
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

M
as

te
r’s

 th
es

is

Casper Nilsen

The Cyborg v4.0

Implementing GUI for ROS with real-time
monitoring, commanding and controlling
capabilities

Master’s thesis in MITK - Cybernetics and Robotics

Supervisor: Sverre Hendseth

June 2020

The Cyborg Robot

Norwegian University of Science and
Technology

Masters Thesis

The Cyborg v4.0 - Implementing GUI for ROS with
real-time monitoring, commanding and controlling

capabilities

Author:
Casper NILSEN

Supervisor:
Associate Professor Sverre

HENDSETH
Assisting Supervisor:

PhD Candidate Martinius
KNUDSEN

Department of Engineering Cybernetics
Faculty of Information Technology and Electrical Engineering

Trondheim, Norway
16.12.2019

Problem Description

The problem to be solved during the specialization project in the Autumn
of 2019 and Master’s Thesis Spring 2020 was to create a GUI interface to re-
motely control and monitor the robot. During the specialization project, the
aim was to create the foundational deliverables. These deliverables were then
to be developed with the necessary capabilities during the Master’s Thesis.
As written in the specialization project report, the suggested deliverables for
the Remote GUI (Graphical User Interface) Interface project were:

• A GUI such as a web app or using ROS-RQT.

• AGUI client ROS node that serves as an interface between the ROS-based
system and the GUI.

• Communication between the GUI client ROS node and controller node.

• Optional: A database to store and plot historical data from the robot.

These deliverables were successfully created during the specialization project
and serve as the foundations for the work in this Thesis. The result was a
Web App using ASP.NET Web Forms, a GUI ROS node that listens and
transmits data from the ROS system and a document-based NoSQL cloud
database built using MongoDB Atlas. For this Master’s Thesis, the aim
was to develop the necessary capabilities on top of the deliverables. The
suggested capabilities for the GUI were:

• monitoring: Ability to view where in the map the robot is. View
operating state like running state-machine, manual operation, stopped
etc. View status information, like battery charge, motor status. Plot
historical information (optional).

• commands: Ability to change operating state. Changing state-machine
state. Send robot to location.

• Manual operation: Ability to view live video feed and control robot
using keyboard input. Onboard microphone and speakers for two-way
communication.

i

Abstract

A cyborg or cybernetic organism is the union between mechanical and living
biological parts. An interdisciplinary effort by NTNU Cyborg is in the
process of developing a robot body that is connected to biological neural
networks. This robot, fittingly named The Cyborg or The Robot aims to
have a closed-loop bi-directional data flow through the neurons. Grown from
the stem cells of either humans or rats, the neurons adapt to stimuli via
electronic circuitry, creating the neural networks. The final goal is to be
a continuous system using measurements from the robot’s environment to
train the cultured networks and using transmitted signals from the networks
to control the behaviour of the robot.

In the long term, the plan is for the Cyborg to act as a mascot, roaming
the hallways fully autonomously in Glassgården at NTNU Gløshaugen to
generate interest for students in its relevant fields like biotechnology, neu-
roscience, engineering cybernetics and computer and information science.
The current cyborg is in version 3.0 and is semi-autonomous. It navigates
using a self-made map, is motivated by its behaviour-system and operates
according to its state machine. Currently, the robot is at Supervisory Control
level 9 since it cannot be left without supervision. To get to level 10,
Full Automation, extensive testing must be conducted. The robot can be
controlled and monitored remotely on a computer, but the procedure is
non-trivial. There is therefore a need for a full-fledged GUI for real-time
supervisory capabilities like fine control and comprehensive monitoring to
aid in achieving a stable system.

During this Master Thesis a commander module for top-level management
of other modules was developed and tested in the robot’s main software
framework called ROS (Robot Operating System). The full state machine
at onset was added to a container and made into the ’behaviour’ mode
of operation state. Additional states were added to the state machine for
modes of operation like manual control, demo and suspension. The GUI in
the form of a new web application using Vue and Vue CLI (Command Line
Interface) was evaluated, designed, implemented and tested. Various reactive
functionalities for robot interaction, stored as separate Vue components was
implemented. These functionalities include selecting mode of operation,
click-to-navigate using navigation map and manual control using keyboard
input or on-screen joystick with robot camera from the Computer vision
Module. The GUI allows for monitoring of information like battery charge,

ii

motor state, mode of operation, SMACH state and behaviour-system PAD
Values. The GUI also got a command tool for changing SMACH states,
perform text-to-speech and selecting emotion in emotion-system. Finally,
communication between the GUI and ROS system was bridged. Each part
of the GUI module was discussed, their limitations defined and suggestions
for future work was presented. From the problem description, every suggested
feature for the Cyborg GUI was delivered successfully.

iii

Abstrakt

En kyborg eller kybernetisk organisme er fusjonen mellom mekaniske og lev-
ende biologiske deler. En tverrfaglig innsats fra NTNU Cyborg er i ferd med å
utvikle en robot som er koblet til biologiske nevrale nettverk. Denne roboten,
passende nok kalt Kyborgen eller Roboten, har som mål å ha en lukket sløyfe
med toveis kommunikasjon gjennom biologiske nevroner. Nevronene, som er
vokst fra enten mennesker eller rotters stamceller, kan tilpasse seg i henhold
til stimuli fra mikroelektroder og skape nevrale nettverk. Det endelige målet
er et system som kontinuerlig bruker målinger fra robotens miljø til å trene
de kultiverte nettverkene og bruke overførte signaler fra nettverkene til å
kontrollere oppførselen til roboten.

På lang sikt er planen at Kyborgen skal fungere som en maskot ved at den
kjører helt autonomt gjennom gangene i Glassgården ved NTNU Gløshaugen.
Dette gjøres for å øke interessen for studentene innenfor relevant forskn-
ing som bioteknologi, nevrovitenskap, ingeniørvitenskap og data- og infor-
masjonsvitenskap. Kyborgen er nå i versjon 3.0 og er semi-autonom. Den
navigerer ved hjelp av et selvprodusert kart, er motivert av sitt eget at-
ferdssystem og opererer i henhold til egen tilstandsmaskin. For øyeblikket
er roboten på "Supervisory Control" nivå 9 siden den ikke kan kjøre uten
tilsyn. For å komme til nivå 10, "Full Automation", må omfattende tester
bli utført. Roboten kan kontrolleres og overvåkes eksternt på en datamaskin,
men fremgangsmåten for dette er ikke-triviell. Det er derfor behov for et
fullverdig grafisk brukergrensesnitt med sanntidsovervåkingskapasiteter som
presis styring og systematisk overvåking for å oppnå det stabile systemet.

I løpet av denne masteroppgaven ble en kommandomodul for toppnivåstyring
av andre moduler utviklet og testet i robotens viktigste programvareramme
som heter ROS (Robot Operating System). Tilstandsmaskinen ble kon-
solidert til en egen ’oppførsel’-tilstand eller modus som en rekke av andre
operasjonsmoduser. Ytterligere tilstander ble lagt til tilstandsmaskinen for
modusene manuell kontroll, demo og avbrudd. Et brukergrensesnitt i for-
men av en ny webapplikasjon ble evaluert, designet, implementert og testet
for Vue og Vue CLI (Command Line Interface). Ulike reaktive funksjon-
aliteter for robotinteraksjon, lagret som separate Vue-komponenter, ble im-
plementert. Disse funksjonalitetene inkluderer valg av driftsmodus, navi-
gasjonskart som navigerer robot ved trykk og manuell kontroll ved bruk av
tastatur eller joystick på skjermen sammen med video fra "Computer vision"
modulen. Brukergrensesnittet gir mulighet for overvåking av informasjon

iv

som batterinivå, motortilstand, driftsmodus, tilstanden i tilstandsmaskinen
og oppførselssystemets PAD (Pleasure Arousal Dominance) verdier. Det har
også et kommandoverktøy som kan endre tilstand, spille av tekst til tale og
styre emosjonssystemet. Kommunikasjonen mellom web app og det eksterne
ROS-systemet ble også koblet sammen. De enkelte delene av modulen ble
diskutert, begrensningene deres definert og forslag til fremtidig arbeid ble
presentert. Fra problembeskrivelsen ble alle foreslåtte funksjoner for Kybor-
gens GUI (grafisk brukergrensesnitt) levert.

v

Preface

This Master’s Thesis was written as part of the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology. It
serves as the second part of a year-long project assignment together with
the specialization assignment in the autumn of 2019. This thesis was made
partly to be useful for students who want to understand the cyborg project,
its history, its different components and above all, the GUI module.

It is assumed that the reader has some experience with the programming
languages Python and JavaScript and has partial understanding of their
concepts and syntax.

I would like to thank Associate Professor Sverre Hendseth for his expertise
and accommodating approach to our meetings, which were valuable and
engaging. I would also like to thank PhD Candidate Martinius Knudsen
for his encouragement and facilitation. Unfortunately, because of the global
pandemic this Spring 2020, access to the cyborg was almost completely
prohibited. In spite of this, I would like to thank my peers working together
with me on this project for managing to deliver on their respective modules.
As my work was dependent on theirs, this matter was essential for me to
complete my work.

Some content from the specialization project this autumn has been purpose-
fully reused in this thesis.

vi

Abbreviations

• AMCL - Adaptive Monte Carlo Localization

• API - Application Programming Interface

• ARIA - Advanced Robot Interface for Applications

• BSON - Binary JavaScript Object Notation

• CLI - Command Line Interface

• CSS - Cascade Style Sheets

• DNS - Domain Name System

• DOM - Document Object Model

• EiT - Experts in Teams

• GUI - Graphical User Interface

• HTML - HyperText Markup Language

• HTTPS - Hypertext Transfer Protocol Secure

• IDE - Integrated Software Environment

• IP - Internet Protocol

• JSON - JavaScript Object Notation

• LED - Light Emitting Diode

• LTS - Long Term Support

• MEA - Micro Electrode Arrays

• NTNU - Norwegian University of Science and Technology

• NoSQL - Not only Structured Query Language

• PAD - Pleasure, Arousal, Dominance (Used in emotional state model)

• ROS - Robot Operating System

• SSH - Secure Shell

vii

• SSL - Secure Sockets Layer

• TCP - Transmission Control Protocol

• UDP - User Datagram Protocol

• UTC - Coordinated Universal Time

viii

Contents

Problem Description . i
Abstract . ii
Abstrakt . iv
Preface . vi
Abbreviations . vii
Table of Contents . xii

1 Introduction 1
1.1 History of The Cyborg . 1
1.2 Motivation . 2
1.3 Goal . 3
1.4 Related Work . 4

1.4.1 Ongoing Work . 4
1.4.2 Previous Work . 5

I Background and Theory 6

2 System Specifications 7
2.1 Hardware . 7

2.1.1 Robot Base . 7
2.1.2 ZED Camera and Jetson TX1 Developer Kit 8
2.1.3 LED Dome . 9

2.2 Software . 9
2.2.1 Robot Base Software 9

3 Background and Theory 11
3.1 Robot Operating System . 11

3.1.1 The FileSystem Level 12
3.1.2 The Computation Graph level 14
3.1.3 The SMACH State Machine Library 17

3.2 ROS Specific Tools . 19

ix

3.2.1 SMACH Viewer . 19
3.2.2 RViz . 20
3.2.3 RQT Console . 21

3.3 Useful ROS Commands . 22
3.4 Web Fundamentals . 23
3.5 Azure Cloud Services . 24
3.6 MongoDB and MongoDB Atlas 25

II Implementing the GUI Module 26

4 ROS Commander Module 27
4.1 Preparations for New Software Structure 27

4.1.1 Evaluating Current Software Structure 27
4.1.2 Proposed System Architecture 29
4.1.3 Specifications and Requirements for Commander Module 30

4.2 Commander Module Design 31
4.3 Implementing Commander Module 31

4.3.1 The Topic Transmitter ROS Node 31
4.3.2 The Topic Receiver ROS Node 33

4.4 Tests and Results . 34
4.4.1 Testing Topic Data Type Support 35
4.4.2 Result . 35
4.4.3 Discussion . 35
4.4.4 Testing Modes of Operation 36
4.4.5 Result . 36
4.4.6 Discussion . 37

5 Evaluating Web App Solutions 38
5.1 Choice of Framework . 38

5.1.1 Django . 38
5.1.2 Vue . 39
5.1.3 React . 40
5.1.4 Angular . 40
5.1.5 ASP.NET Web Forms 41
5.1.6 ASP.NET Core . 42

5.2 Method of Choice . 42

6 Specifications and Requirements 43

x

7 Web App Design 44
7.1 Inspirations . 44

7.1.1 RobotWebTools Webviz 44
7.1.2 ROS Industrial . 45
7.1.3 MOV AI . 46

7.2 Page Layout . 46

8 Implementation 49
8.1 Vue CLI . 49

8.1.1 Folder structure . 49
8.2 Single File Components . 50
8.3 Implementation of Components 51

8.3.1 Connection Status . 51
8.3.2 Cards . 52
8.3.3 Debug Console . 53
8.3.4 Command Tool . 54
8.3.5 Navigation Map . 55
8.3.6 Manual Teleoperation and Joystick 56
8.3.7 Historic Graphs . 58

9 Testing and Results 61
9.1 Testing Navigation Map . 61

9.1.1 Result . 61
9.1.2 Discussion . 62

9.2 Testing Concurrent Clients . 62
9.2.1 Result . 62
9.2.2 Discussion . 63

10 Bridging and Deployment 64
10.1 Deploying Web App . 64
10.2 The Rosbridge Suite . 64
10.3 The Web Video Server . 65
10.4 No-ip Hostname and SSL authentication 66

11 Discussion 69

12 Future Work 70

13 Conclusion 71

Appendices 72

xi

A Diagrams and figures 73
A.1 Command Tool Manual . 73
A.2 State Machine . 74

B Tables 75
B.1 Table of Presets for PAD Emotion Model Emotions 75
B.2 Table of Supported ROS Topics and Data Types 76

C Guides 80
C.1 Setup Robot Simulation . 80
C.2 Setup No-ip Hostname with SSL and DDNS Client 86

D Notes for Developing GUI 88
References . 92

1 | Introduction

A Cyborg, or cybernetic organism, is the union between biomechatronic and
organic body parts. The NTNU Cyborg project at The Norwegian University
of Science and Technology (NTNU) is in the process of creating a Cyborg
interfaced with living nerve tissue. At St. Olavs Hospital, Neural cells are
seeded on Microelectrode arrays (MEAs) and are cultured and trained to
form biological neural networks. The MEAs contains microelectrodes which
can capture activity and stimulate the networks. The neural signals are
transformed into electrical signals, meaning the MEAs are the interface
between neurons and electronic circuits. By connecting these signals to the
robot body, real-time bi-directional data flow is enabled. The aim is to make
a closed-loop system with information flowing between the robot body and
the biological neural network. The goal is for the biological neurons to control
simple processes in behaviour and actions of the robot body. In this system,
the robot can learn and adapt as a response to electrical stimuli by observing
its environment. [1] [2] [3]

Many modules have been developed for the robot body. However there is
no real user interface except for directly monitoring the computer that the
robot’s software runs on. This thesis describes the work of creating a GUI
(Graphical User Interface) module for real-time control of the robot.

1.1 History of The Cyborg

The Cyborg Project is a collaborative, multidisciplinary effort by NTNU re-
searchers, PhD candidates and Masters Students during specialization projects,
Master’s Theses and EiT (Experts in Teams) villages. It involves depart-
ments of Engineering Cybernetics, Biotechnology, Neuroscience and Com-
puter and Information Science at NTNU. The body of the Cyborg, or just
the robot, is built on top of a Pioneer LX robot base which is an autonomous,
general purpose, indoor robot base with an integrated computer. The robot

1

Chapter 1. Introduction

base is capable of autonomous navigation using built-in drivers. For the last
five years, different components have been mounted on top of the robot base,
creating what we now know as the Cyborg. [1]

In 2015, an EiT group fixed the skeleton frame made of aluminium on top
of the base for mounting of other equipment. A Kinect module was devel-
oped over multiple Master’s Theses and the following year the ROS (Robot
Operating System) architecture was adopted as the robots main application
framework. In 2017, the ZED stereoscopic camera and a developer board to
handle visual computing was added. In 2018, two EiT village groups designed
respectively the 3d printed casing and the LED dome. Last year the robot
got a visual overhaul along with consolidation of its ROS modules.

Through many years of development, the robot is now capable of running
autonomously through the halls of the school. It has a built-in state machine
and behaviour system which are administered with a controller to decide
where to navigate and how to behave. Its LED lights can display text,
animations and show an interpretation of recorded MEA data. Some notable
iterations are highlighted in the figure below.

(a) 2016:
Skeleton frame

(b) 2017:
Selfie stick, Kinect

(c) 2018:
3D printed casing

(d) 2019:
Dome, paint-job

1.2 Motivation

The motivation for the Cyborg project is to increase interest for students in
advanced research fields like engineering cybernetics, neuroscience, computer-
and information science and biotechnology. The Cyborg is meant to roam
the hallway called Glassgården at Elektrobygget, NTNU Gløshaugen while
interacting with students and visitors as a mascot. The Cyborg has huge

2

Chapter 1. Introduction

potential to coordinate students from a wide area of research fields. From AI
to philosophy, the hope is for the project to create a platform for interdisci-
plinary collaboration. Following this idea, the hope is that working on the
GUI module that utilize most of the features on the robot may be appealing
for many students.

Many modules built for the robot like the Kinect module have become
deprecated over the years after additional testing. The robot itself is pre-
sentable with the new design and has made great improvements in its under-
lying systems of navigation, behaviour, visualizations and audio. However
there is a need for thorough testing to ensure modules are fully operational
and stable when the robot is in its working environment. A GUI would be a
valuable aid in this testing process as it could conserve project resources as
well as be the platform for future user interfaces with the robot.

Currently the only user interface, other than selecting operation mode
at robot startup with the mode selector box, is via the CLI (Command
Line Interface). Operating the robot requires accessing the robot directly by
typing commands into the CLI via remote desktop tools like TeamViewer.
This procedure is non-trivial and requires considerable insight into the spe-
cific commands of the robots libraries and tools. A full-fledged GUI with
real-time administrative capabilities to replace this procedure has therefore
been motivated.

1.3 Goal

The Cyborg Project has major research goals within technological, biomed-
ical and philosophical areas. Through the research, they expect to achieve
major conceptual and methodological advances in these areas. For the robot
body this is more of an ambition or effect than the specific goal. As it
stands, the robot is not connected to the biological neural networks and is
not fully autonomous. Before interfacing with the MEAs, the first objective
then becomes making the robot fully autonomous and reliable. Mica R.
Endsley and David B. Kaber formulates their own Levels of Automation or
LOA by designating the degree of human operator and computer control of
dynamic control tasks. As it stands, the current robot is at Supervisory
Control level 9 when running in its ’behaviour’ mode of operation. This
means it generates its own options, selects the option to implement and
executes the selected action. To reach level 10, Full Autonomy, additional
testing is required as previously stated in the motivation. When the robot
becomes fully autonomous without the need for intervention, the goal of the
Cyborg v4.0 will be achieved.[1] [4]

3

Chapter 1. Introduction

At level 9 the robot requires remote monitoring, the tools for this task
are in the present circumstances not sufficient. The main goal becomes to
create the GUI module with all features specified in the problem description.
Additional requirements and goals for the GUI module are specified in their
relevant implementation sections.

1.4 Related Work

1.4.1 Ongoing Work

Navigation System

Lasse Göncz aims to re-implement the navigation system on the Cyborg and
optimize the localization performance. Based on the ROS navigation stack,
tasks for mapping, localization, path planning and obstacle avoidance are
to be re-implemented. Based on quantitative study of variance convergence
in the estimated pose calculated by the Adaptive Monte Carlo Localization
algorithm, the localization system is to be improved.

The Computer Vision Module

Ole Martin Brokstad aims to implement a Computer Vision system capable
of detecting natural human behaviour, allowing the Cyborg to become a
socially intelligent robot. A module detecting such human behaviour using
CV technology on images recorded with the first generation ZED Stereoscopic
camera, is to be implemented on the Jetson TX1 Developer board.

Behaviour System And Visualizations

Johanne Døvle Kalland aims to explore the possibility of using Behaviour
Trees as a means to architect the task-level behaviour of the Cyborg. New
visualizations and audio files to increase the presentability of the robot is to
be added. The PAD emotional state model that directs the robot’s behaviour
is also being evaluated.

4

Chapter 1. Introduction

1.4.2 Previous Work

The Cyborg v3.0 - Finalizing the Foundation for an NTNU
Mascot

In the Spring of 2019 Areg Babayan consolidated the modules in ROS and
worked on making the Cyborg ready for demonstration. He finished the new
design with new bodypaint, hardware rack and LED dome in collaboration
with the EiT group. A behaviour module was implemented and the state
machine was configured and tested. Babayan’s work, together with [5] and
[6] have been important research studies for the work in this thesis.

5

Part I

Background and Theory

6

2 | System Specifications

2.1 Hardware

VisualizationComputer Vision

NVIDIA Jetson TX1
Board

Computer Vision

LED Dome

Pioneer LX Robot
Base

Cooling Fan

Voltage Regulator

ZED Camera
LED controller

Serial USB Ethernet Serial USB

5V PWM

18-36V unregulated

12V regulated 5V regulated

12V regulated

Figure 2.1: Structural overview of the robot hardware. Dotted lines means
currently not connected hardware. Modified from [7].

2.1.1 Robot Base

The Pioneer LX robot by Adept MobileRobots is the robot base used for other
components to build upon. It has an onboard computer capable of running
either Linux or Windows, motors for turning the wheels and laser, sonar,
ultrasonic and bumper sensors. Software libraries and tools for navigation
and mapping of environment was also supplied. The robot base can support
up to 60kg of payload. The Pioneer LX has the following hardware: [8]

• Intel D525 64-bit dual core CPU @1.8 GHz

• Intel GMA 3150 integrated graphics processing unit

7

Chapter 2. System Specifications

• Intel 6235ANHMW wireless network adapter

• Ports for ethernet, RS-232, USB, VGA, and various other analog and
digital I/O

• SICK 300 and SICK TiM 510 laser scanner, for navigation and object
detection.

• Sonar sensors and a bumper panel.

• Joystick for manual control.

• A 60 Ah battery, can power the robot for up to 12 hours.

• Automated charging station, allows autonomous docking.

Figure 2.2: The Pioneer LX robot base.

2.1.2 ZED Camera and Jetson TX1 Developer Kit

The ZED stereoscopic 3D camera by Stereolabs shown in Figure 2.3a is used
to capture 3D video along with having depth perception. It has dual 4MP
(Mega Pixel) cameras, is the worlds fastest depth camera and has third party
integration with ROS. The Jetson TX1 Developer kit shown in Figure 2.3b
is a fully featured tool for visual computing. Along with the ZED camera it
is used in the Computer Vision module to recognize human behaviour. The
TX1 has the following hardware specifications. [9] [10]

• NVIDIA MaxwellTM GPU with 256 NVIDIA CUDA Cores.

• Quad-core ARM Cortex-A57 MPCore Processor.

• 4 GB LPDDR4 Memory.

• Ports for Gigabit Ethernet, USB 3.0 Type A, HDMI and other I/O.

8

Chapter 2. System Specifications

(a) ZED Stereoscopic camera. (b) Nvidia Jetson TX1 board.

2.1.3 LED Dome

The LED (Light Emitting Diode) dome made of a plastic dome withWS2812B
LED strips attached to the surface and another see-through matte frosted
plastic materia dome on top. It is used to display visualizations of neural
data, text and other animations. The LEDs are controlled by the LED
Controller, which consists of a NodeMCU ESP-32S and a 74VHCT125A
buffer. The ESP-32S is a development board with a 32-bit dual-core running
at 240MHz which is considered extremely fast for a microcontroller. The
buffer amplifies the 3.3V signal the ESP-32 provides to a 5V PWM signal
the LED strips need. The ESP-32S is connected to the Pioneer LX via USB
(Universal Serial Bus). The LED dome and NodeMCU ESP-32S is pictured
below. [11] [12]

(a) LED Dome. (b) NodeMCU ESP-32S.

2.2 Software

2.2.1 Robot Base Software

Althought Adept MobileRobots shut down in 2018, software running on the
robot base is still available on the internet. The Pioneer LX robot was

9

Chapter 2. System Specifications

delivered with the following preinstalled software: [8]

• ARIA: The ARIA (Advanced Robot Interface for Applications) li-
brary is the core development library or SDK that is used on the
robot. It is an open source C++ library used for high-performance
access to the robot sensors and effectors. The ROSARIA library is
used to interface between ARIA and ROS.

• ARNL: The ARNL (Advanced Robot Navigation and Localization)
library by MobileRobots is a development kit for localization of nav-
igation. The ROSARNL library was used to interface with ARIA,
but because of its limitations it was switched out for RosAria and
the probabilistic localization system AMCL (Adaptive Monte Carlo
Localization). [13] [14]

• Mapper3: Mapper3 converts and edits maps for use with ARNL and
MobileSim. It was switched out for the gmapping package for creating
the map of Glassgården. [14]

• MobileSim: MobileSim is the simulator for the Pioneer LX robot.
ARIA will connect to MobileSim instead of the real robot if MobileSim
is running. It uses the generated map (map of Glassgården) to simulate
the physical environment the robot will operate in.

• MobileEyes: MobileEyes is a legacy GUI(Graphical User Interface)
software for remote teleoperation and parameter configuration. It is
currently a deprecated package.

10

3 | Background and Theory

This chapter gives some background information on the technologies used
on this thesis. Developing the GUI requires knowledge in every facet of
the cyborg robot’s main software framework, ROS. Section 3.1 introduces
ROS and gives relevant information about its concepts, tools and useful
commands. The web app was hosted on Azure Cloud Services. In section
3.5 Azure and its services are explained. Lastly, MongoDB and MongoDB
Atlas concepts are briefly presented in section 3.6.

3.1 Robot Operating System

Robot Operating System - or ROS - is an assortment of tools, software
and drivers for developing software for robots. The purpose of ROS is to
give developers the tools to create robust, reusable, general-purpose robot
software. ROS is considered an operating system because it provides oper-
ating system capabilities like hardware abstraction, low-level device control,
message-passing and a package manager. It has a collaboration-oriented
ecosystem of volunteers running a documentation wiki with over 3000 ROS
packages and has its own dedicated Q&A website. The libraries are mainly
implemented with Python, C++ and Lisp using the client libraries rospy,
roscpp and roslisp respectively. Although these client libraries are the most
popular, ROS is built for programming language independency and so can
be implemented with any modern programming language.

ROS is released in distributions every six months and the release only sup-
ports the latest Ubuntu LTS (Long Term Support) version. The concept
levels of ROS, the filesystem level and the computation graph level will
be summarized below. ROS has a comprehensive wiki on its concepts,
abstractations, packages and so on which can be found in the ROS Wiki
[15].

11

Chapter 3. Background and Theory

3.1.1 The FileSystem Level

The filesystem level involves the resources that users encounter inside the
workspace on disk. ROS uses Catkin as its build system and it is in the
Catkin workspace we access the filesystem level. The figure below shows the
context between the different filesystem level concepts.

Metapackages

Filesystem Level

Stacks CodePackages

Packages

Manifest Messages Services Others

Figure 3.1: ROS Filesystem Level.

Packages

For any given module, the relevant ROS software is stored in Packages. A
package may contain ROS nodes, non-ROS libraries, datasets, configuration
files and anything else the module might need to operate successfully as a
module. A package should contain enough software to be useful, but not so
much that it becomes heavyweight and difficult to use with other modules.
ROS packages usually have a certain folder structure and will often contain
some of the following directories.

• src/package_name/: Contains source files of programs.

• include/package_name: Includes header files for C++ nodes of other
packages.

• package_name/msg/: Contains Message (msg) files.

• package_name/srv/: Contains Service (srv) files.

12

Chapter 3. Background and Theory

• package_name/scripts/: Contains executable scripts.

• package_name/CMakeLists.txt: CMake build file, input to CMake
build system to build the package.

• package_name/package.xml: The package manifest, contains proper-
ties of package like name, version, authors and dependencies etc.

• package_name/README.md: Github README file that describes
usage of package (specifically used in this project).

Metapackages

The representation of a group of packages is called a metapackage. The
metapackage does not contain any files and do not install anything other
than their package.xml (manifest). A metapackage references the related
packages so that the packages can be loosely grouped. A metapackage is a
placeholder for the Stack term, e.g the navigation stack.

Package Manifests

Manifests (package.xml) contains the metadata of a package which includes
its name, version, description, license information, dependencies etc. The file
is required to be inside every ROS package that uses the Catkin build system.

Message types

Message (msg) types are used as descriptions of the data structure of a
ROS message. This makes it easy for ROS tools to generate source code
for the message type in different programming languages. A message.msg
file consists of two parts, fields and constants. Fields are defined as the data
that is sent inside the message. Constants are like field descriptions except
that it also is assigned a value. ROS comes with some built-in messages
called std_msgs, but it is also possible to define custom messages.

1 # fieldtype1 fieldname1
2 int32 x
3 float32 y
4 float64 z=1 #Constant

Listing 3.1: Example of Message file.

13

Chapter 3. Background and Theory

Service types

Service (srv) types are used as descriptions of the request and response data
structures of a service. A service.srv requires a minimum of two fields or
messages, the request field and response field. An example of a custom .srv
file, usually found in the subfolder srv/ of a package is shown below.

1 # request msg
2 string question
3 ---
4 # response msg
5 string answer

Listing 3.2: Example of Service file.

3.1.2 The Computation Graph level

The computation graph level is the peer-to-peer network of ROS processes
running data processes with each other. The figure below shows the concepts
of the computation graph level.

Nodes Master Parameter
Server Messages

Computation
Graph Level

Topics Services Bags

Figure 3.2: ROS Computation Graph Level.

Nodes

Nodes are the primary source of computation, i.e the Python or C++ scripts
in the project. They are developed using the client libraries rospy and roscpp
and are designed to be interchangeable and modular. This means that if a

14

Chapter 3. Background and Theory

node is broken, only the task the node is responsible for is affected. Nodes
communicate using streaming topics, RPC services and the parameter server.
According to ROS guidelines a node should accomplish one task and have
a descriptive name for that task. An example would be for a navigation
package. One node could be used for handling the wheels, one node for the
localization and another for planning the path. A ROS node for rospy is
shown below:

1 # !/usr/bin/env python
2 import rospy
3

4 # Initializes node , called only once for each rospy process
5 rospy.init_node("cyborg_nodename")
6

7 # Stops thread from shutting down.
8 rospy.spin()

Listing 3.3: Example of rospy node.

ROS Master

The ROS Master provides name registration and lookup for the Computation
Graph. This allows nodes to locate each other, exchange messages over topics
and make service calls. The ROS Master is started by either running the
roscore or roslaunch commands. The Master is also responsible for hosting
the Parameter Server. The figure below illustrates how the ROS Master
registers the nodes as advertisers/publishers and subscribers.

Node 1
Topic: /package_name/name

Node 2

ROS Master
Advertising Subscription

Figure 3.3: Showing how ROS Master locates nodes and allows transmission
of messages over topics. This is a simplified version of the publish-subscribe
pattern.

15

Chapter 3. Background and Theory

Parameter Server

The Parameter Server stores data by unique keys in a central location. It
is a dictionary that is accessible to store and retrieve parameters at system
runtime and is designed to hold static data like configuration parameters.
The parameters are named using the ROS naming convention, just like for
topics and nodes.

Messages

Nodes communicate via message-passing by publishing messages to topics.
The ROS Master then routes the messages to nodes that are subscribing
to that topic. A message is simply a data structure of fields, also called a
message type, as explained in 3.1.1. A client calling a service in another node
uses both a request and a response message as part of a ROS service call.
Messages also follow standard ROS naming conventions, e.g the built-in ROS
message file located in std_msgs/smg/String.msg is called std_msgs/String.

Topics

Messages are passed between nodes via a transport system called topics
which uses publish and subscribe semantics. A topic has a name that is
used to identify the data of the topic. The publisher node acts as a server,
sending the data to the relevant topic sporadically or periodically to be
consumed by nodes that subscribe to the same topic. The nodes are generally
not aware of which other nodes are listening to the topic, they are just
coordinated by the ROS Master and connect directly to each other via
TCP/IP (Transmission Control Protocol/Internet Protocol) or UDP (User
Datagram Protocol) transports. There can be multiple concurrent publishers
and subscribers for the same topic.

Services

For simple request-reply communication, services are used. Services are
simply a pair of messages, one for the request and one for the response.
Nodes can offer up services under a name in which client nodes can send a
request message to and await the response message for. Requests are best
suited for non-preemptive and discrete tasks. An example would be to turn

16

Chapter 3. Background and Theory

a motor on or off. It is also possible to have a persistent service which keeps
the TCP channel open, enabling higher performance but costing robustness
to changes like connection losses.

Actions

Actions can be seen as ROS services with additional features to support
long-running tasks. When a service takes too long to respond, the client
might want feedback on progress or to cancel the entire service request. This
is where actions are better suited for the task. To execute extended, pre-
emptive goals with continuous updates using actions, the actionlib package
is used. Actions are, similarly to services and messages, defined using a
.action file. The file contains ROS messages for the goal, feedback and result
of the action. These are sent between the two nodes in question, called the
ActionServer and the ActionClient.

The goal message is used to initiate the task and provide the end goal. The
feedback message provides updates on progress, often at a set interval and
the result message is sent back upon completion of the goal. An example task
where actions would be suitable could be when navigating a robot base. The
wanted pose would be the goal message, the pose along the path would be
the feedback message and the actual final pose would be the result message.

Bags

Bags are used to store and play back ROS message data from topics. They
are stored as files in the (.bag) format and in this format can be processed,
analyzed and visualized using an assortment of other ROS tools. Bags are
used to mimic nodes actually publishing messages to topics, even with the
same timestamps.

3.1.3 The SMACH State Machine Library

SMACH (State MACHine) is an open source Python library for creating
task-level architectures of complex robot behaviour. It is independent of
ROS at its core but can be integrated with ROS using the executive smach
metapackage. SMACH is used when the robot wants to accomplish a complex
plan where all possible states and their transitions can be explicitly stated.
It is not recommended for unstructured tasks or for developing low-level

17

Chapter 3. Background and Theory

systems that need to be very efficient.

The library offers several different types of "state containers" other than the
typical state machine container. The Iterator container loops through a state
or states until the state succeeds. The Concurrence container lets two states
execute simultaneously and the Sequence container is a state machine con-
tainer where states with auto-generated transitions are executed in sequence.
It is possible to get detailed introspection of these state machines visually
using another ROS tool called SMACH Viewer. The following snippet shows
how to create a simple state machine.

1 # State
2 class state1(smach.State):
3 # Define state initialization
4 def __init__(self , outcomes =[’outcome1 ’, ’outcome2 ’],
5 input_keys =["input"],
6 output_keys =["output"]):
7

8 # Define state execution
9 def execute(self , userdata):

10 if userdata.name == "john":
11 return ’outcome1 ’
12 else:
13 return ’outcome2 ’
14

15

16 # State machine
17 # state2 () class is omitted due to repetition.
18 sm = smach.StateMachine(outcomes =[’outcome4 ’,’outcome5 ’])
19 with sm:
20 smach.StateMachine.add(’STATE1 ’, state1 (),
21 transitions ={’outcome1 ’:’STATE2 ’,
22 ’outcome2 ’:’outcome4 ’})
23 smach.StateMachine.add(’STATE2 ’, state2 (),
24 transitions ={’outcome2 ’:’STATE1 ’})

Listing 3.4: Creating a simple SMACH state machine.

The above listing 3.4 gives us the following state machine in Figure 3.4:

18

Chapter 3. Background and Theory

STATE1

STATE2

outcome2

outcome1

OUTCOME4

outcome2

OUTCOME5

SM_PATH

Figure 3.4: Example of SMACH state machine where the arrows are
transitions.

3.2 ROS Specific Tools

This section introduces some useful and arguably necessary tools used in the
cyborg robot ROS workspace.

3.2.1 SMACH Viewer

The SMACH Viewer visualizes possible SMACH state transitions or out-
comes, the active states and data values passed between different states.
The viewer is an introspection interface to the state machines that displays
either a directed graph view similar to Figure 3.4 or alternatively a tree view.

19

Chapter 3. Background and Theory

Figure 3.5: Example of SMACH Viewer directed graph. Image courtesy of
[16].

3.2.2 RViz

RViz (ROS Visualization) is a 3D visualization tool for visualizing robots in
simulated map environments. It has a wide array of plugins that leverage
the ROS display types which are ROS compatible interpretations of robot
hardware data like laser scans, odometry data, pointcloud data and generated
maps. Because RViz supports most standard ROS message types used in
navigation, visualization, geometry and sensors, RViz can visualize data from
topics regardless of what robot model is used.

20

Chapter 3. Background and Theory

Figure 3.6: RViz showcasing its various display types like costmaps and model
of the cyborg robot at runtime.

3.2.3 RQT Console

Part of the rqt commons plugins, rqt console provides a GUI for displaying
and filtering of runtime messages. The GUI in combination with the rostopic
terminal command is useful for targeting bugs in source code.

Figure 3.7: Rqt console displaying messages from robot at runtime.

21

Chapter 3. Background and Theory

3.3 Useful ROS Commands

There are many command-line tools defined in the ROS wiki, some are more
useful than others. The table below contains the most used commands in
the work of this thesis as well as their descriptions. For further information
see the ROS wiki [15].

Command Description

Common : roscd Directs to a ROS package directly.
rosclean Cleans up filesystem (logs).
rosdep Installs system dependencies for a package.
roslaunch Launches sets of nodes from the XML

configuration file. Used in this project.
rosmsg Prints out lists of info about message data

structures.
rosnode Displays runtime node info and lets one ping

nodes to check connectivity.
rosparam Used to get and set parameter server values.

(must be YAML-encoded text).
rossrv Prints out lists of info about service data

structures.
rosservice Used to call services, list services, find services

and list info like type.
rostopic Used to echo (print message to screen) topic

messages. Can publish data and display info
about topics also.

Graphical : rqt_bag rqt_bag is a graphical tool for viewing data
in ROS bag files.

rqt_graph rqt_graph displays an interactive graph of
ROS nodes and topics

rqt_plot rqt_plot creates a plot of numerical ROS
topic data.

rqt_console rqt_console is a GUI plugin used to display
and filter ROS messages.

Table 3.2: ROS commands and their descriptions.

22

Chapter 3. Background and Theory

3.4 Web Fundamentals

This section gives a short introduction to the core concepts of web develop-
ment.

• HTML: HyperText Markup Language - or HTML - is the standard
Markup language for displaying documents in a web browser. HTML
documents are comprised of elements that are enclosed in tags. E.g
the entire document is wrapped inside an opening <html> and closing
</html> tag. The title is within title tags, paragraphs in paragraph
tags and so on. It is the standard markup language for formatting
websites in web browsers like Mozilla Firefox and Google Chrome.
Inside the document, there are two main elements, the head and the
body, which make up the skeleton of every web page. The head element
contains metadata like references to scripts and links to stylesheets,
while the body contains the actual content of the document. HTML is
currently in its fifth version called HTML5. [17]

• CSS: Cascading Style Sheets (CSS) support HTML documents with
the styling and layout of a webpage. This is achieved by elements
inheriting certain values for certain properties that the CSS document
has declared as a rule. The latest version of CSS is called CSS3. [17]

• JavaScript: JavaScript supports HTML by use of scripts that can
manipulate the page, interact with the user or send requests over the
internet. JavaScript is an object oriented language where each object
can have properties, events and methods. Properties are characteristics
of the object to be changed like name or size. Events are simply differ-
ent occurrences happening to objects, like a mouse click or keyboard
press. Finally, instead of an object having variables as parameters it
can have a function, these functions are called methods. [18]

23

Chapter 3. Background and Theory

3.5 Azure Cloud Services

Azure Cloud Services is a collection of cloud computing services from Mi-
crosoft. Azure provides basic physical or virtual computer system resources
like computing power and storage remotely over the internet. The aim for the
user is to reduce the cost and time of setting up on-premise IT infrastructure
by leveraging the SaaS (Software as a Service) model. In the SaaS model
all hardware and back-end is handled by the third party and the user has
little to no information about hardware or software infrastructure. The user
simply subscribes to the different services as desired and access their interface
via the browser.

Most cloud service providers including Azure offer computing resources for
web app hosting and active directories. Using Azure’s integrations to other
platforms like Github it is possible to identify users on hosted web apps with
sign-in pages, increasing security. Other popular cloud computing services
include Amazon Web Services and Google Cloud. Documentation on most of
Azure’s services, guides for setup and articles explaining their functionalities
can be accessed in [19].

Figure 3.8: Cloud Computing visualization.

24

Chapter 3. Background and Theory

3.6 MongoDB and MongoDB Atlas

In the specialization project, MongoDB Atlas was implemented to store
historical message data of the robot. MongoDB is a document-based NoSQL
(Not only SQL or Structured Query Language) database as opposed to a
relational database. This means it stores information in documents contain-
ing sets of ordered key-value pairs. MongoDB store documents in BSON
(Binary JavaScript OBject Notation) format. In the key-value pairs in these
documents the key is simply a string that references the particular value.
The value can be of data types like Int and Bool but documents can also be
nested by using another document as the value.

Each document has no relationship with other documents, but contain an
object id for unique identification. In each database there can be a number of
Collections. Collections are the equivalent of a table in a relational database
and a document is equivalent to a row. Collections do not have to be
created beforehand, simply inserting a document will create the collection.
For more information regarding MongoDB, refer to manuals for MongoDB
and MongoDB Atlas [20] [21]. An example of the format for a document in
MongoDB is shown below. [22]

Figure 3.9: Example of MongoDB document.

25

Part II

Implementing the GUI Module

26

4 | ROS Commander Module

The commander module is the top level coordinator of all other ROS nodes.
Its purpose is to handle mode of operation requests like manual control from
the web app sent to the ROS system. It’s also responsible for sending historic
data to MongoDB Atlas, which is the cloud database created during the
specialization project in Autumn 2019. The commander is not responsible
for handling any real-time control or monitoring communication between the
web app and itself, except for choosing operation mode. When a user selects
the operation mode in the app, the commander should handle the appropriate
controller modules for hardware components and other subsystems like the
emotion system and state machine.

4.1 Preparations for New Software Structure

This section describes the necessary preparations for a new system architec-
ture or software structure that supports the commander module, starting
with an evaluation of the current ROS module structure. A new proposed
system architecture based on the evaluation is presented. Following the new
structure, specifications for the commander module are stated. To clarify,
mentions of packages denoted with cyborg means that the package is built
by students.

4.1.1 Evaluating Current Software Structure

The first aim is to create new operation modes that interfaces with mod-
ules that control audio, visualization and navigation. The current system
architecture with the cyborg controller package being the top-level node uses
states defined in the state machine to execute behaviours. At the onset
there are no states defined for different modes of operation. Fortunately, the
previously implemented modules are self-contained following ROS package
principles. This means that the audio, visualization and navigation modules

27

Chapter 4. ROS Commander Module

offer their functionalities as a self-contained services. On top of these services,
the modules cyborg behaviour, cyborg controller, cyborg event scheduler and
cyborg primary states are all responsible for executing behaviours by calling
these services. These modules will referred to as the behaviour system. A
short summary of the behaviour system is presented for clarity.

• Cyborg Controller: The controller module contains the state ma-
chine, emotion system and motivator. It is the top-level controller of
packages cyborg- behaviour, primary states and event scheduler. It
initializes the emotion system with a set of emotions listed in Ap-
pendix B.1. This emotion system uses the PAD (Pleasure, Arousal,
Dominance) emotional state model and is used to influence the state
machine in a dynamic manner. When the behaviour system is started
the robot is in the idle state of the state machine, the motivator for
the emotion system gradually decrease PAD values over time until it
is motivated to execute another behaviour, e.g astro_language. These
behaviours are only executed when no external or scheduled events are
available.

• Cyborg Behaviour: Contains a behaviour.launch file with pre-
defined behaviours. As an action server, when cyborg behaviour is
launched it creates actions for each of the behaviours in the launch file.
In the launch file, the behaviours also have parameters defined for the
parameter server. Most notably parameters visual mode (visualization
module), utterance (audio module), location (navigation module) and
completion trigger. These behavioural preset parameters define what
modules the specific behaviour activates and how the behaviour is
completed. The trigger can be audio playback, navigation goal or a
certain amount of time passing. If a state and a behaviour have the
same name, the behaviour belongs to that state and the completion of
that behaviour will result in a succeeded transition in the state machine.
If the behaviour fails or is preempted it is also handled since all states
must have an abort transition predefined.

• Cyborg Event Scheduler: The event scheduler module makes
sure the location of the robot matches the desired location of the
ongoing event. If the current location doesn’t match it publishes a
navigation_schedular event to the controller. It’s also responsible of
notifying the controller module if the battery is running low.

• Cyborg Primary States: The primary states module, similarly to
the behaviour module is a ROS action server. It handles more complex

28

Chapter 4. ROS Commander Module

behaviours for states that cyborg behaviour cannot handle like idle,
wandering and navigation_planning.

Figure 4.1 shows a representation of the current software structure.

Figure 4.1: Old software structure of the cyborg’s ROS system. Red boxes
indicate output modules. Blue boxes indicate features of modules. Image
courtesy of [7]

4.1.2 Proposed System Architecture

From the evaluation it is concluded that adding operation modes to the
existing system is done by modifying the state machine and adding additional
behaviour presets in the behaviour launch file. Additionally to handle the
behaviour modules a commander module must be added. The author found
that the overall software structure can remain since modules in the behaviour
system all can effectively be put on hold when the commander requires them
to. After some modifications to the controller module, the commander can be
built on top of the existing behaviour system. The following figure presents
the new proposed structure for the robot.

29

Chapter 4. ROS Commander Module

Command center

Behavior
cyborg_commander

Controls:
- Behavior: start/stop
- LED dome visualization
- Audio
- Navigation
- Manual mode
- Demo

cyborg_eventscheduler

cyborg_behavior

ZED camera

Controllers

cyborg_led_dome
- set LED visualization

cyborg_audio
- play sound
- text to speach

cyborg_navigation
- go to point
- wander
- dock

GUI CLI Startup
box

Vision

Time

Hardware

LED dome Pioneer LXSpeakers

Description

ROS nodes

Peripherals

UI

rosaria (manual mode)
- joystick
- keyboard

Joystick

Laser, sonar, bumper

cyborg_primary_states

Arduino
- LED: startup visualization

cyborg_controller
SMACH state-machine

Figure 4.2: Proposed ROS system architecture of the cyborg.

4.1.3 Specifications and Requirements for Commander
Module

From the proposed system architecture, the modes of operation are deter-
mined to be manual control, suspension, demo and behaviour. In effect, the
current behaviour system becomes the behaviour mode of operation. The
specifications and requirements for the commander module are listed below.

• The commander module must be implemented in ROS.

• Communication between other nodes and the GUI must support ROS
protocols.

• The module must work with updated versions for modules stated previ-
ously in ongoing work, most importantly the re-sectionimplementation
of the navigation module.

• The module must coordinate behaviour system modules when there
are state transitions between modes of operation states to ensure no

30

Chapter 4. ROS Commander Module

conflicts. Modes of operation to handle are suspension, manual control,
demo and behaviour.

• Transmission to MongoDB Atlas must support all existing ROS topic
data types. This means it should in practice be able to receive all
message types from all nodes.

• The interval of transmissions must be adjustable by use of the param-
eter server.

• Each topic must be inserted into its own collection in MongoDB Atlas.

• The module must support messages being transmitted either periodi-
cally or sporadically.

4.2 Commander Module Design

The design for the commander module is based on the proposed system
architecture and the specifications. The commander module consists of two
ROS nodes, one called topic transmitter and the other topic receiver. The
topic transmitter subscribes to specific topics that are relevant for historic
data storage and transmits them to MongoDB Atlas. The node has two
types of topic transmitters. The first executes transmission of messages
immediately and the second executes transmission of messages periodically
with an adjustable interval parameter. The periodic transmitter is useful
for topics with messages that arrive at too low or too high of a frequency.
The topic receiver subscribes to a (for now empty) robot mode topic. It
also publishes to every topic it requires in order to effectively control the
behaviour system.

4.3 Implementing Commander Module

4.3.1 The Topic Transmitter ROS Node

When working on ROS nodes it can be advantageous to follow ROS best
practices. The best practices specify tips for using roslaunch, standard units
of measurements and how to the robot system among others and is highly
encouraged. It is also encouraged to follow a Style Guide or follow the style
of existing code for readability. The PyStyleGuide [23] and PEP 8 [24] were
used for Python code in this thesis. The ROS C++ Style Guide [25] or
Google C++ Style Guide [26] can be used for C++ code. [27]

31

Chapter 4. ROS Commander Module

Topic Transmitter

__init__(self):
callback_send(self,	message):
callback_send_periodic(self,	topic):
transmit_loop(self,	topic):
transmit_data(self,	topic):

Publishers:
/cyborg_controller/register_event
/cyborg_controller/emotional_controller

Subscribers:
All other topics
/Rosaria/battery_recharge_state
/Rosaria/battery_state_of_charge
/Rosaria/battery_voltage
/RosAria/motors_state
/cyborg_controller/state_change

Parameters:
/cyborg_commander/transmitter_interval
topic_name + /transmission_interval

ROS node

ROS Topic

ROS Parameter

Figure 4.3: Class diagram for topic transmitter ROS node.

The topic transmitter was developed in Python as a ROS node with a single
Python class called Topic_Transmitter. The class is instantiated by the
main node called commander. Topic_transmitter uses pymongo, which is a
python library to interface with MongoDB, and rospy_message_converter
to convert ROS messages into JSON. Using the parameter server one can
define transmission intervals for either specific topics using rosparam on the
specific topic transmitter_interval value or on all intervals with the cyborg
commander transmitter_interval topic. If both are defined then specific
interval is prioritized. Every ROS topic data type is supported including
ones from the re-implemented navigation module. The full list is added in
Appendix B.2. The class diagram for the topic transmitter ROS node is
presented in Figure 4.3. There are four methods in the topic transmitter,
they are presented below.

callback_send: Callback for normal send operation. Simply gets name of
topic and calls transmit_data function.

callback_send_periodic: Callback for periodic send operation. It saves
the message and if there isn’t a dedicated thread for the topic it creates a
thread with transmit_loop as target method.

transmit_loop: Thread running in loop that executes transmit_data at a
set time interval. Also checks with parameter server to see if topic transmis-
sion interval changes.

transmit_data: Converts ROS messages to JSON, adds current date and
time in UTC (Coordinated Universal Time) time format. Lastly it inserts
JSON data into appropriate MongoDB Atlas collections.

The following shows an example conversion as done in the transmit_data

32

Chapter 4. ROS Commander Module

method:
1 """ ROS message """
2 charging_state: 0 charge_percent: 100
3

4 """ Converted message (JSON) with date added """
5 {
6 ’date’: datetime.datetime (2020 , 2, 4, 14, 32, 6, 908047) ,
7 u’charging_state ’: 0,
8 ’_id’: ObjectId(’5de7b55325eb2f36cbr8b7c5 ’),
9 u’charge_percent ’: 100.0

10 }

Listing 4.1: Example conversion from ROS message to JSON format.

4.3.2 The Topic Receiver ROS Node

ROS node

ROS Topic

Subscribers:
/cyborg_commander/robot_mode

Topic Receiver

	
__init__(self):
robot_mode_callback(self,	message):
start_behaviour(self):
start_demo(self):
start_manual(self):
stop(self):

Publishers:
/cyborg_controller/register_event
/cyborg_controller/emotional_controller

Figure 4.4: Class diagram for topic receiver ROS node.

The topic receiver was developed in Python as a ROS node with a single
Python class called Topic_Receiver. The class, like the transmitter, is also
instantiated by the main commander node. The states startup, suspension,
demo and manual were added to the state machine and the entire state
machine at onset was put into a state machine container. The full state
machine is laid out in Appendix A.2. There are four methods in the topic
transmitter, they are presented below.

robot_mode_callback: Callback method for robot mode topic. The
method checks the topic of type std_msgs/String for what mode of operation
method to call.

stop: The stop method is called by robot_mode_callback. It turns the
emotion system off and puts the state machine into the suspension state. It

33

Chapter 4. ROS Commander Module

was found that no preemption was necessary for navigation or audio as the
behaviour that controls the hardware components are preempted when the
linked state in the state machine is aborted. Because of the circumstances
as stated in the preface, preemption of visualizations could not be tested.

start_behaviour: Start_behaviour called if "behaviour" is sent to the
robot mode topic. It turns the emotion system on, and puts the state machine
into the idle state inside the behaviour state machine container.

start_demo: The start_demo method turns off the emotion system and
puts the state machine into the demo state.

start_manual: Similar to start_demo, the start_manual method turns off
the emotion system and transitions the state machine to the manual state.

The next step was to link the operation mode states with appropriate be-
haviours. The following code was appended to the behaviour module’s launch
file.

1 <rosparam param="startup">
2 visual_mode: "startup"
3 completion_trigger: "time 15"
4 </rosparam >
5 <rosparam param="suspension">
6 visual_mode: "suspension"
7 dynamic: True
8 </rosparam >
9 <rosparam param="demo">

10 visual_mode: "demo"
11 completion_trigger: "time 30"
12 </rosparam >
13 <rosparam param="manual">
14 </rosparam >

Listing 4.2: Behaviour presets for modes of operation.

4.4 Tests and Results

This chapter presents the testing of the topic transmitter, the topic receiver
and the corresponding results. Testing the commander module was done
in a simulated environment whose goal is to replicate the robot’s software
environment as closely as possible. In practice the systems software systems
are identical except for MobileSim which acts as the physical representation of

34

Chapter 4. ROS Commander Module

the Pioneer LX robot base. A computer running Linux distribution Ubuntu
16.04 LTS (Xenial Xerus) OS (Operating System) with the Unity Desktop
environment was used. To setup the ROS simulation environment on a
Ubuntu computer see appended setup script in Appendix C.1. In the case of
outdated guide, refer to updated version on GitHub [28].

4.4.1 Testing Topic Data Type Support

The topic transmitter subscribes to all 98 topics who have a wide variety of
data types. The goal of this test is to see what data types are supported by
the message converter. The test also included testing change of transmission
intervals and support for sporadic or periodic transmissions. Every topic was
sent periodically with an interval of 10 seconds.

4.4.2 Result

The test shows that every topic data type listed in Appendix B.2 are sup-
ported. Transmission interval parameters for all topics were also tested. An
example would be using command rosparam to set the commander module’s
transmission interval topic to 5, which sets the interval for all topics. Figure
4.5 shows the output log in the terminal.

Figure 4.5: Selection of transmitted ROS topics.

4.4.3 Discussion

After running the test several times it was concluded that all data types are
converted and transmitted in a desirable fashion. All topics from the new
navigation module were transmitted successfully. The change of intervals
and the usage of both periodic and sporadic transmission also behaved as
expected. MongoDB Atlas has however some operational limitations for the
M0 Cluster or free version. The 98 topics transmitted concurrently is barely

35

Chapter 4. ROS Commander Module

reaching the 100 operations per second limit. Another limitation to consider
is the logical database size, which is fixed at 512MB. This should be sufficient
for the use cases of this project if only the topics that are relevant for historic
display are transmitted. Lastly the database is limited to transfer 10GB of
data in and 10GB of data out per week, which should be plenty for this
system.

4.4.4 Testing Modes of Operation

A simple test of changing modes of operation was conducted. The purpose of
the test was not to see if modes like demo and manual control operations work
but if the state machine activates the proper states and that the behaviour
system is robust in different scenarios. The test involves publishing mode
of operation commands to the robot_mode topic while also publishing to
other topics which might interrupt the robot in some way. While testing,
the behaviour of state transitions, preemption of navigation, preemption of
audio and the resulting debug logs was observed.

4.4.5 Result

The test shows that the state machine behaves as expected for different
conditions like wandering emotionally or when navigating to location. For
all states in the behaviour system, the state machine correctly transitions to
other modes of operation. Figure 4.7 shows an example of the state machine
when publishing stop to the /cyborg_commander/robot_mode topic with
data type std_msgs/String.

Figure 4.6: Active suspension state.

36

Chapter 4. ROS Commander Module

4.4.6 Discussion

The results from 4.4.5 show that the operation modes perform as expected.
The startup finishes after 15 seconds, demo finishes after 30 seconds and
manual control runs until otherwise told like suspension. An intuitive way of
illustrating the topics for the commander’s computation graph can be done
by using ROS tool rqt_graph. The tool shows publish-subscribe patterns of
topics and packages using directed graphs. The computation graph for the
cyborg commander is displayed in Figure 4.7.

Figure 4.7: Computation graph illustration, boxes are topics and ovals are
packages.

37

5 | EvaluatingWeb App Solutions

This chapter contain evaluations of different web app frameworks for the
GUI. There are many smaller decisions to be made for each framework,
however only the individual frameworks and their integration capabilities
with ROS along with certain criteria are evaluated upon. The criteria for
selection are substantiated in detail in chapter 11, but some noteworthy ones
are rendering speed, popularity / community size, licensing, cross-platform
OS compatibility, ROS-compatibility and maybe most importantly learning
curve.

5.1 Choice of Framework

5.1.1 Django

Django is a server-side, cross-platform web framework for secure and rapid
web application development. Django is open source under the BSD license
and uses Python as its dedicated programming language. Django is oriented
on solving problems with complex database-driven websites. Its principle
"don’t repeat yourself" says a lot about its emphasis on reusability when
creating web components. As a backend (server-side) framework Django
has access to a wide variety of frontend (client-side) libraries in Python to
build user interfaces and includes built-in features for authentication and
administration of their applications. Django could be used to make both
a web app and a server to run on the robot to provide API’s (Application
Programming Interface) for the web app to control the robot. With Django,
roslibpy could be used to allow remote publishing, subscribing, service calls
and other ROS functionality using Python. Roslibpy uses websockets to
connect to ROSBridge Server, part of the ROSBridge Suite of packages.

38

Chapter 5. Evaluating Web App Solutions

Figure 5.1: Django.

5.1.2 Vue

Vue (Vue.js) by Evan Vue is a client-side web framework for building powerful
user interfaces and SPAs (Single Page Applications). It is an open-source,
cross-platform framework that uses JavaScript as its main programming
language. Its focus is on allowing developers to create reactive and com-
posable web components for rapid prototyping. Its virtual DOM (Document
Object Model) mirrors and tracks changes of the actual HTML DOM to
re-render only elements on the page that are actually changing as opposed
to the entire page. The DOM is an interpretation of the document as a tree
structure used to analyse and alter HTML documents. Vue is a lightweight
framework for building UIs quickly and has newly released tooling such
as the Vue CLI. Vue has a shallow learning curve (easy to learn) when
compared to the similar frameworks like Angular and React and arguably
has better documentation. Since Vue apps are built with JavaScript, ROS
can be interfaced with the web app using server libraries like ROSBridge
Server or rosnodejs. To communicate with ROSBridge or rosnodejs, the core
JavaScript library for interactions with ROS called roslibjs could be used.
[29] [30] [31]

Figure 5.2: Vue.

39

Chapter 5. Evaluating Web App Solutions

5.1.3 React

React - or React.js - by Facebook is a cross-platform, client-side web frame-
work for building reactive user interfaces. It is similar to Vue in that it’s
simply a base for building and managing Single Page Applications. It also
shares the virtual DOM tree structure with Vue. However, React uses
a modification of JavaScript called JavaScriptX (JSX) instead of regular
HTML, CSS and JavaScript to develop the web components. Although React
uses the JavaScriptX framework, external libraries for ROS integration like
roslibjs can be used with React with some effort. Although React is easier to
learn and use than Angular, mostly because of Angular’s sheer size, it does
however not match Vue’s ease of use.

Figure 5.3: React.

5.1.4 Angular

Angular by Google is both a client- and server-side web framework that is
used to build Single Page Apps using HTML and TypeScript. TypeScript
is an open-source subset of JavaScript from Microsoft with safety features
like static type checking that enforce functions to use certain data types like
String. Angular is used in larger projects and is a more comprehensive frame-
work that can almost be called a platform. It features, like Vue a dedicated
CLI for creating and managing projects and comes with additional features
"out of the box". Angular offers the most functionality and is arguably the
most powerful framework but has greater complexity and requires one to
learn TypeScript since most of its documentation is written for TypeScript.
Angular supports roslibjs the same way as React and Vue does by using a
package manager, but implementing the library requires some effort.

40

Chapter 5. Evaluating Web App Solutions

Figure 5.4: Angular.

5.1.5 ASP.NET Web Forms

ASP.NET - or ASP.NET 4.7.2 - is both a client- and server-side framework
for building web apps using HTML, CSS, JavaScript and C#. It is the
first programming model that was available in ASP.NET. There are differ-
ent underlying frameworks available for ASP.NET like ASP.NET MVC and
ASP.NET Razor Pages. ASP.NET Web Forms has an extensive collection of
libraries and tooling and is run on the Visual Studio IDE (Integrated Software
Environment). Web Forms features drag-and-drop functionality for creating
page elements like text boxes and buttons. Web Forms runs exclusively on
Windows and is licensed by Microsoft. The functionality of the page is driven
by code written in the code-behind class file (*.aspx) in the C# programming
language which acts as the application’s server-side code. Usual ROSBridge
functionality could be replaced with ASP.NET SignalR, a high performance
server for real-time applications.

Figure 5.5: ASP.NET logo, Used with permission from Microsoft.

41

Chapter 5. Evaluating Web App Solutions

5.1.6 ASP.NET Core

ASP.NET Core - or .NET Core - is a free, cross-platform, client- and server-side
framework and is the complete rework of ASP.NET MVC for modern web
app development. Microsoft has released many underlying frameworks like
ASP.NET Core Blazor, ASP.NET Core Razor pages and ASP.NET Core
MVC. The new .NET Core version of SignalR could be used here aswell.

Figure 5.6: ASP.NET Core.

5.2 Method of Choice

Vue was selected as the most suitable option for framework. Although the
other frameworks offer solid server-side development capabilities, the time
saved from integrating roslibjs or roslibpy in the other frameworks is very
valuable. Although a reactive, SPA, frontend centered Python framework
would be ideal as to prevent including more than one programming language.
The object-oriented programming in JavaScript is very similar to that in
Python, which is not the case for C#. ROSBridge will be used as handler
between ROS system and GUI.

42

6 | Specifications and Requirements

As a stand-alone module and possible platform for future user interfaces,
the GUI should withstand scrutiny. This chapter contains the specifications
and requirements necessary for the web app to perform the functionalities as
described in the problem description.

1. The GUI should display information about SMACH states, robot base
info like battery charge, PAD values etc.

2. The GUI must use the ROSBridge Server to publish messages to ROS
topics, call ROS services etc.

2.1. Topics that are subscribed and published to should be respectively
unsubscribed and unadvertised to when exiting the GUI.

3. Elements of the GUI must be contained in modular components and
elements should be reactive whenever possible.

4. The GUI must have the ability to send the robot to a location using a
2D map and click-to-navigate functionality.

5. The GUI must support teleop control of the robot.

6. (Optional) The Computer Vision module’s videostream should be stream-
able to the GUI.

7. (Optional) The GUI should be able to show historic graphs of saved
messages.

43

7 | Web App Design

This chapter contains the design process for the web app. Inspiration was
taken from other projects and are presented in subsection 7.1. To make the
design process of the web components iterative, the page layout was designed
using wireframes. The final wireframes for the web app are presented in
subsection 7.2.

7.1 Inspirations

There were many inspirations to take from when designing and building the
application. The key projects are presented in this section.

7.1.1 RobotWebTools Webviz

Webviz by Cruise Automation is part of the RobotWebTools initiative which
is a collection of open-source modules to allow web applications interface with
ROS. Their Webviz application allows users to drag-and-drop ROS bags to
be played back live for debugging purposes. Figure 7.1 illustrates their demo
website where bag files from an autonomous vehicle are played back. [32]

44

Chapter 7. Web App Design

Figure 7.1: Webviz web-based application for playback of ROS bag files.

7.1.2 ROS Industrial

ROS-Industrial is an open-source collection of libraries, tools and drivers
for robotics researchers and professionals to build industrial hardware for
manufacturing companies. The program is used for advanced factory au-
tomation and is supported by the ROS-Industrial Consortium which is a
world-wide membership organization with members like robotics companies
ABB and ARM. The program has a wide array of projects that aim to
increase productivity for industrial robots by evolving robots to handle a
variety of automation tasks. [33]

Figure 7.2: Sample GUI from ROS Industrial project.

45

Chapter 7. Web App Design

7.1.3 MOV AI

MOV AI is a company developing an industry-grade operating system and
software development framework using ROS. The use case is for autonomous,
collaborative robots like robots in automated storage warehouses. MOV AI
aims to shorten return of investment for companies looking to replace manual
labor with automation. Their Virtual ROS Launch system replaces ROS
tools like roslaunch and they provide their own IDE to make customizable
GUIs. [34]

Figure 7.3: MOV AI GUI displaying their customizable widgets.

7.2 Page Layout

Simplified wireframes or page layout diagrams were made for the GUI to
identify necessary components and their placements. To meet the desired
functionality three separate pages were found to be required. The final
versions of page layouts are laid out in Figure 7.4, Figure 7.5 and Figure
7.6.

46

Chapter 7. Web App Design

Content

Header

Footer

Command tool

Debug consolestart

demo

manual

stop

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic Topic

Home | Map | Manual ControlConnection status: ON

Figure 7.4: Wireframe of Home page. Header and footer elements were
designed to persist through each page.

Content

Header

Footer

MAP

Debug console

Home | Map | Manual ControlConnection status: ON

Motor ON Motor OFF Motor Status: ON

Set Initial Pose Setting initial pose: TRUE

Figure 7.5: Wireframe of Map page.

47

Chapter 7. Web App Design

Teleop

Header

Footer

Debug console

Home | Map | Manual ControlConnection status: ON

w

a s d
teleopJoystick

Video

Speed
MAP

Figure 7.6: Wireframe of Manual Control page.

48

8 | Implementation

This chapter presents the implementation of the Web App GUI following the
previous specifications and design. The chapter starts with explaining the
Vue CLI and the vue folder structure in section 8.1. Section 8.2 describes
single file components and how they have been been used to create modular
components. The components are presented in section 8.3 and the final result
of the web application is displayed at the end of this chapter.

8.1 Vue CLI

The Vue CLI is a terminal interface that can be used to quickly stage the
application for development. It offers a browser UI to quickly serve, build and
inspect the application locally. Vue CLI runs node.js and contains a collection
of core plugins like the babel compiler or optional TypeScript. The UI also
includes a tab for installing external plugins to add to the project from npm,
which is the standard package manager Vue. [35]

8.1.1 Folder structure

Like the filesystem level of ROS, Vue has a directory structure that is com-
monly shared between projects.

• src/ : Contains the source code for the project.

• src/components : Single file components with .vue extension.

• src/views : Also contains .vue files, but a view is the "page" single file
components used for routing.

• src/router : In a Vue SPA, pages aren’t really pages but rather routed
views on the same page. The router directory contains the index.js
that dynamically renders the router between views.

• dist/ : Contains minified and compiled project HTML, CSS and JavaScript
build content. Entire application in one minified directory.

49

Chapter 8. Implementation

• assets/ : All Vue assets to be imported into Vue components.

• public/ : Static assets to be copied into the project. Most important
is public/index.html, which is the HTML document that the app will
be built on.

• node_modules/ : Contains all JavaScript libraries and dependencies
used by the npm package manager.

• package.json: Metadata for JavaScript libraries and dependencies, used
by npm.

8.2 Single File Components

Using the build tool Webpack, it is possible to create single-file components
(*.vue extension) in Vue. A component is divided into three parts. The
HTML code inside template tags, the JavaScript code inside script tags
and finally CSS stylesheets inside style tags. The example below shows
homepage.vue.

1 <template >
2 <div id="homepage">
3 <contactForm ></contactForm >
4 </div >
5 </template >
6

7 <script >
8 import contactForm from "../ components/page/contactForm";
9

10 export default {
11 name: "homepage",
12 components: {
13 contactForm
14 }
15 }
16 </script >
17

18 <style scoped >
19 #page {
20 background -color: #f3f3f3;
21 }
22 </style >

Listing 8.1: Page view component with a contactForm component.

50

Chapter 8. Implementation

8.3 Implementation of Components

This section shows the implementation of individual components and their
respective results. BootstrapVue was used to integrate Bootstrap into the
project. Bootstrap is a front-end CSS library to organize page layouts in grid
systems and build page elements such as alerts, tooltips and pop-up modals
that fit on mobile devices. More information on BootstrapVue and its use
cases can be found in [36].

8.3.1 Connection Status

The reactive connection status component was created using the roslibjs
library to establish a connection with the ROSBridge Server locally. ROS-
Bridge will be explained later in Section 10.2. Depending on the status
of the connection, loading, error or active icons are displayed along with
a descriptive tooltip. The component also contains a reconnect button for
re-establishing connection. Before the user leaves the page the connection
is closed using the beforeDestroy() Vue event. Listing 8.2 shows how the
connection is established in the script tag.

1 import Vue from "vue";
2 import ROSLIB from "roslib";
3

4 var ros = new ROSLIB.Ros({
5 url: "ws:// localhost :9090"
6 });
7 Object.defineProperty(Vue.prototype , "$ros", { value: ros });

Listing 8.2: Establishing connection with ROSBridge and allows connection
be accessed with $ros object.

Figure 8.1: Connection status icon with tooltip and reconnect button.

51

Chapter 8. Implementation

8.3.2 Cards

Three reactive card components were created. One for SMACH states called
SMACHStateCards, another for RosAria information called ariaCards and
another for last text-to-speech input and emotion system status called etc-
Cards. The component uses the established ROS connection to subscribe
to their respective topics. When the cards are destroyed (leaving app or
changing view) the topics are unsubscribed. A snippet code for subscribing
to text to speech is shown in Listing 8.3.

1 <template >
2 <div id="etcCards">
3 <b-card -text>{{ text_to_speech }}</b-card -text>
4 </div>
5 </template >
6

7 <script >
8 import ROSLIB from "roslib";
9 export default {

10 name: "etcCards",
11 data() {
12 return {
13 text_to_speech: "-"
14 };
15 },
16 created () {
17 this.textToSpeechTopic = new ROSLIB.Topic ({
18 ros: this.$ros ,
19 name: "/cyborg_audio/text_to_speech",
20 messageType: "std_msgs/String"
21 });
22 this.textToSpeechTopic.subscribe(function(msg) {
23 self.text_to_speech = msg.data;
24 });
25 },
26 destroyed () {
27 this.textToSpeechTopic.unsubscribe ();
28 }
29 }
30 </script >

Listing 8.3: Reactive BootstrapVue Card element updated with text to
speech messages.

52

Chapter 8. Implementation

Figure 8.2: ariaCards and etcCards components.

8.3.3 Debug Console

The debug console subscribes to topic /rosout of type rosgraph_msgs/Log,
formats the message and outputs it to a textarea element. The debug console
component is, like the connection status, shared by import by different views.
The debug console is shown in 8.3.

53

Chapter 8. Implementation

Figure 8.3: Adjustable debug console component with labels.

8.3.4 Command Tool

A command tool was re-implemented from the cyborg command package cre-
ated by Thomas Rostrup Andersen in 2016 [6]. The tool displays the current
available transitions or events for the state machine and their resulting states.
The available actions are event, speech, emotion and emotionswitch. Given a
state transition as command, the event action will put the state machine into
the resulting state. Given any speakable text, the speech action will enable
text to speech by using the pyttsx3 engine in the audio module to play the
text as sound through the speaker. The emotion action, given emotions like
angry or sad, switches the emotion of the emotion system to predefined PAD
values listed in appendix B.1. Finally the emotionswitch, with commands
on/ON or off/OFF turns the emotion system on or off. A guide for the tool
will pop up if the ? at the top is clicked. The guide is added in Appendix
A.1.

54

Chapter 8. Implementation

Figure 8.4: Command tool showcasing different available transitions/events
and their resulting states. Top button opens up user manual in Appendix
A.1

.

8.3.5 Navigation Map

A navigation map with click-to-navigate funtionality was added. RobotWebTool’s
JavaScript libraries ros2djs and nav2djs were modified to display the robot
in the 2d map of its own creation in real time. With an initial press and hold
with a following orientation drag and release, a goal is sent to the /move_base
action server via ROSBridge. A picture of the robot was added and the path
of the robot from topic /move_base/NavfnROS/plan of type nav_msgs/Path
was also added. The map consists of a canvas element, made interactive with
JS libraries easeljs and eventemitter2. Nav2djs extends ros2djs’s visualization
of a map with navigational capabilities. When the robot is initialized it
cannot orientate itself in the world. A button to estimate initial pose was
added, instead of navigating to a location a click will set the robot’s pose.
For this the robot_pose_publisher package was added to the ROS system.
Buttons for calling services to turn the motors on or off were also added.

55

Chapter 8. Implementation

Figure 8.5: Map component with click-to-navigate functionality and with
possibility to estimate initial pose. Buttons at bottom turn motors on and
off. X, Y coordinates and RGB values in top right corner.

8.3.6 Manual Teleoperation and Joystick

Manual teleoperation using wasd keys or joystick were added as a component.
JS libraries keyboardteleopjs and nipplejs was used for these two elements
along with integration of ROS package web_video_server in ROS system to
handle live streaming video. The component was based on code from [37].
Figure 8.6 showcases the component.

56

Chapter 8. Implementation

Figure 8.6: Video stream from Computer Vision Module using ZED
Stereoscopic camera. Sliding bar for selection of rotation and velocity speed.
Joystick for manual control in blue. Teleoperation is also optional using wasd
keys.

57

Chapter 8. Implementation

8.3.7 Historic Graphs

Although optional, historic graphs from the database were added to the web
app. The 5 topics listed in Figure 4.3 were considered to be the most relevant
topics to store data from. Using MongoDB Charts, a visualization tool to
create charts for mongoDB data in the browser, an iframe element that
updates every minute was implemented in the web application. The historic
charts were ultimately left out of the final web app as to prioritize the author’s
time spent developing other integrations. An example chart displayed on the
web app is shown in Figure 8.7 and the final web pages are presented below
in Figures 8.8, 8.9 and 8.10.

Figure 8.7: Active SMACH state for the last week in amount of 10’s of
seconds.

58

Chapter 8. Implementation

Figure 8.8: Final home view.

Figure 8.9: Final map view.

59

Chapter 8. Implementation

Figure 8.10: Final Manual Control view.

60

9 | Testing and Results

This chapter presents the testing of the Web Application, the following results
and a short discussion of the results. The web app was tested with the
ROS system running together with MobileSim. The conducted tests can be
considered as integration testing since both ROSBridge and the web app
are tested simultaneously. The app is served locally using the Vue CLI
user interface. To setup the ROS simulation environment on a Ubuntu
Xenial computer see setup script in Appendix C.1. To setup development
environment read Github README file at [38]. Appendix D also provides
notes for developing with Vue.

9.1 Testing Navigation Map

The navigation map in the Map view was tested to examine its stability
under various circumstances. The test procedure involved among other
things checking pose estimation, turning motors on and off while navigating,
using joystick or keyboard for control while simultaneously navigating and
sending new goals rapidly. The simulator was observed together with the
application’s map to ensure localization was correct at all times.

9.1.1 Result

The robot was moved around put into different circumstances for an hour.
Turning the motors on or off will not stop the navigation module from
sending messages to change twist and velocity, but will stop the robot from
moving. The commands from the different inputs of joystick and teleop
become interweaved without other errors. Figure 9.1a and 9.1b shows the
navigation map during testing.

61

Chapter 9. Testing and Results

(a) Navigation Map web app. (b) MobileSim.

9.1.2 Discussion

The navigation is robust to disturbances from joystick and teleop control
to a certain degree. The pose estimation works as intended and is precise
enough for the robot to localize itself after about 3 seconds of navigation. The
interweaving between inputs is not unreasonable behaviour and concurrent
users all have maps updated in real-time as expected. The loading time on
the map is 2ms but the nav2djs library takes about two seconds to display
it. This could be optimized by using eventemitter3 instead of eventemitter2
or switching out nav2djs with another library.

9.2 Testing Concurrent Clients

It is important that the web app and ROSBridge can handle multiple users
simultaneously. All features were tested with 4 tabs open at the same time
providing input, simulating several clients on the app.

9.2.1 Result

Simultaneous audio input resulted in queued audio playback. Simultaneous
navigation led to only the latest goal location be used. Input from one
browser shows up instantaneously in the other browser. Figure 9.2 shows
two users monitoring and controlling the robot at the same time.

62

Chapter 9. Testing and Results

Figure 9.2: Two simultaneous users.
.

9.2.2 Discussion

Multiple concurrent users worked with no problems. ROSBridge handles
subscribing and publishing as expected. The behaviour of the cyborg modules
also matched the expectations.

63

10 | Bridging and Deployment

After deployment, to enable remote communication between ROS and the
web app, some bridging was required. This chapter explains the continuous
deployment to Azure, the Rosbridge Suite of packages, the Web Video Server
package and how No-ip hostnames with SSL certifications were used to allow
for remote interaction with the robot.

10.1 Deploying Web App

An Azure Web App service was created to host the app on the web. The
Node 12 LTS runtime stack on a Windows operating system was used. To
allow continuous deployment, the deployment center in the Azure portal can
interface Azure with GitHub where the code is stored using the Kudu engine.
Since the entire app build is stored inside the dist/ folder, to deploy only the
contents of dist/ a .deployment file is added to the project. It is used by the
Kudu engine to choose what folder to deploy to the web. There are many
guides online describing how to deploy web apps on Azure so it is omitted in
this thesis.

10.2 The Rosbridge Suite

The Rosbridge Suite by RobotWebTools was used to provide the transport
layer between the robot and the website using websockets. One of its pack-
ages, the Rosbridge Server, is used as an interface between client web browsers
and a ROS system. This is the server that libraries like roslibjs communicates
with as mentioned earlier in Section 8.3. Another suite package called rosapi
is used to retrieve meta-information like lists of services and topics via service
calls. [39][30] [40]

64

Chapter 10. Bridging and Deployment

These calls must conform to the rosbridge protocol which is the JSON format
shown in Listing 10.2.

1 { "op": "subscribe",
2 "topic": "/cmd_vel",
3 "type": "geometry_msgs/Twist"
4 }

The RosBridge Server listens for any attempted connections, handle them as
clients and serve them information. The server handles interactions on the
GUI like ROS service calls, 2D nav goals and keyboard events in the teleop by
converting JSON messages to ROS calls using the Rosbridge Library. The
rosbridge server listens on port 9090 by default, handling any websocket
requests containing JSON data matching the rosbridge protocol. Rosbridge
was installed and added to the cyborg.launch roslaunch file in the Cyborg
Launch package. A context diagram for rosbridge is presented below. [32]

Robot

Cyborg Commander

Websocket

Web App

ROS nodes

GUI

Websocket
Cyborg controller

ROS Topic

Register Event
Emotional Control

 Rosbridge

Figure 10.1: Context diagram for Rosbridge, between ROS nodes, the topics
go through the ROS Master.

10.3 The Web Video Server

For live videostreams, another server was added to the ROS system. The web
video server allows for live streaming of ROS images to clients on local or
remote browsers. Similarly to Rosbridge, it opens a local port that listens for
incoming requests. Using the Jetson TX1 Developer board, the Computer
Vision module handles video from the ZED Stereoscopic camera. This video
is published to the topic /videostream, which the server broadcasts on the
local 8080 port. The server supports two basic types of streams, image and
video. A context diagram for the server is shown below. [41]

65

Chapter 10. Bridging and Deployment

Robot

web video server

HTTP

Web App

ROS nodes

GUI

Port: 8080

ROS Topic

Computer Vision
/videostream

ROS Package

Figure 10.2: Context diagram for web video server, the specific node the web
video server runs depends on choice of stream encoding.

10.4 No-ip Hostname and SSL authentication

Because the Eduroam school network dynamically changes the ip of the
robot when it changes Wi-Fi access points, communicating with the robot
from the internet is not possible. To solve this problem, the No-ip dynamic
DNS (Dynamic Name Server) update client was installed and a No-ip online
hostname created. A context diagram for No-ip is presented in figure 10.3.

66

Chapter 10. Bridging and Deployment

ROBOT

no-ip

SCHOOL NETWORK

INTERNET

Eduroam
External ip (dynamic):
255.xxx.xxx.xxx

Dynamic DNS update client

Web App

cyborg.sytes.net:PORT
255.xxx.xxx.xxx:PORT

Figure 10.3: Context diagram for web video server, the specific node the web
video server runs depends on choice of stream encoding.

As the robot switches Wi-Fi access points when wandering the hallways,
its internal IP address changes dynamically. The DDNS client tracks the ip
and updates the static domain name cyborg.sytes.net. To install the No-ip
update client, follow the guide in Appendix C.2. Listing 10.1 shows how the
hostname replaces the local connection.

1 var ros = new ROSLIB.Ros({
2 // url: "ws:// localhost :9090"
3 url: "ws:// cyborg.sytes.net :9090"
4 });

Listing 10.1: Replacing local communication.

The website runs on the HTTPS protocol. Websites running in HTTPS
only accept resources over secure https connections. This is a problem for
our hostname, which runs on http. The hostname website was therefore

67

Chapter 10. Bridging and Deployment

authenticated for secure socket connections and rosbridge was modified to
handle these connections. Since image and video files are considered passive
elements in a browser, we don’t have to authenticate for the web video server
to retrieve http requests on the web app. A guide to setup SSL authentication
for a No-ip hostname is added to Appendix C.2. The changes made to the
rosbridge launch file is shown below in Listing 10.2.

1 <include file="$(find rosbridge_server)/launch/ \\
2 rosbridge_websocket.launch">
3 <arg name="certfile" default="$(find cyborg_commander) \\
4 /cyborg_sytes_net_ee.crt" />
5 <arg name="keyfile" default="$(find cyborg_commander) \\
6 /cyborg_sytes_net.key" />
7 <arg name="ssl" default="true" />
8 <arg name="authenticate" default="false" />
9 </include >

Listing 10.2: Forcing ssl over Rosbridge.

68

11 | Discussion

The focus of this thesis has been to develop a GUI for real-time monitoring,
commanding and controlling capabilities. As a collaborative project, the
author went beyond the problem description to build a platform for students
to build user interfaces by iterative work for years to come. For in the future
to visually broadcast the capabilities of the robot’s MEA communication,
Computer Vision module’s object recognition software and its emotions was
an important secondary focus.

Deciding which framework to go for was therefore not a simple task,
there were differing opinions for each framework, however the most im-
portant factors would be the frameworks learning curve and modularity
considering further development. The documentation for each framework was
gone through, their benchmarks and popularity was explored and compatible
libraries with ROS were examined. Vue was found to be the best in those
regards. After using Vue, I am confident it was the right choice of framework.

Due to the circumstances, testing on the physical robot was not possible.
This is unfortunate since checking the software load on the real robot could
be useful to check for hardware limitations, which was already a suggestion of
future work from Areg’s thesis (Computer upgrade, p.117) [7]. The situation
led to testing in simulated environments, which limited other tests for remote
connectivity. However, the specifications were met and exceeded, and the
GUI is ready to be used as a stand-alone module.

69

12 | Future Work

The most important suggestions for future work are presented in the list
below:

• No-ip - Most important of all is to get the DDNS client up and running
so that the GUI can access the robot remotely. Please see guides in
appendix C.2. No-ip has been proven to work on the Eduroam network
previously according to a conversation with [42].

• Admin and user login page - Separate administrator and regular
user single sign-on pages was explored with Azure active directory b2c
that could be integrated with the NTNUCyborg GitHub organization.

• Mobile Support - The web app functions on mobile devices, but
some proportions are wrong. Minor modification to BootstrapVue’s
size properties would fix this.

• Test live camera - The web video server should be tested with live
video from the stereoscopic camera.

• Domain - A domain name could be provided by NTNU.

• Send to location in command tool - Sending the robot to the
predefined locations in the database, could be a useful debugging tool.

• Computer upgrade - As stated in the discussion, the computer in
the robot base struggles with navigation and visualization, due to slow
performance. A new or several distributed computers could solve this
problem.

• Software upgrades - Updating the system to Ubuntu 18.04 or 20.04
with ROS 2 and Python 3 could help explore more of the robot’s
potential.

70

13 | Conclusion

The ROS Commander node was developed and integrated and tested with
the ROS system. A component-based, reactive Vue SPA was designed, its
specifications stated and its components implemented and tested. Com-
ponents such as a click-to-navigate navigation map, on-screen joystick and
teleop controls for manual control and command tool for changing states
in state machine. Various modules like the controller and were modified to
work with the GUI. Communication between the web app and ROS computer
was established with secure HTTPS protocols using No-ip. This means all
suggested features specified in the Problem Description were implemented
fully and tested on the website.

Commander node for top-level management of ROS package nodes and
communication between the robot and the cloud. Videostream from the robot
camera of the Computer Vision Module was achieved on the website. His-
torical data from MongoDB Atlas was implemented with MongoDB Charts
on the website, but was deemed unnecessary for the time being.

Send to location, monitor behavioursystem, alter state-machine states,
select robot mode of operation. Change behaviour state, text-to-speech.
Accessible on a webpage for computers and cellphones.

71

Appendices

72

A | Diagrams and figures

Appendix A.1 Command Tool Manual

Figure A.1: Instructions for event, speech, emotion and emotionswitch
commands.

73

Appendix A. Diagrams and figures

Appendix A.2 State Machine

Figure A.2: State machine visualized in Smach Viewer.

74

B | Tables

Appendix B.1 Table of Presets for PAD Emo-
tion Model Emotions

Name Pleasure Arousal Dominance

Emotions : angry -0.51 0.59 0.25
bored -0.65 -0.62 -0.33
curious 0.22 0.62 -0.10
dignified 0.55 0.22 0.61
elated 0.50 0.42 0.23
inhibited -0.54 -0.04 -0.41
puzzled -0.41 0.48 -0.33
loved 0.89 0.54 -0.18
unconcerned -0.13 -0.41 0.08
hungry -0.44 0.14 -0.21
sleepy 0.20 -0.70 -0.44

Table B.2: Presets of emotions found in controller node, used by emotion
system node. PAD values range from -1 to 1.

75

Appendix A. Diagrams and figures

Appendix B.2 Table of Supported ROS Topics
and Data Types

Name Type

/amcl/parameter_descriptions dynamic_reconfigure/ConfigDescription
/amcl/parameter_updates dynamic_reconfigure/Config
/amcl_pose PoseWithCovarianceStamped
/clicked_point PointStamped
/client_count Int32
/cmd_vel Twist
/connected_clients ConnectedClients

/controller_viewer/smach/container:
_init SmachContainerInitialStatusCmd
_status SmachContainerStatus
_structure SmachContainerStructure

/cyborg_audio:
/feedback_playback String
/feedback_text_to_speech String
/playback String
/text_to_speech String

/cyborg_behavior:
/cancel GoalID
/command_location String
/dynamic_behavior String
/feedback StateMachineActionFeedback
/goal StateMachineActionGoal
/result StateMachineActionResult
/status GoalStatusArray

/cyborg_controller:
/emotional_controller String
/emotional_feedback EmotionalFeedback
/emotional_state EmotionalState
/register_event String
/state_change SystemState

76

Appendix A. Diagrams and figures

/cyborg_navigation:
/current_location String
/navigation/cancel GoalID
/navigation/feedback NavigationActionFeedback
/navigation/goal NavigationActionGoal
/navigation/result NavigationActionResult
/navigation/status GoalStatusArray

/cyborg_primary_states:
/cancel GoalID
/feedback StateMachineActionFeedback
/goal StateMachineActionGoal
/result StateMachineActionResult
/status GoalStatusArray

/cyborg_visual/domecontrol String
/initialpose PoseWithCovarianceStamped
/joint_states JointState
/map OccupancyGrid
/map_metadata MapMetaData
/map_updates OccupancyGridUpdate
/move_base/cancel PoseStamped
/move_base/current_goal PoseStamped
/move_base/feedback MoveBaseActionFeedback

/move_base/global_costmap:
/costmap OccupancyGrid
/costmap_updates OccupancyGridUpdate
/footprint PolygonStamped
/inflation_layer/parameter_descriptions dynamic_reconfigure/ConfigDescription
/inflation_layer/parameter_updates dynamic_reconfigure/Config
/obstacle_layer/parameter_descriptions dynamic_reconfigure/ConfigDescription
/obstacle_layer/parameter_updates dynamic_reconfigure/Config
/parameter_descriptions dynamic_reconfigure/ConfigDescription
/parameter_updates dynamic_reconfigure/Config
/static_layer/parameter_descriptions dynamic_reconfigure/ConfigDescription
/static_layer/parameter_updates dynamic_reconfigure/Config

/move_base/goal MoveBaseActionGoal

77

Appendix A. Diagrams and figures

/move_base/local_costmap:
/costmap OccupancyGrid
/costmap_updates OccupancyGridUpdate
/footprint PolygonStamped
/inflation_layer/parameter_descriptions dynamic_reconfigure/ConfigDescription
/inflation_layer/parameter_updates dynamic_reconfigure/Config
/obstacle_layer/parameter_descriptions dynamic_reconfigure/ConfigDescription
/obstacle_layer/parameter_updates dynamic_reconfigure/Config
/parameter_descriptions dynamic_reconfigure/ConfigDescription
/parameter_updates dynamic_reconfigure/Config

/move_base/NavfnROS/plan Path
/move_base/parameter_descriptions dynamic_reconfigure/ConfigDescription
/move_base/parameter_updates dynamic_reconfigure/Config
/move_base/result MoveBaseActionResult
/move_base_simple/goal PoseStamped
/move_base/status GoalStatusArray

/move_base/TrajectoryPlannerROS:
/cost_cloud PointCloud2
/global_plan Path
/local_plan Path
/parameter_descriptions dynamic_reconfigure/ConfigDescription
/parameter_updates dynamic_reconfigure/Config

/odom Odometry
/particlecloud PoseArray
/robot_pose Pose

/RosAria:
/battery_recharge_state Int8
/battery_state_of_charge Float32
/battery_voltage Float64
/bumper_state BumperState
/motors_state Bool
/parameter_descriptions dynamic_reconfigure/ConfigDescription
/parameter_updates dynamic_reconfigure/Config
/sim_S3Series_1_laserscan LaserScan
/sim_S3Series_1_pointcloud PointCloud
/sonar PointCloud
/sonar_pointcloud2 PointCloud2

78

Appendix A. Diagrams and figures

/rosout Log
/rosout_agg Log
/tf TFMessage
/tf_static TFMessage
/status GoalStatusArray

Table B.3: Names and Types of supported ROS topics.

79

C | Guides

Appendix C.1 Setup Robot Simulation

1 #!/bin/bash
2

3 echo "Setup script running ..."
4 echo "WARN - Specific versions of packages are needed in this
5 project and when installing warnings about deprecated or old
6 software may show up. This is expected."
7 read
8

9 # This may not be complete , and may be missing some libraries
10 # or install commands
11 # All commands should also be updated to include versions.
12

13

14 echo "---------- General installs and setup ----------"
15 echo "to continue press enter"
16 read
17

18 sudo apt -get update
19 sudo apt -get install git
20 sudo apt install python2 .7
21 sudo apt install python -pip
22 pip install --upgrade pip ==20.0.2
23

24

25 echo "---------- Install ROS ----------"
26 echo "to continue press enter"
27 read
28

29 ## ROS
30 # Setup your computer to accept software from
31 # packages.ros.org:
32 sudo sh -c ’echo
33 "deb http :// packages.ros.org/ros/ubuntu $(lsb_release -sc)
34 main" > /etc/apt/sources.list.d/ros -latest.list’

80

Appendix A. Diagrams and figures

35 # Set up your keys
36 sudo apt -key adv --keyserver ’hkp :// keyserver.ubuntu.com :80’
37 --recv -key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
38

39 sudo apt -get update
40 # Full ROS installation
41 sudo apt install ros -kinetic -desktop -full
42 # Find avaliable packages
43 apt -cache search ros -kinetic
44 read -p "Available packages (above).
45 Take a note if some are needed. Press ENTER to continue."
46 # Initialise rosdep
47 sudo rosdep init
48 rosdep update
49 # Setup the environment
50 echo "source /opt/ros/kinetic/setup.bash" >> ~/. bashrc
51 source ~/. bashrc
52 # Dependencies for building packages
53 sudo apt install python -rosinstall python -rosinstall -generator
54 python -wstool build -essential
55 # Create a workspace
56 mkdir -p ~/ catkin_ws/
57

58

59 echo "---------- Clone Cyborg repo from Git ----------"
60 echo "to continue press enter"
61 read
62

63 ## Clone Cyborg Repo from git , and place it in the right
64 directory
65 cd ~/ catkin_ws
66 git clone https :// github.com/thentnucyborg/CyborgRobot.git
67 #clones the master branch
68

69 cd ./ CyborgRobot
70 echo "Use the master branch? Please type the branch name or
71 ’yes ’ if you wish to use the master branch."
72 read branchname
73 if ["$branchname" == "yes"]
74 then
75 echo "Using the master branch"
76 else
77 git checkout $branchname
78 fi
79

80 mv ~/ catkin_ws/CyborgRobot /* ~/ catkin_ws/
81 #move all files and folders to the workspace
82 mv ~/ catkin_ws/CyborgRobot /.* ~/ catkin_ws/
83 #move all hidden files and folders to the workspace.

81

Appendix A. Diagrams and figures

84 Ignore the message saying . and .. cannot be moved
85 echo "Please ignore the message saying . and ..
86 cannot be moved"
87 rm -rf ~/ catkin_ws/CyborgRobot #delete the now empty folder
88

89

90

91 echo "---------- Install Arnl and ARIA .debs ----------"
92 echo "to continue press enter"
93 read
94

95 echo "Check that you have downloaded the Arnl and Arnl -base ,
96 Aria and MobileSim .deb files into Downloads from Box to be
97 able to continue"
98 read
99

100 cd ~/ catkin_ws/setup/installs
101 sudo dpkg -i arnl -base_1 .9.2+ ubuntu16_amd64.deb
102 sudo dpkg -i libarnl_1 .9.2a+ubuntu16_amd64.deb
103 sudo dpkg -i libaria_2 .9.4+ ubuntu16_amd64.deb
104 sudo dpkg -i mobilesim_0 .9.8+ ubuntu16_amd64.deb
105

106

107 echo "---------- Installs for New Navigation ----------"
108 echo "to continue press enter"
109 read
110

111 # Installs for GUI
112 sudo apt -get install ros -kinetic -rosauth
113 sudo apt -get install ros -kinetic -rosbridge -server
114

115 ## Installs for Navigation stack (may be more)
116 cd ~/ catkin_ws/src
117 sudo apt -get install ros -kinetic -navigation
118 sudo apt -get install ros -kinetic -tf2 -sensor -msgs
119 sudo apt -get install libsdl -dev
120 sudo apt -get install libsdl -image1.2-dev
121 sudo apt -get install libbullet -dev
122 git clone https :// github.com/ros -visualization/rviz.git
123 -b kinetic -devel
124 git clone https :// github.com/ros -planning/navigation.git
125 -b kinetic -devel
126 # Install move -base
127 sudo apt install ros -kinetic -move -base
128

129

130 echo "---------- Install SMACH ----------"
131 echo "to continue press enter"
132 read

82

Appendix A. Diagrams and figures

133

134 ## Install SMACH
135 sudo apt -get install ros -kinetic -executive -smach
136 sudo apt -get install ros -kinetic -executive -smach -visualization
137

138 sudo apt -get install python -pyqt5
139 sudo apt -get install python -qt -binding
140

141

142 echo "---------- Install Aduio ----------"
143 echo "to continue press enter"
144 read
145

146 ## Install for Audio node
147 pip2 install -Iv pyttsx3 ==2.7 #-I ignores installed packages ,
148 -v prints/verbose
149 pip2 install python -vlc ==3.0.7110
150

151 echo "---------- Install Command node ----------"
152 echo "to continue press enter"
153 read
154

155 ## Install for Command node
156 pip2 install npyscreen
157

158

159 echo "---------- Install Controller ----------"
160 echo "to continue press enter"
161 read
162

163 ## Install for Controller node
164 sudo apt install graphviz -dev
165 pip2 install pygraphviz
166 #Alternatively , run: sudo apt -get install python -pygraphviz
167

168

169 echo "---------- Install LED Dome node ----------"
170 echo "to continue press enter"
171 read
172

173 ## Install for Led Dome node
174 pip2 install colour ==0.1.5
175 pip2 install numpy ==1.16.6
176 pip install pandas ==0.24.2
177 pip2 install pyserial ==3.0.1
178 pip2 install pyopengl
179 pip2 install pyopengl -accelerate
180 pip2 install pytz
181

83

Appendix A. Diagrams and figures

182

183 echo "---------- Install Behaviour Trees ----------"
184 echo "to continue press enter"
185 read
186

187 ## Behavior Trees
188 pip2 install networkx ==2.2
189 # install nodejs for behavior3editor
190 curl -sL https :// deb.nodesource.com/setup_10.x | sudo -E
191 bash - sudo apt -get install -y nodejs # also installs npm
192 #install bower
193 sudo npm install -g bower
194 # install dependencies for behavior3editor
195 cd ~/ catkin_ws/src/behavior3editor
196 npm install
197 bower install
198 sudo npm install --global gulp@3 .9.1
199 # install b3 module
200 cd ~/ catkin_ws/setup/installs/behavior3py
201 sudo python setup.py install
202

203

204 echo "---------- Setup UDEV Rules ----------"
205 echo "to continue press enter"
206 read
207

208 ## Set up UDEV rules
209 sudo cp ~/ catkin_ws/setup /90 _cyborg_usb_rules.rules
210 /etc/udev/rules.d/
211 sudo udevadm control --reload
212 sudo udevadm trigger
213

214

215 echo "---------- other ----------"
216 echo "to continue press enter"
217 read
218

219 ## Other
220 sudo apt -get install sqlitebrowser #tool for editing
221 databases
222

223 # Make python and bash scripts executable
224 find ~/ catkin_ws/src/ -name ’*.py’ -exec chmod +x {} \;
225 find ~/ catkin_ws/src/ -name ’*.sh’ -exec chmod +x {} \;
226

227

228 echo "---------- Finish setting up catkin_ws ----------"
229 echo "to continue press enter"
230 read

84

Appendix A. Diagrams and figures

231

232 # Finish setting up the workspace
233 source ~/. bashrc
234 source /opt/ros/kinetic/setup.bash
235 cd ~/ catkin_ws
236 catkin_make
237 echo "source ~/ catkin_ws/devel/setup.bash" >> ~/. bashrc
238 # Opening new terminal runs source command ,
239 # so we dont have to source workspace each time.
240 # source devel/setup.bash
241

242

243 ## Base requirements
244 sudo usermod -a -G dialout $USER #add user to dialout group
245 sudo apt autoremove
246

247

248

249 echo "Setup script ended ..."
250 echo "---------------------"
251

252 # Relogin is required for last cmd to take effect
253 echo "You must logout and back in for userprivileges
254 to take effect ..."
255

256 echo "There are still some things to install:"
257 echo " - If changes to the code on the led -controller are
258 needed (the NodeMCU ESP32), follow the install instructions
259 in cyborg_ros_led_dome/README.md"

85

Appendix A. Diagrams and figures

Appendix C.2 Setup No-ip Hostname with SSL
and DDNS Client

The rosbridge server and web video server grants local requests of clients on
port 9090 and 8080 respectively by default.
Setup No-ip and check open ports:

1. Create hostname on no-ip.com.

2. Go to https://www.portchecktool.com/ to check for open port on ex-
ternal ip.
Check that port 9090 is open.

3. If it is not open, make inbound rule in router and check firewall settings
of computer until it is.

4. Set external ip for hostname in no-ip.com.

Setup DDNS:

5. Download Dynamic Update Client. Follow instructions on https://bit.ly/2YlwQRo.

6. ’sudo /usr/local/bin/noip2 -S’ to check if noip2 service is running.

7. Run robot and check http://*hostname*:9090

SSL certificate for hostname:
The noip domain uses insecure http requests which the cyborgGUI web-
site rejects. To get https requests, an SSL certificate is needed on the
cyborg.sytes.net domain.

1. Follow guide on: https://bit.ly/3eoQP7r

2. In step4, create a CSR: Use OpenSSL CSR Creation Wizard:
https://www.digicert.com/easy-csr/openssl.htm

3. Run the resulting command in cd: /catkin_ws/src/cyborg_commander
on robot computer.

4. Copy the csr key from the folder where the command was run and add
it to noip. (make sure this key is referenced in cyborg.launch file).

5. Select approver email: ’admin@cyborg.sytes.net’ and fill in rest.

86

Appendix A. Diagrams and figures

6. Approve request and wait for email from rapidSSL to arrive. Follow
installation instructions. For Geotrust certificate, I followed this guide:
https://knowledge.digicert.com/solution/SO15168.html

7. Run the cyborg, check https://cyborg.sytes.net:9090, it should connect
to the Autobahn WebSocket Endpoint.

87

D | Notes for Developing GUI

Some important notes for developing the GUI are noted below.

• IP address must be whitelisted in MongoDB Atlas. A range of addresses
from Eduroam should be used. more info at https://bit.ly/2YYd3GL.

• To deploy from Azure, the repository will not show unless you are
an owner or have permission from the GitHub NTNUCyborg organiza-
tion.

• On creation of Azure Web App Service, Windows OS is required.

• Vue devtools in Chrome can be very useful for debugging.

Run the following commands, each in its own terminal, to
initialize simulation environment:

1. MobileSim -m /catkin_ws/src/navigation/map_server/maps/
glassgarden.map -r pioneer-lx –start -29500,8000,0

2. roslaunch cyborg_launch cyborg.launch

3. First: export PATH= /.npm-global/bin:$PATH, then: vue ui
–dev

88

References

[1] Martinius Knudsen. NTNU Cyborg About the Project. 2020. url: https:
//www.ntnu.edu/cyborg/about (visited on 03/25/2020) (cit. on
pp. 1–3).

[2] Loanna Sandvig. Biological neural networks. 2020. url: https://www.
ntnu.edu/cyborg/bioneuro (visited on 03/25/2020) (cit. on p. 1).

[3] Author Unknown. Neural interface and system overview. 2020. url:
https://www.ntnu.edu/cyborg/neurorobotics (visited on 03/25/2020)
(cit. on p. 1).

[4] Mica R. Endsley. “Level of automation effects on performance, situation
awareness and workload in a dynamic control task.” In: Ergonomics
42.3 (Mar. 1999), pp. 464–465 (cit. on p. 3).

[5] Jørgen Waløen. The NTNU Cyborg v2.0: The Presentable Cyborg. Mas-
ter’s Thesis. Trondheim, Norway: Faculty of Information Technology
and Electrical Engineering, 2017 (cit. on p. 5).

[6] Thomas Rostrup Andersen. Controller Module for the NTNU Cyborg.
Master’s Thesis. Trondheim, Norway: Faculty of Information Technol-
ogy and Electrical Engineering, 2017 (cit. on pp. 5, 54).

[7] Areg Babayan. Finalizing the Foundation for an NTNU Mascot. Mas-
ter’s Thesis. Trondheim, Norway: Faculty of Information Technology
and Electrical Engineering, 2019 (cit. on pp. 7, 29, 69).

[8] Adept MobileRobots. PioneerLX User Guide. 2020. url: https://
www.ntnu.no/wiki/display/cyborg/Pioneer+LX (visited on 03/29/2020)
(cit. on pp. 7, 10).

[9] Stereolabs. The camera that senses space and motion. 2020. url: https:
//www.stereolabs.com/zed/ (visited on 03/29/2020) (cit. on p. 8).

[10] NVIDIA. Jetson TX1 Developer Kit. 2020. url: https://developer.
nvidia . com / embedded / jetson - tx1 - developer - kit (visited on
03/30/2020) (cit. on p. 8).

89

https://www.ntnu.edu/cyborg/about
https://www.ntnu.edu/cyborg/about
https://www.ntnu.edu/cyborg/bioneuro
https://www.ntnu.edu/cyborg/bioneuro
https://www.ntnu.edu/cyborg/neurorobotics
https://www.ntnu.no/wiki/display/cyborg/Pioneer+LX
https://www.ntnu.no/wiki/display/cyborg/Pioneer+LX
https://www.stereolabs.com/zed/
https://www.stereolabs.com/zed/
https://developer.nvidia.com/embedded/jetson-tx1-developer-kit
https://developer.nvidia.com/embedded/jetson-tx1-developer-kit

References

[11] Eskil Hatling Hølland et al. Design and production of the LED-dome
for the NTNU-Cyborg. EiT project report. Trondheim, Norway, 2018
(cit. on p. 9).

[12] Johanne Døvle Kalland. Exploring Visualisations and Behaviour. Spe-
cialization Project. Trondheim, Norway: Faculty of Information Tech-
nology and Electrical Engineering, 2019 (cit. on p. 9).

[13] Adept MobileRobots. ARNL Documentation. 2020. url: http : / /
vigir . missouri . edu / \~gdesouza / Research / MobileRobotics /
Software/ARNL-SONARNL/Arnl-1.7.0+gcc41/docs/ARNL-Reference/
main.html (visited on 03/29/2020) (cit. on p. 10).

[14] Lasse Göncz. Reimplementing the Navigation Stack on the NTNU Cy-
borg in a Simulated Environment. Specialization Project. Trondheim,
Norway: Faculty of Information Technology and Electrical Engineering,
2019 (cit. on p. 10).

[15] TullyFoote. Documentation. 2018. url: http://wiki.ros.org/ (vis-
ited on 02/09/2020) (cit. on pp. 11, 22).

[16] JosephHirschfeld. Getting Started with smach. 2020. url: http://
wiki.ros.org/smach/Tutorials/Getting\%20Started (visited on
03/08/2020) (cit. on p. 20).

[17] Jon Duckett. HTML & CSS. Indianapolis, Indiana: John Wiley & Sons,
Incorporated, 2014 (cit. on p. 23).

[18] Jon Duckett. JAVASCRIPT & JQUERY. Indianapolis, Indiana: John
Wiley & Sons, Incorporated, 2014 (cit. on p. 23).

[19] Microsoft. Azure documentation. 2020. url: https://docs.microsoft.
com / en - us / azure / ?product = featured (visited on 03/10/2020)
(cit. on p. 24).

[20] MongoDB. The MongoDB 4.2 Manual. 2020. url: https://docs.
mongodb.com/manual/ (visited on 04/02/2020) (cit. on p. 25).

[21] MongoDB.MongoDB Atlas. 2020. url: https://docs.atlas.mongodb.
com/ (visited on 04/02/2020) (cit. on p. 25).

[22] Jeang Kuo Chen andWei Zhe Lee. “An Introduction of NoSQL Databases
Based on Their Categories and Application Industries.” In: Algorithms
12.5 (May 2019), pp. 1–16 (cit. on p. 25).

[23] jihoonl. PyStyleGuide. 2014. url: http://wiki.ros.org/PyStyleGuide
(visited on 03/27/2020) (cit. on p. 31).

90

http://vigir.missouri.edu/\~gdesouza/Research/MobileRobotics/Software/ARNL-SONARNL/Arnl-1.7.0+gcc41/docs/ARNL-Reference/main.html
http://vigir.missouri.edu/\~gdesouza/Research/MobileRobotics/Software/ARNL-SONARNL/Arnl-1.7.0+gcc41/docs/ARNL-Reference/main.html
http://vigir.missouri.edu/\~gdesouza/Research/MobileRobotics/Software/ARNL-SONARNL/Arnl-1.7.0+gcc41/docs/ARNL-Reference/main.html
http://vigir.missouri.edu/\~gdesouza/Research/MobileRobotics/Software/ARNL-SONARNL/Arnl-1.7.0+gcc41/docs/ARNL-Reference/main.html
http://wiki.ros.org/
http://wiki.ros.org/smach/Tutorials/Getting\%20Started
http://wiki.ros.org/smach/Tutorials/Getting\%20Started
https://docs.microsoft.com/en-us/azure/?product=featured
https://docs.microsoft.com/en-us/azure/?product=featured
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.atlas.mongodb.com/
https://docs.atlas.mongodb.com/
http://wiki.ros.org/PyStyleGuide

References

[24] Coghlan. Nick van Rossum. Guido Warsaw. Barry. Style Guide for
Python Code. 2013. url: https://www.python.org/dev/peps/pep-
0008/ (visited on 03/27/2020) (cit. on p. 31).

[25] PaulBouchier. ROS C++ Style Guide. 2018. url: http://wiki.ros.
org/CppStyleGuide (visited on 03/27/2020) (cit. on p. 31).

[26] Google.Google C++ Style Guide. 2019. url: https://google.github.
io / styleguide / cppguide . html (visited on 03/28/2020) (cit. on
p. 31).

[27] IsaacSaito. ROS Best Practices. 2018. url: http://wiki.ros.org/
BestPractices (visited on 10/20/2020) (cit. on p. 31).

[28] A-make, JohanneLun, and paytience. setup.sh. 2020. url: https://
github.com/thentnucyborg/CyborgRobot/blob/master/setup/
setup.sh (visited on 03/31/2020) (cit. on p. 35).

[29] ArvidNorlander. roslibjs. 2019. url: http://wiki.ros.org/roslibjs?
distro=kinetic (visited on 04/27/2020) (cit. on p. 39).

[30] baalexander. rosbridge server. 2020. url: http://wiki.ros.org/
rosbridge_server?distro=kinetic (visited on 04/26/2020) (cit. on
pp. 39, 64).

[31] IanMcMahon. rosnodejs. 2017. url: http://wiki.ros.org/rosnodejs?
distro=kinetic (visited on 04/28/2020) (cit. on p. 39).

[32] Russell Toris et al. Robot Web Tools: Efficient Messaging for Cloud
Robotics. paper. 2015 (cit. on pp. 44, 65).

[33] GvdHoorn. Industrial. 2020. url: http://wiki.ros.org/Industrial#
ROS-Industrial_Overview (visited on 05/24/2020) (cit. on p. 45).

[34] mov.ai. SOLUTION OVERVIEW. 2020. url: https : / / mov . ai /
solution-overview/ (visited on 05/24/2020) (cit. on p. 46).

[35] Vue. Overview. 2019. url: https://cli.vuejs.org/guide/ (visited
on 05/03/2020) (cit. on p. 49).

[36] Unknown Author. Getting Started. 2020. url: https://bootstrap-
vue.org/docs (visited on 04/24/2020) (cit. on p. 51).

[37] Dominik Nowak. Bootstrap 4 + ROS: creating a web UI for your robot.
2020. url: https://medium.com/husarion-blog/bootstrap-4-
ros-creating-a-web-ui-for-your-robot-9a77a8e373f9 (visited
on 04/23/2020) (cit. on p. 56).

[38] paytience. CyborgGUI. 2020. url: https://github.com/thentnucyborg/
cyborgGUI (visited on 03/31/2020) (cit. on p. 61).

91

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/CppStyleGuide
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
http://wiki.ros.org/BestPractices
http://wiki.ros.org/BestPractices
https://github.com/thentnucyborg/CyborgRobot/blob/master/setup/setup.sh
https://github.com/thentnucyborg/CyborgRobot/blob/master/setup/setup.sh
https://github.com/thentnucyborg/CyborgRobot/blob/master/setup/setup.sh
http://wiki.ros.org/roslibjs?distro=kinetic
http://wiki.ros.org/roslibjs?distro=kinetic
http://wiki.ros.org/rosbridge_server?distro=kinetic
http://wiki.ros.org/rosbridge_server?distro=kinetic
http://wiki.ros.org/rosnodejs?distro=kinetic
http://wiki.ros.org/rosnodejs?distro=kinetic
http://wiki.ros.org/Industrial#ROS-Industrial_Overview
http://wiki.ros.org/Industrial#ROS-Industrial_Overview
https://mov.ai/solution-overview/
https://mov.ai/solution-overview/
https://cli.vuejs.org/guide/
https://bootstrap-vue.org/docs
https://bootstrap-vue.org/docs
https://medium.com/husarion-blog/bootstrap-4-ros-creating-a-web-ui-for-your-robot-9a77a8e373f9
https://medium.com/husarion-blog/bootstrap-4-ros-creating-a-web-ui-for-your-robot-9a77a8e373f9
https://github.com/thentnucyborg/cyborgGUI
https://github.com/thentnucyborg/cyborgGUI

References

[39] GvdHoorn. rosbridge suite. 2017. url: http://wiki.ros.org/rosbridge_
suite?distro=kinetic (visited on 04/26/2020) (cit. on p. 64).

[40] baalexander. rosapi. 2020. url: http: // wiki. ros .org /rosapi ?
distro=kinetic (visited on 04/26/2020) (cit. on p. 64).

[41] MatSadowski. web video server. 2019. url: http://wiki.ros.org/
web_video_server?distro=kinetic (visited on 04/23/2020) (cit. on
p. 65).

[42] Martinius Knudsen. personal communication. 2020 (cit. on p. 70).

92

http://wiki.ros.org/rosbridge_suite?distro=kinetic
http://wiki.ros.org/rosbridge_suite?distro=kinetic
http://wiki.ros.org/rosapi?distro=kinetic
http://wiki.ros.org/rosapi?distro=kinetic
http://wiki.ros.org/web_video_server?distro=kinetic
http://wiki.ros.org/web_video_server?distro=kinetic

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

M
as

te
r’s

 th
es

is

Casper Nilsen

The Cyborg v4.0

Implementing GUI for ROS with real-time
monitoring, commanding and controlling
capabilities

Master’s thesis in MITK - Cybernetics and Robotics

Supervisor: Sverre Hendseth

June 2020

The Cyborg Robot

	Problem Description
	Abstract
	Abstrakt
	Preface
	Abbreviations
	Table of Contents
	Introduction
	History of The Cyborg
	Motivation
	Goal
	Related Work
	Ongoing Work
	Previous Work

	I Background and Theory
	System Specifications
	Hardware
	Robot Base
	ZED Camera and Jetson TX1 Developer Kit
	LED Dome

	Software
	Robot Base Software

	Background and Theory
	Robot Operating System
	The FileSystem Level
	The Computation Graph level
	The SMACH State Machine Library

	ROS Specific Tools
	SMACH Viewer
	RViz
	RQT Console

	Useful ROS Commands
	Web Fundamentals
	Azure Cloud Services
	MongoDB and MongoDB Atlas

	II Implementing the GUI Module
	ROS Commander Module
	Preparations for New Software Structure
	Evaluating Current Software Structure
	Proposed System Architecture
	Specifications and Requirements for Commander Module

	Commander Module Design
	Implementing Commander Module
	The Topic Transmitter ROS Node
	The Topic Receiver ROS Node

	Tests and Results
	Testing Topic Data Type Support
	Result
	Discussion
	Testing Modes of Operation
	Result
	Discussion

	Evaluating Web App Solutions
	Choice of Framework
	Django
	Vue
	React
	Angular
	ASP.NET Web Forms
	ASP.NET Core

	Method of Choice

	Specifications and Requirements
	Web App Design
	Inspirations
	RobotWebTools Webviz
	ROS Industrial
	MOV AI

	Page Layout

	Implementation
	Vue CLI
	Folder structure

	Single File Components
	Implementation of Components
	Connection Status
	Cards
	Debug Console
	Command Tool
	Navigation Map
	Manual Teleoperation and Joystick
	Historic Graphs

	Testing and Results
	Testing Navigation Map
	Result
	Discussion

	Testing Concurrent Clients
	Result
	Discussion

	Bridging and Deployment
	Deploying Web App
	The Rosbridge Suite
	The Web Video Server
	No-ip Hostname and SSL authentication

	Discussion
	Future Work
	Conclusion
	Appendices
	Diagrams and figures
	Command Tool Manual
	State Machine

	Tables
	Table of Presets for PAD Emotion Model Emotions
	Table of Supported ROS Topics and Data Types

	Guides
	Setup Robot Simulation
	Setup No-ip Hostname with SSL and DDNS Client

	Notes for Developing GUI
	References

