
Lars Mansåker Angelsen

Explainability of Instance
Segmentation Models Trained on

Synthetic Datasets
Applying Explainable AI Methods to a Mask RCNN Model Trained on Synthetic

Data Generated by the Kongsberg Cogs Graphics Engine

Supervisor:
Anastasios Lekkas

Project Thesis
Department of Engineering Cybernetics

Norwegian University of Science and Technology
Norway

December 2019

Summary
This thesis explores how explainable artificial intelligence can be used to gain insights on the

predictions made by an instance segmentation algorithm. This search is motivated by the expected
near term adaption of computer vision algorithms like instance segmentation in autonomous vehi-
cles. This safety critical area requires a clear understanding of the artificial intelligence algorithms
used. Furthermore, explainable artificial intelligence can be used as a tool for improving the perfor-
mance of an artificial intelligence system by shedding light on a system’s weaknesses.

A procedure for generating synthetic datasets using Kongsberg Cogs is developed. Currently
the datasets used to train artificial intelligence systems are often collected and labelled manually.
This is a time consuming process and synthetic dataset generation is poised to be a much quicker
alternative. Kongsberg Cogs is interfaced with via a Python script which facilitates dynamic model
loading and 3D scene configuration. The developed system uses 150 3D models of ships and can
generate � 1000 images per hour without requiring human labor.

A generated dataset consisting of 23500 unique images is then used to train an instance seg-
mentation algorithm called Mask RCNN. The instance segmentation task consists of detecting the
objects within a scene, classifying them, and generating a mask covering their silhouettes. An exper-
iment where the instance segmentation algorithm is tested on a few synthetic and real world images
is performed. The resulting model achieves a mAP = 0:8937 when using an Intersection Over
Union (IOU) threshold equal to 0.5, when tested on a synthetic dataset. When applied to real world
images the model performs worse, but still delivers acceptable results in many cases.

Finally, three explainable artificial intelligence methods are tasked with generating explanations
for a few detections. The three methods are: examining the Jacobian matrix, the integrated gradi-
ents algorithm, and the Local Interpretable Model-agnostic Explanations (LIME) algorithm. These
algorithms are then compared to each other. As it turns out, examining the Jacobian matrix does not
offer much insight into the model. The integrated gradients method performs better and the LIME
method performs the best.

i

Sammendrag
Denne oppgaven utforsker hvordan forklarbar kunstig intelligens kan brukes til oppnå innsikt i

prediksjonene fra en instans segmenterings algoritme. Dette er motivert av den forventede bruken av
datasyn algoritmer som instans segmenterings algoritmer i autonome fartøy i nær fremtid. I denne
sikkerhetskritiske applikasjonen er det nødvendig med en klar forståelse av de anvente kunstig intel-
ligens algoritmene. Forklarbar kunstig intelligens kan også brukes som et verktøy for å forbedre et
kunstig intelligens system ved å belyse systemets svakheter.

En prosedyre for å generere kunstige datasett ved hjelp av Kongsberg Cogs er utviklet. Slik det
er nå blir ofte datasett samlet og merket manuelt. Dette er en treg prosess og syntetisk datasett gen-
erasjon ligger an til vre et mye raskere alternativ. Kongsberg Cogs blir koblet til via et Python script,
dette muliggjør dynamisk model lasting og 3D scene generasjon. Det endelige systemet bruker 150
3D modeller og kan generere � 1000 bilder i timen uten at menneskelig arbeid er nødvendig.

Et datasett bestående av 23500 unike bilder blir så brukt til å trene en instans-segmentering
algoritme kalt Mask RCNN. Instans-segmentering oppgaven innebærer å detektere objektene i en
scene, klassifisere dem, og generere en maske som dekker objektenes silhuetter. Et eksperiment
hvor instans-segmentering algoritmen blir testet på et par syntetiske og ekte bilder blir utført. Den
resulterende modellen oppnår en mAP = 0:8937 med en Intersection Over Union (IOU) terskel
tilsvarende 0.5, når den testes på det syntetiske datasettet. Når den brukes på ekte bilder yter den
dårligere, men leverer fortsatt et akseptabelt resultat i mange tilfeller.

Til slutt brukes tre forklarbar kunstig intelligens metoder til å generere forklaringer for en håndfull
deteksjoner. De tre metodene er: eksaminasjon av Jacobi-matrisen, integrated gradients algorit-
men, og Local Interpretable Model-agnostic Explanations (LIME) algoritmen. Disse algoritmene
blir så sammenlignet med hverandre. Resultatet er at eksaminasjon av Jacobi-matrisen ikke gir
mye innsikt i modellen. Integrated gradients algoritmen gir bedre resultater og Local Interpretable
Model-agnostic Explanations (LIME) gir de beste resultatene.

ii

Preface
This thesis was written in my second to last semester at the Norwegian University of Science and
Technology. It was conducted in cooperation with Kongsberg Digital who provided me with the
guidance, software, and hardware I needed to perform the experiments described in the text. My
supervisor was Anastasios Lekkas, an associate professor of autonomous systems at the Department
of Engineering Cybernetics. This work was done alongside three other courses and forms the foun-
dation for my Master’s Thesis that will be written in Spring 2020.

The following hardware was provided for the thesis:

� A Dell XPS 15 laptop, provided by Kongsberg. It was used for most of the programming work
and for generating the synthetic dataset.

� A workstation equipped with a NVIDIA 1080ti graphics card, provided by Kongsberg. It was
used to train and experiment on the Mask RCNN instance segmentation model.

The following software resources were used:

� Kongsberg Cogs.

� 3D models from Kongsberg K-Sim.

� Matterport’s Mask RCNN model implementation[1].

� Ankurtaly’s Integrated Gradients implementation[2].

� Marcotcr’s Lime implementation[3].

� Scikit-image. For image processing in Python.

� OpenCV-Python. For image and video processing in Python.

Several people deserve my thanks for their help during this work and my time at NTNU. I want to
thank my parents, Eli Mansåker and Thune Angelsen, and my younger brothers Sigurd M. Angelsen
and Torvald M. Angelsen, as well as my girlfriend Ronja Björklund for their support during my time
in Trondheim. From the Department of Engineering Cybernetics I want to thank Anastatios Lekkas
for his valuable guidance. From Kongsberg I want to thank Jostein Bø Fløystad for organizing
the project, Christopher Dyken for making my time working with Cogs very pleasant, and Thorvald
Grindstad for helping me with the 3D models. I look forward to working with you all next semester.

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents vi

List of Figures ix

1 Introduction 1
1.1 Background and motivation . 2
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Theory 5
2.1 Computer Vision . 6
2.2 Machine Learning . 7
2.3 Deep Learning . 10

2.3.1 Artificial Neural Networks . 10
2.3.2 Convolutional Neural Networks . 11
2.3.3 Mask RCNN . 13
2.3.4 Feature Pyramid Network . 14
2.3.5 ResNet . 15
2.3.6 Training . 16
2.3.7 Overfitting . 18
2.3.8 Transfer Learning . 18
2.3.9 Performance Measurements . 18

2.4 Synthetic Dataset Generation . 21
2.4.1 Perlin Noise . 21

v

2.4.2 Normal Maps . 23
2.4.3 HSV Colorspace . 23

3 Explainable Arti�cial Intelligence 25
3.1 Why Create Explainable AI Systems? . 27
3.2 What Is a Good Explanation? . 29
3.3 Interpretable Machine Learning . 30
3.4 Interpretable Instance Segmentation . 31

3.4.1 Jacobian Matrices . 32
3.4.2 Integrated Gradients . 33
3.4.3 Local Interpretable Model-Agnostic Explanations (LIME) 35

4 Synthetic Training Data Acquisition 37
4.1 Kongberg Cogs . 38

4.1.1 Synthetic Data Generation in Practice . 38
4.1.2 The Architecture for Dataset Generation . 39
4.1.3 Terrain Generation . 40
4.1.4 Handling Small Boats . 41

4.2 Kongsberg K-Sim . 42
4.2.1 3D Models . 43

4.3 Cogs or K-Sim as a Synthetic Dataset Generator? 43

5 Experiments 45
5.1 Experimental Setup . 46
5.2 Mask RCNN . 48
5.3 Robustness to Noise . 48
5.4 Feature Attributions . 49

6 Result and Discussion 53
6.1 Mask RCNN . 54
6.2 Robustness to Noise . 61
6.3 Feature Attributions . 62

7 Conclusion and Further Work 69

vi

List of Figures

2.1 . 6

2.2 The MNIST dataset is often used to benchmark machine learning algorithms. It
consists of 70000 image-number pairs. The �gure is from Gradient-Based Learning
Applied to Document Recognition[4]. 8

2.3 These datapoints have been clustered by the unsupervised learning algorithm k-
means. The two different colors represent a different class. The �gure was generated
using a Python script and the Scipy package. 9

2.4 . 11

2.5 A convolutional neural network with two fully connected layers at the output for
classi�cation. The boxes represent feature maps, which are modi�ed by kernel con-
volutions or pooling operations. 11

2.6 The pooling operations max pooling and average pooling. Here a 4x4 feature map
is reduced to a 2x2 feature map. 12

2.7 The RCNN pipeline. The region proposal step, the feature vector generation, and
the linear classi�cation is shown. The Figure is from the RCNN paper[5]. 13

2.8 The Faster RCNN pipeline. The �gure is from the Faster RCNN paper[6]. 14

2.9 The Mask RCNN architecture. The �gure is from the Mask RCNN paper[7]. 15

2.10 The feature pyramid network. The �gure is from Feature Pyramid Networks for
Object Detection[8]. 15

2.11 The residual layer used in the ResNet architecture. The �gure is from Deep Residual
Learning for Image Recognition[9]. 16

2.12 Precision recall curve plots for different object detection algorithms. Taken from the
VOC2007 paper[10]. 20

2.13 Figure illustrating the interpolation step in Perlin noise. It is meant as a supple-
ment to the mathematics in this section. The �gure is taken from Simplex Noise
Demysti�ed[11]. 21

2.14 The Hue Saturation Value (HSV) colorspace. The �gure is from colorizer.org[12]. . . 24

vii

3.1 Explanation in Arti�cal Intelligence: Insights from the Social Sciences[13] describes
Explainable Arti�cial Intelligence (XAI) as in�uenced by several research domains.
This �gure is from that paper and shows a venn diagram illustrating this concept. . . 26

3.2 An explanation of a husky-wolf image prediction. The input image is shown on
the left and the segments provided as an explanation is shown on the right. The
image was classi�ed as a wolf. The segments highlight the areas of the image which
in�uenced the classi�cation the most. Figure is from ”Why Should I Trust You?
Explaining the Predictions of Any Classi�er[14] . 27

3.3 The ELO of the AlphaZero algorithm during training. Note that it exceeded the best
previous algorithms. The �gure is from Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm[15]. 28

3.4 Deep Inside Convolutional Networks: Visualising Image Classi�cation Models and
Saliency Maps[16] used the Jacobian matrix of an image classi�er to generate the
feature attribution shown above. 33

3.5 The resulting attributions after applying integrated gradients to a set of predictions.
The integrated gradients result is shown to the left, while the Jacobian method is
shown to the right for comparison. The �gure is from Axiomatic Attribution for
Deep Networks[17]. 34

3.6 Shown above are three explanations generated for an image classi�er by LIME. To
the left is the segments that cause the model to classify the image asElectric guitar,
in the middle are segments that induceAcoustic guitar, and to the right are segments
that leads the model to classify the image asLabrador. The �gure is from ”Why
Should I Trust You? Explaining the Predictions of Any Classi�er[14]. 35

3.7 This �gure shows the sampling of perturbedz0s for a simpli�ed two dimensional
model. The �gure is from ”Why Should I Trust You? Explaining the Predictions of
Any Classi�er[14]. 36

4.1 . 38
4.2 The three parts of the dataset generation program communicates with Cogs through

the Python-Cogs bridge. 39
4.3 The textures used when generating the image sample shown in Figure 4.1a and 4.1b. 41
4.4 A partially submerged sailboat. This issue caused biases early in the development of

the system. 42
4.5 A screenshot of the K-sim application. The �gure is from Henriksen's Master's

thesis[18]. 43

5.1 The modi�cation to the Mask RCNN network required in to use the XAI methods
described in Chapter 3. 47

5.2 The input image and images corrupted by Gaussian noise. 49
5.3 The predictions to be examined in the feature attribution experiment. 50

6.1 The loss-function values experienced during training. Loss values are plotted against
the y-axis, and the training epoch is increasing along the x-axis. The decreasing loss
value indicates that the training process is working. 55

viii

6.2 The loss-function values experienced during training. Loss values are plotted against
the y-axis, and the training epoch is increasing along the x-axis. (On validation data)
The decreasing loss value indicates that the training process is working. 56

6.3 Testing the performance of the instance segmentation algorithm. 57
6.4 The performance of the model on some real world images. 59
6.5 The confusion matrix generated by the network trained on the synthetic dataset.

Generated with an Intersection Over Union (IOU) threshold equal to0:5. 60
6.6 The input image for the Gaussian noise test and the resulting prediction. Note the

false positive terrain detection. 61
6.7 The predictions obtained while gradually increasing the Gaussian noise in the input

image. 63
6.8 The feature attributions for the containership prediction. 64
6.9 The feature attributions for the sky prediction. 65
6.10 The feature attributions for the sailboat prediction. 67

ix

x

Abbreviations

AI Arti�cial Intelligence. 2, 26, 27

ANN Arti�cial Neural Network. 10, 11

AP Average Precision. 19, 20

API Application Programming Interface. 44

ASV Autonomous Surface Vessel. 2, 6

CNN Convolutional Neural Net. 11–14, 16, 18

COCO Common Objects in Context. 20

FC Fully Connected. 11–14, 16

FCN Fully Convolutional Network. 14

FPN Feature Pyramid Network. 15

GPU Graphical Processing Unit. 10

HSV Hue Saturation Value. vii, 24

IOU Intersection Over Union. i, ii, ix, 20, 58, 60, 61

LIDAR Light Detection and Ranging. 6

LIME Local Interpretable Model-agnostic Explanations. i, ii, 2, 4, 28, 31, 35, 48, 50, 62, 66, 70

mAP Mean Average Precision. 58

ML Machine Learning. 30, 31

xi

RADAR Radio Detection and Ranging. 6

ReLu Recti�ed Linear Unit. 10

RGB Red Green Blue. 12, 23, 24, 32

ROI Region Of Interest. 13, 14, 46, 62

RPN Region Proposal Network. 13, 14, 54

SLIC Simple Linear Iterative Clustering. 50

SVM Support Vector Machine. 13

VOC2012 Visual Object Classes Challenge 2012. 13

XAI Explainable Arti�cial Intelligence. viii, 2–4, 25–31, 36, 46–48, 63, 66, 70

xii

Chapter 1
Introduction

1

1.1 Background and motivation

As the world opens its eyes to the possibilities enabled by autonomous vehicles it has become clear
that many challenges remain before this technology is ready. One of these challenges lies within the
�eld of computer vision, the technology which enables computers to observe and react to their visual
environment. This is not a new �eld, relatively speaking, but applying it to autonomous vehicles has
revealed new requirements. A critical challenge is the explainability of these systems.

The visual complexity of real world environments has led to the development of complex com-
puter vision systems to interpret them. Most state of the art computer vision systems utilize a method
called deep learning. Deep learning is based on large networks of arti�cial neurons, which can con-
tain upwards of several million arti�cial neurons and connections between them. These networks
are trained on thousands of example images, which strengthens some connections and weakens oth-
ers. The trained deep learning networks are able to detect complex visual patterns and produce
accurate detections. However, these methods have one downside limiting their use in safety critical
applications. Unlike explicitly programmed computer vision systems, for which the developer can
guarantee the systems performance, deep learning based systems are so complex that the developer
and end-user have to relate to one as a black box. This means that the system can only be described
by its network architecture, the dataset used in the training process, and the training process itself.
This limitation prevents the systems from being used in safety critical applications, which often re-
quires explicit performance guarantees.

The maritime sector is one such safety critical application. A malfunction in navigation, con-
trol, or situational awareness can have dire consequences, both in terms of human safety and the
environmental impact. In Norway the �rst implementations of large scale Autonomous Surface
Vessels (ASVs) will likely be in coastal waters, an especially vulnerable area.[19] The legislation
surrounding autonomous ships is still under development, but will likely contain several require-
ments regarding the explainability of the arti�cial intelligence systems used. This makes XAI an
important enabling technology for autonomous ships.

Applying XAI to computer vision systems such as instance segmentation algorithms usually
means that the system highlights which parts of the input image led to a certain prediction. This
is often called feature attribution, and can be used to validate that a model has actually understood
the general traits of some desired class, and is not just basing its predictions upon some undesirable
bias in the training dataset. Several previous works have made progress on this, methods such as
integrated gradients[17] and LIME[14] have both illustrated successful feature attribution, and will
be examined in this thesis. In theory, enabling Arti�cial Intelligence (AI) systems to explain their
inner workings opens many possibilities besides just system validation. By examining the AI's ex-
planations a creator can gain insights into the strengths and weaknesses of the model and use this
knowledge to further improve it. This process can lead to a better performing and more stable AI
system, through the system guiding its own development. By allowing humans to learn from ad-
vanced AI systems, XAI could also lead to new fundamentally new discoveries in many �elds. In
the far future, XAI might even become the connection between human beings and advanced general
arti�cial intelligence systems.

Using simulated environments to train AI systems has become popular in the last few years.

2

Simulated environments allow for a massive increase in training speed, by utilizing the computing
power and parallelism offered by virtual environments. To illustrate: Waymo, the self-driving car
company owned by Google, announced in July 2019 that their cars had driven 10 billion miles in
virtual environments.[20] Using such virtual environments to create datasets for computer vision al-
gorithms has been explored in previous works, such as Henriksen's Master's thesis[18] which used
the maritime simulator K-Sim to train an instance segmentation system. To enable training and
analysis of machine learning systems, Kongsberg Digital wants to use Cogs, their 3D visualization
engine for quick generation of labelled training data. Cogs promises to provide rapid 3D scene gen-
eration and improved �exibility with regards to ship selection, weather, background terrain, etc.

1.2 Objectives

The thesis has the following problem description.

The main goal of this research project is to explore the feasibility and usefulness of using
computer-graphic simulators (Cogs and K-sim) for development and validation of explainable AI

techniques in maritime scenarios. The work falls within the area of computer vision as an enabling
technology for autonomous ships.

This can be simpli�ed into four sub-objectives.

� Research the state of the art methods for computer vision and XAI systems.

� Construct a software framework for automatic generation of labelled training images with the
Kongsberg Cogs 3D visualization engine.

� Use the generated training data to train instance segmentation models.

� Examine the trained models with XAI methods.

1.3 Contributions

This work implements a method for generating synthetic labelled training data using the Kongsberg
Cogs graphics engine. It allows �exible dataset production, both in terms of the image samples sta-
tistical properties and in terms of which classes/3D models are used. When running on a consumer-
grade laptop with a NVIDIA GTX 1050ti graphics card it generates about 1000 images per hour.
This new method is compared to the method developed in Henriksen's Master's thesis[18], which
used Kongsberg K-Sim for syntethic dataset generation.

Using a synthetic dataset generated with the method introduced above, an instance segmenta-
tion algorithm called Mask RCNN is trained. The training process and prediction accuracy is then
analysed. The Mask RCNN's performance on real world images is also tested, without any domain
adaption having been performed. The trained Mask RCNN models robustness to Gaussian noise,
which is often found in real world digital images, is also examined.

3

Some feature attribution methods, XAI methods which highlight which parts of an input con-
tribute most to a prediction, are modi�ed to work with the Mask RCNN instance segmentation
method. These methods are: analysis of the Jacobian matrix, the integrated gradients method, and
the LIME method. These are then used to analyse a handful predictions from the Mask RCNN and
the resulting attributions are compared to determine the most interpretable method.

1.4 Outline

This thesis is split into seven chapters. Chapter one covers the background and motivation behind the
work done in this thesis, highlighting the rapid development of autonomous systems and the need
for XAI to make these newly developed methods interpretable to humans. Chapter two contains
the theory necessary to understand the experiments performed, mainly focusing on computer vision,
machine learning, and deep learning. Chapter three details the need for Explainable Arti�cial In-
telligence, it explores what constitutes a good explanation, and how to create interpretable machine
learning systems. Chapter four delves into the process of generating synthetic datasets using the
Kongsberg Cogs graphics engine and compares Cogs and K-sim as synthetic dataset generators.
Chapter �ve describes the experiments performed in this thesis, as well as the experimental setup
with which they were performed. Chapter six presents and discusses the results of the aforemen-
tioned experiments. Chapter seven concludes the thesis and suggests improvements and ideas for
further work.

4

Chapter 2
Theory

This chapter presents the relevant background theory needed to understand the thesis, the experi-
ments, and the results. It begins by explaining the �eld of computer vision, the technology that
allows computers to understand the visual world around them, and why it is critical for environ-
mental awareness in autonomous vehicles. It then continues on to machine learning which is the
�eld of study that allows computers to learn desired tasks and functions without being explicitly
programmed. Machine learning based methods have bene�ted greatly from the increased amount of
data existing in today's digital society, supplying the algorithms with plenty of training data to learn
from. The chapter describes the different types of machine learning, with a focus on supervised
machine learning, which is the method employed in this thesis.

The very popular �eld of deep learning is then covered. This is the technology which has en-
abled the huge performance increase seen within state of the art computer vision systems in the last
decade. It is a method inspired by biological brains, in which the input data is propagated through
several layers of arti�cial neurons to generate an output. Deep learning is a �eld that, thanks to the
development of powerful processing units1 and new methodologies, has seen rapid progression in
the last years. The section highlights the deep learning methods used in this thesis, along with some
of their de�ning features.

The �nal topic to be covered in Chapter 2 is synthetic dataset generation. This section describes
some guiding principles useful when creating programs that generate synthetic datasets and when
training machine learning systems on the generated synthetic datasets.

1GPUs

5

(a) Illustration of instance segmentation, taken
from The Mask RCNN paper[7]. Note that the in-
dividual pixels are labeled by class and instance.

(b) Illustration of object detection performed by
Yolo v1. Note the generated bounding boxes
as well as a class label. The �gure is from
You Only Look Once: Uni�ed, Real-Time Object
Detection[21].

Figure 2.1

2.1 Computer Vision

Computer vision is a wide �eld with many different applications, everything from simple edge de-
tection to more nuanced tasks like classifying different breeds of dogs fall within this �eld. Today
computer vision is widely used in the industry, with applications such as quality control in assembly
lines or visual inspection of existing systems. In recent times the performance of these systems have
increased dramatically thanks to innovations within the �elds of machine learning and deep learning.
Computer vision systems can now do things previously thought impossible and is an active research
area which is progressing rapidly.

Naturally, autonomous vehicles will also bene�t from using computer vision. In modern systems
cameras are one of several sensor systems used, it is often used in combination with Light Detection
and Ranging (LIDAR), Radio Detection and Ranging (RADAR), and/or ultrasonic sensors. In mar-
itime applications computer vision is used to detect other vessels as well as environmental obstacles.
For ASVs this information is then used to form the situational awareness of the vessel.2 This sit-
uational awareness contains deduced information about the movements and intentions of the other
vessels. From this information the behaviour of the vessel is de�ned. Because of this important role,
the integrity of the computer vision system is critical for the continued operation of the vessel.

Depending on the application, there are many tasks that computer vision systems can perform.
Example tasks can be recognition of facial features, used as a safety feature in some phones, or
vehicle counting, for traf�c monitoring. For autonomous vehicles the following tasks are the most
relevant.

2Along with other sensor data.

6

� Object detection. Detecting the existence of an object within an image. Often provides a
bounding box around the object in addition to a class label. An example is shown in Figure
2.1b.

� Semantic segmentation. Labelling each pixel in an image as being part of a certain class.

� Instance segmentation. Detecting each object in an image, predicting a class and a mask
covering their silhouettes. An example is shown in Figure 2.1a.

Immediately one could assume that semantic segmentation would be the best �t for autonomous
vehicles, since it classi�es all the pixels of the image, thus extracting the most information from
the input image. But this is not necessarily right, since it fails to separate different object instances.
Semantic segmentation will not detect two cars if the cars are partially overlapping, instead it will
predict a single group of car pixels. Instance segmentation will detect two different car instances (if
it performs correctly), and its higher �delity result is probably a better �t for autonomous vehicles.

2.2 Machine Learning

Creating self learning computers has been viewed as sort of a holy grail within computer science.
The distinguishing feature between traditional algorithms and machine learning algorithms is that
when programming machine learning algorithms the creator doesn't have to explicitly de�ne the
computing steps of the system, instead the computer will generate them independently based on
some provided data. Of course the programmer still has to de�ne the framework that the machine
can learn within. There are several frameworks to choose from, each with their own strengths and
weaknesses. The main groups will be presented next.

Today machine learning is commonly grouped into three main types, distinguished by how they
use the provided data to learn. These are:

� Supervised learning

� Unsupervised learning

� Reinforcement learning

Since this thesis will focus on supervised learning, unsupervised and reinforcement learning will
only be covered super�cially. When performing supervised learning the machine is provided with
input-output pairs. The machine is then expected to learn the relationship between the different pairs.
This relationship can be described mathematically as

Y = h(X) (2.1)

whereY is the desired outputs,X is the input data, andh(X) is their real world relationship. A
machine learning algorithm approximatesh(X) with the function

Y � ĥ(X) (2.2)

7

Figure 2.2: The MNIST dataset is often used to benchmark machine learning algorithms. It consists of 70000
image-number pairs. The �gure is from Gradient-Based Learning Applied to Document Recognition[4].

which, if the algorithm performs well is approximately equal toh(X). This task is usually split
into two types, classi�cation and regression. In classi�cation the input is to be assigned a class
based on the input features. Normally the output is a probability distributions over the de�ned possi-
ble classes. An example application is classifying hand-written digits. A dataset often used for this
purpose is the MNIST dataset and is shown in Figure 2.2. The possible classes would in this case be
the digits 0-9, and the input would be the images of the hand written digits. In regression the model
learns to approximate a function with a scalar or vector output. An example task could be to estimate
the price of an apartment based on the number of bedrooms, �oor area, etc. The input would then be
a vector describing these features, and the output value would be the price of the apartment.

The dataset is typically divided into three parts.

� The training dataset, which is used to train the machine learning algorithm. It is the largest
part, usually constituting about 90% of the total dataset.

� The validation dataset, which is used to tune the framework of the machine learning algorithm[22].
The values describing the machine learning framework is often called the hyperparameters of
the machine learning system.

� The test dataset, which is used to test the performance of the �nal algorithm. The test dataset
should represent the real world data as closely as possible.

There are several reasons for splitting up the dataset this way, one of them is to prevent over-
�tting. Over�tting occurs when the algorithm memorizes the dataset instead of learning its general
traits, this will degrade the algorithms performance when applied in new situations. How well a
machine learning system works on new data is described by how well the system generalizes. The

8

Figure 2.3: These datapoints have been clustered by the unsupervised learning algorithm k-means. The two
different colors represent a different class. The �gure was generated using a Python script and the Scipy
package.

challenge of over�tting will be described further in Section 2.3.7.

Unsupervised learning, which is the second main type of machine learning, differs from super-
vised learning in that it does not require the desired outputs for learning. This way the programmer
doesn't have to provide desired answers. This reduces the work required to train the system. In su-
pervised learning a substantial part of the work is collecting and labelling the datasets. For example:
taking pictures of ships and labelling the ship types. This is often done manually, but methods that
do this automatically have begun to emerge. This thesis will demonstrate a method for automatic
dataset generation. That means that not only is the desired answers generated automatically, but also
the corresponding inputs. This further decreases the work needed in supervised machine learning.
Unfortunately unsupervised methods are often limited to clustering and pattern detection in the data.
One such unsupervised machine learning algorithm is the k-means algorithm and is illustrated in
Figure 2.3.

The �nal type of machine learning is reinforcement learning. This method does not require a
dataset at all. Rather it is based upon agents and environments. The agents are placed in the envi-
ronment and learns by trial and error. The programmer de�nes a reward function which rewards the
agent if it acts in a desired manner, and punishes it if it does not. The agent tries to receive as much
reward as possible by optimizing its strategies.3 After repeated attempts the agent has (hopefully)

3The strategy is often called policy.

9

created a successful strategy for maximizing the reward function.

2.3 Deep Learning

The mathematics that form the backbone of deep learning have existed for some time. In essence it
is simply repeated linear transformations combined with nonlinear activation functions. The thing
that has changed lately, and made deep learning the dominant type of machine learning, is the ac-
cessibility of high performance computational units (Graphical Processing Units (GPUs)). These
can speed up the calculations by several orders of magnitude and have enabled increasingly complex
deep learning models. New network designs such as the ResNet architecture has also allowed higher
performance deep learning algorithms. The ResNet architecture is described in Section 2.3.5.

2.3.1 Arti�cial Neural Networks

Deep learning is based upon Arti�cial Neural Networks (ANNs) which are networks of arti�cial neu-
rons, see Figure 2.4b for an illustration of an ANN. An arti�cial neuron is a mathematical construct
with several inputs and one output. It performs two simple operations. First it performs a weighted
sum of the inputs before running the resulting sum through a non-linear activation function. In the
weighted sum it is common to incorporate a bias value, which is independent of the input values.
See Figure 2.4a for an illustration of such an arti�cial neuron. The two operations performed by an
arti�cial neuron can be written as

z =
NX

i =0

wi x i + b (2.3)

and

y = � (z) (2.4)

where� is the non-linear activation function,x i is an input,wi is the weight corresponding to
that input, andb is the bias.z is used as a intermediate variable to facilitate easier explanation.

There are several different activation function in use today. Each with their own strengths and
weaknesses. A few years ago the most popular one was the sigmoid function (2.5).

� (z) =
1

1 + e� z (2.5)

However, the sigmoid function suffers from from an unfortunate phenomena called gradient
saturation, which occurs for large positive or negative values ofz. For such values, the gradient of
the sigmoid function becomes very small. Since the training process of ANNs use these gradients,
the training process can become very slow for large networks when using the sigmoid function.
Because of this, the Recti�ed Linear Unit (ReLu) (2.6) function has gained traction. It suffers less
from the gradient saturation effect, even though its derivative is zero for all values ofz < 0. The
training process is described further in Section 2.3.6.

10

(a) An arti�cial neuron with inputs, weights, and
output shown.

(b) A network of arti�cial neurons, the informa-
tion propagates from the input neurons(left) to the
output neurons.

Figure 2.4

Figure 2.5: A convolutional neural network with two fully connected layers at the output for classi�cation. The
boxes represent feature maps, which are modi�ed by kernel convolutions or pooling operations.

� (z) = max(0; z) (2.6)

For the �nal layer of a classi�cation network it is common to use the softmax activation function.
(Equation 2.7) It generates a probability distribution over all the layer outputs, ensuring

P N
i =0 zi =

1.

� (z) =
ezi

P N
i =0 ezi

(2.7)

Arti�cial neurons like the one described above are the building blocks of ANNs. When arranged
in a layered structure, these simple operations combine to expose complex patterns in the input data.
The early layers detect simple patters, such as edges (if the input is an image), while the later layers
�nd features with more semantic information. These layers are often referred to as Fully Connected
(FC) layers. Sometimes these systems do not generate direct results, but rather feature vectors. A
feature vector is a vector containing high semantic information extracted from the input which can
be used further in a model.

2.3.2 Convolutional Neural Networks

For computer vision applications another deep learning architecture is common. These are Convolu-
tional Neural Nets (CNNs), see Figure 2.5 for an illustration. CNNs differ from traditional arti�cial

11

Figure 2.6: The pooling operations max pooling and average pooling. Here a 4x4 feature map is reduced to a
2x2 feature map.

neural networks in that instead of using a weighted sum of all the previous neuron outputs they com-
pute a weighted convolution of the input data. This allows them to apply spacial information (how
detected features are positioned relatively to each other) in their calculations. Another advantage of
CNNs is that they reuse the weights thanks to the repeated application of the same convolutions. This
leads to a smaller memory footprint compared to equivalent traditional arti�cial neural networks. If
a CNN is used for classi�cation it is common to use some FC layers at the end of the network. This
is also illustrated in Figure 2.5. In this con�guration the CNN is used as a feature extractor, while
the FC layers perform the classi�cation task.

There are two operations that de�ne CNNs. One is the aforementioned weighted convolution
and the other is the pooling operation. The weighted convolution is similar to the weighted sum
in an arti�cial neuron but work over an image patch instead of the inputs to a neuron. This can be
written as

G[m; n] = � ((f � h)[m; n]) = � (
X

j

X

k

h[j; k]f [m � j; n � k] + b) (2.8)

whereG is is the resulting matrix,f is the input matrix,� is a non-linear activation function,b
is the bias, andh is the kernel[23]. Equation 2.8 shows the 2 dimensional example, but it can easily
be expanded to three dimensions, which is needed if the input data has a depth layer (For instance
the three Red Green Blue (RGB) layers in a color image). The kernel is a tensor (or a matrix in the
case of a 2D input) that de�nes the weight applied to each part of the image patch. Dependent on
the values in the kernel, the kernel convolution can look for different patterns in the input matrix.
Similarly to the FC architecture, CNNs also expose features of higher semantic value in the later
layers. These matrices of high semantic value are usually called feature maps.

The �nal operation that de�nes CNNs is the pooling operation. This operation reduces the size
of the input and thus the computational requirements for the entire system, while attempting to retain
the semantic information. There are several pooling methods, differentiated by how they reduce the
input size. The most common are max pooling and average pooling, these are showcased in Figure
2.6.

12

Figure 2.7: The RCNN pipeline. The region proposal step, the feature vector generation, and the linear classi-
�cation is shown. The Figure is from the RCNN paper[5].

2.3.3 Mask RCNN

In 2014 a research group from UC Berkeley released a new method for object detection[5]. The
method combined a CNN classi�er with a preprocessing step called region proposal. The region
proposal step found the most ”interesting” parts of the image, ensuring that the ensuing classi�er
could work as effectively as possible. They called this method RCNN(Regions with CNN features).
Note that RCNN architecture did not use FCs network for the �nal classi�cation, opting instead to
use a Support Vector Machine (SVM), which is a type of linear classi�er[5]. It did however use two
FC layers from the CNN feature maps to the feature vectors used in the SVM. The interesting areas
of the input image were termed Region Of Interests (ROIs) and were warped to �t the CNN feature
extractor, which demanded inputs of a certain size. The RCNN pipeline is shown in Figure 2.7.

The R-CNN method achieved the highest performance ever on the Visual Object Classes Chal-
lenge 2012 (VOC2012) dataset and received a lot of attention at the time. After some time improved
versions were developed, such as the aptly named Fast R-CNN and Faster R-CNN architectures
which both improved on RCNN's inference speed and accuracy.

Fast RCNN, introduced in 2015, improved on the RCNN architecture. It replaced the SVM
classi�er with a FC network for determining the class and performing bounding box regression[24].
In contrast the original RCNN method simply used the bounding boxes from the region proposal
step as object bounding boxes, by further re�ning the bounding boxes the fast RCNN architecture
achieved more accurate bounding box regression. Fast RCNN also extracted a feature map from the
input image before it generated the feature vector for each ROI, this way the feature map was reused
among the different detections. It also replaced the ROI warping in favor of ROI pooling layer. This
was a natural replacement since the new ROIs were projected on a feature map instead of the input
image. The ROI pooling layer is equivalent to the max pooling shown in Figure 2.6. These improve-
ments (plus some modi�cations to the training process), improved inference-time, training-time, and
accuracy.

In 2016, Faster RCNN further improved upon the Fast RCNN and RCNN architectures. It intro-
duced a Region Proposal Network (RPN) to replace the region proposal step[6]. In the two earlier

13

Figure 2.8: The Faster RCNN pipeline. The �gure is from the Faster RCNN paper[6].

methods this had been done through a method called Selective Search, which is a hierarchical seg-
mentation method which repeatedly merges regions based on a similarity measurement[25]. This
is a reasonable fast method, but became the bottleneck in Fast RCNN. Faster RCNN solves this by
training a separate model to propose ROIs. This RPN works on a feature map produced by the fea-
ture extractor. This further improves both execution time and performance.

Faster RCNNs modular architecture has facilitated easy modi�cations. Mask RCNN is one such
modi�cation. It appends a new branch for predicting an object mask in parallel with the existing
branches for bounding box regression and class prediction[7]. This makes Mask RCNN an archi-
tecture for instance segmentation, as discussed in Section 2.1. This thesis uses the Mask RCNN ar-
chitecture for its analysis. Mask RCNN also introduced one more modi�cation to the Faster RCNN
architecture, the RoIAlign pooling method. It differs from RoIPooling in that it replaces the quanti-
zation step with a bilinear interpretation step. This is needed because the RoIPooling led to pixelwise
misalignements in the ROI and the extracted feature maps[7].

Since the mask prediction is an image to image operation, the creators of Mask RCNN used a
Fully Convolutional Network (FCN) to perform this task. A FCN is a type of CNN that does not use
pooling layers or FC layers, opting to rather use specially con�gured convolutional layers to reduce
the size of the feature maps[26]. FCNs usually perform semantic segmentation, but since it works
within a ROI it performs instance segmentation in Mask RCNN.

2.3.4 Feature Pyramid Network

The convolutional neural net approach has an inherit trade-off. As the input propagates through the
network its semantic value becomes higher and higher, but the resolution is reduced due to the pool-

14

Figure 2.9: The Mask RCNN architecture. The �gure is from the Mask RCNN paper[7].

Figure 2.10: The feature pyramid network. The �gure is from Feature Pyramid Networks for Object
Detection[8].

ing layers. In 2017 the Facebook AI Research group published a new network architecture which
does not suffer from this effect[8]. This architecture is called a Feature Pyramid Network (FPN)
and consists of two main components. The �rst component is a regular convolutional network, with
increasing semantic value and decreasing resolution at the later layers. It then introduces lateral con-
nections from the convolutional layers as well as upsampling from the later layers. This enables it to
create feature maps with high semantic value and high resolution. Figure 2.10 shows this architec-
ture. In their paper from 2017 FAIR demonstrated state of the art performance with this method. A
feature pyramid network is also a central part of the MaskRCNN implementation used in this thesis
and is used to improve the performance of the feature extraction backbone at little extra computa-
tional cost[1].

2.3.5 ResNet

The de�ning feature of Deep Learning is that the network gradually extracts information with higher
and higher semantic value deeper into the network. This should allow the network to make deci-
sions and calculations based upon high semantic information and thus achieve high performance. In

15

Figure 2.11: The residual layer used in the ResNet architecture. The �gure is from Deep Residual Learning for
Image Recognition[9].

theory, this should make deeper networks, that is networks with more layers of arti�cial neurons,
better than shallow ones. There is only one problem. In practical use deeper networks do not per-
form better than shallow networks, often they even perform worse. When creating very deep neural
networks the prediction accuracy �rst saturates, before it decreases rapidly as the number of layers
increases further[9]. One might imagine that this reduced accuracy is caused by over�tting due to
the increased number of parameters in the deeper network. However, experiments performed in the
paper Deep Residual Learning for Image Recognition[9] found this to not be the case, since the
performance on the training data also decreased.

There have been made several attempts to mitigate this problem, and one of them is incorporated
in the network architecture ResNet. It was presented by a Microsoft research group in 2015 and won
�rst place in the ILSVRC2015 (ImageNet Large Scale Visual Recognition Challenge) competition.
They hypothesised that the reduced accuracy in deeper networks is caused by the network's inability
to learn identity transformations.4 This fact, combined with the dif�culty in optimizing the parame-
ters of the network layers, means that some network layers actually degrade the performance instead
of improving it. To mitigate this, the researchers reformulated the network layers to learn residual
functions with respect to the input instead of learning unreferenced functions[9]. This was done to
make it easier for the network to learn identity transformations, which was theorized to improve
performance. One such residual layer is shown in Figure 2.11.

2.3.6 Training

The behaviour of a machine learning system is decided by the values of its parameters. In an arti-
�cial neural network, for instance a CNN classi�er, these parameters are the weights and biases in
the kernels and the FC layers. When training a neural network these weights are gradually shifted

4Identity transformations are transformations that copy the input to the output.

16

towards an optimal value. Note that this value might not be the global optimum value, but rather
a local optimum. The example in this section will be based around a traditional fully connected
arti�cial neural network.

The main method for training neural networks is called gradient descent. It minimizes a given
loss function by calculating its gradient relative to the weights and biases and then nudging them in
the opposite direction. This is shown in equation 2.9

wn
ij = wn

ij � �
@C

@wnij
(2.9)

wherewn
ij is the weight between neuroni in layern � 1 and neuronj in layern. � is the learning

rate, which decides how much the weights are nudged.@C
@wn

ij
is the partial derivative of the loss func-

tion with respect town
ij . The update rule for the bias term is similar, withbn

i replacingwn
ij . Equation

2.9 only updates one weight, when a model is trained this function is usually applied to all weights
and biases in the network several times.

There are several kinds of loss functions, each for different situations. Typically a deciding factor
is whether the network performs regression or classi�cation. In classi�cation the output is often a
probability distribution over the possible results and there are loss functions specially designed to
take advantage of this. If the network performs regression the output is typically a vector or a scalar,
and again there exists loss functions designed for this purpose.

As seen in Equation 2.9 the change of a network parameter is proportional the to gradient of
the loss function with respect to that parameter. This is intuitive, the gradient of the loss function
represents the direction of most rapid increase of the loss function. If the parameter is changed in
the opposite direction, the loss function value will decrease. A method for �nding these gradients
for all the network parameters is backpropagation.

When performing inference, that means using the model calculate some prediction, the input
�ows from the input layers towards the output layers, through the intermediate layers. This produces
a result, and an associated loss de�ned by the loss function. Backpropagation, as the name implies,
works by propagating the gradient of the loss function backwards through the network from the
output layer towards the input layer. This is done by repeated execution of the chain rule. Remember
that

dz
dx

=
dz
dy

dy
dx

if z = f (y) andy = g(x). Backpropagation uses this to �nd@C
@wn � 1

based on@C
@wn

. Wheren is
the layer number,C is the loss function, andw is the vector of layer weights. In other words, it uses
the gradients found at one layer to �nd the gradients in the previous layer. This is the backpropa-
gation of gradients, is the main feature of backpropagation. This thesis will not go into more depth
than this, for more information the reader is referred to Chapter 2 in Neural Networks and Deep
Learning[27] for a comprehensive description.

17

2.3.7 Over�tting

A problem plaguing not just deep learning models, but also machine learning models in general,
is over�tting. This occurs when the model memorizes the training dataset instead of learning its
general features. This can be dif�cult to detect since the performance of the model will continue to
increase as normally when tested on the training dataset. A method for detecting over�tting is to
periodically evaluate the performance of the model on a separate dataset. The validation dataset is
typically used for this.

A models tendency to over�t the training data increases with a decreasing dataset size. One
reason for this is that the model might pick up on patterns in present in a small dataset which is not
present in the real world. This pattern might be attenuated if the training dataset is increased. An-
other factor is the complexity of the model. In general more complex models over�t more frequently.
This might be because a simpler model is forced to use the most general patterns in its predictions,
while a complex model can afford to base its predictions on minute patterns which might not exist
in the real world.

Deep learning models are particularly susceptible to over�tting. This is because of the extreme
complexity of the models. Some con�gurations of modern deep learning models, For instance
ResNet, can have several million parameters[9]. A parameter can be a weight between neurons,
a bias, or a weight in a kernel. This makes simply memorizing the dataset a valid strategy. Naturally,
this strategy would not perform well in the real world and is therefore undesirable.

2.3.8 Transfer Learning

Normally a large amount of training data and time is required to train a deep learning model. This of-
ten restrict smaller experiments, like the one in this thesis. Fortunately there are methods that reduce
the amount of training data and time required. This thesis will employ a commonly used method for
this, called transfer learning. Transfer learning involves starting off with an already trained model
and modifying parts of it to perform a desired different task. The practical details on how this is
achieved is dependent on the network architecture being modi�ed. As noted in 2.3.2, CNNs classi-
�ers often consists of two parts, the feature extractor and the classi�er. When performing transfer
learning on a CNN classi�er it is common to freeze the weights and biases in the feature extractor
and only train the classi�er network. This can drastically reduce the training data and time needed
in the training process. The instance segmentation network used in this thesis is pretrained on the
COCO dataset.

2.3.9 Performance Measurements

It is important to have a precise framework for comparing computer vision algorithms, to enable
comparisons between different solutions. Mask RCNN performs three main functions, it classi�es
objects, creates a bounding box around each object, and creates a segmentation mask for covering
each object. Because of model's multiple outputs several different performance measures are re-
quired to measure its full performance.

18

Ground truth

Predicted Result
True False

True True positive False positive
False False negative True negative

Table 2.1: The relationship between the ground truth and predicted results.

The performance measures for classi�cation will be considered �rst. A framework based upon
true positives(tp), false positives(fp), true negatives(tn), and false negatives(fn) is often used for this
purpose. This system is most easily illustrated with a table. In table 2.1 the relationships between
ground truth and the classi�ers output is shown. A well performing classi�er would exhibit few false
negatives and false positives. These measurements are often combined into precision and recall.

precision =
tp

tp + fp
(2.10)

recall =
tp

tp + fn
(2.11)

Precision indicates how accurate the classi�er is by calculating the quotient of all correct posi-
tive classi�cations and all positive classi�cations. Recall, on the other hand, describes how well the
model classi�es all existing objects. This is done by calculating the quotient of all correct positive
classi�cations and all existing positive objects. This is shown in equation 2.11. A good classi�er
should have a precision and recall near one, that would mean that the classi�er correctly classi�es
all existing objects in the input.

A common way to visualize these values are to plot precision vs. recall plots. The various
precision and recall values are generated by tuning the sensitivity of the model, the method for this
is speci�c to each model. By examining a precision vs. recall plot one can gain an insight into how
precise the model is at various sensitivity levels. The information of a precision vs. recall plot can
be further condensed into an Average Precision (AP) value. It is de�ned as

AP =
Z 1

0
p(r)dr (2.12)

wherep(r) is the precision at a recall value. This is equivalent to �nding the area under the
precision vs. recall plot. There are several ways to estimate this integral. The Pascal VOC2007
challenge used an interpolated precision value

pinterp (r) = max
~r :~r � r

p(~r) (2.13)

mAP =
1
11

X

r 2f 0:0;0:1;::; 1:0g

pinterp (r) (2.14)

19

Figure 2.12: Precision recall curve plots for different object detection algorithms. Taken from the VOC2007
paper[10].

sampled over 11 recall values: 0.0, 0.1, 0.2, .., 1.0 (Equations 2.13 and 2.14)[10]. Figure 2.12
shows AP values calculated with this method, see the value in the parenthesis. Note that all the meth-
ods exhibit lower precision at higher recall values, this is because the increased sensitivity leads to
more false positives.

When measuring the performance of classi�er networks a confusion matrix can be a helpful tool.
A confusion matrix provides insight into how often the network mistakes one class for another class
in its predictions. This is done by plotting the ground truth classes along one axis of the plot and the
actually predicted classes along the other axis. The actual predictions are normalized to represent a
probability distribution. One way to use a confusion matrix is to �rst look up a ground truth class
and then look at the class probability distribution produced by the network when trying to predict it.
If the network performs well the probability of all other classes than the ground truth class should
be very low.

To measure the performance of the bounding box and mask prediction, IOU is used. It mea-
sures how accurate a bounding box or a segmentation mask is relative to ground truth. IOU can be
formulated as

IOU =
BB \ GT
BB [GT

(2.15)

with BB being the area covered by the bounding box (or segmentation mask) andGT being the
area covered by the ground truth. A good prediction IOU should be close to one, while a prediction
that completly misses has an IOU equal 0. Depending on which benchmark is used, a prediction
can be registered as correct or false. Usually an IOU above 50 is required. The Common Objects in
Context (COCO) challenge, a popular benchmark for instance segmentation, uses ten different IOU

20

Figure 2.13: Figure illustrating the interpolation step in Perlin noise. It is meant as a supplement to the
mathematics in this section. The �gure is taken from Simplex Noise Demysti�ed[11].

thresholds[28].

2.4 Synthetic Dataset Generation

When generating training data for use in deep learning, the core idea is to match the statistics of the
generated data to the statistics in the real world. In other words, to make the simulated data as real-
istic as possible. Another important idea is to avoid any unintended biases in the data. For example:
if an object detector is trained to detect oil tankers, but it is only trained on images of featuring red
ships, the detector would learn to detect the color red and not the ship, this would make the detector
useless in the real world. When using 3D models in the synthetic dataset generation this is avoided
by to having a large selection of models for each class. If that is not possible, it a good idea to try to
expand the available models by modifying the existing ones. One way to do this could be to create
additional models by altering the color or texture of some existing model.

2.4.1 Perlin Noise

In procedural terrain generation, one of the main challenges is creating continuous, natural-looking
formations. Most common noise generation methods suffer from the same problem. They create
unrealistic, non-continuous terrain topologies. For example: a uniformly sampled heightmap might
give a height of 100m at (x = x0, y = y0), a height of 0m at (x = x0 + 1 , y = y0), and a height
of 50m at (x = x0 + 2 , y = y0). Clearly this will not look realistic, normal terrain does not vary
like this, at least not everywhere. This problem highlights the difference between value based noise
and gradient based noise. In order to create natural looking terrain the sampled height values need to
in�uence each other. In value based noise generators this is not the case, which leads to the unnatural
looking jumps.

21

Gradient noise takes another approach. It creates a lower resolution noisemap of gradients, and
recovers the high resolution gradient map by interpolation. This improves on value based noise since
it forces the noise vary smoothly, which generates more natural terrain topologies. Perlin noise is
one such gradient noise method. In the two dimensional case it works by generating a grid of psuedo
random 2D gradients. For a given point it then interpolates the value by using the four closes grid
points. However, it does not use a linear interpolation, instead using

f (t) = 6 t2 � 15t4 + 10t3 (2.16)

as the blending function. See Figure 2.13 for a visualization of the interpolation step. The fol-
lowing mathematical formulation is from Simplex Noise Demysti�ed[11].

For pointP = (x; y), i andj is found as

i = f loor (x)

j = f loor (y)

this creates the distances
u = x � i

v = y � j

to the closest gradient grid points. The gradients at the four closest points are noted asg00 =
gradient at (i,j),g10 = gradient at (i+1,j),g01 = gradient at (i,j+1), andg11 = gradient at (i+1,j+1).

The values derived atP from each gradient grid point is found as the dot products

n00 = g00 � (u
v)

n10 = g10 � (u� 1
v)

n01 = g01 � (u
v� 1)

n11 = g11 �
� u� 1

v� 1

�

These values are then blended together using the blending function shown in (2.16)

nx 0 = n00(1 � f (u)) + n10f (u))

nx 1 = n01(1 � f (u)) + n11f (u))

to �nally create

nxy = nx 0(1 � f (v)) + nx 1f (v))

which is the �nal value at the pointP. The program for synthetic dataset generation developed in
this thesis uses Perlin noise when generating the terrain in the images. This enables the terrain to vary
in the generated image samples, which in the end hopefully allows the trained instance segmentation
algorithm to detect land in the input images.

22

2.4.2 Normal Maps

Normal maps are used to improve the detail of 3D models or heightmaps by encoding the surface
normal vector at a point on the objectn XY Z in the RGB channels of an image. This enables the
lightning of small variations over the surface to be calculated, without increasing the number of
polygons. In this project the normalmap was used to increase the detail level of the background
terrain.

The normal vector can be found by �rst calculating the pixel-wise derivatives in the x and y
direction. The heightmap can be viewed as a function of the form

z = f (x; y) (2.17)

wherez is the height at pointx,y. This can be rewritten to

F (x; y; z) = z � f (x; y) (2.18)

which, the gradient (and the normal vector)

n = r F (x; y; z) = (�
@f
@x

; �
@f
@y

; 1) (2.19)

can then be calculated. The terrain generation algorithm implemented in this thesis estimates@f
@x

and @f
@y by convolving the heightmap pixel-values with the Sobel kernels

G x =

2

4
� 1 0 1
� 2 0 2
� 1 0 1

3

5 (2.20)

and

G y =

2

4
� 1 � 2 � 1
0 0 0
1 2 1

3

5 (2.21)

The gradient (2.19) is then L2 normalized

p(x; y)RGB =
n

kn k
(2.22)

and mapped to RGB values (0.0-1.0 for �oat and 0-255 for uint8).

2.4.3 HSV Colorspace

In computer graphics the color of a pixel is often represented in the RGB colorspace, where value of
each color channel determines the amount of that color present in the pixel. This encoding, turned
out to not be suitable for the requirements of the synthetic dataset generation. For example: to
generate the color of some piece of background terrain one would have to sample three different

23

Figure 2.14: The HSV colorspace. The �gure is from colorizer.org[12].

probability density functions, one for each RGB value. It is not easy to generate terrain with realistic
colors when sampling RGB values. For example: how much blue should be present in the color of
a rock? For humans this is not an intuitive question. This made the RGB probability distributions
dif�cult to de�ne, and therefore the RGB encoding was not suitable for this application.

The Hue Saturation Value (HSV) colorspace solves this by reducing the number of variables
needed to describe the color's hue down to one. This is the hue value in the HSV colorspace. It
also introduces variables describing the saturation and the brightness (value) of the color. The hue
value is usually de�ned on the interval 0 - 360, while the saturation and brightness values are often
de�ned on the interval 0 - 1. Since the hue of the color is a one dimensional value in the HSV
colorspace it makes generating colors simpler and more elegant. For example: when de�ning the
probability distributions for a piece of terrain one now de�nes the limits of the hue, the saturation,
and the brightness of the terrain. Each with a separate intuitive in�uence on the resulting �nal color.
Note that HSV and HSV describes the same colorspace.

24

Chapter 3
Explainable Arti�cial Intelligence

This chapter explores the �eld of XAI and gives a quick introduction to its history as well as some
of its challenges. It describes the advantages of creating XAI systems, both for the end-user and
the system creator. It also explores what constitutes a good explanation, how one should be deliv-
ered, as well as what information one should contain. Various methods for constructing interpretable
machine learning algorithms are discussed and how they can be adapted to use for instance segmen-
tation.

25

Figure 3.1: Explanation in Arti�cal Intelligence: Insights from the Social Sciences[13] describes XAI as
in�uenced by several research domains. This �gure is from that paper and shows a venn diagram illustrating
this concept.

The term XAI was �rst coined in a paper released in 2004 by Michael van Lent.[29] It has
since become the de facto term used when describing AI systems that attempt to explain their own
behaviour. XAI is a new �eld and unfortunately not many rigid de�nitions exist. The problem how-
ever, has been around for some time. In the 1970s AI systems primarily consisted of expert systems.
These were decision making programs that utilized hierarchical if-then structures to perform infer-
ence. The if-then structure was usually programmed by a domain expert using the programmer's
extensive domain knowledge. Explanation of these systems was subject to research, but was of a
different nature because of the expert systems distinct structure.

Along with the interest in expert systems, the interest in XAI also died down over the following
decades. Then, in the 2010s, the deep learning revolution led to a large increase in complex machine
learning models. This has led to a revival of XAI interest. Now that these complex machine learning
methods are to be applied in safety critical operations XAI is poised to play an key role.

There are two commonly used terms in XAI research, explainability and interpretability. They
are used interchangeably, an unfortunate result stemming from the lack of clear de�nitions. One
de�nition of interpretability is ”the ability to explain or to present in understandable terms to a
human”.[30] This de�nition de�nes explainability as a part of interpretability. More speci�cally as
the method for transferring information about the causal events in the AI system to the receiving
human. That is how this thesis will relate to these terms.

26

.

Figure 3.2: An explanation of a husky-wolf image prediction. The input image is shown on the left and the
segments provided as an explanation is shown on the right. The image was classi�ed as a wolf. The segments
highlight the areas of the image which in�uenced the classi�cation the most. Figure is from ”Why Should I
Trust You? Explaining the Predictions of Any Classi�er[14]

XAI is a problem spanning several �elds of research. Explanation in Arti�cal Intelligence: In-
sights from the Social Sciences[13] attribute three contributing �elds to XAI. Arti�cial intelligence,
Human-Computer Interaction, and Social Science. A Venn diagram describing this is shown in �gure
3.1. This multi domain split contributes to the dif�culty of assigning proper de�nitions. Researchers
from each of these �elds have different point of views stemming from their different academic back-
grounds. This leads to various de�nitions and methods being used in research.

3.1 Why Create Explainable AI Systems?

If an arti�cial intelligence system could explain its decision process in an understandable manner it
would provide several advantages. Some of these advantages will be highlighted in this section.

For safety critical applications the creator of the AI algorithm must be able to prove the reliability
of the system. Even though the current solution to many safety critical problems, humans, are not
always perfect, they are able to explain their decisions which allows the system to improve after an
error has occured. A deep learning based machine system operates as a black box without available
explanations. This makes pin-pointing the cause of an error dif�cult, if not impossible. This would
make it dif�cult to improve the system after an error. In order for legislators to accept autonomous
vehicles such as autonomous ships, the creators must be able to justify their safety. XAI might be
the technology that could enable the creators to ensure this safety.

In the paper Why Should I Trust You?: Explaining the Predictions of Any Classi�er[14] the
authors show a good example of why XAI is valuable. In their experiment they trained an image
classi�er to separate images of huskies from images of wolfs. Their classi�er performed well, it suc-

27

Figure 3.3: The ELO of the AlphaZero algorithm during training. Note that it exceeded the best previous
algorithms. The �gure is from Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm[15].

cessfully separated the images by subject. The researchers then used an XAI method called LIME
to generate explanations for the classi�cations. One of these explanations is shown in Figure 3.2. A
quick glance at the image segments provided in the explanation allows even a non-expert to deduce
that the classi�er uses the snow on the ground to classify the image, not the features of the animal.
This indicates that the model will not work well in the real world, in which images of wolfs might
not necessarily contain snow. It is clear that an explanation like this makes it easy to validate the
model or spot erroneous behaviour.

Building on the husky-wolf classi�er example above, one can easily imagine that these XAI
methods can be used to improve a model. By examining the explanations for the dog/wolf classi�er
the creator could quickly spot the bias in the model. This bias could then be removed by expanding
the dataset to include images of wolfs without snow present in the background. The performance
of the network during training would probably go down, since the network can no longer base its
decisions purely on the presence of snow. But the real world performance would probably improve
dramatically.

Having end users trust the AI system is important. In many professions classi�ers like the ones
discussed above would be a great tool to have. As these systems become more advanced the users
will likely rely heavily on them. This begs the question: who is to blame if the prediction is wrong?
In some professions this could have large consequences and the user would likely end up with a
portion of the blame. If the classi�er could provide explanations along with its predictions, the end
user could more effectively evaluate their quality. This would not only improve the users trust in the
system, but could also avoid potentially damaging errors.

The paper ”Peeking Inside the Black-Box: A Survey on XAI”[31] raises another interesting
point. That XAI will enable us to discover new information from machine learning algorithms.
They use the AlphaZero algorithm, published by DeepMind in 2017, as an example. The AlphaZero
algorithm teaches itself to play board games entirely without human intervention. By doing this it
has superseded all previously knows algorithms in three different board games. (As seen in Figure
3.3) Maybe new though-processes and play-styles could be discovered if AlphaZero could explain
its record breaking tactics? That would undoubtedly be fascinating, but maybe not immediately use-
ful, as chess is only a board game. But what if this algorithm was instead trained to treat dangerous
illnesses? Then a good explanation could save potentially save millions of lives.

28

3.2 What Is a Good Explanation?

A natural next question is what constitutes a good explanation. Unlike many other questions within
computer science this answer does not have a clear answer. It is a very subjective question and all
this section can do is offer some general guidelines that can help create good explanations in the
context of XAI systems.

Explanation in Arti�cial Intelligence: Insights from the Social Sciences[13], a survey paper re-
leased in 2017, suggests that contrastive explanations are most effective. By this they mean that for
a human to best understand an explanation, it must provide examples of where the causal event did
not occur. For instance: if an explanation wants to convey that event A causes event B, it must show
an examples where event A does not occur and as a result event B does not occur either.

A good explanation should be adapted to the receivers knowledge level. For instance: if the
receiver is a programmer with intimate knowledge of the AI system, the explanation can be very
technical and still be helpful. But if the receiver is a lay-person, it must be formulated in an easy
to understand way. Naturally this is not always possible, if there is a technical problem with the AI
system the XAI method might be forced to give a complex technical explanation. In that case the
end user will have to call for technical assistance.

The Simulation Heuristic[32] hypothesises that humans use internal mental simulation models
in order to make predictions. To answer what-if questions, we change the initial conditions of the
relevant mental model and observe how the mental simulation outcome differs. A good explanation
should be adapted to the receivers internal model of the system. It should show abnormal causes,
that means causes that are not already included in the receivers mental model. The receiver can then
modify his/hers internal model and learn something new. This is equivalent to generating explana-
tions which take the con�rmation bias into account. By taking the con�rmation bias into account
one combats the human tendency to �nd solutions that �t their mental model of the world while
ignoring solutions that do not. By explicitly showing examples that counteract this mental model the
receiver would be forced to change his/hers internal model. Naturally, this begs the question of how
the XAI method can determine the receivers mental model.

In the real world an event often has countless causes. It is the XAI system's role to �lter through
them all and only deliver the most important ones to the receiver, according to the guidelines de�ned
above. In computer vision the problem is somewhat simpli�ed, since the possible causes are often
limited distinct features of the input image. Still, generating intuitive explanations for classi�ers is
no easy task. Some methods for doing this will be presented in Section 3.4.

29

3.3 Interpretable Machine Learning

Before venturing into the concrete methods for enabling interpretable instance segmentation the
main methodologies for designing interpretable Machine Learning (ML) systems will be covered.

There are two main methods of creating interpretable machine learning systems. One method is
to simply use models that are intrinsically interpretable. This can be achieved by using a modular
design or by using a suf�ciently simple model. As an example one could design a cat-detector model
that detects the features of the cats separately, before combining them into a �nal cat detection. This
model could explain itself by simply highlighting the relevant parts of the cat that led to the classi�-
cation. But the problem remains, how would the system explain why it detected an ear at a speci�c
location? The modularity of the system would have to be quite �ne grained to offer satisfactory
explanations. An example of the alternate solution would be using a cat detector algorithm simple
enough that a human could directly understand its decision making process. The operator could then
just interpret the internals of the model and deduce the explanation.

There is one downside to intrinsically interpretable models. Unfortunately, the simpler models
tend to produce less accurate predictions. There is a natural explanation to this: a more complex
model can detect more complex patterns in the input data, but is inherently less interpretable. To
make a model more interpretable it would have to be less complex, this might prevent it from de-
tecting the complex patterns it otherwise would predict. For some problems this is not a problem,
the performance loss is acceptable. But for more advanced machine learning tasks, such as instance
segmentation in maritime environments, the performance loss is unacceptable and other methods
must be used. This trade-off is called the intepretability-performance trade-off.

The second method for achieving interpretability are ad-hoc methods. These methods do not
modify the existing ML system. Instead they systematically modify the input data while observing
the outputs to generate explanations for the model. These methods have several advantages over the
intrisic methods. For one they are not subject to the interpretability-performance trade-off since they
do not modify the model being examined. Second, they are often model-agnostic. This is a term
used when an XAI method can be used on all ML models. This �exibility is desirable. A downside
is that these methods are inherently less ”elegant” than the intrinsic methods, since they add extra
programming around the original model. They can also be computationally expensive because of
their need to observe the input-output relationship of the models they explain, this could prevent the
such systems from being used in real time applications.

There is a distinction between model explanations and prediction explanations, also called global
explanations and local explanations. Model explanations convey how parts of the model in�uence
decisions. Which features of the system leads to which predictions. In other words: how the model
works. These methods are usually model speci�c since they use the speci�c features of the model in
their explanations. Prediction explanations aim to inform why a model reached a speci�c decision.
For instance: a sail-boat detector might highlight the sail in the image as an explanation.

An interesting method of achieving interpretable machine learning is via surrogate models. In
short, these methods train a separate machine learning model to interpret the �rst model. This might
seem counter-intuitive at �rst: why use more machine learning when we already struggle to interpret

30

one system? Well, adding a secondary ML model can actually improve the interpretability, if the
secondary model is designed correctly. LIME does this by training a ML model to explain one of
the primary models predictions. It then uses the parameters of the interpretable secondary model to
infer which parts of the input strengthens the classi�cation and which inputs weaken it[14]. This
makes LIME a local surrogate method.

In contrast to local surrogate methods, a global surrogate model method attempts to train an
interpretable surrogate model to predict the entire decision process of the primary model. This is
generally a more challenging task, since the surrogate model often can't represent the whole model
accurately over the whole input-output space. If it could one would just use the surrogate model
instead of the more complex primary model. Both the local and the global surrogate model methods
are model-agnostic XAI methods.

Some XAI methods tries to highlight which parts of the input is the most important for a pre-
diction result. These are inherently local explanation methods since they operate on an individual
prediction. This can be done by modifying the different features of the input, and recording the
change in output. Intuitively, altering the most important features will lead to the greatest change
in the output. The method integrated gradients employs a similar method for highlighting the most
important parts of an image[17]. Integrated gradients is one of the methods that will be further
discussed in Section 3.4.

3.4 Interpretable Instance Segmentation

The Mask R-CNN instance segmentation method described in Section 2.3.3 is a multiple stage pro-
cess. This complicates the implementation of XAI methods, so to facilitate easier explanations, the
following sections will use a simple image classi�er network in the explanations. The general prin-
ciples of each method still applies. Image classi�cation is a simpli�cation of the object detection
algorithm illustrated in Figure 2.1a. It does not create bounding boxes around the objects and is
limited to one detection per image. The details of implementing the methods for the instance seg-
mentation application will be covered in Section 5.1.

Humans are visual creatures. Therefore, a natural way for a computer vision algorithm to explain
itself is to highlight the parts of the input image that most in�uenced the result. There are other ways
to gain insight into the model, an alternative method could be to �nd an image that maximize a class
prediction score and use that image to explain which patterns the model is looking for. This could
be one way to generate explanations for objects that are not de�ned by a handful of visual features,
such as the sky, or the ocean. However, that method is outside the scope of this thesis and is instead
recommended as a possible topic for further works.

Feature attribution is a �eld of research which explores how computer vision algorithms see the
world. It does this by highlighting the components of the input image that most affect the output
prediction. For example: when predicting the class ”sailboat” for an input image, the model should
present the sail as an important feature. If it does not, it could indicate that the model does not
generalize well, since it does not understand the de�ning feature of the sailboat class. A subclass of
feature attribution are saliency maps, which highlight the areas that most in�uence the prediction on

31

a pixel by pixel level. Two of the methods that will be evaluated in this thesis produce such saliency
maps.

3.4.1 Jacobian Matrices

The simplest type of saliency map is the Jacobian matrix, it describes the derivative of a function's
output with respect to its inputs. An image classi�er can be seen as a function

f : Rn ! Rm

that maps inputs withn number of dimensions to outputs withm number of dimensions. The
derivative of this function with respect to the input variables is called the Jacobian.

J =
�

@f
@x1

� � �
@f

@xn

�
=

2

6
6
6
6
4

@f1
@x1

� � �
@f1
@xn

...
...

...
@fm
@x1

� � �
@fm
@xn

3

7
7
7
7
5

If a classi�er network takes as input an RGB image with106 pixels and classi�es the images
with regards to two possible classes. The classi�cation function will be equivalent to

f : R3� 106
! R2

if the output values represent the probability of the input being part of a given class. The Jacobian
matrix can then be estimated numerically by the approximation

@f
@xi

= lim
h! 0

f (x i 0 + h) � f (x i 0 � h)
2h

wherex i 0 is thex value where the derivative is to be calculated andh is a suf�ciently small
constant.1 In the case of an imagex i 0 would be the value of a given RGB channel of a pixel in the
input image. It is now clear that the Jacobian matrix encodes how small perturbations in the input
would impact the output. Intuitively, the pixels with the highest corresponding value in the Jacobian
matrix are the most important pixels in the image. Since changing them has the largest effect on the
output.

This method does however, comes with some drawbacks. One being that it is a linear estimation
of the function, and it is only valid for small perturbations since it does not predict non-linear effects.
This is unfortunate, since the classi�er is a highly non-linear mapping from the input pixels to the
output predictions. Also, since the Jacobian matrix is generated by perturbing one pixel at a time, it
does not take into account how the output might change if several pixels are perturbed at the same
time. In real world images the pixel values are expected to be highly correlated. In an image a ship's
component might cover several pixels and require large pixel-wise changes in order to disappear
into the background texture of the image. The Jacobian matrix will not not necessarily describe the
effect of these changes accurately. This limits the Jacobian matrix's ability to highlight the important

1Many deep learning software programs also has gradient calculations build in.

32

Figure 3.4: Deep Inside Convolutional Networks: Visualising Image Classi�cation Models and Saliency
Maps[16] used the Jacobian matrix of an image classi�er to generate the feature attribution shown above.

object components present in an image. Still, as shown in �gure 3.4, the attribution offered by it can
still offer insight into the model.

3.4.2 Integrated Gradients

In many ways the integrated gradients method is a natural extension of the Jacobian matrix method.
It works by de�ning a baseline inputx0 in addition to the input imagex. The method then gradually
steps the input from the baseline values (x0) towards the actual inputs (x). The baseline is meant to
represent no input. But since there is no pixel value representing that situation, black or the average
image color is often used. By formulating the problem like this, integrated gradients incorporates a
form of counterfactual intuition. This is similar to how humans often assign causes by examining a
similar situation with the relevant feature absent[17].

Integrated gradients consider a straightline path fromx0 to x and compute the gradient at all the
locations. Other paths than the straightline path could be conceived, the attribution methods that
perform a path integral from some baseline input to the �nal input are collectively known as path
methods[17]. The pixel wise attribution to the output is then de�ned as the sum of these gradients.
It is clear that integrated gradients is really just an extension of the Jacobian examination method.
Only instead of calculating the gradient once, it does it repeatedly while changing the inputs. Math-
ematically the integral along a dimension (pixel) is de�ned as

IntegratedGrads i (x) := (x i � x0
i) �

Z 1

� =0

�F (x0+ � � (x � x0))
� x i

d�

where� is an interpolation variable and�F� x i
is the derivative of the output with respect to a

dimension (a pixel value)[17]. This integral can be approximated by a series of sums

33

Figure 3.5: The resulting attributions after applying integrated gradients to a set of predictions. The integrated
gradients result is shown to the left, while the Jacobian method is shown to the right for comparison. The �gure
is from Axiomatic Attribution for Deep Networks[17].

IntegratedGrads i (x) � (x i � x0
i) �

mX

k=1

�F (x0+ k
m � (x � x0))
� x i

�
1
m

in whichm represents the number of steps used in the approximation[17]. Figure 3.5 shows two
attributions generated with this method, as well as two generated by the Jacobian matrix method for
comparison.

This method improves on the Jacobian matrix attribution method by examining the path from the
baseline image to the input image. By doing this it encodes not just the local effect of perturbations,
but how perturbations affect the output for a various of inputs. This should provide a more robust
feature attribution. The more robust feature attribution does however, come with a computational
cost. Integrated gradients calculates the gradient multiple times when estimating the path integral.
In practice it was found that between 20 and 300 steps were enough to provide a good result[17].
This means that the integrated gradient method is at least 20-300 times slower than examining the
Jacobian method described in the previous section. Section 6.3 examines whether this extra comput-
ing cost is worth it.

Both the Jacobian method and integrated gradients work on a pixel by pixel basis. This means
that they do not encode how changing combinations of pixels affect the output. To achieve this, the
algorithm must work on super-pixels instead of individual pixels and analyse how changing batches
of pixels affect the output. The method described in the next section does just this.

34

Figure 3.6: Shown above are three explanations generated for an image classi�er by LIME. To the left is the
segments that cause the model to classify the image asElectric guitar, in the middle are segments that induce
Acoustic guitar, and to the right are segments that leads the model to classify the image asLabrador. The �gure
is from ”Why Should I Trust You? Explaining the Predictions of Any Classi�er[14].

3.4.3 Local Interpretable Model-Agnostic Explanations (LIME)

LIME uses a different approach than the two saliency map methods described so far. Its goal is
to generate an interpretable surrogate model that is locally faithful to the classi�er. [14] Locally
faithful means that the surrogate model correctly represents the original model for small changes to
the input image. Another difference is that it does not perturb the input image on a pixel by pixel
basis, but rather on a segment basis. This means that LIME requires an image segmentation algo-
rithm that divides the input image into segments that LIME can then use for its training process. As
seen in Figure 3.6 LIME's explanations are similar to the saliency maps, but instead of highlighting
the features on a pixel by pixel basis it highlights different segments of the images. Since it trains
a surrogate model on the perturbed input image it also encodes higher value information than the
simpler saliency maps methods, as seen by clearer results.

The LIME algorithm works by minimizing a locality-aware lossL (f; g; �) with f being the
classi�er, g being the interpretable surrogate model, and� being a similarity measure between the
input and the sampled perturbed inputs. More speci�cally LIME de�nesx 2 Rd as the input and
x0 2 f 0; 1gd0

as the interpretable representation of that input. For images thex0 is de�ned as the
presence or absence of the image segments. Imagine that the image is segmented intoN segments,
thenx0 2 f 0; 1gN , representing if the image segment is present or replaced by some baseline color.

LIME samplesz0 in the vicinity of the inputx0 and classi�es these with the original model to
create a dataset for the surrogate model. It then determines which subset of thex0 features best
describe the original model's output and trains the surrogate model to predict the original model
based on these features. Note that the selected perturbed samplesz0 are weighted according to the
similarity measure� , since their prediction might differ due to non-linear effects in the original
model. Since the LIME surrogate model is a simple model, it won't be able to represent these non-
linearities. By reducing the effect of these perturbed samples, the model becomes more robust to
this sampling noise. This is shown in Figure 3.7, where LIME trains a linear surrogate model on
a two dimensional classi�er. The pink and blue background represents the original classi�cations,
while the crosses and the circles represent the perturbed samplesz0. The size is proportional with
the simularity measurement and the dotted line represents the resulting linear surrogate model. Note

35

Figure 3.7: This �gure shows the sampling of perturbedz0s for a simpli�ed two dimensional model. The �gure
is from ”Why Should I Trust You? Explaining the Predictions of Any Classi�er[14].

that it is locally representative for the original model, but fails to represent it for the entire state space.

The LIME algorithm doesn't explicitly specify what kind of surrogate model is used. In their
paper however, a linear classi�er is used. This de�nes a weight vectorw 2 Rm wherem is the
number of features selected to train the surrogate model. The classi�cation is then de�ned as

g(z0) =

(
1 if w � z0 > T;
0 otherwise

whereT is some threshold value. When training, the values ofw andT are gradually shifted
towards values optimizing some de�ned loss function. In the LIME paper they use L2 loss with the
similarity measurement as weight. Because the values of thew vector directly measure how much a
feature impacts the prediction LIME uses them as attribution indicators.

As previously mentioned the LIME algorithm requires an image segmentation algorithm to work.
Which segmentation algorithm is used is left to the users discretion. One downside mentioned in
the LIME paper[14] is that sometimes image segments can't explain why a speci�c prediction was
made. Imagine trying to generate explanations for a classi�er that is trained to detect sepia toned
images. There are no speci�c segments that could be highlighted in an explanation. This simple
example clearly illustrates a limitation of not just the LIME algorithm, but all feature attribution
XAI methods.

36

Chapter 4
Synthetic Training Data Acquisition

This chapter presents the program that generates synthetic datasets using the Kongsberg Cogs graph-
ics engine. It also discusses the parameters that can be varied between image samples, the procedural
terrain generation, and how small objects are handled in the program. Towards the end of the chap-
ter, Kongsberg K-Sim is discussed and compared to Kongsberg Cogs as a tool for synthetic dataset
generation.

37

(a) A scene generated by the Cogs 3D rendering en-
gine.

(b) The accompanying object masks.

Figure 4.1

4.1 Kongberg Cogs

Cogs is an in-house 3D rendering-engine developed by Kongsberg Digital. It is designed to be a
lightweight and �exible renderer for use in their projects. It provides vertical integration, meaning
that the team at Kongsberg Digital has full control of every part of the engine and can guarantee its
operation. It is designed to be �exible and modular, making it easy to modify for special projects,
such as generating synthetic training data for machine learning applications.

4.1.1 Synthetic Data Generation in Practice

Fortunately, the Cogs engine has already been used for data acquisition similar to what is required
for this thesis. The framework for mask generation is already implemented and easy to use. For
increased modularity it allows con�guration via a Python API. This API supports asynchronous
communication between a Python script and the Cogs engine. During the thesis this bridge has been
expanded as needed, thanks to continued support from contacts at Kongsberg Digital.

The Cogs engine enables dynamic loading and removal of 3D models. These can then be placed
and rotated as desired. Cogs also includes an ocean simulation, in which the wave height and period
can be changed. This enables a wide variety of sea states to be generated. Other elements of the
simulation that can be varied between the samples are:

� the water color

38

� the fog strength

� the fog color

� the terrain shape

� the terrain color

� the sun location

� the camera rotation

� the camera height

� the camera �eld of view

� the appearance of the sky

Each of these can be sampled from a chosen probability distribution, during testing multiple
combinations of parameters were tested. These parameters can be accessed with Python code, which
allows the parameters to be changed during the dataset generation process.

4.1.2 The Architecture for Dataset Generation

The Python program that interfaces with Cogs to produce a synthetic dataset consists of three main
parts. These parts are the Scene-Populator, the Scene-Randomizer, and the Sample-Generator. The
architecture is shown in �gure 4.2. They each communicate with Cogs through a separate Python
bridge as described in the previous section.

Figure 4.2: The three parts of the dataset generation program communicates with Cogs through the Python-
Cogs bridge.

39

When generating a dataset, Cogs is initialized with an empty scene. The Scene-Populator then
loads a given number of models into the scene. It randomly samples a class from a uniform dis-
tribution and then samples a 3D model representing that class. If it did not do it this way, instead
directly sampling the 3D models, it could lead to biases when the number of models representing
each class is not equal. For example: if it instead loaded the models with the naive method. Tank
ships would occur 6 times more frequently than offshore wind turbines, because there are 6 times
more 3D models representing tank ships. This would create an unbalanced dataset, which would
cause the trained model to be biased.

When the 3D models have been loaded into the Cogs scene, the Scene-Randomizer takes over. It
places the models in a random location in front of the camera. It ensures that they do not overlap, and
samples all the parameters in the simulation according to their respective probability distributions.
It also generates the background terrain, with the method described in Section 4.1.3. It also ensures
that small objects are visible, this process is described in Section 4.1.4.

After a scene has been prepared by the Scene-Populator and the Scene-Randomizer, the Sample-
Generator downloads the scene image and the scene segmentation via the Python bridge as .png
�les. The Sample-Generator is also responsible for keeping track of the complete dataset and logs
how many times the different classes appear. Each generated sample consists of three �les: the scene
image, the scene segmentation image, and a .json �le containing a mapping from pixel value to class
for the scene segmentation image. After the three �les have been saven the program resets and the
next sample is generated.

4.1.3 Terrain Generation

Cogs has a built in terrain renderer. It requires three textures to operate: a heightmap, a colormap,
and a normalmap. The heightmap describes the height of the terrain at a given point in the scene, the
colormap describes the color at a given point, and the normalmap increases the graphical �delity of
the terrain by encoding the surface normal as an RGB image.

The heightmap is generated through a combination of Perlin noise, Gaussian noise, and Gaus-
sian �ltering. Perlin noise is used because of its ability to create continuous noise patterns. A naive
implementation might use uniformly sampled noise. Unfortunately this would yield discontinuous,
unnatural looking terrain. The initial Perlin noise is then �ltered to further smoothen it. A high
frequency, low amplitude Gaussian noise is then applied to create realistic looking formations along
the waterline. The terrain generation de�nes three types of terrain: land, islands, and ocean. Each of
these have varying noise and �ltering parameters to generate the desired look of the terrain. There is
no set way of �nding the correct values for these parameters and in this project they were found by
trial and error. Perlin noise is further described in Section 2.4.1.

There are three types terrain colors de�ned in the terrain generator. These are: a green color rep-
resenting grass, a white color representing snow, and a gray color representing bedrock. The white
and gray terrain types are randomly sampled within speci�ed ranges and combined with Gaussian
noise to induce variations within the color. The green terrain types are sampled in the HSB color
space, which makes it easier to sample natural looking hues. During the image sample generation

40

(a) The colormap generated by the
terrain generation algorithm. The
terrain generated has a green/brown
color.

(b) The heightmap generated by the
terrain generation. The dark ar-
eas have low elevation, while the
brighter areas correspond to higher
elevation. This formation forms is-
lands in the distance.

(c) The normalmap generated by
the terrain generation.

Figure 4.3: The textures used when generating the image sample shown in Figure 4.1a and 4.1b.

the terrain type is selected through sampling a con�gurable probability distribution.

4.1.4 Handling Small Boats

There are about 150 different 3D models used in the dataset generation. These 3D models range
from cruise ships, to offshore wind turbines, to small leisure boats. This means that there can be a
large discrepancy in scale between the objects placed within a scene. During testing it was found
that the same parameters that created natural looking images of cruise ships would not create usable
images of small motor boats. To elaborate: it is reasonable to expect the model to detect and classify
a 250m container ship at a distance of 2 kilometers, but to expect the same for a small leisure boat
is not realistic. Especially not if the signi�cant wave height is 12 meters. Naturally the discussion
above would be different when simulating a small �eld of view camera (a camera with high zoom),
but it is meant as a guiding example. This means that the smaller vessels should be placed closer to
the camera to create the best possible training data for machine learning models.

Another problem stemmed from the lack of buoyancy simulation in the Cogs ocean simulation.
In the real world a boat is expected to �oat on top of the water, but in Cogs objects have �xed position
in 3D space which will not change due to buoyancy forces. This is not a problem for large ships such
as oil tankers, since their waterline changes several meters due to different load conditions anyways.
But for small boats this could cause the entire hull to be submerged under water. This led to a bias
in the dataset which became especially visible for the sailboat class. Because of their small size the
model had never seen a non-�ooded sailboat and when it encountered real world images of sailboats
with their hulls visible it classi�ed them incorrectly.

41

(a) The scene image. (b) The object masks.

Figure 4.4: A partially submerged sailboat. This issue caused biases early in the development of the system.

To alleviate both problems described in this section, the dataset generator was modi�ed to mea-
sure the size of the 3D models it placed. If the measured size of the object was below a certain
threshold it would reduce the object's distance to the camera with a set probability. If it did move the
object closer it would also lift the 3D model higher in the water by translating it in the Z-direction.
These parameters can be con�gured by the user along all the other parameters described in this chap-
ter.

4.2 Kongsberg K-Sim

Kongsberg K-sim is a commercially available training simulator for maritime personnel. It is the
software used in Henriksen's Master's thesis[18] to generate synthetic training data. Since its main
purpose is to be a maritime simulator it has features which are not immediately bene�cial for syn-
thetic data generation. These features include: a state of the art hydrodynamics system, support for
towing and tugging, a ship bridge simulator, support for hardware simulation, and much more. It
also lacks some critical features which made its use as a synthetic dataset generator challenging.
The process of generating synthetic datasets with K-Sim is comprehensively described in Henrik-
sen's Master's thesis[18]. A comparison between Cogs and K-sim as synthetic dataset generators is
presented in Section 4.3.

42

Figure 4.5: A screenshot of the K-sim application. The �gure is from Henriksen's Master's thesis[18].

4.2.1 3D Models

Since K-sim is a maritime simulator it needs high quality 3D models. Many of these models mirror
real world vessels, which further improves the realism. About 110 models from K-sim has been
made available for use in this thesis. The models represent several different ship types, as well as
offshore wind turbines. A minor annoyance was that the K-sim 3D models are in the OpenFlight
(.�t) format, a format incompatible with Cogs. This required them to be converted manually to the
Wavefront (.obj) format, which Cogs is compatible with. This was a time demanding process. When
the models had been converted, the visual �delity of the generated datasets increased dramatically,
making the manual labor well worth the effort.

4.3 Cogs or K-Sim as a Synthetic Dataset Generator?

In this section Cogs and K-sim will be compared as tools for synthetic dataset generation. The eval-
uation of the Cogs system is based on the experiences during this project and the K-Sim information
is from Chapter 4 in Henriksen's Master's thesis[18], in which K-Sim was used for the same purpose.

Cogs and K-sim are very different software tools. While Cogs is an in-house lightweight 3D
graphics engine, K-sim is a feature-rich commercially available maritime simulator. Immediately
Cogs seem like the easier tool to use for synthetic dataset generation, but it has some downsides.
These include:

� the lack of buoyancy simulation. this caused the bias described in Section 4.1.4. This is not a
problem in K-sim, as it incorporates advanced buoyancy simulation.

� no bow wave simulation. It is unclear how much of an effect this would have on predictions. It
might theoretically impact velocity estimations, if such were to be implemented in the future.
In K-sim bow waves are simulated, but it is unclear how advanced this simulation is.

43

� no velocity simulation. This makes it more dif�cult to create test videos, since the velocity and
movement over time must be handled outside Cogs. Due to Cogs' modular design it would
probably be possible to modify it with a physics engine to enable this. Since K-sim is a physics
simulator it includes velocity simulation.

� no built in harbour environments. These would have to be created outside Cogs and loaded as
objects alongside the vessel models. K-sim contains several high �delity models of real world
locations such as harbours and coastal areas.

These downsides are minor and thanks to Cogs modular design many of them can be alliviated
with a later modi�cation. When inspecting K-sim it quickly becomes clear that it was not designed
for synthetic dataset generation, as it lacks some important features:

� lack of built in screen recording or screen captures. Neither scene images or segmented im-
ages. This led to the development of a convoluted process for extracting both scene images
and segmentation masks from the simulation. The author of Henriksen's Master's thesis[18]
noted that this process was challenging task and involved quite a bit of manual oversight.

� no built in Application Programming Interface (API). This meant that the simulation parame-
ters had to be changed manually during the dataset generation period.

� no mask generation for sky, water, or terrain. It is uncertain whether this could be implemented
for K-sim as it was not attempted in Henriksen's Master's thesis[18].

For a full description of the K-sim dataset generation process see Henriksen's Master's thesis[18]
Chapter 4. It details the large amount of work required before K-sim could be used to generate syn-
thetic datasets. In comparison Cogs has been relatively easy to work with.

44

Chapter 5
Experiments

The following chapter presents the experiments performed in this work, as well as the experimental
setup with which they were performed. The experiments aimed to explore:

� how well the instance segmentation algorithm Mask RCNN performs when trained on a syn-
thetic dataset.

� the trained Mask RCNN model's robustness to Gaussian noise.

� how well the Jacobian matrix works for feature attribution.

� how well the integrated gradient method works for feature attribution.

� how well the LIME feature attribution works.

These experiments were performed during the development of the systems and are not meant as
exhaustive studies into their respective topics. Nevertheless, they do offer some interesting insights
into the behaviour of the systems.

45

5.1 Experimental Setup

Class: # models
Cargo ship 14
Container ship 13
Emergency ship 15
Passenger ship 21
Tanker ship 35
Tug boat 3
Utility ship 10
Wind turbine 6
Motor yacht 25
Sail yacht 8
Terrain n/a
Sky n/a
Free space (sea) n/a

Table 5.1: The classes gen-
erated with the Cogs synthetic
dataset generation program.

The instance segmentation algorithm for the experiments in this
chapter was trained on 23500 synthetic images, which was di-
vided into two groups. One consisted of 22000 images and
was used for training while the remaining 1500 was used
for validation and testing. These images were generated us-
ing the procedure described in Chapter 4 and used� 150
different 3D models of ships, boats, and offshore wind tur-
bines. The classes represented in this dataset and the num-
ber of 3D models describing each class are shown in Ta-
ble 5.1. The models were sampled according to the method
described in Section 4.1.2 in order to avoid class imbal-
ances.

The generated images had a resolution of 1024 by 1024 pixels
and the �nal dataset occupied 51.7 GB of disk space. The training
of the instance segmentation and XAI evaluation was performed on a
workstation provided by Kongsberg Digital. It was equipped with a
NVIDIA 1080ti graphics card, as well as an Intel i7-7700k CPU and
32 GB 2133 MHz RAM. This workstation was shared with another
student.

As a reminder, the Mask RCNN algorithm consists of three parts. The �rst part is the feature
extractor, which converts the input image to several feature maps using the ResNet101 feature ex-
tractor. The ResNet architecture is described in Section 2.3.5. The second part of the algorithm is
the ROI (region of interest) network. It examines the feature maps from part one and extracts the
areas most likely to contain objects. These areas are the regions of interest. The third and �nal layer
then examines the parts of the feature map noted as a ROIs and predicts the class, bounding box, and
the mask for each. This means that in a sense the Mask RCNN algorithm can be viewed as several
simple classi�ers, one for each ROI.

Since the XAI methods used in the experiments described in Section 5.4 were originally designed
for simple one object classi�er networks and the Mask RCNN algorithm is a complex model consist-
ing of several sub-networks working together, some simpli�cations and assumptions had to be made
in the experiments performed for this thesis. Internally, the Region Proposal network evaluates a
set number of �xed anchors in the input feature map and computes the corresponding bounding box
and predicts whether it contains a foreground object or a background object. This process of passing
regions of interests on to the �nal class prediction network is the de�ning feature of RCNN networks
and is explained further in Section 2.3.3. The XAI experiments performed in this thesis focuses on
the class prediction for a given prediction. Therefore, the output from the Region Proposal network
has been frozen in the experiments. The means that the network is forced to focus on the same
areas of the feature map even if the input image changes. Normally changing the input image would
cause different regions of the feature map to be highlighted by the region proposal network. Figure
5.1a shows the original Mask RCNN architecture and Figure 5.1b shows the modi�ed architecture
performed in this thesis.

46

(a) Original Mask RCNN

(b) Modi�ed Mask RCNN

Figure 5.1: The modi�cation to the Mask RCNN network required in to use the XAI methods described in
Chapter 3.

47

When using integrated gradients and LIME, which both alter the input image in some way while
either calculating multiple gradients or classi�cations scores, an assumption is required. In normal
operations the �nal region of interest containing a detected object might change as the input image
changes. This will lead to a different crop of the feature map being used in the class prediction
network, and might lead to a different prediction result. The assumption that is made when using
integrated gradients and LIME in this way is that this variability does not impact the XAI method's
ability to generate explanations for the model predictions.

5.2 Mask RCNN

Epochs Learning rate
0-100 0.001
100-200 0.0005
200-300 0.00025
300-400 0.00003125

Table 5.2: The learning rates
used while training the Mask
RCNN network.

The instance segmentation algorithm Mask RCNN was trained on the
data described in the previous section for 10 hours and 36 minutes us-
ing the GPU for hardware acceleration. This thesis uses the Matter-
port Mask RCNN implementation[1] which is available open source
on Github. After the system had trained on the 22000 synthetic train-
ing images it was tested on the synthetic validation dataset as well
as real world images and videos. This was done without any domain
adaptation which would likely improve the performance further as
found in Henriksen's Master's thesis[18]. The model was con�gured
to use the ResNet101 feature extractor and to expect square images of
1024 by 1024 pixels. It was trained for 400 epochs with 100 training
steps per epoch. The learning rates used are shown in Table 5.2. A learning momentum of 0.9 was
used throughout the training process. The various loss function values were logged using Tensor-
board and will be presented as a part of the result. The initial model weights were pretrained on the
COCO dataset.

5.3 Robustness to Noise

An easy way of testing the performance of the system under non-ideal circumstances is to design an
experiment in which the input images are gradually more and more corrupted by a Gaussian noise.
During this process the classi�cation scores are logged and used as an indicator for the models ro-
bustness. This experiment was repeated 10 times and the mean prediction scores at each noise level
was calculated and used in a graph for visualization. Note that this experiment was performed with
the restrictions on the region of interest network described in Section 5.1, with the simpli�cations
that entails.

Since the model has only been trained on synthetic images it has never observed Gaussian noise
in its training data. Gaussian noise is extremely common in real world images since it a byproduct
of digital camera sensors. The experiment also sheds light on whether the model has learned robust
general features describing the classes or is basing its predictions on weaker features. If so, predic-
tions for certain classes are expected to decrease in quality more rapidly than others.

48

(a) (b) (c) (d)

Figure 5.2: The input image and images corrupted by Gaussian noise.

Figure 5.2a, 5.2b, 5.2c, and 5.2d, shows some of the images used in the experiment. The leftmost
image is the original image, the center-left one is corrupted with Gaussian noise (� = 0 , � = 50),
the center-right one is corrupted with Gaussian noise (� = 0 , � = 100), and the one to the right
is corrupted with Gaussian noise (� = 0 , � = 150). The quality of the prediction is expected to
decline as the noise increases, but how it declines is of interest. One unnatural way for the system
to fail would be if the system got stuck with some false class. If it became more and more certain
that the detected objects were of some incorrect class as the image quality decreased. This could
indicate a bias in the dataset, and would be unfortunate since the system would not be aware of its
own failure. Normally a human observer would know if it was uncertain about prediction and allow
precautionary measures to be taken. An instance segmentation algorithm should behave the same
way, otherwise a system which uses the model could not trust any of the models prediction since
they they could be completely wrong even if the model predicts a class with 100% certainty.

A more desirable way for the system to fail would be if it gradually lost faith in its original pre-
diction, and entered a period of uncertainty before not detecting an object at all. This indicates that
the model is aware of its own limitations and thus a system which uses the model's predictions could
take this inaccuracy into account. As it turns out, the system does just this, go to Chapter 6 further
discussion around this.

5.4 Feature Attributions

The last experiment performed in this thesis is a comparison between several feature attribution
methods to determine if they are able to increase the interpretability of the Mask RCNN instance
segmentation predictions. As a reminder: feature attribution means highlighting the parts of the
input image that most in�uence a prediction result. This should give the user an idea of whether the
model has understood the underlying characteristics of an object class and is looking at the expected
areas of the image to reach its conclusion. In other words: whether the model has correctly learned
the general features of the objects in the dataset. If it has, it should generalize well. To test the
methods they were used to generate feature attributions for three different predictions. These are

49

(a) The sailboat prediction is exam-
ined.

(b) The sky prediction is examined.(c) The containership prediction is
examined.

Figure 5.3: The predictions to be examined in the feature attribution experiment.

shown in Figure 5.3.

The Jacobian matrix represents the simplest type of feature attribution to be examined in this
thesis. As noted in Section 3.4.1, it is simply the output classi�cation derivative with respect to the
input pixels of the image. Intuitively, the pixels that lead to the largest change in output classi�cation
score are the most important. The integrated gradients method is a simple extension of the Jacobian
matrix method. It de�nes an integral of the gradients from some baseline input to the actual input
image and generates a feature attribution that encodes more information than the simple Jacobian
matrix. See Section 3.4.2 for more information. The integrated gradients method was con�gured to
use 50 steps when estimating the path integral. The gradients were calculated using Tensor�ow's
built-in gradient function.

As discussed in Section 3.4.3, LIME takes a different approach to interpreting object classi�ers,
opting to use an interpretable surrogate model trained on the input image segments instead of the
input/output gradient. According to the LIME paper[14] this should provide interpretable explana-
tions. LIME was the third and last feature attribution method tested in this experiment.

LIME is a �exible method that can be customized to �t the needs of a user. For this experiment it
was con�gured to use the Simple Linear Iterative Clustering (SLIC) image segmentation algorithm.
SLIC was chosen because of its ease of use, ef�ciency, and tendency to create segmentation patches
of uniform size. It works by encoding the pixel values in a 5D space de�ned by the CIELAB col-
orspace and the x,y position in the image. It then performs a clustering operation that groups pixels
based on a distance measure[33]. For this experiment, SLIC was con�gured to split the image into
250 segments. LIME was con�gured to highlight the 5 segments which in�uenced the prediction the
most. Based on the original input image, 1000 altered image-prediction pairs were computed and
used to train the LIME surrogate model.

As seen in Section 3.4.1 and 3.4.2, both the Jacobian matrix and result from the integrated gradi-
ents method are matrices. To maximize their interpretability they must be processed before visual-

50

ization. This can be done in various ways, but for this experiment the following simple process was
used.

� First the values of the elements in the matrix are converted to absolute values.

� Then, for each pixel, the average value of the RGB channels is found.

� The result is then normalized to between 0 and 1.

� Finally a threshold is applied. If a value is below the threshold value, it is set to zero, otherwise
it remains the same. In the experiment this threshold value was set to 0.1.

51

52

Chapter 6
Result and Discussion

53

6.1 Mask RCNN

As described in Section 5.2 the Mask RCNN was trained for 400 epochs with a incrementally de-
creasing learning rate. (shown in Table 5.2) Figure 6.1 shows the loss function values experienced
during the training process. Note that the less opaque plots represent the actual recorded loss values,
while the more de�ned ones are smoothed. Figure 6.2 show the loss functions when the model is
tested on the validation data. The increased noise is because a smaller sample size was used when
calculating the loss values on the validation data. (100 vs. 5) The model was trained on an aggregate
loss function consisting of loss functions describing the class, bounding box, mask, RPN class, and
RPN bounding box prediction errors.

From Figure 6.2a it is clear that the model improves most during the �rst 100 epochs. The
decrease in learning later in the training process is probably due to the model saturating, as well
as the gradual reduction in training rate. In the future the performance might be increased by ex-
panding the dataset (an easy task because of its synthetic origin), using dataset augmentation, �ne
tuning the training process, or improving the model architecture. Figure 6.2e shows that the loss
values for the RPN class predictor, the part of the network that decides whether an object is present
at a location in the feature map, appears very noisy. It is speculated that since the loss values are
so low, combined with the small batch size, individual detection errors might impact the plot heavily.

Figure 6.3 shows the performance of the Mask RCNN algorithm after the training regime de-
scribed previously described. The model exhibits good performance. The examples in Figure 6.3
have been chosen to highlights some interesting details. In the �rst test, the model was presented
with a challenging scene to analyse. It pictures a containership partly occluded by an icebreaker.
To achieve good performance the model would have to understand that there are only two ships
present and combine the two visible parts of the containership into one complete ship. The model
got halfway there, it successfully separated the icebreaker from the containership, but did not com-
bine the two visible containership segments into one ship. Instead it detected two containerships,
observe that the segments representing the detection has different colors. During the testing process
the model was subjected to many such examples, sometimes it performed correctly and sometimes it
got it wrong. During testing the model often performed better when the occluding object was small,
or when the two visible segments of the occluded object were connected. All the class predictions
in the image were correct, as were the predicted masks, if the previously discussed error is ignored.

In the second test, the image contains a large passenger ship and a sail boat. The sail boat is far
away and appears very small in the image. Still, the image is meant to represent a typical 'easy'
input image. The model performed well, by detecting all the objects in the image and predicting the
correct class as well as accurate instance masks. This is typical, the trained model handles simple
scenes like this one very well. When observing the ocean prediction it is clear that the predicted
mask does not reach all the way to the edges of the predicted bounding box, which is represented by
the dotted line. This issue remains for all predictions near the edges of the image.

In the third and �nal test on synthetic images, the model was presented with an image containing
many small boats as well as some terrain in the background. It correctly classi�ed all the small
boats (the small white one is actually a small ferry), but detected two separate instances of terrain.
This double detection error happen occasionally with the terrain class. It could probably be im-

54

(a) Sum of all training losses during training. (b) Class predictor loss during training.

(c) Bounding box predictor loss during training. (d) Mask predictor loss during training.

(e)RPN class loss during training. (f) RPN bounding box loss during training.

Figure 6.1: The loss-function values experienced during training. Loss values are plotted against the y-axis,
and the training epoch is increasing along the x-axis. The decreasing loss value indicates that the training
process is working.

55

(a) Sum of all training losses during training.
(On validation data)

(b) Class predictor loss during training.
(On validation data)

(c) Bounding box predictor loss during training.
(On validation data)

(d) Mask predictor loss during training.
(On validation data)

(e)RPN class loss during training.
(On validation data)

(f) RPN bounding box loss during training.
(On validation data)

Figure 6.2: The loss-function values experienced during training. Loss values are plotted against the y-axis,
and the training epoch is increasing along the x-axis. (On validation data) The decreasing loss value indicates
that the training process is working.

56

(a) Test input from synthetic dataset (b) Detections

(c) Test input from synthetic dataset (d) Detections

(e)Test input from synthetic dataset (f) Detections

Figure 6.3: Testing the performance of the instance segmentation algorithm.

57

proved upon by non maximum suppression, or by implemented a more advanced terrain generation
with varied textures. Also note that sometimes the predicted masks of separate detections overlap.
This often occurs with small boats like the ones visible in this example. This is because there is no
communication between the different �nal mask predictions. This issue could be reduced somewhat
with a �lter that always places object detections on top of the ocean detection. This would not re-
duce accuracy since the boats typically �oat on top of the ocean anyways. But the fundamental issue
would still remain, since it is inherit to the Mask RCNN architecture. Performing semantic segmen-
tation or panoptic segmentation1 instead would also remove this problem, since for those methods
each pixel can only be assigned one class. However, as mentioned in Section 2.1 semantic segmenta-
tion does not separate different object instances, this might make it unsuitable for many applications.

In addition to the tests on the synthetic dataset, the model was also exposed to some real world
images. It is important to note that the model has never been been trained on real world images
during the training process (Except the initial weights, which were pretrained on the COCO dataset)
and that no domain adaption has been performed. The results are shown in Figure 6.4. The �rst
image contains a clearly visible sailboat with two people on board. In the background there is ter-
rain. Note that the sky is not visible at all. For this image the model performed terribly, it mistook
the background terrain for sky, it classi�ed the sail boat as a tanker, and the two people on board
were classi�ed as tug boats. The red car on the beach is classi�ed as a motorboat, this might ac-
tually indicate a bias in the motorboat class because of the red color, and a portion of the beach is
labelled as an oiltanker. The good news are that the model at least detects objects in the image, it
is mainly the classi�cation that is incorrect. This image is very different to the ones it had trained
on, and as expected the model performs poorly. This example represents a very bad prediction result.

The model performs better on the second image. The image contains a clearly visible cruise ship
out at sea. The model correctly classi�ed the ship as a passenger ship, but unfortunately detected a
part of the ship as another ship. The predicted ocean mask is also not entirely accurate. This image
represents an image that is more similar to the one in the training data, and the model was expected
to perform better on it.

As described in Section 2.3.9, the Mean Average Precision (mAP) measurement is a common
way to describe the classi�cation accuracy of object detectors such as Mask RCNN. The model
trained in this experiment achieved amAP = 0 :8937with a IOU threshold equal to0:5 when tested
on the synthetic validation dataset. This means that if the detected object's predicted mask does
create a IOU with the ground truth mask of more than0:5 the detection is immediately written off
as wrong.

To gain further insights into the performance of the classi�er network the confusion matrix shown
in Figure 6.5 was created. Confusion matrices are explained further in Section 2.3.9. The ground
truth classes are shown along the x-axis, while the prediction class probability distributions are
shown along the y-axis. The �gure was generated by testing the network on all 1500 synthetic vali-
dation images and logging the predicted classes. The IOU threshold was set equal to0:5. During the
evaluation the model produced on average0:74 false positives per image. Note that non maximal
suppression was not active during the test, so this value could probably have been reduced.

1Panoptic segmentation is equivalent to semantic segmentation but also assigns each pixel to an instance, not just a class.

58

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	Introduction
	Background and motivation
	Objectives
	Contributions
	Outline

	Theory
	Computer Vision
	Machine Learning
	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Mask RCNN
	Feature Pyramid Network
	ResNet
	Training
	Overfitting
	Transfer Learning
	Performance Measurements

	Synthetic Dataset Generation
	Perlin Noise
	Normal Maps
	HSV Colorspace

	Explainable Artificial Intelligence
	Why Create Explainable AI Systems?
	What Is a Good Explanation?
	Interpretable Machine Learning
	Interpretable Instance Segmentation
	Jacobian Matrices
	Integrated Gradients
	Local Interpretable Model-Agnostic Explanations (LIME)

	Synthetic Training Data Acquisition
	Kongberg Cogs
	Synthetic Data Generation in Practice
	The Architecture for Dataset Generation
	Terrain Generation
	Handling Small Boats

	Kongsberg K-Sim
	3D Models

	Cogs or K-Sim as a Synthetic Dataset Generator?

	Experiments
	Experimental Setup
	Mask RCNN
	Robustness to Noise
	Feature Attributions

	Result and Discussion
	Mask RCNN
	Robustness to Noise
	Feature Attributions

	Conclusion and Further Work

