
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Thomas Sundvoll

A Camera-based Perception System for
Autonomous Quadcopter Landing on a
Marine Vessel

Master’s thesis in Cybernetics and Robotics

Supervisor: Anastasios Lekkas

June 2020

Thomas Sundvoll

A Camera-based Perception System for
Autonomous Quadcopter Landing on a
Marine Vessel

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Small Unmanned Aerial Vehicles (UAVs) have attracted a lot of attention in recent years,
and one of the more studied UAVs is the quadcopter. A quadcopter is also a Vertical Take-
Off and Landing (VTOL) vehicle, meaning that it has an advantage when operating in tight
spaces. Combined with their high maneuverability, they are a great tool for many tasks,
such as inspection, transportation of small packages and surveillance for search and rescue
operations.

To increase the flight time and reduce the cost of manual piloting the vehicles, a lot
of research is done recently on autonomous quadcopters. Some parts of the autonomous
flight, especially the landing, require a precise position estimate. This thesis investigates
an area of application where the landing spot is severely restricted in terms of size, namely
landing on a small marine vessel. In this case, the landing spot might be approximately of
the same size as the quadcopter itself, requiring an even more precise position estimate.
In this case, regular GPS measurements are not precise enough to perform autonomous
landing. Therefore, this thesis investigates the use of a camera as the main sensor for
estimating the position of a quadcopter, anticipating that this will give a better estimate.

A landing platform is designed and created to serve as the landing spot in the experi-
ments. It is designed to resemble a standard landing platform typically found on marine
vessels. The marine vessel that eventually will host the landing platform is the ReVolt
model ship created by DNV GL, so design measures are taken to fit the landing platform
to that specific ship.

A computer vision system is developed with the main purpose of estimating the quad-
copter’s position relative to the landing platform. The main challenge with a computer
vision system at sea is the lack of fixed points to navigate by, since the sea is constantly
moving. To solve this issue, traditional computer vision methods are applied, such as
color segmentation, edge detection and corner detection, to extract the known features of
the landing platform. From this, the position is estimated using the pinhole camera model
and known measurements on the landing platform. The methods and algorithms for the
position estimate are developed using the OpenCV library for Python and the computer
vision system is integrated into the Robot Operating System (ROS) framework. In ad-
dition, a dead reckoning module is developed to give an estimate based on the inertial
measurements of the quadcopter when no computer vision estimate is available.

The system is tested both in a simulator and with a physical quadcopter and landing
platform, with accurate results in the simulator and promising, but a bit more noisy results
with the physical quadcopter. Finally, some suggestions for improvements of the methods
and future work on the topic are given.

i

Sammendrag

Små, ubemannede luftfartøyer (UAVer) har tiltrukket seg mye oppmerksomhet de siste
årene, og et av de mest studerte UAVene er quadcopteret. Et quadcopter går også un-
der kategorien VTOL-fartøy som er et begrep som brukes om fartøy som kan ta av og
lande vertikalt. Dette gjør at quadcoptere har en fordel når de opererer i områder med lite
plass. Sammen med deres høye manøvrerbarhet er de et godt vertøy til å utføre mange
oppgaver, slik som inspeksjon, transport av små pakker og overvåkning for søk- og red-
ningsopperasjoner.

For å øke flygetiden og redusere kostnadene ved å manuelt styre slike fartøy, er det i det
siste forsket mye på autonome quadcoptre. Deler av en autonom flytur, og særlig landin-
gen, krever et presist posisjonsestimat. Denne oppgaven undersøker et bruksområde hvor
landingsplassen er betydelig begrenset når det kommer til størrelse, nemlig å lande på et
lite, sjøgående fartøy. I dette tilfellet kan landingsplassen være omtrent på samme størrelse
som quadcopteret selv, noe som krever et posisjonsestimat med enda høyere presisjon. I
dette tilfellet vil ikke vanlige GPS-målinger være presist nok til å utføre autonom land-
ing. Derfor undersøker denne oppgaven bruken av kamera som hovedsensor å estimere
posisjonen til et quadcopter, med forventning om at dette vil gi et bedre estimat.

En landingsplattform er designet og bygget for å fungere som landingsplass i eksperi-
mentene. Den er designet for å etterligne en standard landingsplattform som vanligvis er
å finne på sjøgående fartøy og marine installasjoner. Fartøyet som til slutt vil bruke land-
ingsplattformen er modellskipet ReVolt som er laget av DNV GL, så designet er tilpasset
for at landingsplattformen skal passe til dette spesifikke skipet.

Et datasyn-system er utviklet med hovedhensikt å estimere quadcopterets posisjon rel-
ativt til landingsplattformen. Hovedutfordringen med et datasyn-system på sjøen er man-
gelen på faste punkter å navigere etter, siden sjøen er i konstant bevegelse. For å løse
dette problemet er tradisjonelle datasyn-metoder brukt, blant annet fargesegmentering, de-
teksjon av kanter og deteksjon av hjørner, for å hente ut allerede kjente kjennetegn på
landingsplattformen. Ut fra dette er posisjonen estimert ved bruk av hullkamera-modellen
og kjente mål på landingsplattformen. Metodene og algoritmene for posisjonsestimatet
er utviklet ved bruk av OpenCV-biblioteket i Python, og datasyn-systemet er integrert
inn i rammeverket Robot Operating System (ROS). I tillegg er en bestikkregning-modul
utviklet for å gi et estimat basert på interne målinger hos quadcopteret, for bruk når ingen
datasyn-estimat er tilgjengelig.

Systemet er testet både i en simulator og med et fysisk quadcopter og landingsplat-
tform, med nøyaktige resultat i simulatoren og lovende, men støyfulle resultat med det
fysiske quadcopteret. Til slutt er det gitt noen forslag til forbedringer av metodene og
fremtidig arbeid på temaet.

ii

Preface

This master’s thesis is written during the spring semester of 2020 at the Norwegian Uni-
versity of Science and Technology (NTNU) and concludes my Master of Science in En-
gineering Cybernetics. My supervisor has been Anastasios Lekkas from Department of
Engineering Cybernetics, NTNU and my co-supervisor has been Tom Arne Pedersen from
DNV GL.

I have always been fascinated by small air vehicles. As a kid I had some radio con-
trolled airplanes and helicopters to play with and it was great fun to fly them. In my
experience, the manual control was hard to master and it took a lot of concentration not
to crash the vehicles. Therefore, it was interesting to take on this task with autonomous
unmanned air vehicles and to learn more about the challenges and possibilities with auton-
omy for such vehicles. Furthermore, I was interested in doing some practical testing and
experiments.

The main goal of this thesis is to develop a computer vision software system that can
provide a pose estimate for a quadcopter based on monocular camera images. The thesis is
also a part of a larger project where the goal is to achieve autonomous landing on a scaled
version of the ReVolt vessel created by DNV GL. Considerations about this broader area
of application is taken into account when conducting this thesis, and a landing platform is
designed and built to fit on the ReVolt.

In addition, this thesis includes practical testing of the computer vision system, both in
a simulator and with a physical quadcopter. One of the original objectives was to test the
developed system in the drone lab at NTNU, then with the ReVolt on land and finally with
the ReVolt at sea. However, due to the Covid-19 virus outbreak, and the following lock-
down in Norway from the middle of March, extensive testing with the physical quadcopter
became difficult. Nevertheless, some small tests in the front yard at home were possible
along with increased testing in the simulator.

This thesis is a continuation of my project report on the same topic, conducted during
the fall semester of 2019 [1]. The work with the project report gave me time to become
familiar with the topic, learn how to code with ROS, how to set up the simulator and how to
control the quadcopter, all of which was useful experiences when conducting this master’s
thesis. The general idea for the layout of the landing platform also came to be during the
project, although refinements are done in this thesis.

The computer vision system developed in this thesis is also inspired by some of the
promising findings in the project report. The good results using traditional computer vi-
sion methods for detecting the circular shapes of the landing platform led to the idea of
extending the detection to ellipses. Furthermore, the project report uses a neural network
for classification of the 3D position. At the same time it suggests in the future work sec-
tion to investigate the possibility of doing this classification using the camera parameters
and known geometry. This idea is followed up here and the neural network is set aside in
favour of more focus on traditional computer vision methods.

iii

This thesis benefits from some open-source software:

• ROS and Gazebo developed by Open Robotics.

• ROS packages, including ardrone autonomy, tum simulator, uuv simulator [2].

• Python packages, including Numpy, Scipy, Matplotlib and OpenCV.

• The free 3D computer graphics software Blender for designing the landing platform.

• The free video editing software Kdenlive for editing the attatched videos.

The Department of Engineering Cybernetics at NTNU has provided:

• Work station computer: Dell OptiPlex 7040, with Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz and 32 GB RAM.

• A Parrot AR.Drone 2.0 quadcopter with spare batteries.

• Funding to create the physical landing platform.

• The handheld controller, a PlayStation 4 controller, for controlling the quadcopter.

DNV GL has provided:

• 3D model of the ReVolt vessel.

• Access to the physical radar for test-fitting the landing platform.

All images, figures and plots are generated by the author unless otherwise stated.
This thesis would not have been possible without the help I have received from a

number of wonderful people. First of all, I would like to thank my supervisor Anastasios
Lekkas and co-supervisor Tom Arne Pedersen for their guidance and support during both
the project report and this master’s thesis. Furthermore, I would like to thank my fellow
student Daniel Tavakoli, who has been working on the planning and control part of the
larger project, for good cooperation and valuable exchange of views. Next, I want to thank
Glenn Angell at the workshop at ITK for producing the parts I needed to build the landing
platform. I also want to thank Tania Bonilla for her input on how to make the 3D model of
the stands and for suggesting the use of hook-and-loop to mount the landing platform onto
the radar. Also, I am grateful to my brother Elias for borrowing me his laptop and an extra
computer screen to make my work more efficient and comfortable during the period with a
home office. Finally, I want to thank my loving wife Siri and all my friends in Trondheim
for making the past five years an unforgettable period of my life.

Thomas Sundvoll
Trondheim, 19. June, 2020

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Background and motivation . 1
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Theory 5
2.1 Computer vision . 5

2.1.1 Traditional computer vision . 5
2.1.2 Edge detection . 7
2.1.3 Corner detection . 8
2.1.4 Fitting an ellipse to a set of image points 9
2.1.5 Finding the center and axes from ellipse parameter 12
2.1.6 HSV color space . 14

2.2 Camera pose estimation . 14
2.3 Quadcopter dynamics . 15

3 Design of landing platform and experimental setup 17
3.1 The landing platform . 17

3.1.1 Plan for attachment to the Revolt 18

v

3.1.2 Assembling the landing platform 20
3.2 The quadcopter . 22
3.3 Software . 24

3.3.1 ROS . 24
3.3.2 The Gazebo simulator . 25

3.4 Handheld controller . 26

4 System design 27
4.1 Pose estimation . 27

4.1.1 Color segmentation . 29
4.1.2 Edge detection . 31
4.1.3 Corner detection . 32
4.1.4 Finding higher level features . 34
4.1.5 Choosing which method to use 38
4.1.6 Calculating position from high level features 38

4.2 Filter . 42
4.3 Dead reckoning . 43
4.4 User interface . 44
4.5 PID controller . 46
4.6 Automated landing . 47
4.7 DDPG controller . 47
4.8 Connection to the quadcopter . 47
4.9 Running the system . 48

5 Results 49
5.1 Experiments in the simulator . 49

5.1.1 Assessment of the computer vision system 49
5.1.2 Test of all methods when flying up and down 50
5.1.3 Test of all methods when hovering 53
5.1.4 Test of filter . 60
5.1.5 Test of dead reckoning . 60
5.1.6 Test of yaw estimate while rotating 62
5.1.7 Landing using the PID controller and the automated landing planner 63
5.1.8 Landing using external DDPG controller 63

5.2 Experiment with the physical quadcopter 65

6 Conclusion 69
6.1 Future work . 69

Bibliography 71

A Technical specifications of the Parrot AR.Drone 2.0 79

B ROS message definitions 81

vi

List of Tables

4.1 HSV threshold values for color segmentation 31
4.2 PID parameters . 47

5.1 Accuracy and precision of the different methods for x-position estimate. . 58
5.2 Accuracy and precision of the different methods for y-position estimate. . 58
5.3 Accuracy and precision of the different methods for z-position estimate. . 59
5.4 Accuracy and precision of the different methods for yaw-rotation estimate. 59

A.1 Technical specifications of the Parrot AR.Drone 2.0 79

vii

viii

List of Figures

2.1 An ellipse tilted at an angle θ. 13
2.2 The hue range . 14
2.3 Comparison of the color spaces RGB and HSV 14

3.1 The motive on the landing platform. 17
3.2 Dimensions of the radar . 18
3.3 The 3D printed support stand resting on the radar. 19
3.4 An early sketch of how to mount the landing platform to the radar. 19
3.5 Mounting the stands to the radar. 20
3.6 Gluing the stands to the plexiglass. 21
3.7 Attaching the sticker to the plexiglass. 22
3.8 The finished landing platform attached to the radar. 23
3.9 The Parrot AR.Drone 2.0 . 23
3.10 The simulated environment . 25
3.11 The Sony PlayStation 4 handheld controller used in this project. 26

4.1 Architecture of the ROS application . 28
4.2 The different coordinate systems used with the quadcopter 28
4.3 Image segmentation in the simulator. 29
4.4 Image segmentation with images from the physical quadcopter indoors. . 30
4.5 Image segmentation with images from the physical quadcopter outdoors. . 30
4.6 Binary mask of the landing platform with edge in red. 32
4.7 Output from the Harris corner function 33
4.8 Corner selection for white segmentation 34
4.9 Geometric notation for the corners method 37
4.10 The pinhole camera model . 39
4.11 The geometry of the pinhole camera model seen directly onto the s vector,

which goes through both the center of the image, (u0, v0), and the center
of the landing platform in the image, (up, vp). 40

ix

4.12 The geometry of the pinhole camera model seen from the side, parallel to
the x-axis of the landing platform. 40

4.13 The geometry of the pinhole camera model seen from the side, parallel to
the y-axis of the landing platform. 41

4.14 Block diagram of a typical PID controller 46
4.15 Control loop of the system. 46

5.1 Examples of feature detection on the landing platform 51
5.2 All variable’s values and errors when flying from a hovering position at

0.2 meter above the landing platform, up to 5 meters above the landing
platform and down again. 52

5.3 Examples where the arrowhead is wrongly detected. 53
5.4 Estimate error for x-position from all methods at different altitudes. . . . 54
5.5 Estimate error for y-position from all methods at different altitudes. . . . 55
5.6 Estimate error for z-position from all methods at different altitudes. . . . 56
5.7 Estimate error for yaw-position from all methods at different altitudes. . . 57
5.8 The estimates, filtered estimate and dead reckoning during a change in the

z-position. 61
5.9 Test of the dead reckoning system when flying around the ship. 62
5.10 The yaw estimate when rotating 360°counterclockwise. 63
5.11 The trajectory, seen from all three sides, when landing using the automated

landing planner. 64
5.12 The trajectory when landing, using the external DDPG method seen from

all three sides. 66
5.13 Image from the outdoor testing. 67
5.14 Position estimates from outdoor test. 68

x

Abbreviations

UAV = Unmanned Aerial Vehicle
VTOL = Vertical Take-Off and Landing
ROS = Robot Operating System
DOF = Degrees Of Freedom
GPS = Global Positioning System
LIDAR = Light Detection And Ranging
DL = Deep Learning
DRL = Deep Reinforcement Learning
DDPG = Deep Deterministic Policy Gradient
ML = Machine Learning
SIFT = Scale Invariant Feature Transform
SURF = Speeded-Up Robust Features
ORB = Oriented Fast and Rotated Brief
NN = Neural Network
YOLO = You Only Look Once
RGB = Red, Green, Blue
HSV = Hue, Saturation, Value
PnP = Perspective-n-Problem
SDK = Software Development Kit
UUV = Unmanned Underwater Vehicle
IMU = Inertial Measurement Unit
RANSAC = RANdom SAmple Consensus

xi

xii

Chapter 1
Introduction

1.1 Background and motivation

Unmanned Aerial Vehicles (UAVs) and especially small quadcopters have become increas-
ingly popular in recent years. One of the reasons for the popularity of quadcopters is their
high maneuverability and their capability for Vertical Take-off and Landing (VTOL). This
enables them to operate in areas with only a limited amount of space. Another reason is
the simple mechanical structure of quadcopters, which makes them robust and requiring
less maintenance [3]. Quadcopters have been studied for a long time and in recent years
there has been more and more interest in autonomous quadcopters.

This master’s thesis is written with focus on using an autonomous quadcopter in co-
operation with the unmanned model ship ReVolt, created and operated by DNV GL. This
is a 3 meter long scaled model of a 60 meter long unmanned, zero-emission concept ship
bearing the same name [4]. The concept ship will be built in the future for autonomous
shortsea cargo shipping. An autonomous quadcopter can supplement such a ship with
many tasks, for example inspection of the ship or the cargo, smaller parcel deliveries to
the shoreline or an external viewpoint for autonomous docking.

An autonomous quadcopter also has many use cases together with other manned ma-
rine vessels as well. One example is as a tool for search and rescue missions. In the case
of a search and rescue mission at sea, efficiency is of extra importance. If for instance a
passenger falls over board, it is critical to locate the victim as soon as possible. As time
passes, the risk of hypothermia increases. Furthermore, the longer the victim has been in
the water, the harder the search will be, due to sea currents and the fact that the ship may
move away from the victim. It can take some time to launch a life raft, and by the time the
life raft is in the water, the victim may already have drifted several hundred meters away.
If an autonomous quadcopter could take off and start searching for the victim as soon as
the alarm goes off, invaluable time could be saved in the rescuing process. The quadcopter
could be used to locate the victim and report its position back to the rescuing team. It
is also possible that the quadcopter could bring a small floating device for the victim to
hold on to until the rescuing personnel arrives. The alternative to having an autonomous

1

Chapter 1. Introduction

quadcopter for this task might be to hire a human quadcopter pilot to control it. Hiring
one extra crew member is very costly, so by making the quadcopter autonomous, such a
solution might be viable for more ships.

One of the main challenges with autonomous quadcopters is perception. This con-
cerns how to use sensory information available on the quadcopter to be aware of and
interpret the environment around the quadcopter, and one important part of perception is
self-localization in space. A quadcopter has six degrees of freedom (DOF), consisting
of its position (x,y,z) and orientation (roll, pitch, yaw). An autonomous quadcopter must
know this pose (position and orientation), relative to some reference system, in order to
make any sensible actions. Information about the pose can be estimated using a variety
of sensors, including Global Positioning System (GPS), Light Detection And Ranging
(LIDAR), ultrasound, accelerometer, gyroscope, magnetometer and camera.

When the pose of a quadcopter is known, it can accomplish incredible tasks. For
instance, balancing an inverted pendulum [5], lifting building blocks onto constructions
[6] and flying in dense formations [7]. Multiple quadcopters can be even be used together
to perform cooperative tasks, such as gripping and transporting items [8]. Common for
all these examples is that they were used indoors with an external motion capture system
providing an accurate pose estimate for each quadcopter. The nature of the application in
this thesis however, implies that the quadcopter cannot use any such systems and must rely
on the onboard sensors. The onboard monocular camera and the inertial sensors will be
used to perform the pose estimate.

During an autonomous operation, one of the most critical tasks is the landing. In this
case, the landing platform will be of approximately the same size as the quadcopter and
mounted on a ship with water surrounding it. In addition, the ship may be subject to
motion, either caused by itself or by the waves and current. Autonomous landing in such
conditions requires a high degree of precision and reliability, both from the perception
system and the controller.

The pose estimate provided by this thesis will be the input for a planning and control
system developed by another thesis on the subject of autonomous quadcopter landing using
reinforcement learning [9]. Reinforcement learning is a fairly simple concept that has been
around for many years. It is based on the idea of letting an agent learn a desired behaviour
through trial and error, by receiving rewards for actions that lead towards a certain goal
and punishment for actions the lead away from that goal. The challenging part however, is
to determine which actions should be rewarded and which should be punished [10]. The
recent advances in deep learning (DL) have lead to deep reinforcement learning (DRL),
which tries to solve this challenge by estimating the action-reward function using a deep
neural network. One such DRL method is the deep deterministic policy gradient (DDPG)
method [11], which is used in the other thesis.

Previously, a variety of different landing platforms has been utilized in projects on
autonomous landing. Some have used LED lights on the platform to make it easier to
detect [12], others have used distinctive colors and shapes, such as an ’X’ shape [13],
colored squares [14], an university logo [15] or a square fiducial marker [16]. However,
this thesis seek to use an as naturalistic landing platform as possible, which to the best of
the author’s knowledge has not been done before in the literature.

Many camera-based self-localization methods exists already, such as Visual Odometry

2

1.2 Objectives

[17] and Visual Simultaneously Localization And Mapping [18]. However, both of these
methods work best when the environment is fixed. In the case of this project, most of the
image will contain sea with an ever changing texture. Furthermore, the recent progress
in the field of machine learning (ML) and deep learning (DL) has resulted in some as-
tonishing results when it comes to extracting information from images, such as detecting,
locating and classifying objects in images [19] [20] [21]. Nevertheless, when it comes to
robotic perception there is still a need for expert knowledge to tailor a perception system
to each individual application [22]. Therefore, in this thesis, traditional computer vision
methods are chosen to custom make a perception system to suit the specific application in
this project.

1.2 Objectives
The main goal of this thesis is to provide sufficient perception for a quadcopter to be able
to land autonomously, with focus on pose estimation. The thesis asks the question: Is it
possible to use traditional computer vision methods to give a robust pose estimate for a
quadcopter in a marine environment, using an onboard monocular camera? This is to be
achieved with a standard landing platform that is designed and built as part of this project.
The aim is that this estimate will be precise enough to be used by an external controller
for landing the quadcopter on the landing platform as well as perform a stable take-off and
hover.

1.3 Contributions
The main contribution of this thesis is a computer vision system that estimates the sim-
plified pose (position and orientation) of the quadcopter relative to a specific landing plat-
form. The pose estimate is simplified by not estimating the roll and pitch-rotations about
the x- and y- axis, only the yaw-rotation around the z-axis. This is done under the as-
sumption that the quadcopter at all times is oriented horizontally. The reason why this
is a legitimate assumption is that the quadcopter has an onboard autopilot that keeps the
quadcopter hovering approximately on the same spot until any other control command is
issued. However, this assumption is violated in windy conditions, as the quadcopter then
has to tilt in order to hover at the same spot. Windy conditions are outside the scope of
this thesis, so the assumption should hold. The computer vision system first finds the three
distinct colors of the landing platform in the image; green, orange and white. Then, the
characteristic shape of each colored area is used to find the center of the landing platform
and the radius of the landing platform, both in pixels. Finally, this information is used
together with the real radius in meters to calculate the quadcopter’s position. Whenever it
is sufficient information in the image to decide the rotation of the landing platform, also
the yaw-rotation about the z-axis is calculated. The code for the computer vision system
and for the rest of the developed system is available on GitHub 1.

The second contribution of this thesis is a full-size landing platform for a quadcopter.
The landing platform is made of a plexiglass plate with a vinyl sticker on top of it. Un-

1https://github.com/mrSundvoll/master_project

3

https://github.com/mrSundvoll/master_project

Chapter 1. Introduction

derneath the landing platform there are three 3D printed stands that fit on top of a radar on
the ReVolt vessel. They are attached to the radar using hook-and-loop for easy attachment
and detachment. The design of the structure and the layout on top, as well as the ordering
of all the necessary parts and the final assembly is done by the author.

The third contribution of this thesis is a dead reckoning module. This gives redundancy
to the computer vision estimate and solves the problem of loosing the estimate for some
period of time. Internal sensors on the quadcopter, such as the accelerometer, gyroscope
and compass, give measurements of the velocities and accelerations along the three axes
and the global orientation of the quadcopter. These measurements are used to iteratively
calculate the quadcopter’s position from the last available computer vision estimate.

The final contribution of this thesis is a holistic architecture for a perception, planning
and control system, implemented in the Robot Operating System (ROS). In addition to the
aforementioned computer vision system constituting the perception part of the architec-
ture, a simple sequential planning module and a simple PID controller is implemented as
individual nodes. There is put little emphasize on the creation of these modules as they
are mostly there to help demonstrate the computer vision system in action. However, since
they are created as individual nodes, they can easily be substituted by more sophisticated
modules in future work.

1.4 Outline
Chapter 2 presents some of the computer vision methods used in this thesis along with
the most important quadcopter dynamics. Chapter 3 explains the design and creation
process of the landing platform, in addition to experimental setup with the quadcopter
and the simulator. Chapter 4 presents the developed ROS modules, starting with the
pose estimation module and following up with the filter and the dead reckoning module.
Furthermore, the smaller auxiliary modules necessary to create a holistic robotic software
system are presented. Chapter 5 presents the results from testing in the simulator and
with the real quadcopter, with most emphasize on the former. Small discussions are given
after each results section. Chapter 6 gives a conclusion to the thesis and suggests future
work on the topic.

4

Chapter 2
Theory

2.1 Computer vision

2.1.1 Traditional computer vision

Perception has been a challenging problem for many years in real-world robotics. Al-
though a lot of research on this field has been done in recent years, the perception systems
available today still require expert knowledge about the current situation in which they are
applied. As there are many subareas to perception, including object recognition, object
tracking, 3D environmental representation, vehicle detection and human detection, vari-
ous components have to be put together and customized for the perception system to work
[22]. There is in other words no universal solution to the problem of robotic perception.

There is also a fundamental difference between robotic vision and regular computer
vision that makes the problem even more challenging. While the output from a regular
computer vision system is commonly just used to infer information from images, the out-
put from a robotic vision system is used to take actions in the real world. This means that
robotic vision systems have higher requirements to their reliability and should preferably
have an estimate of the uncertainty in the predictions [23]. In addition, many computer
vision algorithms are tested in confined environments with control over all possible ob-
jects that may appear. Robotic vision on the other hand will generally be applied to open
set conditions that contain unknown and unseen objects which also must be detected and
handled correctly [24].

Traditional computer vision usually have a pipeline of three steps. In the first step,
a feature detector is used to find points of interest, or features, in the image. These are
easily distinguishable points, such as edges and corners. Examples of feature detectors are
the Canny edge detector [25] and the Harris corner detector [26]. In the second step, the
characteristics of each feature found in the first step are described using a feature descrip-
tor, such as Scale Invariant Feature Transform (SIFT) [27], Speeded-Up Robust Features
(SURF) [28], Oriented Fast and Rotated Brief (ORB) [29] or various Hough transforms
[30]. In the third step, a classification on the described features is done. Typically tra-

5

Chapter 2. Theory

ditional Machine Learning (ML) algorithms are used for this task, such as the Support
Vector Machine [31] or K-Nearest Neighbours [32].

In recent years, the development of Neural Networks (NNs) and Deep Learning (DL)
methods have led to many of the currently best algorithms for several computer vision
tasks. DL methods embed all three steps of the traditional methods into a single NN, that
performs both the feature extraction (detection and description) and classification. While
traditional computer vision methods require a lot of engineering and low level construction
of feature extractors, NNs and DL benefit from their ability to learn from observational
data [33].

Object detection methods, such as You Only Look Once (YOLO) [19] and image seg-
mentation methods, such as Mask R-CNN [21], are examples of methods that use DL to
achieve their tasks. These methods learn from labeled data how to classify objects and lo-
cate them in the image. Image segmentation methods can even learn which pixels belong
to an object and which belongs to the background. For object detection methods, the la-
beled input data consist of images with a bounding box around each object of interest and
a label saying to which category the object belongs. Input data for image segmentation is
similar, but every pixel belonging to an object has to be labeled. After the NN is trained
on the input data, it can be shown a new image that is not from the training data and be
able to predict the class of each object along with a prediction for a bounding box or pixel
map around the object(s).

One of the reasons why DL methods have become so increasingly popular is that they
do not require the expert analysis for creating hand-crafted feature extractors, which is
necessary with traditional methods. Instead, the focus have shifted to choose the best DL
architecture for each task. Other reasons for their popularity are that DL methods can
exploit and learn from the vast amount of information available from large datasets and
that they can be retrained to fit to another dataset than they were originally trained for,
which gives them more flexibility [34].

Despite the almost exclusive focus on DL in the recent research, the traditional meth-
ods should not be entirely discarded. Walsh et al. argue that traditional computer vision
techniques can still be useful, especially for 3D applications and when the recognition
problem is sufficiently simple [34]. Among the benefits of traditional computer vision
methods, they point out that they have full transparency, so it is possible to understand
the reasoning behind the prediction output. This is in contradiction to DL methods where
most of the reasoning happens inside a ’black box’ of hidden neural layers. Furthermore,
they state that it is easier to manually change parameters in a traditional computer vision
method to adapt it to another environment. For a DL methods this is infeasible, due to the
vast amount of parameters in such models. A final point they make is that for traditional
computer vision methods, concrete knowledge about the domain, also known as priors
(from prior knowledge), can be directly implemented into the algorithm to improve the
classification.

Thus, it seems like the choice between DL and traditional methods has to be done
individually for each perception application. For this project, the perception problem is
to detect and locate a landing platform of known shape, size and layout. It is only this
one object that will be detected and it will not change during operation time, although
occlusions may occur and lighting conditions may alter how the colors on the landing

6

2.1 Computer vision

platform are perceived. Therefore, this problem does not need the ability of DL methods to
detect many classes of objects. More valuable is the opportunity with traditional methods
to include priors, such as the known shape, radius and colors of the landing platform, into
the algorithm. Furthermore, human intuition can be applied in choosing manually which
features to look for. The landing platform will look different from various altitudes, and
for very low altitudes only parts of the landing platform will be visible. The perception
system therefore has to be customized for all these different cases, and this is probably
easier to do with the traditional methods. Consequently, traditional methods are chosen
over DL methods in this project due to the nature of the perception problem.

In the following subsections, two different feature extraction methods from traditional
computer vision is presented, namely the Canny edge detector and the Harris Corner de-
tector. They are chosen because of their widespread use and that they are freely available
in the open source library OpenCV. Furthermore, a method to fit an ellipse to a set of points
is presented along with the theory for how to extract the center and the length of the axes
of an ellipse. Finally, the color space used to represent the images is presented.

2.1.2 Edge detection
The edge detector chosen for this project is the Canny edge detector [25]. It is a four step
algorithm and is available as one function in OpenCV [35].

The first step is to remove noise in the image using a Gaussian filter with kernel size
5x5.

The second step is to find the edge gradient and direction for each pixel. The Sobel
operator, with a default kernel size of 3, is used to approximate the gradient of the image
I . It works by finding the first derivative in the horizontal direction

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I (2.1)

and the first derivative in the vertical direction

Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗ I. (2.2)

From this, the edge gradient, G, and the edge direction, θ, can be found for every pixel in
the image:

G =
√
G2
x +G2

y, (2.3)

θ = arctan(
Gy
Gx

). (2.4)

The third step is a non-maximum suppression for every pixel in the image. A pixel is kept
as an edge point candidate if it is a local maximum in the direction of its gradient, or else
it is discarded.

The fourth and final step is a hysteresis threshold. Edge candidates with a image inten-
sity gradient higher than the upper threshold value are classified as edges. Similarly, edge

7

Chapter 2. Theory

candidates with a gradient lower than the lower threshold value are discarded. Edge candi-
dates with a gradient value in between those two thresholds are kept if they are connected
to other pixels that are already classified as edges, if not they are discarded.

2.1.3 Corner detection
A much used corner detector and the one that will be used in this project is the Harris
corner detector [26]. The detector was originally developed for motion tracking and is
translation and rotation invariant, although it is not invariant to scale. There is an im-
plementation of this method available in the OpenCV library which also presents it in a
tutorial [36].

Finding corners in an image is the same as finding points (x, y) where any small per-
turbation (u, v) leads to a large change in image intensity. Corner candidates can be found
by maximizing

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2, (2.5)

where w(x, y) is a blockSize x blockSize window around the point (x, y) and I(x, y) is
the image intensity at the point (x, y). This equation can be approximated using the Taylor
series expansion to get

E(u, v) ≈
∑
x,y

w(x, y)[I(x, y) + uIx + vIy − I(x, y)]2

=
∑
x,y

w(x, y)[uIx + vIy]2

=
∑
x,y

w(x, y)[u2I2x + 2uvIxIy + v2I2y],

(2.6)

using the Sobel operator to find the derivatives Ix and Iy . The approximation can be
written on matrix form

E(u, v) ≈
[
u v

]
M

[
u
v

]
, (2.7)

where

M =
∑
x,y

w(x, y)

[
I2x IxIy
IxIy I2y

]
. (2.8)

Finally, a corner response function, R, can be defined

R = det(M)− k(trace(M))2, (2.9)

where
det(M) = λ1λ2

trace(M) = λ1 + λ2
(2.10)

and λ1 and λ2 are the eigenvalues of the matrixM . Any point that has a R value larger than
a threshold is detected as a corner. The k parameter in Equation 2.9 is chosen empirically

8

2.1 Computer vision

in the range [0.04, 0.06]. The other parameters that can be chosen are the size of the
window w(x, y) and the aperture size of the Sobel operator for calculating the derivatives
Ix and Iy .

2.1.4 Fitting an ellipse to a set of image points
The problem of fitting an ellipse to a set of points in an image can be solved with a non-
iterative algorithm using least squares minimization proposed in a paper by Radim Halı́r
and Jan Flusser [37]. The algorithm from this paper is presented in the following section.

Problem formulation: Given a set of N points in an image, (xi, yi), i ∈ {1, . . . , N},
find the ellipse that best fits this set, parameterized by a = [a, b, c, d, e, f]T.

An ellipse is a special case of a general conic that can be written on the General Carte-
sian form using the second order polynomial

F (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0, (2.11)

where a, b, c, d, e, f are the parameters of the ellipse, and (x, y) are the coordinates of
points lying on it. For a general conic to be an ellipse, the constraint b2 − 4ac < 0 must
hold. The scaling of the parameters can be done so that the constraint becomes

4ac− b2 = 1. (2.12)

The second order polynomial can be written on vector form

Fa(x) = x ∗ a = 0, (2.13)

with
a = [a, b, c, d, e, f]T

x = [x2, xy, y2, x, y, 1].
(2.14)

The main concept of the algorithm is to choose the ellipse with parameters a, so that
the distance from each point x to the ellipse is minimized:

min
a

N∑
i=1

F (xi, yi)
2 = min

a

N∑
i=1

(Fa(xi))
2 = min

a

N∑
i=1

(xi ∗ a)2. (2.15)

The minimization problem, minimizing equation 2.11 with the constraint in equation 2.12,
can then be stated

minimize
a

||Da||2

subject to aTCa = 1,
(2.16)

with

D =

x21 x1y1 y21 x1 y1 1
...

...
...

...
...

...
x2i xiyi y2i xi yi 1
...

...
...

...
...

...
x2N xNyN y2N xN yN 1

 (2.17)

9

Chapter 2. Theory

C =

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (2.18)

Lagrange multipliers gives the following conditions for the optimal solution a:

Sa = λCa

aTCa = 1,
(2.19)

with

S = DTD =

Sx4 Sx3y Sx2y2 Sx3 Sx2y Sx2

Sx3y Sx2y2 Sxy3 Sx2y Sxy2 Sxy
Sx2y2 Sxy3 Sy4 Sxy2 Sy3 Sy2
Sx3 Sx2y Sxy2 Sx2 Sxy Sx
Sx2y Sxy2 Sy3 Sxy Sy2 Sy
Sx2 Sxy Sy2 Sx Sy S1

 , (2.20)

where Sxayb =
∑N
i=1 x

a
i y
b
i .

Equation 2.19 is solved by generalized eigenvectors. There exist up to six real solutions
(λj ,aj), but since

||Da||2 = aTDTDa = aTSa = λaTCa = λ, (2.21)

it is the eigenvector ak corresponding to minimal positive eigenvalue λk that needs to be
found.

After ensuring aTkCak = 1, the solution to the minimization problem is found and a
is the parameters for an ellipse that best fits the given set of points.

There are several problems with this approach however, as stated in the paper. These
includes that matrix C is singular and that matrix S is singular if all points lie exactly on an
ellipse. These two facts makes the computation of the eigenvalues numerically unstable.
The paper presents some adjustments and simplifications to solve these problems and make
the approach numerically stable, by exploiting the special structures of the matrices C and
S. These adjustments are presented below:

First, the matrix D is split into one quadratic part and one linear part:

D = (D1|D2), (2.22)

where

D1 =

x21 x1y1 y21
...

...
...

x2i xiyi y2i
...

...
...

x2N xNyN y2N

 ,D2 =

x1 y1 1
...

...
...

xi yi 1
...

...
...

xN yN 1

 , (2.23)

10

2.1 Computer vision

Secondly, the S matrix is split:

S =

 S1 S2

ST
2 S3

 , (2.24)

where

S1 = DT
1D1 (2.25)

S2 = DT
1D2 (2.26)

S3 = DT
2D2. (2.27)

Furthermore, the C matrix only contains information in the upper left corner and it can be
split into

C =

 C1 0

0 0

 , (2.28)

where

C1 =

0 0 2
0 −1 0
2 0 0

 . (2.29)

A final split is done with the parameter vector a:

a =

 a1

a2

 ,where a1 =

a

b

c

 ,a2 =

d

e

f

 , (2.30)

Using the new way to write the matrices S and C and vector a, equation 2.19 can be
rewritten:

Sa = λCa =⇒

 S1 S2

ST
2 S3

 ∗
 a1

a2

 = λ ∗

 C1 0

0 0

 ∗
 a1

a2

 , (2.31)

which again can be written as the pair of equations:

S1a1 + S2a2 = λC1a1 (2.32)

ST
2a1 + S3a2 = 0. (2.33)

The matrix

S3 = DT
2D2 =

Sx2 Sxy Sx
Sxy Sy2 Sy
Sx Sy S1

 (2.34)

11

Chapter 2. Theory

is singular only if all points lie on a line and it is regular otherwise. If all points lie on a
line, then there is no solution to the ellipse-fitting problem. If there is a solution however,
S3 is regular and therefore invertible, and equation 2.33 can be written

a2 = −S−13 ST
2a1. (2.35)

This can again be inserted in equation 2.32:

S1a1 + S2(−S−13 ST
2a1) = λC1a1 (2.36)

(S1 − S2S
−1
3 ST

2)a1 = λC1a1. (2.37)

Since C1 is regular, it is also invertible and equation 2.37 can be written

C−11 (S1 − S2S
−1
3 ST

2)a1 = λa1 (2.38)

The simplification of the matrix C gives that

aTCa = 1 =⇒ aT1C1a1 = 1. (2.39)

The conditions for the optimal solution in equation 2.19 can then be written:

Ma1 = λa1, with M = C−11 (S1 − S2S
−1
3 ST

2)

aT1C1a1 = 1

a2 = −S−13 ST
2a1

a =

(
a1
a2

)
,

(2.40)

The task to solve the problem then becomes to find the appropriate eigenvector a1 of the
matrix M.

2.1.5 Finding the center and axes from ellipse parameter

When the six ellipse parameters, a = [a, b, c, d, e, f]T, are found with the method pre-
sented in the previous section, they can be used to calculate the center of the ellipse,
(x0, y0), and the minor and major axes, la and lb. First, the standard equation for an
ellipse is considered:

x2

l2a
+
y2

l2b
= 1, (2.41)

where la and lb are the lengths of the minor and major axis, parallel with the x- and y-axis,
respectively. Then, the center is translated to (x0, y0) and the ellipse is rotated with and
angle θ about the center (Figure 2.1), using the following transformation [38]:

x = (x′ − x0) cos θ + (y′ − y0) sin θ

y = −(x′ − x0) sin θ + (y′ − y0) cos θ
. (2.42)

12

2.1 Computer vision

y

x

la

lb
θ

x'

y'

Figure 2.1: An ellipse tilted at an angle θ.

When substituting x and y in Equation 2.41 with Equation 2.42, the result can be written
on the General Cartesian form in Equation 2.11 using the following relations:

a = l2a sin θ + l2b cos θ

b = 2(l2b − l2a) sin θ cos θ

c = l2a cos θ + l2b sin θ

d = −2ax0 − by0
e = −bx0 − 2cy0

f = ax20 + bx0y0 + cy20 − l2al2b

. (2.43)

Conversely, the center, (x0, y0), and the minor and major axes, la and lb, can be found
from the General Cartesian form with

x0 =
2cd− be
b2 − 4ac

y0 =
2ae− bd
b2 − 4ac

(2.44)

and

la, lb =
−
√

2(ae2 + cd2 − bde+ (b2 − 4ac)f)((a+ c)±
√

(a− c)2 + b2)

b2 − 4ac
. (2.45)

13

Chapter 2. Theory

Figure 2.2: The hue range from 0 to 360. Source: [39].

Figure 2.3: Comparison of the color spaces (a) RGB and (b) HSV. Source: [39].

2.1.6 HSV color space

Digital images can be represented and stored on a computer using different color spaces.
The most common is to use the RGB (Red, Green, Blue) color space. When using RGB,
each pixel is defined with three parameters, the amount of Red, Green and Blue. Every
color, including black and white, can be made by combining those three parameters. One
drawback with the RGB color space however, is that it is hard for a human to combine the
three RGB values to create a given color.

Therefore, when working with computer imaging, it can be beneficial to use the HSV
(Hue, Saturation, Value) color space instead. In the HSV color space, the different ”colors”
as a human eye sees them are defined by only one parameter, the Hue parameter. Figure 2.2
shows the hue range and indicates that one color can be found by specifying an interval on
the hue range. The two other parameters in the HSV color space defines the ”brightness”
of the color (value) and the ”intensity” of the color (saturation). The different structures
of the two color spaces are visualized in Figure 2.3.

2.2 Camera pose estimation

The problem of estimating the pose of a camera from N image points with known cor-
responding 3D points is known as the Perspective-n-Problem (PnP). Most solutions that
have been implemented require N >= 4, although there exist situations where N = 3
is sufficient [40]. The method used in this thesis resembles the common solutions to the
PnP problem. However, there will be only one image point with a known corresponding
3D point available, namely the center of the landing platform. Nevertheless, two addi-
tional pieces of information are available that render possible a solution. First of all, there
is a distance in the image corresponding to a real known distance, namely the radius of
the landing platform. Secondly, the orientation of the only available 3D point is assumed

14

2.3 Quadcopter dynamics

known.
No published solution for this problem was found after a reasonable amount of search-

ing, although it is probably done before. Therefore, a solution to this problem is derived in
this thesis and a detailed description of the solution is provided in Section 4.1.6. The basis
of the solution uses the pinhole camera model to describe the image formation process and
to map a pixel point to a 3D point.

2.3 Quadcopter dynamics
The basic dynamics for a quadcopter are available in the literature [41], and are presented
below:

mẍ = (sinψ sinφ+ cosψ cosφ sin θ)u1

mÿ = (− cosψ sinφ+ sin θ sinψ cosφ)u1

m(z̈ + g) = cos θ cosφu1

Ixxφ̈+ (Izz − Iyy)θ̇ψ̇ = u2

Iyy θ̈ + (Ixx − Izz)φ̇ψ̇ = u3

Izzψ̈ = u4

, (2.46)

where φ is the roll angle, θ is the pitch angle and ψ is the yaw angle. These angles are the
rotations about the x-, y- and z-axes, respectively, measured in the body coordinate system
of the quadcopter. u1 is the control input for controlling the altitude z and u2, u3, u4 are
the control inputs for controlling the angles φ, θ, ψ, respectively. m is the mass of the
quadcopter and Ixx, Iyy, Izz are the moments of inertia in the x-axis, y-axis and z-axis
respectively.

These are the most important dynamics of a quadcopter. However, they do not include
effects from aerodynamics, such as ground effects when the quadcopter is close to the
ground and other disturbances such as wind gusts. These effects are not included in the
simulated model of the quadcopter either and may make the transition from the simulator
to the real quadcopter more difficult. The computer vision system that is developed in this
thesis is not made to be universal, but is designed to be used with a quadcopter. The knowl-
edge about how the vehicle might behave can therefore be used to make the computer
vision system more robust and to be prepared for challenges caused by the quadcopter
dynamics.

15

Chapter 2. Theory

16

Chapter 3
Design of landing platform and
experimental setup

This chapter presents the design and assembly process of making the landing platform.
Furthermore, it presents the hardware and software used in this project.

3.1 The landing platform

Figure 3.1: The motive on the
landing platform.

The motive on the landing platform, as shown in Fig-
ure 3.1, is chosen with an eye to mimic real landing
platforms typically found on large ships and maritime
installations to be used by helicopters. It has the charac-
teristic white letter ’H’ in the center with an orange cir-
cle around it. An orange arrow is located on the orange
circle to indicate the forward direction of the ship that
the landing platform will be placed on. Those features
are placed on a green background that gives good con-
trast to the orange circle and should in most cases also
give good contrast to the ship and to the sea surround-
ing it. The landing platform is modeled and visualized
in the simulator as well as created in a physical version.
It is designed to specifically suit this project, but at the
same time it is made with robust and durable materials, so that it can be used as a resource
for other projects in the future. The design of the layout is an improvement from the one
made in the project report [1], with the main changes being that the orange arrow is added
and a fiducial marker is removed.

17

Chapter 3. Design of landing platform and experimental setup

Figure 3.2: Dimensions of the radar seen from the side. Source: [42].

3.1.1 Plan for attachment to the Revolt

Since there is limited space available on the Revolt vessel, it is agreed with DNV GL that
the best location to put the landing platform is on top of a radar on the ship. This is a
suitable place, since the radar has a circular shape with approximately the same diameter
as the quadcopter.

Because the radar itself will be mounted on a high place on the Revolt, any extra weight
applied on top of that will significantly alternate the ship’s center of mass. In order to make
the landing platform as lightweight as possible, a minimalistic design is chosen, consisting
mainly of a circular plate with a sticker on top of it. The quadcopter is 73 cm on its widest
span, so a diameter of 80 cm was chosen. This is the smallest diameter possible that still
leaves some margins for landing the quadcopter. The material of the plate is chosen to be
3mm plexiglass, which, with its low density of 1.19 g/cm3, makes the plate itself weigh
1.8 kg.

Furthermore, because any material placed on or around the radar may interfere with its
functioning, it is specified that it has to be easy to remove the landing platform whenever
necessary. The solution chosen is to use hook-and-loop between the landing platform and
the radar for easy attachment and detachment. The hook-and-loop is mounted quite firmly
to the radar using its self-adhesive backside. However, it is tested with a small patch of
hook-and-loop that it is removable without leaving any marks on the radar.

The main challenge with this location, from the design point of view, is the curved
surface of the radar (see Figure 3.2). This means that the landing platform can not be
placed directly on the top. To cope with the curvature, a stand is designed to follow this
curve and make a leveled support for mounting the top plate. The stands are 3D printed
by the workshop at ITK. Figure 3.3 shows how the 3D printed stand fits to the curve of
the radar. The top of the stand is a bit higher than the highest point of the radar, leaving
a small gap between the radar and the landing platform. This way, the weight of the top
plate is equally distributed across the three stands and not directly onto the radar. Figure
3.4 shows the overall plan for mounting the landing platform to the radar.

18

3.1 The landing platform

Figure 3.3: The 3D printed support stand resting on the radar.

Figure 3.4: An early sketch of how to mount the landing platform to the radar.

19

Chapter 3. Design of landing platform and experimental setup

(a) (b) (c) (d)

Figure 3.5: Mounting the stands to the radar.

3.1.2 Assembling the landing platform
Materials

• A vinyl sticker, 780 mm in diameter, ordered from NTNU Grafisk.

• A plexiglass plate, 800 mm in diameter, 3mm thick, ordered and cut to shape by the
workshop.

• Three 3D printed stands, 50mm wide, 155mm long, 45mm high, printed by the
workshop.

• Black TEC7 modified silan polymer glue.

• Hook and loop.

Costs

• Hook and loop from Clas Ohlson: 160,00

• Sticker foil from NTNU Grafisk: 630,00

Mounting hook-and-loop to the stands and the radar

Strips of hook-and-loop are cut out to fit the inside of the stands (Figure 3.5a). The hook-
and-loop has a self-adhesive backside and is easily attached to the stands (Figure 3.5b).
The stands are then test fitted on the radar and putty is used to mark their right position
(Figure 3.5c). Matching strips of hook-and-loop are glued in place at the right spots around
the landing platform with an angle of 120 °between each strip. A cardboard circle is used
to ensure the right spacing (Figure3.5d).

Gluing the stands to the plexiglass

While the protective paper is still on, the three stands are aligned on the plexiglass and
held in place with putty. The same cardboard circle is used to match the placements on
the radar (Figure 3.6a). It is worth to notice that this is a mirrored configuration, since the
top of the radar must match the bottom of the plexiglass, and it only works because the
angles between all spots are equal. Before the cardboard is removed from the radar in the

20

3.1 The landing platform

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Gluing the stands to the plexiglass.

last step, the forward direction of the radar is marked on it. When the cardboard is placed
on the plexiglass, this marks the backward direction which is important to get right in the
next step.

To make sure the stands are glued in the right spots, a trimming knife is used to trace
around each stand. Then, the protective paper under the stands is easily removed (Figure
3.6b). Two strips of glue are applied to each stand and smoothed out to a thin layer using a
wooden knife (Figure 3.6c). Then, each stand is pressed onto its spot and weighted down
with weight disks for four hours (Figure 3.6d). According to the producer, the glue has a
full cure time of 24 hours in 23°, so any nudges are avoided during this time. After the
glue has cured, the protective paper is removed (Figure 3.6e) and an extra seam of glue is
applied around each stand (Figure 3.6f).

Applying the sticker

The sticker is ordered from NTNU Grafisk and is delivered on a square paper (Figure 3.7a).
The circle is cut out using a pair of scissors and taped to the plexiglass using masking tape,
leaving an even space of 10 mm on every side of the sticker. A cotton thread is used to
mark the front, rear and center of the landing platform (Figure 3.7b). The landing platform
is put on edge (Figure 3.7c) and the tape and protective paper are removed from the lower
part of the sticker (Figure 3.7d). To help smooth the sticker out, the soft part of some
leftover hook-and-loop is attached to a piece of cardboard (Figure 3.7e). Then, the sticker
is applied from the center towards the bottom (Figure 3.7f), before the process is repeated
from the center towards the top (Figure 3.7g). Inevitably, when applying such a large
sticker by an untrained hand, some bubbles are left in the sticker. However, when looking
at the bubbles from a distance, they merely resembles small water droplets and will not be

21

Chapter 3. Design of landing platform and experimental setup

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Attaching the sticker to the plexiglass.

a problem for this project (Figure 3.7h).

The finished landing platform

The finished landing platform weighs 2 kg, which is a reasonable weight to add on the
ship. It is attached to the radar for a final test fit (Figure 3.8). The stands fit well on the
curved surface and the top plate form a stable, level surface to land on. When removing
the landing platform from the radar again, a substantial amount of force has to be applied
to separate the hook-and-loop from each other. This means that the landing platform is
rigidly enough attached, but still detachable when necessary, so the design specifications
are met.

3.2 The quadcopter
The quadcopter used in this project is the reasonably priced AR.Drone 2.0 from the French
company Parrot. The quadcopter, shown in Figure 3.9, has a simple construction with two
interchangeable hulls. The hull displayed in the figure is for indoor use and another more
aerodynamic hull is supplied to be used outdoors. Some of the technical specifications of
the quadcopter is available in Appendix A.

The quadcopter is originally intended to be used with a simple and intuitive controller
on a smartphone or tablet [43]. However, Parrot has made available a Software Develop-
ment Kit (SDK) for third party developers to develop their own applications for mobile
devices and personal computers [44]. Through this SDK, it is possible to communicate
with the quadcopter over WiFi.

22

3.2 The quadcopter

(a) (b)

Figure 3.8: The finished landing platform attached to the radar.

Figure 3.9: The Parrot AR.Drone 2.0. Source: [43].

23

Chapter 3. Design of landing platform and experimental setup

Since the quadcopter has limited computational power on board, an auxiliary computer
is used in cooperation with the quadcopter. The WiFi connection is used to retrieve im-
ages and IMU measurements from the quadcopter. Then, the heavier image processing is
performed on the auxiliary computer, which also implements an high level pose controller
and sends back control signals to the quadcopter over the WiFi connection.

The quadcopter also has a built-in autopilot. This handles the low-level control of the
four motors and the mid-level altitude and attitude control for the quadcopter dynamics
presented in section 2.3. External control inputs can be sent to the quadcopter through the
SDK in the form of linear and angular velocity set points. The autopilot will then control
the quadcopter to maintain these velocities. If the linear and angular velocity set points
are set to zero, the autopilot will try to hold the quadcopter at a constant altitude and with
a horizontal attitude. The SDK and the built-in autopilot makes the Parrot AR.Drone 2.0
an excellent choice for research projects, since the focus can be on higher level research
questions and applications rather than low level control of the quadcopter.

3.3 Software
The software in this project is mostly developed and run on a MSI GF75 Thin laptop, with
an Intel® Core™ i7-9750H CPU @ 2.60GHz × 12 and 16 GB RAM, with Ubuntu 16.04
operative system.

3.3.1 ROS
The Robot Operating System (ROS) is a software developing framework intended for
robotic systems [45]. It is not actually an operating system, as the name implies, but
more a set of tools and libraries making the development more convenient. Terms in this
thesis related to the ROS framework are written in italics. ROS comes in different distri-
butions and the distribution used in this thesis is the ROS Kinetic, because some of the
packages needed was best compatible with this distribution.

ROS has several features that enables a modular structure of the code, where different
modules, or nodes, can be developed independently of each other. The nodes can com-
municate with each other using message passing over different channels, called topics. A
node can subscribe to or publish different messages to a topic. Different nodes can even
be written in different languages. The ROS distribution used in this project, ROS Kinetic,
is compatible with C++ and Python 2.7.

Another benefit of using ROS is the global community around it and that there already
exist many good open-source packages. This means the software does not have to be built
entirely from scratch, but can rely on already existing work of others. One example of
an open-source package that is used in this project is the ardrone autonomy package for
interaction with the quadcopter. This package is based on the official SDK from Parrot and
can be used as a driver for the AR.Drone 2.0 [46]. Another example is the uuv simulator
package [2]. It contains all the necessary nodes for simulating Unmanned Underwater
Vehicles (UUVs). Only a small fraction of the package is used in this project. It includes
a realistic model of an ocean that is used to get more visually correct images from the
quadcopter in the simulator.

24

3.3 Software

Figure 3.10: The simulated environment with the Revolt vessel, the landing platform and the quad-
copter. The image in the top left corner is the image from the bottom camera.

In this project, several different built-in message types are used. These most used
messages are listed below:

• Empty()

• Image()

• Twist()

• Odometry()

• Joy()

The content of each message is listed in Appendix B.

3.3.2 The Gazebo simulator
The simulator used in this project is the Gazebo simulator, version 7.0.0.

The Parrot AR.Drone also has its own simulated version, which can be launched as
a ROS package and ran in the Gazebo simulator. For simulation of ocean waves, the
Unmanned Underwater Vehicle Simulator is used together with Gazebo [2]. A 3D model
of the Revolt vessel is provided by DNV GL and this is added to the simulator and the
model of the landing platform is placed on top of it.

25

Chapter 3. Design of landing platform and experimental setup

Figure 3.11: The Sony PlayStation 4 handheld controller used in this project.

3.4 Handheld controller
To allow for easy manual control of the quadcopter, a wireless handheld controller is added
to the project. The controller of choice is a Sony PlayStation 4 DualShock wireless con-
troller (see Figure 3.11). This particular controller is chosen because of its high quality
and that it is easily connected to any computer over Bluetooth.

26

Chapter 4
System design

In this chapter, the software system developed in this project is presented. Figure 4.1 shows
the different nodes of the system, how they are connected and the main topics over which
they communicate with each other. Each node will be presented, with most emphasize on
the position estimator node as this is the main contribution. All nodes are implemented in
Python 2.7 and integrated with ROS. Furthermore, a theoretical analysis of how to infer 3D
position from a 2D image point is presented in section 4.1.6. It is considered a contribution
and is therefore included here instead of in the theory section.

4.1 Pose estimation
A pose is a combination of both position and orientation. Knowing it’s pose is vital for any
robot to be able to navigate itself in an environment. It is chosen in this project to estimate
the quadcopter’s pose relative to the landing platform, measured in the coordinate system
of the landing platform (see Figure. 4.2).

Due to the specific application area, it is possible to do some assumptions prior to the
pose estimation process. As mentioned in Section 2.3, the orientation of the quadcopter
is stated as the roll-, pitch- and yaw-rotations about the x-, y- and z-axes of the body
coordinate system, respectively (see Figure 4.2). However, since the onboard autopilot
will try to keep the quadcopter hovering at the same spot, the roll and pitch angles will
be controlled towards zero. Therefore, the roll- and pitch-angles are assumed zero and are
not estimated. Another assumption that follows directly from this, is that the xy-plane of
the quadcopter is parallel to the xy-plane of the landing platform. These assumptions are
violated as soon as the quadcopter performs a movement in x or y direction or if windy
conditions forces the quadcopter to tilt towards the wind to hold its position. They are
also violated when the landing platform itself is exposed to a roll or pitch motion, for
instance due to waves or that the ship is performing a maneuver. However, as long as the
quadcopter is in hover mode and good weather conditions apply, these assumptions hold.
Flight in poor weather conditions and with a moving marine vessel is beyond the scope of
this thesis, so the assumptions are legitimate here.

27

Chapter 4. System design

/ardrone/bottom/image_raw

Gazebo

Physical quadcopter

/joy

Joystick driver

/set_point

/ardrone/takeoff
/cmd_vel Joystick logic

PID controller

/ardrone/land

/ardrone/takeoff Automated
landing

Pose estimation
/filtered_estimate

Filter

/dead_reckoning

Dead rekoning
/estimate_single

/ardrone/land

/cmd_vel

Operator
with joystick

Quadcopter

Controller

User Interface

Planner

Perception System

Figure 4.1: Architecture of the ROS application showing how the different nodes of the system
interact. An arrow goes from a publisher to a subscriber and denotes the name of the topic on which
the messages are sent.

xw
yw

zwzw

yl

zl

xl

ow

ol

ob

yb

xb

zb

Yaw

Roll
Pitch

Figure 4.2: The different coordinate systems used with the quadcopter. The world coordinate system
is only available in the simulator, where it is used as a ground truth position to check how well the
estimate is performing.

28

4.1 Pose estimation

(a) Original image (b) Green segmentation

(c) Orange segmentation (d) White segmentation

Figure 4.3: Image segmentation in the simulator.

The position estimation method consists of 4 main steps:

1. Color segmentation

2. Corner and edge detection

3. Finding the center and radius of landing platform

4. Calculating the pose

In addition, if enough information is available, the yaw-rotation is calculated.

4.1.1 Color segmentation

The first step of the computer vision method is segmenting the different colors in the
image. Before the segmentation, noise is removed from the image using the OpenCV
function fastNlMeansDenoisingColored() [47] as shown in Listing 4.2. Then
the OpenCV function inRange() is used to find the mask containing only the desired
color, as shown in Listing 4.1. The low and high limit for each of the three Hue, Saturation
and Value parameters are found by trial and error and the limits are listed in Table 4.1.
The colors are perceived a bit differently in the simulator and with the real quadcopter and
therefore the limits are adjusted for both cases. Figures 4.3, 4.4 and 4.5 shows examples
of image segmentation on an image taken in the simulator, by the real quadcopter indoors
and by the real quadcopter outside, respectively.

29

Chapter 4. System design

(a) Original image (b) Green segmentation

(c) Orange segmentation (d) White segmentation

Figure 4.4: Image segmentation with images from the physical quadcopter indoors.

(a) Original image (b) Green segmentation

(c) Orange segmentation (d) White segmentation

Figure 4.5: Image segmentation with images from the physical quadcopter outdoors.

30

4.1 Pose estimation

Color Parameter Simulator Real indoor Real outdoor
Low High Low High Low High

Green
Hue 105 135 120 200 120 220
Saturation 85 100 60 100 0 50
Value 15 60 0 60 0 60

Orange
Hue 21 51 10 40 10 40
Saturation 85 100 25 100 20 70
Value 30 100 60 100 90 100

White
Hue 0 360 0 360 0 360
Saturation 0 15 0 30 0 7
Value 30 100 85 100 98 100

Table 4.1: HSV threshold values for color segmentation. The limits are different for the simulator,
real indoor and real outdoor use of the quadcopter. The ranges are 0-360 for Hue and 0-100 for
Saturation and Value.

Listing 4.1: Color segmentation using the OpenCV library.

mask = cv2 . inRange (image , low , h igh)

Listing 4.2: Denoising using the OpenCV library.

d e n o i s e d = cv2 . f a s t N l M e a n s D e n o i s i n g C o l o r e d (image , None , 1 0 , 1 0 , 7 , 2 1)

4.1.2 Edge detection

Edges are detected in the image by using the Canny edge detection, presented in Section
2.1.2. The edge that needs to be detected is the edge on the outer contour of the green
ellipse. To prepare for the edge detection, the floodFill() function from OpenCV is
applied to the green segmentation. This function fills all connecting pixels in the image,
starting from the top left corner. The result is a solid shape with the details on the inside
removed. Then the Canny() function from OpenCV can be applied, as shown in Listing
4.3.

Listing 4.3: Canny edge detection function.

mask = cv2 . f l o o d F i l l (g r e e n s e g m e n t a t i o n , mask , s t a r t P o i n t)
edges = cv2 . Canny (mask , t h r e s h o l d 1 , t h r e s h o l d 2 , a p e r t u r e S i z e)
e d g e p o i n t s = np . where (edges == 255)

The parameters threshold1 and threshold2 are thresholds for the hysteresis procedure and
are set to 100 and 200, respectively. The default aperture size for the Sobel operator
apertureSize=3 is used. The result is shown in Figure 4.6, where the edge points are
marked in red. They are accurately placed and covers the entire edge.

31

Chapter 4. System design

Figure 4.6: The binary mask of the landing platform. The edge points found with the Canny edge
detector are marked in red.

4.1.3 Corner detection
Corners are detected in the image by using the Harris corner detector, presented in Section
2.1.3. Inspiration for this way of doing it comes from an OpenCV tutorial [36]. First, the
cornerHarris() function from OpenCV, displayed in Listing 4.4 is used:

Listing 4.4: The Harris corner detector function from OpenCV.

r e s u l t = cv . c o r n e r H a r r i s (image , b l o c k S i z e , a p e r t u r e P a r a m , kParam)

, with the suggested parameter values from the tutorial: blockSize = 2, apertureParam =
3, kParam = 0.04. The input to the function must be a grayscale image. Here, the green
segmentation image from the simulator is used as a demonstration image. The result is
shown in Figure 4.7a. To remove some of the false corners found on the edge of the circles,
aperture parameter of the Sobel operator is increased to apertureParam = 9. Furthermore,
the neighbourhood considered is increased to blockSize=7. The corner area found will
then be larger and more likely cover the actual corner. The result is shown in Figure 4.7b.

Listing 4.5: The gaussian blur function from OpenCV.

image = cv2 . G a u s s i a n B l u r (image , k S i z e)

A Gaussian blur with a kernel size of 9 is applied to the image before the corner detection,
using the function shown in Listing 4.5. This helps avoid false corner detections and the
result is shown in Figure 4.7c. The blur will have an even larger effect on images from the
real quadcopter, where there will be more noise.

Finally, a sub-pixel accuracy method [36], displayed in Listing 4.6, is used to find the
best corner in each of the corner areas. This uses the result from the cornerHarris()
function to calculate the centroids of each corner area. Then it refines the corner locations
with the iterative function cornerSubPix(). This function considers a search window
around each centroid, where win size denotes half of the side lengths of the window. In
this case win size is set to 5 which gives a search window of 11x11 pixels. It is possible
to add a dead region in the center of the search window, but his is not necessary here and
it is marked with the value (-1, -1). The criteria for when to stop the iteration is set to

32

4.1 Pose estimation

(a) With original parameters (b) With tuned parameters

(c) With a Gaussian blur (d) With SubPixel Accuracy

Figure 4.7: Output from the Harris corner function

maximum 100 iterations or when the corner is refined by less than an epsilon value of
0.001 on one iteration.

Listing 4.6: Finding corners with sub-pixel accuracy [36].

f i n d c e n t r o i d s
r e t , l a b e l s , s t a t s , c e n t r o i d s = cv2 . c o n n e c t e d C o m p o n e n t s W i t h S t a t s (r e s u l t)

d e f i n e t h e c r i t e r i a t o s t o p and r e f i n e t h e c o r n e r s
c r i t e r i a = (cv2 . TERM CRITERIA MAX ITER + cv2 . TERM CRITERIA EPS ,

100 , 0 . 0 0 1)
c o r n e r s = cv2 . c o r n e r S u b P i x (image , np . f l o a t 3 2 (c e n t r o i d s) ,

(w i n s i z e , w i n s i z e) , (−1 , −1) , c r i t e r i a)

The result is shown in Figure 4.7d, where the centroids are marked in red and the refined
corners are marked in green. The resulting corners are accurately placed in the image
and the sub-pixel information, meaning that the corners are denoted by a floating number
instead of an integer, means that the calculations later will be even more precise.

Even though the above method gives accurate corners, there still are two refinements
left to do. Firstly, any edge that meets the border of the image will appear to be a corner in
that intersection. Therefore, all corners closer to the border than 7 pixels, a value found by
trial and error, are discarded. Secondly, it is only the inner corners of the ’H’ and the ar-
rowhead of the orange arrow that are interesting. To illustrate this, the white segmentation
is used. Figure 4.8a shows all the detected corners. To differentiate the inner corners from
the rest, the average value around each corner is found, using a Gaussian blur with kernel

33

Chapter 4. System design

(a) The corners found, before the SubPixel method is
applied.

(b) The average values around each corner.

Figure 4.8: Corner selection for white segmentation

size 51 on the entire image. The value of the corners location in the blurred image is now
the average value. Figure 4.8b shows the blurred image with the values of each corner
location denoted on it. Around an inner corner, approximately 75% of the surrounding
pixels should be white. A white pixel has a value of 255, so the average value around
an inner corner should be 255*75% ≈ 191. With a margin of ±30, only corners with a
surrounding average between 160 and 210 are kept, the others are discarded.

4.1.4 Finding higher level features
After the low level features have been found, constituting of edges around the border of
the green segmentation and corners found in the orange and white segmentations, these
can be used to find three higher level features. The first feature is the location of the center
of the landing platform, given in pixel coordinates. The second feature is the radius of the
landing platform. The location of the radius is not important, only the length, measured in
pixels. The third feature is any vector that indicates the orientation of the landing platform.

It is desirable that the position estimation is functioning both when the quadcopter is
close to the landing platform and when it is far away. However, the landing platform will
appear quite different in these two edge cases. Details on the landing platform will not be
easily distinguished when the quadcopter is far away and the entire circular shape of the
landing platform will not fit into the camera’s field of view when the quadcopter is close
to the landing platform. Therefore, there are developed three different feature extraction
methods that excel at different, yet overlapping, ranges of height over the landing platform.
They are named the ellipse method, the arrow method and the corners method, based on
what they use to find the higher level features. The following subsections presents the
three methods.

The ellipse method

When the quadcopter is far away, the details of the landing platform are not clearly vis-
ible. However, the general round shape of the landing platform is distinguishable up to
50 meters above it. The landing platform has a circular shape, but when the quadcopter is
not straight above it and it is seen at an angle, it will appear like an ellipse. Therefore, the

34

4.1 Pose estimation

ellipse fitting method presented in Section 2.1.4 is used to fit an ellipse to the points on
the border of the landing platform, previously found with edge detection on the green seg-
mentation. The ellipse is described with the six ellipse parameters a = [a, b, c, d, e, f]T.
From these parameters, the center of the ellipse (x0, y0) and the length of the axes la and
lb are found as described in Section 2.1.5. The center of the landing platform equals the
center of the ellipse:

(cx, cy) = (x0, y0), (4.1)

and the length of the radius equals the longest of the ellipse axes:

r = max(la, lb). (4.2)

The low level features from the green segmentation contains no asymmetry that can be
used to infer the orientation of the landing platform.

The arrow method

When the quadcopter is a bit closer to the landing platform, the center of the white ’H’
and the arrowhead of the orange arrow are detectable and can be used. The center of
the landing platform is found by looking at the white ’H’ and exploiting that its shape is
symmetrical both horizontally and vertically, meaning that its center of mass will be at the
center of the shape. After the white is segmented from the rest, as seen in Figures 4.3b and
4.4b, the moments() function from OpenCV is used to calculate the spatial moments of
the segmentation [48]:

mji =
∑
x,y

(I(x, y) · xj · yi), (4.3)

where I(x, y) is the image intensity at pixel (x, y). Then, the center of mass (x, y), i.e.
the centroid, is calculated from this matrix [48]:

x =
m10

m00
(4.4)

y =
m01

m00
, (4.5)

giving the center (cx, cy) = (x, y) in pixel coordinates.
The arrowhead, (ax, ay) of the orange arrow is found from the orange segmentation

of the image, as seen in Figures 4.3c and 4.4c. The original segmentation is inverted, so
that the circle and the arrowhead becomes black and the rest becomes white. This is done
so that the same approach can be used when looking at the inner corners of the ’H’ in the
third and final higher level feature extraction method. In case several corners are found,
the corner with an average value closest to the ideal value for a right-angled corner, 191,
is chosen. When both the center and the arrowhead is found, the distance between those
two points,

len arrow px =
√

(ax − cx)2 + (ay − cy)2, (4.6)

35

Chapter 4. System design

is used to calculate the radius, r, using the known relation between these two lengths. The
real distance between the center and the arrowhead is D ARROW=300 mm, and the real
radius of the landing platform is D RADIUS=390 mm. Thus the radius, r, is calculated
by:

r =
len arrow px · D RADIUS

D ARROW
(4.7)

Finally, the vector from the center to the arrowhead, vca = [ax−cx, ay−cy] can be used to
calculate the yaw orientation. Zero yaw is defined as when the arrow points to the right in
the image, i.e. when it has the same direction as the reference vector vr = [ax−cx, ay−cy].
The yaw angle is therefore found as the angle between those two vectors [49]:

ψ = arctan2(x1 · y2− y1 · x2, x1 · x2 + y1 · y2), (4.8)

where x1 = vca[0], x2 = vr[0], y1 = vca[1] and y2 = vr[1].

The corners method

When the quadcopter is close to the landing platform, there are very few features left
to navigate by. However, those that are left are sufficient to infer both the quadcopter’s
position and rotation. An image taken close to the landing platform will contain mostly
green and secondly some part of, or the entire, white ’H’. The most distinct features of this
letter are the twelve corners on the ’H’, classified in this project as eight outer corners and
four inner corners. There are two outer corners on each leg and in total four inner corners
on the cross-bar of the letter. The four inner corners are found and distinguished from the
others using the corner detection method in Section 4.1.3.

After the inner corners are found, they can be used to find the center of the landing
platform, pc = (cx, cy) and the radius of the landing platform, r, in pixels. Also, the
yaw orientation, ψ, can be found. The number of corners visible in each image may vary.
When the quadcopter is far away, all four corners will be visible, but when the quadcopter
is closer, some corners may be outside the field of view. The following algorithm is able
to extract the necessary information as long as at least two corners are visible.

Before the algorithm starts, ca is chosen as the uppermost corner and cb is chosen as
the corner closest to ca. Also, there will be needed a distinction between whether a certain
pixel is black or white. For this task, a threshold limit is set to be 75 % of the maximal
intensity, 255: I LIM=191. A point with an intensity above this value will be a white
or almost white point. Furthermore, the real lengths of the long and short sides of the
cross-bar in the ’H’ are stored as D LONG=120 mm and D SHORT=40 mm. Since both
these real lengths are known, in addition to D RADIUS, the relative lengths between them
are known. Thus, finding only one of them is sufficient to calculate the others. Figure 4.9

36

4.1 Pose estimation

-x

c
b

v

c
a

p
m

d
s

d
l

p
c

Á
n

(a) Case when the corners are on the short side

-x

c
b

v

c
a

p
m

d
s

d
l

p
c

Á

n

(b) Case when the corners are on the long side

Figure 4.9: Geometric notation for the corners method

37

Chapter 4. System design

show the notation used. The algorithm is presented next:

Algorithm 1: Evaluating inner corners
Data: Corners ca and cb
Result: pc, r, φ
~v ←− vector from ca to cb
~x←− x-axis of the image (downwards)
pm ←− point in the middle of ca and cb
ipm ←− average intensity around the point pm
~n←− the normal to ~v
if ipm < I LIM then

// Long side
ds ←− ||~v||
dl ←− ds · D LONG/D SHORT

pc ←− pm + ~v
||~v|| · (dl/2)

φ←− angle from −~n to −~x
else

// Short side
dl ←− ||~v||
ds ←− dl · D SHORT/D LONG

pc ←− pm + ~v
||~v|| · (ds/2)

φ←− angle from ~v to −~x
end
r ←− ds · D RADIUS/D SHORT

The normal, ~n to the vector ~v can have two orientations. The correct orientation, pointing
towards the center, is found by considering the pixels around the corners ca and cb.

4.1.5 Choosing which method to use

In one image, there might be more than one feature extraction method that is able to
find the center and the radius. However, there can only be one estimate output from the
computer vision module. The approach chosen in this thesis is to give the methods a
priority and choose the available method with the highest priority. The corners method
is given the highest priority, the arrow method the second highest priority and the ellipse
method the lowest priority. In addition, the corners method is only used if the green area is
touching the border of the image. In most cases, this means that the quadcopter is close to
the landing platform and ensures that the method is only used for low altitudes. Similarly,
the ellipse method is only used if the green area is not touching the border, i.e. if the entire
green area is visible in the image or no green is visible at all.

4.1.6 Calculating position from high level features

The next step is to use the features found in the previous section to calculate the vector
from the origin of the camera coordinate system to the landing platform coordinate system
w.r.t the landing platform coordinate system, dlc = (dlc,x, d

l
c,y, d

l
c,z) (see Figure 4.10).

38

4.1 Pose estimation

x
b

y
b z

b

y
c

x
c

z
c

x
l

y
l

z
l

u

v

(u
0
,v
0
) f

d
c
l
,x

d
c
l
,y

d
c
l
,z

(u
p
,v
p
)

s

d
b
c
,y

d
b
c
,x

d
b
c
,z

Figure 4.10: The pinhole camera model showing the projection of the landing platform onto the
image plane and to the origin of the camera.

39

Chapter 4. System design

z
c

z
l

d
c
l
,z

f

R

r

s

Figure 4.11: The geometry of the pinhole camera model seen directly onto the s vector, which goes
through both the center of the image, (u0, v0), and the center of the landing platform in the image,
(up, vp).

z
c

y
c

v

z
l

x
l

d
c
l
,x

v
0

v
p

d
c
l
,z

f

Figure 4.12: The geometry of the pinhole camera model seen from the side, parallel to the x-axis of
the landing platform.

40

4.1 Pose estimation

z
c

x
c

u

z
l

y
l

d
c
l
,y

u
0

u
p

d
c
l
,z

f

Figure 4.13: The geometry of the pinhole camera model seen from the side, parallel to the y-axis of
the landing platform.

First, the z-component of the vector, dlc,z is found, exploiting the assumption that the two
xy-planes are parallel. It is a bit hard to see from the figure, but dlc,z is measured as the
distance between the two xy-planes. The information available from the computer vision
system is a predicted length of the radius of the landing platform, r, in pixels. The other
known information is the length of the real radius, R in meters and the focal depth, f , in
pixels. Figure 4.11 shows the coordinate systems in Figure 4.10 seen down on the s vector
from the center of the image frame towards the center of the landing platform in the image.
The concept of similar triangles is then used to find the z-component in meters:

dlc,z =
Rf

r
. (4.9)

Next, the x- and y-components are found in a similar fashion. The figures 4.12 and 4.13
show the coordinate systems seen from the side and from above, respectively. The ad-
ditional information from the computer vision system is the center of the landing plat-
form (up, vp), measured in pixels. The known information is the center of the image,
(u0, v0), measured in pixels and the length, dlc,z , from the above calculations. Thus the
x-components is found as

dlc,x =
(vp − v0)R

f
(4.10)

and similarly, the y component is found as

dlc,y =
(up − u0)R

f
. (4.11)

The final step is to calculate the homogeneous transformation H l
b from the landing plat-

41

Chapter 4. System design

form coordinate system to the body coordinate system by finding

H l
b = H l

cH
c
b

=

[
Rlb dlb
0 1

]
=

[
Rlc dlc
0 1

] [
Rcb dcb
0 1

]
=

[
RlcR

c
b Rlcd

c
b + dlc

0 1

] (4.12)

with

Rlb = RlcR
c
b =

 0 −1 0
−1 0 0
0 0 −1

 0 −1 0
−1 0 0
0 0 −1

 =

1 0 0
0 1 0
0 0 1

 , (4.13)

and
dlb = Rlcd

c
b + dlc, (4.14)

where Rlc is given in Equation 4.13, the components of vector dlc is given in Equations
4.9, 4.10 and 4.11 and dcb is the vector from the camera to the body coordinate system as
seen in Figure 4.10. Thus, the position of the quadcopter relative to the landing platform
is given by the vector dlb.

4.2 Filter
After one of the estimates is selected, it is passed onto a filter, which uses a combination of
a moving median filter and a moving average filter. The moving median filter on one hand
is good at suppressing impulse noise[50], which will occur due to sudden large errors in
the estimate, for instance caused by false detections of the landing platform. The moving
average filter on the other hand can act as a low-pass filter [51]. A low-pass filter is good at
reducing high-frequency noise in the measurements, which will occur due to inaccuracies
in the estimate. The filter is defined in two steps, where the output of the median filter mi

is used as the input for the average filter yi:

mi = median(xi, xi−1, . . . , xi−M+1)

yi =
1

N

N−1∑
j=0

mi−j ,
(4.15)

whereM is the moving window size of the median filter andN is the moving window size
of the average filter. Both sizes are set to M = N = 3.

42

4.3 Dead reckoning

4.3 Dead reckoning
The position estimate is not always available. Factors such as noise in the image, changes
in lightning conditions and a very small or very large distance between the quadcopter
and the landing platform affects the estimate negatively and may lead to no estimate. The
landing platform may not even be visible in the image, for instance at times when the
quadcopter is performing a mission some distance away from the ship. Furthermore, there
might be hidden faults in the software corrupting the estimate. When no position estimate
is available, for whatever reason, the quadcopter is blind and will have a hard time finding
back to the ship, unless it has some other means of navigating.

To cope with this problem, a method called dead reckoning is applied. This method
calculates the current position by integrating measurements of velocity and acceleration
and adding this to the last known position [52]. The quadcopter measures its linear ve-
locity, vt, linear acceleration, at, and yaw, ψ, using the Inertial Measurement Unit (IMU),
which is constantly published on the topic /ardrone/navdata.

The position is found by simply using the formulas for equations of motion with con-
stant acceleration:

pn = pn−1 + (tn − pn−1)vn +
1

2
(tn − tn−1)2an, (4.16)

where pn−1 is the last known position at time tn−1, vn and an are measurements of the
velocity and acceleration at time tn and pn is the new estimated position. Similar can be
done for the yaw:

ψn = ψn−1 + ∆ψ. (4.17)

For the yaw, the angle is calculated directly and no angular velocities are available. This
is solved by calculating the change between the current IMU estimate, ψCURR, and the
previous one, ψPREV to get ∆ψ = ψCURR − ψPREV. Since the yaw is measured in range
(−180, 180], the following short algorithm is used to ensure the correct ∆ψ when passing
these limits:

Algorithm 2: Correction for ∆ψ

if ∆ψ > 180 then
∆ψ -= 360

else if ∆ψ < −180 then
∆ψ += 360

When implementing these equations and testing it in the simulator, there were some
errors that needed to be corrected. First of all, the sensor measurements does not have a
mean around zero, meaning that when the quadcopter is standing still, with no velocity
or acceleration, the sensors still report slight movement inn all axes. This is especially
apparent with the acceleration along the z-axis. Due to the acceleration of gravity, a stand-
still accelerometer measures an acceleration of 9.81 m/s2 along the z-axis. To solve
this problem, a calibration phase of 10 seconds is conducted before the dead reckoning
starts. The average of the measurements in the calibration phase is stored in a variable,
and for every measurement after the calibration phase, this value is subtracted from the
measurement. This results in a more stable dead reckoning calculation that to a smaller
extent drifts from its actual value.

43

Chapter 4. System design

Secondly, it is observed that when the quadcopter is standing still, even after the cal-
ibration, there is still some small fluctuations in the measurements. This is unwanted,
because it can contribute to drift in the dead reckoning even though the quadcopter is
standing still. To cope with this problem, the signals are observed for a period when the
quadcopter is standing still and the largest fluctuations are noted. Then, in the dead reckon-
ing implementation, all measurements smaller than this value are set to zero. This results
in less drift in the dead reckoning calculation when the quadcopter is standing still.

Finally, the rotation of the quadcopter is taken into account. The linear velocities
and accelerations are measured in the quadcopter’s body coordinate system, and when the
quadcopter rotates, the x-axes of the landing platform coordinate system will no longer be
aligned with the x-axes of the quadcopter. This will have implications when the quadcopter
rotates around the z-axis while not directly above the landing platform. No linear velocities
or accelerations will be registered in x-, y-, or z-direction, so if the rotation is not taken into
account, the dead reckoning will output the same position. However, since the quadcopter
has rotated, the change in the quadcopter’s position has to be rotated around the z-axis, in
the opposite way of the rotation ψ, before it is added to the previously known position.
This can be generalized to

pb = Rz,−ψpa, (4.18)

where pa is the position before the correction and pb is the correct position when the
quadcopter has rotated φ degrees around the z-axis and

Rz,−ψ =

cos−ψ − sin−ψ 0
sin−ψ cos−ψ 0

0 0 1

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (4.19)

When this is done, the dead reckoning output is published at topic /estimate/dead reckoning.
Test results for the dead reckoning is shown in Section 4.3.

4.4 User interface

Even though the future goal of this system is to be autonomous, for testing and safety
purposes an operator has to be able to interfere with the system. Therefore a simple user
interface is created, where the operator gets control access to the quadcopter through the
handheld controller presented in section 3.4.

The handheld controller is connected to the computer through two nodes in ROS. The
first node is called joy node and is available from the open source joy package [53]. This
node takes signals from any joystick connected to the computer, in this case the PlayStation
controller, and publish a message on the /joy topic. The message contains the state of
the joystick’s buttons and axes. The second node is developed as a part of this thesis.
It subscribes to the /joy topic from the first node and translates signals about joystick
movements and button presses to the rest of the system. The handheld controller can be
set to two modes: manual control or set point control. In manual control, the movements
of the joysticks are translated directly to control signals for the quadcopter and published
as Twist() messages on topic /cmd vel.

44

4.4 User interface

The control for take off and landing is available in both modes. A take off or landing
command is sent to the quadcopter by publishing an Empty() message on the topics
/ardrone/takeoff and /ardrone/land, respectively. The mapping between the controller and
the control signals to the quadcopter is the following:

• Left joystick up/down: Linear speed in z direction

• Left joystick left/right: Angular speed around z axis

• Right joystick up/down: Linear speed x direction

• Right joystick left/right: Linear speed y direction

• Cross button: Take off

• Circle button: Land

• R1: Emergency stop

• L1: Toggle between manual control and set point control

• Start: Initiate automated landing

45

Chapter 4. System design

K
p

K
d

K
i

e u

dt

d

Figure 4.14: Block diagram of a typical PID controller. The controller has a proportional term (in
the middle), a integral term (at the bottom) and a derivative term (at the top). Modified from [54].

PID
controller

Parrot
AR.Drone 2.0

e Pose
estimator

v
setpoint imagep

setpoint
p
estimate

Figure 4.15: Control loop of the system.

4.5 PID controller

A simple PID controller is implemented to control the quadcopter to a given set point.
Such controllers are very simple and are covered extensively in the literature [54]. Figure
4.14 shows the structure of the PID regulator and Figure 4.15 shows the PID controller in
the closed control loop with feedback from the pose estimator.

Since the quadcopter has an onboard autopilot that handles the low-level control of
the motors and the stabilization of the roll and pitch angles, the set points for the PID
controller can be position in x-, y-, z-direction and orientation in yaw. Under the circum-
stances of this thesis, control of one of these variables can be done independently of the
others, so there is implemented one controller for each variable. Each PID controller has
three parameters, the proportional gain, the integral gain and the derivative gain. These pa-
rameters are tuned individually for each variable by trial and error until the step response
of the quadcopter is reasonably quick without overshooting. Due to the latency introduced
by the pose estimate, and to help maintain the assumption of a horizontal quadcopter, it is
best to have a slow and steady control response. The resulting Kp, Ki and Kd parameters
and are listed in Table 4.2.

46

4.6 Automated landing

Variable Kp Ki Kd
x, y, z 0.7 0.001 0.5
yaw 0.01 0.0 0.0

Table 4.2: PID parameters

4.6 Automated landing
The automated landing node is implemented as a sequential planner, where a sequence of
set points are published to the PID controller. The automated landing can be initiated by
pressing the ”Start”-button on the handheld controller. The node then generates a trajectory
of set points from the current position of the quadcopter, via the way point (0.0, 0.0, 2.0), 2
m above the landing platform, and to the way point (0.0, 0.0, 0.3), 30 cm above the landing
platform. The set point for the yaw is set to zero for the entire trajectory. A desired speed
of 0.4 m/s is set and the node publishes intermediate set points towards the main way point
at a frequency of 10 Hz. When the current intermediate set points is closer than 1 meter to
the main way point, the speed is reduced proportionally to how close the main way point
is. When the quadcopter is closer than 0.01 m to the current way point, the next way point
is chosen. After the trajectory is executed, the node publishes the land command to the
quadcopter and it lands.

The reason for naming this module a planner for automated landing instead of au-
tonomous landing, is that autonomous landing has higher requirements this simple sequen-
tial planner fulfills. For instance, it needs to make decisions during the landing process
whether it is safe to land or whether the landing should be aborted.

4.7 DDPG controller
The DDPG controller developed in [9] is also mention here for completion. All this node
requires is a position and yaw estimate from the perception system above, together with
the IMU measurements from the quadcopter. It will then control the quadcopter from its
current position to a set point straight above the landing platform. When the quadcopter is
sufficiently close to this set point the controller will start to perform a descend towards the
landing platform. When the quadcopter again is sufficiently close, it will land.

4.8 Connection to the quadcopter
The ROS application can either be connected to a simulated quadcopter or a physical
quadcopter. When connecting to the simulator, the /tum simulator package is used to
spawn a simulated quadcopter in the Gazebo simulator. The rest of the ROS application
can then communicate with the simulated quadcopter over topics. When connecting to
the physical quadcopter, the battery is first inserted into the quadcopter, which will then
power itself on and perform an initial calibration. After the calibration is done, it beeps
and spins all four propellers a fraction of a revolution. It is now ready to be connected to
the computer over WiFi. On the computer it will be visible as a normal network. When

47

Chapter 4. System design

a WiFi connection is established, the ardrone driver node from the ardrone autonomy is
used to connect the quadcopter to the rest of the ROS application.

4.9 Running the system
The different nodes of the system can be started individually with the rosrun command
or a launch file can be written to start several nodes collectively with the roslaunch
command. The commands for starting each node, or cluster of nodes, are given below:
Start the simulator and spawn a simulated quadcopter:

$ roslaunch uav_vision sim_ar2.launch

Connecting to the physical quadcopter:

$ roslaunch uav_vision real_ar2.launch
$ rosservice call /ardrone/setcamchannel 1

Start the entire perception system:

$ roslaunch uav_vision perception_system.launch

Start the joystick system:

$ roslaunch uav_vision joystick.launch

Start the PID controller:

$ rosrun uav_vision pid_controller.py

Start the planner for automated landing:

$ rosrun uav_vision automated_landing.py

Start the DDPG controller:

$ rosrun ddpg ddpg_hover_descend.py

View the camera stream from the bottom camera, using the image view node from the
image view package:

$ rosrun image_view image_view \
image:=/ardrone/bottom/image_raw

48

Chapter 5
Results

5.1 Experiments in the simulator
The first part of the experiments is performed in the Gazebo simulator. All three computer
vision methods are tested up against the ground truth for different altitudes above the
landing platform. The estimates for all variables x, y, z and yaw are assessed, however
most emphasize is put on the position estimates as these are the most important values to
get correct in order to land safely. For brevity, the methods are referred to as the ellipse
method, the arrow method and the corners method. Furthermore, the running median
and mean filter applied to the estimate is tested. Finally, the dead reckoning module is
tested. There are not implemented any wind disturbances in the simulator so the onboard
autopilot is able to stabilize the quadcopter fairly well itself. Nevertheless, the quadcopter
tends to slightly drift in one direction. Therefore, during the experiments, the quadcopter
is controlled with the simple PID controller and the joystick set in set point mode, which
makes it easy to hover in, and fly to, the desired positions for testing.

5.1.1 Assessment of the computer vision system
The computer vision system is assessed while manually flying the quadcopter above the
landing platform. It is noted that the estimate is published with a rate between 5-10 Hz
although it is set to be 10 Hz. Some of the features found with the different methods
are marked in the image, and the marked image is published to topic /processed image
and stored with even time steps. The marked image can be viewed with the package
image view available from ROS:

$ rosrun image_view image_view image:=/processed_image

Drawing on, publishing and storing images takes extra computational power and time,
so this function can be turned off when not needed. Figure 5.1 shows some samples from
these images. The features found with the corners method are marked in yellow and
consist of the two inner corners used, the center of the landing platform and the direction

49

Chapter 5. Results

of the x-axis of the coordinate system of the landing platform. The features found with the
arrow method are marked in red and consist of the arrowhead and the center of the landing
platform. The feature found with the ellipse method is the center of the landing platform
and this is marked in blue.

Figure 5.1a shows an image where all methods give an estimate. Figures 5.1b, 5.1c and
5.1d show clearly that the corners method can work with 4, 3 or 2 visible inner corners.
Figures 5.1e and 5.1f show examples of two methods available at the same time. Figures
5.1g and 5.1h show the ellipse estimate working for middle to high altitudes.

Discussion

For all methods the radius is also found as a feature, but this is not marked in the image
here. It would have been possible to use the center and the radius together to draw a bound-
ing box or even a bounding circle around the detected landing platform. Nevertheless, the
correctly detected center indicates which method is working, and the accurate estimates
presented in the following sections show that the radius is also found correctly.

The publishing rate of the computer vision system is a bit lower than the 10 hz in-
tended. This rate was chosen as a reasonable frequent estimate update for the controller to
be able to stabilize the quadcopter for low velocity flight. The lower actual rate indicates
that either the computer vision methods are too complex or that the implementation should
be optimized for better running time.

5.1.2 Test of all methods when flying up and down
Next, the quadcopter is flown from position (-0.1, 0.0, 0.2) up to (-0.1, 0.0, 5.0) and back
again. The reason why the x-position is set to -0.1, is that it is the position where the
’H’ is best aligned in the center of the camera, and thus gives the most stable estimate
for lower altitudes. Figure 5.2 shows the resulting estimates in the left column and the
corresponding estimate errors in the right column. The ground truth z-position is shown
in grey color in the background. The overlapping ranges of the methods can be observed,
where the corners method has a range from around 0.2-1.0 meters, the arrow from 0.5-1.2
meters and the ellipse method from around 1.0 meters and upwards.

Discussion

The z-position plots on the third row show some outliers from the arrow method around 2-
2.5 meters and above 4.5 meters. This is mainly caused because the arrowhead is detected
too close to the center of the landing platform. Around 2-2.5 meters, it is detected on the
center of the arrow instead of at the tip of the arrow (see Figure 5.3a), giving a shorter
radius, but the right angle, as observed in the yaw-estimates in the fourth row. Above
4.5 meters however, the angle is also wrong, which indicates that points along the orange
circle is detected as the arrowhead (see Figure 5.3b), thus giving a too small radius and a
wrong angle. Since the arrow on the orange circle caused that much problems, it might
have been better to not include the arrow and just pick any point at the circle to calculate
the radius. This would however mean that the yaw estimate would not be available from
the arrow method, since the direction of the landing platform would be hidden.

50

5.1 Experiments in the simulator

(a) All methods (b) Corners method with 4 available corners

(c) Corners method with 3 available corners (d) Corners method with 2 available corners

(e) Corners and arrow method (f) Corners and ellipse method

(g) Ellipse method at middle altitude (h) Ellipse method at high altitude

Figure 5.1: Examples of feature detection on the landing platform

51

Chapter 5. Results

Figure 5.2: All variable’s values and errors when flying from a hovering position at 0.2 meter above
the landing platform, up to 5 meters above the landing platform and down again.

52

5.1 Experiments in the simulator

(a) Arrowhead detected at the center of the arrow (b) Arrowhead detected along the orange circle

Figure 5.3: Examples where the arrowhead is wrongly detected.

5.1.3 Test of all methods when hovering

For testing the methods at different altitudes, the quadcopter is set to hover for 15 seconds
at positions (0, 0, z) for z ∈ [0.5, 1.0, 2.0, 3.0, 5.0, 10.0] meters. The estimate errors for
the x,y and z-position and the yaw-rotation are shown in Figures 5.4, 5.5, 5.6 and 5.7,
respectively. Here, the different ranges of the methods are apparent, where the corners
method works for low altitudes, the arrow method for middle altitudes and the ellipse
method for high altitudes. Also, the outliers from the arrow method discussed in the
previous experiment are visible. The z-position estimate is affected by these outliers at
an altitude above 2 meter, while the yaw estimate only is affected at an altitude above 5
meter. Furthermore, since the ellipse method does not give a yaw-estimate, there are no
good yaw-estimates above 2 meter.

Furthermore, the accuracy and precision of all methods and all variables are studied
for each altitude during the hovering. The accuracy is represented by the mean error

x̄ =
1

N

N∑
i=1

xi, (5.1)

where xi is the i-th error between the estimate and the ground truth in the time series of N
data points. The errors are sampled at a rate of 20Hz for around 15 seconds and N = 300.
Furthermore, the precision is represented by the standard deviation

σ =

√√√√ 1

N

N∑
i=1

(xi − x̄)2. (5.2)

For both the mean error and the standard deviation, only data points that contains an esti-
mate are considered, i.e. data points where the method is unavailable are not considered.
The availability for an estimate during the time series are found by counting the data points
available and dividing by N . The mean error, standard deviation and the availability for
each method are presented in the Tables 5.1, 5.2, 5.3, 5.4 along with the minimum and
maximum estimate error during the time series. The best method for each variable and
altitude, considering both availability, mean and standard deviation, is marked in green.

53

Chapter 5. Results

Figure 5.4: Estimate error for x-position from all methods at different altitudes.

54

5.1 Experiments in the simulator

Figure 5.5: Estimate error for y-position from all methods at different altitudes.

55

Chapter 5. Results

Figure 5.6: Estimate error for z-position from all methods at different altitudes.

56

5.1 Experiments in the simulator

Figure 5.7: Estimate error for yaw-position from all methods at different altitudes, except from the
ellipse method which does not give an estimate for the yaw-rotation.

57

Chapter 5. Results

Height Method Min [mm] Max [mm] Mean [mm] Std [mm] Avbl.

0.5m
ellipse - - - - 0%
arrow -6.62 0.34 -3.57 1.91 11%

corners -10.44 6.61 -2.15 2.85 100%

1.0m
ellipse -17.46 -3.24 -12.01 4.31 11%
arrow -14.04 7.66 -3.41 5.20 100%

corners -19.79 13.75 -3.72 6.24 100%

2.0m
ellipse -34.88 16.10 -9.17 9.54 100%
arrow -24.00 35.34 6.55 11.95 100%

corners - - - - 0%

3.0m
ellipse -46.30 16.24 -13.48 12.01 100%
arrow - - - - 0%

corners - - - - 0%

5.0m
ellipse -81.84 41.31 -22.41 21.33 100%
arrow -2.79 30.75 12.34 12.71 4%

corners - - - - 0%

10.0m
ellipse -138.44 77.64 -42.30 42.74 100%
arrow - - - - 0%

corners - - - - 0%

Table 5.1: Accuracy (mean) and precision (std) of the different methods for x-position estimate.

Height Method Min [mm] Max [mm] Mean [mm] Std [mm] Avbl.

0.5m
ellipse - - - - 0%
arrow -8.21 1.15 -4.45 2.76 11%

corners -10.00 6.26 -2.30 3.22 100%

1.0m
ellipse -9.37 4.62 -1.40 4.16 11%
arrow -18.84 8.83 -3.56 4.88 100%

corners -20.74 9.97 -3.09 6.20 100%

2.0m
ellipse -37.47 27.08 -4.91 11.70 100%
arrow -39.71 30.93 -7.00 14.29 100%

corners - - - - 0%

3.0m
ellipse -39.29 25.80 -6.50 13.91 1000%
arrow - - - - 0%

corners - - - - 0%

5.0m
ellipse -52.88 42.90 -9.23 22.67 100%
arrow -4.87 20.46 14.22 8.84 4%

corners - - - - 0%

10.0m
ellipse -135.52 94.41 -11.64 41.28 100%
arrow - - - - 0%

corners - - - - 0%

Table 5.2: Accuracy (mean) and precision (std) of the different methods for y-position estimate.

58

5.1 Experiments in the simulator

Height Method Min [mm] Max [mm] Mean [mm] Std [mm] Avbl.

0.5m
ellipse - - - - 0%
arrow -9.56 -4.65 -7.66 1.45 11%

corners -48.38 16.06 -6.13 12.03 100%

1.0m
ellipse -14.46 -12.23 -13.56 0.61 11%
arrow -18.42 2.42 -7.65 4.64 100%

corners -103.75 91.83 -0.76 43.86 100%

2.0m
ellipse -15.69 -8.74 -12.96 1.33 100%
arrow -2.44 265.20 191.92 69.48 100%

corners - - - - 0%

3.0m
ellipse -10.23 -3.57 -7.08 1.53 100%
arrow - - - - 0%

corners - - - - 0%

5.0m
ellipse -6.66 47.89 22.52 9.79 100%
arrow 489.13 750.69 643.13 104.21 4%

corners - - - - 0%

10.0m
ellipse -43.81 97.76 40.07 25.45 100%
arrow - - - - 0%

corners - - - - 0%

Table 5.3: Accuracy (mean) and precision (std) of the different methods for z-position estimate.

Height Method Min [deg] Max [deg] Mean [deg] Std [deg] Avbl.

0.5m
ellipse - - - - 0%
arrow -0.24 0.36 -0.01 0.16 11%

corners -2.74 3.08 -0.12 1.33 100%

1.0m
ellipse - - - - 0%
arrow -0.72 0.80 0.02 0.28 100%

corners -6.63 6.12 -0.42 2.83 100%

2.0m
ellipse - - - - 0%
arrow -1.39 1.46 -0.04 0.65 100%

corners - - - - 0%

3.0m
ellipse - - - - 0%
arrow - - - - 0%

corners - - - - 0%

5.0m
ellipse - - - - 0%
arrow 16.49 136.91 101.09 45.24 4%

corners - - - - 0%

10.0m
ellipse - - - - 0%
arrow - - - - 0%

corners - - - - 0%

Table 5.4: Accuracy (mean) and precision (std) of the different methods for yaw-rotation estimate.

59

Chapter 5. Results

Discussion

It is a general trend that the deviations from the ground truth increase with the altitude.
This is partially explained by the fact that a small tilt of the quadcopter alters the camera’s
field of view to a larger degree for higher altitudes. Since the tilt is not taken into account
when performing the estimate, this effect becomes larger for higher altitudes.

The Tables 5.1, 5.2, 5.3 and 5.4 supports the approach for selecting which method to
use in case of more methods available. At most of the altitudes, the corners method works
best when that is available and if is not, the arrow method works best, and the ellipse
method can be chosen if none of the other two is available.

5.1.4 Test of filter

Even though the mean errors of the estimates are quite accurate, there is still some noise
in the estimates. Therefore, in the third experiment, the running mean filter implemented
in Section 4.2 is tested with a change in the z-direction. The quadcopter is flown from
a hovering position at (0.0, 0.0, 1.0) to a hovering position at (0.0, 0.0, 3.0). The step
response is shown in Figure 5.8, with the filtered estimate in grey.

The switching between which method is used can be seen with the x-position estimate
in Figure 5.8a. At t=4s, the ellipse method is used, but from t=4.1s, the arrow method
becomes available and is therefore used instead. Since this estimate is higher than the one
from the ellipse method, the filtered estimate value goes up. When the arrow method is no
longer available at t=6s, the ellipse method is used again.

Discussion

The time delay introduced by the computer vision method and the running mean filter is
apparent in Figure 5.8b, where the filtered estimate is following the ground truth value, but
not quite able to keep track until it stabilizes at a stationary value. The computer vision
module runs at approximately 10 Hz which gives a time delay of 0.1s. The filter has a
running window of 5 measurements which then adds another 0.5s time delay. This time
delay must be considered when designing a controller.

5.1.5 Test of dead reckoning

Next, the dead reckoning module is tested. Since it is designed to work even tough there
is no estimate from the computer vision module, the quadcopter is flown forward, from
a hovering position 1 meter directly above the landing platform, around the ship, where
the landing platform is not visible. Then it is flown back again to see how much the dead
reckoning has drifted. The results are shown in Figure 5.9. The estimate, represented by
the filtered estimate in gray, is present in the beginning and the end, but disappears when
the quadcopter moves away from the landing platform. The dead reckoning is nevertheless
able to calculate the position quite accurately until the quadcopter returns to the landing
platform.

60

5.1 Experiments in the simulator

(a)

(b)

Figure 5.8: The estimates, filtered estimate and dead reckoning during a change in the z-position.

61

Chapter 5. Results

Figure 5.9: Test of the dead reckoning system when flying around the ship.

Discussion

Even though the dead reckoning is able to follow the ground truth very well in this exper-
iment, it does not mean it always will be the case. In the simulator, there are no external
disturbances. With the real quadcopter however, wind and other disturbances such as air-
flows from the ground effect may be present. Since the inertial measurements used for the
dead reckoning of the x-, y- and z-position are only velocity and acceleration measure-
ments and not a direct position measurement, these external disturbances may cause the
dead reckoning calculation to drift more.

5.1.6 Test of yaw estimate while rotating
The next experiment examines the yaw estimate. The quadcopter is controlled manually
to hover around (0.0, 0.0, 1.0) and rotate counterclockwise 360 °. Figure 5.10 shows that
the arrow and the corners methods gives quite accurate estimates of the yaw-position. The
corners method can only estimate the yaw in the range (-90, 90] and has to assume that
the forward direction visible in the image is the correct. Therefore, when reaching 90 °, it
steps down to -90 °and continues from there.

Discussion

This way of estimating the yaw means that controlling the yaw to around ± 90 °or ±
180 °becomes a challenge, since a small deviation in the actual yaw will result in a large
deviation in the estimated yaw. The control around these angles is not considered in this
thesis however, so the yaw is controlled to zero in most of the experiments, where this is
not a problem.

62

5.1 Experiments in the simulator

Figure 5.10: The yaw estimate when rotating 360°counterclockwise.

5.1.7 Landing using the PID controller and the automated landing
planner

In the next experiment, the sequential planner and the PID controller is used to land the
quadcopter. The automated landing is initiated when the quadcopter is at pose x = 1.0 m,
y = 2.0 m, z = 3.5 m and ψ = −90 °, where the landing platform is only barely visible in
the lower right corner of the image. The resulting actual and estimated trajectory is shown
in Figure 5.11.

Discussion

These results show that the methods implemented in this thesis can be used to land a quad-
copter using only an onboard monocular camera and inertial measurements as feedback
to the controller. The feasibility of the estimate is demonstrated here with a simple PID
controller, however the estimate works independently of the controller and can therefore
be used by other control strategies as well.

5.1.8 Landing using external DDPG controller
In this final experiment in the simulator, the external DDPG controller made by Daniel
Tavakoli [9] is tested using the pose estimate from this project as input. As in the previous
experiment, the planner and controller is started when the quadcopter is at pose x = 1.0
m, y = 2.0 m, z = 3.5 m and ψ = −90 °. The quadcopter fluctuates a bit more than when
controlled with the automated planner and the PID controller, but the DDPG controller
is able to bring the quadcopter towards the landing platform, then descend and then land.
The resulting actual and estimated trajectory is shown in Figure 5.11.

63

Chapter 5. Results

Figure 5.11: The trajectory, seen from all three sides, when landing using the automated landing
planner.

64

5.2 Experiment with the physical quadcopter

Discussion

These results indicates that the pose estimation method developed in this thesis is accurate
enough to be used with an external controller that is created knowing nothing about how
the pose estimation method works, except that it outputs an estimate at around 10 Hz and
that it works best when the yaw is controlled towards zero. This is promising results, both
for traditional computer vision methods to be used in such applications and for the DDPG
method.

5.2 Experiment with the physical quadcopter
An outdoor flight test with the physical quadcopter is also conducted. The landing platform
is placed on the grey asphalt in the front yard. Then, the quadcopter is controlled manually
to take off, hover above the landing platform and land. An image from the flight is shown
in Figure 5.13. The perception system is running the entire flight and the estimate output is
shown in Figure 5.14. The orange segmentation does not work well enough for the arrow
method to be used, so no estimate is available from this method. There are also times
the two other methods does not work, mostly because it is hard to control the quadcopter
manually so that the landing platform is visible in the image.

Discussion

The quality of the position estimate is not good enough to be used with the PID controller,
which is why the manual control had to be used. There was only a small amount of wind
present during the experiment, however even some small wind gusts makes it quite hard to
control the quadcopter and especially to land it. This emphasizes how useful it will be to
have robust autonomous flight and landing capabilities on a quadcopter. For the proposed
methods in this thesis to be used with a physical quadcopter for autonomous flight, the
robustness has to be improved.

65

Chapter 5. Results

Figure 5.12: The trajectory when landing, using the external DDPG method seen from all three
sides.

66

5.2 Experiment with the physical quadcopter

Figure 5.13: Image from the outdoor testing.

67

Chapter 5. Results

Figure 5.14: Plots showing the position estimates from the outdoor test. The gaps between the lines
are due to missing estimates for that time step.

68

Chapter 6
Conclusion

The question posed in the beginning of this thesis was: Is it possible to use traditional
computer vision methods to give a robust position estimate for a quadcopter in a marine
environment, using an onboard monocular camera? To answer this, this thesis has pre-
sented the design of a landing platform that can be utilized for this purpose and a percep-
tion system that is able to estimate the quadcopter’s simplified pose relative to this landing
platform. In order to make the pose estimate more robust, there have been developed three
different feature extractors that function in different altitudes above the landing platform.
In addition, a simple filter has been applied to smooth the estimate and mitigate outliers.
Finally, a dead reckoning module has been added to cope with the cases when no pose
estimate is available, by using inertial measurements to incrementally calculate the current
pose of the quadcopter.

The perception system has then been tested extensively in a simulator and has been
giving good, robust pose estimates here. It has also been tested to a smaller extent with a
physical version of the quadcopter and the landing platform, where changes in lightning
conditions, the presence of wind, and a bit more noise in the images lowered the quality of
the estimates. Thus, it can be said that the traditional methods show potential, but the lack
of robustness during physical testing indicates that there has to be done more to ensure
the validity of the pose estimate before it can be taken into use with a vessel, such as
the ReVolt, at sea. Some suggestions for interesting and promising ideas to investigate in
future work are presented in the next section.

6.1 Future work
This thesis presents three different feature extraction method. However, the selection strat-
egy presented in Section 4.1.5 does not guarantee it is the best method that is chosen. Only
one method can currently be used at a time and the main criteria for a method to be chosen
is that it is available. This means one method can be chosen and yet give an estimate with
a large error. One way to solve this problem can be to use another selection strategy. For
instance, the average of all the available methods can be used or the average of the two

69

Chapter 6. Conclusion

best methods. This will add some redundancy in case one of the methods gives a some-
what wrong estimate. Another way to mitigate this problem is to use an outlier detection
method, such as RANdom SAmple Consensus (RANSAC). RANSAC was originally de-
veloped to be applied to just this problem of estimating the location of a camera based
on some points in the image with corresponding known 3D positions [55], and should
therefore give good results.

The main issue when testing outdoor seemed to be that the colors of the landing plat-
form were perceived significantly different than when testing inside and in the simulator.
Therefore, some sort of adaptive color segmentation might be interesting to look into [56].
One way of doing this could be to let the system study an image with a high certainty in
the pose estimate, for instance an image taken when the pose estimate has been stable for
some time. The system could then learn the colors in this image, to be used as thresholds
in the segmentation later.

Another issue that was experienced to a larger extent when flying with the physical
quadcopter compared to the simulator was the delay from the quadcopter moved and until
the movement showed in the camera. This made it hard to control the quadcopter man-
ually, by using just the camera, which will be mainly what the autonomous quadcopter
will have to localize itself with. In this work, all the developed computer systems are
deployed on an auxiliary computer. This introduces some extra lag due to the WiFi con-
nection and sending data back and forth to quadcopter. In the future, as better and better
quadcopters become available with more and more processing power, the entire percep-
tion, planning and control system should be moved on-board the quadcopter. This will
also make the quadcopter have a higher level of autonomy as it would not be dependent on
a ground-station, except for perhaps higher level control signals from an operator in case
of emergency.

Another way of making the estimate more robust can be to apply a more sophisticated
filter, such as the Extended Kalman filter [57]. With such a filter, signals from the pose
estimator can be fused with signals from the IMU and possibly other sensors, such as GPS.
One of the challenges here is that the covariance of the estimate noise should be known.
Further investigations should be done on how such a covariance of the noise can be found
with estimates that originates from computer vision.

In this study, the quadcopter has no contact with the ship apart from the visual contact
with the landing platform. For larger use cases, when the quadcopter is sent on small
missions away from the ship, communication between the ship and the quadcopter can be
incorporated. For instance, the ship can report its own GPS location and the quadcopter,
given that it is supplied with a GPS, could use this information to get close enough to get
visual contact with the ship and then use the camera for more precise localization during
landing.

Some assumptions have been made in this thesis, for example that the quadcopter and
the landing platform are parallel to each other. However, this is not always the case. If
the ship is tilted because of the waves or if the quadcopter is tilted because it moves, this
assumption does no longer hold. In future works, the motion of the quadcopter and an esti-
mate of the motion of the landing platform could be incorporated into the computer vision
system to make the estimate more accurate. Furthermore, the problem of the quadcopter
tilting in the wind can be mitigated by using a gimballed camera that can point downwards

70

regardless of the pose of the quadcopter.
The perception system in this thesis is limited to estimating the simplified pose of the

quadcopter. In future work however, there is a lot more possible features of the world that
the quadcopter can be taught to perceive. For instance, this could be to detect obstacles
around the quadcopter or detect objects of interest, such as people in need of help in the
case of a search and rescue mission. It could also be different features relevant to an in-
spection task, such as looking for rust on constructions and ships. Furthermore, it could
be to perceive the state of an object, such as estimate its temperature, color or other condi-
tions the object might be in. All these features and more, would increase the quadcopter’s
understanding of its environment and thus make it able to make better choices and take
better actions.

Although traditional computer vision methods were chosen in this thesis, there should
be done more work on using DL methods on such a task as well. One of the reasons is
that the methods proposed in this thesis are prone to occlusions and other objects in the
image with similar colors to the landing platform. Since the color segmentation alone is
the only thing that is used during the first step of the method, the rest of the method is
dependent on a good color segmentation. DL methods generally have the ability to look
for many more features than this at the same time and can possibly utilize more of the
information available in an image than a human can manage to engineer using traditional
methods. Although there are some challenges when the entire landing platform is not
visible in the image and so on, with the recent progress on the DL field there will probably
be found a solution to this. An important success factor for such a project will be to gather
a large enough dataset that is representative for different image views, different lighting
conditions and possible containing occlusions on some of the images. Another way to
utilize DL methods can be as a verification that there actually is a landing platform in the
image, before the traditional methods are used. This could remove some false detections
and therefore lead to a more robust and reliable estimate.

71

72

Bibliography

[1] T. Sundvoll, “A camera-based perception system for autonomous landing on a fixed
platform,” Project report in TTK4550, Department of Engineering Cybernetics,
NTNU - Norwegian University of Science and Technology, 2019.

[2] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach,
“UUV simulator: A gazebo-based package for underwater intervention and multi-
robot simulation,” in OCEANS 2016 MTS/IEEE Monterey, pp. 1–8, IEEE, sep 2016.

[3] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a quad-rotor robot,”
in Proceedings Australasian Conference on Robotics and Automation 2006, Aus-
tralian Robotics and Automation Association Inc., 2006.

[4] “The ReVolt - a new inspirational ship concept.” https://www.dnvgl.com/
technology-innovation/revolt/index.html. Accessed: 17.06.2020.

[5] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, pp. 763–770, IEEE, 2011.

[6] J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio, and M. Kohler,
“Aerial robotic construction towards a new field of architectural research,” Interna-
tional journal of architectural computing, vol. 10, no. 3, pp. 439–459, 2012.

[7] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large
nano-quadcopter swarm,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3299–3304, IEEE, 2017.

[8] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative grasping and
transport using multiple quadrotors,” in Distributed autonomous robotic systems,
pp. 545–558, Springer, 2013.

[9] D. Tavakoli, “Autonomous drone landing using deep reinforcement learning,” Mas-
ter’s thesis, NTNU, 2020.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A sur-
vey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

73

https://www.dnvgl.com/technology-innovation/revolt/index.html
https://www.dnvgl.com/technology-innovation/revolt/index.html

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR,
vol. abs/1509.02971, 2015.

[12] L. Wang and X. Bai, “Quadrotor autonomous approaching and landing on a vessel
deck,” Journal of Intelligent & Robotic Systems, vol. 92, no. 1, pp. 125–143, 2018.

[13] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza, “Vision-
based autonomous quadrotor landing on a moving platform,” in 2017 IEEE Inter-
national Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 200–207,
IEEE, 2017.

[14] T. Venugopalan, T. Taher, and G. Barbastathis, “Autonomous landing of an un-
manned aerial vehicle on an autonomous marine vehicle,” in 2012 Oceans, pp. 1–9,
IEEE, 2012.

[15] P. M. Møst, “Visual navigation of an autonomous drone,” Master’s thesis, NTNU,
2014.

[16] A. Borowczyk, D.-T. Nguyen, A. P.-V. Nguyen, D. Q. Nguyen, D. Saussié, and
J. Le Ny, “Autonomous landing of a quadcopter on a high-speed ground vehicle,”
Journal of Guidance, Control, and Dynamics, vol. 40, no. 9, pp. 2378–2385, 2017.

[17] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii: Matching, robustness,
optimization, and applications,” IEEE Robotics & Automation Magazine, vol. 19,
no. 2, pp. 78–90, 2012.

[18] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEE Transactions on robotics, vol. 32, no. 6,
pp. 1309–1332, 2016.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 779–788, 2016.

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in Advances in neural information pro-
cessing systems, pp. 91–99, 2015.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of
the IEEE international conference on computer vision, pp. 2961–2969, 2017.

[22] C. Premebida, R. Ambrus, and Z.-C. Marton, “Intelligent robotic perception sys-
tems,” in Applications of Mobile Robots, IntechOpen, 2018.

[23] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford, et al., “The limits and potentials of deep learn-
ing for robotics,” The International Journal of Robotics Research, vol. 37, no. 4-5,
pp. 405–420, 2018.

74

[24] A. Bendale and T. Boult, “Towards open world recognition,” in 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1893–1902, 2015.

[25] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pat-
tern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[26] C. G. Harris, M. Stephens, et al., “A combined corner and edge detector.,” in Alvey
vision conference, vol. 15, Citeseer, 1988.

[27] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[28] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359,
2008.

[29] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative
to SIFT or SURF,” in 2011 International Conference on Computer Vision, pp. 2564–
2571, Ieee, 2011.

[30] J. Illingworth and J. Kittler, “A survey of the hough transform,” Computer vision,
graphics, and image processing, vol. 44, no. 1, pp. 87–116, 1988.

[31] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[32] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” in Machine learn-
ing techniques for multimedia, pp. 21–49, Springer, 2008.

[33] M. A. Nielsen, Neural networks and deep learning, vol. 2018. Determination press
San Francisco, CA, USA:, 2015.

[34] J. Walsh, N. O’ Mahony, S. Campbell, A. Carvalho, L. Krpalkova, G. Velasco-
Hernandez, S. Harapanahalli, and D. Riordan, “Deep learning vs. traditional com-
puter vision,” in Computer Vision Conference (CVC), pp. 128–144, Springer, 2019.

[35] “Opencv-python tutorials - canny edge detection.” https://docs.opencv.
org/trunk/da/d22/tutorial_py_canny.html. Accessed: 09.06.2020.

[36] “Opencv-python tutorials - harris corner detection.” https://
opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_feature2d/py_features_harris/py_features_
harris.html. Accessed: 09.06.2020.

[37] R. Halır and J. Flusser, “Numerically stable direct least squares fitting of ellipses,”
in Proc. 6th International Conference in Central Europe on Computer Graphics and
Visualization. WSCG, vol. 98, pp. 125–132, Citeseer, 1998.

[38] “Wikipedia - ellipse.” https://en.wikipedia.org/wiki/Ellipse. Ac-
cessed: 19.06.2020.

75

https://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html
https://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
https://en.wikipedia.org/wiki/Ellipse

[39] “HSV color model.” https://medium.com/neurosapiens/
segmentation-and-classification-with-hsv-8f2406c62b39.
Accessed: 04.02.2020.

[40] X. X. Lu, “A review of solutions for perspective-n-point problem in camera pose
estimation,” in Journal of Physics: Conference Series, vol. 1087, IOP Publishing,
2018.

[41] J. Kim, M.-S. Kang, and S. Park, “Accurate modeling and robust hovering control for
a quad-rotor vtol aircraft,” in Selected papers from the 2nd International Symposium
on UAVs, Reno, Nevada, USA June 8–10, 2009, pp. 9–26, Springer, 2009.

[42] “Furuno solid state doppler radar.” https://www.furuno.no/Userfiles/
Sites/files/DRS4D-NXT_E.pdf. Accessed: 04.06.2020.

[43] “Parrot ar.drone 2.0.” https://www.parrot.com/global/drones/
parrot-ardrone-20-elite-edition. Accessed: 07.06.2020.

[44] “Parrot ar.drone 2.0 - developer guide sdk 2.0.” https://jpchanson.github.
io/ARdrone/ParrotDevGuide.pdf. Accessed: 07.06.2020.

[45] “About ROS.” https://www.ros.org/about-ros/. Accessed: 23.05.2020.

[46] “ROS ardrone autonomy.” http://wiki.ros.org/ardrone_autonomy.
Accessed: 23.05.2020.

[47] “Opencv-python tutorials - image denoising.” https://docs.opencv.
org/3.4/d5/d69/tutorial_py_non_local_means.html. Accessed:
12.06.2020.

[48] “OpenCV moments.” https://docs.opencv.org/2.4/modules/
imgproc/doc/structural_analysis_and_shape_descriptors.
html?highlight=moments#moments. Accessed: 30.03.2020.

[49] “Matlab answers - angle between vectors.” https:
//se.mathworks.com/matlabcentral/answers/
180131-how-can-i-find-the-angle-between-two-vectors-...
...including-directional-information. Accessed: 09.06.2020.

[50] T. Nodes and N. Gallagher, “Median filters: Some modifications and their proper-
ties,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 5,
pp. 739–746, 1982.

[51] S. Golestan, M. Ramezani, J. M. Guerrero, F. D. Freijedo, and M. Monfared, “Mov-
ing average filter based phase-locked loops: Performance analysis and design guide-
lines,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2750–2763, 2013.

[52] L. Fusini, T. A. Johansen, and T. I. Fossen, “A globally exponentially stable
non-linear velocity observer for vision-aided uav dead reckoning,” in 2016 IEEE
Aerospace Conference, pp. 1–9, IEEE, 2016.

76

https://medium.com/neurosapiens/segmentation-and-classification-with-hsv-8f2406c62b39
https://medium.com/neurosapiens/segmentation-and-classification-with-hsv-8f2406c62b39
https://www.furuno.no/Userfiles/Sites/files/DRS4D-NXT_E.pdf
https://www.furuno.no/Userfiles/Sites/files/DRS4D-NXT_E.pdf
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
https://jpchanson.github.io/ARdrone/ParrotDevGuide.pdf
https://jpchanson.github.io/ARdrone/ParrotDevGuide.pdf
https://www.ros.org/about-ros/
http://wiki.ros.org/ardrone_autonomy
https://docs.opencv.org/3.4/d5/d69/tutorial_py_non_local_means.html
https://docs.opencv.org/3.4/d5/d69/tutorial_py_non_local_means.html
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
https://se.mathworks.com/matlabcentral/answers/180131-how-can-i-find-the-angle-between-two-vectors-... ... including-directional-information
https://se.mathworks.com/matlabcentral/answers/180131-how-can-i-find-the-angle-between-two-vectors-... ... including-directional-information
https://se.mathworks.com/matlabcentral/answers/180131-how-can-i-find-the-angle-between-two-vectors-... ... including-directional-information
https://se.mathworks.com/matlabcentral/answers/180131-how-can-i-find-the-angle-between-two-vectors-... ... including-directional-information

[53] “ROS joy.” http://wiki.ros.org/joy. Accessed: 24.04.2020.

[54] J. G. Balchen, T. Andresen, and B. A. Foss, Reguleringsteknikk. NTNU, Institutt for
teknisk kybernetikk, 2016.

[55] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Communica-
tions of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[56] E. Littmann and H. Ritter, “Adaptive color segmentation-a comparison of neural and
statistical methods,” IEEE Transactions on neural networks, vol. 8, no. 1, pp. 175–
185, 1997.

[57] J. Sasiadek and P. Hartana, “Sensor data fusion using kalman filter,” in Proceedings
of the Third International Conference on Information Fusion, vol. 2, pp. WED5–19,
IEEE, 2000.

77

http://wiki.ros.org/joy

78

Appendix A
Technical specifications of the
Parrot AR.Drone 2.0

Table A.1: Technical specifications of the Parrot AR.Drone 2.0. Excerpt from [43].

Weight and dimensions
without the hull 366g, 45 x 29 cm
with indoor hull 436g, 51,5 x 51,5 cm (72,8 cm on the diagonal)
with outdoor hull 400g, 45,2 x 45,2 cm
Battery
Type Lithium polymer battery (3 cells, 11.1V, 1000mAh)
Charging time 1h30
Running time 12 min
Embedded computer system
Processor OMAP 3630 1GHz ARM cortex A8
Wi-Fi b/g/n
OS Linux 2.6.32
Motors
Type Inrunner, brushless; 14.5 watts; 28,500 RPM
Vertical camera
Type 90° wide-angle diagonal lens camera, CMOS sensor
Video frequency 60fps
Resolution 320x240 pixels (QVGA)
Other sensors
Accelerometer 3 axis, +/- 50 mg precision
Gyroscope 3 axis, 2000°/second precision
Magnetometer 3 axis, 6° precision
Pressure sensor +/- 10 Pa precision

79

80

Appendix B
ROS message definitions

std msgs/Empty

sensor msgs/Image

std_msgs/Header header
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

geometry msgs/Twist

geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

nav msgs/Odometry

std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/TwistWithCovariance twist

sensor msgs/Joy

std_msgs/Header header
float32[] axes
int32[] buttons

81

ardrone autonomy/Navdata

std_msgs/Header header
float32 batteryPercent
uint32 state
int32 magX
int32 magY
int32 magZ
int32 pressure
int32 temp
float32 wind_speed
float32 wind_angle
float32 wind_comp_angle
float32 rotX
float32 rotY
float32 rotZ
int32 altd
float32 vx
float32 vy
float32 vz
float32 ax
float32 ay
float32 az
uint8 motor1
uint8 motor2
uint8 motor3
uint8 motor4
uint32 tags_count
uint32[] tags_type
uint32[] tags_xc
uint32[] tags_yc
uint32[] tags_width
uint32[] tags_height
float32[] tags_orientation
float32[] tags_distance
float32 tm

82

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Thomas Sundvoll

A Camera-based Perception System for
Autonomous Quadcopter Landing on a
Marine Vessel

Master’s thesis in Cybernetics and Robotics

Supervisor: Anastasios Lekkas

June 2020

	Abstract
	Sammendrag
	Preface
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and motivation
	Objectives
	Contributions
	Outline

	Theory
	Computer vision
	Traditional computer vision
	Edge detection
	Corner detection
	Fitting an ellipse to a set of image points
	Finding the center and axes from ellipse parameter
	HSV color space

	Camera pose estimation
	Quadcopter dynamics

	Design of landing platform and experimental setup
	The landing platform
	Plan for attachment to the Revolt
	Assembling the landing platform

	The quadcopter
	Software
	ROS
	The Gazebo simulator

	Handheld controller

	System design
	Pose estimation
	Color segmentation
	Edge detection
	Corner detection
	Finding higher level features
	Choosing which method to use
	Calculating position from high level features

	Filter
	Dead reckoning
	User interface
	PID controller
	Automated landing
	DDPG controller
	Connection to the quadcopter
	Running the system

	Results
	Experiments in the simulator
	Assessment of the computer vision system
	Test of all methods when flying up and down
	Test of all methods when hovering
	Test of filter
	Test of dead reckoning
	Test of yaw estimate while rotating
	Landing using the PID controller and the automated landing planner
	Landing using external DDPG controller

	Experiment with the physical quadcopter

	Conclusion
	Future work

	Bibliography
	Technical specifications of the Parrot AR.Drone 2.0
	ROS message definitions

