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Abstract

The scope of this thesis is to create a deep learning pipeline with the aim of detecting naval
vessels from aerial imagery. The pipeline involves creating a custom dataset by gather-
ing images from NSMs Seahunter system and annotating them. The generated dataset is
subsequently used to train deep convolutional neural networks. Instance segmentation ar-
chitectures were utilized for this purpose. However, their performance was only evaluated
by bounding box average precision scores rather than segmentation scores. This decision
was made such that the individual performances would be comparable with previous work
within object detection.

The process of annotating images with masks is time-consuming. This thesis addresses
this by proposing initial automatic annotation to accelerate this process. This method uti-
lizes a COCO pre-trained model to generate annotation proposals to reduce the number of
manual annotations. The process reduced the manual annotation load with 24.16 % on the
additional images that supplemented the existing dataset. In total, a training set of 3,941
images and 4,693 objects were annotated with masks.

Two instance segmentation architectures, Mask-RCNN and Cascade-RCNN, were selected
for this thesis. The choice was made primarily based on their widely proven accuracy and
accessibility within the Detectron2 library. Two main training strategies were utilized,
transfer learning and training from scratch, i.e. fully training the network. A hybrid ap-
proach of the two was proposed, which was to fully train the network initialized with
ImageNet pre-trained weights. The hybrid approach surprisingly outperforms both the
transfer learned and the default, fully trained models. Mask-RCNN with Resnet50 as
backbone trained with the hybrid approach gains a bounding box AP score of 44.5 on a
test set of 1,516 images. The results indicate that it is viable to fully train deep convolu-
tional networks on smaller datasets down to 4,000 training images. They also indicate that
fully trained networks are an effective alternative to the transfer learning paradigm within
computer vision.
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Sammendrag

Omfanget av denne oppgaven er å lage en strømlinjet dyp lærings prosess med mål om å
oppdage marinefartøyer fra luftfoto. Prosessen innebærer å lage et tilpasset datasett ved å
samle bilder fra NSMs Seahunter-system og markere fartøy i dem. Det genererte dataset-
tet blir deretter brukt til å trene dype nevrale nettverk. Instans-segmenteringsarkitekturer
(eng: instance segmentation architectures) ble brukt til dette formålet. Imidlertid ble deres
ytelse bare evaluert ved gjennomsnittspoeng for omkretsbokser i stedet for segmenterings-
masker. Denne avgjørelsen ble tatt slik at de individuelle modellene ville være sammen-
lignbare med tidligere arbeid innen objektdeteksjon.

Prosessen med å markere fartøy i bilder med masker er tidkrevende. Denne oppgaven
tar for seg dette ved å foreslå initiell automatisk markering for å akselerere denne pros-
essen. Denne metoden bruker en COCO-forhåndsopplært modell for å generere forslag til
markeringer for å redusere antall manuelle markering. Prosessen reduserte den manuelle
markeringsbelastningen med 24,16 % på de ekstra bildene som kompletterte det eksis-
terende datasettet. Totalt ble et treningssett med 3,941 bilder og 4,693 objekter merket
med masker.

To instans-segmenteringsarkitekturer, Mask-RCNN og Cascade-RCNN, ble valgt for denne
oppgaven. Valget ble først og fremst basert på deres nøyaktighet og tilgjengelighet i
Detectron2-biblioteket. To hovedtreningsstrategier ble benyttet, overføring av læring og
trening fra bunnen av, dvs. full trening av nettverket. En hybrid tilnærming av de to
ble foreslått, som var å trene nettverket med ImageNet ferdig trente initialiserte vekter.
Hybridtilnærmingen overrasker med bedre ytelse enn både overførte lærte og fullt trente
modeller. Mask-RCNN med Resnet50 som ryggrad og trent med hybridtilnærmingen får
en avgrensningsboks-AP-poengsum på 44, 5 på et testsett med 1 516 bilder. Resultatene
indikerer at det er mulig å trene dype nevrale nettverk på mindre datasett ned til 4000
treningsbilder. De indikerer også at fullt trente nettverk er et effektivt alternativ til transfer
learning-paradigmet innen datasyn.
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Chapter 1
Introduction

1.1 Motivation

Computer Vision has had a massive surge in accuracy and usability in recent years due to
the revolutions in deep learning. This rediscovered branch of machine learning has had
its renaissance fueled by the increase in processing and computing power. Especially the
improvements in graphical processing units (GPUs), and the realization that the function-
ality of parallel cores were ideal for deep learning, were the key elements of this revolution.

Despite the massive improvements and potential of the technology, deep learning for com-
puter vision still has not been implemented on a large industrial scale. The reason for this
is two-fold. First, the state of the art computer vision networks are based on supervised
learning. This essentially means that the networks learn by being shown multitudes of
data such as images, videos or text, and then predict some feature of the data. For this to
work, there has to be a ground truth or an answer that the network is supposed to predict,
such that it may correct itself. Both the collection of the data and classifying it, are the
main drawbacks of supervised learning. For it to be effective, it requires massive amounts
of data. In addition, the labeling process is also time consuming and monotonous work.
Thus, there is a massive incentive to automate this process as much as possible.

Second, the state of the art networks are still fairly unreliable on an industrial scale. While
the results are promising, there are still major uncertainties in the application of supervised
learning algorithms. The inherent nature of the technology is to find an underlying math-
ematical model in the data that one can use to predict features in general data. However,
unless the original training data contains all possible variations of its data, the final model
will be biased towards the training scenarios. The aim of finding an approximately general
model with limited training data is an active research field.

Utilizing computer vision for maritime object detection also has several civilian and mil-
itary usages. For instance, ships are the main artery for trade of physical goods on the
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Chapter 1. Introduction

global stage, and a computer vision application could be used for logistic purposes. Other
applications is to track the naval traffic in ports and harbors, or for surveillance of naval
areas.

This thesis seeks to improve upon the results achieved in the specialization project. The
project was initiated by Frank Robin Danielsen at NSM with the aim of researching the
applicability of deep learning method to their Seahunter system.

1.2 Challenges

Data Collection
The dataset utilized in this thesis was gathered by capturing video using Norwegian Spe-
cial Missions (NSM) Seahunter system for the specialization project last year. One of the
most obvious methods of enhancing supervised learning performance is to increase the
dataset. This is especially true for relatively small datasets such as the this, as additional
images will have a larger impact. The process of gathering addtional material was depen-
dant on the operators of the Seahunter system to capture extra footage on their missions.
Thankfully, multiple videos were captured during the work on the thesis. However, due
to the busy schedule of the operators there was a latency within the data gathering, which
ultimately limited the size of the final dataset.

Hard False Positives
A common problem with object detection networks is falsely detecting background objects
as the desired classes with high confidence scores. These erroneous detections are known
as Hard False Positives (HFP). They are hard to filter out, as the model is confident that
they are indeed the desired class. The cause of this issue is often that the training data does
not include the scenario of the HFPs, and thus the model is uncertain what to predict. The
chief issue featured in this thesis is that the models falsely detect small islands as ships.
The main dataset included very few images of coastal landscape, as it mainly consisted of
ships at sea. These HFPs reduce the overall average precision (AP) score and reduces the
robustness of the models significantly.

Mask Annotation
In order to be able to utilize instance segmentation networks such as Mask-RCNN and
Cascade-RCNN, one has to have access to a dataset with mask annotations. A mask is
essentially an outline of the individual objects (instance segmentation), or a group of ob-
jects within the same class (semantic segmentation). There exist several publicly available
datasets with mask annotations such as COCO and ImageNet. However, one usually gains
better performance when the model is trained on samples from the relevant scenarios.
Thus, a mask annotated set is required. The process of annotating masks can be performed
in multiple ways, depending on what annotation tool one uses. The simplest method is to
draw a polygon around the object, by clicking point for point. In any case, this form of
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1.2 Challenges

annotation is significantly more time-consuming than bounding box annotation, which is
a large incentive to automate this process.

Detection of Small Objects

During the specialization project, it became apparent that the models struggled with de-
tecting smaller vessels. This is an inherent challenge within computer vision, as smaller
objects are represented with smaller numbers of pixels, and thus contain less features for
the network to learn or detect. In many applications, the detection of smaller objects is not
an issue. However, for detection of naval vessels it is crucial, as the camera is mounted on
an airplane and the videos is therefore captured a fair distance from the target objects.

Figure 1.1: An example of small objects within the dataset.

Computational Requirements

In order to be able to train instance segmentation networks one requires access to signifi-
cantly powerful hardware, specifically a powerful GPU with preferably 12 GB of memory.
Additionally, it would also be beneficial if the GPU contains so-called CUDA cores, which
are designed for deep learning applications. Most of the deep learning frameworks such
as Tensorflow and Pytorch are specically written with the CUDA library in mind to run
efficiently, and having access to a GPU with this functionality will accelerate the training
process considerably. The memory requirement is necessary to use images with large res-
olutions as input. The resolution of the images is important for the detection of smaller
objects, as they are represented with a small of number of pixels, and are thus the most
vulnerable to resizing of the input images. The latter is necessary if one only has access to
a GPU with less memory.

3



Chapter 1. Introduction

1.3 Aim of the Study
The overarching aim of this thesis is to assess the applicability of deep learning methods to
detect naval vessels in a practical environment. A secondary objective is to improve upon
the results of the specialization project. In order to ascertain these questions, instance seg-
mentation architectures will be trained and tested on a custom dataset. This category of
neural networks was chosen as they are, at the time of writing, state of the art within both
object detection and instance segmentation tasks. Instance segmentation networks require
mask annotations for the training process. Additionally, the custom dataset will eventually
have to be enlarged for the performance to improve over time. Thus, a third objective
arise; create a pipeline for dataset creation with efficient mask annotation. Finally, recent
studies (He et al. (2018)) indicate that the paradigm of transfer learning within computer
vision might be overthrown by training from scratch regimes. In this thesis, both of these
training strategies will be utilized to determine which is suitable for smaller datasets.

With these goals in mind, the following milestones were derived:

• Create a pipeline for dataset creation.

• Build upon the existing dataset with additional images and mask annotations.

• Train Mask-RCNN from scratch and with transfer learning.

• Train Cascade-RCNN from scratch and with transfer learning.

• Test the resulting models on a practical test set.

1.4 Contribution of this Thesis
The contribution of this process is a comparison of multiple state of the art convolutional
neural networks and comprehensive test results of their performance on a real world dataset
in a practical scenario. A mask annotated dataset was generated for this purpose. In
addition, a proposed data pipeline for gathering and annotating was made with the aim
of simplifying and accelerating further works within this scenario. A slightly modified
method for training the networks is proposed as well. The method involves fully training
the network with pre-trained initialized weights.
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Chapter 2
Background

This section will explain the fundamental work which the thesis builds upon. The layout
of the chapter is presented in the following order. First, a short description of each dataset
that are either used in this thesis or for pre-training of the backbone networks. Second, a
section which explains the architecture of the backbone architectures used in this thesis,
and subsequently explanations of the larger instance segmentation and object detection
networks. Third, a review of the previous work that is performed in the field. This subsec-
tion contains the work done in the specialization project which this thesis builds upon, and
other similar work. Lastly, a review of the open-source software which was utilized in this
thesis.

2.1 Datasets

There are two key parts in supervised deep learning applications, the network and the
dataset. The network performs only as good as the data it is trained on, and thus it is
crucial to have large amounts of data available. Thankfully, there are multiple large state
of the art datasets that are openly available online.

2.1.1 Publicly Available Data Sets

The following datasets contain millions of images, with large number of classes and sub-
classes. The common feature between the datasets is that they have been used in com-
petitions, and currently they are used as benchmarks for the deep learning community.
Another common usage is that they are used for pre-training networks. This means that
a network is trained on a subset of these datasets, were the generated model then can be
used as a base model which can be fine-tuned by training on a smaller custom dataset.
This technique is called transfer learning and is a mainstream approach for deep learning
applications.

5



Chapter 2. Background

ImageNet

ImageNet (StanfordVisionLab) is one of the largest available datasets. It was introduced
in 2009 by Fei-Fei Li and Christiane Fellbaum to the Conference on Computer Vision and
Pattern Recognition (CVPR), and from 2010 onwards it has been used annually in com-
puter vision contest called ImageNet Large Scale Visual Recognition Contest (ILSVRC).
In total it contains over 14 million annotated images, a million of which are annotated with
bounding boxes. ImageNet classifies objects as synonym sets, or ”synsets”, which essen-
tially mean objects which can be described multiple words or phrases. The term synset
stems from the predecessor WordNet, which was partly created by Fellbaum. There are
over 21,841 synsets in ImageNet.

ImageNet-1k

For most applications and network, 21,841 synsets are far too many to utilize in a practical
application. Thus, a standard practice is to use a subset of the total dataset. As the name
ImageNet-1k suggests, it contains 1,000 of the highest quality synsets.

COCO

Microsoft Common Objects in Context (COCO) (COCOConsortium) is the primary dataset
for instance segmentation, and is also the benchmark test set for state of the art architec-
tures within multiple branches of computer vision. It contains over 330,000 images, over
200,000 of which are labeled. In these images, there are 1,5 million object instances with
80 object categories. COCO contain mask annotations for instance and panoptic segmen-
tation, bounding boxes for classical object detection and key-point annotations for people.

2.1.2 Dataset generated from NSMs Seahunter System

In the specialization project (Vik (2019)) a dataset with bounding boxes was created. The
images was gathered by first collecting videos which contained frames including ships,
extracting a frame for every third second, and then manually selecting the frames which
contained one or more ships. The criteria for selecting a frame was that the objects were
clearly visible, i.e. not too small or blurry, or that most of the object was within the frame,
i.e. the camera was not too close to the object. After gathering this initial set, the dataset
was refined in several rounds by attempting to balance it as much as possible with regards
to the size of the objects, the color scheme in the images, the subclass of the object (fishing
vessel, container ship, coast guard etc.) and the position of the objects. After multiple
rounds of refining, the remaining images were annotated by hand with bounding boxes
and classified. Due to time restraints, the naval vessels were only classified as ”ship” or
background.
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Table 2.1: Overview of the data sets.

Data Set Number Of Images Number of Objects
Training Set 3, 703 4, 272
Unrefined Test Set 1, 516 2, 448
Total Dataset 5, 378 6, 894

In table 2.1 there is an overview to the training set, test set and the total dataset. In to-
tal there are 5,378 box annotated images from the specialization project, of which 3,703
are dedicated to training, and 1,516 are dedicated to testing. The remaining images were
judged to be of too poor quality to be in either set. The training set contains the more
refined images of the total dataset, i.e. the images are themselves clearer and the objects
are visible in the frame. The Unrefined test set was used as a hard benchmark test set
in the specialization project, as it mostly contains blurry or noise images, or the objects
themselves are quite small. This irregular split in training and test sets was made in an
iterative fashion, where by first splitting the total dataset by the quality of the images, and
then training and testing YOLOv3 on the respective sets. It was found that by enlarging
the training set with images of less quality from the Unrefined test set the performance
decreased, and thus the split remained as specified in table 2.1. The relatively large test set
also allows for a more accurate test result. If the performance is good on tough imagery,
then it is a better indication of a robust result.

In this thesis, this split between the training and test set will remain the same as the spe-
cialization project to be able to compare the results between the respective performances
of the two projects.

2.2 Object Detection Architectures
Object detection is a branch of computer vision with the aim of creating a bounding box
around the detected objects, and subsequently classifying them. Instance segmentation is
a similar branch to object detection, except that in addition they provide a pixel-by-pixel
mask around the objects. Due to this overlap, instance segmentation networks works fine
for object detection as well. In fact, according to (PapersWithCode) the state of the art net-
work for object detection on the COCO test-dev benchmark, is an instance segmentation
network, Cascade-RCNN (at the time of writing). In this section, a number of network
architectures and their concepts for object detection and instance segmentation will be ex-
plained.

The section begins with the various backbones that are either fundamental or utilized in this
thesis. Then it follows up with the instance segmentation architectures as a whole and their
important concepts. After that, a review of previous work on maritime object detection,
including the most relevant articles and master theses as well as the fundamental work that
was performed in the specialization project. Lastly, there are descriptions of the openly
available software that is used in this thesis.

7



Chapter 2. Background

2.2.1 Backbones

When building object detection architectures, the computer vision community quickly re-
alized the advantages of building upon the existing object classification architectures. Net-
works such as VGG-16/19, ResNet-30/50 or the Inception networks were state of the art
feature extractors, which with little overhead could be modified to detect objects as well
as classifying them.

Today, the common practice is to create modular architectures, with a feature extractor
or backbone, and the detection part. This way, relatively old architectures such as Mask-
RCNN (He et al. (2017)) and even Faster-RCNN (Ren et al. (2016)) can achieve state of
the art results by upgrading to a new and better backbone.

A backbone architecture is typically a preexisting network architecture that has been used
for object classification. The reason behind this is that this type of architecture has been
proven by extensive usage to pick up features in images, and they are relatively easy to
build upon. They are most often deep convolutional neural networks, each with their own
architectural modifications.

However, the backbone can also be custom made to fit a certain criteria, or match the archi-
tecture better. For instance, DarkNet was made to find a better tradeoff between accuracy
and speed when used in YOLOv2 (Redmon and Farhadi (2016)), that other preexisting
object classification architectures did not provide.

VGG

VGG-16 (Simonyan and Zisserman (2015)) was an improvement on the pioneering con-
volutional neural network AlexNet from 2012. It continued on the trend of ”the deeper
the CNN the better” adding more convolutional (conv) layers, and reducing all the filters
to 3x3. The number in the end is simply a notation for how many conv layers there are
in the network. VGG-19 added three more layers and performed only slightly better even
though requiring more memory. In the competition ILSVRC-14, VGG finished second
in classification, but first in localization. The architectures of VGG-16 and VGG-19 are
shown in figure (2.1)
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Figure 2.1: The architectures of VGG-19 and VGG-16.

ResNet

The problem with adding more and more layers was that the gradients in the backpropa-
gation algorithm either vanished entirely or exploded in the earlier layers, resulting in that
the weights of those layers not changing at all or far too much. This ”Vanishing Gradient”
problem prevented adding more layers to gain better performance. The solution was intro-
duced however, in the ILSVCR the year after.

In 2015 there was a ”revolution in depth” of convolutional neural networks when Mi-
crosoft won the ILSVRC-15 contest with their Residual Neural Network (ResNet) (He
et al. (2015)). The solution to the vanishing gradient problem was introducing ”shortcut”
connections. This shortcut connection is also referred to as the Basic Block of the RNN,
and consists of shortcut that jumps over two 3x3 conv layers.
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Figure 2.2: The original residual block from ResNet-34 on the left, and the bottleneck residual block
from the later ResNet networks on the right (He et al. (2015)).

The architecture of ResNet is split in three parts, where the first and bottom part is the
VGG-19, following that is a 34 layer plain network middle part, and finally a 34-layer
residual network (ResNet). The naming convention of the ResNets are based on the third
part, i.e. ResNet-34 has 34 residual layers, ResNet-50 has 50 residual layers and so on. To
reduce the complexity, i.e. reduce the number of parameters, a ”bottleneck” residual block
was introduced. This bottleneck block has a shortcut that jumps over three conv layers,
where the first and third are 1x1 conv layers and the second is a 3x3 conv layer. The 1x1
conv layer has fewer parameters than the 3x3 conv layer, while it does not degrade the
performance too much. With this bottleneck block instead of the basic block, it becomes
a 50-layer residual neural network, or ResNet-50. The deeper networks ResNet-101 and
ResNet-152 are made by continuing this bottleneck pattern.

The performance of ResNet increases with the number of layers, but obviously so does
the computing requirements. According to the paper He et al. (2015), ResNet-50 achieved
20.74 % top-1-error and 5.25 % top-5-error on single model results on the test set of
ImageNet from 2015, whereas ResNet-152 achieved 19.38 % top-1-error and 4.49 % top-
5-error. Although ResNet-152 is quite a bit larger, it still only improves on ResNet-50 by
having approximately 1 % lower error rate.

ResNeXt

In 2016, the term cardinality is introduced in Xie et al. (2016), which in essence is an in-
crease in depth of the ordinary residual block in the ResNet architectures. This concept is
similar to the idea behind the Inception architectures (Szegedy et al. (2014)), in that they
add parallel ”paths” in each block. The number of these paths is what is referred to as
cardinality. The difference between ResNext and the Inception networks is that the paths
of the latter networks are custom designed for each layer, whereas the paths of the former
has the same ”design”, or topology as it is referred to in the article.

The concept of cardinality is combined with the traditional idea behind ResNet, which is
residual connections and the continued pattern of the residual blocks. The sizes of the
ResNeXt networks mimick the sizes of the ResNet architectures (18/34/50/101/152), such
that they may be directly compared with eachother. Despite containing more paths in each
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block, the number of parameters and FLOPs are comparable. For instance, ResNet50 and
ResNeXt50 have 25, 5∗106 and 25, 0∗106 parameters and 4, 1∗109 and 4, 2∗109 FLOPs
respectively. Although ResNeXt50 is slightly more computationally expensive, it weighs
up for it with better performance than its predecessor.

Figure 2.3: An illustration of the ResNeXt block (Xie et al. (2016)).

Feature Pyramid Networks (FPN)

A feature pyramid network is a feature extractor architecture which, as the name suggests,
consists of multiple feature pyramids. A feature pyramid refers to feature maps which are
extracted from different depths of a convolutional network. Due to the resolution being
smaller the deeper its respective layer is, and visa versa larger the closer the layer is to
the input, a pyramid-like shape appears. The pyramids are constructed with a bottom-up
pathway, which essentially is a standard backbone architecture, such as ResNet, and a top-
down pathway. The top-down pathway is generated by first taking the final feature map
output from the backbone, and then scaling it up and then combining the result with a
feature map from the backbone through a lateral connection. The lateral connections are
made between feature maps with the same spatial size. The idea behind this is that the fi-
nal feature from the backbone are high-level features, which depicts the strongest features
in the image. When upscaling this condensed feature map, while combining it with the
features from the bottom-up pathway, one achieves feature maps of a higher quality.

It was found that if one uses these feature maps from multiple scales, the convolutional
neural networks detect objects of different sizes far better than an architecture which only
utilizes one feature map scale. The feature pyramid networks were introduced in (Lin et al.
(2016)), and by combining it with Faster-RCNN, Tsung-Yi Li et al. achieved better per-
formance than its regular feature extractor counterparts. FPNs are now standard practice
in state of the art detectors, as they provide good results with little to no overhead.
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Figure 2.4: An illustration of the Feature Pyramid Network structure (Lin et al. (2016)).

2.2.2 Faster-RCNN
Faster-RCNN (Ren et al. (2016)) was the state-of-the-art object detection architecture in
2015, and was the foundation of both 1st place entries in ILSVRC and COCO competitions
the same year. It built upon Fast-RCNN by R. Girshick (Girshick (2015)) by recognizing
that using selective search for finding region proposals was the bottleneck for increasing
the speed of the network. The solution to this was implementing a shallow convolutional
neural network for generating these region proposals, which was aptly named the Region
Proposal Network (RPN).

Faster-RCNN can be divided into three parts. The first is the feature extractor generating
feature maps, the second is the RPN and the third is a classifier. Shaoqing Ren et al. reuses
the concept from Fast-RCNN, where the classifier and the region proposal algorithm share
the same feature map from the backbone. This way, one only need to calculate the features
once for the entire image rather than for every region proposal. Also, the input to the RPN
is far smaller and the features are more condensed, allowing the network to be shallow and
lightweight.

The RPN is a fully convolutional neural network, which in this case takes the feature map
as input and outputs a set of rectangular region proposal together with an objectness score.
The RPN slides a small convolutional neural network over the input, the output of which is
then connected to two fully-connected layers. For every sliding step, the RPN predicts up
to k different region proposals. k is the number of predetermined reference boxes, called
anchors. The anchors are centered at the current sliding window position, and consist of
a scale and an aspect ratio. The default solution in Ren et al. (2016) is to use three scales
and three aspect ratios.

The fully connected layers are for box-regression and box-classification, which outputs
bounding box proposals along with their respective classification scores. Non-Max Sup-
pression is then performed to select the best proposals, which is then used in the classifier.
The classifier cuts out the regions of interest (ROI) from the original feature map. But as
the classifier is a fully connected neural network, it requires equally sized inputs. To as-
similate the differently sized ROIs, a technique known as ROIPool is performed. ROIPool
essentially divides the ROIs into HxW (e.g. 4x4) grids, and then performs maxpooling
for all values inside the grids. The grid itself is normalized according to the procedure
explained in Girshick (2015).
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When the ROIs are of equal size, they can be put through the classifier, which outputs
a predicted box with its confidence score and classification. The confidence score is a
measure of how certain the bounding box is to contain an object.

Figure 2.5: An illustration of the Faster-RCNN architecture. B0 are the bounding box propos-
als generated by the Region Proposal Network, whereas B1 are the predicted bounding boxes. C
represents the classifications.

2.2.3 Mask-RCNN
Mask-RCNN (He et al. (2017)) is a deep convolutional neural network, which is based on
the architecture of Faster-RCNN. It introduces several changes from the latter network.
First of all, it adds a Feature Pyramid Network (FPN) as the feature extractor, but the
most important addition is the new branch in the Region Proposal Network for predicting
a pixel-to-pixel segmentation mask. The new branch in the RPN is a small Fully Convo-
lutional Network (FCN) which is applied to every ROI, and runs in parallel with the box
regression and classification.

They also introduce an improvement on ROIPool from Girshick (2015), called ROIAlign.
The problem with the former is that it forces the grid to be divided into spatial bins of
integer coordinates, that are then quantized by maxpooling. This enforcement of integer
coordinates creates misalignment between the features in the feature map and its quanti-
zation. This is not especially harmful for classification purposes, but it reduces the quality
of the pixel-to-pixel masks drastically.
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He et al. (2017) proposes ROIAlign as a solution to this issue. Rather than using integer
coordinates on the corners of the grid, it instead calculates the value of each sampling
point by performing bilinear interpolation on the surrounding grid points of the feature
map. Thus, the corners of the quantization grid does not match the corners of the feature
map, but they do match the features they represent. The use of ROIAlign versus ROIPool
resulted in a performance gain of 0.011 AP bb when applied to Faster-RCNN.

Figure 2.6: An illustration of the Mask-RCNN architecture. B0 are the bounding box proposals gen-
erated by the Region Proposal Network, whereas B1 are the predicted bounding boxes. C represents
the classifications, and S represents the predicted segmentation masks.

2.2.4 Cascade-RCNN
Cascade-RCNN (Liu et al. (2019)) is a state of the art object detection network. It is built
directly upon the architecture of Mask-RCNN, however it introduces multiple improve-
ments on its predecessor. Chiefly, it introduces the cascade, which is intended to address
the paradox of low quality detections that arise with a low IoU (Intersection over Union)
threshold of 0.5, and high quality detections with higher IoU thresholds but degrading de-
tection performance. The concept behind the cascade is to use the output bounding boxes
from a Mask-RCNN network, and use those as training input in a second classifier head.
As seen in figure 2.7, it continues on with this pattern with multiple classifiers and RPN. In
other words, it keeps the first stage from Mask-RCNN intact, but it adds multiple ”second”
stages. For every new stage, the IoU threshold is increased, and thus one is able to make
high quality predictions with high accuracy.

Cascade-RCNN does not use hard-negative mining. Hard negative mining is a technique
to suppress the number of hard false positives, by using false positives from a previous
training iteration in the next iteration. The inherent nature of the cascade is similar, but
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does not use this technique explicitly. As the stages in the detector stage use the bounding
boxes from the previous stage n − 1, the input to stage n contains close false positives
which are essentially false positives with slightly worse IoU score than the threshold. This
results in gradual improvement in detection quality from stage to stage.

Figure 2.7: An illustration of the Cascade-RCNN architecture. B0 are the initial bounding box
proposals, whereas B1 are the predicted bounding boxes. C represents the classifications, and S
represents the predicted segmentation masks.

2.2.5 Training Strategies

Transfer Learning

The solution to the dependency on large data sets is often first to train the network on a
large publicly available data set of similar objects, and then fine-tune the network on the
smaller and more specific data set. This process is known as transfer learning, and is a
common approach for training on smaller data sets. The benefits of transfer learning was
partly introduced with the Region-CNN architecture (Girshick et al. (2013)) and in Don-
ahue et al. (2013). The fine-tuning involves freezing the majority of the layers, and only
train the last layers of the network. Thus, training the network takes a lot less time as only
a small part of the network is altered. In addition to this, one reduces the chance of overfit-
ting. A frequently used approach has been to train the backbones on the large classification
set ImageNet, and subsequently freezing these layers and fine-tune the remaining layers
on a smaller custom dataset.

There is a prerequisite that has to be fulfilled for one to be able to use transfer learning.
The large data set that the network is originally trained on, has to contain somewhat similar
objects or features to the objective in the smaller data set.
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Training From Scratch

In the last years, transfer learning has been a paradigm within the computer vision commu-
nity. It and was long the default method of training state of the art, two stage architectures,
as it gained good accuracy and quicker convergence. However, in late 2018 this approach
was challenged by a paper by the computer vision pioneers Kaiming He, Ross Girshick
and Piotr Dollár from Facebook Articial Intelligence Research (FAIR) (He et al. (2018)).

The authors suggest and show that training from scratch is a potent opponent to the trans-
fer learning approach. The paper provides the following three observations. First, that
utilizing pre-trained weights and subsequently fine-tuning the network speeds up the con-
vergence of the models. Second, this does not necessarily provide better regularization
than training from scratch. Third, they observed that training from scratch noticeably in-
creased the AP score for high box thresholds.

In this thesis, both of these training strategies will be applied to determine which is the
most suited to smaller datasets that contain under 10,000 images. The expressions ”trained
from scratch” an ”fully trained” will be used interchangeably.

2.3 Previous Work
There have been multiple studies regarding the application of computer vision and deep
learning to detecting naval vessels. The variation in the field often stems from a difference
in the imagery where the object detection is applied. For instance, satellite imagery have
been used to track international trading vessels, and in other cases imagery from harbor
level have been used to detect vessels coming in and out of their respective areas. An-
other separator is the actual use-case of the model. Some fields have a strict real-time
requirement, which limits the use of state of the art architectures as they are far too com-
putationally expensive, whereas other fields have no such limitations.
In this section, a few relevant key studies will be reviewed, as well as a description of the
fundamental work performed in the specialization project.

The Specialization Project

The specialization project was performed in the autumn of 2019, with the aim of apply-
ing object detection networks to detect naval vessels. With this in mind, a dataset using
videos from NSMs Seahunter system was created, and two architectures, YOLOv3 and
Mask-RCNN, were tested on it. The dataset was created by manually choosing appropri-
ate frames from the video footage, and subsequently annotating them with bounding boxes
and a class, ”ship”. Due to constraints in computational power, only a smaller variant of
YOLOv3, YOLOv3-tiny was trained fully on the training set. However, several variants of
YOLOv3 were trained using transfer learning, by utilizing weights pretrained on COCO.
Mask-RCNN was not trained due to both the lack in available hardware, but also the lack
of mask annotations in the data set. The performance of Mask-RCNN was judged by using
inference with COCO pretrained weights on two custom test sets. The first was a simple
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test set of 365 images, whereas the second was a harder test set, consisting of 1,516 im-
ages containing small or blurry objects. Mask-RCNN achieved a score of 0.73 AP50 on
the smaller test set, and an 0.384 AP50 on the larger test set. YOLOv3-tiny surprisingly
achieved the best results, gaining 0.971 AP50 on the smaller test set, and 0.385 AP50 on
the larger test set. The quality of bounding boxes of Mask-RCNN were better however, and
keeping in mind that it was not trained on the dataset, this result is not that remarkable.
However, it is still interesting that the smaller network YOLOv3-tiny, performed better
than its larger variations, YOLOv3 and YOLOv3-SPP, when trained fully rather than fine-
tuned.

The specialization project leaves a couple of questions to be answered. For instance, how
much would Mask-RCNN improve when trained on the training set? How does these
methods compare to the actual state of the art methods at the time of writing? Is it possible
to create an efficient dataset creation pipeline to reduce the human overhead?

2.3.1 Other Work Within Maritime Object Detection
Automatically detecting maritime objects has several usages for both military and civilian
purposes. Ships being the main transportation for goods in worldwide trading, there is a
large incentive for detecting ships for logistic purposes. Thus, with the explosive growth
of object detection using deep learning, applying it to naval vessels is a natural step for-
wards. In this task, only previous deep learning methods in this field will be looked at, as
the motivation for this project is determine the applicability of deep learning methods for
ship detection.

In the master thesis Grini (2019) two object detection methods, YOLOv3 and Single Shot
Detection (SSD), are proposed for detecting maritime objects in Trondheimsfjorden. The
data set was generated by taking photos of moving boats in the fjord as well as moored
ones. The angle of the photos are therefore from a boats viewpoint, i.e. from ground level.
The purpose of this thesis is to verify whether the object detection is reliable enough to be
applied on an autonomous vessel. To be able to use an object detector in a control system
one has to fulfil strict requirements, including real time performance and high confidence
in its output. This rules out the heavier, state of the art object detection architectures like
Mask-RCNN. With YOLOv3, Grini achieved a high score of 90.8 % AP on a test set of
boats in the fjord, but it was reduced to a score of 70.7 % AP when the test set only con-
tained moored boats. The performance of SSD was only slightly worse on boats in the
fjord (87.6 % AP), but performed severely worse on the moored boats (58.6 % AP).

In Shaodan et al. (2019) an improvement on Mask-RCNN for better detection of offshore
small ships is proposed. Their main contribution is optimizing the RPN loss function as
well as the mask generation algorithm, gaining a small increase in Average Precision over
the default Mask-RCNN.

The paper Nie et al. (2018) applies Mask-RCNN for the inshore ships, and proposes Soft-
Non-Maximum Suppression (Soft-NMS) for detecting objects that are in close vicinity of
each other. Their data set is generated from satellite imagery of crowded ports.
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2.4 Open-Source Software

The deep learning community has so far been exemplary in their scholarly approach of
sharing results and information. State of the art networks are made publicly available
online, such that the technology may grow and evolve in an international effort. Thankfully
this includes massive technology corporations such as Facebook and Google, which have
made much of their research available. In addition to the research papers, the community
also provide excellent deep learning software. It is common practice to attach a Github
repository for their code for reproducing results, or building upon it. This section includes
some of the open source software that is utilized in this thesis.

2.4.1 Facebooks Detectron2

The Detectron2 framework (FAIR) contains implementations of multiple state of the art
networks such as Mask-RNN and Cascade-RCNN. It was created by Facebook AI Re-
search (FAIR) group. The framework contains an extensive ”model zoo”, which essen-
tially are the backbone weights of ImageNet and COCO pretrained models, enabling trans-
fer learning to a large extent. As it is a popular framework among the computer vision
community, there is a lot of support around the tools. There are also a simple tutorial
notebook for getting started with the framework, which reduces the barrier of entry sig-
nificantly. The framework itself is based on Pytorch, and the package requirements are
relatively few compared to other computer vision frameworks. All of this makes Detec-
tron2 very user-friendly and easy to build upon.

2.4.2 Annotation Tools

There are multiple tools available for the annotation process. Some include more function-
ality, whereas others are easier to use. The main annotation tool utilized in this thesis was
VGG Image Annotator (VIA) (VGG). This is popular and simple annotation tool, which
was developed by the Visual Geometry Group (VGG) from the University of Oxford. It
supports multiple types of annotation, including bounding boxes and polygons, and it can
store the annotations in several of the most common formats, including csv, json and the
COCO format. In the latest via-2.0.9 version however, there is a bug when saving the
project in the COCO format, where the annotations does not include their respective ”cat-
egory id”, which is the class of the object. At the current state this requires a custom script
to convert their annotation to COCO format, making it harder to use for some applications
which require this format.
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Figure 2.8: The VGG Image Annotation tool.

Computer Vision Annotation Tool (cvat) (Intel) is an annotation tool which is specifi-
cally designed for computer vision tasks, and is particularly suited to annotate videos. It is
made and supported by Intel. Cvat includes the functionalities of interpolation of bounding
boxes between frames, and semi-automatic annotation by using user-specified pretrained
deep learning models. This accelerated the dataset creation process significantly. Cvat also
has the possibility of dividing the annotation project into tasks, which can be assigned to
separate users. This is very helpful for larger computer vision projects where the annota-
tion process is performed in teams. The downside to using cvat is that the barrier of entry
is slightly larger than VIA, as it requires more setup. However, the added functionality
likely makes up for the slower start.
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Chapter 3
Deep Learning

The concept behind deep learning, neural networks and perceptrons, was first introduced
in the late 1950s by Frank Rosenblatt (Rosenblatt (1958)). The perceptron was a node con-
taining numerical values. A neural network was formed by connecting multiple percep-
trons together. Rosenblatt introduced both single and multilayer networks. The purpose
of the networks was to create a linear classifier. Despite its old origins, it was not able to
reach its full potential until recent improvements in hardware and software.

Today, deep learning has a wide variety of applications. From its infancy in binary classifi-
cation, it has now been used in fields such as speech recognition, computer vision, natural
language processing and autonomous vehicles. It has achieved superhuman performance
in areas which were thought to be singular human enterprises. In 2017, AlphaGo, a deep
learning algorithm developed by DeepMind, beat the current world champion in Go, Ke
Jie. DeepMind has also had success with AlphaZero, its chess equivalent, which is most
likely the best chess algorithm worldwide.

The purpose of this chapter is to establish and explain certain basic principles in deep
learning that will be used later in the report. It will not go in depth about the algorithms
that are involved in the networks, but will rather give an overview and introduction to the
terms and expressions that are frequently used in deep learning literature.

3.1 Supervised Learning
Machine Learning is split into three main branches, supervised, unsupervised and rein-
forcement learning. The key difference between the three is simply that the first requires
data to train, the second detects a model within the data independently, whereas the latter
trains by exploring an environment to find the optimal path. The three strategies are inher-
ently different, however deep learning has been applied to all branches, and there are pros
and cons to all disciplines.
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A typical appliance of supervised learning is in computer vision, where one normally uti-
lizes a dataset of images. The aim of computer vision is to detect features within imagery,
whether it is classification or detection of objects. The concept of supervised learning
is easy to grasp, as it is very human in its approach. A supervised deep learning net-
work learns by being shown entries of the dataset, predicting the outcome, comparing
the prediction with a ground truth and subsequently correct itself by a process known as
backpropagation. In an object classification application, each image would have to be an-
notated with its class, whereas in an object detection application each object would have to
be annotated with both its class and a bounding box to indicate its position. The process of
gathering images and annotating is costly, and is thus the greatest weakness of this branch.
However, for computer vision tasks, supervised learning is the basis for current state of the
art convolutional neural networks.

3.2 Computer Vision Tasks

First of all, the primary modes of object detection has to be defined. The first of which
is object classification, where the task is to classify an object that is in the image. The
most common output of an object classification system is a vector of class probabilities,
i.e. each element signifies the probability that the image contains a certain class. Thus, the
element-wise sum of the vector should be normalized. The highest probability represents
the classification of the network. The constraint of this is that it can only classify one
object in an image.

The natural development is to locate objects in the image as well as classifying them. This
objective is coined object detection. The output of the detection itself is most often a
bounding box with a corresponding confidence score. The bounding box is a rectangular
box which encases the object.

For several purposes, it is beneficiary to have a continuous outline of areas on the image.
Semantic segmentation does exactly this. It classifies areas of the image, and draws a mask
around continuous regions with the same class. Examples of this would be if one wanted
to detect oil spills in the ocean, or cracks in a wall. However, the masks does not distin-
guish between different instances of a class. A group of people would be portrayed as a
large blob.

The next iteration is to generate masks around each individual instance. A continuous
mask around objects are obviously a more accurate representation of an object than a
simple rectangular box. The objective of locating, classifying and drawing masks around
individual objects is called instance segmentation.

22



3.3 Traditional Methods

3.3 Traditional Methods
Preceding Artificial Neural Networks, object detection tasks relied a lot on the intuition of
the engineers. There has been developed several methods for finding objects in images,
however most are highly specific. Examples of earlier approaches have relied on finding
key points in the image, such as corners, edges and flats of objects, and matching them
with a template of the object one wishes to find. This is known as object recognition rather
than object detection, but it has several similarities to one-class object detection. These
techniques have several flaws. For instance, they rely too heavily on the template having
the same characteristics as the objects in the images. Basically, it can’t be used for detect-
ing classes, merely specific objects within that class.

Other approaches includes using a sliding window with different scales for localization
and a combination of Histogram of Oriented Gradients (HOG) and Support Vector Ma-
chine (SVM) for classification. HOG divides a region (the sliding window region) into a
S ∗ S grid, and calculates the dominant gradient in each grid. The collection of gradients
can be used as a signature for a given shape. This signature is then used by the SVM to
classify it. The problem with sliding window is that it is very computationally demanding,
as it has to compute all the scales over the entire image. Also, as the scales are designed to
match a specific class (for instance a pedestrian would have a vertically elongated rectan-
gle and a car would have a horizontal rectangle), the processing time would increase with
every class. This localization technique is also utilized in combination with deep learning
in the architectures Region-Convolutional Neural Networks (RCNN) and Fast-RCNN.

A simple segmentation method that could also be applicable to this problem is threshold-
ing. This technique is based around objects having different lighting or color than the
background. First, change the image format into greyscale, and then simply color every
pixel below or over a certain greyscale threshold black. In the instance of ship detection,
the vessel will often have a darker or lighter color then the ocean, and then could easily
be located within the image. However, this is a trivial and highly error prone technique,
as ships could obviously have different lighting depending on the time of day, or be in the
vicinity of other dark objects.
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3.4 Deep Learning Methods

Deep learning refers to the usage of Artificial Neural Networks (ANN). While neural net-
works has existed since the 1960’s, it was not until the last decade with the advances of
Graphics Processing Units (GPUs), that it became prevalent in object detection tasks. This
was due to the immense computing requirements that training such a network has, which
was not possible to meet until recently.

The full impact deep learning will have on society is yet to be determined. However, there
are several interesting areas where deep learning has been applied. It’s strength is largely
drawn from finding complex models that humans can not find. Where traditional methods
are dependent on human intuition and modelling, deep learning has the capability to find
very complex structures in data without those constraints.

At the time of writing, the technology is at the edge of human capabilities, and is on
it’s way to surpass our capabilities. It can be applied to detecting objects, generating
images and finding mathematical models among other things. There exists more traditional
solutions for all of these areas, but deep learning has shown great promise and in many
cases already surpassed the previous technologies.
The basic principles of deep learning are explained in the following chapters.

3.4.1 Artificial Neural Networks

The term ”Artificial Neural Network” refers to the similarity it has with biological neu-
rons in the brain. An artificial neural network is composed of layers of nodes containing
a value. A neural network where each node in one layer is connected to every node in the
next layer, is known as a ”Fully Connected Neural Network”, and is the simplest form of
neural networks. The term ”deep learning” stems from the number of layers in the net-
work. The more layers it has, the deeper it is. Each network consists of an input layer,
where each node represents a parameter value, for example a pixel value in an image, con-
nected to a number of ”hidden” layers. The last of which in turn is connected to an output
layer where each node represents the predictions of the network. The number of hidden
layers is a parameter to be tuned for optimal results. Each connection between nodes is
weighted by a value, simply referred to as ”weights”. The layout of the network, i.e. the
number of hidden layers, shapes of the layers etc., is referred to as the architecture of the
network. Each architecture therefore has a specific number of weights.

The value in the next node is determined by a sum of the values from its connected nodes in
the previous layer multiplied with their respective weights. Each node in the hidden layers
has an activation function that essentially decides whether the node should ”activate” or
not. The input of the activation function is the sum of the values in the previous layer, and
the output is usually a normalized value.
These calculations are done for every node in the network, until a prediction is made on
the values in the output layer.
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Figure 3.1: A simple fully connected neural network.

Training a Neural Network

When training a neural network, one refers to the process of adjusting the weights itera-
tively until the network hopefully produces credible results. In the initiation of training,
the weights are set randomly. Training of the weights is then done by first performing a
forward pass on the network, which essentially means to calculate the output of the current
network, and then calculating the loss by passing the output and the target value into a loss
function. The loss function returns a value that essentially represents the difference be-
tween the target and the prediction of the network, also called the loss of the network. The
loss function is decided according to the task of the network. For instance, a common loss
function is mean-squared-error, which works well if the task is to predict a value. Another
is Binary Cross-Entropy for binary classification tasks, or Cross-Entropy for classification
tasks with more than two classes. More complex tasks such as object detection requires
more advanced loss functions to represent deviancy in position as well as class.

Subsequently, the backpropagation algorithm is performed to alter the weights of the net-
work. Basically, the algorithm optimizes the weights on a layer-by-layer basis (from last
to first) based on the output of the loss function. Doing this for every sample in the training
set is called an epoch. The number of epochs is another hyperparameter to be tuned.

Overfitting and Underfitting

Overfitting is a common problem when utilizing supervised machine learning. The prob-
lem itself arises when the generated model is overly trained on too few training samples,
such that the predictions fit too well on the training set. Essentially, the model predicts
the ”noise” in the training set as ground truths, and thereby the generated model performs
worse on images it has not seen. In machine learning in particular, overfitting is sometimes
also referred to as ”overtraining”. Underfitting, or ”undertraining” is the exactly opposite.
The model is not trained for long enough, and therefore it does not manage to find the
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underlying pattern of in the data set.

Overfitting is the more common of the two, as underfitting is more easily remedied by
simply training the model more. There are several strategies to counteract overfitting as
well. The data set is most often divided into three parts, the training, validation and test
set. The training set is obviously for training the model, and the test set to evaluate its
performance. The validation set however, is used to measure the performance of the model
while training, and can therefore be used to detect overfitting. If the loss on the validation
set starts to rise then it is most often an indication of overfitting, and one can stop the
training process. This is called early stopping.
Overfitting can also be avoided by simply adding more data entries, or more sophisticated
cross validation techniques.

3.4.2 Convolutional Neural Networks (CNN)
A convolutional neural network is fundamentally different to a fully connected neural net-
work (FCNN). The main weakness with FCNNs is that the spatial features in an image are
lost in the network, as no node has any information what values other surrounding nodes
has. This has severe consequences in classification and detection tasks where the rela-
tive positions of features are vital. The introduction of CNNs proposed a solution to this.
Rather than slicing up the image into a long list, the CNN keeps the shape of the image,
and slides a filter over the image. The filter is a matrix of weights where each element is
multiplied with a Blue-Green-Red (BGR) value in a corresponding grid, and then the sum
of these multiplications is stored in a new matrix called a feature map. This filter slides
from left to right over a set stride, and then continues from top to bottom. Each hidden
layer is then replaced from lists of nodes to such feature maps, which subsequently are
subjected to further filtering in the next layers. After the network has been trained, one
can tell by visualizing the different feature maps that they have picked up different features
of the image. The final output is a condensed feature map of the most apparent features in
the image, which then can be connected to a FCNN for detection and classification.

CNNs have been proven to be far more efficient and accurate than FCNNs. A typical fil-
ter is a matrix of 3x3 which has 9 weights, whereas a FCNN with a BGR image of size
1280x720 would have 1280 ∗ 720 ∗ 3 ∗ Nnodes weights only in the first layer. The main
takeaway is that the size of a CNN network is independent of input size, whereas the size
of a FCNN would grow immensely with a larger input. Although it is normal to have sev-
eral filters per layer, it is still far more efficient to use a CNN for non-trivially sized images,
as the number of weights affects how long the training and inference takes. Convolutional
layers are currently the dominant building block in state-of-the-art architectures for image
classification and object detection.

The pooling layers work in a similar fashion to the convolutional layers. They consist of
extracting regions from the image (for instance a 2x2 matrix with stride 2x2) in a sliding
mode pattern, and then performing an operation on them. The operation is most often
returning the highest value in matrix, and this layer is therefore known as a max pooling
layer.
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Effectively, introducing pooling layers reduces the number of parameters in the architec-
ture, and thus cutting the computational cost.

Figure 3.2: Max pool layer: A simple illustration of how a max pool layer with a 2x2 kernel with
2x2 stride works.

Batch Normalization
Batch normalization was first introduced in (Ioffe and Szegedy (2015)) as method of ac-
celerating the training process of deeper networks. The idea was to apply the same form of
normalization as is performed during the pre-processing stage at the input layer to all the
other layers within the network. The normalization itself is performed by aggregating the
values in each layer of all the entries within each batch, and storing the mean and standard
deviation of each layer in separate neurons and appending them to their respective layer.
Thus the actual values stored within each neuron is substantially reduced, which in turn
reduces the amount the neuron values are shifted. Historically, this has enabled quicker
training of larger networks, and even achieving better performance.

Batch normalization introduced a problem when utilized in computer vision applications.
To use batch normalization effectively, one is required fulfill certain assumptions, the main
of which is a sufficiently large batch size. In computer vision, one often has a large input
tensor, as the data entries are often high resolution images, and due to memory constraints
one cannot afford larger batch sizes. (Wu and He (2018)) suggests group normalization
as a solution to this issue. Rather than computing the mean and standard deviation of one
channel in all the of the same layer within a batch, they compute them in groups, which
are sets of channels within one layer in one data entry. Thus, the group normalization is
independent of batch size, and allows for deep computer vision networks being trained
from scratch.

3.5 Data Augmentation
Another option if one has a small data set is to increase it by creating synthetic data. This
can be achieved in a myriad of different ways. One simple, yet effective strategy is flip-
ping. Simply flip a percentage of the images in the training set, and voilá, one has a lot
more images. Caution is advised when utilizing this strategy. If the images that are flipped
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are of lower quality or contains noise of some kind, one risks ending up with worse results
than before. Other trivial augmentation methods include rotation, translation and changing
the coloring strategy.

A more modern and deep learning inspired augmentation approach is synthetically gen-
erating more images by using the data set in another neural network. This solution is far
more complex than flipping, but it might not be more beneficial. If the original data set
already contains noise, or is of lower quality, it is likely that the generated images will
contain similar disadvantages. Also, this strategy would require far more expertise than
the other ones.

3.6 Performance Metrics

Measuring the performance of Artificial Neural Networks can be quite tricky, and each
metric needs to taken with a grain of salt. For classification tasks, it is a simple matter of
the percentage of correct predictions, whereas for object detection tasks such as the one at
hand, one has to take a metric of localization into account. Specifically, how well does the
trained model both find and classify objects in an image.

A few definitions are necessary in order to express the following metrics. The Intersection-
over-Union (IoU) function is used to determine whether a predicted box actually matches
an actual box containing an object (ground truth box). It is defined as:

IoU =
Intersection

Union
(3.1)

Where Intersection is the shared area of the two boxes, and Union is the total area of the
two subtracted by the Intersection. The IoU function returns a value between 0 and 1,
where 1 indicates a perfect overlap.
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Figure 3.3: A depiction of how the Intersection-over-Union function works. The red box is the
ground truth box, and the green is the predicted box. The green area is the intersection of the two.

True Positives (TP) are predictions where the predicted bounding box has an Intersection-
over-Union (IoU) value over a certain upper threshold with a ground truth box and the
correct classification, i.e. correct predictions. False Positives (FP) are predictions which
have an IoU value below a lower threshold with all the ground truths or the wrong classi-
fication, i.e. wrong predictions. A False Negative (FN) is when a ground truth box has no
predictions, i.e. the model has missed an object.
The Precision of a model is defined as:

Precision =
TP

TP + FP
(3.2)

The Recall of a model is defined as:

Recall =
TP

TP + FN
(3.3)

3.6.1 Average Precision (AP)
Average Precision has become the default metric which state-of-the-art models in academia
compare each other with. There are several different methods to calculate the AP, as it has
been continually built upon to achieve an as accurate metric of performance as possible.
A common definition is the 11-point interpolation. Which is defined as:

AP =
1

11

∑
r∈0.0,...,1.0

APr (3.4)

AP =
1

11

∑
r∈0.0,...,1.0

pinterp(r) (3.5)
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where

pinterp(r) = max
r̃≥r

p(r̃) (3.6)

The reason it’s called the 11-point interpolation is that one divides the recall interval into
eleven parts (0.0, 0.1, ..., 1.0). It’s also possible to split the interval into smaller parts for
further precision in the metric. With model trained for detection of several classes, one
calculates the AP for every class and take the average of them. This is called the mean
Average Precision (mAP).

To be able to compare performance between different networks, they have to be tested
on the same data for the Average Precision to have any comparable meaning. The stan-
dard test set has varied over the years. For regular object detection, ImageNet and Pascals
VOC2007 and VOC2012 have been used to determine the strength of models. However,
the current state-of-the-art instance segmentation models has since 2015 been tested on
Microsofts COCO set. The introduction on the latter set has brought with new iterations
of the AP metric. For instance, the practice is to vary the IoU threshold for True Positives.
The primary variant is to take the average of ten AP values with IoU values from 0.5 to
0.95 with steps of 0.05. The strict variant is to only have an IoU threshold of 0.75, notated
as AP75. The Pascal VOC metric (which is also used when determining performance on
COCO) has an IoU threshold of 0.5, notated as AP50.

It’s worth noting that there is a newer form of Average Precision for masks. Masks are
outlines of each detected object, and are the result of Instance Segmentation networks.
The mask AP replaces the IoU function for calculating the overlap with a more sophisti-
cated area function. Bounding box AP is still a significant performance metric within both
instance segmentation and pure object detection applications, as it allows for comparative
results despite the different architectures.

Only bounding box AP will be taken into account in this task, as the goal is to compare an
architecture that produces just bounding boxes with an architecture which produces both
bounding boxes and masks.
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Supervised deep learning networks are state of the art methods in computer vision at the
time of writing. The main crux of supervised learning is the requirement of large amounts
of annotated data. While there are large datasets publicly available for numerous practical
purposes, there is most often a need to fine tune the model on data specific to each area of
use. To be able to do this, data must be collected and annotated for such scenarios. Thus,
there is an incentive for efficient data gathering and labeling and developing a strategy for
performing both of these tasks. It should also be easy to expand the dataset when new data
is available.

The purpose of this section is to determine which available methods are the most bene-
ficial for streamlining and accelerating the dataset creation and supplementing processes.
Primarily, a pipeline using the VIA tool is proposed, whereas a secondary pipeline using
cvat is looked at.

4.1 Choice of Annotation Tool

There are multiple excellent annotation tools that are openly available. The annotation
tool VIA was chosen as the standard tool in this thesis as it was utilized to create the
original dataset in the specialization project. At the time, this tool was recommended by
multiple sources. The chief of which was Matterports implementation of Mask-RCNN
(Matterport), which highlighted this tool as containing most of the crucial functionality, as
well as being simple to use. The json output format of VIA also matched the dataloader
of Matterports implementation. As the existing dataset from the specialization project
was written in the VIA format, and the fundamental code for augmenting the dataset was
written with this format in mind, it was natural to keep developing the pipeline using this
annotation tool.
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4.2 Dataset Pipeline Using VGG Image Annotation Tool

The following sections will describe the dataset creation process performed in this thesis.
Most of the functionality surrounding this process was built around the VIA tool. The
tool specialized functionality include semi-automatic mask and bounding box annotation,
dataset augmentation scripts and extraction scripts for creating subsets of the data set. The
code uses the specific dataset format of the VIA tool as a basis, which makes it incom-
patible to other annotation tools without a transform. The VIA format is also simple to
understand and to build upon.

4.2.1 Gathering Data

The process of gathering data for this thesis was primarily dependent on an operator cap-
turing video footage using the Seahunter system, of which images could be extracted.
During the course of the thesis, no schedule for capturing such footage was established,
and the process relied on the operator having both sufficient storage space and time to
collect it. This introduced an inherent latency in the data gathering phase of this process.
Thankfully, as the dataset from the specialization project was well established, the addi-
tional footage was not critical initially for training the networks, however it was crucial for
gaining better performance.

Over the course of the thesis, a total of 14 suitable videos were gathered to supplement
the dataset. Each of the videos contained multiple naval vessels in different environments.
Some videos included footage from a scenario which was underrepresented in the previ-
ous dataset, namely video of objects close to the shoreline or islands. The previous dataset
contained mostly images of objects at sea or far away from land. The new images posed
a challenge as the models trained on the old dataset often would predict the islands to be
ships. These false positives are known as hard false positives, as the false predictions have
high confidence scores. A naive, but effective approach to solve this problem, is to simply
add more images of this scenario to the training set. However, this solution does not scale
very well to other scenarios, as it requires imagery from all possible environments to detect
objects in them.

There are clear benefits to establishing a proper data gathering strategy, and in future such
routines should be made to improve performance over time.

Image Selection Process

The videos were split into one frame for every second. The generated images were sub-
sequently subjected to multiple rounds of refining. The refining process simply involved
picking out the images of higher quality which contained either islands, close shoreline.
The requirements for determining the whether to include an image or not was the follow-
ing;
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Figure 4.1: A selection of shoreline images from the dataset.

• The most of the features of at least one ship is visible within the image.

• The image is close to the shoreline.

• The image includes one or several small isles.

• The image is not blurry nor too dark.

Determining the most suitable images for expanding the dataset is a difficult task, as it is
uncertain what criteria results in the most effective learning. The aforementioned require-
ments served as a guideline to select each image. If an image satisfied either of the first
three requirements, it was deemed to be sufficient for the dataset. This process is hard
to automate, as it is difficult to determine automatically the quality of the image and the
objects within the image.

4.2.2 Annotating the Data
The topic of automatic annotation arose when faced with the labor intensive process of
mask labeling. The previous dataset was annotated using bounding boxes, and to be able
to use instance segmentation networks one had to relabel all of the objects in the existing
dataset. Drawing masks using the ”polygon” tool in VIA involves drawing an outline by
manually clicking each vertex around each object. Drawing bounding boxes on the other
hand, only requires clicking on the top left and bottom right corner of the box around
each object, making the former process several times more time consuming than the latter.
Thus, there is an even larger incentive to automate the mask annotation process than the
bounding box annotation.

Annotation Format
The format which is most often compatible with computer vision libraries such as De-
tectron2 is the COCO format. It is a standardized format of storing the annotations for
multiple computer vision tasks such as object detection, instance segmentation, key-point
detection, image captioning and panoptic segmentation. The structure for object detection
and instance segmentation is virtually the same, and is shown in figure 4.2.
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Figure 4.2: The structure of object detection/instance segmentation in the COCO data format.
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Figure 4.3: The structure of object detection/instance segmentation VIA csv format.

Unfortunately, the functionality for exporting the annotations in the COCO format within
the VIA tool did work optimally at the time of writing. Instead, the annotations were stored
in a csv file in the format in figure 4.3. This was the primary format that was used while
developing the dataset annotations, as it required far less storage space than the COCO
format.

Initial Automatic Annotation

To achieve semi-automatic mask annotation of the ships in the dataset, one has to uti-
lize a previously trained instance segmentation model to predict the outline of objects in
the images, which hopefully are good enough to be used as labels in the new dataset.
The choice of instance segmentation network fell upon the Matterport implementation of
Mask-RCNN which was utilized in the specialization project. It achieved decent results
in the project, and would serve as a decent starting point for the automatic annotation pro-
cess. The specific model that was chosen in this implementation for automatic annotation
was Mask-RCNN with ResNet101 as backbone pretrained on COCO 2017.

After writing a script which would run inference on a set of images, the resulting mask pre-
dictions from the network were extracted and transformed to a polygon format, and written
to the VIA csv format. The idea behind this was to be able to easily get an overview and
augment the automatic annotations within the VIA tool, as the annotations would show
up as if manually annotated. Within the tool itself, it was easy to change or delete the
annotations if they were inaccurate or distorted.
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Figure 4.4: A sample image where the automatic annotation script has been applied. The pretrained
Mask-RCNN model correctly detects two ships with satisfactory outlines

The resulting annotations can only serve as an initial annotation, as there has to be some
human intervention to verify that the masks are of sufficient quality to train other networks,
and remove the false positives. After running the automatic annotation script on the orig-
inal dataset, one has to manually check each annotation and determine their quality and
change them if necessary. In addition, one would be required to manually label the false
negatives in the images. As such, the primary goal of the automatic annotation is only
to reduce the amount of manual annotation as possible, rather than annotating the entire
dataset. Paradoxically, the ideal annotation tool would achieve this, however if one had
access to a model which was capable of this, it would likely make the training of another
model on the resulting dataset redundant.

4.2.3 Training, Validation and Testing Divide
The division of the dataset into three subsets, training, validation and test set, is a common
approach in machine learning applications. It is crucial that these subsets are independent
of each other, i.e. that none of the data entries exist in more than one set. The training
set contains the data entries which is used as input to the network in the backpropagation
algorithm. In other words, this set is responsible for the learning of the network, and the
performance of the network is mostly dependent on the quality of this set. The test set
is used to determine the final performance of the network after it has been fully trained.
The validation set on the other hand is used to determine the performance of the model
during the training process. Most often, the model is tested on the validation set in certain
intervals of the training, and the loss on the validation set is stored for analytic purposes
afterwards. The validation loss is compared with the loss on the training set, and one
can determine whether the model is overfitted if the validation loss starts to rise when the
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training loss continues to fall. This is vital information for determining for how long one
should train the dataset. It also allows for early stopping, which stops the training process
automatically when this criteria is fulfilled.

Cross-Validation
Typically, the split into the three subsets are roughly divided with the proportions 60 %
of the total dataset being dedicated to the training set, 20 % validation and 20 % test set.
A problem which can arise when dividing the dataset in a trivial manner is selection bias.
Some of the data may be more useful for the training process, and other for testing. For
instance, if only images from the dataset containing one class or scenario were used in the
training set, whereas the images from another scenario is strictly reserved for either the
validation or testing, it is likely that the generated model will perform worse than if the
training set was more balanced. The challenge is to determine which images should be
selected for each set, and the balance between them.

There are multiple strategies for deciding on the division. Cross-validation is a term coined
for multiple strategies that determine the optimal training-validation split. The idea be-
hind cross-validation is to find the optimal division between validaiton and training set to
avoid the problem of selection bias. There are numerous ways to perform cross valida-
tion, including holdout, K-fold and Repeated random subsampling. The simplest one to
implement is Holdout, where one simply does not utilize a validation set. Thus, one skips
a large part of the selection bias as all of the images are now included in the training set.
While this is a clear advantage for smaller datasets where each image is proportionally
more important than in a larger dataset, the down side is that one loses the bonuses of the
validation set. The main drawback is not being able to detect if the training becomes over-
fitted, and early stopping is ruled out. Essentially, the training process becomes blind, and
one can only conclude whether the network has become overfitted by after each training
sequence and comparing the evaluation results. If the test results decrease when trained
for more iterations, it is likely that it has become overfitted and the ideal training length is
lower than the current one.

K-fold and Repeated random subsampling are more complex algorithms to determine the
performance of the network on the dataset as a whole. Rather than sticking to one test set
and one training set, they both are based upon selecting different fragments of the total
dataset as each subset. K-fold select k different splits of the dataset, which results in k
different training and test sets. The algorithm then trains the network for each training set,
and evalutates its performance on the test set. After k iterations, all of the performance
scores are averaged, and the result is an overall representation of how well the model per-
forms across scenarios of the entire dataset.

Repeated random subsampling works in a similar fassion of splitting up the dataset in k
fragments. However, the selection process towards each subset is random, and while using
K-fold one is guaranteed to use every data entry in both training and testing over the course
of the algorithm, the latter algorithm provides no such guarantee. Thus, there is a risk that
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certain scenarios may never be tested.

The drawback of using the latter types of cross-validation is that they require several train-
ing and testing iterations to determine the overall performance. While they reduce both
the chance of overfitting and the effect of selection bias, similar effects can be achieved by
using the Holdout approach with a carefully chosen test set when the total dataset is fairly
balanced.

4.3 Mask Annotated Datasets
The tables 4.1 and 4.2 show the numbers of annotated images and objects. The former table
depicts the images from the specialization project dataset which have been annotated with
masks rather than bounding boxes, and the latter table shows the mask-annotated images
that has been extracted from the videos that were acquired during the master thesis.

Table 4.1: Overview of the Dataset from the Specialization Project. The training set is annotated
with masks, whereas the Unrefined Test set is annotated with bounding boxes

Data Set Number Of Images Number of Objects
Training Set 3, 703 4, 272
Unrefined Test Set 1, 516 2, 448
Total Dataset 5, 378 6, 894

Table 4.2: Overview of the Additional Images

Data Set Number Of Images Number of Objects
Training Set Addition 238 421
Shoreline Test Set 204 266
All New Images 442 687

Final Datasets

Table 4.3: Overview of the final dataset, and the respective subsets. The training and shoreline set
are annotated with masks, whereas the Unrefined Test set is annotated with bounding boxes.

Data Set Number Of Images Number of Objects
Training Set 3, 941 4, 693
Unrefined Test Set 1, 516 2, 448
Shoreline Test Set 204 266
Total Dataset 5, 820 7, 581
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4.4 Summary of Dataset Creation Pipeline
• Capture videos or images containing the desired classes.

• Create a set of suitable images. This is a manual process where each image should be
chosen based on its quality. In future works, this process could likely be automated
with active learning.

• Annotate the images. First, run initial automatic annotation to reduce the workload.
Subsequently, verify the quality of the automatic annotations, and annotate the miss-
ing objects. The initial automatic annotation scripts contains the possibility of both
annotating bounding boxes or masks depending on the chosen network architecture.

• Split the dataset into training, validation and test sets.
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Training and Testing

This chapter will discuss the training and testing methodologies used in this thesis. In
particular, it will address the functionalities in the popular computer vision framework
Detectron2, and how they were utilized to gain the results. The framework is a powerful
tool to build object detection applications upon. However, it may be difficult to orientate
what functionality is available straight away, and what one has to implement oneself. This
chapter will serve as a explanation of the training and testing processes utilized in this
project, as well as a description of how to use common deep learning functionalities such
as data augmentation and validation sets in the Detectron2 framework.

5.1 Detectron2

5.1.1 Installation

The framework itself requires initially little set up. There is a fairly good tutorial notebook
explaining the installation process as well as how to train the networks on custom datasets.
One can either install the dependencies using this notebook, or install the following li-
braries from scratch. The first step is to create a new virtual environment as is customary
when using deep learning applications. The reason for this is that different frameworks
have different requirements in terms of version control, and typically deep learning appli-
cations are very finicky about the versions of their dependencies. To differentiate between
different deep learning applications, it is necessary to install different versions of the de-
pendencies in separate virtual environments. The list of the Detectron2 dependencies are
listed below:

• MacOS or Linux

• Python >= 3.6

• torch >= 1.4
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• torchvision

• cython

• numpy

• cv2

• cocoapi

After installing the dependencies in the virtual environment, the Detectron2 framework
itself is installed by first cloning the repository from Github, and subsequently installed it
with Python.

5.1.2 Dataset Format
The inherent annotation format utilized by Detectron2 is the COCO format. If the respec-
tive dataset is structured in this format, the dataloader in Detectron can immediately detect
the annotations and rewrites them automically to the Detectron format. Otherwise, one has
to rewrite the get object dict(img dir) function in the tutorial notebook. Depending on the
format of the custom annotations, it might be easier to convert the dataset to the COCO for-
mat. If one uses the VIA tool, it is fairly short work to rewrite the get object dict(img dir)
function

5.1.3 Data Augmentation
Data augmentation techniques are often used to either artificially add more data samples to
the dataset, or alter certain samples of the dataset with the aim of generalizing the model.
In some cases the dataset only contains images with a certain color scheme, objects in
certain positions of the images, a certain orientation or only certain subclasses. In such
cases, there is a possibility that the final trained model will be biased towards the scenarios
in the majority of data samples in the training set. When the biased model is used to de-
tect objects in other scenarios than is contained in its training set, it would likely perform
badly due to the bias. For instance, if all the images in the training set are taken in day-
light, the model will likely perform worse when being applied to images in twilight or in
darker light. By applying augmentation techniques such as random lighting for instance,
one artificially creates data samples containing new scenarios, which hopefully leads to a
more generalized model. Note that there is an uncertainty as there is no guarantee of its
benefits, however data augmentation often leads to better performance.

The Detectron2 contains support for multiple data augmentation techniques. The total list
of implemented augmentation functions can be found within
/detectron2/data/transforms/transform gen.py.

A selection of the functions are listed below:

• RandomApply
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• RandomBrightness

• RandomContrast

• RandomCrop

• RandomExtent

• RandomFlip

• RandomSaturation

• RandomLighting

• RandomRotation

• Resize

• ResizeShortestEdge

If one wishes to select which techniques to use in training, it requires a bit of rewriting
of certain mapping functions to apply them. In order to make full use of these tech-
niques one has to write a custom dataloader. The default dataloader can be found in
/detectron2/data/dataset mapper.py, where the dataloader class itself is called Dataset-
Mapper. Within the class, one has to include a list of the supported augmentations from
transforms gen.py one wishes to perform. The custom dataloader has to included in the
Trainer class.

More augmentations are not necessarily better performance wise. Instead of generalizing
the data, at some point they introduce more noise, which is why the techniques themselves
should be chosen carefully. In this project, RandomFlip was utilized as it was indicated
that it increased performance in the specialization project, as well as ResizeShortestEdge
to fit the shortest edge.

5.1.4 Validation Set

While other machine learning libraries like scikit-learn contain functionality for automat-
ically splitting the training set into a training and validation split, the Detectron2 library
contains no such functionality. If one desires to utilize a validation set to determine the
object detection performance and validation loss during training, one has to implement
this functionality oneself. There are multiple sources and blogs online describing the way
to implement this. The general way to implement validation sets is manually splitting the
dataset into training, validation and test sets, and subsequently register each subset. In ad-
dition, one has to augment the DefaultTrainer class in /detectron2/engine/defaults.py,
to evaluate for each EVAL PERIOD, which is a parameter the user defines in the config
file.
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5.1.5 Transfer Learning

Detectron2 contains a substantial model zoo, which essentially is a collection of pretrained
models and networks that can be used to accelerate and boost the training process. It is
customary when building a custom model on a smaller dataset to use transfer learning to
reduce both the amount of data and time required to train an effective model. The available
models for instance segmentation are listed in table 5.1.

Table 5.1: A list of the instance segmentation models available in Detectron2

Network Backbone
Mask-RCNN ResNet50 + C4
Mask-RCNN ResNet50 + DC5
Mask-RCNN ResNet50 + FPN
Mask-RCNN ResNet101 + C4
Mask-RCNN ResNet101 + DC5
Mask-RCNN ResNet101 + FPN
Mask-RCNN ResNeXt101 + FPN
Cascade RCNN ResNet50 + FPN
Cascade RCNN ResNeXt152 + FPN

These are a subset of the available instance segmentation networks that are the most rele-
vant for the thesis. The models are all trained with the 3x schedule, which is equivalent to
37 COCO epochs. There are three combinations of baselines for each backbone network,
each representing a technique for extracting the feature map from the backbone. The
FPN variations represent the standard Mask-RCNN network, where the feature extraction
simply uses a Feature Pyramid Network, and uses fully connected neural networks for pre-
dicting boxes and masks. The C4 versions uses conv4 variations of ResNet with a conv5
head, while the DC5 versions uses conv5 ResNet backbone with dilations in conv5, which
was introduced in Dai et al. (2017). The model zoo also contains models for other popular
computer vision tasks, such as object detection, person keypoint detection and panoptic
segmentation.

According to Detectron2s baseline performances (FAIR) the FPN and DC5 variations have
the best performance, which is why they were chosen to be backbone format of the models
in this thesis. Utilizing transfer learning in Detectron2 is fairly simple, and the instruction
is part of the excellent tutorial notebook. Simply find the pretrained model which one
desires to fine-tune in the model zoo, and specify it in the config yaml file. The training
script will subsequently download the weights from the url contained in the config file
automatically when the training is initiated. The number of models is limited to those in
the model zoo, however they are sufficient for standard instance segmentation and object
detection purposes.

There is a configuration parameter called cfg.MODEL.BACKBONE.FREEZE AT for de-
termining which stages to freeze of the pre-trained weights. It has three possible values, if

44



5.2 Training

the parameter is set to ”0”, then none of the weights are frozen and the network will train
from scratch. If it is set to ”1”, then the first stage of the architecture, i.e. the backbone
network will be frozen, and if it set to ”2” both of the stages will be frozen. When training
with the parameter set to ”1”, one achieves regular transfer learning or fine-tuning of the
network.

5.1.6 Training From Scratch

In addition to setting the cfg.MODEL.BACKBONE.FREEZE AT value to ”0”, one also
need to perform certain changes in the network architecture as well. Primarily, the ”Frozen
Batch Normalizaion” layer needs to be changed to ”Group Normalization” in accordance
with the method in (He et al. (2018)). Detectron2 provides one network variation with this
change already implemented, which is Mask-RCNN with ResNet50 and FPN as backbone.

5.1.7 Hyperparameters

A key part in any deep learning application is the tuning of the hyperparameters of the net-
works. Detectron2 keeps track of all its hyperparameters and individual network settings
in a separate configuration file in the YAML format. The key advantage of the YAML
format is that one can create a base config file containing the mutual settings for multiple
networks, which network specific config files can ”inherit” from using the BASE com-
mand. This reduces the amount of superfluous code, and makes generating custom config
files easier. One ”tunes” the hyperparameters by altering the values within the config file.
Some key hyperparameters include the number of training iterations, the number of im-
ages per batch, the learning rate and the Region of Interest (ROI) batch size per image.
An iteration in the Detectron2 implementation is a mini-batch consisting of the number of
images per batch for each GPU available. The max number of iterations determines the
length of training session. The difference between the number of images per batch and the
ROI batch size per image is that the former parameter is used for the training of the back-
bone, where as the latter is used for the batch size for training the heads of the network,
i.e. how many regions is extracted from each image to train the network head.

5.2 Training

5.2.1 Available Hardware

The hardware that was available for this master thesis was a significant upgrade from the
specialization project, which made the training of instance segmentation networks feasi-
ble. The specifications of the hardware was two ASUS RTX2080Ti Turbo GPUs, an Intel
LGA1151 i9 - 9900K CPU and 64 GBs of RAM. Only a single GPU was used at a time,
however this proved to be more than sufficient to both fine-tune the instance segmentation
networks and train them from scratch. This is largely due to the power of the RTX2080Ti
cards, which contains 11 GB of video memory as well as 4,352 CUDA cores. The CUDA
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cores are optimized for parallel computations and are thus suitable for deep learning pur-
poses.

5.2.2 Training Sets

The networks were trained primarily on two training sets. The first training set contains
the 3,703 images from the specialization with 4,272 mask annotations, whereas the second
training set is the next iteration of the first with an additional 238 images and 421 mask
annotations. The purpose of training on both of these sets is to determine the performance
boost of supplementing the training set with more images and annotations.

5.2.3 Training From Scratch and Transfer Learning

Training from scratch refers to the process of training all the layers in the network, in-
cluding the backbone network. More specifically, it means that the weights are initialized
randomly before training and all of the layers are augmented during training. The results
from the specialization project indicated that YOLOv3-tiny trained from scratch outper-
forms larger variations of the network which is trained using transfer learning. These
results are supported by He et al. (2018).

In this thesis, both of these techniques are utilized for training. However, a slightly mod-
ified approach is applied when training from scratch. Instead of initializing the weights
randomly, they are instead initialized as the pre-trained weights. This is a hybrid approach,
where one trains the entire network, but the network gains a ”head start” on finding the
optimum.

Tuning

The models that were trained from scratch was trained for a longer period than the transfer
learning models to allow for convergence. It became apparent that when initializing the
weights randomly, the model required even longer time to converge. It was deduced that
the transfer learning models overfitted after being trained for longer than 10,000 iterations
as the test results significantly declined for a larger number of max iterations. When train-
ing from scratch with pre-trained weights, the model converged after 30,000 iterations,
while the model trained with randomly initialized weights converged after 45,000 itera-
tions.

The ROI batch size per image variable was tuned primarily after the size of the backbone
network. It was found that for the ResNet50 backbone, a ROI BATCH SIZE value of 64
performed the best, whereas for the ResNext101 bacbone, a ROI BATCH SIZE value of
128 gave the best results. The remaining hyperparameters were set to the default within
the Detectron2 framework.
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5.3 Testing
The test sets were designed to be comparable with real life applications of the Seahunter
system, in other words the test images were selected if they contained smaller objects
or objects from afar, multiple objects or challenging lighting and weather circumstances.
This careful selection was made such that the performance on the test sets would simulate
the performance in tougher conditions of the Seahunter application.

Two primary test sets were utilized to determine the model performances. The first and
largest test set is the same that was developed in the specialization project, which contains
1,516 images and 2,448 objects. This test set is designated to be a benchmark for the mod-
els in the specialization project and the master thesis as it contains the ”hardest” images of
the dataset, and to allow for a qualitative comparison between their performances.

The second test set is specifically designed to determine the performance of the models in
shoreline environments. This scenario is only represented in the larger test set in a small
extent, and it became apparent while running inference using the trained models that they
predicted hard false positives of several small isles in the images. Thus, it became neces-
sary to have a metric for how the models performed in such environments. The second test
set consists exclusively of images from the videos that were gathered during the course of
the thesis, and thus the two test sets are independent of each other.

The testing methodology itself involved running inference using the inbuilt COCOEval-
uation functionality within the Detectron2 framework. The framework supports multiple
evalutation metrics, however the COCO format is standard for instance segmentation ap-
plications and was therefore used a baseline in this thesis. The COCO evaluation format
includes the following parameters, AP , AP50, AP75, APS , APM and APL. AP50 and
AP75 represent the average precision scores when a true positive is defined by the pre-
diction matching the ground truth boxes with an IoU score of 0.50 and 0.75 respectively.
Intuitively, the latter average precision score requires a bounding box which fits better to
the ground truth, and thus a model with high AP50 but low AP75, detects the objects, but
the resulting bounding boxes are poor. The scores APS , APM and APL represent how
well the model detects small, medium and large objects respectively. Finally, the main AP
score is an average of multiple AP scores with an increasing IoU threshold, starting at 0.5
and increasing with 0.05 until it reaches 0.95.
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Chapter 6
Results

The results will be presented in the following order. First, the performance boost of en-
larging the training set will be determined by comparing the results of models trained on a
smaller and a larger training set respectively. Second, the results of training using transfer
learning and training from scratch will be compared. Third, a comparison between the
results from the specialization project and the master thesis will follow. Fourth, a sum-
mary of the best models and their performance. The first, second and fourth sections will
include the results on both of the available test sets, whereas the third section will only
include the results on the larger test set.

6.1 Enlarging the Training Set

One can tell by judging the results in table (6.1) and (6.2) that increasing the training set
with only 238 images have a substantial effect on the object detection results. Each model
in the table is trained with the same hyperparameters as their respective counterpart, the
only difference being the training set sizes.

Table 6.1: Performance on the Unrefined Test Set. The score is given as bounding box AP. All of
these models have been trained using transfer learning.

Models Train Set AP AP50 AP75 APS APM APL

Mask-RCNN + ResNet50 + FPN 3, 703 38.7 73.9 33.9 17.9 44.3 54.6
Mask-RCNN + ResNeXt101 + FPN 3, 703 37.4 74.3 30.3 16.8 40.2 54.5
Cascade-RCNN + ResNet50 + FPN 3, 703 38.4 73.1 33.9 18.2 43.4 55.3
Mask-RCNN + ResNet50 + FPN 3, 941 41.3 81.8 34.7 25.5 42.4 55.0
Mask-RCNN + ResNeXt101 + FPN 3,941 42.5 82.0 36.6 25.8 43.1 56.4
Cascade-RCNN + ResNet50 + FPN 3, 941 40.5 79.2 34.5 24.9 40.9 55.0
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Table 6.2: Performance on the shoreline test set. The score is given as bounding box AP. All of
these models have been trained using transfer learning.

Models Train Set AP AP50 AP75 APS APM APL

Mask-RCNN + ResNet50 + FPN 3,703 47.5 76.4 50.1 40.6 65.4 79.0
Mask-RCNN + ResNeXt101 + FPN 3,703 44.4 67.2 47.5 29.6 67.6 79.1
Cascade-RCNN + ResNet50 + FPN 3,703 47.8 73.3 54.5 38.1 68.6 71.6
Mask-RCNN + ResNet50 + FPN 3,941 50.5 85.5 51.4 42.2 63.7 75.6
Mask-RCNN + ResNeXt101 + FPN 3,941 51.3 83.2 54.6 42.0 65.7 78.8
Cascade-RCNN + ResNet50 + FPN 3,941 51.4 82.5 55.5 41.4 69.0 57.4

The models which are trained on the larger training set outperforms the models trained on
the smaller training set by a good margin. The difference is most apparent in the AP50

category, where the difference between the two Mask-RCNN + ResNeXt101 models is
7.7 points. The clue to realizing the reason behind the increase lies in the APS score. The
other categories APM and APL are fairly similar in all the models trained on the smaller
and the larger training set. However, the APS is markedly better in the models trained on
the larger training set. This improvement in performance is due to that the additional im-
ages contain mostly smaller objects, and thus it is not surprising that the average precision
score in that category increases. However, it interesting to note the decrease of the APM

scores with the additional training images. This is likely connected with the imbalance in
the training set which is introduced with the overweight of smaller objects.

All of the following models in the next sections are trained on the larger training set due
to the increase in performance.

6.2 Transfer Learning vs. Training From Scratch

Two primary techniques were utilized for training the networks, training from scratch
and transfer learning. The tables (6.3) and (6.4) shows the qualitative comparison of the
two methodologies on the Unrefined Test Set and the shoreline test set respectively. The
”TF” notation represents that the model is trained using transfer learning. The other mod-
els are fully trained on the custom dataset. The notation ”PW” represents the proposed
method with the weights initialized as the pre-trained weights and ”RW” represents that
the weights are initialized randomly.
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Table 6.3: Performance on the Unrefined Test Set. The first two models are trained with transfer
learning, whereas the next two are trained from scratch and are initialized with pre-trained and
random weights. All of these models are trained on the largest training set with 3,941 images.

Models AP AP50 AP75 APS APM APL

Mask-RCNN + ResNet50 + FPN + TF 41.3 81.8 34.7 25.5 42.4 55.0
Mask-RCNN + ResNeXt101 + FPN + TF 42.5 82.0 36.6 25.8 43.1 56.4
Cascade-RCNN + ResNet50 + FPN + TF 40.5 79.2 34.5 24.9 40.9 55.0
Mask-RCNN + ResNet50 + FPN + PW 44.5 85.1 39.6 32.3 44.6 56.1
Mask-RCNN + ResNet50 + FPN + RW 37.6 76.1 28.9 19.8 43.5 50.2

Table 6.4: Performance on the shoreline test set. The first two models are trained with transfer
learning, whereas the next two are trained from scratch and are initialized with pre-trained and
random weights. All of these models are trained on the largest training set with 3,941 images.

Models AP AP50 AP75 APS APM APL

Mask-RCNN + ResNet50 + FPN + TF 50.5 85.5 51.4 42.2 63.7 75.6
Mask-RCNN + ResNeXt101 + FPN + TF 51.3 83.2 54.6 42.0 65.7 78.8
Cascade-RCNN + ResNet50 + FPN + TF 51.4 82.5 55.5 41.4 69.0 57.4
Mask-RCNN + ResNet50 + FPN + PW 50.7 83.5 50.5 41.1 65.7 71.5
Mask-RCNN + ResNet50 + FPN + RW 37.4 72.5 34.6 28.3 55.0 16.7

Interestingly, the results in table (6.3) indicates that the proposed method of initializing
the weights as pre-trained weights and subsequently training all the layers, outperforms
the best of the transfer learned models as well as the model with randomly initialized
weights. The PW model gains the best AP scores in almost every category except the
APL score, where the larger transfer learned model Mask-RCNN + ResNeXt101 model
performs slightly better. Specifically, the PW model gains both higher AP50 and AP75

than the other variations, which supports the third observation of He et al. (2018) that
says models trained from scratch predict masks and bounding boxes of higher quality than
transfer learned models.

The results in table (6.4) are less conclusive than in table (6.3). The overall AP is similar
for all the models except the model with randomly initialized weights. The two models
that are trained from scratch are slightly more vulnerable to predicting hard false positives
than their transfer learned counterparts, as can be seen in the figure 7.1, and thus they per-
form worse on the shoreline test set.

Both the fine-tuned model, Mask-RCNN + ResNext101, and the fully trained model,
Mask-RCNN + Resnet50 + PW, struggle with clusters of objects, as can be seen in fig-
ures 6.1a and 6.1b. The latter model detects more objects in the bay area, but neither
model is able to detect any of the moored vessels.
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6.3 Comparison with The Specialization Project Results

The results in table (6.5) show unsurprisingly that the state of the art networks such
as Mask-RCNN and Cascade-RCNN outperform the networks from the specialization
project, even before the aforementioned improvements of increasing the training set and
training from scratch were applied. The main performance boost over the specialization
project is mainly due to utilizing and training deeper networks. Due to lack of powerful
hardware it was not feasible to train the Matterport implementation of Mask-RCNN at the
time, and the model that was used for inference was a COCO pre-trained model. The other
main model from the project, YOLOv3-tiny, is a significantly smaller network which was
trained from scratch, and performed almost equally well on the Unrefined test set as Mat-
terports Mask-RCNN. The models from the thesis all perform over twice as well as the
models from the specialization project.

It is worth mentioning that there are different Mask-RCNN implementations used in the
specialization project and the master project, where the former implementation was made
by Matterport, and the latter was made by Facebook AI Research group.

Table 6.5: A comparison between the performance of the best models from the specialization project
and the master thesis on the Unrefined Test Set. The score is given in bounding box AP. The com-
parison is only made with the AP50 and AP75 scores as they are the only scores that are available
for all of the models. The scores from the specialization project are also converted from a 0 to 1
scale, to a 0 to 100 scale.

Models AP50 AP75

YOLOv3-tiny + Default Anchors + PW 38.5 8.6
Mask-RCNN + ResNet-101 38.4 13.1
Mask-RCNN + ResNet50 + FPN + TF 81.9 34.7
Mask-RCNN + ResNet50 + FPN + PW 85.1 39.6
Mask-RCNN + ResNet50 + FPN + RW 74.8 23.0
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6.4 Summary

Table 6.6: The total performances on the Unrefined Test Set. All of these models are trained on the
largest training set with 3,941 images.

Models AP AP50 AP75 APS APM APL

Cascade-RCNN + ResNet50 + FPN + TF 40.5 79.2 34.5 24.9 40.9 55.0
Mask-RCNN + ResNet50 + FPN + TF 41.3 81.8 34.7 25.5 42.4 55.0
Mask-RCNN + ResNeXt101 + FPN + TF 42.5 82.0 36.6 25.8 43.1 56.4
Mask-RCNN + ResNet50 + DC5 + TF 41.7 82.6 34.6 26.9 42.8 54.9
Mask-RCNN + ResNet101 + DC5 + TF 40.2 81.3 32.7 25.6 43.1 52.4
Mask-RCNN + ResNet50 + FPN + PW 44.5 85.1 39.6 32.3 44.6 56.1
Mask-RCNN + ResNet50 + FPN + RW 37.6 76.1 28.9 19.8 43.5 50.2

Table 6.7: The total performances on the shoreline test set. All of these models are trained on the
largest training set with 3,941 images.

Models AP AP50 AP75 APS APM APL

Mask-RCNN + ResNet50 + FPN + TF 50.5 85.5 51.4 42.2 63.7 75.6
Mask-RCNN + ResNeXt101 + FPN + TF 51.3 83.2 54.6 42.0 65.7 78.8
Cascade-RCNN + ResNet50 + FPN + TF 51.4 82.5 55.5 41.4 69.0 57.4
Mask-RCNN + ResNet50 + DC5 + TF 49.4 82.7 47.7 37.5 67.8 78.5
Mask-RCNN + ResNet101 + DC5 + TF 47.2 84.8 48.6 36.7 63.8 73.9
Mask-RCNN + ResNet50 + FPN + PW 50.7 83.5 50.5 41.1 65.7 71.5
Mask-RCNN + ResNet50 + FPN + RW 37.4 72.5 34.6 28.3 55.0 16.7

Overall, the best performing model on the Unrefined test set was trained from scratch and
initialized with pre-trained weights on the larger training set. It especially outclassed the
other variations in the APS category, where it gained a score of 32.3 and the closest vari-
ation received 25.8. In the smaller shoreline test set, it performed similarly to the transfer
learned networks. The next best model was a transfer learned variation of Mask-RCNN
with ResNeXt101 as backbone. It performed slightly better on the smaller test set. A se-
lection of inference images of the two models are shown in figure (6.1). Both variations
are able to detect very small objects, that models in the specialization project were not
capable of. However, it appears that both models detect a significant amount of hard false
positives of small isles.
Interestingly, Cascade-RCNN gained the best performance on the shoreline test set with
the ResNeXt variation of Mask-RCNN next in line, with AP scores of 51.4 and 51.3 re-
spectively.
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(a) Mask-RCNN + ResNext101 + TF (b) Mask-RCNN + ResNet50 + PW

(c) Mask-RCNN + ResNext101 + TF (d) Mask-RCNN + ResNet50 + PW

(e) Mask-RCNN + ResNext101 + TF (f) Mask-RCNN + ResNet50 + PW

(g) Mask-RCNN + ResNext101 + TF (h) Mask-RCNN + ResNet50 + PW

Figure 6.1: A selection of inference images from the two best models, Mask-RCNN with
ResNeXt101 transfer learned, and Mask-RCNN with ResNet50 trained from scratch.
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In this section, a selection of key areas in the thesis will be examined and discussed. First,
a short review of the backbones will be given. Second, the problem of hard false positives
is mentioned. Third, a discussion regarding the results of transfer learning follows. Fourth,
an evaluation of the proposed dataset creation pipeline and possible alternatives. Lastly,
a discussion whether the robustness of the models has increased from the specialization
project to the models proposed in this thesis.

7.1 Backbone Performance
The different backbone architectures performed similarly on both test sets when trained
with transfer learning. Despite consisting of twice as many layers, the ResNeXt101 varia-
tions did not significantly outperform the ResNet50 variations. In fact, in some categories
it was even surpassed by its smaller version. This is likely due to that these variations were
only trained on the layers after the backbone. The backbones themselves were trained on
ImageNet, and thus it possible that the similar results of the different variations merely
indicate the feature similarity between the custom dataset and ImageNet. Naturally, if the
features within the custom dataset differ too much from the features within ImageNet then
it is likely that the performance of the pre-trained backbone would saturate despite the
increase in depth.

7.2 Hard False Positives
After training multiple models using both transfer learning and training from scratch, it
is apparent that both methodologies struggle with hard false positives, which are faulty
predictions with high confidence scores. However, it appears that the Cascade-RCNN ar-
chitecture is slightly more resistant to this issue than Mask-RCNN. As seen in figure 7.1,
the Mask-RCNN models detect multiple small isles as ships. The model trained from
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scratch appears to detect more than its transfer learned counterpart. These models also
detect incredibly small objects, however it seems that the models are not critical enough
in their selection. Cascade-RCNN does not detect any of the isles in the image as ships.
The reason the latter architecture performed well on the shoreline test is likely due to the
relatively small number of HFPs it detects. It is probable that the refinement aspect of the
cascade has a suppressing effect on these erroneous detections.

However, Cascade-RCNN is not immune to these errors. In figure 7.2 there is a selection
of hard false positives among the true positives that are generated when running inference
with Cascade-RCNN and the fully trained Mask-RCNN. Cascade-RCNN detects buoys
and piers as ships.

There are possible solutions to further reduce the number of HFPs. The most obvious one
is to increase the training set with more samples from this scenario. The overweight of im-
ages in the training set consists of ships at sea, and thus the trained model is likely biased
towards this scenario and thus predicts the isles as ships. Supplementing the training set
with even more images along the coast will likely passively suppress the numbers of hard
false positives.

Another possible solution might be to fully train Cascade-RCNN. The refining nature of
the cascade in combination with a backbone and head trained on a custom dataset, could
properly learn the features within the dataset and be more critical in its predictions.

A more sophisticated approach is proposed in Cheng et al. (2018) where they actively
suppress hard false positives by adding a separate classifier to the network. The second
classifier is trained independently of the main two stage object detector, and is used to
”refine” the classifications from the base detector. While they utilized an older object
detection two stage detector, Faster-RCNN, it should in theory be applicable to Mask-
RCNN as well with some modifications to the loss function. Unfortunately, this method
was not tested in this thesis due to time constraints.

7.3 Transfer Learning vs. Training from Scratch
The results challenge the existing paradigm within computer vision where the normal
training methodology involves using pre-trained weights and fine-tuning the network head.
Both of the two training regimes performed well on the test sets. While the default method
of randomly initializing the weights and training from scratch performed well, it did not
converge to the levels of performance of the transfer learned models. Thus, it was a sur-
prise that training from scratch with pre-trained weights performed better than both of the
aforementioned models.

The results in He et al. (2018) suggests that models trained from scratch is both a viable
and even effective training strategy, even when utilizing smaller datasets. They show that
when utilizing smaller datasets of 35k to 10k images to train models from scratch the
resulting models are as accurate as their pre-trained counterparts. However, this pattern
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(a) Cascade-RCNN + ResNet50 + TF

(b) Mask-RCNN + ResNet50 + PW

(c) Mask-RCNN + ResNeXt101 + TF

Figure 7.1: A selection of inference images with hard false positives. The images are generated with
the two best performing models, Mask-RCNN + ResNext101 + TF and Mask-RCNN + ResNet50 +
PW
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(a) Cascade-RCNN + ResNet50 + TF (b) Mask-RCNN + ResNet50 + PW

(c) Cascade-RCNN + ResNet50 + TF (d) Mask-RCNN + ResNet50 + PW

(e) Cascade-RCNN + ResNet50 + TF (f) Mask-RCNN + ResNet50 + PW

Figure 7.2: A selection of inference images with hard false positives. The images are generated with
the two best performing models, Mask-RCNN + ResNext101 + TF and Mask-RCNN + ResNet50 +
PW

does not continue, and when training on 1k images the model trained from scratch per-
forms considerably worse. Thus, their experiments are inconclusive for models that are
trained from scratch on training sets with less than 10k images but more than 1k. Aston-
ishingly, the results from this thesis indicate that it is also viable to train deep networks
such as Mask-RCNN with ResNet50 from scratch with only 4k images, and gain even
better results than using a pre-trained backbone in some cases. It has to be noted that these
results were gained by initializing the weights as the same pre-trained weights as their
counterpart, and in that sense the model is not entirely trained ”from scratch”. The model
initialized with random weights required far more training iterations to converge.

While the results of fully training the networks certainly are promising, the existing paradigm
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of transfer learning is still incredibly useful in most deep learning applications. Transfer
learning is the preferred method for applications with limitations in computing resources
or lack of available data, as it speeds up the convergence of the model, and it achieves
excellent results when applied in custom scenarios.

7.4 Evaluation of Deep Learning Pipeline

7.4.1 Initial Automatic Annotation Results

The essence of the automatic annotation is based on the inference of another pre-trained
network, in this case Matterports implementation of Mask-RCNN. Despite the similarity
between automatic annotation and instance segmentation, one can not utilize the average
precision metric to evaluate the performance of the automatic annotation. While certain
predictions may have an IoU score over a certain threshold, the outline itself may be of
insufficient quality to keep as an annotation. For instance, some predictions may include
pieces of background or the crosshair within the mask, which is too imprecise to use as an
annotation.

In other words, a true positive for object detection metrics, is not necessarily a true positive
for the automatic annotation. The metric for automatic annotation is therefore stricter than
regular object detection metrics.

The initial automatic annotation was run for the entire old dataset (5,378 images), as well
as all of the images extracted from the collected videos (567 images). In the newer 442
images, 652 objects were automatically annotated, where 166 of which were kept in the
final annotations. The number of final annotations was 687, and thus the initial automatic
annotation had an annotation accuracy of 25.46%, whereas it reduced the manual annota-
tion load by 24.16%. Unfortunately, there is no data for how well the script worked for the
existing dataset, but it did annotate a substantial amount of vessels successfully.

7.4.2 Supplementing the Dataset

The default mindset when creating datasets is ”the more data the better”, and the same
could easily be applied to strategies for supplementing the dataset. However, there is a
tradeoff to carelessly adding images to the set. One has to take into account the balance
within the existing set, and add images in an equal manner. An imbalance was introduced
when supplementing the dataset with the new images in this thesis, as they contained
mostly smaller objects. This reduced the performance on larger objects slightly, which
could theoretically be avoided if an equal amount of images with larger objects were
added. On the other hand, the performance overall and the detection of smaller vessels
in particular improved. The trade-off in this case was favorable, but one should keep the
drawbacks in mind when adding images to the dataset. Alternatively, one could utilize
more data augmentation to counteract the surplus of one image feature, but as mentioned
previously this is not guaranteed to solve the problem.
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7.4.3 Choice of Annotation Tool

During the late stages of the thesis, it became apparent that there exists tools with similar
functionality as the proposed pipeline. Cvat (Intel) contains functionality for automatic an-
notation and frame by frame video annotation as well. However, as the existing code-base
and dataset from the specialization project was written with the VIA tool in mind, it was
not feasible to swap annotation tools. Due to the extra functionality, the Cvat annotation
tool is recommended for further work.

7.4.4 Summary

The dataset creation pipeline still requires a fair amount of human interaction and overview.
The model used in initial annotation script can simply be swapped for a better performing
model, which in turn would reduce the manual annotation load even further. However, the
processes of gathering videos and selecting images are still very time consuming and are
not trivial to automate. In addition, it is still required to manually check the quality of
every annotation, and alter them if necessary.

The creation of datasets will likely always be the most time consuming in any supervised
deep learning application. While utilizing weights pre-trained on existing large data col-
lections significantly accelerates the process, a custom dataset will still have to made in
most target scenarios. With that in mind, the proposed pipeline will hopefully aid in cre-
ating such datasets.

7.5 Improvement from the Specialization Project

One of the key improvements from specialization project is the improved ability to detect
smaller objects. This is a vital functionality for usage in the practical application, as it is
more useful to detect objects far away rather than objects in closer vicinity. This is in large
part due to the ability to train large instance segmentation networks on the dataset. How-
ever, there are other attributors to the improvement as well. In the specialization project,
part of the training set was subtracted to be used as a smaller training set, whereas in the
thesis these images were reinstated to the training set. Thus, the training set was substan-
tially larger in the latter project, and as shown in section 6.1 this may have had a positive
impact on the models as well.

With the improvements of the thesis, it is necessary to ask whether these models now
are robust enough to use in a real application. Despite the enormous leap in accuracy,
the models still produce flaws such as detecting isles as ships. The performance boost
of enlarging the dataset certainly motivates that the application in future might be robust
enough for industrial use. However, it is likely that architectural changes are necessary
to guarantee more consistent predictions. Overall, both the network architectures and the
dataset requires refining before it can be used in an actual application.
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7.5 Improvement from the Specialization Project

(a) A small ferry. (b) A medium sized ferry.

Figure 7.4: Zoomed in versions of each detected object in figure (7.3)

Figure 7.3: An inference image using Mask-RCNN with ResNet50 trained from scratch.
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Chapter 8
Conclusion

In this thesis, two instance segmentation architectures, Mask-RCNN and Cascade-RCNN,
were trained on a custom dataset of aerial images. Based on the results of the specializa-
tion project and He et al. (2018), the networks were trained from scratch and with transfer
learning on the custom dataset to determine the respective merits of the individual training
strategies. A hybrid strategy was also proposed, which involved initializing the weights
as a set of pre-trained weights and subsequently training the network from scratch. On
a test set of 1,516 images, the best performing model was generated by using the hybrid
approach with Mask-RCNN with ResNet50 as backbone, which gained an AP score of
44.5. In comparison, a larger transfer learned model, Mask-RCNN with ResNeXT101 as
backbone, gained an AP score of 42.5, and the model trained from scratch with randomly
initialized weights gained a score of 37.6. On a smaller test set containing shoreline im-
ages, Cascade-RCNN gained the best performance with an AP score of 51.4. The results
indicate that this architecture is slightly more resistant to hard false positives.

A dataset creation pipeline was proposed to accelerate the data gathering and annotation
process. In particular, an initial automatic annotation process was made, using an existing
pre-trained model for inference to create annotation proposals. This was used to anno-
tate an existing dataset, and subsequently additional images with masks to allow for the
training of state of the art instance segmentation networks with the aim of detecting naval
vessels.

These results provide multiple insights. First, it is viable to fully train deep instance
segmentation networks on smaller datasets down to 4,000 images. Second, the pro-
posed method of training from scratch initialized with ImageNet pre-trained weights
may outperform the methods of fully training with randomly initialized weights and
training using a frozen, pre-trained backbone, when trained on a smaller custom
dataset. Third, Cascade-RCNN and Mask-RCNN are highly suitable to detect naval
vessels in aerial images, and increased the performance from the specialization project
immensely.
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Chapter 8. Conclusion

The second insight supports the conclusion in the specialization project, where a smaller
model trained from scratch may outperform a larger model trained with transfer learning,
even when utilizing a smaller dataset. The results also support the observations in He
et al. (2018), as fully training with randomly initialized weights did not perform as well
as the fine-tuned model when trained on a dataset of less than 10k images. However, the
proposed method of fully training the network and initializing the weights as pre-trained
weights proved itself as a proper contender to these training regimes.
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Chapter 9
Further Work

The performance increased significantly by increasing the training set, and strategies for
gathering data and supplementing the dataset should be implemented in future. This task
will always be prevalent in supervised computer vision tasks, and should be a focus point
for further development. It was infeasible to implement multiple classes within the thesis
due to insufficient data of individual classes. Additional footage will also allow for mul-
tiple subclasses such as ferries, cargo ships and recreational ships, but also entirely new
classes within the dataset.

Other methods of improving the performance include applying more data augmentation.
The newly published paper Zoph et al. (2020) suggests that stronger data augmentation
considerably strengthen the performance of networks trained on smaller datasets, and thus
additional augmentation techniques should be utilized in future training processes. This
might also help with suppressing hard false positives, as more data is synthetically gen-
erated. However, this issue should also be actively dealt with. The results of adding a
separate classification network in addition to a two-stage network in Cheng et al. (2018)
are promising, and should be investigated in future as a measure to counteract these false
predictions.

Real-time object detection on video should also be researched further. While the instance
segmentation architectures utilized in this thesis are not suitable for this purpose, other
architectures such as YOLACT (Bolya et al. (2019)) may be the solution. It performs real-
time instance segmentation, albeit with a slight hit to the performance. It also requires
considerably powerful hardware to run inference. However, if such conditions are met
then it might also be worth to have a look at in further applications within this field.
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Appendix

A.1 Additional Inference Images

A.1.1 Mask-RCNN + ResNet50 + PW
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A.1.2 Mask-RCNN + ResNeXt101 + TF
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A.1.3 Cascade-RCNN + ResNet50 + TF
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