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Abstract

The last decade has seen a growing trend towards miniaturized satellite tech-

nology. This research intends to derive a complete mathematical model and

attitude control system for miniaturized propulsion systems on nanosatellites,

and determine to which extent they are suitable compared to other actuation

solutions. Hopefully, this research will contribute to data and insight that will

aid future design specification processes in nanosatellite projects.

There are four main contributions of this thesis. First, a dynamical model of

a nanosatellite with actuators is derived; A simulation environment, including

orbital perturbations, is then developed; An adaptive integer model predictive

controller for attitude maneuvers is implemented; And lastly, the performance

of different actuators and controllers is measured and compared.

Simulations for this study were carried out using MATLAB software. The project

aimed to develop modular software that is compatible with different satellite

and actuator configurations.
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Sammendrag

Det siste tiåret har sett en økende trend mot miniatyrisert satellitteknologi.

Dette forskningsarbeidet er ment å utlede en komplett matematisk modell og

et attityde-reguleringssystem til bruk med miniatyriserte fremdriftssystemer på

nanosatellitter, samt fastslå til hvilken grad disse er passende sammenliknet med

andre aktueringsløsninger. Håpet er at denne forskningen vil kunne bli brukt

som et data- og innsiktsgrunnlag for fremtidige designspesifikasjonsprosesser i

nanosatellittprosjekter.

Det er fire hovedkontribusjoner i denne oppgaven. For det første er en dynamisk

modell av en nanosatellitt med pådragsorganer utledet; Et simuleringsprogram

som inkluderer orbitale forstyrrelser er utviklet; En adaptiv integerbasert modell-

prediktiv regulator for attitydemanøvre er implementert; Og til slutt er ytelsen

til de forskjellige pådragsorganene og regulatorene målt og sammenliknet.

Simuleringene i denne studien ble gjennomført i simuleringsverktøyet MATLAB.

Prosjektet tok sikte på å utvikle modulær programvare som er kompatibel med

forskjellige satellitt- og pådragsorgankonfigurasjoner.
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Chapter 1

Introduction

The thesis work was conducted to support the NTNU SmallSat Lab and completes

the degree of M.Sc. in Robotics and Cybernetics at the Norwegian University of

Science and Technology (NTNU).

This chapter provides a description of the motivation behind the research (section

1.1), a presentation of related works (section 1.2) and an outline of the thesis

(section 1.3).

1.1 Motivation

Over the past decade, there has been a dramatic increase in the development and

launch of nanosatellites [10]. The innovation in small-satellite technology pro-

vides relatively cheap access to space for both academic institutions, government

3
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agencies, and private enterprises. By utilizing the CubeSat platform, a satellite

can be constructed using off-the-shelf subsystems, which drastically reduces

the development costs [1]. In recent years, many companies have developed

technologies tailored for CubeSat platforms, including miniaturized propulsion

systems. However, there is a lack of research on the practical usefulness of

propulsion systems for attitude control on CubeSats. This thesis provides a

mathematical model and an attitude control system for use with propulsion

systems on nanosatellites. The applicability of a propulsion system for the

NTNU SmallSat Lab is also analyzed and discussed.

The simulations performed in this thesis are based on the HYPSO satellite

(HYPer-Spectral smallsat for Ocean observation), which is currently being de-

veloped at the Norwegian University of Science and Technology (NTNU). The

HYPSO satellite is a 6U CubeSat equipped with reaction wheels and magnetor-

quers. In this research, a propulsion system is imagined added to the satellite

design. The HYPSO project’s mission is to observe oceanographic phenomena

using a hyperspectral camera, with mission requirements that require accurate

attitude control during pointing and slew rate maneuvers.

1.2 Previous Work

There is little published data on optimal attitude control using propulsion systems

on nanosatellites. However, two miniaturized propulsion systems have recently

been developed, suitable for orbital and attitude control. The first system is an

electric ion-based propulsion system developed by researchers at the Technical
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University of Dresden [3]. The second system is a water-based resistojet system

developed by the Finnish company Aurora Propulsion Technologies [2]. Both

systems have the advantage of not utilizing any dangerous chemicals, which

fulfills common CubeSat standards [16].

The simulated satellite includes reaction wheels and magnetorquer actuators.

These are conventional attitude actuators on nanosatellites. A derivation of the

reaction wheel dynamics was explicitly done for the NTNU HYPSO project by

Kristiansen [11].

1.3 Thesis Outline

The thesis is organized in seven chapters. This chapter, Introduction, describes

the motivation for the research and introduces previous work. The second

chapter, Background Theory, introduces necessary concepts in orbital mechanics.

In the third chapter, Satellite Model, a mathematical model of the satellite

dynamics is derived. The attitude controllers developed are presented in the

fourth chapter, Controller Design, and the MATLAB simulator is presented in

the fifth chapter, Simulations. The results are presented in the sixth chapter,

Results, and discussed in chapter seven, Discussion. Lastly, a conclusion is

provided and further work is proposed in in chapter eight, Conclusions.
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Chapter 2

Background Theory

This chapter serves as an introduction to relevant theory in orbital mechanics.

The intended reader is someone with a technical background other than orbital

mechanics, and the purpose is to introduce the nomenclature and concepts used

in this thesis.

The chapter is organized as follows: First, the mechanics of objects in orbit is

discussed in section 2.1 Orbital Mechanics. Then, orbital perturbations, which

disturb the natural motion of orbiting objects, are discussed in section 2.2 Orbital

Perturbations.

7
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2.1 Orbital Mechanics

Orbital mechanics concerns the study of natural and actuated motion of artificial

satellites. The section is meant to provide the most important definitions and

equations that govern satellite dynamics, and provide a mathematical description

of orbits. The coordinate frames applied for the translational motion are intro-

duced in subsection 2.1.1 Coordinate Systems. The equations that govern the

satellite motion are given in subsection 2.1.2 Equation of Motion. A parametric

description of orbits is presented in subsection 2.1.3 Orbital Parameters. Finally,

the moment of inertia properties that govern the satellite attitude dynamics are

defined in subsection 2.1.4 Inertia.

2.1.1 Coordinate Systems

This section presents two different reference frames for representing the location

of an orbiting object in space relative to other objects. The origin of both

coordinate systems is placed at the center of the Earth. The Earth-Centered

Intertial Coordinate System (sec. 2.1.1) is an inertial coordinate system, meaning

that the frame is assumed unaccelerated, while the Earth-Centered Earth-Fixed

Coordinate System (sec. 2.1.1) is non-inertial.

Earth-Centered Intertial Coordinate System

Earth-Centered Intertial (ECI) coordinate systems originate in the center of mass

of the Earth and are non-rotating with respect to the stars. In this project, we

consider the J2000 definition of the ECI frame. The ECI frame is here denoted

with superscript i.
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J
I

K

Equatorial
Plane

Figure 2.1: Earth-centered coordinate system. Figure based on work by Hellerick

[8] with added axes and equatorial plane.

The position of celestial objects at noon on January 1st, 2000, defines the J2000

ECI frame [21]. It is spanned by the principle I -, J - and K -axes. The I-axis

points towards the center of the Sun, the K-axis points along the mean axis of

rotation of the Earth, and the J-axis is perpendicular to the other axes, thus

pointing 90ř East of the principal I-axis along the mean Equatorial plane.

The position of an orbiting object described in the ECI frame is given in Equation

(2.1), and the velocity is given in Equation (2.2).

ri = x̄Ii + ȳJ i + z̄Ki (2.1)

vi = ṙi = ˙̄xIi + ˙̄yJ i + ˙̄zKi (2.2)
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Earth-Centered Earth-Fixed Coordinate System

Earth-Centered Earth-Fixed (ECEF) coordinate systems originate in the cen-

ter of mass of the Earth and rotate with the Earth. Here, the International

Astronomical Union (IAU) resolutions of 2000/2006 are used to define the trans-

formation between the J2000 ECI coordinates and the ECEF coordinates. The

ECEF frame is indicated with superscript e.

The position of an orbiting object described in the ECEF frame is given in

Equation (2.3), and the velocity is given in Equation (2.4).

re = x̄Ie + ȳJe + z̄Ke (2.3)

ve = ṙe = ˙̄xIe + ˙̄yJe + ˙̄zKe (2.4)

2.1.2 Equation of Motion

Discoveries made by the 17th-century German scientist Johannes Kepler about

celestial motion led Isaac Newton to develop his law of universal gravitation,

presented in Equation (2.5). The equation considers a system consisting of two

objects, in which Fg is the gravitational force acting between the objects, G is

the universal gravitational constant, m1 and m2 are the point masses of the

objects, and r is the position vector connecting the point masses.

F = Gm1m2
r

|r|3
(2.5)
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The equation of motion used for the simulations is given in Equation (2.6). In

this equation, µ = G · M = 398600.4415 km3s−2 is the product of the universal

gravitational constant and the mass of the Earth, considered as the standard

gravitational parameter [13]; rsat is the position vector of the satellite center

of mass from the center of the Earth, and msat is the mass of the satellite.

Additional forces acting on a satellite other than the Newtonian force of gravity

are considered perturbing forces, denoted Fp. A selection of the perturbing forces

are discussed in section 2.2 Orbital Perturbations.

r̈i
sat = ai

sat = µ
ri

sat∣∣ri
sat

∣∣3 +
F i

p

msat
(2.6)

2.1.3 Orbital Parameters

The following subsection gives an introduction to a parametric description of

orbits using the definitions of orbital parameters made by [5].

Under the assumption that an orbit is an ideal Keplerian orbit (only affected by

the Newtonian force of gravity discussed in subsection 2.1.2), it can be uniquely

identified using six orbital elements. Three parameters are required to define the

orbit on a plane, and three additional parameters are needed to further place

the orbit in three-dimensional space. A summary of the six orbital elements is

given in Table 2.1, and an illustration of four of them is given in Figure 2.2.
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Name Symbol Range Unit

Specific angular momentum h [0, ∞) kgm
s2

Inclination i [0, 180] °

Right ascension of the ascending node Ω [0, 360] °

Eccentricity e [0, ∞) -

Argument of perigee ω [0, 360] °

True anomaly Θ [0, 360] °

Table 2.1: Overview of the six parameters describing an orbit.

Three parameters describe the orbit plane: the specific angular momentum,

eccentricity, and true anomaly. The specific angular momentum is the

angular momentum of the orbiting object seen in an Earth-centered inertial

frame, which is constant for a non-perturbed orbit. The eccentricity value

describes how close the shape of the orbit is to a perfect circle. The value of

the eccentricity can be found by dividing the distance between the center of the

orbit and one of its foci by the semi-major axis (the largest radius of the orbit).

Orbit shapes corresponding to different eccentricity values are given in Table

2.2. True anomaly is the angle between the position of the orbiting object and

periapsis (the point on the orbit with the shortest distance to the central body)

seen from the main focus of the orbit.

So far, a two-dimensional orbit plane has been defined. To place the orbit

plane in three-dimensional space, three additional axis rotations are required.

The orbital elements corresponding to these rotations are the inclination, right

ascension of the ascending node and the argument of perigee. The inclination
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e = 0 Circle

0 < e < 1 Ellipse

e = 1 Parabola

e > 1 Hyperbola

Table 2.2: Orbital shapes corresponding to different eccentricity values.

describes the angle between the orbital plane and the equatorial (Earth XY)

plane. The right ascension of the ascending node is the angle between

the equatorial X-axis and the point on the equatorial plane where the orbit

passes through from below. The third angle, the argument of perigee, is

the angle in the orbital plane between the point of passing through the equa-

torial plane from below and the point of perigee as seen from the focus of the orbit.

2.1.4 Inertia

The angular momentum H, with unit kgm2

s , of a body is determined by the

angular velocity ω and inertia I, as shown in Equation (2.7). The rate of change

in angular velocity of an object is thus dependent on the applied torque τ ,

measured in Nm, and the inertia I of the satellite, with unit kgm2.

Hi = Iiωi, τ i =
idHi

dt
(2.7)

The inertia matrix I ∈ R3×3 is given in Equation (2.8), as defined by Fossen

[7]. In this expression, Ix, Ix and Ix are the moments of inertia about the x-, y-
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Figure 2.2: Illustration of Four of the Orbital Elements. Figure based on work

by Lasunncty [12] with modifications to the notation.

and z-axes, and Ixy = Iyx, Ixz = Izx and Iyz = Izy are the products of inertia,

provided in Equation (2.9).

I :=


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 , I = IT > 0 (2.8)
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Ix =
∫

V

(
y2 + z2

)
ρ (x, y, z) dV ;

Iy =
∫

V

(
x2 + z2

)
ρ (x, y, z) dV ;

Iz =
∫

V

(
x2 + y2

)
ρ (x, y, z) dV ;

Ixy = Iyx =
∫

V
xy ρ (x, y, z) dV

Ixz = Izx =
∫

V
xz ρ (x, y, z) dV

Iyz = Izy =
∫

V
yz ρ (x, y, z) dV

(2.9)

When the axes of the coordinate system in which the inertia matrix is defined

are aligned with the principal axes of the body, the inertia matrix is diagonal.

The moment of inertia matrix for solid cuboid with evenly distributed mass m

and dimensions x, y, z along the principal axes is given in Equation (2.10).

Ib
c =


1
12m

(
y2 + z2

)
0 0

0 1
12m

(
x2 + z2

)
0

0 0 1
12m

(
x2 + y2

)
 (2.10)

2.2 Orbital Perturbations

Orbital perturbations is a term used for all effects that cause an object’s orbit to

deviate from the ideal Keplerian orbit. The Keplerian orbit model considers only

the forces of the point-mass central body acting on the orbiting object. Forces

originating from the uneven distributions of mass on Earth (subsection 2.2.1),

atmospheric drag (subsection 2.2.3), solar radiation pressure (subsection 2.2.4),

or gravitational pull from other celestial bodies are all examples of perturbing
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forces. The gravity gradient (section 2.2.2) is also discussed.

2.2.1 Earth’s Oblateness

Oblateness is a measure of the flattening of a sphere, and is defined as in Equation

(2.11) [5], in which γ is the oblateness measure, re the equatorial radius and rp

the polar radius.

γ = re − rp

re
(2.11)

The Earth’s equatorial radius is larger than the polar radius due to the centrifugal

forces originating from its spin.

An oblate spheroid, unlike a perfect sphere, has a gravitational field that varies

with latitude. Harmonic parameters are used to quantify the effects of oblate-

ness on gravitational pull. The second zonal harmonic, JΓ30002, is the most

significant harmonic force, with its effect being about one thousand times larger

than the next greatest zonal harmonic contributor, JΓ30003.

The gravitational pull on an orbiting object with the effects of the second zonal

harmonic J2 may be modeled as in Equation (2.12), based on [19]. In Equation

(2.12), µ is the standard gravitational constant, J2 is the second zonal harmonic,

Re is the mean equatorial radius of the Earth, r is the position of the satellite

and r is its norm, and zG = [0, 0, 1]T is the z-axis vector.
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F i
J2 = 3µJ2R2

e

2r5

5
(

(ri · zG)2

r2 − 1
)

ri − 2
(

ri · zG

)
zG

 (2.12)

2.2.2 Gravity Gradient

The satellite interacting with Earth’s gravity field produces a torque known as

the gravity gradient. The torque is produced on volumes of mass that are not

aligned with Earth’s gravitational pull. This happens as a consequence of the

property that a gravitational field decreases quadratically with distance. The

portion of the satellite mass positioned closest to the Earth’s center experience

a stronger gravitational pull than the mass positioned further away. The torque

can be modeled as in Equation (2.13), based on [19].

τ b
G = 3µ

r5

[
rb × Ib

satr
b
]

(2.13)

In Equation (2.13), τ b
G denotes the gravity gradient torque produced, µ the

standard gravitational constant, and Ib
sat is the inertia matrix of the satellite.

rb, with r being its norm, is the position of the satellite relative to the center of

the Earth, as seen in the body frame of the satellite.

2.2.3 Atmospheric Drag

Objects orbiting near Earth will experience a decrease in velocity due to collisions

with atmospheric particles, known as drag. The magnitude of the acceleration
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depends on the density of the atmospheric particles. The atmosphere’s density

has both latitudinal, longitudinal, periodic, and random variations. However, it

depends mainly on the gravitational forces exerted on the atmospheric particles

by the Earth and thus the altitude of the orbit. Other contributing factors

to the atmospheric density are the Sun’s position and radiation activity and

variations in the Earth’s magnetic field. The variations in the atmospheric drag

forces are represented in the density of the atmosphere, denoted ρ. In this

research, the atmospheric density is calculated by taking the average value of

the Harris-Priester model [15] corresponding to the altitude.

A model of the force and torque produced by atmospheric drag, based on [15]

and [19], is given in Equations (2.14) and (2.15). The force and torque produced

by the atmosphere are found by summation of the atmospheric effect on all

surfaces of the satellite in the set Swa, which is the set of wetted area surfaces,

which are the surfaces exposed to atmospheric drag forces. The wetted areas

are defined as the surfaces on which the dot product of the surface normal and

relative velocity of the satellite to the atmosphere is positive.

F b
drag =

∑
Ad∈Swa

F b
dragAd

= −1
2 CD ρ v2

rel v̂b
∑

Ad∈Swa

Ad (nb
Ad

· v̂b) (2.14)

In Equation (2.14), CD is the coefficient of drag, a factor which indicates how

susceptible the spacecraft is to drag forces, and ρ is the atmospheric density at

the position of the spacecraft. vrel is the relative velocity of the spacecraft to

the atmosphere, and v̂b = vb
rel

vrel
represents the direction of the relative velocity in

the body frame. Ad represents the area of the surface in the set Swa, and nb
Ad
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represents the surface normal in the body frame.

τ b
drag =

∑
Ad∈Swa

cb
Ad

× F b
dragAd

(2.15)

The torque produced by the atmospheric drag is given in Equation (2.15). In

this equation, cb
Ad

is the vector from the center of mass of the satellite to the

center of the given surface in the set Swa, and bmF b
dragAd

is the atmospheric

drag force corresponding to the surface.

2.2.4 Solar Radiation Pressure

Solar radiation pressure concerns the forces acting on a spacecraft due to radia-

tion from the Sun. The forces originate from the momentum exchange between

the photons emitted from the Sun and the body of the spacecraft. The magni-

tude of the force varies based on solar activity, and the perturbation becomes

more pronounced at higher altitudes as seen from the Earth, compared to other

perturbing effects. It is necessary to know the force of the solar radiation per

unit area, psrp, which is difficult to predict accurately, as it varies based on solar

activity. Here, an average estimate from [15] is used as a constant value to model

the incoming solar radiation. A model of the solar radiation pressure force and

torque, based on [15] and [19], is given in Equations (2.16) and (2.17).

F b
srp =

∑
As∈S�

F b
srpAs

= −sb psrp CR

∑
As∈S�

As

(
nb

As
· sb
)

, sb =
rb

sat−�
rsat−�

(2.16)
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In Equation (2.16), rsat−� is the vector from the satellite to the center of the

Sun, rsat−� is its norm, and psrp is the force of the solar radiation per unit area.

CR is the coefficient of reflectivity of the spacecraft, a factor representing the

spacecraft’s ratio between reflected and absorbed radiation. The set S� contains

the surfaces of the spacecraft that are exposed to the Sun, which is found using

the SIGHT algorithm [15]. As and nb
As

are the area and normal vectors of the

surfaces.

τ b
srp =

∑
As∈S�

cb
As

× F b
srpAs

(2.17)

In Equation (2.17), cb
As

is the vector from the satellite’s center of mass to the

center of the surface, and F b
srpAs

is the corresponding force from the solar radia-

tion pressure on the surface. As for the force calculation, the set S� contains

the surfaces of the spacecraft that are exposed to the Sun.

2.3 Actuator Power Models

This section presents the power consumption models used for the actuators.

An estimation of the power consumption is later used to find an optimal com-

bination of actuator gains minimizing the total power consumption of the satellite.

The following actuators are discussed: subsection 2.3.1 covers Reaction Wheels,

subsection 2.3.2 the Magnetorquer, and subsection 2.3.3 considers Propulsion

Systems.
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2.3.1 Reaction Wheels

To model the reaction wheels’ energy consumption, the components that make

up the actuator are considered. The reaction wheels consist of a brushless electric

motor connected to the spacecraft on one end and a high inertia flywheel on the

other end. For an electric motor, the mechanical output power Pm is given by

the angular speed ω and torque produced τ = I d
dtω. The electric input power

Pe is given by the mechanical output power and the efficiency η of the motor, as

defined in Equation (2.18) [22].

Pm = |ω| τ = |ω| I

∣∣∣∣ d

dt
ω

∣∣∣∣ , Pe = Pm

η
(2.18)

2.3.2 Magnetorquer

To approximate the power consumption of the magnetorquer, a simplified model

of the actuator construction is used. The magnetorquer is made up of multiple

coils of conducting wire placed in an orthogonal configuration. The coils are

made up of n turns, with the resulting vector area given by S. The strength

of the magnetic dipole, ‖m‖, created by any of the coils in the configuration is

proportional to the current applied, I, as given in Equation (2.19) [6].

‖m‖ = nI‖S‖ (2.19)
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Combining Equation (2.19) and Ohm’s law, we get a simplified expression for

the power consumed as a result of the resistance of the coils and the magnetic

dipole created, given in Equation (2.20), in which m =‖m‖ and S =‖S‖.

PMT Q = RcoilI
2 = Rcoili

(
m

nS

)2
(2.20)

2.3.3 Propulsion Systems

The power consumption of the thrusters consists of the preheating stage and

thrust firing actuation. The preheating stage is neglected in this research. At

thruster firing, the thrusters’ power consumption is defined as the maximum

rating in the provided thruster specifications. The resulting estimated power

consumption is given by Equation (2.21), in which n is the number of thrusters.

PT =
∑

n

Pn, Pn :=


Pspecified, if thruster is firing

0, otherwise
(2.21)

2.4 Genetic Algorithm Optimization

Genetic algorithms are inspired by biological evolution and the concept of natural

selection. The method initializes a population of random initial points, evalu-

ates the objective function corresponding to the population, and modifies the
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population based on biologically inspired operators such as mutation, crossover,

and selection [17]. The algorithm accepts non-smooth functions with any type

of constraint. The stopping criteria for the algorithm can be based on either

optimality conditions, resource constraints, or a combination of both.

Here, the population consists of vectors describing different actuation sequences.

Mutation is the operation of randomly changing some of the vectors’ com-

ponents to produce a new vector. Similarly, crossover is the operation of

combining elements of previous vectors in the population to produce a new

vector. Selection is the operation of including the best-scoring members of the

current generation in the next generation’s population.
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Chapter 3

Satellite Model

This chapter derives the dynamical equations of the satellite orbital position and

attitude, which will form the basis for the controller and simulation design, and

is structured as follows: Assumptions made regarding the satellite construction

and the satellite fixed reference frames used for modeling are discussed in section

3.1 Satellite Assumptions. The dynamics of the actuators are derived in sections

3.2 Reaction Wheels, 3.3 Magnetorquer, and 3.4 Propulsion. Finally, the complete

dynamics of the satellite are derived in section 3.5 Satellite Dynamics.

3.1 Satellite Assumptions

In the modeling of the satellite dynamics, some assumptions about its structural

design had to be made. The satellite is assumed to be a single rigid body, with

time-varying mass and inertia. The satellite is assumed to be equipped with

25
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three types of actuators:

1. A set of reaction wheels, with equal weight and dimension.

2. Magnetorqers, able to produce a magnetic field along all three axes of the

satellite.

3. Propulsion units, in two defined configurations.

The satellite is further assumed to be a solid cuboid with evenly distributed

mass when the propellant storage modules are excluded.

3.1.1 Reference Frames

Two reference frames are used to define the satellite dynamics: the body frame

and the structural frame. The body frame of the satellite, denoted {b}, is fixed

to the center of mass of the satellite. The satellite is thus rotating around the

center of the body frame. The axes of the body frame point along the satellite

dimensions, as illustrated in Figure 3.1. The satellite structural frame, de-

noted {s}, is fixed at a point on the satellite structure rather than the center

of mass, with the axes pointing along with the satellite structural dimensions.

It is assumed that the axes of the body frame are parallel to the axes of the

structural frame and non-rotating, and there is thus only translation and no

rotation between the frames.
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Xs

Ys

Zs

Xb
Yb

Zb

{b}

{s}

Figure 3.1: Illustration of Satellite Attached Frames. The Structural Frame is

attached to the Satellite Construction, while the Body Frame is attached to the

Center of Mass of the Satellite, denoted ⊗. There is no rotation between the

two frames, and the axes in both frames point along the satellite dimensions.

3.2 Reaction Wheels

The reaction wheels’ total angular momentum in an inertial frame consists of the

momentum caused by the rotation of the satellite body, on which the reaction

wheels are mounted, and the rotation of the wheels themselves relative to the

satellite body. The total angular momentum of the reaction wheels in the body

frame is given by Equation (3.1c), with Ab
w being the torque distribution matrix

[11] mapping the spin axis of each reaction wheel to Cartesian space, and Ab
w

∗

being the Moore Penrose pseudoinverse of Ab
w. The inertia of the reaction wheels

along the spin-axis make up the diagonal matrix Iw
RW .
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hb
RW = Ab

wIw
RW Ab

w
∗
ωb

i b + Ab
wIw

RW ωw
b w (3.1a)

= Ab
wIw

RW Ab
w

∗ (
ωb

i b + Ab
wωw

b w

)
(3.1b)

= Ab
wIw

RW Ab
w

∗
ωb

i w (3.1c)

The dynamic relationship between the total moment of the reaction wheels, the

angular velocities of the satellite body and reaction wheels, and the applied

torque to the reaction wheels are found using the Transport Theorem and Euler’s

equations for rigid body rotations, and is presented in Equation (3.2).

id

dt
hb

RW =
bd

dt
hb

RW + ωb
i w × hb

RW (3.2a)

= Ab
wIw

RW Ab
w

∗ bd

dt
ωb

i w + ωb
i w × Ab

wIw
RW Ab

w
∗
ωb

i w (3.2b)

= Ab
wIw

RW Ab
w

∗ bd

dt
ωb

i w + Ab
wωw

i w × Ab
wIw

RW ωw
i w (3.2c)

= Ab
wIw

RW Ab
w

∗ bd

dt
ωb

i w (3.2d)

= Ab
wIw

RW Ab
w

∗
(

bd

dt
ωb

i b + Ab
w

wd

dt
ωw

b w

)
(3.2e)

= Ab
wτ w

u (3.2f)

In Equation (3.2c), the assumption that the weight and dimensions of all reaction

wheels are equal is applied. In this case, the inertia matrix of the reaction wheels

in the wheel frame can be replaced by a scalar multiplied by the identity matrix:
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Iw
RW = σIn×n. This leads to the cancellation of the cross product term, as the

angular velocity vectors are parallel:

Ab
wωw

i w × Ab
wIw

RW ωw
i w = Ab

wωw
i w × Ab

wσIn×nωw
i w (3.3a)

= Ab
wωw

i w × σAb
wωw

i w (3.3b)

= σ
(

ωb
i w × ωb

i w

)
(3.3c)

= 0 (3.3d)

Rearranging Equation (3.2e) and Equation (3.2f), the expression for the reaction

wheels dynamics is derived in Equation (3.4).

wd

dt
ωw

b w = Iw
RW

−1τ w
u − Ab

w
∗ bd

dt
ωb

i b (3.4)

The power consumption of the reaction wheels is based on the model described

in section 2.3.1, found in chapter 2 Background Theory. The power consumption

is linearized as a function of the acceleration around a specified operating point

ω0, as defined in Equation (3.5). For the simulations, the operating point is

chosen as the reference reaction wheel velocity.

PRW = |ω0| IRW

η0

∣∣∣∣ d

dt
ωRW

∣∣∣∣ (3.5)
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3.3 Magnetorquer

The torque produced by the magnetorquer is given by the cross product between

the magnetic dipole moment, M b, and the Earth’s magnetic field, Bb
Earth, as

defined in Equation (3.6) [19]. A consequence of this is that torque can only be

produced in directions perpendicular to Earth’s magnetic field at a given location.

τ b
MT Q = M b × Bb

Earth (3.6)

3.4 Propulsion

The propulsion system on the satellite consists of several thrusters mounted on

the satellite body, which produce force in specified directions. This results in

both a force and torque being applied to the satellite. The force acting from

the propulsion on the satellite in the Earth-Centered Inertial frame is given in

Equation (3.7).

F i
T = −Ri

body

∑
k

f b
k (3.7)

The torque on the satellite produced by the propulsion unit is denoted τT . The

force produced by the propulsion units, f b
T , is translated into a torque acting on

the satellite by cross multiplication with the thrust arm, lb
t , as given in Equation

(3.8). The thrust arm is time-dependent as a result of the satellite’s center of

mass moving when the propellant is consumed.
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τ b
T = −

∑
k

[
lb
k (t) × f b

k

]
(3.8)

To be fully actuated, a satellite needs at least six propulsion units, with the force

vectors aligned along all three Cartesian axes, in both positive and negative

directions.

Propellant consumption is related to the force output through the specific impulse

value, denoted Isp. The specific impulse is defined in Equation (3.9) [5], in which

FT is the force output of the thruster, d
dtmp is the propellant mass flow, and

g0 is the standard acceleration due to Earth’s gravity. The unit of the specific

impulse is seconds.

(3.9)Isp = F i
T

d
dt

(
mp

)
g0

The propellant mass flow rate is found by rearranging the expression for the

specific impulse, which gives Equation (3.10):

(3.10)d

dt
mp = FT

Ispg0

3.5 Satellite Dynamics

In this section, the equations of motion for the satellite are derived. The trans-

lational dynamics are derived in subsection 3.5.1 Position, and the rotational

dynamics in subsection 3.5.2 Attitude. Subsection 3.5.3 Center of Mass presents

the dynamics used to model the satellite center of mass, and subsection 3.5.4
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Inertia presents the dynamics of the satellite inertia.

3.5.1 Position

The translational motion of the satellite is governed by Newton’s Second Law of

Motion, given in Equation (3.11). In this equation, F i is the force applied to an

object, pi is the linear momentum of that object in an inertial frame, and m

and vi are the mass and velocity of the object, respectively.

F i =
∑

k

f i
k =

id

dt
pi =

id

dt

(
mvi

)
(3.11)

When the satellite mass varies with time, the satellite’s translational motion is

described as in Equation (3.12).

F i
tot =

id

dt
pi

sat (3.12a)

=
id

dt

(
msatv

i
sat

)
(3.12b)

= d

dt
(msat) vi

sat + msat

id

dt

(
vi

sat

)
(3.12c)

= d

dt
(msat) vi

sat + msata
i
sat (3.12d)

The resulting satellite acceleration in the Earth-Centered Inertial frame (see

section 2.1.1) is described in Equation 3.13. This is the equation used to model
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the dynamics of the satellite position, with the resulting acceleration given by

ai
sat. The acceleration due to the gravitational pull is ai

grav (section 2.1.2), the

satellite mass is denoted msat, and the satellite velocity is denoted vi
sat. F i

J2

represents the J2 perturbing force (section 2.2.1), F i
drag the atmospheric drag

force (section 2.2.3), and F i
srp the force resulting from the solar radiation pressure

(section 2.2.4). The force from the thruster actuation is given by F i
T (section 3.4).

(3.13)
ai

sat = ai
grav + 1

msat

[
F i

tot − d

dt
(msat) vi

sat

]
= ai

grav + 1
msat

[
F i

J2 + F i
T + F i

drag + F i
srp −

F i
T

Isp · g0
vi

sat

]

3.5.2 Attitude

The attitude of the satellite is represented with a unit quaternion qib describing

the rotation from the inertia frame to the satellite body frame. The quaternion

dynamical equation is given in (3.14) [7].

id

dt
qib = 1

2T (qib)ωb
i b, T =


−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

 (3.14)

The system consisting of the satellite body and reaction wheels exchange moment

internally, and external torques applied to the satellite affect the total moment

of the system. The total moment of the satellite system consists of the moment
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of the satellite body and the moment of the reaction wheels and is given in

Equation (3.15). The combined inertia of the satellite body and reaction wheels

is denoted Ib
sys = Ib

sat + Ab
wIw

RW Ab
w

∗.

hb
sys = hb

sat + hb
RW (3.15a)

= Ib
satω

b
i b + Ab

wIw
RW Ab

w
∗
ωb

i b + Ab
wIw

RW ωw
b w (3.15b)

= Ib
sysωb

i b + Ab
wIw

RW ωw
b w (3.15c)

The dynamic equation for the satellite system’s total momentum is derived using

the Transport Theorem and Euler’s equations for rigid body rotations. The

relation between system angular acceleration and torque applied to the reaction

wheels was found in section 3.2.

The satellite angular momentum dynamics with time-varying satellite inertia

becomes:

(3.16a)
id

dt
hb

sys =
bd

dt
hb

sys + ωb
i b × hb

sys

(3.16b)=
bd

dt

(
Ib

sysωb
i b + Ab

wIw
RW ωw

b w

)
+ ωb

i b × hb
sys

(3.16c)=
bd

dt

(
Ib

sys

)
ωb

i b + Ib
sys

bd

dt

(
ωb

i b

)
+ ωb

i b × hb
sys + Ab

wIw
RW

wd

dt

(
ωw

b w

)
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(3.16d)=
bd

dt

(
Ib

sat

)
ωb

i b + Ib
sat

bd

dt

(
ωb

i b

)
+ ωb

i b × hb
sys + Ab

wτ w
RW

(3.16e)= τ b
MT Q + τ b

T + τ b
dist

Equation (3.16d) uses the fact that the reaction wheel inertia matrix is constant

and is inserted with Equation (3.2e), which relates the reaction wheel torque to

the angular velocities of the satellite and the reaction wheels.

Rearranging Equation (3.16), we get an expression for the rate of the satellite

angular velocity, provided in Equation (3.17).

(3.17a)

bd

dt
ωb

i b = Ib
sat

−1
(

−
bd

dt

(
Ib

sat

)
ωb

i b − ωb
i b × hb

sys

− Ab
wτ w

RW + τ b
MT Q + τ b

T + τ b
dist

)

(3.17b)

= Ib
sat

−1

−
bd

dt

(
Ib

sat

)
ωb

i b − ωb
i b × hb

sys

− Ab
wIw

RW Ab
w

∗
(

bd

dt
ωb

i b + Ab
w

wd

dt
ωw

b w

)
+ τ b

MT Q + τ b
T + τ b

dist



(3.17c)
=
(

Ib
sat + Ab

wIw
RW Ab

w
∗)−1

(
−

bd

dt

(
Ib

sat

)
ωb

i b − ωb
i b × hb

sys

− Ab
wIw

RW

wd

dt
ωw

b w + τ b
MT Q + τ b

T + τ b
dist

)
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3.5.3 Center of Mass

The mass of the satellite consists of the mass of the propellant, mprop, and the

mass of the rest of the satellite, mbody. For a system consisting of k propellant

containers, the total mass is given by Equation (3.18).

msat = mbody +
∑

k

mpropk
= mbody + mprop (3.18)

It is assumed that the mass of propellant at launch is mprop0 and that the

satellite’s center of mass in the structural frame at launch is cs
m0 . The relation in

Equation (3.20) for the center of mass of the satellite body, cs
body, is then found

by decomposing the initial center of mass at launch (3.19), and rearranging the

equation. The center of mass of the satellite body, cs
body, is assumed to remain

constant in the simulations.

cs
m0 = cs

body

mbody

msat0
+ cs

prop

mprop0

msat0
(3.19)

cs
body = cs

m0

msat0

mbody
− cs

prop

mprop0

mbody
(3.20)

With a known and constant center of mass for the satellite body, the calculation

of the center of mass for the whole satellite becomes dependent only on the mass

and location of the propellant. The expression for the center of mass of the

satellite is given in Equation (3.21), with its derivative in time given by Equation

(3.22).
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(3.21)
cs

m (t) = cs
body

mbody

msat (t) +
∑

k

cs
propk

mpropk
(t)

msat (t)

= cs
body

mbody

msat (t) + cs
prop

mprop (t)
msat (t)

(3.22)

sd

dt
cs

m (t) =
(

−cs
body

mbody

m2
sat (t)

+ cs
prop

1
msat (t)

− cs
prop

mprop (t)
m2

sat (t)

)
d

dt
mprop

=
∑

k

(
−cs

body

mbody

m2
sat (t)

+ cs
propk

1
msat (t)

− cs
propk

mpropk
(t)

m2
sat (t)

)
d

dt
mpropk

3.5.4 Inertia

The satellite inertia matrix is calculated in the body frame using the time-varying

propellant density. The moments of inertia are denoted Ii, while the products of

inertia are denoted Iij .

In the following derivations, ρbody is the mass density of the satellite body, and

ρprop is the mass density of the thruster propellant. The density of the satellite

body is assumed to be constant, while the mass density of the propellant is

dependent on the consumption, and thus time-varying. The variables i, j, and k

represent the axes of the body frame and are replaces with the satellite’s x, y,

and z values corresponding to the elements of the inertia matrix of interest.
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The expression for the moment of inertia is given in Equation (3.23), and the

product of inertia in Equation (3.24). The time-derivatives of these are given in

Equation (3.25) and Equation (3.26), respectively.

Ic
i (t) =

∫
V c

body

(
j2 + k2

)
ρbody dV +

∫
V c

prop

(
j2 + k2

)
ρprop (t) dV (3.23)

=
ρbody

3 didk

[(
js
ubbody

− js
com (t)

)3
−
(

js
lbbody

− js
com (t)

)3
]

+
ρbody

3 didj

[(
ks

ubbody
− ks

com (t)
)3

−
(

ks
lbbody

− ks
com (t)

)3
]

+ ρprop (t)

3

(
is
ubprop

− is
lbprop

)(
js
ubprop

− js
lbprop

)
[(

ks
ubprop

− ks
com (t)

)3
−
(

ks
lbprop

− ks
com (t)

)3
]

+ ρprop (t)

3

(
is
ubprop

− is
lbprop

)(
ks

ubprop
− ks

lbprop

)
[(

js
ubprop

− js
com (t)

)3
−
(

js
lbprop

− js
com (t)

)3
]
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Ic
ij (t) = Ic

ji (t) =
∫

V c
body

ij ρbodydV +
∫

V c
prop

ij ρprop (t) dV (3.24)

=
ρbody

4

(
is
ubbody

2 − is
lbbody

2 + 2
(

is
lbbody

− is
ubbody

)
is
com (t)

)
(

js
ubbody

2 − js
lbbody

2 + 2
(

js
lbbody

− js
ubbody

)
js
com (t)

)
(

ks
ubbody

− ks
lbbody

)
+ ρprop (t)

4

(
is
ubprop

2 − is
lbprop

2 + 2
(

is
lbprop

− is
ubprop

)
is
com (t)

)
(

js
ubprop

2 − js
lbprop

2 + 2
(

js
lbprop

− js
ubprop

)
js
com (t)

)
(

ks
ubprop

− ks
lbprop

)
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d

dt
Ic

i (t) = ρbodydidk

[
js
lbbody

2 − js
ubbody

2 + 2js
com (t)

(
js
ubbody

− js
lbbody

)] d

dt
js
com (t)

+ ρbodydidj

[
ks

lbbody

2 − ks
ubbody

2

+ 2ks
com (t)

(
ks

ubbody
− ks

lbbody

)] d

dt
ks

com (t)

+ 1
3

(
is
ubprop

− is
lbprop

)(
ks

ubprop
− ks

lbprop

)
[(

js
ubprop

− js
com (t)

)3
−
(

js
lbprop

− js
com (t)

)3
]

d

dt
ρprop (t)

+ ρprop (t)
(

is
ubprop

− is
lbprop

)(
ks

ubprop
− ks

lbprop

)
[
js
lbprop

2 − js
ubprop

2 + 2js
com (t)

(
js
ubprop

− js
lbprop

)] d

dt
js
com (t)

+ 1
3

(
is
ubprop

− is
lbprop

)(
js
ubprop

− js
lbprop

)
[(

ks
ubprop

− ks
com (t)

)3
−
(

ks
lbprop

− ks
com (t)

)3
]

d

dt
ρprop (t)

+ ρprop (t)
(

is
ubprop

− is
lbprop

)(
js
ubprop

− js
lbprop

)
[
ks

lbprop

2 − ks
ubprop

2 + 2ks
com (t)

(
ks

ubprop
− ks

lbprop

)] d

dt
ks

com (t)

(3.25)
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(3.26)

d

dt
Ic

ij (t) =
ρbody

2

(
is
lbbody

− is
ubbody

)
(

js
ubbody

2 − js
lbbody

2 + 2
(

js
lbbody

− js
ubbody

)
js
com (t)

)
(

ks
ubbody

− ks
lbbody

) d

dt
is
com (t)

+
ρbody

2

(
js
lbbody

− js
ubbody

)
(

is
ubbody

2 − is
lbbody

2 + 2
(

is
lbbody

− is
ubbody

)
is
com (t)

)
(

ks
ubbody

− ks
lbbody

) d

dt
js
com (t)

+ ρprop (t)
2

(
is
lbprop

− is
ubprop

)
(

js
ubprop

2 − js
lbprop

2 + 2
(

js
lbprop

− js
ubprop

)
js
com (t)

)
(

ks
ubprop

− ks
lbprop

) d

dt
is
com (t)

+ ρprop (t)
2

(
js
lbprop

− js
ubprop

)
(

is
ubprop

2 − is
lbprop

2 + 2
(

is
lbprop

− is
ubprop

)
is
com (t)

)
(

ks
ubprop

− ks
lbprop

) d

dt
js
com (t)

+ 1
4

(
is
ubprop

2 − is
lbprop

2 + 2
(

is
lbprop

− is
ubprop

)
is
com (t)

)
(

js
ubprop

2 − js
lbprop

2 + 2
(

js
lbprop

− js
ubprop

)
js
com (t)

)
(

ks
ubprop

− ks
lbprop

) d

dt
ρprop (t)
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Chapter 4

Controller Design

This chapter presents the attitude controllers that have been developed. The

controllers are derived based on the satellite model presented in chapter 3, Satel-

lite Model. The first section, 4.1, presents the Proportional-Derivative controller,

and the second section, 4.2, presents the Adaptive Model Predictive Controller.

4.1 Proportional-Derivative Controller

This section presents the developed PD controller. First, the torque command

is derived based on the error variables. Then, in subsection 4.1.1, the control

allocation based on the reaction wheels actuator is described.

For the satellite body we define the reference orientation quaternion qRef , refer-

ence rotational velocity ωRef , and reference rotational acceleration αRef . The

43
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reference deviation variables are denoted with subscript e and are given in

Equation (4.1).

qe = q−1
Ref ⊗ qCurr =

ηe

εe

 (4.1a)

ωe = ωCurr − ωRef (4.1b)

αe = αCurr − αRef (4.1c)

The control law regulating the satellite attitude response is defined as in Equa-

tion (4.2). Similarly, the control law for angular velocity tracking is defined in

Equation (4.3).

τ b
cmda

= −KpIb
satεe − KdIb

satωe (4.2)

τ b
cmdω

= −KpIb
satωe − KdIb

satαe (4.3)

4.1.1 Reaction Wheels

This subsection introduces the control allocation method for the reaction wheels

and presents the resulting satellite dynamics based on the implemented controller.



4.1. PROPORTIONAL-DERIVATIVE CONTROLLER 45

The control allocation is done as presented in Equation (4.4), using the Moore-

Penrose pseudo-inverse of the torque distribution matrix Ab
w, indicated with

superscript ∗. A maximum acceleration and velocity value constrain the reaction

wheels.

wd

dt
ωw = Ab

w
∗
I−1

RW τ b
cmd (4.4)

The torque produced by the reaction wheels on the satellite in the body frame is

given by Equation (4.5):

τ b
RW = −Ab

wτ w
u (4.5)

Setting the torque produced by the reaction wheels equal to the torque given by

the PD control law in Equation (4.2), and inserting this in the satellite dynamics

of Equation (3.17a), results in the following satellite attitude-behavior:

(4.6)

bd

dt
ωb

i b = −KpRW εb
e − KdRW

ωb
e − KddRW

αb
e

+ Ib
sat

−1
[

−
bd

dt

(
Ib

sat

)
ωb

i b − ωb
i b × hb

sys + τ b
MT Q + τ b

T + τ b
dist

]
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4.2 Adaptive Model Predictive Controller

The adaptive MPC is designed to find an optimal control input making the

satellite following the desired reference trajectory. The controller minimizes

a quadratic cost function over a given prediction horizon subject to a set of

constraints, based on the work by Hovd [9]. The adaptive update rule of the

controller linearizes the attitude dynamics around the current state of the satellite.

The principle workings of the controller is presented in Equation (4.7), with x

and u being the satellite state vector and the control input vector, respectively.

The set T contains the control input indexes that inhibit integer values, which

correspond to the control signal indexes assigned to the propulsion system.

minimize
u

f (x, u)

subject to x0 given,

Ax ≤ b,

ulb ≤ u ≤ uub,

ui integer, i ∈ T

(4.7)

The satellite state vector x and control input vector u consist of the data pre-

sented in Equation (4.8).
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x =


qECI

sat

ωb
sat

ωw
RW

ρP ROP

 , u =


MECI

MT Q
wd
dt ωw

RW

F p
P ROP

 (4.8)

4.2.1 Satellite Dynamics Formulated for MPC

The system dynamics are reformulated to be dependent only on the actuator

input u. This is accomplished by linearizing the dynamics around the current

operating point of the satellite and using the superposition principle of linear

systems. The unactuated system dynamics and effects of control input are

modeled as presented in this subsection, based on the work by Hovd [9].

Two new variables are introduced, χ and υ, which consists of the system state

vector, xi, and control input, ui, for each timestep of the prediction horizon

stacked on top of each other. The length of the prediction horizon is n. The

unactuated system dynamics are collected in the term Γ, and the effects of

the actuation input at a given timestep are modeled as a gain matrix Θ. The

reformulated system is given in Equation (4.9).

χ = Γx0 + Θυ = χ0 + Θυ, χ =


x1

x2
...

xn


, υ =


u1

u2
...

un


(4.9)
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The reformulated system is based on the discretized satellite dynamics, on the

form xi+1 = Adxi + Bdui. The matrices Γ and Θ are thus given by Equation

(4.10), in which n is the number of steps in the prediction horizon.

Γ =


Ad

A2
d

...

An
d


, Θ =



Bd 0 · · · 0 0

AdBd Bd
. . . ...

...
...

... . . . 0 0

An−2
d Bd An−3

d Bd · · · Bd 0

An−1
d Bd An−2

d Bd · · · AdBd Bd


(4.10)

In the context of control, we are interested in making the satellite follow the

desired state trajectory. This is formulated as an optimization problem by

minimization of a deviation variable, χdev, defined in Equation (4.11).

χdev = χ −


xref,1

xref,2
...

xref,n


= χ − x̃ref (4.11)

4.2.2 Cost Function

The cost function describes the optimal satellite behavior. It is formulated as

a quadratic function with an additional absolute value term. It is designed to
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penalize both deviations from the reference satellite attitude trajectory, momen-

tum buildup in the reaction wheels, and excess use of the actuators.

f (x, u) =
n∑

i=1

(
xi − xref,i

)T
Q
(
xi − xref,i

)
+ uT

i P ui + z|ui| (4.12)

The cost function takes the form given by Equation (4.12). The matrix Q is a

diagonal matrix consisting of the weights related to reference trajectory deviation.

The actuation weights are described by the diagonal matrix P and the row vector

z.

Using the superposition principle, and the formulation of the problem with υ as

the free variable (see subsection 4.2.1), the cost function becomes:

(4.13a)f (χdev, υ) = χT
devQ̃χdev + υT P̃ υ + z̃|υ|

(4.13b)=
(
χ0 + Θυ − x̃ref

)T
Q̃
(
χ0 + Θυ − x̃ref

)
+ υT P̃ υ + z̃|υ|

(4.13c)
= χT

0 Q̃χ0 + υT ΘT Q̃χ0 − x̃T
ref Q̃χ0 + χT

0 Q̃Θυ

+ υT ΘT Q̃Θυ − x̃T
ref Q̃Θυ − χT

0 Q̃x̃ref

− υT ΘT Q̃x̃ref + x̃T
ref Q̃x̃ref + υT P̃ υ + z̃|υ|

(4.13d)= υT ΘT Q̃χ0 + χT
0 Q̃Θυ + υT ΘT Q̃Θυ

− x̃T
ref Q̃Θυ − υT ΘT Q̃x̃ref + υT P̃ υ + z̃|υ|

(4.13e)
= υT

(
ΘT Q̃χ0 − ΘT Q̃x̃ref

)
+
(

χT
0 Q̃Θ − x̃T

ref Q̃Θ
)

υ

+ υT
(

ΘT Q̃Θ + P̃
)

υ + z̃|υ|

(4.13f)= 2
(

χT
0 Q̃Θ − x̃T

ref Q̃Θ
)

υ + υT
(

ΘT Q̃Θ + P̃
)

υ + z̃|υ|
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In Equation (4.13), the matrices Q̃ and P̃ , which describe the cost over the

whole prediction horizon, are formed by placing the cost matrices of a single

timestep along the diagonal, as presented in Equation (4.14). Similarly, the

vector z̃ is formed by stacking the cost vector n times, covering the prediction

horizon of the controller.

Q̃ =



Q 0 · · · 0

0 Q
. . . ...

... . . . . . . 0

0 · · · 0 Q


, P̃ =



P 0 · · · 0

0 P
. . . ...

... . . . . . . 0

0 · · · 0 P


, z̃ =

[
z . . . z

]

(4.14)

4.2.3 Constraints

The controller’s constraints concern both the satellite states and the controller

inputs and are included to make the solution of the optimization problem a

feasible satellite trajectory.

Actuation Inequality Constraints

The upper and lower bounds on the actuators are given as uub and ulb respec-

tively. The bounds are defined in Equation (4.15).
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uub =


MMT QMAX

αw
RW MAX

FP ROP MAX

 , ulb =


− MMT QMAX

−αw
RW MAX

0p

 (4.15)

In the reformulated system, where υ represents the actuation inputs covering

the entire prediction horizon, the upper and lower bounds are stacked on top of

each other n times to form the complete bounds, with n representing the length

of the prediction horizon. The resulting bounds are given in Equation (4.16).

υub =


uub

...

uub

 , υlb =


ulb

...

ulb

 (4.16)

Satellite State Inequality Constraints

The inequality constraints on the satellite state only concern the reaction wheels

angular velocity and density of propellant. The upper and lower bounds are

defined in Equation (4.17).

xub =


∞

∞

ωw
RW MAX

∞

 , xlb =


− ∞

−∞

−ωw
RW MAX

0p

 (4.17)

The bounds are formulated as an inequality constraint on the form Ax ≤ b

using the following choice of matrices given in Equation (4.18).
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A =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1



, b =

 xub

−xlb

 (4.18)

For the reformulated system, in which χ contains the satellite states of the

entire prediction horizon, the inequality matrices are repeated n times, with n

representing the length of the prediction horizon. The resulting matrices are

given in Equation (4.19).

Aχχ ≤ bχ, Aχ =



A 0 · · · 0

0 A
. . . ...

... . . . . . . 0

0 · · · 0 A


, bχ =


b
...

b

 (4.19)

In the MPC controller, the only free variable is the control inputs υ, and thus

the constraint is reformulated to be dependent on this. The resulting inequality

constraint is presented in Equation (4.21).
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Aχ (χ0 + Θυ) ≤ bχ (4.20)

AχΘυ ≤ bχ − Aχχ0 (4.21)

4.2.4 Controller Adaptation

The controller optimizes the satellite trajectory using the Γ and Θ matrices.

These matrices describe the dynamical response of the satellite and are linearized

around the current satellite attitude and discretized to match the controller

frequency. They are updated on each call to the MPC controller and are thus

dependent on time.

The linearized state matrix of the satellite dynamics take the form given in

Equation (4.22), in which T (q) is defined as in Fossen [7]. The linearized input

matrix takes the form given in Equation (4.24).
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Alin =

 04×4 T
(

qECI
)

04×10

013×4 013×3 013×10

 (4.22)

T (q) = 1
2


− ε (1) −ε (2) −ε (3)

η −ε (3) ε (2)

ε (3) η −ε (1)

−ε (2) ε (1) η

 (4.23)

Blin =
[
BMT Q BRW BP ROP

]
(4.24)

The linearized input matrix in Equation (4.24) is made up of the linearized ma-

trices for each actuator, which are defined in Equations (4.25), (4.26), and (4.27).

BMT Q = I−1
sys


0 bEarth (3) −bEarth (2)

−bEarth (3) 0 bEarth (1)

bEarth (2) −bEarth (1) 0

 (4.25)

BRW = −I−1
sysAb

RW Iw
RW (4.26)

BP ROP = I−1
sys

[ (
ls
1 − cs

mass

)
× d1 . . .

(
ls
6 − cs

mass

)
× d6

]
(4.27)

The discretization is done as a first-order Taylor approximation, presented in

Equation (4.29). The discretized matrices are then used to form the Γ and Θ

matrices as presented in Equation (4.10), and the adaptation is complete.
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Ad = I + Alin · tstep (4.28)

Bd = Blin · tstep (4.29)

4.2.5 Optimization Algorithm

The resulting optimization problem consists of a quadratic cost function with an

absolute value term, linear constraints, and an integer subset of optimization

variables. A quadratic integer problem (QIP) is considered as being NP-hard [4],

and no straightforward method of finding the optimum exists. A pseudo-optimal

method that showed promising results in terms of computational speed and

accuracy during simulations was the MATLAB genetic algorithm ga() [14].

The genetic algorithm consists of many parameters that need to be defined.

Here, each generation’s population size is set to 100, and a uniform probability

distribution creates the initial population. 80% of the population at the next

generation is created through crossover, and 5% of the points are considered as

elite, which guarantees survival to the next generation. The optimization stops

if the average relative cost function improvement is less than 1 · 10−6 over 50

consecutive generations.
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Chapter 5

Simulations

This chapter presents the simulation setup for the conducted experiments. The

first section, 5.1 Satellite Parameters, presents the satellite construction details

used for the simulations. Section 5.1.1 Actuators presents the parameters used

for the actuators, and section 5.2 Controller Parameters presents the controller

configuration. Lastly, the propagation algorithm is discussed in section 5.3

Propagation.

The simulations were carried out using MATLAB version R2020a. A flow chart

of the simulation algorithm for the PD controller is presented in Figure 5.1, and

for the MPC in Figure 5.2.
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Calculate PD gain

Nonlinear propagation of attitude and orbital position

Save satellite state to the ephemeris

Figure 5.1: Diagram illustrating the Algorithm used for Simulations with PD

Control.

Linearize attitude system around the current state

MPC gain optimization over prediction horizon

Apply first actuation step

Nonlinear propagation of attitude and orbital position

Save satellite state to the ephemeris

Figure 5.2: Diagram illustrating the Algorithm used for Simulations with MPC.



5.1. SATELLITE PARAMETERS 59

5.1 Satellite Parameters

The satellite is modeled as a 6U CubeSat based on the HYPSO satellite of NTNU

SmallSat Lab. The data used for the simulations are presented in table 5.1, with

CD being the coefficient of drag and CR being the coefficient of reflectivity. The

shape of the satellite is assumed to be a cuboid.

Satellite Construction Parameters

X dimension 0.2263 m

Y dimension 0.100 m

Z dimension 0.366 m

Mass 5.7 kg

Drag Coefficient, CD 2.2

Reflectivity Coefficient, CR 1.0

Table 5.1: Construction Parameters for the Simulated Satellite.

5.1.1 Actuators

The satellite is assumed to be equipped with three attitude actuators, namely

the reaction wheels, magnetorquers, and a propulsion system. The con-

figurations of these actuators are discussed in this section.
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Reaction Wheels

The torque distribution matrix used for the reaction wheels is provided in Equa-

tion (5.1). The maximum reaction wheel acceleration is defined as αMAXRW
=

108.9 rad
s2 , and maximum velocity ωMAXRW

= 680.7 rad
s . The reaction wheels

are assumed to have equal moment of inertia in the direction of their respective

torque vectors, defined as Iw
RW = 2.94 · 10−5 kg m2.

(5.1)Ab
w =


√

2
3 −

√
2
3 0 0√

1
3

√
1
3 −

√
1
3 −

√
1
3

0 0
√

2
3 −

√
2
3


Magnetorquer

The magnetorquer actuator consists of six magnetorquer coils in a perpendicular

configuration. The magnetorquer actuator is modeled as being able to produce a

magnetic dipole along all three axes of the satellite, with a spherical maximum

and minimum dipole strength given in Equations (5.2) and (5.3).

MMAX = I3×3 · 2McoilMAX
= I3×3 · 0.84 Am2 (5.2)

MMIN = −I3×3 · 0.84 Am2 (5.3)

Propulsion System

When the thruster is firing, the force output is considered an integer value, either

taking the value 0 or a value from a predefined set F. The propulsion system



5.1. SATELLITE PARAMETERS 61

affects both the orbital and attitude dynamics of the satellite, and the orbital

effects of the thrusters on the satellite are modeled as an external force acting

on the satellite given by Equation (5.4).

F ECI
T = −RECI

s

∑
k

fk · ds
k (5.4)

The torque produced by the propulsion system is given in Equation (5.5).

τ b
T = −

∑
k

[
lb
k ×

(
fk · ds

k

)]
(5.5)

To calculate the torque, an expression for the thrust arm lb
k of the propulsion

module in the body frame is needed. The expression given in Equation (5.6)

converts the thruster position from the structural frame to the body frame by

subtracting the center of mass of the satellite in the structural frame. The

position of the k-th thruster in the structural frame is given by ls
k. The center of

the k-th propulsion unit in the body frame, lb
k, is propagated as in Equation (5.7).

lb
k (t) = ls

k − cs
m (t) (5.6)

bd

dt
lb
k = −

sd

dt
cs

m (t) (5.7)

In the rest of the section, the propulsion system parameters for two specific

thruster configurations are presented. The configurations considered are two

systems based on the NanoFEEP and Aurora Thruster propulsion systems.
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NanoFEEP. The first thruster configuration is based on the nano Field Emis-

sion Electronic Propulsion system [NanoFEEP] developed by researchers at

the Technical University of Dresden. The system is a form of ion-thruster with

liquid metal propellant, in which thrust is generated by evaporated ions from

the propellant accelerating under the influence of a strong magnetic field. For

this setup, the thruster and propellant are modeled as being integrated into

one unit, with a total of six such units assembled on the satellite. The thruster

and propellant assembly is illustrated in Figure 5.3. The use of ion-thrusters

requires an electron-emitting neutralizer, but this component is not modeled for

the simulations. The parameters used for the thruster actuators are given in

Table 5.2, and the parameters used for the propellant are given in Table 5.3.
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Xs

Ys

Zs

T2

T1T3

T4T5
T6

Figure 5.3: Figure shows thruster and propellant placement for the NanoFEEP

propulsion system on the satellite in the structure frame. The propellant is

illustrated as orange cuboids contained within the satellite body, and the thrust

vectors are placed along the border of the satellite body. The components of

T1 and T2 point along the Y s axis, T3 and T4 point along the Xs axis, while T5

and T6 vectors point in equal distances along the Xs and Y s axes.
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NanoFEEP Thrust Parameters

Thrust position Thrust direction

T1
[

dx
2 dy dz

] [
0 1 0

]
T2

[
dx
2 0 dz

] [
0 −1 0

]
T3

[
0 dy

2 dz

] [
−1 0 0

]
T4

[
dx

dy

2 dz

] [
1 0 0

]
T5

[
0 0 dz

] [
− 1√

2
1√
2 0

]
T6

[
dx dy dz

] [
− 1√

2
1√
2 0

]
F [µN] ISP [s]

T1
...

T6

[
0 1 2 . . . 20

]
3000

Table 5.2: Parametric Values for the Simulated NanoFEEP Thrusters.
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NanoFEEP Propellant Parameters

Xs-dimensions [m] Y s-dimensions [m] Zs-dimensions [m]

T1

dx
2 − 5 · 10−3

dx
2 + 5 · 10−3

 dy − 1 · 10−2

dy

 dz − 1 · 10−2

dz


T2

dx
2 − 5 · 10−3

dx
2 + 5 · 10−3

  0

1 · 10−2

 dz − 1 · 10−2

dz


T3

 0

1 · 10−2

 dx
2 − 5 · 10−3

dx
2 + 5 · 10−3

 dz − 1 · 10−2

dz


T4

dx − 1 · 10−2

dx

 dx
2 − 5 · 10−3

dx
2 + 5 · 10−3

 dz − 1 · 10−2

dz


T5

 0

1 · 10−2

  0

1 · 10−2

 dz − 1 · 10−2

dz


T6

dx − 1 · 10−2

dx

 dy − 1 · 10−2

dy

 dz − 1 · 10−2

dz


Vprop [m3] mprop [kg]

T1
...

T6

1 · 10−6 1 · 10−2

Table 5.3: Parametric Values for the Simulated NanoFEEP Propellant.
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Aurora Thruster. The second thruster configuration is based on the Aurora

Propulsion Technologies water-based resistojet system [2]. The thrust force is

generated by heating and expelling propellant mass, which in this case consists

of water-vapor. For this setup, multiple thrusters are modeled to share a single

propellant tank. The thruster and propellant assembly is illustrated in Figure

5.4. The parameters used for the thruster actuators are given in Table 5.4, and

the parameters used for the propellant are given in Table 5.5.
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Xs

Ys

Zs

T10

T1

T2
T5

T11T12T4 T6

T7

T9

T8

T3

Figure 5.4: Figure shows thruster and propellant placement for the Aurora

resistojet propulsion system on the satellite in the structure frame. The propellant

is shared between the thrusters and illustrated as an orange cuboid contained

within the satellite body. The thrust direction vectors are illustrated as arrows

and placed along the border of the satellite body. The components of T1 and T2

point along the positive Xs axis, T3 and T4 point along the negative Xs axis.

T5 and T6 point along the positive Y s axis, T7 and T8 point along the negative

Y s axis. T9 through T12 point along the positive Zs axis.
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Aurora Thrust Parameters

Thrust position [m] Thrust direction

T1
[
dx 0.01 dz − 0.01

] [
1 0 0

]
T2

[
dx dy − 0.01 dz − 0.01

] [
1 0 0

]
T3

[
0 0.01 dz − 0.01

] [
−1 0 0

]
T4

[
0 dy − 0.01 dz − 0.01

] [
−1 0 0

]
T5

[
dx − 0.01 dy dz − 0.01

] [
0 1 0

]
T6

[
0.01 dy dz − 0.01

] [
0 1 0

]
T7

[
dx − 0.01 0 dz − 0.01

] [
0 −1 0

]
T8

[
0.01 0 dz − 0.01

] [
0 −1 0

]
T9

[
dx − 0.01 0.01 dz

] [
0 0 1

]
T10

[
0.01 0.01 dz

] [
0 0 1

]
T11

[
dx − 0.01 dy − 0.01 dz

] [
0 0 1

]
T12

[
0.01 dy − 0.01 dz

] [
0 0 1

]
Shared parameters T1 . . . T12

F [mN]
[
0 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

]
ISP [s] 100

Table 5.4: Parametric Values for the Simulated Aurora Thrusters.
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Aurora Propellant Parameters

Xs-dimensions [m] Y s-dimensions [m] Zs-dimensions [m]dx
2 − 4 · 10−2

dx
2 + 4 · 10−2

 dx
2 − 2 · 10−2

dx
2 + 2 · 10−2

 dz − 6.125 · 10−2

dz − 3 · 10−2


Vprop [m3] mprop [kg]

0.1 0.1

Table 5.5: Parametric Values for the Simulated Aurora Propellant.

5.2 Controller Parameters

This section presents the parametric configuration of the attitude controllers.

Detailed explanations of the controllers are given in chapter 4 Controller Design.

The parameters applied to the PD controller are presented in subsection 5.2.1,

and the parameters for the MPC are presented in subsection 5.2.2.

5.2.1 PD Parameters

The PD controller parameters were determined experimentally, based on what

produced a desirable satellite response in the simulations. The parameters differ

based on the objective, and separate sets of parameters are used for attitude

and slew rate control. The chosen parameters are presented in Equations (5.8)

and (5.9).
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Attitude: KpRW = 10, KdRW
= 10, KddRW

= 0 (5.8)

Slew rate: KpRW = 0, KdRW
= 10, KddRW

= 0.1

(5.9)

5.2.2 MPC Parameters

For the adaptive model predictive controller, the parameters that need to be

defined are the cost function values given in Equations (5.10) and (5.11). These

include the cost on the attitude deviation, ζa, angular velocity deviation, ζω,

and reaction wheel momentum, ζm. Additionally, there are actuation costs for

the magnetorquer, ζMT Q, thruster, ζT , and the reaction wheels, ζRW . The

actuation costs are based on the power consumption of the different actuators,

scaled by a factor κ to achieve the desired behavior. In contrast, the satellite

state costs are defined solely such that a desirable output behavior is achieved.
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Q =



0

ζa

ζω

0
. . .

0

ζm

0
. . .

0



, P =



ζMT Q

0
. . .

0

ζT



(5.10)

z =
[
0 . . . 0 ζRW 0 . . . 0

]
(5.11)

Magnetorquer Weights

The cost of the magnetorquer actuation, ζMT Q, is given in Equation (5.12). The

coefficient is based on the voltage and torque ratings provided in the NanoAvion-

ics SatBus MTQ M6P magnetorquer datasheet. A factor κMT Q is added so that

the actuator usage of the MPC can be tuned.

ζMT Q = κMT Q · I3×1 · Rcoil

n2S2 = κMT Q · I3×1 · 4.875 (5.12)
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Reaction Wheels Weights

The cost of the reaction wheel actuation, ζRW , is given in Equation (5.13). The

cost is calculated based on the ideal operating point of the reaction wheel, given

by ωw
0 . The efficiency value is calculated based on the power and torque ratings

provided in the Nano Avionics NA-4RW0-G0-R6 datasheet [18]. In addition,

a factor κRW is added, which enables the actuator usage to be tuned, e.g., to

reduce wear and tear on the reaction wheels.

ζRW = κRW

(
PRW idle

+ IRW

η0

)
|ωw

0 | = 0.045 · κRW ·|ωw
0 | (5.13)

NanoFEEP Thruster Weights

The cost of the NanoFEEP thruster actuation, ζT , is given in Equation (5.14).

At thruster firing, the node is applied 150 µA and 5600 V , which makes the

firing power consumption equal to PT = 0.84 W . The preheating demand is

between 50 mW and 150 mW , but is not considered in the cost. An additional

cost of the thruster is the loss of propellant, which is incorporated by multiplying

the actuation weight by a factor κT .

ζT = κT · I6×1 · PT = κT · I6×1 · 0.84 (5.14)
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Aurora Thruster Weights

The cost of the Aurora thruster actuation, ζT , is given in Equation (5.15). The

power consumption at thruster firing is equal to PT = 5 W . The indirect cost of

propellant consumption is incorporated by multiplying the actuation weight by

a factor κT , which will need to be defined.

ζT = κT · I6×1 · PT = κT · I6×1 · 5 (5.15)

5.3 Propagation

The satellite ephemeris is calculated by applying actuator gains and propagating

the satellite state using the MATLAB ode45() solver. The solver uses variable

step lengths and compares the results of a fourth and fifth-order Runge-Kutta al-

gorithm [20]. The dynamic equation is propagated based on initial conditions and

an expression for the satellite state derivative, as presented in Equation (5.16).

The propagation is performed in-between actuation gain calculations, and has a

duration equal to the inverse of the controller frequency, dpropagation = 1
fcontroller

.
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x0 given, ẋ =



ṙi

v̇i

q̇i

ω̇b
sat

ω̇w
RW

İb
sat

ρ̇prop

ċs
m



(5.16)

The state variable derivatives of Equation (5.16) are described in chapter 3

Satellite Model, section 3.5 Satellite Dynamics. ri represents the position of the

satellite in the ECI frame, and vi its translational velocity. qi is the attitude

quaternion of the satellite, describing the rotation from the ECI frame to the

satellite body frame. ωb
sat describes the angular velocity of the satellite given in

the body frame, and ωw
RW describes the scalar angular velocities of the reaction

wheels relative to the satellite body. Ib
sat is the inertia matrix of the satellite

in the body frame, and ρprop is the density of the propellant. Lastly, cs
m is the

center of mass of the satellite.

The satellite state dynamics include perturbing forces and torques, which are

calculated as described in chapter 2 Background Theory, section 2.2 Orbital

Perturbations. Earth’s magnetic field is calculated using the MATLAB function

igrfmagm() from the Aerospace Toolbox, which is based on the International

Geomagnetic Reference Field.



Chapter 6

Results

This chapter presents the results on satellite attitude maneuver performance

obtained from simulations. The results are organized in sections based on the

objective of the simulations and regarded as different experiments. Section

6.1 provides an overview of the experiments, and section 6.2, 6.3, 6.4, and 6.5

present the first, second, third and fourth experiment, respectively. Section 6.6

summarizes the results, presenting observations made across the experiments.

6.1 Overview of Experiments

A list of the experiments conducted and their objective is given in table 6.1. In

addition to having different objectives, the experiments also differ in terms of

duration and initial satellite conditions.

75
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Experiments Overview

Objective

E 1 Optimal MPC Parameters

E 2 Pointing Maneuver Performance

E 3 Slew Rate Performance

E 4 Momentum Dumping Performance

Table 6.1: Objectives of the Conducted Experiments.

In total, four experiments were conducted. The first experiment was designed

to identify suitable parameters for the model predictive controller. The second

experiment compares the performance of the different actuator and controller

combinations on pointing maneuvers, and the third experiment compares the

performance on slew rate maneuvers. The fourth and final experiment concerns

the ability of the actuator combinations to dump excess reaction wheel momen-

tum.

6.2 Experiment 1

The first experiment is designed to identify suitable MPC parameters. The

parameter identification was split into large and small momentum maneuvers,

as different controller properties are desired in the two cases. Furthermore, the

parameter identification was split based on the actuator combination.
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The MPC parameters that need to be optimized are the satellite state weights,

controller timestep, and length of the prediction horizon. Besides, factors assigned

to the actuation weights need to be identified, limiting excess use of the actuators.

6.2.1 Cost Function Weights

The behavior of an MPC controlled system is mainly dependent on the cost

function design. Careful thought needs to be taken when assigning the state

deviation and actuation weights. The proposed weights were found based on

trial and error in the simulations, and do not reflect the actual optimal values.

Table 6.2 presents the applied cost function parameters. As previously discussed,

different parameters are used based on the actuator configuration and control

objective.

6.2.2 Controller Timestep

The choice of controller timestep length is a compromise between computational

load and controller performance. The controller timestep was chosen to be:

Timestep = 1s

This choice of timestep led to the best performance in large momentum maneu-

vers, and gives the controller sufficient possibility to correct small momentum

maneuvers. It is also considered to be the minimum timestep achievable given

the limited computational power onboard a satellite.
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Cost Function Parameters

Actuators &

Control Objective
ζa ζω ζm κMT Q κT κRW

With Aurora:

Large Momentum 1015 0 106 1 1014 106

Small Momentum 0 1015 5 · 105 103 1012 108

With NanoFEEP:

Large Momentum 1015 0 106 1 109 106

Small Momentum 0 1015 104 1 109 106

No Thruster:

Large Momentum 1015 0 106 1 0 106

Small Momentum 0 1015 104 1 0 106

Table 6.2: Experimentally derived parameters for the MPC cost function.

Figure 6.1 shows the attitude quaternion error for different timestep lengths

when the satellite is tracking a reference attitude trajectory. The weights in the

simulations were kept as described in subsection 6.2.1, and the prediction hori-

zons were chosen through trial and error based on performance. The prediction

horizons were chosen as follows: For the timestep of 0.5s, the prediction hori-

zon was six; The timesteps of 1s, 1.5s, and 2s, all had a prediction horizon of three.
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6.2.3 Prediction Horizon

The prediction horizon parameter was found experimentally based on simulations.

As was the case for the cost function parameters, the prediction horizon pa-

rameter was identified for different actuator configurations and control objectives.

The results are organized based on actuator configuration, which includes both

large and small momentum maneuvers. The actuator configurations discussed are

(1) Reaction Wheels and Magnetorquer, (2) Aurora Thrusters, Magnetorquer, and

Reaction Wheels, (3) Aurora Thrusters and Magnetorquer, and (4) NanoFEEP

Thrusters and Magnetorquer.

Reaction Wheels and Magnetorquer

Figures 6.2 and 6.3 present the results from the large momentum maneuver.

It is observed that a prediction horizon of PH = 3 gives a desirable attitude

response and the least deviation from the reference trajectory. Both larger and

smaller prediction horizons result in larger overshoot and longer transient periods.

The small momentum maneuver is given in Figure 6.4. It is observed that

when the emphasis is put on the precision in small corrections, the shortest

prediction horizon of PH = 1 performs the best. Increasing the prediction

horizon results in more oscillatory behavior.
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Aurora Thrusters, Magnetorquer, and Reaction Wheels

Figures 6.5 and 6.6 presents the satellite attitude response when the controller

tracks a large momentum reference trajectory, and figure 6.7 presents the satel-

lite rotational velocity when the controller tracks a small momentum slew rate

trajectory.

The optimal prediction horizon for large momentum maneuvers is found by

comparing the performance of different prediction horizon lengths in Figures 6.5

and 6.6. It is observed that a prediction horizon of PH = 3 leads to the smallest

attitude quaternion deviation, and minimal overshoot on the reference signal.

For the small momentum maneuvers, it is once again shown that the small-

est prediction horizon of PH = 1 performs the best, with broader prediction

horizons resulting in more oscillatory and noisy behavior.

Aurora Thrusters and Magnetorquer

Plots comparing different prediction horizon lengths for the case in which the

satellite is actuated by the Aurora thrusters and a magnetorquer are presented

in Figures 6.5, 6.6, and 6.10.

Figures 6.5 and 6.6 presents the satellite attitude response when the controller

tracks a reference attitude trajectory, and is used to find the optimal prediction

horizon for large momentum maneuvers. From the plots, it is seen that a

prediction horizon of PH = 15 performs well in terms of reference tracking and
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overshoot compared to the other data points.

The optimal parameter for a small momentum maneuver is found by study-

ing Figure 6.10, in which the satellite is tracking a reference slew rate trajectory.

The shortest prediction horizon of PH = 1 is found to provide the best results.

NanoFEEP Thrusters and Magnetorquer

As the satellite dynamics actuated by the NanoFEEP thrusters and magne-

torquer are much slower compared to the dynamics actuated by the Aurora

thrusters or reaction wheels, a different timescale is used to find the optimal

parameters for this set of actuators.

Figures 6.11 and 6.12 provide information on the performance in large momen-

tum maneuvers, with the satellite tracking an attitude reference trajectory.

A prediction horizon of PH = 150 is chosen, based on the observation that it

both handles the step response and steady state tracking well.

The optimal value for small momentum maneuvers is found by studying

Figure 6.13, in which the satellite is tracking a reference slew rate trajectory.

Although the differences are smaller than in previous actuator configurations,

the shortest prediction horizon of PH = 1 is still found to provide the best

performance.



82 CHAPTER 6. RESULTS

Experiment 1: Controller Timestep

0 20 40 60 80 100 120 1400.8
0.85
0.9

0.95
1

[s]

Quaternion Error η

Timestep = 0.5
Timestep = 1
Timestep = 1.5
Timestep = 2

0 20 40 60 80 100 120 140
−0.4
−0.2

0
0.2
0.4

[s]

Quaternion Error ε1

Timestep = 0.5
Timestep = 1
Timestep = 1.5
Timestep = 2

0 20 40 60 80 100 120 140
−0.4
−0.2

0
0.2
0.4

[s]

Quaternion Error ε2

Timestep = 0.5
Timestep = 1
Timestep = 1.5
Timestep = 2

0 20 40 60 80 100 120 140
−0.4
−0.2

0
0.2
0.4

[s]

Quaternion Error ε3

Timestep = 0.5
Timestep = 1
Timestep = 1.5
Timestep = 2

Figure 6.1: Attitude quaternion error for different timestep lengths when following

a reference trajectory. Simulated with the Aurora Thrusters, Magnetorquer and

Reaction Wheels actutors.
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Experiment 1: Reaction Wheels & Magnetorquer
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Figure 6.2: Satellite attitude responses based on different prediction horizon

lengths, in large momentum maneuvers with Reaction Wheels and Magnetorquer

actutors. Measured in Euler φ, Θ and γ angles (zyx convention).
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Experiment 1: Reaction Wheels & Magnetorquer

0 20 40 60 80 100 120 140
0.9

0.95

1

[s]

Quaternion Error η

PH = 2
PH = 3
PH = 4
PH = 5

0 20 40 60 80 100 120 140
−0.4
−0.2

0
0.2
0.4

[s]

Quaternion Error ε1

PH = 2
PH = 3
PH = 4
PH = 5

0 20 40 60 80 100 120 140
−0.4
−0.2

0
0.2
0.4

[s]

Quaternion Error ε2

PH = 2
PH = 3
PH = 4
PH = 5

0 20 40 60 80 100 120 140
−0.4
−0.2

0
0.2
0.4

[s]

Quaternion Error ε3

PH = 2
PH = 3
PH = 4
PH = 5

Figure 6.3: Attitude quaternion error based on different prediction horizon

lengths, in large momentum maneuvers with Reaction Wheels and Magnetorquer

actutors.
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Experiment 1: Reaction Wheels & Magnetorquer
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Figure 6.4: Satellite angular velocity response for different prediction horizon

lengths. Represents small momentum maneuver with Reaction Wheels and

Magnetorquer actutors.
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Experiment 1: All (Aurora Thrusters)
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Figure 6.5: Satellite attitude responses based on different prediction horizon

lengths, in large momentum maneuvers with Aurora Thrusters, Magnetorquer

and Reaction Wheels actutors. Measured in Euler φ, Θ and γ angles (zyx

convention).
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Experiment 1: All (Aurora Thrusters)
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Figure 6.6: Attitude quaternion error based on different prediction horizon

lengths, in large momentum maneuvers with Aurora Thrusters, Magnetorquer

and Reaction Wheels actutors.
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Experiment 1: All (Aurora Thrusters)
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Figure 6.7: Satellite angular velocity response for different prediction horizon

lengths. Represents small momentum maneuver with Aurora Thrusters, Magne-

torquer and Reaction Wheels actutors.
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Experiment 1: Aurora Thrusters & Magnetorquer
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Figure 6.8: Satellite attitude responses based on different prediction horizon

lengths, in large momentum maneuvers with Aurora Thrusters and Magnetorquer

actutors. Measured in Euler φ, Θ and γ angles (zyx convention).
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Experiment 1: Aurora Thrusters & Magnetorquer
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Figure 6.9: Attitude quaternion error based on different prediction horizon

lengths, in large momentum maneuvers with Aurora Thrusters and Magnetorquer

actutors.
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Experiment 1: Aurora Thrusters & Magnetorquer
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Figure 6.10: Satellite angular velocity response for different prediction horizon

lengths. Represents small momentum maneuver with Aurora Thrusters and

Magnetorquer actutors.
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Experiment 1: NanoFEEP Thrusters & Magnetorquer
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Figure 6.11: Satellite attitude responses based on different prediction hori-

zon lengths, in large momentum maneuvers with NanoFEEP Thrusters and

Magnetorquer actutors. Measured in Euler φ, Θ and γ angles (zyx convention).
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Experiment 1: NanoFEEP Thrusters & Magnetorquer
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Figure 6.12: Attitude quaternion error based on different prediction horizon

lengths, in large momentum maneuvers with NanoFEEP Thrusters and Magne-

torquer actutors.



94 CHAPTER 6. RESULTS

Experiment 1: NanoFEEP Thrusters & Magnetorquer
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Figure 6.13: Satellite angular velocity response for different prediction horizon

lengths. Represents small momentum maneuver with NanoFEEP Thrusters and

Magnetorquer actutors.
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6.3 Experiment 2

The second experiment was conducted to compare the performance of different

actuators and controllers on rapid rest-to-rest slew maneuvers. In the experiment,

the satellite had a reference attitude trajectory, presented in table 6.3. The

initial conditions of the satellite are presented in table 6.4. Both an MPC and

PD controller were used in the experiment, with the controller parameters given

in table 6.5. The experiment is considered a large momentum maneuver, and as

such, the corresponding MPC parameters from the previous experiment (6.2)

are applied.

The results are divided into two subsections, 6.3.1 Short duration simulations

and 6.3.2 Long duration simulations. The attitude dynamics of the satellite is

much slower when actuated by the NanoFEEP propulsion system. To show the

variation in performance of both the NanoFEEP propulsion system and the

remaining actuators, the simulations and results of the NanoFEEP actuated

system are presented in subsection 6.3.2 Long duration simulations, and the

satellite response when actuated by the remaining actuators are presented in

subsection 6.3.1 Short duration simulations.

The Root-Mean-Square error is calculated as in Equation (6.1).

RMS =

√√√√ 1
n

n∑
i=0

(
xi − xRef i

)
(6.1)
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Experiment 2 Objectives

Short Duration Reference

Attitude Quaternion Trajectory



[
1 0 0 0

]′
, t ∈ [0, 30),

0.7777

0.5186

0.0091

−0.3552

 , t ∈ [30, 90),

[
1 0 0 0

]′
, t = [90, ∞).

Long Duration Reference

Attitude Quaternion Trajectory



[
1 0 0 0

]′
, t ∈ [0, 300),

0.7777

0.5186

0.0091

−0.3552

 , t ∈ [300, 900),

[
1 0 0 0

]′
, t = [900, ∞).

Reference Reaction Wheel Velocities 1000 RPM ·
[
1 1 1 1

]′

Table 6.3: Objectives of Experiment 2.

6.3.1 Short duration simulations

The short duration simulations lasted for 150s and concerned the Reaction

Wheels, Magnetorquer, and Aurora thruster systems.
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Experiment 2 Initial Conditions

Time 12:00:00 31.10.2005

Periapsis, Apoapsis 500 km, 500 km

Inclination 97 deg

Right Ascension of the Ascending Node 0 deg

Argument of Perigee 0 deg

True Anomaly 45 deg

Initial Attitude Quaternion
[
1 0 0 0

]′

Initial Rotational Velocity
[
0 0 0

]′

Initial Reaction Wheel Velocities
[
0 0 0 0

]′

Table 6.4: Initial Satellite Conditions in Experiment 2.

Satellite Attitude Response

Figure 6.14 presents the step response of the satellite attitude, measured in

Euler angles using the zyx convention. A closer look at the attitude response

is provided in Figure 6.15. The step response is simulated by initializing the

satellite in the given orientation and feeding the reference attitude trajectory.

The details of this is provided in tables 6.3 and 6.4. Figure 6.16 presents the

attitude quaternion deviation between the satellite and the reference trajectory.

The average settling time and Root-Mean-Square errors are presented in table

6.6. The settling time is defined as the period from a change in the reference
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Experiment 2 Controller Parameters

MPC Freq. PH ζa ζω ζm κMT Q κT κRW

All (Aurora) 1 Hz 3 1015 0 106 1 1014 106

RW, MTQ 1 Hz 3

Aurora, MTQ 1 Hz 15 1015 0 0 1 1014 0

NanoFEEP, MTQ 1 Hz 150 1015 0 0 1 109 0

PD Freq. Kp Kd Kdd

Only RW 10 Hz 10 10 0

Table 6.5: Parameters used in Experiment 2 for the Model Predictive and

Proportional-Derivative Controllers. The frequency parameter governs how

often the control signals are updated. The PH parameter sets the length of the

Prediction Horizon in the MPC. The cost of the attitude deviation is given by ζa,

angular velocity deviation by ζω, and the cost of the reaction wheel momentum

deviation is given by ζm. κMT Q, κT , and κRW are the factors by which the

Magnetorquer, Thruster and Reaction Wheels actuation weights are multiplied

by, respectively. The Kp parameter is the term assigned to the attitude deviation,

Kd is assigned to the angular velocity deviation, and Kdd is assigned to the

angular acceleration deviation.

signal is applied to the η value of the attitude error quaternion remains within

1 · 10−5 from the unit value.
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Experiment 2 Short Duration Performance Measures

Total RMS

Error

RMS Error

Post Settled

Average Settling

Time [s]

RW PD 3.5474 · 10−2 9.3053 · 10−7 10.4

All (Aurora) 7.2811 · 10−3 8.0111 · 10−7 9.0

Aurora, MTQ 1.0852 · 10−2 1.3034 · 10−5 36.5

RW, MTQ 7.2213 · 10−3 1.9401 · 10−7 9.0

Table 6.6: Root-Mean-Square and Settling Time Measures for the Short Duration

Simulations in Experiment 2.

Actuator Response

The reaction wheels velocities are presented in Figure 6.18. The MPC’s ability

to regulate both the desired attitude and reaction wheel momentum compared

to the PD controller is visible in these plots. Figures 6.19 and 6.20 present

the force applied by the induvidual thrusters in the Aurora propulsion system.

The propellant consumption is presented in figure 6.21. The applied magnetic

dipoles of the magnetorquer in the different scenarios are presented in Figure 6.22.

6.3.2 Long duration simulations

The results in this subsection are obtained by using the NanoFEEP propulsion

system for attitude control, which results in slower satellite attitude dynamics.
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Satellite Attitude Response

The satellite attitude, measured in Euler angles using the zyx convention, is

presented in Figure 6.23. Figure 6.25 presents the attitude quaternion error used

by the MPC to calculate the actuation gains.

The average settling time and Root-Mean-Square errors are presented in table 6.7.

The settling time is again defined as the period from a change in the reference

signal is applied to the η value of the attitude error quaternion remains within

1 · 10−5 from the unit value, as was the case for the short-duration simulations.

Experiment 2 Long Duration Performance Measures

Total RMS

Error

RMS Error

Post Settled

Average Settling

Time [s]

NanoFEEP, MTQ 7.8778 · 10−3 1.8440 · 10−6 108.5

Table 6.7: Root-Mean-Square and Settling Time Measures for the Long Duration

Simulations in Experiment 2.

Actuator Response

The propellant consumption of the NanoFEEP thrusters is presented in Figure

6.26. The total propellant consumption of the NanoFEEP thrusters is approx-

imately 3 µg, compared to about 1300 µg of the Aurora system. The applied

magnetic dipoles of the magnetorquer are presented in Figure 6.27.
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Experiment 2: Short Duration
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Figure 6.14: Satellite attitude response in Short Duration Experiment 2, mea-

sured in Euler φ, Θ and γ angles (zyx convention).
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Experiment 2: Short Duration
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Figure 6.15: Satellite attitude response in Short Duration Experiment 2, mea-

sured in Euler φ, Θ and γ angles (zyx convention).
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Experiment 2: Short Duration
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Figure 6.16: Attitude quaternion deviation in Short Duration Experiment 2.
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Experiment 2: Short Duration
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Figure 6.17: Attitude quaternion deviation in Short Duration Experiment 2.
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Experiment 2: Short Duration
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Figure 6.18: Reaction wheels velocities in Short Duration Experiment 2 given in

the wheel frame for the different actuation scenarios.
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Experiment 2: Short Duration
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Figure 6.19: Force applied by the individual thrusters of the Aurora propulsion

system in Short Duration Experiment 2, when following a reference attitude

trajectory in combination with reaction wheels and magnetorquer actuators.
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Experiment 2: Short Duration
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Figure 6.20: Force applied by the individual thrusters of the Aurora propulsion

system in Short Duration Experiment 2, when following a reference attitude

trajectory in combination with a magnetorquer.
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Experiment 2: Short Duration
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Figure 6.21: Cumulative representation of propellant consumption of the Aurora

propulsion system in Short Duration Experiment 2.
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Experiment 2: Short Duration
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Figure 6.22: Dipole strengths applied by the magnetorquer actuator in Short

Duration Experiment 2.
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Experiment 2: Long Duration
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Figure 6.23: Satellite attitude response in Long Duration Experiment 2, measured

in Euler φ, Θ and γ angles (zyx convention).
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Experiment 2: Long Duration
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Figure 6.24: Satellite attitude response in Long Duration Experiment 2, measured

in Euler φ, Θ and γ angles (zyx convention).
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Experiment 2: Long Duration
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Figure 6.25: Attitude quaternion deviation in Long Duration Experiment 2.
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Experiment 2: Long Duration
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Figure 6.26: Cumulative representation of propellant consumption of the

NanoFEEP propulsion system in Long Duration Experiment 2.
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Experiment 2: Long Duration
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Figure 6.27: Dipole Strengths Applied by the Magnetorquer Actuator in the

Long Duration Simulation of Experiment 2.
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6.4 Experiment 3

The third experiment’s objective is to measure the performance of the actuators

and controllers in tracking reference slew rates. This measure is vital for the

NTNU HYPSO mission, as data acquisition is made through precision slew

maneuvers in which the camera lens is swept over designated land areas.

The initial satellite conditions in this experiment are the same as in previous

experiments, presented in table 6.4. The reference angular velocity trajectory

is given in table 6.8. Both the MPC and PD controller were applied, with the

parameters given in table 6.9.

Experiment 3 Objectives

Reference Angular Velocity



[
0 0 0

]′
, t ∈ [0, 30)[

0.0125 0 0
]′

, t ∈ [30, 90)[
0 0 0

]′
, t = [90, ∞)

Reference Reaction Wheel Velocities 1000 RPM ·
[
1 1 1 1

]′

Table 6.8: Reference Angular Velocity of the Satellite and Reaction Wheels in

Experiment 3.
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Experiment 3 Controller Parameters

MPC Freq. PH ζa ζω ζm κMT Q κT κRW

RW, MTQ 1 Hz 1 0 1015 104 1 0 106

NanoFEEP, MTQ 1 Hz 1 0 1015 104 1 109 106

Aurora, MTQ 1 Hz 1 0 1015 0 103 1012 0

All (Aurora) 1 Hz 1 0 1015 5 · 105 103 1012 108

PD Freq. Kp Kd Kdd

Only RW 10 Hz 0 10 0.1

Table 6.9: Parameters used in Experiment 3 for the Model Predictive and

Proportional-Derivative Controllers. The frequency parameter governs how

often the control signals are updated. The PH parameter sets the length of the

Prediction Horizon in the MPC. The cost of the attitude deviation is given by ζa,

angular velocity deviation by ζω, and the cost of the reaction wheel momentum

deviation is given by ζm. κMT Q, κT , and κRW are the factors by which the

Magnetorquer, Thruster and Reaction Wheels actuation weights are multiplied

by, respectively. The Kp parameter is the term assigned to the attitude deviation,

Kd is assigned to the angular velocity deviation, and Kdd is assigned to the

angular acceleration deviation.

Satellite Slew Rate Response

The satellite angular velocity is plotted together with the reference trajectory

in Figure 6.28. Figure 6.29 provides a closer look at the transient period of the

actuators, and Figure 6.30 provides a closer look at the steady state precisions.
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The average settling times and Root-Mean-Square errors are presented in table

6.10. The settling time is defined as the period from the reference signal is

applied to the angular velocity deviation remains less than 5 · 10−5 rad
s .

Experiment 3 Performance Measures

Total RMS

Error

RMS Error

Post Settled

Average Settling

Time [s]

RW PD 3.4250 · 10−4 8.0094 · 10−8 0.5

All (Aurora) 3.8345 · 10−5 1.8208 · 10−5 1.0

Aurora, MTQ 2.7485 · 10−4 4.8359 · 10−5 3.0

NanoFEEP, MTQ 4.4044 · 10−3 1.0204 · 10−6 57.0

RW, MTQ 2.7888 · 10−5 2.6833 · 10−5 0.0

Table 6.10: Root-Mean-Square and Settling Time Measures for Experiment 3.

Actuator Response

The reaction wheel velocities are presented in Figure 6.31. Figures 6.32 show

the thrust force applied by the Aurora propulsion system, with the propellant

consumption given in Figure 6.33. The thrust force applied by the NanoFEEP

propulsion system is given in Figure 6.34, with the propellant consumption pro-

vided in Figure ??. Finally, the magnetic dipoles applied by the magnetorquer

are provided in Figure 6.35.
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Experiment 3
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Figure 6.28: Angular Velocities in Satellite Body Frame of Experiment 3.
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Experiment 3
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Figure 6.29: Magnification of the Step Response in Satellite Body Frame Angular

Velocity of Experiment 3.
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Experiment 3
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Figure 6.30: Magnification of the Steady State Accuracy in Satellite Body Frame

Angular Velocity of Experiment 3.
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Experiment 3
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Figure 6.31: Reaction Wheels Velocities in Experiment 3.
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Experiment 3
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Figure 6.32: Applied Force by the Aurora Propulsion System in Experiment 3.
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Experiment 3
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Figure 6.33: Cumulative Representation of Propellant Consumption of the

Aurora Propulsion System in Experiment 3.
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Experiment 3
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Figure 6.34: Applied Thrust Force and Cumulative Representation of Propellant

Consumption of the NanoFEEP Thrusters in Experiment 3.
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Experiment 3
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Figure 6.35: Applied Dipoles of the Mangetorquer in Experiment 3.
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6.5 Experiment 4

The fourth experiment is designed to test the momentum dumping capabilities

of the MPC. The reaction wheels are initialized in a saturated state, and the

controller’s objective is to reach the reference reaction wheel momentum while

keeping the satellite in approximately the same orientation. The initial condi-

tions for the experiment are given in table 6.12, and the objectives are presented

in table 6.11. Table 6.13 provides the controller parameters for the different

actuation scenarios.

Figure 6.36 presents the reaction wheel velocities for the different actuation

scenarios. The satellite attitude response is given in Figure 6.37 using Euler

angles, and in Figure 6.38 using the attitude error quaternion.

The magnetorqer actuation is presented in Figure 6.39, and the actuation of the

Aurora and NanoFEEP propulsion systems in Figure 6.40.

Experiment 4 Objective

Reference Orientation Quaternion
[
1 0 0 0

]′

Reference Reaction Wheels Velocities 1000 RPM ·
[
1 1 1 1

]′

Table 6.11: Objectives of Experiment 4.
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Experiment 4 Initial Conditions

Time 12:00:00 31.10.2005

Periapsis, Apoapsis 500 km, 500 km

Inclination 97 deg

Right Ascension of the Ascending Node 0 deg

Argument of Perigee 0 deg

True Anomaly 45 deg

Initial Attitude Quaternion
[
1 0 0 0

]′

Initial Rotational Velocity
[
0 0 0

]′

Initial Reaction Wheel Velocities 6500 RPM ·
[
1 1 −1 −1

]′

Table 6.12: Initial Satellite Conditions in Experiment 4.
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Experiment 4 Controller Parameters

MPC Freq. PH ζa ζω ζm κMT Q κT κRW

Aurora 1 Hz 3 1014 0 106 0 1012 106

NanoFEEP 1 Hz 3 1014 0 106 0 106 106

MTQ 1 Hz 3 1014 0 106 1 0 106

Table 6.13: Parameters used in Experiment 4 for the Model Predictive Controller.

The frequency parameter governs how often the control signals are updated. The

PH parameter sets the length of the Prediction Horizon in the MPC. The cost

of the attitude deviation is given by ζa, angular velocity deviation by ζω, and

the cost of the reaction wheel momentum deviation is given by ζm. κMT Q, κT ,

and κRW are the factors by which the Magnetorquer, Thruster and Reaction

Wheels actuation weights are multiplied by, respectively.
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Experiment 4
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Figure 6.36: Reaction Wheels Velocities in Experiment 4.
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Experiment 4
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Figure 6.37: Satellite attitude response in Experiment 4, measured in Euler φ,

Θ and γ angles (zyx convention).
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Experiment 4
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Figure 6.38: Attitude quaternion deviation in Experiment 4.
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Experiment 4
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Figure 6.39: Dipole strengths applied by the magnetorquer actuator in Experi-

ment 4.
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Experiment 4
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Figure 6.40: Cumulative representation of propellant consumption of the Aurora

and NanoFEEP propulsion systems in Experiment 4.
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6.6 Summary of Results

This section summarizes the results from the four experiments carried out.

The first experiment showed that all actuator configurations performed best on

small momentum maneuvers with the shortest possible prediction horizon. For

the large momentum maneuver, the different actuator configurations’ optimal

prediction horizons seemed to correspond with the torque producing capabilities.

With the reaction wheels present, which is the most potent attitude actuator in

the simulations, the estimated optimal prediction horizon on large momentum

maneuvers was just three, but for the low-powered NanoFEEP thruster system,

the optimal prediction horizon was 150.

The second experiment considered large momentum rest-to-rest attitude maneu-

vers. The measured settling times show that the reaction wheels in combination

with MPC and PD control show comparable results. The Root-Mean-Square

error post settling is lower for the MPC than the PD controller. The NanoFEEP

propulsion system was shown to result in considerably slower attitude dynam-

ics, with a settling time ten times slower than the actuator configuration with

reaction wheels, and three times slower than the configuration based on the

Aurora propulsion system. Although slower, the NanoFEEP propulsion system

was noticeably more precise in steady-state tracking compared to the Aurora

propulsion system.

Small momentum maneuver performance was investigated in the third exper-

iment. Here, the reaction wheel actuator paired with PD control drastically
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outperformed the other solutions, comprising a much lower post-settled RMS

error. The NanoFEEP propulsion system showed significantly lower post-settle

RMS error than the remaining MPC configurations. All actuator configurations

except the NanoFEEP system were capable of tracking the reference slew rate

with almost no transient period, except from the NanoFEEP propulsion system,

which showed adverse settling times. The settling time for the NanoFEEP system

was close to one minute, whereas the remaining configurations had settled within

three seconds.

The fourth experiment investigated the ability of the controller and actuators to

dump excess reaction wheel momentum. The Aurora propulsion system, capable

of producing the most considerable torques, far outperformed the magnetorquer

and NanoFEEP propulsion system. The performance of the magnetorquer and

NanoFEEP thrusters was comparable. The dynamics of the system actuated

by the magnetorquer were faster, but the system actuated by the NanoFEEP

thrusters was more stable.
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Chapter 7

Discussion

This study set out with the aim of assessing the performance of propulsion

systems in attitude control of nanosatellites. The project involved designing

an optimal attitude controller and analyzing its performance using different

actuation solutions. Section 7.1 discusses the developed controller, and section

7.2 discusses the different actuators’ performance .

7.1 Controller

This section discusses the developed optimal controller. Subsection 7.1.1 discusses

the reasoning that led to the model predictive controller design, and subsection

7.1.2 discusses the performance observations made in the experiments. As the

proportional-derivative controller was included only to establish a performance

basis for comparison, it will only be discussed in subsection 7.1.2 Controller

137
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Performance.

7.1.1 Choice of Controller

The choice of an adaptive model predictive controller was based mainly on the

properties of a satellite propulsion system. Here, the force from the thrusters

is modeled as an integer value, assigned from a predefined set of possible force

values. This was considered a reasonable simplification, as the minimum impulse

bit property and output uncertainty are two of the main limitations of propulsion

systems. Although seen as necessary, the integer behavior complicates the control

aspect of such systems. A predictive control approach was chosen to enable the

system to handle the future impact of generated satellite momentum and plan

propulsion impulses accordingly.

Although the satellite dynamics are nonlinear by nature, a linearization of the

system was used to simplify derivations and decrease the controller’s computa-

tional load. The controller was made adaptive such that new linearizations could

be made at each timestep, to better represent the system dynamics around the

current operating point of the satellite. One of the drawbacks of the linearization

is that the satellite dynamics are not well represented outside a small region of

the current operating point, which decreases the accuracy and thus the optimality

gain of long prediction horizons. This could explain the controller overshooting

the reference.

The controller needed to be able to handle multiple actuators working in conjunc-

tion, incorporating both integer and continuous control signals. The resulting
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optimization problem is a mixed-integer quadratic program (MIQP). The prob-

lem is defined using linear constraints, a quadratic cost function, and a subset

of the control signals being integral. As MIQP is NP-hard, it was decided to

allow sub-optimal solutions, to increase computational efficiency. The MATLAB

genetic algorithm solver ga() from the Global Optimization Toolbox was chosen

as the solver. The choice was based on the fact that it incorporated all the

necessary features and performed better than other candidate solvers such as

the MATLAB surrogate optimization algorithm surrogateopt(). One of the

drawbacks of the genetic algorithm solver is that it does not necessarily converge

towards the optimum, and is prone to local minima convergence. As a design

choice, the solver was specified with a maximum computational time allowance.

The resulting adaptive MPC had several parameters that needed to be defined.

They included (1) the controller timestep, (2) the prediction horizon length, (3)

the satellite state weights, and (4) the actuation weights. The results of the first

experiment confirmed that the best-suited values for the parameters depended

on the actuator and reference trajectory specification, and it was decided to

differentiate the parameter values based on this. The different parameter config-

urations can be seen as different modes of operation for the controller.

Initially, it was believed that the shortest possible MPC controller timestep

would perform the best. Surprisingly, simulations with controller timesteps

of less than one second were found to perform worse than simulations with a

controller timestep equal to one second. It is difficult to explain this result,

but it might be related to the fact that an increased number of predicted steps

are needed to cover the same period of satellite dynamics; In case the pre-
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diction horizon is not increased when the timestep length is decreased, this

could make the predicted dynamics miss out on the future impact of satellite

momentum. If the prediction horizon is increased, this will allow more steps

to be taken away from the point of linearization, which possibly makes the

predicted dynamics less accurate. As a result, the controller timestep of one

second could be a compromise between the controller’s adaptiveness and stability.

Increasing or decreasing the prediction horizon length was shown in the first

experiment to come with both positive and negative effects. Longer prediction

horizons made the controller better at handling reference trajectories involving

substantial satellite momentum with minimal reference overshoot. On the other

hand, steady-state precision increased with shorter prediction horizons. A possi-

ble explanation for these results is that the linearization of the satellite dynamics

and the unaccounted perturbing forces decrease the prediction accuracy, favoring

shorter prediction horizons when the objective is tracking a steady-state reference.

Although the prediction might not be accurate enough for precise tracking, it

was shown to provide the system with momentum handling capabilities.

The satellite state weights and the actuation weights were determined

based on trial and error. These results, therefore, need to be interpreted with

caution. The actuation weights were based on the power consumption models,

with the initial idea being that optimal control could be derived to minimize

energy consumption. However, it was shown in the simulations that this could

lead to unwanted excess use of certain actuators. Additionally, the propellant

consumption of the propulsion system had to be limited, which does not directly

correspond to power usage. For the reasons mentioned above, it was decided
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to add a scaling factor to the actuation weights, which could be altered freely.

The inclusion of scaling factors makes the actuation weights no longer represent

actual power consumption, but rather the author’s preferred actuator response.

Similarly, the satellite state deviation weights were chosen freely to provide

sufficient but not excessive actuation, and a preferred emphasis on some of the

controlled satellite states compared to other states.

The developed MPC handles actuators being switched on and off and change

of control objectives at any point in time, making it a robust all-in-one solu-

tion for attitude control. With moderate further development, the controller

could be extended to control both satellite attitude and position. This would

enable complex operations such as formation flying and rendezvous maneuvers.

However, the MPC’s large computational load, combined with the inaccuracies

at low controller frequencies, could make the solution unsuitable for onboard

processing. Real-time and onboard processing capabilities are necessary perfor-

mance measures for a satellite attitude control system, and a further study with

more focus on performance is therefore suggested.

7.1.2 Controller Performance

An advantage of the developed model predictive controller is the simultaneous

tracking of multiple control objectives. The controller can regulate both the

satellite attitude, slew rate, and reaction wheel velocities in a minimal cost

fashion. This was highlighted in the fourth experiment, in which the controller,

combined with different actuators, was set to desaturate the reaction wheels

with a limited effect on the satellite attitude. Additionally, the MPC’s ability to
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predict changes in the reference signal makes it perform well on settling time

measures.

In the second experiment, concerning a large momentum maneuver, the reaction

wheels in combination with the PD controller showed more significant post-

settling Root-Mean-Square errors than the MPC. When studying these results,

it is observed that near the reference trajectory, the PD controller continues to

converge slowly towards the desired value, whereas the MPC oscillates around

the reference. It can, therefore, be assumed that the RMS error comparison

depends on the duration of the experiment; On a short time-scale, the MPC is

shown to perform better, whereas, on a longer time scale, the PD controller is

believed to outperform the MPC.

An observed disadvantage of the MPC is the failure of the control signals to

converge, which leads to wear and tear on the actuators. A shorter time period

may potentially help converge the control signals, as this was the case for the PD

controller, but as previously discussed, a shorter MPC timestep is not considered

realistic in terms of computational load.

It is assumed that the more powerful actuators quickly exceed the validity region

of the linearized system in the MPC prediction, and thus shorter prediction

horizons perform better for these systems. This was observed in the second

experiment when the reaction wheels actuator was compared to the Aurora

and NanoFEEP propulsion systems. The same argument about the region of

estimation for the linearization is used on the small momentum maneuver of

experiment three; When emphasize is put on the accuracy of the controller,



7.2. ACTUATORS 143

the best performance is achieved with the shortest possible prediction horizon,

which keeps the dynamics close to the point of linearization. Regardless of

these limitations, the prediction of satellite dynamics enables the controller to

handle satellite momentum, which is shown both in the case of powerful and less

powerful actuator configurations.

7.2 Actuators

Three types of attitude actuators were included in the simulations: magnetor-

quers, reaction wheels, and a propulsion system. This section compares and

discusses the different actuators.

First, the benefits and drawbacks of each actuator is discussed, in subsection 7.2.1

Magnetorquers, subsection 7.2.2 Reaction Wheels, and subsection 7.2.3 Propulsion

Systems. Then, combinations of actuators and the comparative performances

are discussed in subsection 7.2.4 Actuator Combinations and Comparisons.

7.2.1 Magnetorquers

Magnetorquers are highly compact and lightweight actuators, commonly used

for satellite detumbling purposes. The torque production is restricted to being

perpendicular to Earth’s magnetic field, a property that limits the attitude

control precision. The torque direction limitation is less restrictive in orbits

where Earth’s magnetic field has significant variations in direction, such as polar

orbits. In this case, the satellite orientation can be fully actuated in the course
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of a full orbit. As a result of these properties, the magnetorquer is best suited

for steady-state attitude maneuvers.

The magnetorquer can be combined with other actuators to achieve secondary

objectives. An example of this is momentum dumping of reaction wheels, which

was simulated in Experiment 4. Here, the magnetorquer was shown to perform

well on desaturating maneuvers, with results comparable to the NanoFEEP

propulsion system. It could also be combined with propulsion modules to achieve

torques smaller than what is achievable through the minimum impulse bit of the

propulsion system.

7.2.2 Reaction Wheels

Reaction wheels enable precise satellite attitude control through internal momen-

tum exchange and are suitable for all attitude maneuvers studied in this thesis.

The drawbacks of the reaction wheel actuator are mostly related to the weight

and mechanical lifetime of the components. The flywheel is required to have

certain inertia for the momentum exchange to be effective, and an assembly of

three actuation wheels are needed for full three degrees of freedom actuation,

with a fourth reaction wheel typically included for redundancy purposes. This

makes it a relatively large and heavy actuator.

As the actuator is based on internal momentum exchange, the flywheels of the

actuator are prone to saturating due to external torques from perturbing forces

and require frequent momentum dumping maneuvers. Secondary attitude actua-
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tors that produce external momentum are needed to perform such desaturating

maneuvers.

7.2.3 Propulsion Systems

Two different propulsion systems were studied in this thesis. The NanoFEEP

system is compact and lightweight, with a very small force output. The Aurora

propulsion system takes up more space and requires more propellant, but pro-

duces a more significant force. In terms of torque producing capabilities, the

Aurora propulsion system can produce about one hundred times more torque

than the NanoFEEP system, although the Aurora system only produces one-

tenth of the reaction wheel assembly’s combined torque.

The different specifications led to different qualities being present. The per-

formance on high momentum maneuvers is governed by the ability to produce

large forces. By this measure, the Aurora thruster, which can produce 2 mN ,

outperforms the NanoFEEP system, which produces 20 µN . Pointing and slew

rate accuracy is believed to be highly dependent on the minimum impulse bit

of the propulsion system, as the momentum corrections made by the actuators

ideally need to converge towards zero. Opposite of what was the case for the

high momentum maneuvers, this leads to the less powerful actuator performing

the best.

In terms of size and weight, the two propulsion systems vary greatly. The

Aurora Propulsion Technologies AOCS assembly has a dry mass in its most

extensive configuration of about 350 grams and takes up approximately 0.5 U,
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including the propellant tank. The individual NanoFEEP thrusters weigh in

at 6 grams and take up 3 cm3 each, and thus a system of six thrusters weighs

less than 40 grams and takes up about 0.02 U. For comparison, the weight of

the NanoAvionics CubeSat Reaction Wheels Control System SatBus 4RW0 is

approximately 665 grams when the harness is excluded, and the size is 0.5 U.

Designing the attitude control system with NanoFEEP thrusters could achieve

considerable weight and space savings on the satellite. The Aurora propulsion

system has customizable propellant storage, and with careful mission analysis, it

could be possible to achieve a weight saving over the reaction wheel assembly if

the propellant requirement is low.

Propulsion units also bring with them advantages that are not studied in this

thesis. The use of external force from a thruster enables orbital maneuvers,

which opens up an array of features; These include prolonging the lifespan of the

satellite by compensating the loss of orbital momentum due to atmospheric drag

and other perturbing forces, micro-adjusting the orbit after launch, engaging in

controlled formation flying, and facilitating a means of deorbiting the satellite as

an end-of-life procedure to comply with space-debris regulations. Combining the

orbit and attitude control in one actuator could make it possible to save weight

and space on the satellite.

Considering the HYPSO mission specifically, the possibility of propellant residue

on the camera lens should be examined, as such contamination could place risk

on the satellite’s mission.
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7.2.4 Actuator Combinations and Comparisons

Table 7.1 presents design and performance measures related to the actuators.

The reaction wheels assembly is the heaviest actuator. However, as the fly-

wheel inertia requirement is small on nanosatellite, a lighter alternative to the

NanoAvionics CubeSat Reaction Wheels Control System SatBus 4RW0 could be

considered, which would make the difference on reaction wheels and propulsion

systems in terms of weight, and thus launch costs, minimal.

Actuator Data

Max

Torque [Nm]

Min

Torque [Nm]

Dry

Mass [kg]

Simulated

Mass [kg]

Volume

[cm3]

RWs 5.90 · 10−3 0.0 0.665 0.665 500.0

Magnetorquer 2.69 · 10−5 0.0 0.186 0.186 27.7

Aurora 6.92 · 10−4 1.73 · 10−5 0.350 0.450 500.0

NanoFEEP 3.46 · 10−6 1.73 · 10−7 0.036 0.096 18.0

Table 7.1: Comparison Table of the Actuator Data.

Several actuator combinations were considered in the simulations. The combina-

tion of reaction wheels and the Aurora propulsion system would take up much

space on the satellite and lead to a heavy design, which makes it a less desirable

combination. Reaction wheels combined with the NanoFEEP propulsion system

is potentially a good combination in terms of performance, size, and weight,

and could lower the power consumption compared to a system in which the

magnetorquer is applied. In the third experiment, it was observed that using
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only the reaction wheels in combination with a PD controller led to the small-

est steady-state RMS error. If the MPC was to be used, the combination of

NanoFEEP thrusters and a magnetorquer had the most precise control, whereas

the combination of Aurora thrusters and a magnetorquer had the worst precision.
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Conclusions

This thesis set out to examine the use of propulsion systems on nanosatellites.

Despite its exploratory nature, this research has led to the development of a

modular dynamical satellite model, an orbital simulator with space environment

disturbances, and an optimal controller for pointing and slew maneuvers in the

form of an Adaptive Model Predictive Controller.

These results add to the rapidly expanding field of nanosatellite technology, and

the insights gained from this study may be of assistance to the NTNU SmallSat

Lab in specifying future satellite designs by providing a deeper insight into the

use of miniaturized propulsion systems.

The main limitation of the developed attitude controller is the heavy computa-

tional load, which makes on-board computing difficult. An additional weakness

is the observed failure of the control signals to converge, which causes significant

149
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wear and tear on the actuators. In spite of its limitations, the controller certainly

contain valuable properties. The predictive approach was shown to successfully

control the nonlinear propulsion actuators, manage satellite momentum, simul-

taneously utilize a variety of actuators, and handle several objectives at once.

When tracking a reference slew rate over a short time period, the developed

Model Predictive Controller was shown to achieve a lower Root-Mean-Square

error compared to the Proportional-Derivative Controller.

Reaction wheels are prone to momentum buildup over time caused by external

forces acting on the satellite. This study has shown that there is potential for

power savings onboard the satellite by utilizing a minituarized propulsion system

to dump excess reaction wheel momentum compared to the more commonly

used magnetorquer actuator.

The scope of this research was limited in terms of the simulation duration and

the number of scenarios studied. Notwithstanding these limitations, the results

of this research suggest that a lightweight Proportional-Derivative Controller

in combination with a Reaction Wheel assembly is the most suitable solution

for the HYPSO satellite’s mission. This is argued based on the simulated per-

formance, stability of the controller, and possibly neglible additional size and

weight of a reaction wheel assembly compared to a propulsion based system.

That being said, the inclusion of a propulsion system on a nanosatellite is inter-

esting from a research perspective, as there is little published data on this matter.
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8.1 Further Work

Further research could usefully explore how implementing a more detailed model

of the thruster dynamics improves prediction and simulation accuracy. Another

question raised by this study is whether avoiding prediction linearization would

improve the controller performance. In this case, a nonlinear control approach

needs to be applied.

Another natural progression of this work is to look at whether adaptively chang-

ing controller’s timestep and prediction horizon length while it is running could

help improve its computational efficiency. Additionally, decoupling the attitude

dynamics by tracking the principal axes of the system could potentially make

it easier to compute the control gains. A greater focus on reducing the compu-

tational load of the controller could produce interesting results with real-world

flight potential, which would be a fruitful area for further work.

Looking beyond the scope of this research, the use of propulsion systems on

nanosatellites enables the satellite operator to perform orbital maneuvers in

addition to attitude control. The force of the propulsion system may be utilized

to perform orbital corrections, prolong the satellite’s lifespan by counteracting or-

bital decay, and perform controlled end-of-service deorbiting. Orbital corrections

are essential for rendezvous maneuvers and formation flying, which have appli-

cations in several fields of research, and is essential in active space debris removal.
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