signals through a computer,
which then sends it to the cyborg over a server.

2.1.5 NodeMCU ESP-32S

Figure 2.3: Standard electrode
numbering of the 60-electrode
MEA.

The NodeMCU ESP-32S is a development
board made by NodeMCU [35] based on the
ESP-WROOM-32 module by Espessif Sys-
tems [46]. The board has a 32-bit double-
core architecture with a clock speed of 240
MHz. It has a USBMicro-B connection used
for writing to and reading from the board in
addition to power. It operates with 3.3V
and has 38 I/O pins which support a va-
riety of uses and protocols such as UART,
PWM, and output from the on-board DA-
converter. Earlier, instead of the NodeMCU
ESP-32, the led-controller was an Arduino
Mega 2560 which was replaced in the spring
of 2019.

Directly from NodeMCU it runs Lua TOS real-time system and is pro-
grammed in Lua using the Lua IDE. Lua RTOS is designed with three-layers
with a Lua interpreter on top, a real-time micro-kernel in the middle, and
at the bottom a hardware abstraction layer. The middle layer is powered
by FreeRTOS. Installing a minor add-on for the Arduino IDE, allows for
programming of the EPS-32 in Arduino IDE with the Arduino programming
language [21], changing out the top layer. This allows for much easier usage
of the ESP-32 as there is no need to learn another programming language.

12

Chapter 2.2. Software

The Arduino code is only run on one core. Because the ESP-32 has two cores,
programming must be done using FreeRTOS tasks and methods, otherwise
only one core will be utilized.

Figure 2.4: NodeMCU ESP-
32S. Image courtesy of [36].

Together with the ESP-32, the LED-
controller consists of a small circuit with
a CMOS-buffer. This is because the LED
strips require a 5V PWM-signal to operate
while the ESP-32 only provides a 3.3V sig-
nal. Therefore, a level conversion is needed.
The reason a buffer is used and not a pas-
sive converter with a pull-up resistor, is be-
cause a pull-up resistor is to slow to handle
the high operational frequency of the LEDs.
The type of buffer used is a quad bus buffer
of the type 74VHCT125AT. A detailed description of how the software of
the LED-controller works can be found in [4].

2.2 Software

All code for the cyborg can be found on the NTNU Cyborg’s GitHub page
[49]. There each ROS node contains a README file explaining the basic details
of the node. In addition, more in-depth documentation can be found in the
wiki.

2.2.1 FreeRTOS

FreeRTOS is a real-time operating system made for use in embedded systems.
The idea was to design an os which would need very little space in the
memory, allowing for fast execution. It is distributed for free under the
MIT License [27]. FreeRTOS contains methods for parallel threads, tasks,
timers, mutexes and semaphores. Threads may also be prioritised. For the
cyborg, a small install of the NodMCU ESP-32 is needed in the Arduino
IDE to program with FreeRTOS. This because the ESP-32 is already running
FreeRTOS in the middle layer, as mentioned in section 2.1.5. To give a quick
introduction to the methods used on the led-controller some examples are

13

Chapter 2.2. Software

given and explained. A further description of FreeRTOS’ methods can be
found in [15].

1 xTaskHandle xHandle;
2 static unsigned char ucParameter;
3

4 xTaskCreate(
5 vTaskLoop , //Loop -funksjon
6 "TaskNavn", //Task navn
7 STACK_SIZE , // Stack str
8 &ucParameter , // Peker brukt som parameter til task
9 PRIORITY , // Priotiteten

10 &xHandle , //Task handle som det returneres til
11 0); //Core running the task
12

13 void vTaskLoop(void * parameter){
14 for (;;){
15 /* Task kode her */
16 }
17 }
18 vTaskDelete(xHandle);

• The first line sees a task created. A task handle is like a reference for
the task to be used to delete or create it.

• vTaskLoop is the main loop of the task, and works like the loop()-
function on Arduinos. It will run as long as the associated task exists.

• vTaskDelete takes the handle of a task and deletes it.

• xTaskCreate creates the task. If one or several of the parameters taken
by the function is not needed, they can be sent as NULL.

• The parameter, here declared as ucParameter, must exist for the entire
lifetime of the task. In this case, it is then declared as a static.

FreeRTOS contains several conventions for naming constants, functions,
and more. The two most used are the prefixes of the functions xTaskCreate
and vTaskLoop in the examples above. The prefix v means that the return
type of the function is void. x denotes some result, which is often a handle
for a task or a queue [8].

14

Chapter 2.2. Software

2.2.2 Arduino IDE

The Arduino IDE (integrated development environment) supports coding of
a massive number of development boards, not only made by Arduino, in their
own language which is a mix of C and C++. It provides a large number of
built-in libraries, as well as any modified libraries which have to be open-
source. With the installed add-on, the ESP-32 can be programmed with the
IDE using C/C++ and FreeRTOS.

2.2.3 Software with the Pioneer LX Base

The Pioneer LX robot comes with several pre-installed and useful tools, some
of whom are mentioned here. ARIA is open-source, while some are free, but
most must be purchased. Since MobileEyes was discontinued one of the
biggest issues have been the accessibility of these tools. Changing this is the
work described in [18] and [17].

• ARNL - Advanced Robot Navigation and Localisation is built on top of
ARIA, made by MobileRobots. It is a set of software packages and used
for localisation, by keeping track of where the robots is, and navigation,
allowing the robot to receive a give specific destination. This is now
being replaced by the new navigation stack

• ARIA - Advanced Robot Interface for Applications can dynamically
control a robot’s heading, velocity, and other motion parameters. In
addition, it can receive operating data sent by the platform. All this is
done through its high-level infrastructure or low-level commands.

• MobileSim - Simulator for the Pioneer LX base.

• Mapper3 - Maps needed in ARNL can be edited and converted to the
right format with this tool.

• MobileEyes - Provides a GUI for the robot base. It can remotely
control and monitor the Pioneer LX, in addition to create maps. The
program can be run from a computer and connect to the robot via the
network.

15

Chapter 2.3. Cyborg Software Structure

2.3 Cyborg Software Structure

The cyborg consists of many modules, which may be hard to get a grasp of
the first time reading them. Here is therefore a quick explanation of each
node. In fig. 2.5 is a simplified class diagram of the whole cyborg, with
subscribed to and published topics. Figure 2.6 shows the relation between
ROS nodes and topics. Both can also be found on the NTNU wiki [48]. Since
the onset of this thesis some of these have been added, changed, or removed
as the software has been changed. They have been included here to provide
insight into previous iterations and continuity of the Cyborg software.

Audio - A ROS node in charge of playing audio files, and also contains
text-to-speech functionality.

Behaviour - A ROS node that adds and executes behavioural presets. It
exploits the emotional state of the cyborg and provides emotional feed-
back. New behavioural presets and configurations are added in the
behavior.launch file. Also decides what future states to execute.

Event Scheduler - A ROS node which provides functionality related to
publishing scheduled events. It also monitors other system events like
low battery.

Primary States - Gathers action server states too complex for the be-
haviour module, and states that do not produce outputs. Can execute
state changes, and provides emotional feedback to the controller. A
ROS node.

Command - A ROS node, implemented, but not in active use at the mo-
ment. It is a command module run on an external computer to monitor
the cyborg. It is not in use while the system is running, but can be
used as a tool when testing.

Controller - The main state machine on the cyborg which manages all
other nodes. Organises all actions in the state machine, handles the
emotional system and motivator. Also a ROS node.

Navigation - A ROS node which handles all high-level navigational execu-
tion on the cyborg through the action server. The node cyborg_navigation

16

Chapter 2.4. ROS - Robotic Operating System

is the navigation controller implemented by students working on the
Cyborg, while navigation is a collection of open-source packages used
by the navigation node.

Mode Selector - Not a ROS node, but contains the code used on the exter-
nal box used to choose which mode the cyborg should run. Removed
in 2020.

LED Dome - Controls the behaviour of the led-dome and sends output to
the led-controller to set the led strips. It does not choose the different
visualisation modes, but receives them on the topic /cyborg_visual/domecontrol
from the behaviour module.

ROS Arnl - A ROS node developed by MobileRobots which handles commu-
nication between the robots sensors, actuators and navigation library,
and the rest of the ROS nodes. Because of the new navigation stack,
it is being replaced by open-source nodes which provide the same func-
tionality, and should not be needed any longer.

ROSARIA - A ROS node and provides a ROS interface for most MobileR-
obots bases such as the Pioneer LX.

Commander - The Cyborg’s node for communicating with the new website,
created in 2020. It also acts as a replacement for the Mode Selector
together with the website.

2.4 ROS - Robotic Operating System

ROS is an open-source robotics middleware. It provides services designed like
those of an operating system, though it is in itself not an operating system.
It is a flexible framework for working with and developing robot software [40].
ROS works well with modular systems as each node can be removed, added
or edited without affecting the others, and for control of distributed systems.
Nodes of the same robot can be run on different hardware and written in
different languages as ROS is language- and platform-independent. All this
allows for easy scalability. Their main goal is to provide support and easy
reuse of code for research and commercial use.

17

Chapter 2.4. ROS - Robotic Operating System

C
yb

o
rg

<
<

b
lo

ck
>

>
M

o
d

u
le

<
<

b
lo

ck
>

>
M

o
ti

va
to

r
<

<
b

lo
ck

>
>

E
m

o
ti

o
n

sy
st

em

S
u

b
sc

ri
b

er
:

*/
em

ot
io

na
l_

st
at

e
*/

st
at

e_
ch

an
ge

P
u

b
lis

h
er

:
*/

re
gi

st
er

_e
ve

nt
*/

em
ot

io
na

l_
fe

ed
ba

ck

S
u

b
sc

ri
b

er
:

*/
em

ot
io

na
l_

fe
ed

ba
ck

*/
se

t_
em

ot
io

na
l_

st
at

e
*/

se
t_

em
ot

io
na

l_
va

lu
e

*/
em

ot
io

na
l_

co
nt

ro
le

r

P
u

b
lis

h
er

:
*/

em
ot

io
na

l_
st

at
e

se
rv

ic
e:

*/

ge
t_

em
ot

io
na

l_
st

at
e

S
u

b
sc

ri
b

er
:

*/
re

gi
st

er
_e

ve
nt

P
u

b
lis

h
er

:
*/

st
at

e_
ch

an
ge

ac
ti

o
n

C
lie

n
t:

/<

ac
tio

nl
ib

_n
am

e>
/<

st
at

e>

P
u

b
lis

h
er

:
*/

em
ot

io
na

l_
fe

ed
ba

ck
,

*/
re

gi
st

er
_e

ve
nt

*/
te

xt
_t

o_
sp

ee
ch

S
u

b
sc

ri
b

er
:

*/
em

ot
io

na
l_

st
at

e
*/

te
xt

_f
ro

m
_s

pe
ec

h

ac
ti

o
n

S
er

ve
r:

/c

yb
or

g_
na

vi
ga

tio
n/

pl
an

ni
ng

,
/c

yb
or

g_
na

vi
ga

tio
n/

m
ov

in
g

/c
yb

or
g_

na
vi

ga
tio

n/
go

_t
o

<
<

b
lo

ck
>

>
D

at
ab

as
eh

an
d

le
r

<
<

b
lo

ck
>

>
N

av
ig

at
io

n
S

er
ve

r

<
<

b
lo

ck
>

>
cy

b
o

rg
_n

av
ig

at
io

n

<
<

b
lo

ck
>

>
cy

b
o

rg
_c

o
n

tr
o

lle
r

<
<

b
lo

ck
>

>
cy

b
o

rg
_l

ed
_d

o
m

e
<

<
b

lo
ck

>
>

ro
s_

ar
n

l
S

u
b

sc
ri

b
er

:
/d

om
ec

on
tr

ol

S
er

ia
l c

o
m

L
E

D
-d

o
m

e

<
<

b
lo

ck
>

>
es

p
32

_i
n

te
rf

ac
e

S
er

ia
l c

o
m

<
<

b
lo

ck
>

>
D

at
ab

as
eh

an
d

le
r

<
<

b
lo

ck
>

>
C

o
n

tr
o

lle
r

<
<

b
lo

ck
>

>
B

eh
av

io
rS

er
ve

r

<
<

b
lo

ck
>

>
P

ri
m

ar
yS

ta
te

sS
er

ve
r

P
u

b
lis

h
er

:
cy

bo
rg

_a
ud

io
/p

la
yb

ac
k

cy
bo

rg
_a

ud
io

/te
xt

_t
o_

sp
ee

ch
cy

bo
rg

_v
is

ua
l/d

om
ec

on
tr

ol
/c

yb
or

g_
co

nt
ro

lle
r_

em
ot

io
na

l_
fe

ed
ba

ck

S
u

b
sc

ri
b

er
:

 c
yb

or
g_

au
di

o/
fe

ed
ba

ck
/c

yb
or

g_
co

nt
ro

lle
r/

em
ot

io
na

l_
fe

ed
ba

ck
be

ha
vi

or
se

rv
er

/d
yn

am
ic

_b
eh

av
io

r
be

ha
vi

or
se

rv
er

/c
om

m
an

d_
lo

ca
tio

n
/c

yb
or

g_
co

nt
ro

lle
r/

em
ot

io
na

l_
st

at
e

<
<

b
lo

ck
>

>
p

la
yb

ac
k

<
<

b
lo

ck
>

>
cy

b
o

rg
_t

ex
t_

to
_s

p
ee

ch

<
<

b
lo

ck
>

>
cy

b
o

rg
_a

u
d

io

<
<

b
lo

ck
>

>
E

ve
n

tS
ch

ed
u

le
r

<
<

b
lo

ck
>

>
cy

b
o

rg
_c

o
m

m
an

d

<
<

b
lo

ck
>

>
ex

ec
u

ti
ve

_s
m

ac
h

_v
is

u
al

iz
at

io
n

<
<

b
lo

ck
>

>
xd

o
t

<
<

b
lo

ck
>

>
sm

ac
h

_v
ie

w
er

<
<

b
lo

ck
>

>
rq

t_
sm

ac
h

Figure 2.5: A simplified class diagram of the whole cyborg. From the NTNU
wiki [48].

18

Chapter 2.4. ROS - Robotic Operating System

Figure 2.6: Overview of the different ROS topics and nodes on the cyborg. Oval
modules are nodes and the rectangles are topics. Outgoing arrows from the nodes
are publishers and incoming are subscribers.

19

Chapter 2.4. ROS - Robotic Operating System

Since its initial release in 2007, the number of packages ready for download
has been steadily growing. There are now two different versions ROS and
ROS2. ROS releases one new release every two years, while ROS2 does so
every six months. The lack of real-time support in the first version of ROS
has been addressed in ROS2, which also has support for Windows. There is
very little which is actually core ROS, beyond the general structure. Users
can configure tools and libraries to fit their application area and robot.

2.4.1 The Concepts of ROS

ROS contains many different methods and concepts. Many of which are used
on the cyborg. The most important concepts are presented here.

ROS Master

The ROS Master is an integral part of any ROS system. It can be run with
the roscore or roslaunch commands, which loads the Master along with the
other essential parts. The Master provides registration and naming services,
as well as keeping track of subscribers and publishers. Its role is to make
all information needed by the nodes available. The parameter server is also
provided by the Master, but it will not be described in detail here.

Nodes

Nodes are the processes of ROS that perform any computation, combined
by the communication streams services, topics or the parameter service to
form a graph. They can be compared to atoms connected together to form
molecules, and are the part that makes ROS so modular. They can easily
be restarted in the case of a crash and can be switched out just as easily.
Nodes communicate peer-to-peer through the communication streams and
can identify each other by name the same way a Unix system uses a file path
to locate a file. ROS nodes are part of a package. Most often each package
contains only one node, usually with the same name as the package, but that
is not a must. A package can contain as many nodes as needed.

20

Chapter 2.4. ROS - Robotic Operating System

Topics

Topics are the channels nodes use to send messages over to communicate.
Topics are defined by name, just like messages. They are asynchronous and
follow a publish-subscribe model, where there is no limit to the number of
topics a node can subscribe and publish to. A node can publish on a topic
it is also subscribing to. Nodes are not aware of the other nodes they are
communicating with, or if anyone receives the messages sent. To receive
data from another node, nodes subscribe to the relevant topic. Using the
command rostopic in the terminal yields information about which topics
exist, which nodes are subscribing and publishing to them, and what type
of message types are used. Because topics are asynchronous, if synchronous
messages are needed, it is often better to use services. In Python, a publisher
and subscriber are created by writing:

1 bool_pub = rospy.Publisher("topic_name", bool , queue_size =
10)

2 rospy.Subscriber("topic_name", bool , callback_function)
3

4 bool_pub.publish(message)

The first line declares that the node is publishing messages of the type
bool on the topic named topic_name. Queue_size is used to limit the
number of messages in case a subscriber cannot receive them fast enough.
The second line declares a subscriber to the same topic. Every time a message
is received on the topic, the function callback_function is called and takes
the received message as an argument. The last line is used to publish a new
message to the topic.

Messages

Messages are naturally enough, messages, used to communicate between the
nodes. They are sent over topics by a publisher in a node and received by a
subscriber. A message contains simple data structures such as string, int,
bool, float, and arrays of primitive types. They can also support arbitrarily
nested structures and arrays. Structs in C are quite similar to messages.
Messages can also be used to send fields of data and constants to help in-
terpret the data field. Two or more nodes sending and receiving the same
message must use a defined name of the message type. Otherwise, they will

21

Chapter 2.4. ROS - Robotic Operating System

think they are using two different message types. This will also mean that
one or both will not be able to publish or subscribe to a topic, as they are
defined with a specific message type to be used. A typical message can look
something like this:

1 Header header
2 int8 CHARGING_UNKNOWN = -1
3 int8 CHARGING_NOT = 0
4 int8 CHARGING_BULK = 1
5 int8 CHARGING_OVERCHARGE = 2
6 int8 CHARGING_FLOAT = 3
7 int8 CHARGING_BALANCE = 4
8

9 bool[] array_of_bools
10 int charging_state
11 float32 charging_percent

Initialising a message can be done by writing:

1 message = MessageType ()
2 message.data = value

Where the first line initialises a message of the type MessageType() and
the second line assigns a value to the argument data. In ROS there are many
standard message types in the library std_msgs. When defining a message
type, they are stored in .msg files in a subfolder called msg/ in one of the
packages using the message type. When doing this, the message files have to
be added to the CMakeLists.txt file for that specific package. This so they
can be translated to source code.

Services

Services are a method for synchronous communication, and are used when
just sending a message and not receiving a response is not enough. They
are especially useful in distributed systems. Service calls are blocking and
therefore have to be short, like inquiring about a state or a value, or a
quick calculation. Longer processes should not be done in a service call, and
especially not processes that might be required to preempt. Services should
neither depend on states or similar which can have unintended or unwanted
side effects for other nodes. When a client calls upon a service, the service
is executed and the response message sent back.

22

Chapter 2.4. ROS - Robotic Operating System

The request/reply is defined as a pair of messages in a .srv file where
the request and response are separated by a line of "- - -". Srv-files are built
using the same format as .msg files. An example of a service message can be
something like this:

1 string placement
2 bool move
3 ---
4 string result
5 string state
6 int8 speed

A providing node can offer a service by a string name, and a client node
calls the service by sending the request message. Services also include the
command-line tool rossrv which can be used to display information about
the services and can be used the same way as rosmsg. The command-line
tool rosservice is used for listing and acquiring information about services in
a system, as well as dynamically invoking them.

To declare a service in a node the code in line 2 is used, like below. The
callback function is called when the service is requested. The fifth line is a
method for blocking while the service is unavailable, the sixth is the service
handle and the seventh is the actual service call. The last line returns the
response value.

1 # Service Node
2 srv = rospy.Service(service_name , ServiceType ,

service_callback_function)
3

4 # Client Node
5 rospy.wait_for_service('service_name ')
6 service = rospy.ServiceProxy('service_name ', ServiceType)
7 result = service(request)
8 returm result.response

Parameter Server

ROS parameters are used to create global settings and values. The param-
eter server is created and run automatically inside the ROS master. It is
essentially a dictionary containing all global variables, which are accessible
for all nodes. The parameters allow for testing or running a node without

23

Chapter 2.4. ROS - Robotic Operating System

having to change variables all over the code, and for nodes written in C++
without having to recompile. All nodes can, at any time during runtime
create, read or modify a parameter. The parameter server is not designed
for high-performance and is best used for static data. Parameters are named
using the ROS naming convention with hierarchy and strings, similarly to
directories in Linux. Below the parameter /camera/left is a dictionary con-
taining name and exposure. The same would go for /camera, which would
be a dictionary of dictionaries.

1 # example of parameter names
2 /camera/left/name: left
3 /camera/left/exposure: 2.4
4 /camera/right/name: right
5 /camera/right/exposure: 1.8

The command-line tool rosparam provides commands for setting and get-
ting ROS parameters on the parameter server using YAML-encoded files. In
addition there are built-in functions for getting, setting and checking for pa-
rameters, rospy.get_param, rospy.set_param and rospy.has_param, re-
spectively. Parameters can also be set in launch files, as in this example
from [37], section 7.4:

1 <param name="param_name" value="param_value" />
2

3 <group ns="duck_colors">
4 <param name="huey" value="red" />
5 <param name="dewey" value="blue" />
6 <param name="louie" value="green" />
7 <param name="webby" value="pink" />
8 </group >
9

10 <node >
11 <param name="param_name" value="param_value" />
12 </node>

The first line assigns the value to the parameter, and the second part
creates a dictionary with four variables. It is also possible to create private
parameters for one node. To do that, the first line is added to a nodes part
in the launch file like in the last section above.

24

Chapter 2.4. ROS - Robotic Operating System

Action Server

The action server is a way to implement a standardised interface for inter-
facing with preemptable tasks and is provided by the actionlib package.
Their most important characteristic is that they are preemptable, which has
to be implemented cleanly by the use of action servers. These tasks are longer
running and often provide feedback while running, like object detection, nav-
igation, and laser scans. Slow routines or calculations which take more than
a few seconds to finish, non-blocking background processes, or lower level
controls are also examples of tasks best implemented by actions. It is also
possible to execute more than one action goal in parallel on the same server.
This means that the actions can keep each of the states for the lifetime of a
goal, and the goals have their unique id.

Actions use the same principle as services and topics, they communicate
via ROS messages. The ROS Action Protocol is built on top of ROS mes-
sages, and the client and server provide an API to request or execute goals
by using functions and callbacks.

Figure 2.7: Illustration of how the client and server communicates in an action
server. Image courtesy of [39].

Action messages are stored in .action files and are divided into three:
goal, feedback, and result. The goal can be a position, the direction a camera
is to point, or a state and is sent from the client to the server. The feedback
is a way to tell the client about the progress of a goal. For navigation to a
position, this feedback could be the current position. The result is sent when
the goal is completed but is different from the feedback in that it is only sent
once. In addition to these three topics, the protocol also sets up two others:
cancel and status. These are predefined in the action protocol. cancel is used

25

Chapter 2.4. ROS - Robotic Operating System

by clients to cancel goals, and status is used by the server to send updates
about the goal to the client. A generic .action file might be something like
this:

1 # Goal
2 goaltype goal
3 ---
4 # Result
5 resulttype result
6 ---
7 # Feedback
8 feedbacktype feedback

An ActionServer can be created like below, where examples from the
Cyborg code are used. The last two lines set the calculated result in the
result message, here a string, and then sets the result of the action and
publishes it to the client.

1 # include the result and the feedback messagetype
2 from cyborg_controller.msg import StateMachineAction ,

StateMachineResult
3 import actionlib
4

5 # create the resultmessage
6 result = StateMachineResult ()
7

8 # create and start the server
9 server = actionlib.SimpleActionServer("server_name",

StateMachineAction , execute , auto_start = False)
10 server.start()
11

12 def execute(self , goal):
13 # action implementation
14

15 # set result message and server state
16 result.resultdata = "action succeeded"
17 server.set_succeeded(result)

An ActionClient is created like this:

1 # include the result and the feedback messagetype
2 from cyborg_controller.msg import StateMachineAction ,

StateMachineGoal
3 import actionlib

26

Chapter 2.5. PAD Emotional State Model

4

5 # create a client and connect to server
6 client = actionlib.SimpleActionClient("server_name",

StateMachineAction)
7 client.wait_for_server ()
8

9 # create and send goal with callback function to execute when
completed

10 goal = StateMachineGoal ()
11 client.send_goal(goal , completed_callback)

2.5 PAD Emotional State Model

Figure 2.8: The PAD emotional model. Courtesy of [2].

Modelling human emotions can be tricky, and there exist many different
methods for emotional classification. Emotional classification means a way
to distinguish different emotions from each other. It is a widely discussed

27

Chapter 2.5. PAD Emotional State Model

Emotion Pleasure Arousal Dominance
Angry - 0.51 0.59 0.25
Bored - 0.65 - 0.62 - 0.33
Curious 0.22 0.62 - 0.01
Dignified 0.55 0.22 0.61
Elated (Happy) 0.50 0.42 0.23
Hungry - 0.44 0.14 - 0.21
Inhibited (Sadness) - 0.54 - 0.04 - 0.41
Puzzled (Surprised) - 0.41 0.48 - 0.33
Loved 0.87 0.54 - 0.18
Sleepy 0.20 - 0.70 - 0.44
Unconcerned - 0.13 - 0.41 0.08
Violent - 0.50 0.62 0.38
Neutral 0 0 0

Table 2.1: Some common emotions represented by the PAD emotion model’s
values from [29]

topic between researchers in affective science and emotional research, but
there are two main schools of thought. The first that emotions are discrete,
meaning every person has a set of basic emotions that are recognisable no
matter their background or culture. Think of Mr. Bean, which is recognised
all over the world despite the lack of conversation, but still fully compre-
hensible. The other school of thought is that emotions are characterised by
different dimensions. This was coined by the father of modern psychology,
Wilhelm Max Wundt. In 1897 he proposed the three dimensions pleasurable
— unpleasant, arousing — subduing, and strain — relaxation to describe
emotions.

The PAD model was developed by James A. Russel and Albert Mehra-
bian in 1974. It belongs in the dimensional models of emotion, and thus
uses three numerical dimensions to represent emotions; pleasure, arousal and
dominance. The pleasure scale signifies how pleasant an emotion is. Anger
would score low on this scale, while happiness would score high. The arousal
scale corresponds to the intensity of an emotion, and refers to a combination
of mental alertness and physical activity. Here anger would score high, while
rage would score even higher and happiness lower. Ecstasy is an example of

28

Chapter 2.6. Finite State Machines

a positive feeling that would score high on the arousal scale. The last scale,
dominance, represents how dominant and controlling an emotion is. It can
also be thought of as representing the ’fight or flight’ response. For this scale,
anger would be on the dominant side of the scale, while fear would lie on
the submissive side. This domain also gives the possibility to differentiate
between fear and anger, which, When compared to the Circumplex model
with just two dimensions arousal and valence, look the same as they score
high on both scales.

As seen in fig. 2.8, the PAD space can be divided into eight sub-spaces:
hostile, exuberant, relaxed, and disdainful, and their counterparts docile,
bored, anxious and dependent, respectively. There exist different names for
each of these combinations of P, A and D, but they are all more or less
synonymous. The axes remain the same either way, ranging from -1 to 1.

2.6 Finite State Machines

Finite state machines are methods of control and decision making based
on states. It is in only one state of any number of states at a time, and
transition from state to state depending on inputs. The defining trait of
finite state machines are that the building blocks are states, all defined before
execution. There are many ways to represent a FSM, the most common being
UML state machines or event tables. There are two main types of state
machines: non-deterministic and deterministic. Where each transition is
uniquely identifiable by the input and source state and an input is required for
a transition in deterministic state machines, non-deterministic state machines
may have a choice of resulting states from a specific input and source state.
The non-deterministic property comes from the fact that it is not possible to
accurately predict which state the execution will finish just based on input
and state.

2.6.1 Concepts

States are the descriptions of the status of a system. States can contain
code to be run to perform some task or they can be waiting states waiting
to execute a transition. If a condition is satisfied or an event is encountered

29

Chapter 2.6. Finite State Machines

Bed Home Work

take bus

sleep take bus

wake up

Figure 2.9: An example of a very simple state machine.

a transition is executed. Sets of actions make a transition, and can be
performed when entering and/or exiting a state. Events are the driving force
in most state machines, and tell the system if something has happened and
it needs to change state. If implemented correctly they behave similarly to
interrupts instead of blocking the system by polling. An example of an event
can be that the system arrives at a location and should then perform some
task. Here the event would be the arrival at the location.

2.6.2 Trade offs

Finite state machines act as a good firewall in that they protect from reaching
unknown states, as all states and transitions are preset. They are relatively
easy to understand as long as the system is not too big and complex, and
they should be used with care in those instances. They are, however, a good
way to break down behaviour, and clarify how to get to and from a state.

FSMs are not particularly compatible with scalability. If something is
changed or a state is added, the logic has to be re-defined. As an FSM con-
trol system grows, the number of transitions, states and logic can quickly
become unmanageable. Usually, an FSM uses a switch-case or if-else state-
ments to implement the states. In an industrial setting where a system can
have hundreds of states. This will result in a very high number of value
checks and inefficient resource use. They are neither particularly compatible
with concurrency. Running two or more state machines in parallel quickly
leads to deadlocks or a need to edit the system. FSMs are also unsuited for
unstructured behaviour like the Cyborg is expected to do. The most promi-
nent behaviour being roaming around Glassgården. If the behaviour cannot
be broken down into states or the number of states is not finite, then state

30

Chapter 2.7. Behaviour Trees

machines are difficult to use.

2.6.3 In ROS

In ROS and the software on the Cyborg a task-level state machine archi-
tecture called SMACH is used to implement state machines. SMACH is a
Python library installed in ROS to rapidly create complex hierarchical state
machines. A drawback with SMACH is that it is not ideal for handling
unstructured tasks. A further explanation of SMACH can be found in sec-
tion 2.8.

2.7 Behaviour Trees

Behaviour trees are mathematical models used for controlling behaviour and
are often used in artificial intelligence and video games. They built in a
modular fashion which allows them to describe the changes between a finite
set of tasks. Very complex tasks can be created using simple tasks, without
the need to know how each simple task is implemented. They are fairly simple
to understand for humans which make them less prone to developer errors.
Unfortunately, there does not seem to be a naming standard for the nodes in
a behaviour tree, and depending on which implementation you are using the
same type of node might be called different things. In contrast to hierarchical
state machines, the building blocks are tasks and not states. This in turn
creates other difficulties mentioned in more detail in section 2.7.2. Behaviour
trees differ from Decision trees in that they are made for controlling behaviour
where the latter is just for making decisions.

Decision trees must be implemented such that the children of a parent
represent all possible outcomes for that node. If a node only can be answered
with yes or no, then it must have two children. Decision trees can be part of
a behaviour tree, becoming a sub-tree. Behaviour trees are evaluated from
the root after they are reset, and each child is evaluated from left to right.
The child node to the left has the highest priority, and its conditions are met
it is executed. Because this child node is now set to ’running’ the next time
the three is evaluated it knows where to continue from. If any condition fails,
it returns to the parent and then the next child.

31

Chapter 2.7. Behaviour Trees

2.7.1 Key Concepts

The behaviour trees are directed trees with nodes classified as root, control
flow or execution nodes. The first have a single child, the second has one
parent and at least one child, and the last has just a single parent. Children
return either running, success or failure depending on if a goal has been
achieved. The trees are ticked meaning at each tick is progressed down the

➙

Find Ball Pick Ball Place Ball

(a) A higher lever tree performing three tasks: finding a ball, picking it up,
and placing it.

➙

Find Ball Place Ball

➙

? ?

Grasp BallBall GraspedApproach Ball Ball Close

(b) In the sub-tree ’Pick Ball’ the task ’Approach Ball’ is run until the ball is
appropriately close, then the task ’Grasp Ball’ is run until the ball is grasped.

Figure 2.10: Two illustrations of different detail levels in a behaviour tree. Cour-
tesy of [12] fig.1.1

32

Chapter 2.7. Behaviour Trees

tree depending on the node types.

Control Flow

Control nodes consist of two types fallback and sequence nodes. The
fallback nodes, also called selector or priority nodes, are a composite type
node and find and execute the first child that does not fail, and returns the
status of its child. Fallback nodes are signified by the ? symbol. Sequence
nodes will execute its children until one fails. They use the symbol →. It
will return a status code of running or failure depending on the return of the
child.

There also exists a third type, parallel nodes, which use the
 symbol.
They tick the children in parallel and return success if M ≤ N, and return
failure if N - M + 1 children return failure. Otherwise it returns running.

Actions

Actions nodes are the nodes that execute some task and are often called leaf
nodes. They change the state of the system and return running, success or
failure depending on the execution. In fig. 2.10 the tasks ’Approach Ball’
and ’Grasp Ball’ are examples of actions. They can be longer processes and
can be preempted.

Conditions

Conditions are checks to determine if a condition has been met. They are
technically actions, but do not return running or change any internal states
or variables of the tree. Another name often used are decorators. Examples
of this in fig. 2.10 are ’Ball Close’ and ’Ball Grasped’.

2.7.2 Trade offs

All tasks are broken down into their simple behavioural components, giving
behaviour trees a new perspective on programming behaviour. This method
is often less challenging to understand, regardless of background. A graphical
interface for visualising and composing a tree allows for easier understanding

33

Chapter 2.8. SMACH - State MACHine

and implementation for people unfamiliar with the inner workings of the
system or non-programmers.

One limitation of behaviour trees is that they make it difficult to imple-
ment state-based behaviour and different operational modes where they do
almost the same. This would require the implementation of several very sim-
ilar trees or that each task must check which mode to run, meaning a state
machine within each task. Behaviour trees do not replace the functionality
of finite state machines, and therefore combining FSMs and behaviour trees
can be a good idea. Though, it does increase the complexity of the system
design.

The Blackboard

To share data between tasks, each behaviour tree has a data structure called
a blackboard. It holds variables and values relevant to that tree. An ex-
ample on the Cyborg could be a task fetches the current position which is
needed for a calculation in another or a condition check. Depending on the
implementation only some nodes may have access to the data.

2.8 SMACH - State MACHine

SMACH is a task-level architecture for creating complex robot behaviour. It
is an open-source Python library and can be used to construct concurrent
and hierarchical state machines. SMACH is useful when you want a robot to
execute a complex plan of which all states and transitions can be explicitly
described [44]. It allows for fast prototyping, complex state machines and
introspection. If your system has unstructured tasks, is low-level or, as they
state on their documentation page, when you want to smash something, then
SMACH is not the best option. In and of itself, SMACH is independent of
ROS, but the executive_smach stack allows for integration with ROS. It
also includes integration of the actionlib package, which is a part of ROS.

SMACH has two main interfaces, Containers and States. Containers are
a collection of one or more states and are the implementation of execution
policy. The containers have a flat database to pass data between and coordi-
nate states. The states in a container are stored like a dictionary. The most
important job of the container is to define the transitions between states

34

Chapter 2.8. SMACH - State MACHine

and what to do if a state wants to preempt another. States can mean dif-
ferent things depending on the context. In SMACH, a state corresponds to
a state of execution of some task and all potential outcomes of that execu-
tion. The states are different from traditional state machines in that they
describe what the system is doing locally, not the configuration of transitions
between states. A SMACH state machine can be nested, meaning that one
state machine can be a state in itself.

2.8.1 Creating a SMACH State Machine

The following is an example of how to implement a SMACH state machine
with two states:

1 sm = smach.StateMachine(outcome = ["outcome3", "outcome4"])
2 sm.userdata.sm_variable = 0
3

4 with sm:
5 smach.StateMachine.add("State1", State1Func(some_function ,

arg1),
6 transitions = { "outcome1":"State2",
7 "outcome2":"outcome3"},
8 remapping = { "state1input":"sm_variable",
9 "state1output":"sm_variable"})

10

11 smach.StateMachine.add("State2", State2Func (),
12 transitions = { "outcome1":"State1"},
13 remapping = { "state2input":"sm_variable",
14 "state2output":"sm_variable"})
15

16 outcome = sm.execute ()

The first line declares a state machine with the name sm and its outcomes
outcome3 and outcome4. The container is made on the fourth line, and adds
the states State1 and State2 on lines 5 and 11, respectively. Transitions are
naturally enough the transitions from one outcome to another outcome or
state. Remapping is not necessary but a good practice. It makes it easier to
follow the flow of the code and not confuse variables used in states and state
machines. To implement State1 from the previous example you inherit the
state.State base class:

1 class State1Func(smach.State):

35

Chapter 2.8. SMACH - State MACHine

2 def __init__(self , function_inputted , arg):
3 #state initialization
4 smach.State.__init__(self ,
5 outcomes = ["State2", "outcome3"],
6 input_keys = ["state1input"],
7 output_keys = ["state1output"])
8 self.var = arg
9 self.func = function_inputted

10

11 def execute(self , userdata):
12 #state execution
13 if userdata.input == 1:
14 return "outcome1"
15 else:
16 return "outcome2"

The class is initialised in the first __init__ function and the state is
initialised in the second. There the outcomes, input keys and output keys
are set. The initialisation functions must not block further execution. Any
other variables the state uses are set after the second, but still in the first
initialisation function. The execute function is where the behaviour of the
state is implemented. Execute can block for as long as needed. When
returning from this function the current state finishes executing.

36

Chapter 3

Reevaluation of the Cyborg

The main goal of this thesis was to facilitate improvements to the behaviour
module of the Cyborg. Though there has been done work with the controller
and behaviour of the Cyborg before, it is lacking in some areas. These mod-
ules have been implemented using FSMs with SMACH which, as mentioned
in section 2.6.2, have several drawbacks. Mainly the emotion implementation
only had a few modes and needed tuning. When running tests at the start of
this work, the Cyborg would switch between different animations and visual-
isations very quickly, and mainly stay in the idle state without doing much.
In the behaviour launch file, there were many behavioural presets but only
a small number would run.

During the work in the spring of 2019 [5], the use of behaviour trees was
evaluated after looking at the work done in 2018 [30], but it was decided
against using it as they were deemed too complicated to familiarise oneself
with. It is the author of this thesis’ opinion that both solutions are compli-
cated and needs time to get to know. As a new student starting their work
on the Cyborg would need to familiarise themselves with the whole system
anyway, learning about behaviour trees should not be much extra work. Both
implementations have some form of visualisation tool which makes use eas-
ier. The behaviour tree implementation used in 2018 included an editor and
a run-time monitor of the system state, while the SMACH implementation
has a run-time monitor but no editor. That being said, the current state
machine has not been abandoned, as any new implementation of behaviour
tree most likely will need some time to mature.

37

Chapter

In addition to work on the behaviour module, work on other modules was
needed to bring the Cyborg closer to the short and long term goals. Pre-
viously there have been implementations of object detection and computer
vision which used a Xbox Kinect sensor, but they were either removed or not
integrated into the Cyborg. A stereo camera from Zed and an Nvidia Jetson
TX1 were already bought but not integrated as the software was not there.
A wish to integrate object detection properly to use in navigation and be-
haviour had been expressed and has therefore been worked on this semester.
Work with object detection is mentioned in more detail in section 1.1.

A wish to remove the Mode Selector Box and move its functionality into
the ROS system has also been expressed. There was also a need for a mon-
itoring system for the Cyborg. Implementation of a website is also being
worked on. It can be used as a way to control and monitor the Cyborg, show
a video feed from the stereo camera, check variables such as the emotional
and battery state, place a point in the map and have the Cyborg move there,
and look at historical data. The website will contain the Mode Selector Box’s
functionality and therefore act as a replacement, integrating its functionality
into ROS on a remote computer.

After MobileRobot’s closing down, their proprietary software will not
be updated and poses limitations on functionality and future development.
Therefore the ARNL package is being replaced by open-source packages from
ROS. With the new navigation stack being worked on several minor changes
has to be done in the rest of the system as many parts rely on or subscribe
to the ros-arnl node. This includes changes from changing topic names to
replacing functionality provided by ros-arnl.

Removing the Mode Selector Box and moving its functionality to the
new website became the main reason to reevaluate the structure of the ROS
nodes on the Cyborg. The nodes that interact with the hardware were kept
as they were because they mainly have one or two topics they subscribe to
where they receive what to do. That way, the mode would be set by using
the website and then only the nodes needed would run. This will hopefully
make it a little easier and more intuitive to understand, in addition to that
the Cyborg does not have to be turned on and off to change the mode. In
fig. 3.1 a proposal of the new system structure is shown. The main changes
will be in the behaviour module, which includes the controller node, the event

38

Chapter

scheduler node, the primary stated node and the behaviour node.

Figure 3.1: Proposed Cyborg software structure.

Finally, as the Cyborg uses software that is now several years old, and
Python 2.7 is no longer supported many places since it reached its end of
support date on January 1. 2020, it requires updating. The ROS and Ubuntu
versions used on the Cyborg are also nearing their EOL dates, which provides
a further incentive to upgrade the software. This has been investigated and
is presented in section 7.1

39

Chapter

40

Chapter 4

The Software Structure

As mentioned in chapter 3, a wish to replace the Mode Selector Box had
previously been expressed. During the autumn of 2019, the Mode Selector
Box’ buttons and screen had stopped working, and because the cables in the
box were kept in place by glue, it was decided to not try and revive it. The
new website is the replacement for the Mode Selector Box and will be able to
switch operation mode without needing to turn the Cyborg off and on again.
This triggered a need to reorganise the structure of the Cyborg somewhat.
The nodes that are communicating with hardware are kept as they are, while
the nodes event_scheduler, primary_states, controller, and behaviour
are organised into the module behaviour as shown in fig. 3.1.

4.1 The Cyborg’s Current Structure

The main parts of the cyborg that are used in the behaviour module are
presented below, with a description of the nodes. They are implemented as
ROS nodes, and are using ROS’ methods for communication.

The main issue with the controller and behaviour of the Cyborg is that
it is hard to create unstructured behaviour. Especially the wandering be-
haviour where it is required to wander around Glassgården and executing
various combinations of moving around, playing audio, and running various
visualisations on the LED-dome. In addition to these things, it cannot ap-
pear to repeat a cycle of behaviours indefinitely and has to avoid obstacles
such as humans, walls, stairs, bins and an assorted number of other things

41

Chapter 4.1. The Cyborg’s Current Structure

Figure 4.1: The original overview of the inner workings of the controller node [3].
This has been somewhat modified over the years, but the essence is the same.

that appear in Glassgården.
That is not to say that it is impossible. Because the behaviour is possible

to break down into finite states, for now. But as mentioned, wandering
presents the greatest challenge to this. But keeping the main goals and
spirit of the Cyborg in mind, a way to implement the base of the Cyborg
so that adding a feedback loop to the MEA data later becomes easier is
favoured. This part of the Cyborg also suffers from the problem that it is big
and complex, making it harder for new students working on it to add new
implementations. The reason for this is ingrained in the concept of FSMs.
Every time a state is changed or a new state is added, every excising state
which interacts with the new has to be modified too. All this creates a need
to rethink the way the Cyborg, at least, chooses what to do next. A deeper
delve into the usage of behaviour trees can be found in chapter 5.

4.1.1 Controller

The Cyborg’s state machine is implemented in the controller node, and it is
responsible for coordinating all the other nodes. The three main parts of the
controller are the motivator, the emotion system and the state machine.

The emotion system uses the PAD emotion state model to handle the
emotional state of the Cyborg. The motivator is responsible for motivating

42

Chapter 4.1. The Cyborg’s Current Structure

Figure 4.2: Class diagram for the behaviour node class BehaviorServer. By [5].

the Cyborg to do activities when there are no external events. The goal
of the motivator is to select actions that make the Cyborg happier. An
in-depth explanation of the inner workings of the motivator and emotional
system can be found in [3]. It explains the equations used to model the decay
of the effect from the emotional feedback, the reward-based system, and its
social cost of each action. The social cost keeps the Cyborg from repeating
the same behaviour to accomplish the highest happiness value. Finally, the
state machine is implemented using SMACH which organises all actions into
states.

Figure 4.1 shows how the controller takes inputs in the form of events
and emotional feedback from other nodes and returns the emotional state
and system state. The action server in the controller is used by other nodes
to publish events that can lead to a state change in the state machine.

4.1.2 Behaviour

The behaviour node serves as an interface for the output modules and a
way to execute behavioural presets and simple states. It acts as an action
server to be able to use the emotional state of the Cyborg to select which
behaviour to execute and provide emotional feedback at the same time. The
node includes methods for setting and changing audio and visual modes.

The node connects to the controller to provide emotional feedback and
to get the emotional state of the Cyborg. The node’s launch file contains

43

Chapter 4.1. The Cyborg’s Current Structure

Figure 4.3: Class diagram for the event scheduler node. By [5].

a database of behavioural presets. The presets can contain commands for
visual, audio, navigation, and emotional feedback. They can define a com-
pletion trigger for the behaviour, and if the behaviour is dynamic. The
trigger can either be the completion of audio, navigation, or the duration of
execution, and callback functions are used to handle the feedback from the
behaviours. Dynamic behaviours can change the behaviour by publishing a
command to the node. If the Cyborg is moving from one place to another it
may take some time, and during this, you may want to change the behaviour
for it to avoid becoming tedious or repetitive.

4.1.3 Event Scheduler

The event scheduler node is responsible for functionality related to scheduled
events for the Cyborg. It also detects and publishes system events like a low
battery alert. This node can be used for alerting the Cyborg to any situations
or conditions relevant to its behaviour, which are then communicated to other
nodes using ROS protocols. The node subscribes to location data published
by the navigation module, state data published by the state machine and
battery status published by the ros-arnl node.

4.1.4 Primary States

The primary states node contains action servers that have more complex
behaviour than those in the behaviour node. It also contains states like
navigation planning, wandering emotional, idle, and states which do not use
output modules. The node can execute state changes by publishing events

44

Chapter 4.1. The Cyborg’s Current Structure

Figure 4.4: Class diagram for the primary states node. By [5].

and provides emotional feedback to the controller. All states provided by the
primary states node uses the same action server and the callback function
to execute the goal’s corresponding function. For any states that use output
modules, the behaviour node is also interfaced.

Wandering emotional activates a wandering behaviour. If the emotional
state of the Cyborg changes and the new state is neither ’curious’, ’uncon-
cerned’ or ’bored’, then the state preempts itself. Navigation planning is
executed when the Cyborg state machine receives a ’navigation_emotional’
or ’navigation_scheduler’ event. Based on the current emotional state it se-
lects where and how the Cyborg should move, and then provides emotional
feedback and initiates the state change.

4.1.5 Navigation

The navigation node provides navigational behaviour to the Cyborg. It can
receive a position to move to and will then work out how to get there. The
node has a common action server for all its states, and when an action goal is
received it is parsed by the action server callback and the goal’s corresponding
function is executed.

The new navigation stack from this spring has replaced the ros-arnl
node previously used with a variety of nodes from the ROS library. At the
same time, the navigation node created for the Cyborg has been kept as
unchanged as possible to keep from having to change other nodes due to the
updates.

45

Chapter 4.2. Previous Work with Behaviour Trees

4.2 Previous Work with Behaviour Trees

In spring of 2018 work was done to explore the use of behaviour trees to
implement a controller for the cyborg, among other work [30]. These are
the parts of that work this thesis uses as a starting point. Firstly, different
implementations and libraries for behaviour trees were evaluated. One of the
main criteria was that they had to be written in C++ or Python as ROS
only allows those two languages. Therefore the three final alternatives were
Pi Trees [16], ROS-Behavior-Tree [11] and behavior3py [38]. Only the last
was not created for use in ROS but was the only that included a graphical
editor. When using Pi Trees or ROS-Behavior-Tree you had to implement
the tree in the code, which makes debugging that much more complicated.
The editor for Behavior3 creates a JSON file which is then exported for use
with the code and ROS.

It was decided to use behavior3py, and a node called cyborg_bt was made
to use the library in ROS. In addition, a node for organising the custom
decorators and actions was made, called cyborg_bt_nodes. When running
the cyborg_bt node imports the required decorators and actions into the
cyborg control system and runs the tree created with behavior3editor. A
behaviour tree node called MoveTo was created to enable sending navigation
positions to the navigation module. Because the navigation stack has been
updated and does not use ros-arnl anymore, this part of the behaviour
tree implementation needs updating before it can be used. To monitor the
system state during running a monitoring application called rqt_bt was also
created. It shows the structure of the tree and highlights the nodes that
are being executed, and can halt and resume the execution of the tree. The
application is implemented using rqt, which is a Qt-based framework for
Graphical User Interface (GUI) development for ROS. It is often used to
create and visualise graphs of the ROS nodes and topics like fig. 2.6 [50].

4.3 Behaviour Specifications

The cyborg has had many specifications, from more abstract like becoming a
mascot for NTNU and the Department of Engineering Cybernetics to more
specific like being able to navigate to a certain place in Glassgården. They

46

Chapter 4.3. Behaviour Specifications

give developers something specific to work towards and expose the require-
ments of the Cyborg. In the case of specifications for the behaviour module,
they are limited only by our ideas and ability to implement them. Below the
Cyborg’s specifications for behaviour module are presented.

• The Cyborg should start the behaviour mode when receiving a start
command from the website, otherwise it should stay in the suspension
mode.

• If a system event is detected it should be processed and executed within
a reasonable time.

• The Cyborg should have many different LED-dome visualisations, au-
dio files, and movements which can be combined in different ways to
create a library of behaviours.

• The Cyborg should be able to set a location to which it can navigate
autonomously and it should be able to roam around Glassgården.

• If the battery percentage is below a set percentage, the Cyborg should
abort whatever it is doing and return to its charging station.

• The Cyborg should alert the GUI to any changes in behaviour and
continuously provide information about its location.

• It should be able to send messages to domecontrol and audio to change
the visualisations and audio files that are played.

• The Cyborg should be able to either show off different visualisations
on the LED-dome, play different audio files and move about without
needing to change the state.

• The Cyborg should be able to execute a pre-programmed behavioural
combination while being in one state, and change between these states
after receiving commands from the website or internal events.

• The parts of the behavioural presets should start at the same time and
run in parallel, not in sequence.

• The Cyborg should be able to use the MEA data to choose new be-
haviours and then execute them.

47

Chapter 4.4. The New Structure

4.4 The New Structure

The updated structure of the Cyborg’s software became virtually the same
as in the proposed structure shown in fig. 3.1. There are currently three
modes on the cyborg in addition to the startup called behaviour, manual
and demo. The demo mode is intended for use at demonstrations where
it cannot move and will then just play LED-dome animations and audio.
Manual is intended to use the built-in possibilities to control the Cyborg
using a joystick or the new website. The lower level nodes such as the LED-
dome and audio nodes have been kept as they were, and the navigation has
received an update. The audio and LED-dome node have different topics
they receive their commands on and require nothing more. The navigation
node is slightly more complicated but works in the same way.

To communicate with the new GUI website, a new node called commander
has been made which works as a mediator between the GUI website and the
rest of the Cyborg. The commander node must not be confused with the
command node which is a command line interface for the Cyborg created
in 2016. When the Cyborg is started and finished initialising it is in the
suspension state until the commander receives a message to run one of the
modes and it transmits an execute message to the nodes needed for that
mode. If a message changing the mode of the Cyborg is sent from the website,
the commander node transmits an abort message before running the new
mode’s respective nodes. Say the mode manual is chosen. Then commander
will take commands receives from the website and transmit them to rosaria
telling it to turn or move forwards or backwards.

Because of the new navigation stack, any usage of the node ros-arnl has
been removed. Any messages published in topics subscribed to by other nodes
and functionality that already existed in Aria has been replaced with those.
Functionality not possible to replace using Aria still needs to be implemented
again. This includes the built-in behaviour where the Cyborg would find its
charger and set itself to charge if the battery was below a certain limit.

The main state machine and the nodes concerning it are collected in
what is called the behaviour module. Which is what is run if the commander
receives a command to start running the full Cyborg system. It must be noted
that all ROS nodes are launched when the Cyborg is started, but those in the

48

Chapter 4.4. The New Structure

behaviour module remain in an idle state until they receive a run command
from the commander. It is also this state machine which preferably would
be, if not fully, then at least partially replaced by behaviour trees. Using
both behaviour trees and state machines is especially useful if you want to
represent alternate behaviour in different modes. For example, if the Cyborg
was to behave differently in a low power mode than in the normal mode,
having this combination would be helpful.

49

Chapter 4.4. The New Structure

50

Chapter 5

The Behaviour Module

The behaviour module is the brain of the Cyborg and the module with the
most development potential. The nodes it contains control the emotion sys-
tem, handle external events, choose the next behaviour and combine them.
Adding object detection to be Cyborg will open new possibilities for the be-
haviour module, the most important being able to detect people and execute
different behaviours based on that. More active usage of the MEA data will
also bring new possibilities to the Cyborg. It can be used to decide be-
haviours and as feedback to the emotional system. To be able to implement
a feedback loop to the neural cells would be a big milestone for the project.

Currently, MEA data from file is only used to create the interpreters
moving_average and individual_moving_average. That same file could
be used to create emotional feedback by running it through various filters
and not always reading it from the beginning. The file contains 10 seconds
of data recording from the neural cells, equivalent to 100.001 lines of data,
which should be enough to generate a large quantity of other data. Even
though the contents of the file look mostly like noise. Additionally, there
exists another file containing MEA data which is one second long.

During the work with this thesis, there were mentions of a desire to update
or change the system the cells are grown in at St. Olav’s by those responsible
for that part. While this does not affect the work of students from the
Department of Engineering Cybernetics directly, it would most likely mean
that the part of the Cyborg’s software which is responsible for communicating
with the cells’ server would have to be updated as well. This part of the
software was developed by an EiT group in 2017.

51

Chapter 5.1. Evaluation of Behaviour Tree Implementations

5.1 Evaluation of Behaviour Tree Implementa-
tions

One question that emerged during the evaluation of and work with the be-
haviour module was if behavior3py was the best behaviour tree library to use.
One advantage is that this is the library already used with the Cyborg, but it
has not been used extensively yet. Behavior3py has not been updated since
June 2015, and there are a number of other libraries that are both newer and
regularly updated. It was originally written in JavaScript but was translated
to Python. The issue with changing to another library is that all the nodes
that use behavior3py have to the modified to function with the new library.
Anyhow, this section will take a look at other behaviour tree libraries, their
strength and weaknesses, and compare them to behavior3py.

Most behaviour tree libraries are created for designing NPC behaviour
and have been used in games such as Halo, Bioshock and Spore. The question
is whether or not they will be compatible with ROS, or how much work it
will require to create a node for them to work with ROS. Though, the best
option would most likely be to use a library already compatible with ROS.
Other considerations to take into account are how convenient the libraries
are to use. Do they have a graphic editor making it much easier to design a
tree, and is it possible to visualise the tree during runtime making it possible
to follow the flow of the tree.

In the paper "A Survey of Behavior Trees in Robotics and AI" [22] the
authors collected some of the behaviour tree libraries available at the time
(November 2019). There, Behavior3 is only mentioned with its JavaScript
implementation. From this report, it is obvious that not many of them have
a designated GUI editor or are created for communication with ROS. Even
fewer can do both. The report also lists what language the libraries use and
when their last commit was. All of them are open-source. The report affirms
what research showed, that the most interesting libraries for the Cyborg were
behavior3py, BehaviorTree.CPP, ROS Behavior Tree and Py Trees. Of those
libraries, only the second and the last have recently been updated.

The most used behaviour tree library is py_trees, most likely because it is
well maintained. It has been extended to py_trees_ros to include extensions
for robotic implementations in ROS. Because it has been released for both

52

Chapter 5.1. Evaluation of Behaviour Tree Implementations

Name Language GUI ROS Last Commit
py_trees [45] Python -

√
14. May 2020

behavior3py [38] Python
√

- 24. June 2015
BehaviorTree.CPP [6] C++

√ √
11. June 2020

ROS-Behavior-Tree [10] C++
√ √

22. October 2018

Table 5.1: The behaviour tree libraries most relevant for the Cyborg

ROS Kinetic and Melodic, it is relatively safe to assume they will have a re-
lease for ROS Noetic. There are also releases for ROS 2. The library has some
restraints. It has no sharing of data or interaction between tree instances,
trees cannot be run in parallel, and it can have only one behaviour execut-
ing or initialising at a time. Instead, information sharing between nodes is
enabled by using a blackboard. The blackboard only works for one tree,
meaning that if several NPCs were running they would not be able to share
information. This should not be an issue for the Cyborg. Sequence nodes
are only implemented with memory which removes one of the advantages
of behaviour trees, namely the reactivity. Implementing a sequence node
without memory should be fairly straightforward. The package rqt_py_trees
provides a GUI plugin for visualising the trees. There is also a version for
ROS2.

ROS-Behavior-Tree does not have a working implementation for the latest
version of ROS, but is both compatible with ROS and has a GUI. It has a
parallel control flow node which means it is possible to have parallel execution
of leaf nodes. It features a helpful user manual. Because this library lacks
support for the latest ROS versions this is not the library to choose if the
decision to update the Cyborg to Ubuntu 20.04 and ROS Noetic, or their
previous releases. BehaviorTree.CPP is another library written in C++.
This is both well maintained and documented which makes using it very
simple. It is also ROS compatible and features a GUI called Groot. The trees
can be created at runtime using XML, and actions can be made asynchronous.
Custom nodes can be linked statically or the can be converted into plugins
which are loaded at runtime.

Behavior3py cannot run different action nodes in parallel, which will prob-
ably be needed on the Cyborg. One example where parallel execution is nec-

53

Chapter 5.1. Evaluation of Behaviour Tree Implementations

essary is to be able to run the wandering behaviour and at the same time stop
the current audio or interpreter, choose a new and execute that. The same
way it is possible to implement a non-memory sequence node for py_trees it
is possible to implement a parallel composite node for behavior3py. To cir-
cumvent the missing parallel node, one possibility can be to create a sequence
where the variables and states needed for a certain behaviour are chosen and
stored using the blackboard. Then a last node in the sequence reads those
from the blackboard and starts the correct ROS actions to execute the be-
haviour. It may require more work and be more cumbersome, than creating
a parallel node. The emotion system runs in the background and to use the
emotions to choose the next behaviour the blackboard has to have access to
those variables, or the emotion system has to send them to the blackboard.
It would be useful to have services attached to composite nodes and are run
in the background as long as the composite node’s branch is running. They
can then be used to access the emotional system or retrieve status variables,
which could then be written to the blackboard. This would simplify checking
conditions and events in the behaviour tree nodes.

BehaviourTree.CPP or py_trees seems to be the best options for the
needs of the Cyborg. The only downsides being that one is written in C++
which is a compiled language unlike Python and the other lacking a GUI,
respectively. Their main advantage is that they are well maintained and keep
receiving updates. Having a way to visualise the tree, both while designing it
and while its running is particularly helpful. Because behaviour trees become
very intuitive and straightforward to read. Not having that possibility would
be a shame. Then comes the question of is it worth changing to a new library.
While there are not that many nodes or supporting code implemented for
the Cyborg yet, it may be daunting to do this change for someone who is not
familiar with the Cyborg or behaviour trees. And it will require a great deal
of work. Because behavior3py could not initially communicate with ROS, a
ROS node was created to retrieve and create the tree from its JSON file. If
the decision to change library is taken, and this is to be done at the same
time as upgrading the OS and ROS, it is important to remember that only
the extensions to the libraries need to be created for the correct ROS version.
The libraries are independent of ROS versions. Additionally, the behaviour
tree nodes may not need to contain much ROS functionality. They might

54

Chapter 5.1. Evaluation of Behaviour Tree Implementations

Ø

?*

➙*

IdleDemo Manual

Suspension

Audip Play @ LED-dome play @

Startup

?*

MoveTo @Bedtime

Bedtime? LED-dome play eyesMoveTo home

➙*

Figure 5.1: A proposed structure of the highest level of the cyborg behaviour
tree, with some actions added to the idle-tree for completeness. The tree boxes
are added for readability and clarity.

only need to send and receive messages, depending on how much functionality
from the existing ROS nodes would be needed in the behaviour tree nodes.
Ultimately, the decision has to be made by the future students working on
the Cyborg. But if the decision to change is made, then BehaviourTree.CPP
or py_trees are the best libraries at this point.

55

Chapter 5.2. Psychology of the Cyborg

5.1.1 Behaviour Trees and the Cyborg

Using behavior3editor, a high-level behaviour tree describing the Cyborg’s
behaviour at startup was created. While it requires more work for a complete
implementation, it works as a starting point for future work. The behavioural
presets of the Cyborg can be implemented as subtrees like Bedtime in fig. 5.1.
A proposal is to create three lists, which contain LED-dome interpreters,
audio files and locations, and the tree will choose one of each. This can be
done using three selectors as children of a parallel node, but there are several
possible implementations. They will then be executed in parallel just like
any of the behavioural presets, either by using a parallel node or starting
three ROS actions.

A shortcoming with both behaviour trees and finite state machines is the
difficulty of representing different modes, like a normal power mode and a
low power mode. The most obvious way to fix this is to use a combination
of FSMs and behaviour trees, which would most likely be used regardless
because of how the Cyborg is implemented. The question becomes how
much of the implemented functionality should be moved to the behaviour tree
nodes versus how much should be kept in the ROS nodes. The behaviour tree
nodes not need to contain anything more functionality to send and receive
messages to the ROS nodes to start actions or call a service. Additionally,
keeping much of the functionality placed in ROS services and actions keep it
as reusable as possible.

Figure 5.1 shows the implemented high-level tree of the Cyborg at startup.
The hexagons represent the root of different trees and are created in their
own file in the editor. This whole tree could be implemented as one tree
without the subtrees, but dividing them into several smaller parts make it
more convenient when you want to reuse parts. The * denotes that those are
memory composite nodes, meaning they can access the blackboard. If there
is no need for accessing the blackboard the standard composited are used.

5.2 Psychology of the Cyborg

The Cyborg is a fascinating study in, not only cybernetics but other fields
as well. For example how different behaviours or things the Cyborg can do

56

Chapter 5.2. Psychology of the Cyborg

affects people and what it can do to grab people’s attention. Humans are
relatively unpredictable, and for the Cyborg to become more lifelike it has to
become more unpredictable too. But to understand how to do that, it helps
to study the psychology behind it.

The Cyborg is limited in its abilities to express itself using physical move-
ment. Imagine examples like BB-8 and R2D2 from Star Wars and Pixar’s
Luxo Jr. lamp featured in their short Luxo Jr. and appears in their pro-
duction logo before every feature film. Their movements and actions express
intentions and emotions without language, except for sound effects. Pixar is
exceptionally good at this. While R2D2 does not have the same freedom of
movement as the two others it is still very much comprehensible. All these,
and so many other similar characters from movies and television, provide
excellent inspiration. Giving the Cyborg audio, in the form of sound effects
will also aid in giving it life and emotion without language. There are two
different options concerning sound. The first is to create new sound effects.
The second is to use existing from examples like those previously mentioned.
Using existing audio and sound effects may make observers think the Cyborg
is pretending to be the original, but it requires much less work than creating
one’s own. Making it look like the Cyborg is pretending to be another robot
or character from a movie might be perceived as lame, but most likely people
will be positive.

5.2.1 Colours and Psychology

To help the Cyborg express emotions it would help to show facial expressions
on the LED-dome, and while this might be difficult, it might help to use
different colours. Either the facial expression is shown in a specific colour,
that the rest of the dome is in that specific colour, or that the edge of the dome
has that colour. Though, having the whole LED-dome in one background
colour while the face is another colour can come with some complications.
For example, for the face to be properly visible and distinguished from the
background colour it will have to be a contrasting colour. LEDs lack the
ability to create the colour black. Black comes from a lack of light. That is
how OLED screens work. The contrasting colours may also have the effect
that the face’s colour is perceived as the colour corresponding to the emotion
instead of the background.

57

Chapter 5.2. Psychology of the Cyborg

Figure 5.2: Colours and most used significations, and some of the brands that
use those colours in their logo. Image courtesy of [28]

58

Chapter 5.2. Psychology of the Cyborg

Colour theory is the visual effects of a specific colour combination and a
body of practical guidance to colour mixing. Few things are more important,
or more subjective, in design than the use of colour. Colours can bring
different emotions. Most often they do this because of the use of colour in
pop culture like cartoons, advertisements or brand’s use of colour in their
logos. These associations can vary depending on the culture people grew
up in, evolution and personal experience. The villain almost always has a
green colour scheme in Disney animated movies and character become red
in the face when they are angry or green when they are sick. In nature
poisonous animals usually have bright colours to warn and deter predators.
Some animals take advantage of this evolutionary warning and adopt bright
colours even though they are not poisonous.

In their paper From Color to Emotion [19] Donald Hoffman and Shannon
Cuykendall write "We propose, then, that the connections between colors and
emotions are few and weak, but that the connections between chromatures
and emotions are many and strong." They introduced the concept chroma-
ture, which comes from combining chroma and texture. A chromature is a
small image patch in a specific colour, typically not showing the entire object
and typically not homogeneous in hue, saturation or brightness. They found
that chromatures could evoke strong emotions even though the object was
not recognised by the test subject. Which coincides with what many brand
logos try to do. For simplicity’s sake, colour has been used here instead of
adopting the concept chomature.

Colours have been used to represent emotions in pop culture countless
times, both for positive effect and negative effect. Think for example the
colours of the houses in Harry Potter. Gryffindor is known for courage, dar-
ing, chivalry and a strong moral compass, and their colour is red. Hufflepuff
is known for loyalty, dedication, honesty and humbleness. Their colour is
yellow. Ravenclaw’s strengths are intelligence, curiosity, creativity and indi-
viduality. Their colour is blue. Lastly, Slytherin is known for ambition, re-
sourcefulness, determination and they are cunning, and their colour is green.
The colours of the feelings in Pixar’s Inside Out are the stereotype for what
colours represent. The character Joy is yellow, Sadness is blue, Fear is purple,
Disgust is green and Anger is, naturally, red.

59

Chapter 5.2. Psychology of the Cyborg

Big brands are masters of using colour and shapes to their advantage.
They use colours to bring out and play on certain feelings and emotions to get
people to buy their products. Most people are unaware of the power colours
have on consumers, and that is of course when they have the biggest impact.
Spotify changed the colour of their logo from what they called "broccoli
green" to a more "pop green". The new colour is brighter and cleaner,
keeping the same tone instead of fading to darker or lighter. Instagram
changed its logo from a more realistic looking brown Polaroid camera to a
more abstract looking camera with several colours fading into another. When
looking at fig. 5.2, Instagram could fall into the purple category. And, after
all, there is a reason NTNU’s logo is blue.

All these meanings and emotions colours can bring with them are a great
way to add more life and impact to the Cyborg, and are a great starting point
when choosing the colours of different interpreters. While it is not the logo
of a brand, the same techniques can be utilised. Below are some examples of
colours and their related emotions and what they can signify.

• Red - passion, strength, power, urgency, attention, alarm

• Blue - comforting, confident, professional, trustworthy, responsible

• Yellow - intellect, happiness, fresh, cheerful, positive, excitement

• Green - safety, wealthy, healing, peaceful, progressive, growth

• Purple - luxury, sophistication, mystery, ambition, spiritual, royalty,
creativity

• Orange - enthusiastic, happy, creativity, determined, optimistic, ex-
citement

• Brown - reliable, confidence, casual, natural, warmth

• Pink - romantic, feminine, fresh, fun, delicate, compassion

• White - simplicity, purity, safety, cleanliness, softness, innocense

• Black - bold, power, luxury, sleek, mystery, elegance, authority

• Gray - cool, neutral, authority

60

Chapter 5.3. Adding A Behaviour to Behaviour Tree

5.3 Adding A Behaviour to Behaviour Tree

Adding new behaviours to an existing behaviour tree is relatively easy. The
trees are created to be modular like ROS nodes, meaning nodes can be added
or removed without interfering much with the rest of the tree. To run the
behavior3editor using the terminal, change into its directory and run gulp
serve. The script start_behaviour3editor can also be used. It was created
to ease running the editor from a launch file.

To add a module to the behaviour tree using behavior3editor, you first
have to import the existing tree into the editor. Trees and nodes can also be
imported by themselves. Using the behaviour of how to choose what to eat
when hungry, we will implement that using the behavior3editor. Depending
on how high-level or low-level the behaviour is, the tree will be more or less
complex.

Let us call it the hungry tree, shown in fig. 5.3, and we start by checking
if we are hungry and then if we have any food. This would mean adding a
sequence node with three children, where the two first are actions and the
last a composite. Depending on if you need to access the blackboard or not
the sequence node can either be a sequence node or a memsequence node.
Say for simplicity’s sake that we do not need variables from the blackboard.
The last composite could be a sequence or a selector depending on what
the behaviour is supposed to do. If it was to just cook some food and that
cooking was divided into sub-actions, then it could be a sequence. We will
make it a selector where it can select between three subtrees, pizza, burger
and pasta. Those subtrees can be very similar except their nodes take an
argument which is the food to eat.

Then we add a sequence node as the start of the pizza tree with four
children: eat pizza, cook pizza, make pizza, and the subtree gather ingredients.
If any of the actions fail, the sequence will fail. Nodes to try again or repeat
for a certain number of times or until it completes exist to not make the
tree just abort the whole behaviour. The subtree gather ingredients exist
of a open fridge, a find ingredients and a close fridge action node. These
actions can be broken down into even smaller parts depending on what is
needed. Each action leaf node must have a method that can be executed.
The method has to report whether it has failed or succeeded, and it should
return running during execution. This hungry tree could be created as one

61

Chapter 5.4. Proposed New Behaviours

➙

Am I Hungry? Do I have food? ?

Eat Burger Eat Pasta ➙

close fridgefind ingredientsopen fridge

Eat PizzaCook PizzaMake Pizza

select what
to eat

eating
seqence

➙
gather

ingredients

Figure 5.3: The behaviour tree hungry showing the flow of choosing what to eat.

tree, or be built up of several subtrees, which can be very simple like gather
ingredients or more complex. To use several smaller trees in behavior3editor
each tree has to be created on their own and then drag-and-dropped into its
parent tree. It may be easier to keep track of the whole tree if the subtrees
do not become too small.

5.4 Proposed New Behaviours

During work on the Cyborg, there have been many suggestions for what it
could do to expand its behaviours. Some are silly, some are very complex
and others funny, but they are a great source of inspiration. Many would fit
perfectly for when the Cyborg encounters a person which it could detect using
object detection, others can be played when it is wandering around, and some
ideas came from working on collecting audio files. Using quotes from movies
and television gives a fun twist to everything the Cyborg says and does, and
we avoid recording someone. Which would mean that, in time, there the

62

Chapter 5.4. Proposed New Behaviours

Cyborg would have several different voices, or that everything would have to
be re-recorded every year. You also evoke the same effect which BB-8, R2D2
or Bumblebee from Star Wars and Transformers also create. The proposals
are presented below.

• When leaving someone or moving to a new location it would play "get
to the choppa". A quote by Arnold Schwarzenegger from the movie
Predator. This audio file has been added.

• While not entirely sure what to use the quote "say hello to my little
friend" from Scarface for, there was a consensus that this would have
been a fun addition. But the audio file was not added.

• When someone rounds a corner and the Cyborg is there and detects
them, it could play some form of "boo!". This could give unfortunate
results, but the Cyborg is neither fast, loud nor intimidating which is
why it was deemed safe and kept as a proposition.

• When wandering the Cyborg could function as a speaker playing from
a radio station. The radio station could be changed using the website.

• The behaviour or the Cyborg’s mood could be controlled or influenced
by MEA data or the current weather.

• Create race stripes on the LED-dome and drive around Glassgården
playing sounds from race cars. This behaviour has been added to the
behavioural presets. It could also contain a countdown before starting
to ’race’ around.

• When the Cyborg’s battery reaches below a certain level it would
change behaviour slightly to appear to be more tired, and when it
decides to go to the charging station it could tell people it is going to
sleep.

• While charging the Cyborg could either run the interpreter charge or
suspension. The first was implemented last autumn and the latter
this semester. The state it would be in while charging would not be
suspension even though the interpreter is called that.

63

Chapter5.5. Finding PAD Values to Represent Emotional Feedback

• The Cyborg could tell someone they meet the weather for tomorrow.

• In addition to running the interpreter startup and playing an audio
file when turning on the Cyborg, it could also turn 360◦ to show that
everything is initialised. It should not, however, do this while at the
charging station.

• The Cyborg should be more active around ’akademisk kvarter’ because
at that time there are more people in Glassgården as they have breaks
from lectures.

• During advent the Cyborg could play Christmas music, and play the
quote "Merry Christmas, ya filthy animal" from Home Alone 2: Lost
in New York. Though it is actually a quote from a movie created for
and shown in Home Alone 2 called Angels with Filthier Souls.

• If someone cuts in front of the Cyborg while it is driving around, it
could play "I’m walkin’ here" from Midnight Cowboy

• To grab the attention of the public the Cyborg could play "Come qui-
etly, or there will be trouble" from Robocop, or similar quotes.

• Create other behaviours using the newly added audio files listed in
chapter B.

5.5 Finding PAD Values to Represent Emotional
Feedback

To utilise the emotion system used on the Cyborg properly the behavioural
presets need to have an emotional feedback to return to the motivator when
done executing. The emotional feedback is what motivates the Cyborg to
choose and execute the next behaviour, and it makes sense that most be-
havioural presets give this feedback so the Cyborg does not end up doing
the same things or not doing anything at all. Previously only a handful had
these PAD values to return, but now those where it makes sense that they
give an emotional feedback have been given PAD values.

64

Chapter5.5. Finding PAD Values to Represent Emotional Feedback

P A D Emotions
+ + + amused, excited, happy, ironic, interested, joking, proud, sat-

isfied, self-confident, supportive
+ + - engaged, surprised
+ - - docile, thoughtful
+ - + certain, friendly
- + - awkward, embarrassed, puzzled, shy, uncertain, uneasy
- + + irritated
- - + none
- - - disappointed, hesitant, uncomfortable, unconfident, uninter-

ested

Table 5.2: To better be able to understand where different emotions lay on the
P, A and D scales this table was used.

To better be able to understand where different emotions lay on the P, A
and D scales table 5.2 was used. It gives an idea of the values needed represent
similar emotions and has been used as a reference point for emotions that
were not listed in table 2.1. The new PAD values added to the behavioural
presets can be found in table 5.3. Additionally, the emotions hungry and
sleepy have been added to the emotion system in the controller using PAD
values.

Emotions are hard to represent generally because of their subjective na-
ture. What one person would classify as angry may be stronger or more
dominant than another person’s angry. It may take ’more’ anger to reach
what someone would call angry for some people than for other people. Be-
cause of this emotions have to be placed somewhere and then that emotion
exists in a sphere around that point using the radius as the threshold. Also,
during development, setting the initial values of an emotion may depend on
a number of factors such as the developers mood or how familiar they are
with a certain emotion.

To make the PAD axes more understandable I have tried to explain them
using sentences. Arousal represents how exciting the feeling is, dominance
how overpowering the feeling is, and pleasure represents how delightful it
is. The most appropriate Norwegian translations I found to be opphisselse,
dominerende and gledelighet, respectively.

65

Chapter5.5. Finding PAD Values to Represent Emotional Feedback

One important point to remember is that the values in table 5.3 does not
represent an emotion, but the change in emotion when the Cyborg is done
executing the behaviour, which is then published on the /cyborg_controller/
emotional_feedback topic. The emotion system then uses the values it re-
ceives to change the current PAD values of the Cyborg. If those values were
to represent specific emotions the variance in the values would be greater.
Unfortunately, the new values have not been tested properly with the Cy-
borg. They will probably need some tuning to find the values that work best
and to decide how strong the Cyborg’s reaction should be. For example,
what the emotional feedback to the show_off presets should be depends on
what you want it to represent. It could be proud, confident or assertive, ego-
centric, mischievous, or happy. It all depends on what meaning you choose
to give the behaviour.

66

Chapter5.5. Finding PAD Values to Represent Emotional Feedback

Preset P A D
R2D2 Short 0.05 0.10 0.02
Bored -0.10 -0.10 -0.05
Transport Happy 0.10 0.10 0.10
Transport Neutral 0 0 0.01
Arrival -0.05 -0.03 -0.05
Arrival, Elated 0.15 0.15 0.10
Arrival, Bored -0.05 -0.40 -0.03
Arrival, Dignified 0.10 0.02 0.02
Arrival, Curious 0.02 0.40 -0.01
Arrival, Puzzled -0.05 0.05 -0.40
Arrival, Angry -0.20 0.20 0.15
Arrival, Unconcerned -0.01 -0.04 0.01
Conveying Emotional State, Angry -0.20 0.20 0.15
Conveying Emotional State, Curious 0.02 0.40 -0.01
Conveying Emotional State, Elated 0.15 0.15 0.10
Conveying Emotional State, Inhibited -0.05 0 -0.04
Conveying Emotional State, Loved 0.30 0.20 -0.05
Conveying Emotional State, Unconcerned -0.01 -0.04 0.01
Conveying Emotional State, Dignified 0.10 0.02 0.02
Conveying Emotional State, Bored -0.05 -0.50 -0.03
Waking Up, Happy 0.10 0.10 0.10
Waking Up, Grumpy -0.15 0.05 0.10
Show Off, MEA 0.20 0.10 0.15
Show Off, Music 0.15 0.10 0.10
Show Off 0.20 0.10 0.15
Navigation Go To, Music 0.15 0.20 0.05
Wandering Emotional 0 0.01 -0.01
Wandering Emotional, Happy 0.10 0.10 0.10
Sleepy 0.05 -0.15 -0.15
Exhausted -0.05 -0.20 0.30
Speaking 0.10 -0.05 0.02
Make Way 0.05 0.10 0.20

Table 5.3: Some of the new PAD values for the behavioural presets.

67

Chapter5.5. Finding PAD Values to Represent Emotional Feedback

68

Chapter 6

New Interpreters for the
LED-dome

As part of the work with the behaviour module more interpreters have been
developed. This is to give the Cyborg more to choose from so that it does not
become too repetitive. Below, an explanation of the different new interpreters
is given. For an explanation of how to add new interpreters see section 6.4.

A video cycling through the new additions can be seen on YouTube [24].
First shown is suspension, then startup and then the updated eyes. Un-
fortunately, the colours of startup became slightly distorted in the video so
that the difference between some are hardly visible while others differ severely
that in real life.

6.1 Update of Eyes

Eyes was the only static of the old interpreters, but as it was the most used, it
needed more movement to give the Cyborg more life. The old eyes seemed to
always be staring blankly into some void right above the head of any person
in front of the Cyborg. To give the eyes more life they are now blinking.
In listing 6.1 a somewhat simplified version of the code is shown. To make
them blink, the function random.randint(x,y) is used. It sets the number
of loops the render function should take before setting the eyes to closed
for one loop, and then opening them again. This irregularity in the time it
takes between each blink also adds to the life of the Cyborg. The function

69

Chapter 6.2. Race Stripes

rospy.Rate() provides a way to keep a specific rate for a looping function
and takes an int argument in Hz. Rate is used with rospy.sleep() which will
raise a rospy.ROSInterruptException if node shutdown or similar occurs
[13]. Eyes is run when the controller’s state machine is in the idle state
after receiving a message to start from the commander, and with various
behaviours.

1 #!/usr/bin/env python
2 import rospy
3 import system.settings as settings
4 import random
5

6 class Eyes():
7 def __init__(self):
8 self.rate = rospy.Rate (3)
9 self.isStatic = False

10 self.count = 0
11 self.blink = random.randint (5 ,20)
12

13 def render(self ,input_data , output_data):
14 if self.count == self.blink:
15 # set the eyes closed
16

17 self.count = 0
18 self.blink = random.randint (5 ,20)
19 else:
20 # set the eyes open
21

22 # set the edge of the LED -dome
23

24 self.count += 1
25 self.rate.sleep()

Listing 6.1: The updated version of eyes.

6.2 Race Stripes

The race stripes were created because of an idea to create a behaviour where
the Cyborg would drive around in Glassgården pretending to be a race car.
The Cyborg does not look very much like a car at all, but the idea came
because a lot of race cars have some form of stripes. Either on the sides

70

Chapter 6.3. Startup and Suspension

or over the roof and bonnet. In addition to the stripes, the Cyborg plays
recordings of race cars on the track. The behaviour is fairly simple, the new
parts only being the interpreter and the audio, the driving around is done by
using navigation_wander. The visual part is static as there is no need for a
non-static because the main part is the movement and audio.

6.3 Startup and Suspension

Figure 6.1: The interpreter vi-
sual racing.

When starting the Cyborg we need some
kind of feedback to let us know it has started
and is initialising. Then, when it is done ini-
tialising, it changes to a static or some other
kind of animation to show that it is ready
to continue. Like starting one of the modes
like Demo, Manual, or the full system with
behaviour. Startup is run by the behaviour
launch file in the state startup. In this state,
every node is initialised and started and it
stays there until it receives a succeeded mes-
sage. The state machine then moves to the
state suspension in which the suspension in-
terpreter is run.

The idea behind the startup interpreter
was that it should visualise a form of some-
thing loading. There are innumerable forms
and versions of those kinds of animations in the digital world. On MacBooks,
the loading icon is a spinning colour wheel, which became the inspiration for
the new startup interpreter. Because the LED-dome consists of 30 rows of
led strips it was divided into 10 so that each colour uses 3 rows. To find the
right colour the colour heel in fig. 6.2 was used and each hexadecimal value
converted into RGB decimals. The wheel has 12 colours which complicated
the looping somewhat, but a counter was used to keep track of the colours.
Listing 6.2 shows startup’s render function in which the two for loops iterate
through the LED rows and the indexes of the LEDs to set every three rows
to a colour. Counter keeps track of which colour is to be set for every three

71

Chapter 6.3. Startup and Suspension

Figure 6.2: The basis for the colours used in the startup interpreter written in
hexadecimals [42].

72

Chapter 6.3. Startup and Suspension

rows of LEDs. Colours keeps track of which colour is to be the first in the
output array. For every time the output array is set, each colour is moved
three rows.

To avoid draining the battery too fast, the LEDs’ intensity has to be
turned down. The intensity was halved and then tweaked from there. Red
was unnecessary bright compared to the other colours and was turned down
to [80,0,0]. The colour pink and magenta, FF0080 and FF00FF respectively,
were hard to differentiate so the red in pink was turned up from 128 to
150. This made it appear more in between red and magenta. Blue, 0000FF,
was turned turned down from [0,0,128] to [0,0,100], and green, 00FF00, was
turned up from [0,128,0] to [0,150,0].

1 def render(self , input_data , output_data):
2 for i in range(0,settings.LED_ROWS -1, 3):
3 for led in range(settings.LED_ARRAY_ROWS[i][1],

settings.LED_ARRAY_ROWS[i+2][2]+1):
4 if self.counter == 12:
5 self.counter = 0
6

7 output_data[led *3] = self.colour_array[self.
counter][0]

8 output_data[led *3+1] = self.colour_array[self.
counter][1]

9 output_data[led *3+2] = self.colour_array[self.
counter][2]

10 self.counter += 1
11 if self.colours == 12:
12 self.colours = 0
13 else:
14 self.colours +=1
15

16 self.counter = self.colours
17 self.rate.sleep()

Listing 6.2: The code for the startup interpreter.

Suspension is a new static interpreter in which the Cyborg looks like it
is sleeping. It is very similar to the interpreter eyes, but only the part where
the eyes are closed is used. This is run when the controller’s state machine is
in the suspension state. The suspension state is a waiting state in which no
mode has been chosen and sent to the Cyborg from the website. The Cyborg

73

Chapter 6.4. How To Add New Interpreters

also enters this state if the current mode is aborted or sends a succeeded
message.

6.4 How To Add New Interpreters

To add a new interpreter, add the new file to the folder cyborg_led_dome/
src/neural_interpreter/. Preferably it should be called the same as both
the class and the name of the interpreter to make it easier to keep track
of. The class must have an __init__ function to set any variables, and
at least the isStatic variable used by domecontrol.py to determine if the
LED-dome needs updating or not. If isStatic is false both the functions
rospy.Rate() and rospy.sleep() should be included so that the loop takes
the same time every time. The function actually setting the array of LED
values has to be called render and take in input_data and output_data,
which are the input from the MEA data and the array of LED values, re-
spectively. Domecontrol also runs sm.userdata.sm_interpreter.render(
data,sm.userdata.sm_led_colors) which is why render has to be called
render.

Finally, the new interpreter has to be added in domecontrol in three
different places in addition to importing the class from its file.

• Add the name of the interpreter to a new elif in the function re-
turn_interpreter() and return the new class.

• Add the name to the function update_visualization_mode() in the part
corresponding to the nonmea mode.

• Add the name to set_visualization_mode_callback().

74

Chapter 7

Other Tasks

There is an abundance of smaller tasks in need of attention on the Cyborg.
Be it a warning, an error or something that does not work precisely as in-
tended. But they are not being worked on, either because one is implementing
something enthralling and only want to work on that. Or because they are
inadequate for a masters thesis. Simply because of the expectations and aim
of such an undertaking, as well as a limited time frame. Regardless, they
are things that have to be done when working on bigger projects. Software
updates and documentation are often given lower priority and put aside be-
cause coding is more interesting. This was one of the points made in the
author’s specialisation projects [23]. Thus, how to go forward with updating
the software used on the Cyborg has been studied and a setup script doubling
as a list of dependencies and libraries used on the Cyborg has been created.

7.1 Updating ROS and Ubuntu

The Cyborg project is at the moment using Ubuntu 16.04 and ROS Kinetic
Kame, but these will reach their end of life or standard support in April
2021. Because of this, some work was done to evaluate upgrading both. The
current long term supported version of Ubuntu is 18.04, and the latest version
of ROS is called Melodic Morenia. The Cyborg runs Xubuntu 16.04, which
is a lighter version of Ubuntu 16.04.

Another thing to take into consideration is that Python 2.7 reached its
end of support date on January 1. 2020. Which makes having the correct

75

Chapter 7.1. Updating ROS and Ubuntu

package versions for installing even more important. But note that Python
2 from the Ubuntu repositories will be supported until EOL for the Ubuntu
releases [14].

When evaluating the possibilities and work needed to update Ubuntu and
ROS, all current versions of packages in use were written down and included
in the setup file. This is the file meant to be run when setting up a new
computer to work on the Cyborg and can be found in chapter A. Many of
them turned out to be the same or almost the same as the latest version of the
packages. Those who have had a significant update did not always support
Python 2.7 anymore. Because the new navigation stack is still being worked
on and, at the time of examining the prospect of updating both ROS and
Ubuntu, it had not been completely integrated with the Cyborg. Therefore
its dependency package versions were not examined. The versions in use
currently are however included in the setup script. Below, a list of some of
the packages and current versions used on the Cyborg can be found.

Package Current Version Latest Version
libaria 2.9.4 -
libarnl 1.9.2a -
arnl-base 1.9.2 -
mobilesim 0.9.8 -
pyttsx3 2.7 -
color 0.1.5 -
pandas 0.24.2 -
pyserial 3.0.1 3.4
numpy 1.16.5 1.16.6
VLC 3.0.7110 3.0.8

Libaria is installed using a .deb file which was downloaded before Mo-
bileRobots shut down. The same applies to libarnl, arnl-base and mobilesim.
Most other packages are installed using sudo apt install <package> or
pip2 install <package>==<version>. An update of both ROS and Ubuntu
would mean going through all packages installed using the setup script and
possibly other packages as well to find the right updated version. Most likely
many of the open-source packages in use have already been updated to ac-
commodate changes in ROS and Ubuntu. Unfortunately, there will be a need

76

Chapter 7.1. Updating ROS and Ubuntu

for changes in our packages. Python 2.7 can be installed on Ubuntu 20.04
which means that functions that no longer exist in Python 3 does not have
to be replaced, but it might be a smart move nonetheless.

To be able to use Python 3 you either have to wait for the 2020 release of
ROS1 called Noetic Ninjemys, or use ROS2 which has supported Python 3
from the beginning. It might be an idea to skip the ROS Melodic and jump
straight to Noetic, as first making the Cyborg system compatible with the
Melodic distribution and then Noetic will increase the workload considerably.
There are ways to make Python 3 compatible with the older distributions
of ROS and this would require building Python 3 from source, which in the
author’s opinion is unnecessary and it would be better to upgrade the whole
system for access to Python 3.

There are also ways of using both ROS1 and ROS2 together on the same
system, which requires a bridge between the two. For example the package
ros1_bridge. More information on that can be found on the ROS wiki
and forum pages. This is especially relevant for the object detection and
computer vision use-cases as ROS2 provides software for object detection
which cannot be found in ROS1. Because object detection is being worked
on, but not integrated on the Cyborg yet, upgrading to ROS2 is not a priority.
Migrating entirely to ROS2 would mean an overhaul of the rest of the software
on the Cyborg as well.

When testing on Ubuntu 18.04, the system did build and launch, but
running the system created an abundance of errors. One problem which
emerged was the connection with the LED-dome seemed to be failing. It
seemed to receive messages on topics and forward them to the LED-controller
correctly, but the LEDs did not turn on. No changes to the LED-controller
had been done and when connecting it to the old system it worked as before.
It was therefore concluded that the updates were the cause. Other odd
behaviour included some nodes which either did not publish messages or
functions which did not return the correct output. Unfortunately, it would
have taken too long to figure out the causes of all these errors and then
correct them, and further work on this was therefore abandoned.

Updating the system will take a lot of work and would either require a
person committing their specialisation project or thesis to update the system,

77

Chapter 7.2. Setup Script

or multiple students working on different parts to update their respective
parts. I cannot guarantee that all packages needed are included in the setup
script, but most often packages that are not installed will yield ’package not
found’ errors which are relatively easy to work with.

For now, there is no need to update just because Python 2 is not sup-
ported any more, neither is it crucial to update the current Ubuntu or ROS
distributions. As long as older releases of packages in use on the Cyborg are
accessible to install on new computers they will not pose a problem in that
sense. The main reason to update would be to have access to new packages
that might not support older releases. Older versions of the software will not
disappear, but it becomes increasingly important to include version numbers
in all dependencies and the setup script.

7.2 Setup Script

Last autumn, when starting the work on the specialisation project, one re-
curring problem was that packages the Cyborg software depended on were
not listed anywhere. That meant that the most efficient way of discovering
which dependencies were needed was to run the code and see what errors
appeared. Usually, they were ’package not defined’ or ’no module named’
errors, but sometimes they were more complex and needed more work to
find the correct version of a package or the correct package.

This, along with checking all imports, became the most efficient way of
finding any more dependencies which had been installed but were not written
down when testing, when working on creating a setup script as complete
as possible. When creating new modules for the Cyborg, you try to take
note of any packages needed, especially those which have to be installed.
Unfortunately, they can easily become hard to keep track of.

There existed a setup script, but it did not seem to be up to date. It did
not run properly and was missing dependencies for entire nodes. This script
was also run as root which gave some peculiar behaviour when trying to run
the Cyborg system as those commands seemed to have to be run as root too.
Which should not be done. Thus, any commands that do not require sudo
when run will not have it unnecessarily added by running the whole script
as root.

78

Chapter 7.2. Setup Script

An opportunity presented itself when NTNU closed and everyone had to
work from home because of the Coronavirus. As we were not allowed to bring
any of NTNU’s computers home, work had to be done from private laptops
or desktops. Because the author only has one laptop with Ubuntu 18.04
and this was not able to run the Cyborg software, the other options were a
dual boot with Ubuntu 16.04, installing Ubuntu 16.04 on a virtual machine,
or accessing the desktop in the office at NTNU using ssh, TeamViewer or
similar.

At first, TeamViewer was used but this ended up being slow because of
the WiFi connection. It then was decided to use a virtual machine, which
would prove to be a poor decision because of the terrible performance of the
virtual machine. With only 4 GB RAM on the laptop versus 32 GB on the
desktop, this proved to be amazingly slow. Building the software could take
over an hour. Fortunately, Python is not a compiled language so any smaller
changes did not generate a need to build again.

But, because of the newly installed Ubuntu virtual machine, none of
the dependencies of the Cyborg software had been previously installed and
would show up as some kind of error. Thus the first parts of the setup
script installing ROS and cloning the Cyborg repository, found in chapter A,
was tested and any errors fixed. Then testing was done to find all modules
missing. The most important part of this is that because the Cyborg uses
relatively old packages the correct version has to be included for as many
as possible of the installs. For any packages installed using sudo apt-get
install ros-kinetic-<package> the version is already included because of
the kinetic part, and thus all those will work with the Cyborg software. Any
packages installed using pip has to be compatible with Python 2.7. Most
have had several updates since they were first included on the Cyborg and
most only support Python 3 as Python 2.7 has reached its EOL.

For the new parts with behaviour trees most dependencies were already
noted in setup.py files, except for the installation of the behavior3py library.
The setup files are read by catkin when running the command catkin_make
and thus, does not have to be run by the setup script. Behavior3Editor
contained mainly two files used to install any missing dependencies called
package.json and bower.json. They had to be edited to fit the Cyborg as
certain versions or scripts were missing. Nodejs version 10.x also had to be

79

Chapter 7.2. Setup Script

installed. Any newer versions did not support Python 2.7 and could not
be used. When installing behavior3py one issue quickly arose, the library
only existed as source code on GitHub and had to be built from source.
As this was new to the author, different methods for building from source
were researched and tested. Because this is someone else’s library, creating
a package and publishing it so others can install it using pip or similar felt
unnecessary. Therefore it was decided to use a simpler solution in which the
library is built and installed locally using a straightforward setup file.

The new navigation stack was merged into the master branch and has
been included in the search for missing dependencies, and it proved to be
missing quite a lot. All of which have been added to the setup script. The
same applies to the new website and its nodes. Any extra files needed for the
installs have been added to its folder in the setup directory in the Cyborg
workspace. This applies to the behavior3py library and the .deb files needed
to install software from MobileRobots which is no longer readily available.
The script has been tested, and though it takes some time, it worked well. A
few pauses have been added to the script so that any errors that occur can
be found and corrected.

In addition to the setup script, a requirements file has been added. This is
to make it even easier to install the correct versions of the required Python li-
braries. This is created using the command pip freeze > requirements.txt.
This showed that of the libraries used, around 10 had some form of weakness
like security. This adds to the reasons why the Cyborg software should be
updated in the future.

A script running the roslaunch command at startup of the Cyborg
has also been created. A small issue presented itself because the Cyborg’s
Xubuntu uses the xfce4-terminal, while Ubuntu uses gnome-terminal. This
means that there are two different commands in the script, one for each OS.
The reason to have this script start a terminal window is so that it is pos-
sible to access the Cyborg and check the output in the terminal. Because
this is seldom used on the development desktops their respective command
is commented out. Both versions of the script have been tested and worked
great.

80

Chapter 7.3. Audio

7.3 Audio

To give the behaviour module greater flexibility and developers more to
choose from in the future, an abundance of new audio files have been added
to the audio node. These range from short expressions like saying yes or no,
to longer quotes from movies or music that can be looped. While the com-
plete list can be found in chapter B, some of them include quotes like "Here
we go", "I am you father", "You talkin’ to me?", "Where is my super suit?",
"Just a flesh wound" and "Tis but a scratch". Most of them are intended for
use when meeting and interacting with people in Glassgården. For example,
if someone tries to pass the Cyborg it may play the none shall pass audio file.
Or it can play "Just a flesh wound" or "Tis but a scratch" if it bumps into
something. Other examples can be when meeting a new person it could play
"Hello there", "Got a minute?" or "Do you know who I am?". The same
file could also be used for a number of different situations or behaviours.
The file star_wars_cantina_band has been added to the suspension mode
which seemed fitting. here_we_go as been added to be played when it starts
the state idle, but the audio file showtime could very well have been used
too. For the new racing behaviour the file racing_ford_gt40 has been as the
playback in its behavioural preset. The music from Monty Python’s sketch
The Black Knight was added to one of the wandering presets, while another
has received the BB-8 talking audio.

81

Chapter 7.3. Audio

82

Chapter 8

Discussion

One part of this thesis has been to explore the use of behaviour trees for use
on the Cyborg. The other part has consisted of a variety of tasks which,
while not as major on their own, were needed to bring the Cyborg closer to
its goals. At the beginning of this work, the Cyborg was reevaluated and
parts of the Cyborg which needed work were identified. Among these were
the continuation of the work on the new navigation stack and the new GUI
website, prompting a need to reorganise the software structure of the Cyborg
somewhat. And because the Cyborg’s software dependencies are several years
old, an update of that software.

Structure

The Mode Selector Box had stopped working last year and because the new
website was already in development, it was decided not to fix it at this time.
Creating a new version of the Mode Selector Box may not be a bad idea, as
you would have something to at least change mode or stop the Cyborg, giving
it some redundancy. To interact with the rest of the Cyborg’s software a new
node called commander was created which received and transmits messages
to and from the website. The Cyborg’s structure is now more clear and it
has been prepared for implementing the modes Demo and Manual as well as
any additional modes in the future.

83

Chapter

Update ROS and Ubuntu

After Python 2.7 reached its end of life in January and both ROS Kinetic
and Ubuntu 16.04 reaching their end of life next year, it was decided that
upgrading would be the right move. But, upgrading not just the OS and
ROS but all the nodes to be compatible with them and not use Python 2.7
will be quite an undertaking. It has to be taken into account that not all
open-source nodes from ROS are updated to be compatible the instance a
new distribution of ROS is released because they are developed by users, and
some may not be updated at all. An additional point is that updating the
Cyborg every time a new distribution of ROS and Ubuntu is released may
be almost as much work as abstaining from updating every time, and rather
update every other release or more seldom than that. If it were the same
team working on the Cyborg continuously it might require less effort to go
for the first option rather than the latter. Continuing to use Ubuntu 16.04
and ROS Kinetic can create problems in the future if there are nodes or
functionality that are not compatible with older software or are only created
for the, at that time, current releases. While none of the current libraries
and software probably will not disappear, they might be removed from their
servers which will make them more difficult to obtain and install.

Setup Script

Both working as documentation and a way to install all dependencies on a
new system, the setup script script has been completed and now includes all
libraries needed to work on the Cyborg. Though it was tested and worked
at the time, does not mean that it is done. Every time a new node is added
or something is changed in an existing node, the script has to be updated.
Otherwise it looses its purpose. The main way to keep it up to date is to
add or remove anything as soon as nodes are modified. Another way is to
try to run it on a "clean" system. That way it will issue errors or warnings
for missing modules or installs.

PAD

The application of emotional feedback from different behavioural presets were
missing, and thus all presets where it makes sense that they give emotional

84

Chapter

feedback have received PAD values. They should be tested more thoroughly,
but this was not possible at the time. Previous years it have been suggested
to create some form of emotion configuration guide, which is a good idea.
A problem with this though, is that every person will most likely assign
different PAD values with the same emotion. What PAD values they set
may depend on a number of different factors like how they are feeling that
specific day. There is no definitive answer to which values should correspond
to each emotion. Which is why a threshold, or a radius around every value,
is used in the emotional module. But a guide with some directions, beyond
existing values like in table 2.1 and where different emotions lie on the scale
like in table 5.2, would probably be a good idea.

Behaviour Module

The use of an FSM in the main controller creates limitations to the Cyborg’s
behaviour and the readability of its code. The behaviour of the Cyborg will
mainly be unstructured which finite state machines do relatively poorly, but
behaviour trees handle unstructured behaviour well. They were therefore
researched and their possibilities on the Cyborg evaluated.

A high-level tree was made as a way to begin implementing the con-
troller. Previously only very specific subtrees had been created. Some design
choices have to be made going forward. Specifically a choice has to be made
regarding how much of the existing ROS nodes should be kept as is and
use communication channels between the different nodes, or if functionality
from the ROS nodes should be moved into the behaviour tree nodes. Using
the existing ROS nodes as behaviour tree nodes might not work very well
because they are quite large and complex. Behaviour tree nodes only con-
tain functionality necessary to execute whatever it is it should do, like the
node move_to. It is an example that, with the current navigation module,
only needs to publish a message on the correct topic and let the navigation
module handle the execution. Unfortunately, the previously existing work
with behaviour trees used ros-arnl and replacing it with the new naviga-
tion stack was not prioritised after the new stack was completed. Behaviour
trees can be combined with several state machines, meaning there is no need
to completely remove all state machines abruptly.

Three different behaviour tree libraries were compared to the library pre-

85

Chapter 8.1. Proposed Tasks for Future Work

viously used and it was concluded that if the decision to change the library
used on the Cyborg, the preferred option would either be BehaviorTree.CPP
or py_trees. This is because they both include features that were deemed
important for the Cyborg. These features include a GUI and a way to visu-
alise the tree during runtime, that they be written in either Python or C++,
they provide functionality for parallel execution of nodes and a blackboard.
They are also well documented and currently maintained.

While the concept of behaviour trees are fairly easy to understand, it
would probably be advantageous if future student wanting expand the use of
behaviour module has previous experience with behaviour trees. They would
then know of the limitations and full potential of behaviour trees.

8.1 Proposed Tasks for Future Work

Presented below is a list of proposed tasks that are needed to bring the
Cyborg to its desired state and tasks that were either not completed or need
re-implementation.

Text-to-Speech - A decision has to made whether to keep this module or
discard it. As of now, it uses a Python library called espeak which
works but sounds very mechanical. If the decision to keep and improve
it, some recommendations for its replacement include IBM’s Watson or
Google Cloud text-to-speech. They are both online, which would free
up processing power from the Cyborg.

Giving the Cyborg moods - The proposal is to use the MEA data to
create moods represented using PAD values. Other sources that could
influence the mood could be the amount of battery charge left or the
current weather.

More active usage of MEA data - There are many possibilities with
the MEA data, and two ideas which have not been realised yet are to
use it to create feelings and use that to choose behaviours, or use the
data to set the emotional feedback when the Cyborg is done executing
behaviours. They could also be used in a feedback loop either live to
the cells at St. Olav’s or from a file.

86

Chapter 8.1. Proposed Tasks for Future Work

Behaviour Trees - Use behaviour trees to create a more complex controller
and give the Cyborg more lifelike behaviour.

Docking Behaviour - The Pioneer robot was delivered with a charging
station and automatic docking, but with the new navigation stack this
is no longer functional.

Recovery Behaviour - The Cyborg would need some kind of recovery
programme if it, for example, gets stuck or loses track of its position.
It should be able to do this without human intervention or at least let
a human know that it needs assistance.

Demo & Manual modes - These modes have been added to the current
state machine but lack implementation. Manual is intended to utilise
the built-in possibilities to control the Cyborg. Either from the new
website or with a joystick which came with the Pioneer robot. Demo
is intended for use at a stand or a demonstration where the Cyborg
either lacks a map to navigate by or when it is standing still. It should
be able to play audio and show off visualisations on the LED-dome.

Object Detection - Use the newly created implementation using object
detection on the Cyborg. Object detection comes with endless possibil-
ities for the behaviours and navigation, either to trigger a behavioural
preset or to navigate by and to be used for recovery.

87

Chapter 8.1. Proposed Tasks for Future Work

88

Chapter 9

Conclusion

The amount of work needed to upgrade the Cyborg to the latest software,
what those upgrades would be, and whether those upgrades are relevant to
the Cyborg have been evaluated. To continue to use ROS1 was concluded to
be the best action going forward, and wait to upgrade to ROS2. Upgrading
to Ubuntu 20.04 and ROS Noetic Ninjemys is recommended, though this will
take a considerate amount of work.

A setup script for the Cyborg has been created and doubles as documen-
tation of which libraries are used and installs are needed on the Cyborg. This
has been tested and worked as expected. Additional visual interpreters have
been created for the LED-dome and other interpreters have been modified to
give the Cyborg more combinations of behavioural presets to choose from.
The number of behavioural presets have been expanded and the majority
have received emotional feedback PAD values.

The implementation of the behaviour module using behaviour trees is
not fully ready to replace the existing FSM controller at this point. Both
are therefore still on the Cyborg, but the behaviour trees have their own
branch on GitHub so that any student who would like to continue work on
the behaviour module using behaviour trees have it available. The FSM
implementation is the current implementation of the master branch. Four
different behaviour tree libraries were compared and it was concluded that if
the decision to change the library used on the Cyborg, the preferred option
would either be BehaviorTree.CPP or py_trees. Colours can be used in the

89

Appendix

interpreters for the LED-dome to awake specific feelings and emotions in
people. This effect was studied and the work presented can be used as a
reference work for future implementations of interpreters and behaviours.

The goal of this thesis has not been to criticise previous architectural
choices and implementations and point out imperfections, but to delve into a
field that has received much attention in the last years and study how it can
be used on the Cyborg. Behaviour trees provide functionality the Cyborg
can employ to give it a more lifelike appearance and behaviour.

90

Appendices

91

Appendix A

Setup Script

1 #!/bin/bash
2

3 echo "Setup script running ..."
4 echo "WARN - Specific versions of packages are needed in this

project and when installing warnings about deprecated or
old software may show up. This is expected."

5 echo "This script was tested and worked in may 2020, with new
updates to libraries or changes to any of the nodes this

may not be the case any longer."
6 read
7

8 # All commands should also be updated to include versions.
9

10 echo "---------- General installs and setup ----------"
11 echo "to continue press enter"
12 read
13

14 sudo apt -get update
15 sudo apt -get install git
16 sudo apt install python2 .7
17 sudo apt install python -pip
18 pip install --upgrade pip ==20.0.2
19

20

21 echo "---------- Install ROS ----------"
22 echo "to continue press enter"
23 read
24

93

Appendix a

25 ## ROS
26 # Setup your computer to accept software from packages.ros.

org:
27 sudo sh -c 'echo "deb http :// packages.ros.org/ros/ubuntu $(

lsb_release -sc) main" > /etc/apt/sources.list.d/ros -
latest.list '

28 # Set up your keys
29 sudo apt -key adv --keyserver 'hkp :// keyserver.ubuntu.com:80'

--recv -key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
30

31 sudo apt -get update
32 # Full ROS installation
33 sudo apt install ros -kinetic -desktop -full
34 # Find avaliable packages
35 apt -cache search ros -kinetic
36 read -p "Available packages (above). Take a note if some are

needed. Press ENTER to continue."
37 # Initialise rosdep
38 sudo rosdep init
39 rosdep update
40 # Setup the environment
41 echo "source /opt/ros/kinetic/setup.bash" >> ~/. bashrc
42 source ~/. bashrc
43 # Dependencies for building packages
44 sudo apt install python -rosinstall python -rosinstall -

generator python -wstool build -essential
45 # Create a workspace
46 mkdir -p ~/ catkin_ws/
47

48

49 echo "---------- Clone Cyborg repo from Git ----------"
50 echo "to continue press enter"
51 read
52

53 ## Clone Cyborg Repo from git , and place it in the right
directory

54 cd ~/ catkin_ws
55 git clone https :// github.com/thentnucyborg/CyborgRobot.git #

clones the master branch
56

57 cd ./ CyborgRobot
58 echo "Use the master branch? Please type the branch name or '

yes ' if you wish to use the master branch."

94

Appendix a

59 read branchname
60 if ["$branchname" == "yes"]
61 then
62 echo "Using the master branch"
63 else
64 echo "Using the "$branchname" branch"
65 git checkout $branchname
66 fi
67

68 mv ~/ catkin_ws/CyborgRobot /* ~/ catkin_ws/ #move all files and
folders to the workspace

69 mv ~/ catkin_ws/CyborgRobot /.* ~/ catkin_ws/ #move all hidden
files and folders to the workspace. Ingore the message
saying . and .. cannot be moved

70 echo "Please ignore the message saying . and .. cannot be
moved"

71 rm -rf ~/ catkin_ws/CyborgRobot #delete the now empty folder
72

73

74

75 echo "---------- Install Arnl and ARIA .debs ----------"
76 echo "to continue press enter"
77 read
78

79 cd ~/ catkin_ws/setup/installs
80 sudo dpkg -i arnl -base_1 .9.2+ ubuntu16_amd64.deb
81 sudo dpkg -i libarnl_1 .9.2a+ubuntu16_amd64.deb
82 sudo dpkg -i libaria_2 .9.4+ ubuntu16_amd64.deb
83 sudo dpkg -i mobilesim_0 .9.8+ ubuntu16_amd64.deb
84

85

86 echo "---------- Install GUI ----------"
87 echo "to continue press enter"
88 read
89

90 pip2 install pymongo ==3.10.1
91 pip2 install pymongo[srv]
92 sudo apt -get install ros -kinetic -rosauth
93 sudo apt -get install ros -kinetic -rosbridge -server
94 sudo apt -get install ros -kinetic -rospy -message -converter
95 sudo apt -get install rosbash
96

97

95

Appendix a

98 echo "---------- Installs for New Navigation ----------"
99 echo "to continue press enter"

100 read
101

102 ## Installs for Navigation stack
103 cd ~/ catkin_ws/src
104 sudo apt -get install ros -kinetic -navigation
105 sudo apt -get install ros -kinetic -tf2 -sensor -msgs
106 sudo apt -get install ros -kinetic -tf2 -geometry -msgs
107 sudo apt -get install ros -kinetic -cmake -modules
108 sudo apt -get install ros -kinetic -tf2 -kdl
109 sudo apt -get install ros -kinetic -kdl -parser
110 sudo apt -get install ros -kinetic -move -base
111 sudo apt -get install ros -kinetic -image -transport
112 sudo apt -get install ros -kinetic -interactive -markers
113 sudo apt -get install ros -kinetic -python -qt-binding
114 sudo apt -get install ros -kinetic -resource -retriever
115 sudo apt -get install libogre -1.9-dev
116 sudo apt -get install libsdl -dev
117 sudo apt -get install libsdl -image1.2-dev
118 sudo apt -get install libbullet -dev
119 sudo apt -get install libassimp -dev assimp -utils
120

121 sudo apt -get install openni2 -doc && openni2 -utils && openni -
doc && openni -utils

122 sudo apt -get install libopenni0 libopenni -sensor -pointclouds0
123 sudo apt -get install libopenni2 -0
124 sudo apt -get install libopenni -sensor -pointclouds -dev
125 sudo apt -get install libopenni2 -dev
126 sudo apt -get install libopenni -dev
127 sudo ln -s /usr/lib/python2 .7/dist -packages/vtk/

libvtkRenderingPythonTkWidgets.x86_64 -linux -gnu.so /usr/
lib/x86_64 -linux -gnu/libvtkRenderingPythonTkWidgets.so

128 sudo update -alternatives --install /usr/bin/vtk vtk /usr/bin/
vtk6 10

129

130 git clone https :// github.com/ros -visualization/rviz.git -b
kinetic -devel

131 git clone https :// github.com/ros -planning/navigation.git -b
kinetic -devel

132

133

134 echo "---------- Install SMACH ----------"

96

Appendix a

135 echo "to continue press enter"
136 read
137

138 ## Install SMACH
139 sudo apt -get install ros -kinetic -executive -smach
140 sudo apt -get install ros -kinetic -executive -smach -

visualization
141 sudo apt -get install python -pyqt5
142 sudo apt -get install python -qt -binding
143

144

145 echo "---------- Install Aduio ----------"
146 echo "to continue press enter"
147 read
148

149 ## Install for Audio node
150 pip2 install -Iv pyttsx3 ==2.7 #-I ignores installed packages ,

-v prints/verbose
151 pip2 install python -vlc ==3.0.7110
152

153

154 echo "---------- Install Command node ----------"
155 echo "to continue press enter"
156 read
157

158 ## Install for Command node
159 pip2 install npyscreen
160

161

162 echo "---------- Install Controller ----------"
163 echo "to continue press enter"
164 read
165

166 ## Install for Controller node
167 sudo apt install graphviz -dev
168 pip2 install pygraphviz
169 #Alternatively , run: sudo apt -get install python -pygraphviz
170

171

172 echo "---------- Install LED Dome node ----------"
173 echo "to continue press enter"
174 read
175

97

Appendix a

176 ## Install for Led Dome node
177 pip2 install colour ==0.1.5
178 pip2 install numpy ==1.16.6
179 pip2 install pandas ==0.24.2
180 pip2 install pyserial ==3.0.1
181 pip2 install pyopengl
182 pip2 install pyopengl -accelerate
183 pip2 install pytz
184

185

186 echo "---------- Install Behaviour Trees ----------"
187 echo "to continue press enter"
188 read
189

190 ## Behavior Trees
191 pip2 install networkx ==2.2
192 chmod +x ~/ catkin_ws/src/rqt_behavior_tree/scripts/rqt_bt
193 # install nodejs for behavior3editor
194 curl -sL https :// deb.nodesource.com/setup_10.x | sudo -E bash

-
195 sudo apt -get install -y nodejs # also installs npm
196 #install bower
197 sudo npm install -g bower
198 # install dependencies for behavior3editor
199 cd ~/ catkin_ws/src/behavior3editor
200 sudo chown -R $USER:$GROUP ~/.npm
201 sudo chown -R $USER:$GROUP ~/. config
202 npm install
203 bower install
204 sudo npm install --global gulp@3 .9.1
205 sudo apt -get install python -scipy
206 # install b3 module
207 cd ~/ catkin_ws/setup/installs/behavior3py
208 sudo python setup.py install
209

210

211

212 echo "---------- Setup UDEV Rules ----------"
213 echo "to continue press enter"
214 read
215

216 ## Set up UDEV rules
217 sudo cp ~/ catkin_ws/setup /90 _cyborg_usb_rules.rules /etc/udev

98

Appendix a

/rules.d/
218 sudo udevadm control --reload
219 sudo udevadm trigger
220

221

222 echo "---------- other ----------"
223 echo "to continue press enter"
224 read
225

226 ## Other
227 sudo apt -get install sqlitebrowser #tool for editing

databases
228 pip install -r requirements.txt
229

230 # Make python and bash scripts executable
231 find ~/ catkin_ws/src/ -name '*.py' -exec chmod +x {} \;
232 find ~/ catkin_ws/src/ -name '*.sh' -exec chmod +x {} \;
233

234

235 echo "---------- Finish setting up catkin_ws ----------"
236 echo "to continue press enter"
237 read
238

239 # Finish setting up the workspace
240 source ~/. bashrc
241 source /opt/ros/kinetic/setup.bash
242 cd ~/ catkin_ws
243 catkin_make
244 echo "source ~/ catkin_ws/devel/setup.bash" >> ~/. bashrc #

Opening new terminal runs source command , so we dont have
to source workspace each time.

245 source devel/setup.bash
246

247

248 ## Base requirements
249 sudo usermod -a -G dialout $USER #add user to dialout group
250 sudo apt autoremove
251

252

253

254 echo "Setup script ended ..."
255 echo "---------------------"
256

99

Appendix a

257 # Relogin is required for last cmd to take effect
258 echo "You must logout and back in for userpivileges to take

effect ..."
259 echo "You might want to change a value in /usr/local/Aria/

params/pioneer -lx.p to flip the sensor output on the
Cyborg the right way up. See cyborg_navigation/README.md
for how to."

260 echo "If changes to the code on the led -controller are needed
(the NodeMCU ESP32), follow the install instructions in

cyborg_ros_led_dome/README.md"

Listing A.1: Setup script for the NTNU Cyborg. The read commands are added
create a pause to be able to check for any errors or warnings that may appear.

100

Appendix B

Audio Files

Here is a list of the new audio files added to the Cyborg, and some examples
of usage.

• BB8 - Wandering

• Darth Vader breathing - Wandering

• Do you know who I am? - Interacting with people

• English motherfucker, do you speak it?

• I fart in you general direction

• Just a flesh wound - If it bumps into something

• Ford model T startup - Starting to move or similar

• Get to the choppa - Moving away from something

• Got a minute - Meeting someone

• Hamster and elderberry

• Hello there - Meeting someone

• Here we go - Starting something or changing behaviour

• Here’s my card - Leaving someone

• Hey - Meeting someone

101

Appendix b

• I am your father - During interactions

• I’ll be back - Leaving someone or moving away from them

• It’s a trap

• Mind your own business - Interacting with people

• Monty Python - The Black Knight - Music that can be played in
different situations

• No

• No problemo - During interactions

• Nobody expects the spanish inquisition

• None shall pass

• R2D2 - Dagoba - Wandering

• R2D2 - Weeeooooow - Typical R2D2 behaviour

• Racing - Wandering or racing behaviour

• Racing - Ford GT40 - Wandering or racing behaviour

• Say what again - During interactions

• Scream - When people round a corner and meet the Cyborg, or

• Showtime - Starting something or changing behaviour

• Star Wars - Cantina band - Wandering or when in idle

• Star Wars - Jump to lightspeed

• Taunt you a second time

• The power of the dark side - During interactions

• The public is in danger - Followup to the super-suit audio

• Tis but a scratch - If it bumps into something

102

Appendix i

• Uh oh

• Victory is mine

• Wall-E - Saying hi to someone

• Well, hello - Meeting someone

• What a strange person - During interactions or when leaving some-
one

• Where is my super suit? - Wandering

• Why so serious? - During interactions

• Wow 1

• Wow 2

• Yes

• You talkin’ to me? - During interactions or meeting someone

103

Appendix i

104

References

[1] EiT Group 3. Project Report - Design and Production of the LED-dome
for the NTNU-Cyborg. Tech. rep. EiT Village - Kyborg, NTNU, 2018
(cit. on p. 11).

[2] Mariusz Szwoch Agata Kolakowska Agnieszka Landowska, Wioleta Sz-
woch, and Michal Wróbel. Modelling Emotions for Affect-Aware Appli-
cations, in Information Systems Development and Applications. Avail-
able at http://www.wzr.ug.edu.pl/nauka/upload/files/Information%
20systems%20development%20and%20applications.pdf, pp.55-69. Fac-
ulty of Management, University of Gdańsk, 2015. isbn: 978-83-64669-
06-4 (cit. on p. 27).

[3] Thomas Rostrup Andersen. “Controller Module for the NTNU Cy-
borg”. MA thesis. NTNU, 2017 (cit. on pp. 6, 42, 43).

[4] Areg Babayan. Consolidating and Visualizing Biological Neural Net-
work Activity on the NTNU Cyborg. Tech. rep. Department of Engi-
neering Cybernetics, NTNU, 2018 (cit. on pp. 5, 13).

[5] Areg Babayan. “Cyborg 3.0”. MA thesis. NTNU, 2019 (cit. on pp. 5,
11, 37, 43–45).

[6] BehaviorTree.CPP. url: https://github.com/BehaviorTree/BehaviorTree.
CPP (cit. on p. 53).

[7] Ole Martin Brokstad. “Object Detection for the NTNU Cyborg”. Final
title not available at the time. MA thesis. NTNU, 2020 (cit. on p. 5).

[8] Coding Standard, Testing and Style Guide - Naming Conventions. url:
https://www.freertos.org/FreeRTOS-Coding-Standard- and-Style-
Guide.html (cit. on p. 14).

105

http://www.wzr.ug.edu.pl/nauka/upload/files/Information%20systems%20development%20and%20applications.pdf
http://www.wzr.ug.edu.pl/nauka/upload/files/Information%20systems%20development%20and%20applications.pdf
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html
https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html

Appendix i References

[9] Michele Colledanchise. BT++ A ROS Behaviour Tree Library in C++,
User Manual. url: https://github.com/miccol/ROS-Behavior-Tree/
blob/master/BTUserManual.pdf.

[10] Michele Colledanchise. ROS-Behavior-Tree. url: https://github.com/
miccol/ROS-Behavior-Tree (cit. on p. 53).

[11] Michele Colledanchise. ROS-Behavior-Trees. url: http://wiki.ros.org/
behavior_tree (cit. on p. 46).

[12] Michele Colledanchise and Petter Ögren. “Behavior Trees in Robotics
and AI: An Introduction”. In: CoRR abs/1709.00084 (2020). arXiv:
1709.00084. url: http://arxiv.org/abs/1709.00084 (cit. on p. 32).

[13] Ken Conley. Rospy Time. url: http://wiki.ros.org/rospy/Overview/
Time (cit. on p. 70).

[14] Kyle Fazzari. Some things to know as Python 2 approaches EOL. url:
https : //discourse . ros . org/ t/ some - things - to - know- as - python - 2 -
approaches-eol/11175 (cit. on p. 76).

[15] FreeRTOS API Reference. url: http : / /web . ist . utl . pt /~ist11993/
FRTOS-API/index.html (cit. on p. 14).

[16] Patrick Goebel. Pi Trees. url: http://wiki.ros.org/pi_trees (cit. on
p. 46).

[17] Lasse Göncz. “New Navigation Stack for the NTNU Cyborg”. Final
title not available at the time. MA thesis. NTNU, 2020 (cit. on pp. 4,
15).

[18] Lasse Göncz. Reimplementing the Navigation Stack on the NTNU Cy-
borg in a Simulated Environment. Tech. rep. Department of Engineering
Cybernetics, NTNU, 2019 (cit. on p. 15).

[19] Donald F. Hoffman and Shannon B Cuykendall. From Color to Emo-
tion, Ideas and Explorations. Tech. rep. Cognitive Sciences, University
of California, Irvine, 2008. url: http://www.cogsci.uci.edu/~ddhoff/
FromColorToEmotion.pdf (cit. on p. 59).

[20] Holistic3d. Introduction to Behaviour Trees. url: https://en.wikipedia.
org/wiki/BibTeX.

106

https://github.com/miccol/ROS-Behavior-Tree/blob/master/BTUserManual.pdf
https://github.com/miccol/ROS-Behavior-Tree/blob/master/BTUserManual.pdf
https://github.com/miccol/ROS-Behavior-Tree
https://github.com/miccol/ROS-Behavior-Tree
http://wiki.ros.org/behavior_tree
http://wiki.ros.org/behavior_tree
http://arxiv.org/abs/1709.00084
http://arxiv.org/abs/1709.00084
http://wiki.ros.org/rospy/Overview/Time
http://wiki.ros.org/rospy/Overview/Time
https://discourse.ros.org/t/some-things-to-know-as-python-2-approaches-eol/11175
https://discourse.ros.org/t/some-things-to-know-as-python-2-approaches-eol/11175
http://web.ist.utl.pt/~ist11993/FRTOS-API/index.html
http://web.ist.utl.pt/~ist11993/FRTOS-API/index.html
http://wiki.ros.org/pi_trees
http://www.cogsci.uci.edu/~ddhoff/FromColorToEmotion.pdf
http://www.cogsci.uci.edu/~ddhoff/FromColorToEmotion.pdf
https://en.wikipedia.org/wiki/BibTeX
https://en.wikipedia.org/wiki/BibTeX

Appendix i References

[21] Installing the ESP32 Board in Arduino IDE. url: https://randomnerdtutorials.
com/ installing - the - esp32 - board - in - arduino - ide - mac - and - linux -
instructions/ (cit. on p. 12).

[22] Matteo Iovino et al. A Survey of Behavior Trees in Robotics and AI.
2020. arXiv: 2005.05842 [cs.RO]. url: https://arxiv.org/abs/2005.
05842 (cit. on p. 52).

[23] Johanne Døvle Kalland. Exploring Visualisations and Behaviour. Tech.
rep. Department of Engineering Cybernetics, NTNU, 2019 (cit. on
pp. iii, 9, 75).

[24] Johanne Døvle Kalland. New animations for the NTNU Cyborg. url:
https://youtu.be/wJyiJOJFOjQ (cit. on p. 69).

[25] Steinar Kragerud. “NTNU Cyborg with Communicational Abilities”.
MA thesis. NTNU, 2016 (cit. on p. 6).

[26] Brent Lance and Stacy Marsella. “Glances, glares, and glowering: How
should a virtual human express emotion through gaze?” In:Autonomous
Agents and Multi-Agent Systems 20 (May 2010), pp. 50–69. doi: 10.
1007/s10458-009-9097-6.

[27] License Details FreeRTOS. url: https://www.freertos.org/a00114.
html (cit. on p. 13).

[28] MediaLabs. Color Psychology: How color influence our mind. url:
http://blog.medialabs.in/2015/12/17/color-psychology-how-colors-
influence-our-mind/ (cit. on p. 58).

[29] Albert Mehrabian. General and Precise Tests of Emotions, Feelings or
Affect. url: http : //www.kaaj . com/psych/scales / emotion .html#
definition (cit. on p. 28).

[30] Morten Mjelva. “Control System and Object Detection System for the
NTNU Cyborg”. MA thesis. NTNU, 2018 (cit. on pp. 6, 37, 46).

[31] Adept MobileRobots. Pioneer LX Mobile Research Platform. 2013 (cit.
on p. 9).

[32] Adept MobileRobots. Pioneer LX, User’s Guide. 2013 (cit. on p. 9).

107

https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-mac-and-linux-instructions/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-mac-and-linux-instructions/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-mac-and-linux-instructions/
http://arxiv.org/abs/2005.05842
https://arxiv.org/abs/2005.05842
https://arxiv.org/abs/2005.05842
https://youtu.be/wJyiJOJFOjQ
https://doi.org/10.1007/s10458-009-9097-6
https://doi.org/10.1007/s10458-009-9097-6
https://www.freertos.org/a00114.html
https://www.freertos.org/a00114.html
http://blog.medialabs.in/2015/12/17/color-psychology-how-colors-influence-our-mind/
http://blog.medialabs.in/2015/12/17/color-psychology-how-colors-influence-our-mind/
http://www.kaaj.com/psych/scales/emotion.html#definition
http://www.kaaj.com/psych/scales/emotion.html#definition

Appendix i References

[33] Costanza Navarretta. “Predicting emotions in facial expressions from
the annotations in naturally occurring first encounters”. In: Knowledge-
Based Systems 71 (Nov. 2014), pp. 34–40. doi: 10.1016/j.knosys.2014.
04.034.

[34] Casper Nilsen. “GUI and Website for the NTNU Cyborg”. Final title
not available at the time. MA thesis. NTNU, 2020 (cit. on p. 5).

[35] NodeMCU. NodeMCU ESP-32S Documentation. url: https://nodemcu.
readthedocs.io/en/dev-esp32/ (cit. on p. 12).

[36] NodeMCU-32S Lua Module. url: https ://www.smart- prototyping.
com/NodeMCU-32S-Lua-WiFi-ESP32-module (cit. on p. 13).

[37] Jason M. O’Kane. A Gentle Introduction to ROS. Available at http:
/ /www . cse . sc . edu/~jokane/agitr/. Independently published, Oct.
2013. isbn: 978-1492143239 (cit. on p. 24).

[38] Renato de Pontes Pereira and Paulo Martins Engel. Behavior3py. url:
https://github.com/behavior3/behavior3py (cit. on pp. 46, 53).

[39] ROS Actionlib Documentation. url: http://wiki.ros.org/actionlib (cit.
on p. 25).

[40] ROS Documentation. url: http://wiki.ros.org/ (cit. on p. 17).

[41] Sam. Setting up the Pioneer LX Mobile Base and running the demos.
url: https ://afsyaw.wordpress . com/2018/02/28/setting- up- the-
pioneer-lx-mobile-base-and-running-the-demos/ (cit. on p. 9).

[42] Gaston Sanchez. Colortools: Color Wheel. url: https://gastonsanchez.
wordpress.com/2012/08/31/colortools-color-wheel/ (cit. on p. 72).

[43] Chris Simpson. Behaviour Trees for AI: How They Work. url: https:
/ / www . gamasutra . com / blogs / ChrisSimpson / 20140717 / 221339 /
Behavior_trees_for_AI_How_they_work.php.

[44] SMACH Package Summary. url: http://wiki.ros.org/smach (cit. on
p. 34).

[45] splintered-reality. py_trees. url: https : / / github . com / splintered -
reality/py_trees (cit. on p. 53).

[46] Espessif Systems. ESP-WROOM-32. url: https://www.espressif.com/
en/products/hardware/esp-wroom-32/overview (cit. on p. 12).

108

https://doi.org/10.1016/j.knosys.2014.04.034
https://doi.org/10.1016/j.knosys.2014.04.034
https://nodemcu.readthedocs.io/en/dev-esp32/
https://nodemcu.readthedocs.io/en/dev-esp32/
https://www.smart-prototyping.com/NodeMCU-32S-Lua-WiFi-ESP32-module
https://www.smart-prototyping.com/NodeMCU-32S-Lua-WiFi-ESP32-module
http://www.cse.sc.edu/~jokane/agitr/
http://www.cse.sc.edu/~jokane/agitr/
https://github.com/behavior3/behavior3py
http://wiki.ros.org/actionlib
http://wiki.ros.org/
https://afsyaw.wordpress.com/2018/02/28/setting-up-the-pioneer-lx-mobile-base-and-running-the-demos/
https://afsyaw.wordpress.com/2018/02/28/setting-up-the-pioneer-lx-mobile-base-and-running-the-demos/
https://gastonsanchez.wordpress.com/2012/08/31/colortools-color-wheel/
https://gastonsanchez.wordpress.com/2012/08/31/colortools-color-wheel/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://wiki.ros.org/smach
https://github.com/splintered-reality/py_trees
https://github.com/splintered-reality/py_trees
https://www.espressif.com/en/products/hardware/esp-wroom-32/overview
https://www.espressif.com/en/products/hardware/esp-wroom-32/overview

Appendix i References

[47] Multichannel Systems.MEA2100-Systems. url: https://www.multichannelsystems.
com/products/mea2100-systems#overview (cit. on p. 12).

[48] The Cyborg Wiki. url: https://www.ntnu.no/wiki/display/cyborg/
(cit. on pp. 16, 18).

[49] thentnucyborg. CyborgRobot Github. url: https://github.com/thentnucyborg/
CyborgRobot (cit. on p. 13).

[50] Dirk Thomas. rqt_graph. url: http://wiki.ros.org/rqt_graph (cit. on
p. 46).

[51] Jørgen Waløen. “The NTNU Cyborg v2.0: The Presentable Cyborg”.
MA thesis. NTNU, 2017 (cit. on pp. 6, 11).

109

https://www.multichannelsystems.com/products/mea2100-systems#overview
https://www.multichannelsystems.com/products/mea2100-systems#overview
https://www.ntnu.no/wiki/display/cyborg/
https://github.com/thentnucyborg/CyborgRobot
https://github.com/thentnucyborg/CyborgRobot
http://wiki.ros.org/rqt_graph

Johanne D
øvle Kalland

The N
TN

U
 Cyborg - Behaviour M

odule &
 Behaviour Trees

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Johanne Døvle Kalland

The NTNU Cyborg 4.0

The Behaviour Module & Behaviour Trees

Master’s thesis in Cybernetics and Robotics

Supervisor: Associate Professor Sverre Hendseth,

PhD Candidate Martinius Knudsen

June 2020

	Task Description
	Preface
	Abstract
	Sammendrag
	Introduction
	Ongoing Work
	Previous Work with the Cyborg
	Work Not Mentioned Any Further

	Background
	Hardware
	The Cyborg Base - Pioneer LX
	Led-Dome
	Mode Selector Box
	MEA2100 - System Microelectrode Array
	NodeMCU ESP-32S

	Software
	FreeRTOS
	Arduino IDE
	Software with the Pioneer LX Base

	Cyborg Software Structure
	ROS - Robotic Operating System
	The Concepts of ROS

	PAD Emotional State Model
	Finite State Machines
	Concepts
	Trade offs
	In ROS

	Behaviour Trees
	Key Concepts
	Trade offs

	SMACH - State MACHine
	Creating a SMACH State Machine

	Reevaluation of the Cyborg
	The Software Structure
	The Cyborg's Current Structure
	Controller
	Behaviour
	Event Scheduler
	Primary States
	Navigation

	Previous Work with Behaviour Trees
	Behaviour Specifications
	The New Structure

	The Behaviour Module
	Evaluation of Behaviour Tree Implementations
	Behaviour Trees and the Cyborg

	Psychology of the Cyborg
	Colours and Psychology

	Adding A Behaviour to Behaviour Tree
	Proposed New Behaviours
	Finding PAD Values to Represent Emotional Feedback

	New Interpreters for the LED-dome
	Update of Eyes
	Race Stripes
	Startup and Suspension
	How To Add New Interpreters

	Other Tasks
	Updating ROS and Ubuntu
	Setup Script
	Audio

	Discussion
	Proposed Tasks for Future Work

	Conclusion
	Appendices
	Setup Script
	Audio Files
	References

