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Sammendrag

Denne masteroppgaven fokuserte på å beskrive og analysere en metallurgisk smelteovn
for produksjon av ferromangan (FeMn) legeringer. Den spesifikke utfordringen som blir
tatt opp i oppgaven er at det er vanskelig å vite den eksakte tilstanden til ovnen på grunn
av et begrenset antall målinger er tilgjengelig.

For å overkomme mangelen på direkte målinger ble en “finite element method” (FEM)
modell bygd for å innhente informasjon om forhold mellom indre parametere og elektriske
variabler i ovnen. I praksis simulerer FEM modellen de elektriske forholdene med en
spesifikk konfigurasjon av parameterne (geometriske parametere, materielle egenskaper) i
ovnen. FEM modellen er tung å kjøre, trenger en spesifikk programvare og bruker relativt
lang tid for å gi resultatene fra simulering.

En av ideene som ble utforsket i arbeidet var å lage data-drevne modeller av FEM
modellen. I denne sammenhengen ble en metamodell laget som en estimering av FEM
modellen for å få en raskere modell. I tillegg, så ble en invers metamodell bygd for å
finne den inverse sammenhengen mellom input og output, noe som FEM modellen ikke er
i stand til å gjøre. Ved å bruke den inverse metamodellen så kan ukjente tilstander i ovnen
bli funnet. Modellene kan bli brukt som et hjelpemiddel for å ta avgjørelser da modellen
innehar informasjon om ovnen. På denne måten kan modellene bli brukt til å sjekke om
modellene stemmer overens med operatørenes kunnskap.

Ikke alle inputene til metamodellene er målt i ovnen. Ved å bygge en estimator som kun
bruker variabler som blir målt som input, kan estimatoren bli brukt i sanntid for estimering
av den indre tilstanden til ovnen. For at estimatoren skal kunne brukes som et hjelpemiddel
for operatørene eller som en del av et kontrollsystem er det veldig viktig at estimatoren er
nøyaktig. Derfor ble estimatoren evaluert på ekte data. Evalueringen forteller hvor bra
estimatoren er, og til hvilken grad den kan brukes på en ekte ovn. Estimatoren ble prøvd
ut på ulike måter med at nye variabler ble lagt til som input for å se hvordan det påvirket
ytelsen på estimatoren.
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Abstract

This thesis focused on the description and analysis of the metallurgical furnace for the pro-
duction of the ferromanganese (FeMn) alloy. The specific challenge the thesis addresses
is the difficulty of knowing the exact conditions of the industrial furnace during operations
due to limited measurements available.

To overcome the scarcity of direct measurements, a finite element method (FEM)
model has been built to gain information regarding the relationship between the inter-
nal conditions of the furnace and the electrical conditions. In practice, the FEM model
simulates the electrical conditions for a specific configuration (geometrical parameters,
material properties) in the furnace. The FEM model is computational heavy, it requires
dedicated software and it uses a relatively long time to give the simulation results.

One of the ideas explored in this work is to obtain data-driven models of the FEM
model. In this context, a metamodel was built as an estimation of the FEM model that
runs much faster. An inverse metamodel was also built to give the inverse relationship
between input and output, which the FEM model is unable to provide. Thus, unknown
internal conditions can be predicted. The models can be used as an assistive tool for the
operators for making decisions as the models gain information of the furnace. In this way,
the models can be used to check if the models correspond to the operator’s knowledge.

Not all the inputs of the metamodels are measured in the plant. By building an es-
timator that uses only variables that are measured as input, the estimator can be used in
real-time for estimation of unknown internal conditions. For using the estimator as an as-
sistive tool or as a part of the control system, the estimator must be accurate. Therefore,
the estimator was assessed on real data. The assessment provides how good the estimator
is and state to what extent the estimator can be used on the real furnace. Different cases
were tested where new variables were included in the input. As the new variables do not
have measurement, the variables were estimated to see how the estimator will perform
with additional information.
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Chapter 1
Introduction

This thesis is the continuation of the work done in the project report “Metamodelling
of large ferromanganese furnaces”. It contributes to the competence project “Electrical
Conditions and their Process Interactions in High Temperature Metallurgical Reactors
(ElMet)”, a research project coordinated by NORCE [1, chap. 1]. In this context, NORCE
has developed an ad-hoc finite element method (FEM) model that describes the electrical
conditions in a large submerged arc furnace for the production of ferromanganese. The
main industrial challenge that drives the project is understanding what is going on inside
the furnace by combining data- and physics-driven models. In collaboration with NORCE,
this thesis focuses on contributing to the understanding of the process by analyzing simu-
lated data from the FEM-model, which can then give a greater knowledge of the process
and possibly optimize the control of the furnace [1, chap. 1].

Figure 1.1 visualizes and describes the project’s structure. The FEM model possesses
well-defined internal conditions of the furnace that gives the outcome of a simulation (1).
By utilizing statistical analysis tools, we construct a metamodel that links the inputs and
outputs and, in this way, unveils the relative importance of the parameters in the FEM
model (2). Importantly, the metamodel can run in milliseconds (i.e., compute outputs
starting from some given inputs in a computationally fast way), and in the process, give
not only predictions but also predictions intervals. These are favorable properties that
the FEM model does not possess. Then we perform an inverse analysis, and in this way,
provide an inverse metamodel that links the outputs to the inputs (3). By making an inverse
metamodel that uses the same observables as the real furnace, this inverse metamodel can
predict the furnace’s internal conditions using real data (3’). With the knowledge gained,
new control strategies can be implemented to monitor, control, and optimize the furnace
(4) [1, chap 1].

1



Chapter 1. Introduction

Figure 1.1: The project structure [1, p. 2]. As a first step, a FEM model is used to simulate observ-
able outputs by defining opportune internal working conditions of the furnace (1). The second step
is using the simulated output data to build a metamodel of the FEM model (2). Third, this simulated
data is used to obtain an inverse metamodel, i.e., a function that takes some given observable outputs,
and associates to them the most likely internal working conditions that led to that outputs (3). This
means that the inverse metamodel can map real data into estimates of the internal conditions of a
real furnace (3’). This information may then be used to monitor, control, and optimize the furnace
itself (4).
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1.1 Confidentiality

1.1 Confidentiality
In respect to the stakeholders of the project, some of the values in this report have been
obfuscated due to confidentiality. This has been solved by choosing a not given reference
value for all variables that contain confidential information. In the report, the values will
be given as a percentage of the reference. For example, if one variable has a reference
value of 100, and the actual value of the variable is 50, the value given in the report is 50
%. The not given reference values are set for the variables: current, resistance, reactance,
voltage, active power, and holder position.
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Chapter 2
Project structure

Chapter 1 presented the overall plan. This chapter describes the project structure in more
detail. The project started in the summer of 2019 with a visit to a plant in Sauda. This visit
focused on talking with professionals within the control and metallurgy of the furnace,
with the purpose of gaining an overview of the furnace’s overall control strategy, and a list
of the measurements that are available at the plant. The information from the plant were
supplied with internal documents on the furnace. In the autumn of 2019, the work started
by modeling the FEM model’s direct and inverse metamodels. This work is continued
in this thesis. With respect to the project work, the most important novel contributions
brought by this thesis are:

1. Make a direct and inverse metamodel of the FEM model using a partial least square
regression (PLSR) approach. More precisely:

(a) Create a PLSR metamodel that links the inputs and the outputs of the FEM
model, creating a function that is a representation of the FEM model but that
is at the same time computationally fast to be executed.

(b) Create an inverse metamodel that links the outputs to the inputs of the FEM
model. As the input of the FEM model includes properties that are unknown
in operation of the real furnace, the inverse metamodel can extract valuable
information that can gain knowledge about the furnace.

2. Make an estimator of the FEM model that only uses electrical conditions that are
known in a real furnace to predict interesting conditions given by the FEM model.
In this way, the estimator can use real-time measurements of the real furnace to
predict the furnace’s internal conditions. More precisely:

(a) The estimator does not link the input to the output as the metamodels. The
input of the model are variables in the FEM model that are measured in the
real furnace, and the output will be interesting parameters in the FEM model.
The parameters are interesting in the sense that they are unknown for a real
furnace. With an accurate prediction of the unknown internal conditions, one
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can gain knowledge, and possibly implement the estimator as a part of the
control system for improved control of the furnace.

This means that the thesis’s goal is to make a direct metamodel, an inverse metamodel, and
an estimator. These models will be based on the FEM model and will thus represent the
FEM model. Representative simulations are done using an experimental design approach
to make data-driven models of the FEM model. The design is made in such a way that the
simulations will cover most of the furnace operational area.

The models are assessed using classical statistical performance indexes and other ad-
hoc features. Thus, it is possible to give indicators of how good, for example, the metamod-
els represent the original FEM model. Besides this, as the direct and inverse metamodels’
main purpose is to both represent the FEM model (one in the input→ output way, and the
other vice versa), they have also been implemented in a specially designed user-interface
that is meant to help plant owners to gain insights in the ways the furnace works. The in-
terface moreover displays prediction intervals for the predictions with a given confidence
interval, to provide certainty in the prediction.

In the same way as the metamodels, the estimator will be assessed using performance
indexes and other ad-hoc features. The estimator is built on a data foundation based on
simulations of the FEM model. This means that it is a representation of the FEM model,
and the assessment gives an indication of how well the estimator is recreating the FEM
model. As the estimator should not only be used for representing the FEM model, but
be used on the real furnace, the estimator should be further assessed. The FEM model
is also a model of the real furnace, and contains simplification and other factors that can
make the FEM model an inaccurate representation of the furnace. Therefore, to make a
more thorough assessment, the estimator is tested on real data to explore the performance
of the estimator on a real furnace. As there are almost no measurements of the estimated
variables, it is hard to compare the estimations with reality. Therefore, knowledge about
the processes occurring in the furnace is used to see if the behavior of the estimator corre-
sponds with the understanding of the furnace.
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Chapter 3
Theory

This chapter explains the essential theoretical concepts used in the thesis. The theory
mainly focuses on modeling and then specifically on partial least square regression (PLSR).
Formulas for finding confidence intervals for parameters and estimations will be given and
validated.

3.1 Direct and inverse modeling

Consider a system of the form:

y(k) =

∫ k

0

g(k, τ)u(τ) + v(k), (3.1)

where y(k) is the outcome of a measurement system, u(τ) is the input of the system,
g(k, τ) is a known function describing the operator transforming the input to the noiseless
output and v(k) is the measurement noise. In direct modeling, the aim is to estimate
g(k, τ) such that the output, y(k), can be estimated using the input u(τ). In the inverse
modelling, the aim is to estimate the inverse relation of g(k, τ) such that the output of the
system, y(k), can be used to estimate the input u(τ).

3.1.1 Metamodeling

A metamodel is a data-driven model based on a complex mathematical model (i.e., a model
of a model). Metamodeling aims to obtain an approximated model that is more computa-
tionally effective than the original model. This makes the model more practical to use and
to implement in, for example, control. Typically, a mathematical model gives a system on
the form given in Equation 3.1. This means that the metamodel uses the input, u, to predict
the output, y. An inverse metamodel gives the inverse relation, a model that predicts the
input, u, given the output y [2].
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3.2 Partial least squares

The partial least square regression (PLSR) is a way to predict variables using a linear
approach. The PLSR model has a training set consisting of xk variables (k = 1, . . . ,K)
and ym variables (m = 1, . . . ,M ) with a finite number of samples, N . The training set,
therefore, consists of a matrix X with a size of (N × K) and a matrix Y with a size of
(N ×M ). The PLSR finds new latent variables for X that are used in predicting Y , as
shown in Figure 3.1. The underlying model for PLSR is given by [3]:

X = TP T +E =
A∑
a=1

tap
T
a + E (3.2a)

Y = UQT + F =

A∑
a=1

uaq
T
a + F (3.2b)

where ta is theX-scores and pa is the corresponding loadings ofX . In the same way, ua
is the Y -scores and qa is the corresponding loadings of Y . By choosing the number of
components in the model less than the number ofX variables,A<K, gives a compressed
regression. The scores can be described as a summary of the data and can be used for
finding clusters, outliers, and interesting patterns. The loadings gives the structure of
the X and Y , and can be used to see correlations between variables. Highly correlated
variables will cluster together for all dimensions. The purpose of the PLSR is to maximize
the covariance of T and U , such that T can be used as a predictor of Y . In this way, a
relation between the X and Y variables can be obtained given by the linear PLSR model
[3] [4, Chap. 13.3]:

Y = XB + b0 +E (3.3)

where B is a matrix containing the regression coefficients of the model, b0 is the inter-
ception vector and E is the error matrix. The regression coefficients can be used to see
the relative importance for the variables in predicting Y . In this thesis the SIMPLS [5]
algorithm is used for estimating the parameters in the PLSR.

Figure 3.1: Visualization of how the vectors U and T are chosen to get maximum covariance
between the vectors (based on Lambert [6]).
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3.2.1 Backnormalizing the model coefficients
Since the dataset often has variables with different units of measurements, it is often bene-
ficial to normalize the data before performing PLSR. In the PLSR, theX and Y variables
are normalized, such that each column of the respective set has a mean value of 0 and a
standard deviation of 1. This means that the matrix B and the interception term b0 given
in Equation 3.3, are also corresponding to the normalized set. We are therefore to make
an expression with βraw and β0,raw that can predict y using x without normalizing the
vectors. From the PLSR model we really obtain the equation where the B and b0 are
normalized:

ŷnorm = xnormβ̂norm + β̂0,norm, (3.4)

where ynorm and xnorm are given as following:

ŷnorm = (ŷ − ȳ)diag

(
1

σy,i

)
and xnorm = (x− x̄)diag

(
1

σx,j

)
,

where i denotes the variable number in the y vector and j denotes the variable number in
the x vector. By substitution, we can extract the backnormalized β̂raw and β̂0,raw:

(ŷ − ȳ)diag

(
1

σy,i

)
= (x− x̄)diag

(
1

σx,j

)
β̂norm + β̂0,norm (3.5a)

ŷ = x diag

(
σy,i
σx,j

)
β̂norm︸ ︷︷ ︸

β̂raw

−x̄diag
(
σy,i
σx,j

)
β̂norm + diag (σy,i) β̂0,norm + ȳ︸ ︷︷ ︸

β̂0,raw

(3.5b)

The expression can then be rewritten as:

ŷ = xβ̂raw + β̂0,raw (3.6)

This gives us a faster regression model where there is no need for normalizing the x and
y for each prediction.

3.2.2 Estimating the confidence intervals for the model coefficients

The confidence intervals of the β̂ coefficients are a way of expressing the uncertainty in
our estimates. More precisely, and from intuitive perspectives, a confidence interval gives
a range of values for an unknown parameter with an associated confidence level that the
true parameter is in the given range. Formally speaking, see Dekking et al. [7, Chap. 23].

For the specific case of confidence intervals in PLSR settings, Nomikos and MacGre-
gor [8] have developed an approximate confidence interval for β̂, which can be derived in
a computationally efficient manner. More precisely, the estimated variance of β̂ is given
as:

Var(β̂) = W (P TW )−1(T TT )−1(W TP )−1W T︸ ︷︷ ︸
Z

σ2, (3.7)
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where W is the weight matrix of the X set in the PLSR, P is the loading matrix for the
X set in the PLSR and T is the score matrix for the X set in the PLSR. The variance σ2

can be estimated by [8]:

σ̂2 =
1

N −A− 1

N∑
l=1

(yl − ŷl)2, (3.8)

whereN is the number of training cases, andA is the number of components in the PLSR.
We now assume that the deviations of Y around its expectation is Gaussian which gives
us the following expression for the confidence intervals for the β̂:

β̂i ± t(α/2)N−A−1σ̂
√
Zii. (3.9)

Validating the confidence intervals

In this section, we use Equation 3.9 to validate the estimated confidence intervals using a
test. As the confidence interval (CI) given in equation 3.9 is an approximation, an algo-
rithm is designed to test the accuracy of the CI. In the first step, the algorithm creates a
linear model containing the β parameters. An estimated model is then found by perform-
ing a PLSR step on the simulated data for X and Y . The CI’s can then be computed for
the β̂ and, in this way, one can detect whether the true β is outside the CI. The CI can
be estimated by doing this in a for loop for a representative number of times. By gener-
ating the model inside of the for loop, 1000 different models are built, meaning that the
validation takes into consideration different models.

1. For i = 1, . . . , 1000

(a) Generate a random β for a linear model y = Xβ + error.

(b) Generate randomly aX and error set used to calculate a y set.

(c) Make a regression model based on theX set and y set which gives an estimate
β̂.

(d) Compute the CI of 95 % for each β̂ component.

(e) Count how many times β is outside of the CI for each component.

2. Return how many times β is outside the CI as a percentage for each component.

The results of the test given in Figure 3.2 was satisfying with the simulations gathered
around 5 % outside the CI’s.
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Figure 3.2: Histogram of how often the real beta is outside of the calculated beta confidence intervals
for 1000 simulations with 10 beta parameters.

3.2.3 Estimating the prediction intervals

The uncertainties of β̂ give a good measure of the uncertainty in the model. But, when
using a new set of predictors, x0, it is useful to know the prediction intervals for the pre-
diction, f̂0(x0) = xT0 β̂. The expression for the prediction interval for a single prediction
is given by [8]:

f̂PI = f̂0 ± t(α/2)N−A−1σ̂

√
1 + t̂(T TT )−1t̂T (3.10)

where x0 is decomposed as x̂0 = t̂P T . T is the score matrix for the X set and P is the
loading matrix for theX set. The t(α/2)N−A−1 is the critical value of the Studentized variable
with N −A− 1 degrees of freedom at significance level α/2, and σ̂ is given by Equation
3.8. In the SIMPLS algorithm one tries to find R such that t = x0R, where R can be
calculated by R = W (P TW )−1. By substitution this gives t = x0W (P TW )−1. This
can then be inserted into the Equation 3.10 which gives:

f̂PI = f̂0 ± t(α/2)N−p−1σ̂
√

1 + x0W (P TW )−1(T TT )−1(W TP )−1W TxT0 (3.11a)

f̂PI = f̂0 ± t(α/2)N−p−1σ̂
√

1 + x0ZxT0 (3.11b)

As Z can be calculated once, this gives a fast calculation of the prediction interval.

Validating the prediction intervals

In this section, we use the prediction interval (PI) formula presented in Equation 3.10.
Since the formula contains simplifications, we will test whether these simplifications in-
troduce non-tolerable distortions for random PLSR models. The algorithm is similar to the
algorithm for validating the confidence intervals for β parameters. In the same fashion,
it finds a true model containing β parameters. An estimated model is found using PLSR
based on simulated data of the true model. The PLSR model is then predicting ŷ0 with
a 95 % confidence level based on new simulated x0 data. By extracting the number of
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times the true y0 is outside the PI one can find the predicted confidence level for the given
model. The algorithm was performed 100 times to get a representative test for different
models.

1. Generate a random β for a linear model y = Xβ + error.

2. Generate randomly aX and error set used to calculate a y set.

3. Make a regression model based on theX set and y set which gives an estimate β̂.

4. For i = 1. . . 1000:

(a) Generate a new input, x0.
(b) Regress x0 to find an estimate ŷ0.
(c) Compute the PI of 95 % for each ŷ0.
(d) Count how many times y0 is outside the PI.

5. Return how many times y is outside the PI as a percentage.

The results of the test are given in Figure 3.3, and were deemed as satisfying. We can
indeed see that out of the hundred simulations, there exists a clustering around 5 %. It
should also be commented that for some models, the confidence level is calculated to be
around 10 %.
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Figure 3.3: Histogram of how many % of the times a real y value is outside a prediction interval for
100 models with 1000 simulations each.

3.3 Model selection and validation
Friedman et al. [9, p. 219] states: “The generalization performance of a learning method
relates to its prediction capability on independent test data”. Practically speaking, a data-
driven model must be tested on “unseen” data to assess the performance. Unseen data
can be defined as data that the model has not used in training the model. This section
explains different methods for assessing the performance of a data-driven model and why
the assessment is important.
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3.3.1 bias-variance tradeoff in model order selection
All models presented in this thesis are built using a PLSR approach. A PLSR model has
one complexity parameter: the number of components used for the model. The number of
components should be chosen such that the model not only performs well on the training
data, but also performs well for unseen data. Intuitively, using the maximum number of
components in the model can give a perfect fit for the training data, but the performance on
unseen data can be poor. This is the bias-variance tradeoff [9, chap. 2.9]. A good choice
of the number of components is when an increase in the number of components are not
giving a significantly increase in the performance of the model.

Mathematically, the bias-variance tradeoff can be presented as given in Friedman et al.
[9, chap 2.9]:

Firstly, we can define a training set consisting of a set of points xi, ..., xn and real
values yi associated with each point xi. We can assume that there exists a function given
by y = f(x) + ε, where ε is noise with zero mean and variance σ2. The best estimator,
f̂(x), can be found measuring the mean square error between y and f̂(x). To obtain an
estimator that is generalizable for unseen data, we want that (y − f̂(x))2 is minimal both
for the training samples, xi, ..., xn, and for points outside our sample. The expected error
on an unseen sample x for the estimator f̂ can be decomposed as follows:

E[(y − f̂(x))2] = (Bias[f̂(x)])2 + V ar[f̂(x)] + σ2 (3.12)

where Bias[f̂(x)] = E[f̂(x)]−E[f(x)] and V ar[f̂(x)] = E[f̂(x)2]−E[f(x)]2.
Figure 3.4 visualizes the bias-variance tradeoff. By increasing the model complexity

(i.e., for a PLSR model: increasing the number of components), the prediction error de-
creases for the training set, while the prediction error increases for the test set. Having a
low bias and high variance is often referred to as “overfitting”. Practically speaking, this is
when the model fits the training set very well, but the performance on an unseen test set is
worse. The opposite effect is called “underfitting”. This means that the model complexity
is too low for giving a good representation of both test and training data. See Burnham
and Anderson [10, pp. 29–35] for more details regarding under- and overfitting.

3.3.2 Validation of a model
The validation of a model is important in assessing the model’s performance on unseen
data. There are several ways to validate the model. If the amount of data is large, it is
possible to split the data into a training, a validation, and a test set. In this case, we fit the
models to the data in the training set, and validate the model on the validation set. The
model with the best fit on the validation set is selected. The final assessment of the chosen
model is done on the test set [9, Chap. 7.2].

Using a validation set for assessing the performance of the model is the ideal case.
However, if the amount of data is scarce, it is possible to use cross-validation. K-fold
cross-validation uses a part of the available data in the training set to fit the model, and a
different part to test the model inK iterations. This means that the data is split up into k =
1, 2, ...,K folds. For the kth part, the model is fitted using the otherK−1 parts of the data,
and calculates the model’s performance on the kth part of data. When the performance
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Figure 3.4: The prediction error for the test and training set as a function of model complexity
(based on Friedman et al. [9, p. 38].)

is found for each k, the mean of the performance is calculated [9, Chap. 7.10.1]. A 3-
fold cross-validation is visualized in Figure 3.5. The case when K equals the number of
samples, N , is known as leave-one-out cross-validation [9, Chap. 7.10.1].

Test Training Training

Training Test Training

Training Training Test

Iteration 1

Fold 1 Fold 2 Fold 3

Iteration 2

Iteration 3

Figure 3.5: The concept of K-fold cross-validation using three folds.
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Chapter 4
Details about the modeled FeMn
furnace

This chapter presents general information regarding the FeMn furnace, and highlights the
challenges of controlling the furnace. Generally, the reactions that take place in the furnace
are well known. What makes the control of the furnace difficult is that the furnace’s actual
condition at a given time is hard to measure. The material composition is not uniform,
and the reactions happens at different rates. This means that the operators do not have
information that can be valuable in controlling the furnace. The main focus will be on the
control aspect of the furnace, and less from the metallurgical side. This chapter is based
on meetings with professionals with long experience of FeMn furnaces from a visit to the
plant in Sauda, and the internal document by Asphaug [11]. A summary of the visit can
be found in the internal document [12].

4.1 A brief overview of the considered FeMn furnace

Firstly, it is essential to know what manganese is. Manganese is a metallic element with
the chemical symbol Mn. The appearance of the manganese metal is gray-white and is re-
sembling iron, but it is harder and very brittle. Manganese and iron also appear very close
in the periodic system of elements, with atomic numbers 25 and 26, respectively [11,
Chap. 1.1]. The most common use of manganese is as a desulfurizing and deoxidizing
agent in steelmaking for increasing hardenability [13]. The manganese used in steelmak-
ing is mostly in the form of ferroalloys, as ferromanganese (FeMn) or silicomanganese
(SiMn) [11, Chap. 1.1].

Large modern electrical furnaces for the production of FeMn are rated at more than 40
MW and have a size of 10 - 15 meters in diameter [1]. The furnaces are three-phase with
three “Søderberg” electrodes of a size of 1.5 - 2 meters in diameter going into the furnace.
The temperatures in the furnace can go up to 1700 °C [11, Chap. 1.3].

Manganese ore is the main raw material fed to the furnace [11, Chap. 4.1.1]. As
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manganese cannot be found in its pure form in nature, the ore contains other metals and
minerals depending on the type of ore. If it is not used self-fluxing ore, it is needed flux
material in the charge to obtain desired properties as melting point, viscosity, chemical ac-
tivities and electrical resistivity [11, Chap. 2.3.1]. The most commonly used flux materials
are limestone (CaCaO3), dolomite (CaMg(CO3)2), olivine ((Mg,Fe)2SiO4) and quartzite
(SiO2). The last main group of raw materials used in the furnace is the reductants. In High
Carbon (HC) FeMn production, coke is the most used reductant [11, Chap. 4.1.1].

The different raw material components that are to be smelted in the furnace are pro-
portioned out according to a recipe given by the metallurgists. The materials are weighed
out, mixed and transported to hoppers above the furnace, where they are fed through the
cover [11, Chap. 1.3].

The raw materials at the top of the charge inside the furnace are heated by the hot gases
rising from the reaction zone deeper in the furnace. Here, higher oxides partly react with
CO to CO2 and partly dissociate. The reduction of the higher oxides with CO is exothermic
and adds heat to the process [11, Chap. 1.3].

The final reduction from MnO to Mn takes place with solid carbon in the “coke bed”.
The coke bed is the area of molten slag and coke mixture. As the coke bed is soaked with
slag, it acts as a resistance element between the electrode and the metal bath. Therefore,
this is the region of the furnace where most of the electric energy dissipates. In this way, the
size and properties of the coke bed is vital in giving the electrical conditions in the furnace.
The gangue (undesirable oxides in the manganese ore) and flux materials such as CaO,
MgO, and Al2O3 all require higher temperatures than MnO for reduction to metal, and
ends up in the slag without being reduced. For iron, the reduction of FeO to Fe takes place
at a lower temperature than the reduction of MnO to Mn, which means that practically
all the iron ends up in the metal. Unfortunately, the undesired oxides of phosphorus and
arsenic easily reduce and end up in the metal. For the production of HC FeMn, the alloy
typically consists of 79% Mn, 13 % Fe, 7 % C, and minor amounts of Si, P, and S [11,
Chap. 1.3].

The melted metal and slag are tapped from the bottom of the furnace. Since the slag is
lighter than the metal, it floats atop of the metal and can easily be separated from the metal
[11, Chap. 1.3]. The metal is cast into “sandbeds”, and once the metal has cooled suffi-
ciently, it goes through a crushing and screening process to meet the sizing requirements
for the various steel customers. The slag is often processed and reused in the production
of SiMn alloy [1, Chap. 3.1] [12, Chap. 2]. Figure 4.1 gives an illustration of the furnace.
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Figure 4.1: The concept of a ferromanganese furnace with three electrodes. The manganese ore,
coke and fluxes are smelted in the furnace and tapped at the bottom as metal and slag. Figure
courtesy of Eramet Norway.

4.2 Notes about the furnace’s control system
A general description of the FeMn furnace has now been provided. We will now go deeper
into the furnace’s control aspect and go into each part of the block diagram of the furnace
given in Figure 4.2.

4.2.1 The reference signals
A reference is set on the total power, and resistance and holder position for each electrode.
The reference on the resistance and total power gives the wanted conditions in the furnace.
The holder position’s reference is often in the middle of the span of what the holder can
move up or down. That is to give the maximum allowance to the movement of the electrode
both up and down.

4.2.2 The purpose of the control system
The controller minimizes the error between reference and measurement of total power and
the resistances. Few details of the controller are known because the controller is regarded
as an “industrial secret”. What is known is that the controller gives the voltage on each
electrode to reach the desired reference of the total power. As the voltage is given in
distinct steps (voltage transformer), the power reference cannot be met exactly. The power
setpoint is, therefore, less important than the reference of the resistances. The voltage
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Controller Furnace
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Figure 4.2: The block diagram of the furnace. The block diagram shows that the metallurgist is
a part of the feedback loop. The metallurgist has the role of ensuring a stable furnace, and have
two control actions: (1) give the material composition (M ) applied to the furnace and (2) change
the setpoints on the resistance (Rr), power (Pr), and holder position (Hr) for each electrode. The
controller is designed to keep the error (e) minimized between the setpoints and measurements of
resistance, power and holder position given some constraints. The controller gives the electrode
position (pr) and the step on the voltage transformers for each electrode, which gives the furnace’s
electrical conditions. The disturbance (d) of the furnace is regarded as everything chemical reactions
that make the furnace hard to control. The output is divided into electrical conditions (ye) and
the metallurgical conditions (ym). The metallurgist uses both outputs in making decisions. The
controller uses only the measured resistance (Rm), power (Pm) and holder position (Hm) for each
electrode of the electrical variables.
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transformers can be asymmetrical, such that the voltage transformers are on different steps,
but they have a limitation on the maximum difference in the steps.

The resistance is regulated by moving the electrode up or down. There is an upper and
lower boundary on the resistance. If the measured resistance goes below the lower bound-
ary (i.e., the resistance is lower than wanted), the electrode is raised, and the resistance
increases. Otherwise, if the measured resistance is above the upper boundary (i.e., the
resistance is higher than wanted), the electrode is lowered, and the resistance decreases.

In addition to change in holder position, the electrode position is given by the “slip-
ping”. The slipping is primarily to compensate for the electrode consumption during oper-
ation, and over a long period of time, the slipping must be equal to the total consumption.
In the short period, however, one can modify the slipping rate to help to keep the holder
in the optimal central position. The frequency of the slip cycles is increased or decreased
based on the actual holder position versus a setpoint for the holder position. For example,
if the holder position is near the top position, the slipping frequency is slowed down, and
if the electrode is below the setpoint, the slipping frequency increases. This is to keep the
holder position at the reference without affecting the resistance in the furnace.

What is described above is implemented in an automatic control system. But the met-
allurgists control a big part of the furnace. They specify the amount of charge material and
its composition loaded into the furnace. The material gives the conductivity in the furnace
and influences the electrical conditions in the furnace. In this way, the control system is
partially “manual”. The electrical control differs a lot to the chemical control in a time per-
spective. The electrical conditions are much faster (electrodes lift in minutes) compared to
the chemical control by changing the composition of the charge. It takes hours/days before
the mix with new composition reaches the reactive zones in the core and starts affecting
the process. In this section, the metallurgists part in the control system is not described in
detail.

4.2.3 The actuation system
As explained in Section 4.2.2, we have three control actions that are possible [11, Chap. 5.1]:

1. Changing electrode position to give the wanted resistance.

2. Changing the step on the voltage transformers to give the wanted power.

3. Changing the amount of charge material and its composition to give the conductivity
in the furnace.

The electrode position can be changed by regulating the holder position and slipping cycle.
A big issue is that there is no measurement of the electrode position, which makes the con-
trol of the furnace challenging. We note that the slipping rate and holder position is known,
but the electrode consumes in the furnace due to chemical reactions. This means that the
positions of the electrodes’ tips are unknown. To compensate for the fact that the elec-
trodes’ losses are unknown, the electrode’s consumption is estimated, and the electrode
slipped according to the estimation. Note that to the best of our knowledge, estimating the
positions of these tips accurately is yet an open problem, since the current solutions do not
meet the accuracy requirements that are wished by the plants’ managers and operators.
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4.2.4 The furnace
The system controlled is the furnace. See Section 4.1 for more information regarding the
furnace.

4.2.5 Some notes about the disturbances
The disturbances of the furnaces makes the control of the furnace difficult. All reactions
in the furnace are regarded as a disturbance that influences the material distributions and
the electrode positions. Since the material distributions and electrode positions impact the
electrical conditions, the disturbances also impact the electrical conditions.

The tapping of the furnace occurs at regular intervals. During tapping, the amount of
metal and slag decreases, which affects the conductivity in the furnace. Tapping inter-
vals are known, but how exactly the tapping influences the conditions in the furnace are
uncertain. Therefore are the tapping cycles regarded as a disturbance of the system.

4.2.6 The available measurements
The furnace’s output is all electrical variables measured in and around the furnace (volt-
ages, currents, resistances, reactances, powers), temperature sensors in the lining and bot-
tom of the furnaces, gas measurements, and pressure measurements. Not all the electrical
variables are measured directly, and some of them are measured inaccurate. The electrical
measurements are presented below:

Voltage

It is inaccurate to measure the furnace’s voltage because the strong alternating magnetic
field around the furnace induces currents in any measuring circuits. The most used method
is to measure the voltage through the Bøckman principle, and is given by Asphaug in the
following way:

Three measuring leads in approximately 120° symmetry are used to reproduce the
furnace bottom potential above the furnace, where it is connected to the star point
above between the electrode voltages. The idea is that the voltages induced in the
three measuring leads will compensate each other. Deviation from ideal 120° sym-
metry which may be necessary for practical reasons is compensated by adjusting a
resistor network connecting the three leads [11, p. 51].

Power

The active power (P ) in the furnace is found using voltage (U ), current and phase angle
(θ) in a power measuring converter. The equation is given as [11, Chap. 5.2.1]:

P = UI cos(θ) (4.1)

This means that the power is found based on the voltage, which is an inaccurate measure-
ment.
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Figure 4.3: Visualization of the Bøckman principle. The bottom voltage is moved to an area with
weak magnetic fields above the furnace using a three-lead compensating network [11, Chap. 5.2.1].
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Current

Accurate measurement of currents is not possible with current transformers because of
high currents. This is, however, not a problem as the currents can be derived from the
primary side without loss of accuracy [11, Chap. 5.2.1].

Resistance

The resistance measurement is complex. The resistance between each electrode and the
furnace bottom should be known to control the electrical conditions in the furnace. To
determine the resistance, we need the active power obtained in by the power (P ) measuring
unit, which is given in Equation 4.1 and the current (I). The equation can then determine
the resistance [11, Chap. 5.2.1]:

R =
P

I2
(4.2)

This means that the resistance is found based on the power, which again is based on the
inaccurate measurement of voltage.

Reactance

The reactance (X) can be calculated using electrode current (I), electrode voltage (V ) and
electrode power (P ) by the formula [11, Chap. 5.2.1]:

X =

√(
V

I

)2

−
(
P

I

)2

(4.3)

This means that the reactance is found based on the voltage, which is an inaccurate mea-
surement.

4.3 A qualitative analysis of the dynamics of the FeMn
furnace

A qualitative analysis of the FeMn furnace’s dynamics is performed to gain a deeper un-
derstanding of the various dynamics of the furnace. This analysis will show the different
span of time constants that occurs in the furnace.

4.3.1 Dynamics of the thermal phenomena
In January 2019, a short stop (approx. 400 min) due to technical necessities was exploited
to collect the data needed to determine if and where heat generated by Eddy currents in
the steel shell can be detected. The underlying assumption is that to have any chance to
carry information about the induced currents; the temperature profiles must react fast to
shutdowns and change in currents [14].

The results from the experiment showed that some temperature probes responded both
to the shutdown and restart. In Figure 4.4, two representative cases of the probes are
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shown. The plot shows that Sensor 1 reacts on the shutdown while Sensor 2 does not seem
to be influenced by the shutdown. Since all electrical conditions in the furnace are reduced
during shutdown, it indicates that Sensor 1 correlates with the electrical conditions. This
means that Sensor 1, and the equivalent sensors, are sensitive to the Eddy currents.

The problem with the temperatures is that they have a very long time constant. If we
assume that the temperature has reached its peak at the end of the time-series, the time
constant of Sensor 1 is 320 minutes. In total, the sensor 1 uses 16 hours and 50 minutes to
reach the steady-state after shutdown.
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Figure 4.4: The dynamics of two temperature sensors over a period of days. Sensor 1 reacts on
a shutdown of the furnace, while sensor 2 does not. The values on the y-axis are removed due to
confidentiality.
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4.3.2 Dynamics of the electrical phenomena
The electrical conditions have much faster dynamics than the temperatures. This is clearly
seen in the Figure 4.5 where we look closer to the restart of the furnace in the time-series.
All electrical variables reach the steady-state at the end of the shutdown, visualized by the
grey area. Due to that the sampling rate is each fifth minute, the response of the electrical
variables are not accurately shown in the figure. It is also unknown how the restart is
performed. Typically, the furnace is gradually restarted and does not go directly from
shutdown to full operation. This is another reason that the responses are not accurate in
the plot. It should also be noted that the end of the shutdown is here defined as when the
current reaches a value of full operation. Even though the responses are not believed to
be accurate in the plot, the plot shows roughly the response of the variables. It can be
concluded that the electrical variables use a maximum of 15 minutes to reach the steady-
state at restart. The use of maximum is due to that it is unknown if the restart is gradually
or not. If the furnace restarts gradually, it is assumed that the electrical variables’ response
will be faster.
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Figure 4.5: The response of the electrical conditions due to the restart of the furnace. The values on
the y-axis are removed due to confidentiality.

4.4 Challenges of controlling the furnace
A detailed description of the furnace is presented in the previous sections. The main chal-
lenges are underlying in the description, but will in this section addressed. The challenges
can be addressed as [11, Chap. 5.1]:

1. It is hard to know the exact condition of the furnace because of limited measure-
ments of the furnace.

2. The processes that occur in the furnace have very long time constants. A change in
the charge material takes considerable time before it affects the processes because
of the large volume of masses involved.

3. There are long time delays in the system. At a change in the recipe, it takes time
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before new materials are weighed out, transported to a furnace hopper, and finally
reaches the top of the furnace.

4. The raw materials’ properties can vary, and the materials are most often not uni-
formly distributed in the furnace.

It is the first addressed challenge that drives this project. Several unknown conditions of the
furnace would ease the furnace’s control by knowing more about the conditions. Important
variables such as the electrode position, shape and conductivity of charge material and
coke bed, are unknown. These variables give the resistance and conductivity in the furnace
and influence the electrical conditions considerably.

A Finite Element Method (FEM) model is presented in the next chapter to gain more
knowledge about the conditions of the furnace. The FEM model gives valuable relations
between variables in the furnace, which can be used to gain valuable information on the
furnace’s unknown conditions.
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Chapter 5
A Finite Element Method model of
the FeMn furnace

In this chapter, a Finite Element Method (FEM) model is presented. The FEM model gives
valuable relations between variables in the furnace, which is useful for gaining information
about the FeMn furnace. The choice of inputs and outputs of the model are reasoned to
give a good representation of the FeMn furnace. An experimental design is made and
analyzed to give a representative simulations of the furnace. The database generated will
be the foundation for the PLSR models that are presented later in the thesis.

5.1 A brief description of the FEM model
A 3D Finite Element Method (FEM) model was implemented in COMSOL Multiphysics
5.4 with the Magnetic and Electric Fields interface [15]. The low-frequency Maxwell
equations are solved using a potential formulation for the equations. The equations are
discretized with the finite-element-method using quadratic elements. The model is derived
from what is presented in Herland et al. [16]. Figure 5.1 shows the FEM model of the
FeMn furnace, where some parts of the model are omitted.

The model is parametrized to describe different conditions (material distributions, ma-
terial properties, and electrical conditions) in the furnace. The model is static and does,
therefore, not capture the transients of the variables. This means that the model, in princi-
ple, is calculating the steady-state condition of the variables.

5.1.1 Simplifications of the FeMn furnace

The real FeMn furnace is a system of various dynamics. It has electrical variables with
fast dynamics and variables such as material distribution and temperature with slower
dynamics. As the FEM model calculates the steady-state of the variables, it ignores how
the variables reach the steady-state, it ignores the dynamics. Since most of the output
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Figure 5.1: The interface of the FEM-model of a FeMn furnace. The three electrodes in the furnace
are shown where some part is omitted to shows the different zones. Under the two closest electrodes,
the corresponding coke beds are shown with the charge material lying on top.

variables in the FEM model are electrical and have fast dynamics, the FEM model gives a
fair estimation.

The FEM model uses several simplifications and disregards many factors in the furnace
that are not electrical. The FEM model disregards all thermodynamics, which plays a
big part in the conditions in the furnace. For example, it disregards the distribution of
materials in the furnace, chemical reactions and other processes in a real FeMn furnace.
It also ignores the inputs and outputs of the FeMn furnace. The materials loaded into the
furnace and the tapping of the furnace are excluded in the model.

The FEM model simplifies the shape of the furnace. For example, it is known that
some lining has eroded over the years, but the model assumes no erosion. The furnace also
excludes the tapping holes which influence the electrical conditions. All the simplifications
mean that the FEM model is not a perfect representation of the FeMn furnace.

5.2 Digging into the details: the FEM model input

Among the many parameters that can be evaluated in the FEM model, we focused on the
investigation of 12 degrees of freedom. That means that it is possible to use 12 different
parameters in the calculations of the FEM model. The input parameters are chosen such
that the FEM model represents a real furnace as good as possible. The inputs of the model
are given in Table 5.1. The table includes 13 variables which exceeds the degrees of
freedom. In reality, Shape 1 is equal to Shape 2, so the number of inputs is 12 degrees of
freedom. The input parameters are visualized in Figure 5.2.
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Sigma SH

Shape Sigma CB

Electrode position

Current

Figure 5.2: The input parameters of the FEM model connected to a electrode. The “Electrode
position” gives the distance from the bottom of the furnace to the tip of the electrode. The “Shape”
shows how the shape varies from narrow to broad shape. “Sigma CB” gives the conductivity in the
coke bed. The current runs through the electrode. “Sigma SH” gives the conductivity in the charge
material at the top of the coke bed.

Table 5.1: The input parameters of the FEM-model.

Input parameters Definition
Current El 1, rms (kA) Current in electrode 1
Current El 2, rms (kA) Current in electrode 2
Current El 3, rms (kA) Current in electrode 3
El 1 pos (m) Height of the electrode 1
El 2 pos (m) Height of the electrode 2
El 3 pos (m) Height of the electrode 3
Sigma CB 1 (S/m) Conductivity of the coke bed zone under electrode 1
Sigma CB 2 (S/m) Conductivity of the coke bed zone under electrode 2
Sigma CB 3 (S/m) Conductivity of the coke bed zone under electrode 3
Sigma SH (S/m) Conductivity of the charge material above the coke beds
Shape 1 Broadness of the coke bed 1
Shape 2 Broadness of the coke bed 2
Shape 3 Broadness of the coke bed 3

5.2.1 Currents

The currents represent each electrode in the input space. By having three independent
currents, it gives the advantage to simulate different operational zones in the furnace. In
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the furnace, the current goes from one electrode to another, and chooses the path with
the least resistance. This means that some of the currents go directly through the charge
material, while other currents go through the coke beds, depending on the resistance in the
materials.

5.2.2 Electrode positions
The electrodes are excellent conductors compared to the coke bed and the charge. There-
fore, the electrode position determines the resistance in the furnace. The higher the elec-
trode position, the larger amount of material the current must pass before reaching the
metal pool.

5.2.3 Shapes of the cokebeds
The shapes of the coke beds are the last variables that affect the resistance. The shape
decides the amount of coke bed and charge material the current goes through on its way,
and therefore gives the resistance. There are many reasons for an uneven shape of the coke
beds, for example, segregation of the incoming material, uneven activity in the zones of
the coke bed, and tapping procedures.

5.2.4 Conductivity in the cokebeds
The conductivity in the coke beds determines the resistance in the furnace. A high con-
ductivity gives lower resistance and vice versa. By dividing the coke bed into three zones
connected to each electrode, it is possible to do simulations without having uniform con-
ductivity in the whole coke bed. Since the coke bed does not have uniform conductivity in
the real furnace, this gives a more realistic simulation.

5.2.5 Conductivity in the charge material
The conductivity in the charge material has less impact on the resistance than the conduc-
tivity in the coke bed. The reason for this is that the current path mostly goes through
the coke beds. As for the conductivity in the coke bed, the conductivity in the charge
material is not uniform. Unfortunately, due to the limited number of input parameters, the
conductivity in the charge material is set as uniform.

5.3 Outputs and observables: what can we get from the
analyzed FEM model?

The outputs of the FEM-model are given in Table 5.2. Most of the variables are electrical
conditions, besides the volume of the coke beds that can be calculated since the shape
and electrode positions are known. The variables are sectioned into zones that are corre-
sponding to each electrode and as global variables. Electrical variables such as voltage,
resistance, reactance, active power, and reactive power are directly connected to the elec-
trode. The rest of the variables are connected to the zone connected to the given electrode.
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For example, the steel shell power for electrode 1 is the power in the steel shell closest to
electrode 1.
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Table 5.2: Output observables of the FEM-model.

Output variables Definition
Average current, rms (kA) Average current in the electrodes
Tot Resistance (mΩ) Total resistance
Resistance El. 1 (mΩ) Resistance in electrode 1
Resistance El. 2 (mΩ) Resistance in electrode 2
Resistance El. 3 (mΩ) Resistance in electrode 3
Tot Reactance (mΩ) Total reactance
Reactance El. 1 (mΩ) Reactance in electrode 1
Reactance El. 2 (mΩ) Reactance in electrode 2
Reactance El. 3 (mΩ) Reactance in electrode 3
Reactive Power tot (MVAr) Total reactive power below clamps
Active Power tot (MW) Total active power below clamps
Shell Power tot (MW) Total active power in the steel shell
Roof Power (MW) Roof power
Active power El. 1 (MW) Active power electrode 1
Active power El. 2 (MW) Active power electrode 2
Active power El. 3 (MW) Active power electrode 3
Shell power El. 1 (MW) Active power in steel shell electrode 1
Shell power El. 2 (MW) Active power in steel shell electrode 2
Shell power El. 3 (MW) Active power in steel shell electrode 3
Voltage El. 1 (V) Voltage in electrode 1
Voltage El. 2 (V) Voltage in electrode 2
Voltage El. 3 (V) Voltage in electrode 3
Reactive power, El. 1 (MVAr) Reactive power electrode 1
Reactive power, El. 2 (MVAr) Reactive power electrode 2
Reactive power, El. 3 (MVAr) Reactive power electrode 3
Volume CB1 (m3) Volume of coke bed around electrode 1
Volume CB2 (m3) Volume of coke bed around electrode 2
Volume CB3 (m3) Volume of coke bed around electrode 3
Volume CB1 above El1 (m3) Volume of coke bed above electrode 1
Volume CB2 above El2 (m3) Volume of coke bed above electrode 2
Volume CB3 above El3 (m3) Volume of coke bed above electrode 3
Volume CB1 below El1 (m3) Volume of coke bed below electrode 1
Volume CB2 below El2 (m3) Volume of coke bed below electrode 2
Volume CB1 below El3 (m3) Volume of coke bed below electrode 3
Power CB1 (MW) Power in coke bed 1
Power CB2 (MW) Power in coke bed 2
Power CB3 (MW) Power in coke bed 3
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5.4 Simulating the system through the FEM model: con-
siderations about the design of the experiments

The FEM model is simulated to generate a database for the data-driven models. Since
the database is the “foundation” of the data-driven models, the simulations should be per-
formed to represent the FEM model well. In this way, the data-driven models can represent
the FEM model in a good way. Therefore, the experimental design is essential.

The chosen experimental design uses 12 factors at 4 possible levels [2] to cover the
wide area of the operation of the furnace. In the first round of FEM calculations, a total
of 128 input combinations were simulated. Using this database, PLSR models were built
as a representation of the FEM model. The models were proven to be asymmetric, as
the database did not give enough information to obtain symmetric models. Asymmetric
models make an inaccurate model of the FEM model, which has symmetric properties.
The FEM model has a perfect cylinder shell and three electrodes that are placed equidistant
from the center of the furnace on an equilateral triangle. This symmetry imposes symmetry
in the electrical conditions of the furnace. In the FEM model, if all the input parameters
connected to the electrodes are equal, this should impose equal predictions of variables
connected to each electrode. For example, the estimates of the voltages are equal if all the
inputs are symmetric.

The database was extended to give the PLSR sufficient information for making a sym-
metric representation of the FEM model. All variables connected to one electrode in the
dataset were grouped, and all global variables grouped as an individual group, which gave
four groups: “Electrode 1”, “Electrode 2”, “Electrode 3” and “Global”. As the FEM model
is symmetric, it does not matter if the data connected to one electrode has the label “Elec-
trode 1”, “Electrode 2” or ”Electrode 3”. By changing the labels of the data connected
to the electrodes, this gives 6 permutations. For the 6 permutations, the dataset was ex-
tended by 128 simulations, which gives a total of 768 simulations. In this way, symmetric
information is included in the dataset, as visualized in Figure 5.3.

5.4.1 An analysis of the distribution of the simulated and the real data

The simulations in Section 5.4 obtained 768 segments of data for each input parameter
and output variable. For the real furnace, not all of these parameters and variables are
measured, but some are. By comparing the variables of the FEM model that are measured
with the measurements available, it can give information on how the simulations cover the
furnace’s operational area.

The distributions for the simulated and real variables are given in Appendix A. The real
variables show the values for August 2019, where all stops of the furnace are filtered out.
As the distribution plots for each electrode are very similar, a summary of the distributions
is given by electrode A in Figure 5.4. The figure shows that the simulations are covering
the right operational area for most of the variables. Most of the simulated data have much
broader distributions than the real data. This is because the simulations are designed to
cover most of the furnace’s operational area, and the industrial furnace is operated to stay
in the optimal conditions. The figure shows that the simulated reactances do not cover
the same area as the real reactances. It is expected that the simulated reactances have
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Figure 5.3: Illustration of how the data is grouped to each electrode where two groups are changed
a time to make a symmetric database for the PLSR.

smaller values than the real reactances because we are ignoring all the terms coming from
the part of the real world that are not covered by the model. For example, the current
is modeled into the electrode as if there was a homogeneous perfect contact. In reality,
current enter via some flexible copper cables with different geometries depending on the
holder position. As the simulated reactances are not in the wanted operational zone for a
real furnace, the FEM model can be inaccurate using data corresponding to a real furnace.

An inaccurate calculation of the reactance in the FEM model can introduce problems
for the data-driven models that are made based on the simulated data in the upcoming
chapters. A metamodel (an approximated model of the FEM model) will calculate the re-
actance wrongly relative to the real world. The problem is bigger for an inverse metamodel
(a model that uses the FEM model’s output to predict the input of the FEM model). An
error in the reactance input will introduce an error for all estimated variables, depending
on the importance of the reactance in the inverse metamodel.
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removed due to confidentiality.
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Chapter 6
Modeling the FEM using a PLSR
approach

It has been a goal for NORCE to build a metamodel and inverse metamodel of the FEM
model. The metamodel is an estimation of the FEM model, but runs much faster than
the FEM model. The inverse metamodel gives the inverse relationship between input and
output, which the FEM model is unable to provide. An interface will be made for the
models to make it easier for people with different backgrounds to use them. The interfaces
can be used as an assistive tool for the operators when making decisions as the models
gain information of the furnace. In this way, the models can be used to check if the
models correspond to the operator’s knowledge. The models can also be used for training
purposes, to gain knowledge about the furnace.

6.1 Metamodel of the FEM model
A metamodel of the FEM model was built to obtain a faster and simplified model of the
FeMn furnace. The FEM model takes approximately 40 minutes to simulate the results,
while the metamodel gives the result in milliseconds. The metamodel was built on the
database obtained from the experimental design, as explained in Section 5.4, using PLSR
with the X variables as given in Table 5.1 and the Y variables as given in Table 5.2.
Without including any extra interaction and square terms, non-linearities were observed
for active power, resistance, voltage, and power in the coke bed by plotting the predicted
variables against the simulated variables. The variables given for electrode 1 are repre-
sentable for the other electrodes, and are shown in Figure 6.1. The plot shows that the
relation between the predicted and reference is non-linear. The ideal case for the “pre-
dicted vs. reference” plots is if the points are fully aligned with the target line given in the
plots. This would indeed imply a perfect representation of the data.

Interaction and square effects were added as features in the dataset to obtain a bet-
ter representation of the FEM model. We recall that an interaction effect corresponds to
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Figure 6.1: The predicted vs. reference plots with calibrated data for active power, resistance,
voltage, and power in coke bed connected to electrode 1. The black line shows the target line for
the regression. The plots show that the predictions are not aligned with the target line and show a
non-linear relation between prediction and reference.

multiplying two variables in the set of inputs (i.e., computing new variables of the type
x1,2 = x1x2). Instead a square effect is an additional variable that is added that corre-
sponds to something in the input set that gets squared (i.e., x1,1 = (x1)2). The interaction
and square effects can contain valuable information and give a better fit of the model, es-
pecially in the presence. All the interaction and squares of nonlinearities, as we identified
above, had some impact in the prediction of Y , and were included in the input set. The
new input set consists, therefore, of 104 inputs. This resulted in an improved predicted vs.
reference plot, as seen in Figure 6.2. Compared to Figure 6.1, the relations are much more
linear with the addition of interaction and square effects than without the effects.

The model was validated using leave-one-out cross-validation on the 768 segments
for assessing the statistical performance the model will have on unseen data. With 17
components, the model explains 91 % of the variance, as shown in Figure 6.3. The results
are given in Table 6.1 and show that the metamodel performance indexes are very good
in terms of RMSE and R2 values. The R2 value gives a measure of how much of the
variance of a variable that is explained by the model. The value ranges from 0 to 1, where
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Figure 6.2: The predicted vs. reference plots with calibrated data for active power, resistance,
voltage, and power in coke bed connected to electrode 1, when interaction and square effects are
added in the input. The plots are aligned with the black target line.

1 is a perfect explained model. A value of R2 over 0.85 indicates a good fit. The RMSE
is the root-mean-square error between predictions by the model and real values. In this
way, the measure is related to the unit of the variable, and an intuition of the variable is
needed to assess the performance. As seen in Table 6.1, most of the R2 values are given
above 0.85, which indicates a good fit. The exception is the volumes above the electrodes
with an R2 value of 0.79. It could also be mentioned that the voltages have RMSE values
of 7.92

√
V , which is a relative big value given that the mean simulated value is 132 V .

Based on the metamodel’s overall performance, it can be concluded that it is a sufficiently
good representation of the FEM model for our purposes.

Even though the estimator’s performance is concluded to be sufficiently good based
on the training set, it can be dangerous to introduce too many parameters in the model.
A number of 17 components used in the model can lead to overfitting (see Section 3.3.1).
Overfitting means that the model fits the training set “too good”, in such a way that the
model’s performance is not generalizable for unseen data. In this way, the results from
the training set can give a wrong indication of the model performance. For that reason,
the model is tested on an independent test set to assess the performance on unseen data in
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Section 6.3.
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Figure 6.3: The explained variance of the model using leave-one-out cross-validation of the meta-
model. The blue line shows the calibrated explained variance and the red line shows the cross-
validated explained variance.

6.1.1 Regression coefficients
The weighted regression coefficients give a relative comparison of which X variables
that are most important in predicting a given Y variable. High values of a regression
coefficient for a given X variable imply that the variable is important in predicting the
given Y variable.

The regression coefficients are difficult to visualize due to the large number of square
and interaction effects added to the input. Therefore, the regression coefficients for a PLSR
model with 10 components where only the squared shapes are added to the input are given
in Appendix B with a 95 % confidence interval. For visualizing the concept of the regres-
sion coefficients, the regression coefficients for the roof power are given in Figure 6.4. The
regression coefficients do not give the exact representation of the coefficients, but gives a
representation for the most important coefficients in predicting Y . In addition, interaction
and square terms that are important for predicting a given Y variable will be presented in
the subsections below.
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Figure 6.4: Weighted regression coefficients for total roof power. The red bars show the 95 %
confidence intervals for the coefficients.

40



6.1 Metamodel of the FEM model

Shell and roof power

The shell and roof power are similar in the regression coefficients. Roof power, which
gives the power in the roof’s steel shell, is almost a direct function of the currents. The
steel shell power, which gives the power in the furnace shell, is also mostly dependent on
the current. This makes sense as the power in the steel shell is induced by the currents.

The interaction and square effects are less important than the original input in predict-
ing the roof and shell power, but the sum of the effects contribute significantly. The most
important effects for the prediction of shell power consist of variables that are connected to
the given electrode. The most important interactions consist of electrode position, current,
conductivity and shape the coke beds and conductivity in the charge material. The most
important square effects are the electrode position, conductivity and shape of the coke
beds for the given electrode squared. This means that all the variables in the input set is
important in obtaining a prediction of the shell powers. For the roof power, the only im-
portant variables are the currents multiplied with the conductivity in the charge material.
This makes sense as the coke beds should not influence the roof power.

Reactive power

The reactive power is the power generated by the magnetic field surrounding the electric
current. The most important variable in defining the reactive power is the current for the
given electrode. Also, the electrode position and shape of the coke bed for the given
electrode have some impact. This is in line with the understanding that reactive power
(and reactances) carry information about the current paths. For example, a broad coke bed
with high conductivity could be able to conduct part of the currents between electrodes
without the current going down into the alloy layer. This should lead to lower power and
reactances.

The interaction and square effects are less important than the original input in pre-
dicting the reactive power, but the sum of the effects contribute significantly. The most
important effects are mostly the variables that are connected to the given electrode. The
most important interactions consist of the corresponding electrode position, conductivity
and shape of the coke beds. The most important square effects are the shapes and elec-
trodes for the given electrode.

Active power

The active power is the total power minus the power deposited on the steel shell due to
induction (eddy currents). Active power depends mostly on the electrode position and the
shape and conductivity of the coke bed of the given electrode. Also, the current for the
given electrode has an impact on the active power. An expression of the active power can
be given by:

P = I2R, (6.1)

where P is the active power, I is the electrode current, and R is the electrode resistance.
The electrode position, shape and conductivity of the coke bed give the resistance of the
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current path. What is an interesting observation is that the variables that give the resistance
are more important than the electrode current.

The interaction and square effects are less important than the original input in pre-
dicting the active power, but the sum of the effects contribute significantly. The most
important effects are mostly the variables that are connected to the given electrode. The
most important interactions consist of the corresponding electrode position, current, shape
and conductivity of the coke bed and the conductivity in the charge material. The most
important square effects are the electrode position, shape and conductivity of the coke
bed squared. This means that all the variables in the input set is important in obtaining a
prediction of the active powers.

Power in the coke bed

The weighted regression coefficients for the power in the coke bed are almost identical to
the active power as one expect since most of the power is deposited into the coke beds.
The coke bed depends mostly on the electrode position and the shape and conductivity of
the coke bed for the given electrode. As for the active power, the power in the coke bed
have interaction effects between all the original input variables corresponding to the given
electrode. The most important square effects are the electrode positions, shape and the
conductivity in the coke bed for the given electrode.

Resistance

The weighted regression coefficients for resistance look very similar to the weighted re-
gression coefficients for active power, making sense since the active power is dependent
on the resistance. Resistance depends mostly on the electrode position and the shape and
conductivity of the coke bed of the given electrode. This can be explained by that the
electrode positions give how much mass the current must go through (i.e., the resistance
for the current). The shape and conductivity of the coke bed gives the resistivity of the
current path.

The interaction and square effects are less important than the original input in predict-
ing the resistance, but the sum of the effects contribute significantly. The most important
effects are mostly the variables that are connected to the given electrode. The most im-
portant interactions consist of the corresponding electrode position, current, shape and
conductivity of the coke bed and conductivity in the charge material. The most important
squares are the electrode positions, shape and the conductivity in the coke bed squared.
This means that all the variables in the input set is important in obtaining a prediction of
the resistances.

Reactance

The reactance has similar regression coefficients as the reactive power. The most signifi-
cant variables are the current and shape of the coke bed connected to the given electrode.
Also, the electrode position for the given electrode and the currents of the two other elec-
trodes have an impact on the reactance.
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The square effects are less important than the original input, and none of the interaction
effects are very important in the prediction of reactance. The most important square effects
are the shapes of the coke beds and electrode positions for the given electrode squared.

Voltage

The voltage has very similar regression coefficients as the active power and resistance. The
most important weighted regression coefficients for the voltage are the electrode position,
shape, and conductivity of the coke bed connected to the given electrode.

The interaction and square effects are less important than the original input, but the sum
of the effects contribute significantly. The most important effects are mostly the variables
that are connected to the given electrode. The most important interactions consist of the
corresponding electrode position, current, shape and conductivity of the coke bed and
conductivity in the charge material. The most important square effects are the electrode
positions, shape and the conductivity in the coke bed squared. This means that all the
variables in the input set is important in obtaining a prediction of the voltages.

Volumes

The volume of the coke bed is given by the shape of the given coke bed. As the volume
is divided into above and below the electrode, they become a function of the electrode
position also. The interaction effects are less important than the original input, but the
sum of the effects contribute significantly. The most important interactions are between
the electrode positions, shapes and conductivity in the coke bed. The square effect of the
shape for the given electrode has a relatively big impact on the prediction.
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Table 6.1: Performance indexes for the metamodel based on leave-one-out cross-validation on the
training set.

RMSE R2

Average Current (kA) 0.5293 0.9731
Active Power tot (MW) 1.7261 0.9642
Reactive Power tot (MVAr) 0.334 0.9679
Shell Power Tot (MW) 0.0058 0.9183
Roof Power (MW) 0.0049 0.7824
Tot Resistance (mΩ) 0.0965 0.9632
Total Reactance (mΩ) 0.0124 0.9465
Active Power El. 1 (MW) 1.1722 0.9388
Reactive Power El. 1 (MVAr) 0.2018 0.9444
Shell Power El. 1 (MW) 0.0025 0.8736
Resistance El. 1 (mΩ) 0.0664 0.9374
Reactance El. 1 (mΩ) 0.0103 0.9263
Voltage El. 1 (V) 7.9167 0.9365
Volume CB1 (m3) 4.2773 0.9027
Volume CB1 above El. 1 (m3) 2.1965 0.7919
Volume CB1 below El. 1 (m3) 3.5279 0.8846
Power CB1 (MW) 0.9459 0.9428
Active Power El. 2 (MW) 1.1722 0.9388
Reactive Power El. 2 (MVAr) 0.2018 0.9444
Shell Power El. 2 (MW) 0.0025 0.8736
Resistance El. 2 (mΩ) 0.0664 0.9374
Reactance El. 2 (mΩ) 0.0103 0.9263
Voltage El. 2 (V) 7.9167 0.9365
Volume CB2 (m3) 4.2773 0.9027
Volume CB2 above El. 2 (m3) 2.1965 0.7919
Volume CB2 below El. 2 (m3) 3.5280 0.8846
Power CB2 (MW) 0.9459 0.9428
Active Power El. 3 (MW) 1.1722 0.9388
Reactive Power El. 3 (MVAr) 0.2018 0.9444
Shell Power El. 3 (MW) 0.0025 0.8736
Resistance El. 3 (mΩ) 0.0664 0.9374
Reactance El. 3 (mΩ) 0.0103 0.9263
Voltage El. 3 (V) 7.9167 0.9365
Volume CB3 (m3) 4.2773 0.9027
Volume CB3 above El3 (m3) 2.1965 0.7919
Volume CB3 below El3 (m3) 3.5279 0.8846
Power CB3 (MW) 0.9459 0.9428
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6.2 Inverse metamodel of the FEM model

The inverse metamodel gives the inverse model of the FEM model, i.e., a model that uses
the FEM model’s output to predict the input of the FEM model. In this way, unknown in-
ternal conditions can be predicted. Some of the furnace’s internal conditions are unknown
and can be valuable to estimate for obtaining more knowledge of the processes occurring
in the furnace. As the FEM model itself cannot be inverted, the inverse metamodel can
give valuable information about the FEM model’s input. The inverse metamodel was built
using PLSR with the output given in Table 5.2 asX variables and the input given in Table
5.1 as Y variables. As for the metamodel, the database given in Section 5.4 was used. The
model is validated using leave-one-out cross-validation on the 768 segments for assessing
the statistical performance that the model would have on unseen data. With 23 compo-
nents, the model explains 92 % of the variance, as shown in Figure 6.5. Square effects
of the coke bed’s volume below and above the electrodes and the coke bed’s total volume
were added to the input set to obtain a better fit for the model. Other square terms had little
impact on the prediction, and by leaving them out, a better fit was obtained for the model.
The interaction effects were excluded because of the large number of interactions, and the
loss of interpretability by using the interaction effects.
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Figure 6.5: The explained variance of the inverse metamodel using leave-one-out cross-validation
of the PLSR model. The blue line shows the calibrated explained variance, and the red line shows
the cross-validated explained variance.

Figure 6.6 gives the calibrated predicted vs. reference plots for the variables connected
to electrode 1 and the conductivity in the charge material. The variables connected to
electrode 1 are representable for the two other electrodes. The plot visualizes the fit of the
model, and shows that the points are fairly aligned with the black target line. It also shows
that there is a small amount of reference values due to the experimental design. This can
make it more challenging to obtain a good fit for the variables.

Table 6.2 shows the performance of the inverse metamodel is given by the performance
indexes RMSE and R2. The R2 gives a measure of the fit and ranges from 0 to 1, where
1 is a perfect fit by the model. The RMSE gives the root-mean-square error between the
model and the real values and is related to the unit of the variables. The performance
indexes are given in Table 6.2 and show generally good results for the different variables.
All the variables have an R2 value above 0.80, which is a good fit. The best predicted
variables are the currents and shape of the coke beds with a R2 value close to 1.
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Figure 6.6: Predicted vs. reference plots with calibrated data for electrode position, conductivity in
the coke bed, current and shape of the coke bed connected to electrode 1, and conductivity in the
charge material when square effects are added in the input. The plots are aligned with the black
target line.

6.2.1 Regression coefficients

The weighted regression coefficients for the inverse metamodel are given in Appendix C
with a 95 % confidence interval. The weighted regression coefficients show the relative
importance of theX variables in predicting a given Y variable.

Electrode position

The most important weighted regression coefficients in predicting electrode position are
the volume below and above the electrode position. This makes sense as it is the electrode
position that splits the volume into the volumes below and above the electrode. The added
square effects of the volume variables connected to the given electrode have also a big
impact on the prediction. Unfortunately this relation is not useful in the real world as it
unveil only a trivial relation imposed by construction.

46



6.2 Inverse metamodel of the FEM model

Table 6.2: Performance indexes for the inverse metamodel based on leave-one-out cross-validation
on the training set.

RMSE R2

El 1 pos (m) 0.0604 0.9468
Sigma CB1 (S/m) 38.0333 0.7989
Current El. 1 (kA) 0.5541 0.9902
Shape 1 0.1469 0.9827
El 2 pos (m) 0.0604 0.9468
Sigma CB2 (S/m) 38.0333 0.7989
Current El. 2 (kA) 0.5541 0.9902
Shape 2 0.1469 0.9827
El 3 pos (m) 0.0604 0.9468
Sigma CB3 (S/m) 38.0333 0.7989
Current El. 3 (kA) 0.5541 0.9902
Shape 3 0.1469 0.9827
Sigma SH (S/m) 3.2407 0.8285

Conductivity in the coke bed

The coke bed’s conductivity depends mostly on the volume above and below the given
electrode and the electrical variables as active power, resistance, reactance, voltages, and
power in the coke bed connected to the given electrode. The added square effects of the
volume variables connected to the given electrode also have big impact on the prediction.

Current

The current depends on most of the electrical variables in the furnace, where the most
important variables are the reactive power and the reactance for the given electrode.

Shape of coke bed

The weighted regression coefficients show that the shape is given by the three volume
variables, total volume, and the volume below and above the electrode. The square terms
of the volume variables connected to the given electrode have also a big impact on the
prediction.

Conductivity in the charge material

The conductivity in the charge material is given by all variables except the active power,
resistance, and shell power. The most important variable is the total reactance. That the
active power and resistance have little impact on the conductivity in the charge material
is most likely due to the current mostly goes through the coke bed and not the charge
material.

47



Chapter 6. Modeling the FEM using a PLSR approach

6.2.2 Problem with the dynamics
Section 5.1.1 explains that the FEM model disregards the dynamics of the FeMn furnace
as the FEM model is static and only calculates the steady-state of the furnace. Further,
it was explained that it is a fair approximation since the FEM model’s outputs have fast
dynamics. In the case of the inverse metamodel, the output, Y , represents the input of the
FEM model given in Table 5.1, and the input of the FEM model, X , is the output of the
FEM model in Table 5.2. This means that the FEM model has different output variables
than the inverse metamodel, which introduces a problem. The dynamics of the output of
the inverse metamodel contains variables that have slower dynamics than the output of
the FEM model. For example, the electrode’s consumption, the conductivity and shape
of the coke beds are believed to have slower dynamics than the electrical variables. Also,
the electrode positions have limitations in the change of holder position and slipping rate.
This means that the static inverse metamodel may have a problem in estimating the output
variables accurately as the inverse metamodel does not describe how the variables reach
the steady-state; it just provides the steady-state value. If the input is changed rapidly
before a variable has reached a steady-state, the estimation will be off.

Figure 6.7 illustrates the problem with a static model. When the input is changed at
t = 0, the static estimator immediately goes to steady-state on the change of input. A real
first-order response will, though, react much slower and take longer to reach the steady-
state. This approximation is dependent on the units of the time-axis. If the unit is given
in seconds, this can be a fair approximation, while the approximation will be worse if the
units are given in hours. Section 4.3 shows that the electrical variables used a maximum
of 15 minutes to reach the steady-state, while a case for a temperature variable used 16
hours and 50 minutes to reach the steady-state. Most of the inverse metamodel’s outputs
are believed to have time constants somewhere near the temperature variables. The only
variables that have fast dynamics are the currents. Therefore, the estimation can be off
for conductivity of coke beds and charge material, shapes of the coke beds, and electrode
position. For the currents, the estimation is believed to be more accurate.
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Figure 6.7: The response of a static model and a dynamic 1. order system where a step function is
given as input.

6.3 Assessing the performance of the metamodel and in-
verse metamodel using unseen data

The model orders of the metamodel and inverse metamodel were chosen based on leave-
one-out cross-validation. The performance indexes from the cross-validation indicates the
statistical performance on new unseen data. New data have been simulated to make a
stronger assessment of the models. The simulations are performed using the same design
of experiment as given in Section 5.4. New combinations of the input data are used to
obtain new simulated data that have not been used in training. Still, the same four levels
for the input parameters are used. In this way, the models can be evaluated on new unseen
data in the same range as they have been trained on. 32 simulations were performed, where
the dataset was extended symmetrically, to obtain 192 samples.

6.3.1 Results from assessing the metamodel on unseen data
To assess how the metamodel selected in Section 6.1 perform on new unseen data, the
model has been tested on a test set. The test set contains 192 samples, which have not
been used in the training of the model. The same performance indexes as in Section 6.1,
R2 and RMSE, are used to have a comparable result. The performance of the metamodel
on the test set can be seen in Table 6.3. Comparing with the cross-validated result in
Table 6.1, the performance drops some, but not significantly. A reason why the model
performance is better on the training set than on the test set, can be due to that the model is
overfitted to the training set. Overfitting can be explained by that the model is describing
the limited number of training samples very well, but the fit is not generalizable for other
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data points. To avoid overfitting, the number of components used in the model can be
reduced. It is tough expected that the performance will be slightly better for the training
set. As for this case, the reduction in performance is not very big, and the model can be
concluded to perform well on unseen data.

Figure 6.8 shows the simulated Y (reference Y) from the test set plotted against the
predicted Y using the metamodel obtained in Section 6.1 for the variables connected to
electrode 1. As the test set is symmetric, the corresponding plots for electrode 2 and 3
will be the same. Most of the variables are fairly aligned with the optimal target line,
which indicates a good fit. To have a perfect fit, all the points should be on the target line.
For shell power and the volume of the coke beds variables, there is a deviation from the
target line. This corresponds with the performance indexes in Table 6.3, where the same
variables have the lowest performance indexes. This means that the prediction of these
variables is more uncertain than the other variables.
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Figure 6.8: The reference vs. predicted plots for variables connected to electrode 1 using the meta-
model on the test set.
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6.3.2 Results from assessing the inverse metamodel on unseen data
As for the metamodel, the inverse metamodel performance is assessed on the same test
set. The test set contains 192 samples, which have not been used in the training of the
model. The same performance indexes as in Section 6.2, R2 and RMSE, are used to have
a comparable result. The performance of the inverse metamodel on the test set can be seen
in Table 6.4. Comparing with the cross-validated result in Table 6.2, the performance for
most of the variables are improved. This indicates that the model order is well selected for
the inverse metamodel. The model is therefore proven to be generalizable for unseen data
points without loss of accuracy.

Figure 6.9 shows the real Y (reference Y) from the test set plotted against the predicted
Y using the inverse metamodel obtained in Section 6.2 for the variables connected to
electrode 1 and the conductivity in the charge material. As the test set is symmetric, the
corresponding plots for electrode 2 and 3 will be the same. The plot looks very similar
to the Figure 6.6, which gives the reference vs. predicted plot for the training set. This
indicates a good performance, and is in line with that the performance indexes of the test
set, given in Table 6.4, are much the same as the performance indexes obtained in training,
given in Table 6.2.
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Figure 6.9: The reference vs. predicted plots for variables connected to electrode 1 using the inverse
metamodel on the test set.
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Table 6.3: Performance indexes for the metamodel on the test set.

RMSE R2

Average Current (kA) 0.6882 0.9328
Active Power tot (MW) 1.7749 0.9485
Reactive Power tot (MVAr) 0.2958 0.9643
Shell Power Tot (MW) 0.0063 0.8599
Roof Power (MW) 0.0049 0.7086
Tot Resistance (mΩ) 0.0951 0.9547
Total Reactance (mΩ) 0.0104 0.9645
Active Power El. 1 (MW) 1.1964 0.9145
Reactive Power El. 1 (MVAr) 0.1788 0.9511
Shell Power El. 1 (MW) 0.0026 0.8115
Resistance El. 1 (mΩ) 0.0689 0.9155
Reactance El. 1 (mΩ) 0.0094 0.9454
Voltage El. 1 (V) 7.4541 0.9248
Volume CB1 (m3) 4.2519 0.9039
Volume CB1 above El. 1 (m3) 1.8704 0.8470
Volume CB1 below El. 1 (m3) 3.5698 0.8747
Power CB1 (MW) 0.9239 0.9231
Active Power El. 2 (MW) 1.1964 0.9145
Reactive Power El. 2 (MVAr) 0.1788 0.9511
Shell Power El. 2 (MW) 0.0026 0.8115
Resistance El. 2 (mΩ) 0.0689 0.9155
Reactance El. 2 (mΩ) 0.0094 0.9454
Voltage El. 2 (V) 7.4541 0.9248
Volume CB2 (m3) 4.2519 0.9039
Volume CB2 above El. 2 (m3) 1.8704 0.8470
Volume CB2 below El. 2 (m3) 3.5698 0.8747
Power CB2 (MW) 0.9239 0.9231
Active Power El. 3 (MW) 1.1964 0.9145
Reactive Power El. 3 (MVAr) 0.1788 0.9511
Shell Power El. 3 (MW) 0.0026 0.8115
Resistance El. 3 (mΩ) 0.0689 0.9155
Reactance El. 3 (mΩ) 0.0094 0.9454
Voltage El. 3 (V) 7.4541 0.9248
Volume CB3 (m3) 4.2519 0.9039
Volume CB3 above El3 (m3) 1.8704 0.8470
Volume CB3 below El3 (m3) 3.5698 0.8747
Power CB3 (MW) 0.9239 0.9231
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6.3 Assessing the performance of the metamodel and inverse metamodel using unseen
data

Table 6.4: Performance indexes for the inverse metamodel on the test set.

RMSE R2

El 1 pos (m) 0.0472 0.9512
Sigma CB1 (S/m) 34.6859 0.8327
Current El. 1 (kA) 0.5201 0.9910
Shape 1 0.1393 0.9845
El 2 pos (m) 0.0472 0.9512
Sigma CB2 (S/m) 34.6859 0.8327
Current El. 2 (kA) 0.5201 0.9910
Shape 2 0.1393 0.9845
El 3 pos (m) 0.0472 0.9512
Sigma CB3 (S/m) 34.6859 0.8327
Current El. 3 (kA) 0.5201 0.9910
Shape 3 0.1393 0.9845
Sigma SH (S/m) 3.2393 0.8287
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6.4 Interfaces
An interface has been implemented in Microsoft Excel to make it easier to use the meta-
model and the inverse metamodel. Since the models gain information regarding the fur-
nace, it can be used as an assistive tool for the operators when making decisions. In
this way, the models can be used to check if the models correspond to the operators’
knowledge. The models can also be used for training purposes, for exploring and gaining
knowledge about the furnace.

An estimation of the Y variables is automatically generated by inserting values for
the X variables. A prediction interval with a 95 % confidence level is included in the
interface. The prediction interval is given by the Equation 3.11 and gives a measure of the
quality of the prediction and gives an intuition of how reliable the prediction is.

Variables
Position
Sigma CB
Shape CB
Current
Sigma SH

Variables
Prediction (+/-) 95 % PI Prediction (+/-) 95 % PI Prediction (+/-) 95 % PI Prediction (+/-) 95 % PI

Power (MW) 111 % 3 % 111 % 3 % 111 % 3 % 111 % 1 %
Reactive Power (MW) 105 % 1 % 105 % 1 % 105 % 1 % 105 % 0 %
Shell Power (MW) 0,13 0,00 0,13 0,00 0,13 0,00 0,40 0,00
Roof Power (MW) - - - - - - 0,20 0,00
Resistance (mΩ) 108 % 3 % 108 % 3 % 108 % 3 % 108 % 1 %
Reactance (mΩ) 99 % 1 % 99 % 1 % 99 % 1 % 99 % 0 %
Voltage (V) 97 % 2 % 97 % 2 % 97 % 2 % - -
Volume CB (m^3) 16,59 2,26 16,59 2,26 16,59 2,26 - -
Volume CB above (m^3) 1,94 1,82 1,94 1,82 1,94 1,82 - -
Volume CB below (m^3) 14,65 2,05 14,65 2,05 14,65 2,05 - -
Power CB (MW) 11,31 0,34 11,31 0,34 11,31 0,34 - -

- - - 19

Output
El. 1 El. 2 El. 3 Global

1,9 1,9 1,9 -
103 % 103 % 103 % -

1,30 1,30 1,30 -
260 260 260 -

Metamodel
Input

El. 1 El. 2 El. 3 Global

Figure 6.10: The interface for the metamodel. The input and output variables are grouped to the
belonging electrode and global. The predictions are given with a 95 % prediction interval. Some
of the values are given as a percentage of a not given reference value due to that the information is
classified.
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6.5 Numerical examples of the metamodel and inverse metamodel

Variables
Average Current (kA)
Power (MW)
Reactive Power (MW)
Shell Power (MW)
Roof Power (MW)
Resistance (mΩ)
Reactance (mΩ)
Voltage (V)
Volume CB (m^3)
Volume CB above (m^3)
Volume CB below (m^3)
Power CB (MW)

Variables
Prediction (+/-) 95 % PI Prediction (+/-) 95 % PI Prediction (+/-) 95 % PI Prediction (+/-) 95 % PI

Position 1,31 0,03 1,31 0,03 1,31 0,03 - -
Sigma CB 296,04 32,96 296,04 32,96 296,04 32,96 - -
Current 102 % 0 % 102 % 0 % 102 % 0 % - -
Shape CB 2,14 0,04 2,14 0,04 2,14 0,04 - -
Sigma SH - - - - - - 20,45 2,62

Output
El. 1 El. 2 El. 3 Global

13,5 13,5 13,5 -
10,7 10,7 10,7 -

16,9 16,9 16,9 -
3,4 3,4 3,4 -

100 % 100 % 100 % 99 %
91 % 132,4 132,4 -

- - - 0,2
100 % 100 % 100 % 100 %

104 % 104 % 104 % 104 %
0,13 0,13 0,13 0,4

- - - 103 %
102 % 102 % 102 % 102 %

Inverse Metamodel
Input

El. 1 El. 2 El. 3 Global

Figure 6.11: The interface for the inverse metamodel. The input and output variables are grouped to
the belonging electrode and global. The predictions are given with a 95 % prediction interval. Some
of the values are given as a percentage of a not given reference value due to that the information is
classified.

6.5 Numerical examples of the metamodel and inverse meta-
model

For demonstrating the performance of the metamodel and inverse metamodel one case of
input parameters as given in Table 6.5, was simulated by the FEM model and the meta-
model. The models have not seen the data before, and can be seen as a simple validation
of the models. A more thorough validation has been done in section 6.3, where a larger
amount of data was used. It should be noted that this is only one case, and one should be
careful not to over-analyze the results from one simulation.

Table 6.5: Input case for simulation. The current is given as a percentage of a not given reference
value due to that the information is classified.

Input Case 1
El. 1 El. 2 El. 3

Current 103 % 103 % 103 %
Electrode position (m) 1.30 1.30 1.30
Sigma CB (S/m) 260 260 260
Shape 1.9 1.9 1.9
Sigma SH (S/m) 19
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Chapter 6. Modeling the FEM using a PLSR approach

The results from simulating the Case 1 in Table 6.5 for the FEM model and the meta-
model are shown in Table 6.6. The overall estimation of the case is generally good, with
some deviations on some of the variables. It is important to see the error in estimation with
respect to the real value. For example, the error on the active power for the electrodes is
9.85 %, while the error on the voltage for the electrodes is 5.82 % with respect to the real
values. From the results in Table 6.1 and 6.3, it is known that the shell powers are one of
the variables that have the lowest performance indexes. Nevertheless, as the value of the
shell powers are low and show only two decimals, the result seems perfect.

Table 6.6: Comparing the FEM model and the direct Metamodel results. Some of the values are
given as a percentage of a not given reference value due to classified information.

Case 1
FEM model Metamodel

Average current (kA) 103 % 103 %
Total Active Power (MW) 102 % 111 %
Total Reactive Power (MW) 105 % 105 %
Total Shell Power (MW) 0.40 0.40
Total Roof Power (MW) 0.20 0.20
Total Resistance (mΩ) 100 % 108 %
Total Reactance (mΩ) 99 % 99 %

El. 1 El. 2 El. 3 El. 1 El. 2 El. 3
Active Power (MW) 102 % 102 % 102 % 112 % 112 % 112 %
Reactive Power (MW) 104 % 104 % 104 % 105 % 105 % 105 %
Shell Power (MW) 0.13 0.13 0.13 0.13 0.13 0.13
Resistance (mΩ) 100 % 100 % 100 % 108 % 108 % 108 %
Reactance (mΩ) 100 % 100 % 100 % 98 % 98 % 98 %
Voltage 91 % 91 % 91 % 97 % 97 % 97 %
Volume CB (m3) 16.9 16.9 16.9 16.6 16.6 16.6
Volume CB above (m3) 3.4 3.4 3.4 1.9 1.9 1.9
Volume CB below (m3) 13.5 13.5 13.5 14.7 14.7 14.7
Power CB (MW) 10.7 10.7 10.7 11.3 11.3 11.3

The results from simulating the output of the FEM given in Table 6.6 with the inverse
metamodel compared with the input of the FEM model are given in Table 6.7. As given
by the performance indexes in Table 6.2, it is the conductivity in the coke bed that is the
most uncertain prediction. The rest of the prediction are relatively good.
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6.6 Suggested improvement for the metamodel and inverse metamodel

Table 6.7: Comparing the FEM model and Direct Metamodel results. Some of the values are given
as a percentage of a not given reference value due to classified information.

Case 1
Real input Inverse metamodel

El. 1 El. 2 El. 3 El. 1 El. 2 El. 3
Current (kA) 103 % 103 % 103 % 102 % 102 % 102 %
Electrode position (m) 1.3 1.3 1.3 1.29 1.29 1.29
Sigma CB (S/m) 260 260 260 284.2 284.2 284.2
Shape 1.9 1.9 1.9 1.9 1.9 1.9
Sigma SH (S/m) 19 19.9

6.6 Suggested improvement for the metamodel and in-
verse metamodel

The are other measures that can be done in order to possibly improve the metamodel and
inverse metamodel. The first thing, is that the Y variables can be modeled independently,
a method called PLS1. In our case, the Y variables have been modeled all together, also
called PLS2. By using the PLS1 approach, the model may give a better fit, but the PLS2
approach is much more practical when there is a lot of Y variables, as in this thesis. By
using the PLS1 approach gives the opportunity to use a different number of components,
and use different interaction and square effects for each Y variable.

In Section 6.3, the models have been assessed using a test set. This set has not been
used in the training of the models, and therefore indicates the performance of the models on
unseen data. This test set can also be used to get a better fit of the model. By selecting all
the points in the test set that the model predicts poorly, and adding them to the training set,
the performance of the models can be improved in this area. This can be done iteratively
with different test sets to obtain a better model.
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Chapter 7
Modeling the FEM model using a
PLSR approach with a limited
number of variables

In this chapter, an estimator of unknown internal conditions is made based on the simu-
lations from the FEM-model using PLSR. In this case, only variables that are measured
are used as inputs of the estimator. This is to obtain an estimator that predicts in real-
time using purely measured variables and not any parameters. In this way, a prediction of
unknown variables can be obtained at each sampling instant. An accurate estimator can
be used as an assistive tool for the operators, and possibly be implemented in the control
system for better control of the furnace. In this chapter, we will no longer link input to
the output and vice versa, as in a metamodel and inverse metamodel. We will look into
interesting measurements independent of if the variables are in the input or output space
in the FEM model. That is why we will now call the PLSR model for an estimator and not
metamodel or inverse metamodel.

7.1 Building an estimator based on only available mea-
surements as input

This section will use only available measurements as theX variables to build an estimator
using PLSR. The reason for using only available measurements as the inputs is to do real-
time estimations using real data. In this way, it is possible to see how a model based on the
FEM model performs on real data. X and Y variables are selected, and the performance
of the estimator is analyzed.
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variables

7.1.1 Variable selection for the estimator

The FEM model has a defined input space (Table 5.1) and an output space (Table 5.2) gen-
erated from simulations. The input space consists of variables that are valuable to estimate.
However, in the output space, some variables are also valuable to estimate – volume and
power in the coke beds and the electrode voltages. The voltages are valuable to estimate
in the sense that the voltage measurement is regarded as an inaccurate measurement. This
introduces the idea to use all variables that are valuable to estimate in the Y set of PLSR
model. The variables in Y can be found in Table 7.1.

Table 7.1: Y variables of the estimator.

Variables Definition
El 1 pos (m) Height of the electrode 1
El 2 pos (m) Height of the electrode 2
El 3 pos (m) Height of the electrode 3
Sigma CB 1 (S/m) Conductivity of the coke bed zone under electrode 1
Sigma CB 2 (S/m) Conductivity of the coke bed zone under electrode 2
Sigma CB 3 (S/m) Conductivity of the coke bed zone under electrode 3
Sigma SH (S/m) Conductivity of the charge material above the coke beds
Shape 1 Broadness of the coke bed 1
Shape 2 Broadness of the coke bed 2
Shape 3 Broadness of the coke bed 3
Steel Shell Power (MW) Total steel shell power
Shell Power El. 1 (MW) Steel shell power in the zone around electrode 1
Shell Power El. 2 (MW) Steel shell power in the zone around electrode 2
Shell Power El. 3 (MW) Steel shell power in the zone around electrode 3
Volume below El. 1 (m3) Volume of coke bed zone around electrode 1
Volume below El. 2 (m3) Volume of coke bed zone around electrode 2
Volume below El. 3 (m3) Volume of coke bed zone around electrode 3
Power CB1 (MW) Power in the coke bed zone around electrode 1
Power CB2 (MW) Power in the coke bed zone around electrode 2
Power CB3 (MW) Power in the coke bed zone around electrode 3
Voltage (V) Voltage in electrode 1
Voltage (V) Voltage in electrode 2
Voltage (V) Voltage in electrode 3

For the estimation of the Y variables, it is needed to select variables in the X set
in the PLSR. Today, the variables in Table 5.2 that are available in a real furnace are
resistance, reactance, active power, voltage, and current. Since the voltage is known to be
an inaccurate measurement in a real furnace, the voltage is excluded in the X set. This is
leading to theX variables given in Table 7.2.
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Table 7.2: X variables of the estimator.

Variables Definition
Resistance El. 1 (mΩ) Resistance in electrode 1
Resistance El. 2 (mΩ Resistance in electrode 2
Resistance El. 3 (mΩ) Resistance in electrode 3
Reactance El. 1 (mΩ) Reactance in electrode 1
Reactance El. 2 (mΩ) Reactance in electrode 2
Reactance El. 3 (mΩ) Reactance in electrode 3
Active power El. 1 (MW) Active power electrode 1
Active power El. 2 (MW) Active power electrode 2
Active power El. 3 (MW) Active power electrode 3
Current El. 1 (kA) Electrode 1 current
Current El. 2 (kA) Electrode 2 current
Current El. 3 (kA) Electrode 3 current

7.1.2 Modeling the estimator
A new estimator has been built using PLSR with the variables in Table 7.2 as X , and the
variables in Table 7.1 as Y . The model is validated using leave-one-out cross-validation
on the 768 segments for assessing the statistical performance that the model would have on
unseen data. With 9 components, the model covers 75 % of the variance, as seen in Figure
7.1. Interaction and square effects were tested without any significant improvements in the
performance indexes.
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Figure 7.1: Explained variance using leave-one-out cross-validation of the PLSR model built with
X variables from the FEM model that is also available in for the real furnace. The Y variables
are chosen to be variables in the FEM model that is valuable to estimate. The blue line shows the
calibrated explained variance, and the red line shows the cross-validated explained variance.

The results are given in Table 7.3, and it is used the same performance indexes as for
the metamodel and inverse metamodel – R2 and RMSE. The R2 gives a measure of the fit
for the model, where 1 is a perfect fit. The RMSE gives the root-mean-squared error, which
is related to the unit of the variables. Generally, an R2 value over 0.85 indicates a good
fit. The conductivity of the coke beds and charge material have very low R2 value and
are therefore very poorly predicted. The electrode positions have some better performance
indexes but are not very well predicted either. Further, the shape and volume of the coke
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variables

beds have a decent fit withR2 values of 0.77 and 0.84, respectively. The shell powers have
a good fit, good R2 value and low RMSE. The voltages and power in the coke beds are
close to a perfect fit with an R2 value close to 1.

Table 7.3: Performance indexes for the estimator using leave-one-out cross-validation.

RMSE R2

El 1 pos (m) 0.3024 0.5615
El 2 pos (m) 0.3024 0.5615
El 3 pos (m) 0.3024 0.5615
Sigma CB1 (S/m) 83.686 0.3261
Sigma CB2 (S/m) 83.686 0.3261
Sigma CB3 (S/m) 83.686 0.3261
Sigma SH (S/m) 7.471 0.0887
Shape 1 0.5326 0.7730
Shape 2 0.5326 0.7730
Shape 3 0.5326 0.7730
Steel Shell Power (MW) 0.0032 0.9591
Shell Power El. 1 (MW) 0.0021 0.8701
Shell Power El. 2 (MW) 0.0021 0.8701
Shell Power El. 3 (MW) 0.0021 0.8701
Volume below El. 1 (m3) 5.4932 0.8414
Volume below El. 2 (m3) 5.4932 0.8414
Volume below El. 3 (m3) 5.4932 0.8414
Power CB1 (MW) 0.4767 0.9877
Power CB2 (MW) 0.4767 0.9877
Power CB3 (MW) 0.4767 0.9877
Voltage El1 (V) 3.2071 0.9879
Voltage El2 (V) 3.2071 0.9879
Voltage El3 (V) 3.2071 0.9879

7.1.3 Regression coefficients
The weighted regression coefficients plots for the estimator can be found in Appendix
D. The weighted regression coefficients are the β’s found for a single Y variable when
performing PLSR on normalized data. The weighted regression coefficients are given with
a 95 % CI calculated by using Equation 3.9. The plots give an overview of which variable
that is most important in predicting a Y variable relatively.

Electrode positions

The weighted regression coefficients for the electrode positions are given in Figure D.1,
D.2 and D.3. They show that the variables connected to the given electrode is the most
important. Amongst them, especially current and reactance, are the most important vari-
ables.
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7.1 Building an estimator based on only available measurements as input

Conductivity in the coke beds

The weighted regression coefficients for the conductivity in the coke bed are given in
Figure D.4, D.5 and D.6. They show that the variables connected to the given electrode
is the most important. Amongst them, especially active power and resistance are the most
important variables.

Conductivity charge material

The weighted regression coefficients for the conductivity in the charge material are given in
Figure D.7. The plot shows that all the coefficients have low weight, and that the variables
connected to each electrode are weighted equally. That the coefficients are low-weighted
matches with the fact that the conductivity in the charge material is hard to predict.

Shapes of coke beds

The weighted regression coefficients for the shapes of the coke beds are given in Figure
D.8, D.9 and D.10. They show that the variables connected to the given electrode is the
most important. Amongst them, especially reactance and current, are the most important
variables.

Total steel shell power

The weighted regression coefficients for the total steel shell power are given in Figure
D.11. The plot shows that the variables connected to each electrode are weighted equally.
The currents are the most important variables in predicting the total steel shell power.

Steel shell power for zones

The weighted regression coefficients for the steel shell power for each zone are given
in Figure D.12, D.13 and D.14. They show that the variables connected to the given
electrode is the most important. Of all variables, the currents are the most important, even
the currents connected to different zones.

Volume of the coke beds below the electrode positions

The weighted regression coefficients for the volumes of the coke beds below the electrode
positions are given in Figure D.15, D.16 and D.17. They show that the variables connected
to the given electrode is the most important. Amongst them, especially reactance and
current, are the most important variables.

Power in the coke beds

The weighted regression coefficients for the power in the coke beds are given in Figure
D.18, D.19 and D.20. They show that the variables connected to the given electrode is
the most important. Amongst them, especially resistance and active power are the most
important variables.
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Voltage

The weighted regression coefficients for the voltage in the electrodes are given in Figure
D.21, D.22 and D.23. They show that the variables connected to the given electrode is
the most important. Amongst them, especially resistance and active power are the most
important variables.

7.1.4 Tuning the model by implementing an reactance bias

In Section 5.4.1, it was explained that the simulations of the FEM model do not represent
the reactances well. To make the model compatible with real data, a bias term must be
implemented on the model’s reactance. The metamodel in Section 6.1 was used for that
purpose. The model’s current input was chosen to be the average operational values of the
current given in Table 7.4. The rest of the input variables were tuned to give approximately
the values of the resistances and active powers given in Table 7.4 as output of the meta-
model. In this way, it was obtained estimated values for the reactances. By subtracting the
average operational reactances by the estimated reactances, a bias of 0.15 mΩ was found
for each of the reactances.

The bias is constant and may not be the best approximation as the real furnace’s reac-
tance depends on the holder position. The flexible cables connecting the transformer to the
electrode bends in different ways depending on the holder positions. Since the reactance
depends on the currents’ path, the change in the arrangement of the flexibles changes the
contribution of reactance. A more accurate approximation is to find a bias that is depend-
ing on the holder position.

Table 7.4: The average of real operational variables in August compared to the average of the
simulated data in the FEM model. The values are given as a percentage of a not given reference
value due to that the information is classified.

Variables Average operational value Average simulated value
Resistance El. A (mΩ) 99 % 80 %
Resistance El. B (mΩ) 100 % 80 %
Resistance El. C (mΩ) 99 % 80 %
Reactance El. A (mΩ) 123 % 98 %
Reactance El. B (mΩ) 115 % 98 %
Reactance El. C (mΩ) 120 % 98 %

Active Power El. A (MW) 97 % 77 %
Active Power El. B (MW) 100 % 77 %
Active Power El. C (MW) 93 % 77 %

Current El. A (kA) 100 % 100 %
Current El. B (kA) 101 % 100 %
Current El. C (kA) 98 % 100 %
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7.1 Building an estimator based on only available measurements as input

7.1.5 Assessing the performance of the estimator

In this section, the estimator’s performance is assessed using real data as input to the
estimator. The estimator must be accurate for using the estimator as an assistive tool or
as a part of the control system. The assessment provides how good the estimator is and
state to what extent the estimator can be used on the real furnace. It is not trivial how
to assess the estimator’s performance as there are no real measurements of most of the
predicted variables. If the estimator gives values in a range that the FEM model would
also produce, it gives an indication of the estimator’s performance. Figure 7.2 shows a
segment of predictions in January 2019. All variables are in realistic ranges, which is a
positive sign for the estimator.

Since the estimator is static and ignores the dynamics of the furnace, it is believed that
the estimator estimates the variables with fast dynamics the best. The variables with fast
dynamics are shell power, power in coke beds, and voltages. The rest of the variables have
slower dynamics and are more inaccurate in the prediction since the static model does not
take into account the dynamics of the variables.

Electrode position

What might be the most interesting prediction is the electrode position. The electrode
position in the real system is a function of the holder position, the slipping rate, and the
electrode’s consumption rate. During tapping, the conductivity is decreasing, and to main-
tain the reference on the resistance, the electrodes drop. The intuition is, therefore, that
also the estimates of the electrode positions should drop during the tapping cycles. Figure
7.3 shows a segment of data in January 2019 with holder positions and estimated electrode
positions. The gray areas visualize the tapping cycles. The plot shows that the holder po-
sition drops during the tapping cycles, while the electrode position’s estimates seem to be
unaffected by the tapping cycles. This gives a bad estimate of the electrode positions. The
reason why the electrode position’s estimation does not drop during the tapping cycles is
most likely because the input of the estimator is based only on electrical conditions, and
the electrical conditions are not affected by the tapping cycles due to the constant electrical
references. The normalized correlation between the estimation of the electrode position
and the holder position is given by -0.2877, -0.2477 and -0.1960 for electrode A, B and C,
respectively. The normalized cross correlation varies from -1 to 1. A value of 1 is a per-
fect correlation, while -1 are two opposite signals. This means that there is no correlation
between the estimation of the electrode position and the holder position.

The variables that are known to drop during tapping is the conductivity of the coke
bed. Introducing the coke bed’s conductivity to the input of the estimator might make the
estimator respond to the tapping cycles. The problem is – there is no measurement of the
conductivity in the coke bed. Though, an approximation of the loss in conductivity can be
made based on the amount of slag and metal tapped over a given time.

Conductivity in the coke bed

As explained in the previous section, the conductivity in the coke bed is believed to corre-
late with the tapping cycles. Before tapping, the coke bed contains slag, which makes the
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Figure 7.2: The results from estimating variables based on a segment of real data in January 2019.
The voltages are given as a percentage of a not given reference value due to that the information is
classified.

coke bed conductive. Hence, it is believed that the conductivity drops during tapping and
increases between the taps. Figure 7.4 gives the predictions of the conductivity in the three
coke beds for the same data segment as in Figure 7.2. The tapping cycles are visualized by
the gray area. The conductivity in the coke bed does not seem to be much influenced by the
tapping cycles. The reason for that is probably, as stated in the previous section, that the
input of the estimator is only electrical variables that do not change much during tapping.
The predictions do have large prediction intervals, and it is hard to conclude based on the
predictions.

Sigma SH

Sigma SH has very low performance indexes as given in Table 7.3, and is therefore un-
likely to be estimated well. The regression coefficients also show that the most important
variables are the reactances, and therefore will the prediction be influenced by the inaccu-
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rate reactance bias imposed in Section 7.1.3. This indicates that there is a poor estimation
of Sigma SH.

Shapes

The shapes have good performance indexes given in Table 7.3, which indicates that it
should represent the FEM model well. The biggest problem with the estimation is that
the inaccurate reactance bias profoundly influences it. As seen in Figure 7.2, the shapes
sometimes have values below 0 for electrode B, which is a value that is not valid as the
shapes do only vary from 0 to 3 in the FEM model. This is most likely due to the reactance
bias, which shifts the estimation due to a linear model.

Shell powers

Since this is an electrical variable with fast dynamics, it should be estimated well by the
static estimator. The performance indexes in Table 7.3 also indicates that the variables
should represent the FEM model well. As given in Section 7.1.3, the regression coeffi-
cients in the prediction should be mostly dependent on the currents, which is the most
reliable measurement in the furnace. It is though hard to assess the prediction of the shell
powers compared to real data as there are no measurements of the shell powers.

Volumes

The volume variables give the volume below the electrode tips and have, therefore, regres-
sion coefficients similar to the electrode positions regression coefficients. This is also seen
in Figure 7.2, as the volumes and electrode positions are varying very similarly. The vol-
umes have good performance indexes, as shown in Table 7.3 and represent the FEM model
well. The volumes are also affected by the inaccurate reactance bias as the reactance has
a big influence according to the regression coefficients given in Section 7.1.3. It is hard to
assess the prediction of the volumes compared to real data as there are no measurements
available.

Voltage

Voltage is the only estimated variable that is measured. By comparing the voltage predic-
tion with the voltage measurement, the estimator performance of the estimation of voltage
can be assessed. The MSE between the prediction of the voltages and the real voltages
are given by 6.9 %, 7.4 % and 6.9 % for electrode A, B and C, respectively. Figure 7.5
gives the comparison between measured and predicted voltage. The plot shows that there
is a bias between the voltage prediction and measurement. The voltages have very good
performance indexes based on the training set of the FEM model given in Table 7.3, which
should indicate that the estimator recreated the FEM model well.

It is not easy to say what is the reason for the bias between measurement and prediction.
One could believe introducing bias in reactance in Section 7.1.4 could be the reason for
the bias in voltage. However, the regression coefficients plots in Figure D.21, D.22 and
D.23 show that the influence from reactances are rather small and are therefore unlikely
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to influence the estimate of voltage much. Therefore, the bad prediction can be due to
an inaccurate FEM model, as the estimator recreates the FEM model in the prediction
of voltage very well. The most likely reason for the bias in the voltage predictions is
caused by measurement error. As explained in Section 4.2.6, the voltage measurements
are inaccurate. The input of the estimator are resistance, reactance, active power and
currents. In the regression coefficients, resistance and active power are the most important
variables. Since both of them are calculated using voltage measurements, they will most
likely give an error in the estimates. This means that the prediction of the voltages is given
indirectly by the voltage measurements, making the prediction not valid.

Power in the coke beds

Since this is an electrical variable with fast dynamics, it should be estimated well by the
static estimator. The performance indexes in Table 7.3 also indicate that the variables
should represent the FEM model very well. As given by the regression coefficients in
Section 7.1.3, the prediction should be mostly dependent on the resistances and the active
powers. It should not be influenced much by the reactance bias given in Section 7.1.4.
However, the power in the coke bed is hard to assess as there are no measurements avail-
able.

7.1.6 Preliminary conclusions about the assessment of the performance
of the estimator

The assessment of the estimator can be summed up as:

1. The electrode positions and conductivity in the coke beds do not correspond to the
tapping cycles, and are therefore bad predictions. In addition, the conductivity is so
uncertain in the prediction that even if the conductivity was following the tapping
cycles to some degree, it is difficult to trust the prediction.

2. Voltages are influenced by the voltage measurement and give, therefore, an invalid
estimation.

3. The rest of the variables are hard to assess due to no measurements and little infor-
mation regarding the variables are known.

This means that the estimator in this stage is not very reliable. Practically speaking,
this means that the estimator cannot be used as any part of a control system, but some
variables might be used as an assistive tool for the operators. As the tapping cycles play a
big role in the furnace operation, the variables that should correspond to the tapping cycles
must do so. Therefore, the electrode positions and conductivity cannot be used as part of
the control system or as an assistive tool at this stage.

Since the estimation of voltage is dependent on the voltage measurement, there is not
much use of the voltage prediction. If the estimation of the voltage were independent of
the voltage measurement, it could be used to check if the voltage measurement drifts away
and detect the need for calibration. As the voltage estimation is dependent on the voltage
measurement, the estimation is also believed to drift off in the same way as the voltage
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measurement. Anyways, as the voltage prediction is recreating the voltage measurement
well, this can indicate that the FEM model is a good representation of the voltage.

As the other variables are hard to assess, they cannot be seen as reliable. They might
be used as an assistive tool to check if the operator’s knowledge of the furnace corre-
sponds with the estimation. Anyhow, it has to be kept in mind that the predictions of these
variables are not validated for a real furnace.
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Figure 7.3: The estimated electrode positions with a 95 % PI using a segment of real data in January
2019 compared with the holder positions. The gray areas show the tapping cycles. The values on
the y-axis are given as a percentage of a not given reference value due to that the information is
classified.
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7.2 Building an estimator based on available measurements
and coke bed properties

For the estimator in Section 7.1, it was proven that the electrode positions’ estimation did
not correspond to the tapping cycles, and there was no correlation between the electrode
positions and the holder positions. Therefore, a new estimator was built by including
conductivity and shape of the coke beds, and the conductivity in the charge material to see
if the estimation corresponds to the tapping cycles. Approximations of these quantities
will be used to estimate the electrode position based on real data.

7.2.1 Variable selection for the estimator

Section 7.1.5 explains that the voltage predictions are not valid since they indirectly rely
on the voltage measurements. The other variables are difficult to assess because there are
no measurements available to assess the predictions. Also, it was showed that the elec-
trode position did not respond to the tapping cycles. To have the estimations of electrode
positions respond on the tapping, Sigma CB’s, Sigma SH, and the Shapes are included in
the X set. The only Y variables are the electrode positions. The X and Y variables are
given in Table 7.5 and 7.6, respectively.

Table 7.5: X variables of the estimator for predicting electrode position including properties for the
coke beds and charge material.

Variables Definition
Resistance El. 1 (mΩ) Resistance in electrode 1
Resistance El. 2 (mΩ) Resistance in electrode 2
Resistance El. 3 (mΩ) Resistance in electrode 3
Reactance El. 1 (mΩ) Reactance in electrode 1
Reactance El. 2 (mΩ) Reactance in electrode 2
Reactance El. 3 (mΩ) Reactance in electrode 3
Active power El. 1 (MW) Active power electrode 1
Active power El. 2 (MW) Active power electrode 2
Active power El. 3 (MW) Active power electrode 3
Current El. 1 (kA) Electrode 1 current
Current El. 2 (kA) Electrode 2 current
Current El. 3 (kA) Electrode 3 current
Sigma CB 1 (S/m) Conductivity in the coke bed under electrode 1
Sigma CB 2 (S/m) Conductivity in the coke bed under electrode 2
Sigma CB 3 (S/m) Conductivity in the coke bed under electrode 3
Sigma SH (S/m) Conductitvity in the charge material above the coke beds
Shape 1 Broadness of the coke bed 1
Shape 2 Broadness of the coke bed 2
Shape 3 Broadness of the coke bed 3
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Table 7.6: Y variables of the estimator for predicting electrode position.

Variables Definition
El 1 pos (m) Height of the electrode 1
El 2 pos (m) Height of the electrode 2
El 3 pos (m) Height of the electrode 3

7.2.2 Modelling the estimator

A new estimator was built using PLSR with the variables given in Table 7.5 as X and the
variables given in 7.6 as Y . The model was validated using leave-one-out cross-validation
on the 768 segments for assessing the statistical performance that the model would have on
unseen data. With 8 factors, the model covers 79 % of the variance, as seen in Figure 7.6.
This means that the explained variance has increased by 4 % with one less component
from the estimator based on only electrical variables in Section 7.1. The results given in
Table 7.7 also shows that the extended set of variables in the X set gives better results
than in the previous estimator for electrode position given in Table 7.3. The R2 value for
the electrode positions has increased from 0.56 to 0.79, and the RMSE has decreased from
0.30 to 0.21. This means that the electrode positions’ estimation has been improved by
extending the X set. The reactance bias found in Section 7.1.4 was also implemented for
this model to compensate for the difference in reactance between simulation and real data.
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Figure 7.6: Explained variance of the leave-one-out cross-validated estimator done with X as the
variables given in Table 7.5 and Y as variables given in Table 7.6. The blue line shows the calibrated
explained variance, and the red line shows the cross-validated explained variance.

Table 7.7: Performance indexes for the estimator predicting electrode positions using leave-one-out
cross-validation.

RMSE R2

El. 1 pos (m) 0.209 0.7906
El. 2 pos (m) 0.209 0.7906
El. 3 pos (m) 0.209 0.7906
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7.2.3 Regression coefficients

Figure 7.7 shows that the most important variables are the resistances, reactances, active
power and conductivity connected to the given electrode for predicting the electrode posi-
tion. The shape of the coke bed connected to the given electrode also has some impact.
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Figure 7.7: Weighted regression coefficients for electrode positions. The red bar show the 95 %
confidence interval for the coefficients.

7.2.4 Assessing the performance of the estimator

The estimator’s clear disadvantage is that it is based on estimations on the shapes and
conductivity of the coke beds and the conductivity in the charge material since there are no
measurements of these quantities. How the shape and conductivity change during tapping
is not known. It is anyways wanted to make the best estimation possible to see how
the electrode position reacts to the new included X variables. As explained in Section
7.2.3, the conductivity in the zone around the electrode will have the biggest impact on
the estimation. This means that the electrodes will most likely react to change in the
conductivity in the coke bed. But, the change in conductivity in the coke bed will also be
the biggest cause of error in the estimated electrode positions if the coke bed’s estimation
is wrong.
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The intuition is that the coke bed, before tapping, contains slag and is conductive. Dur-
ing tapping the slag is tapped and the conductivity drops. Since this changes the resistance
in the furnace, the electrode position should go down during tapping to maintain the ref-
erence on resistance. The holder position is known to drop during tapping, and by finding
a correlation between holder position and estimated electrode position can mean that the
estimated electrode position correspond to the tapping cycles. To see how the electrode
positions react to the change of Sigma CB’s, shapes and Sigma SH an experiment has been
set up in the following way:

1. The Sigma SH was set constant at 22 S/m.

2. The Shapes were set constant at 1.5.

3. The Sigma CB’s are set to increase from a minimum value (Sigmamin) to a max-
imum value (Sigmamax) when not tapping, and decrease from the Sigmamax to
the Sigmamin when tapping. Thus, we can define Sigmadelta = Sigmamax −
Sigmamin.

It is wanted to find a possible correlation between the holder positions and the esti-
mated electrode positions. A correlation indicates that the electrode positions react to the
tapping cycles. As the holder positions don’t give the exact electrode position, there is not
expected a maximum correlation. However, it is expected some correlation as the holder
position reacts on the tapping cycles.

Since the estimator is linear, an equal shift in Sigmamax and Sigmamin gives a shift
in the prediction of the electrode positions. However, it will not interfere with the corre-
lation between the estimated electrode positions and the holder positions. Therefore, the
Sigmadelta was changed to see if that changes the correlation. The Sigmamin was set
constant at 200 S/m, which means that only Sigmamax was changed according to the
changes in Sigmadelta. The different Sigmadelta were given as 0 S/m, 50 S/m, 100 S/m,
150 S/m, 200 S/m and 250 S/m. For a data segment in January 2019, the estimations are
given in Figure 7.8 using the different Sigmadelta. The plot shows the mean-centered pre-
dictions of the electrodes with the mean-centered holder position. In the plot, there is no
clear correlation between the estimates of the electrode positions and the holder positions.
To assess the correlation, the normalized cross correlation has been calculated between the
electrode positions and the holder position at zero lag given in Table 7.8. The normalized
cross correlation varies from -1 to 1. A value of 1 is a perfect correlation, while -1 are two
opposite signals. As the electrode positions and holder positions are expected to decrease
during tapping and increase in between tapping, the correlation should be positive. The
results show a negative correlation for most of the different Sigmadelta. Thus, there is no
correlation between the measures. Even though the correlation becomes less negative with
bigger values of Sigmadelta, there seems to be no correlation between the measures.

7.2.5 Preliminary conclusions about the assessment of the performance
of the estimator

The imposed change in conductivity during tapping and in between tapping makes the es-
timation of the electrode positions a function of the tapping intervals. This makes sense
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Figure 7.8: The colored lines show the different estimations of electrode position for each electrode
using different delta in the conductivity in the coke bed. The black, highlighted line shows the
measured holder position. Both holder and electrode positions are mean-centered. Only the zero is
given on the y-axis due to that the information is classified.

from a theoretical perspective. Anyways, the electrode positions’ estimation does not cor-
relate much with the holder positions, which makes the estimation unreliable. As the
conductivity in the coke bed at any time is unknown, it is difficult to use the conductivity
as an input of the estimator. To get a better assessment of the electrode position estimation,
more information should be extracted from the system. The slipping rate is known in the
system, and the consumption of the electrode can be estimated. An alternative estimation
of the electrode position is provided by extracting this information in addition to the holder
position. If the alternative estimation of the electrode position correlates with the estima-
tion of the electrode position, it gives a better assessment of the estimation of electrode
position.

By the assessment done so far on the electrode position by including the conductivity
in the coke bed, it can be concluded that the estimation does not seem to be promising. As
there are no measurements available for the conductivity’s and the shapes for the input of
the estimator, the estimation becomes unreliable. In this way, the estimator cannot be used
in the control system or as an assistive tool for the operators at this stage.
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Table 7.8: The normalized cross correlation between each of the electrode positions and the holder
positions at zero lag for different changes in conductivity in the coke bed.

Delta Electrode A Electrode B Electrode C
0 (S/m) -0.5333 -0.6604 -0.6079

50 (S/m) -0.3559 -0.5583 -0.4868
100 (S/m) -0.1577 -0.4312 -0.3202
150 (S/m) -0.0202 -0.3155 -0.1819
200 (S/m) 0.0661 -0.2232 -0.0847
250 (S/m) 0.1218 -0.1525 -0.0175

7.3 Building an estimator based on available measurements
and electrode positions

The prediction of the conductivity in the coke bed in Section 7.1 showed that the predic-
tions did not correspond to the tapping cycles as wanted. Since the electrode positions are
believed to correspond to the tapping cycles, it is included in the input of the model. As
there are no measurements of the electrode position, the electrode positions are approxi-
mated by using the holder positions.

7.3.1 Variable selection for the estimator
Section 7.1 shows that the estimation of the conductivity in the coke beds are not affected
by the tapping cycles. The intuition is that the conductivity in the coke beds are expected
to be influenced by the tapping intervals. Therefore, the electrode positions have been
included in the X set. The holder positions will be used as an estimate for the electrode
positions since the electrode positions are unknown. It has been shown that the electrode
positions are functions of the holder positions. The problem with the experiment is that
the holder positions does not represent the electrode positions, but it should be correlated
with the electrode positions. The X and Y variables are given in Table 7.9 and 7.10,
respectively.

7.3.2 Modelling the estimator
The new estimator was built using PLSR with the variables given in Table 7.9 asX and the
variables given in Table 7.10 as Y . The model was validated using leave-one-out cross-
validation on the 768 segments. With 12 factors, the model explains 82 % of the variance,
as shown in Figure 7.9. This means that the inclusion of the electrode positions has made
an increase of 3 components and 7 % higher explained variance compared to the estimator
in Section 7.1.2. The reactance bias found in Section 7.1.4, was implemented for tuning
the model to real data.

Table 7.11 shows the results from leave-out-out cross-validation on the training data.
Comparing the results with the results of the estimator with only available measurements
as input in Table 7.3, we can see that the performance indexes have been improved. The
RMSE has been lowered from 83.7 to 52.7, and the R2 has been increased from 0.33
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Table 7.9: X variables of the estimator for predicting conductivity’s in the coke beds including
electrode positions.

Variables Definition
Resistance El. 1 (mΩ) Resistance in electrode 1
Resistance El. 2 (mΩ) Resistance in electrode 2
Resistance El. 3 (mΩ) Resistance in electrode 3
Reactance El. 1 (mΩ) Reactance in electrode 1
Reactance El. 2 (mΩ) Reactance in electrode 2
Reactance El. 3 (mΩ) Reactance in electrode 3
Active power El. 1 (MW) Active power electrode 1
Active power El. 2 (MW) Active power electrode 2
Active power El. 3 (MW) Active power electrode 3
Current El. 1 (kA) Electrode 1 current
Current El. 2 (kA) Electrode 2 current
Current El. 3 (kA) Electrode 3 current
El. 1 pos (m) Electrode 1 height
El. 2 pos (m) Electrode 2 height
El. 3 pos (m) Electrode 3 height

Table 7.10: Y variables of the estimator for predicting the conductivity’s in the coke beds including
electrode positions.

Variables Definition
Sigma CB 1 (S/m) Conductivity in the coke bed under electrode 1
Sigma CB 2 (S/m) Conductivity in the coke bed under electrode 2
Sigma CB 3 (S/m) Conductivity in the coke bed under electrode 3
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Figure 7.9: Explained variance of the estimator for predicting conductivity’s in the coke beds using
leave-one-out cross-validation. The blue line shows the calibrated explained variance and the red
line shows the cross-validated explained variance.

to 0.73. This means that the coke bed conductivity estimation has been improved by
including electrode positions in theX set.

Table 7.11: Performance indexes for the estimator for predicting conductivity in the coke bed by
using leave-one-out cross-validation.

RMSE Rˆ2
Sigma CB1 (S/m) 52.695 0.73279
Sigma CB2 (S/m) 52.695 0.73279
Sigma CB3 (S/m) 52.695 0.73279

7.3.3 Regression coefficients
Figure 7.10 shows that the most important variables are the resistances, reactances, active
power, current, and electrode position connected to the given electrode. The importance of
the electrode positions in predicting the conductivity was expected due to the increase in
explained variance, and improved performance indexes compared to the model in Section
7.1.

7.3.4 Assessing the performance of the estimator
Figure 7.11 shows the prediction of Sigma CB1, Sigma CB2, and Sigma CB3 for a seg-
ment of data in January 2019 using holder position as an estimate of the electrode position.
The plot shows that the estimation is sometimes negative, which is not a possible measure
for the conductivity. That is due to that the holder positions move in a different span than
what the electrode positions do in the FEM model. Figure 7.3 shows the electrode po-
sitions’ estimation compared to the holder position using the same time-series with the
model made in Section 7.1. Thus, if a positive shift in the holder positions is introduced,
the values are more representative for the electrode position. The shift also gives a positive
shift in the estimation of the conductivity.

Comparing with Figure 7.4, it is seen that the Sigma CB’s are varying a lot more now
when the electrode positions are included in the X set. Comparing the prediction inter-
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Figure 7.10: Weighted Regression Coefficients for the conductivity’s in the coke bed by including
electrode position in the X set. The red bar show the 95 % confidence interval for the coefficients.

vals, the estimations are also more confident now. This can be explained by the model’s
increased explained variance and improved performance indexes by the inclusion of elec-
trode position in theX set.

The experiment was done to see if the Sigma CB’s varied according to the tapping
cycles, that the conductivity drops during tapping and increases in between tapping. The
average drop in conductivity during tapping (for the tapping cycles shown in the figure) for
coke bed 1, 2, and 3 are given by 43, 43, and 57 S/m, respectively. This doesn’t paint the
whole picture as it is not known if the drop in conductivity is due to just tapping, but at least
there seems to be some correlation between the tapping cycles and drop in conductivity.

According to Eidem [17], the difference in conductivity between a coke bed with slag
and a dry coke bed can be between 22 and 41 % depending on the material composition.
As seen for the second tap for coke bed 2 in Figure 7.11, the conductivity drops by approx-
imately 300 S/m. This indicates that the estimations may have too big drops. It is known
that the reference value on the y-axis is wrong, but it is needed a starting value of 732 S/m
for the percentage drop to be less than 41 %, which is a very high conductivity. Anyways,
most of the drops are smaller than 300 S/m.

81



Chapter 7. Modeling the FEM model using a PLSR approach with a limited number of
variables

0

200

400

S/
m

Sigma CB1
Prediction
Tapping
Prediction interval

100

0

100

200

300

400

S/
m

Sigma CB2
Prediction
Tapping
Prediction interval

14 15
Days

0

200

400

S/
m

Sigma CB3
Prediction
Tapping
Prediction interval

Figure 7.11: The prediction of the conductivity’s in for a data segment in January 2019 using holder
positions as approximations of the electrode positions.

7.3.5 Preliminary conclusions about the assessment of the performance
of the estimator

Using the holder positions as the electrode positions are very rough estimations as the
electrode position is a function of the holder position, slipping rate, and consumption
rate. It is known that the operators have information regarding the slipping rate and an
estimation of the consumption. By collecting this information, a more exact estimation of
the electrode position can be done, and thus more accurate results.

An experiment should be set up to get a better assessment of the estimation of the
coke beds’ conductivity. The model excludes variables such as shapes of the coke beds
and conductivity of the charge material. In an ideal experiment, all other factors than the
tapping should be as constant as possible. For example, should the shapes of the coke
beds and the conductivity in the charge material be as constant as possible so they do not

82
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interfere with the process. By holding the variables constant, it gives more definite answers
on how the conductivity in the coked beds changes.

Also, more information and understanding can be gathered if one looks into the dif-
ference of each tap. The tapping occurs on two sides, A and C, which may change the
conductivity more on the tapping side than on the other. The taps also change in time and
the amount of slag and metal tapped each time. Utilizing this data can give a deeper insight
into how the tapping cycles change the coke bed’s conductivity.

Even though it is a very rough estimation by using the holder positions as the electrode
positions, it seems that the estimator gives a correlation between tapping cycles and the
conductivity. A more robust experiment, as explained above, should be performed to
gather more exact results.

As for now, the conductivity estimation by using the holder position as the electrode
position can be used to see how the conductivity changes. Since the holder position does
not provide an accurate estimation of the electrode position, the estimated value of con-
ductivity is wrong. However, it can be used to approximate how much the conductivity
drops during tapping.

7.4 Assumptions of using models based on the FEM model
on real data

All PLSR models presented in the thesis are based on the FEM model and are thereby an
estimation of the FEM model. This means in practice that the PLSR models are models
of the FEM model, which again is a model of the FeMn furnace. This implies that all
assumptions done in the FEM model becomes assumptions for the PLSR models in esti-
mating the FeMn furnace. The assumptions of the FEM model can be found in Section
5.1.1. In theory, if the FEM model is a perfect FeMn furnace model, the PLSR models can
be seen as a direct model of the FeMn furnace.

Firstly, the assumption that the PLSR does is to assume the FEM model to be linear.
This assumption has varying effects depending on both the input and output of the PLSR
model. Generally, the assumption is good as the performance indexes are good. For
variables with worse performance indexes, the linear assumption may be the reason for
the performance indexes. Another reason could also be that the data is not giving enough
information to give an accurate estimation.

When using the PLSR models on real data as done in Chapter 7, one assumption in
the FEM model becomes very important, which is the assumption of a static furnace. As
explained in Section 5.1.1, the assumption is good when using slow dynamic variables as
input and predicting fast dynamic variables as output. In Chapter 7, the tables have turned,
the fast dynamic variables are predicting slow dynamic variables. If the input is changed
rapidly or more precisely, if the input changes faster than the time constants of the output
variables, the estimator has a problem in estimating the variables. A natural question is
then – how fast is the dynamics of the output variables? By knowing the dynamics of
the output variables, one can assess the validity of the prediction as the input is known.
Though, the dynamics of the output variables are not known. For some variables, it is
possible to model the dynamics of the output variables. By doing this, it gives a better
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understanding of the process.
Another assumption that becomes important when predicting the furnace’s internal

conditions is everything that is disregarded in the model. For example, when predicting
the conductivity of the charge material, the models do not take into account the material
fed into the furnace. A change in the material composition loaded into the furnace have
an impact on the conductivity in firstly the charge material and then later in the coke beds.
How the material flows around in the furnace is also not taken into consideration.
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Chapter 8
Further work

PLSR is not the unique way of creating data-driven metamodels of the considered FEM
model. Other methods can be used, and can possibly make a better fit for the data. In-
deed – and this is an important point – the PLSR approach is linear in the considered
features of the data. Even if simple static nonlinearities may be introduced by opportunely
feature-engineering the data (namely, by introducing squared and interaction effects), other
nonlinear methods have more powerful capabilities in handling nonlinearities. This means
that there may exist better representations of the FEM model than the one considered in
this thesis. (At the same time, we consider that PLSR provides intuitive results, and has
high explainability properties, qualities that are appreciated when dealing with needs for
interpretability.)

As the modeling choice in this thesis is PLSR, we shall also report how we tried to
improve the modeling by opportunely tailoring our PLSR approach. We thus note that,
in this thesis, all Y variables have been modeled together - this is also called a PLS2
approach. Indeed it is possible to model the Y variables independently (something that
is called a PLS1 approach). Despite by using the PLS1 approach, the model may give a
better fit, to the best of our knowledge the PLS2 approach is much more practical when
there are several Y variables, as in this thesis, since potential correlations among these
variables are then captured and used for modelling approaches – in other words, in a PLS2
approach also the interactions among the Y ’s are used to create the overall model. At
the same time, using the PLS1 approach would give the additional opportunity of using a
different number of components, and different interaction and square effects for each Y
variable. Despite this, our overarching choice has in any case been to go for a full PLS2
effect, given its increased capability of modeling joint effects.

Besides the modeling aspects above, we also mention that to understand the processes
in the furnace, and model the furnace in the best way, all the data that could be collectible
from the FEM model should hypothetically be gathered and analyzed. In other words,
collecting more data from more experiments from the FEM model may give more infor-
mation about the process at a low cost. At the same time, one may not run the FEM model
for the eternity – in this thesis we thus considered running the FEM as much as feasible,
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and draw our conclusions based on a (in our intuitions) sufficiently rich dataset. Despite
this, more data may lead to better results.

Also, some data sources were available but not used in this thesis. For example mea-
surements of pressure, temperatures and other things such as data about the tapping cycles,
the amount of slag and metal tapped, duration of the taps and which side the tapping oc-
curred: all this information may hypothetically be utilized to gain a deeper understanding
of the conductivity in the furnace, and general information about the tapping.

More information should also be extracted from the system to assess the electrode
position estimation better. The slipping rate is known in the system, and the consumption
of the electrode can be estimated. An alternative estimation of the electrode is provided by
extracting this information in addition to the holder position. If the alternative estimation
of the electrode position correlates with the estimation of the electrode position, it gives a
better assessment of the estimation of electrode position.

We mention that there exists the possibility of setting up experiments to get a better
assessment of the estimation of the coke beds’ conductivity. Our models exclude variables
such as shapes of the coke beds and conductivity of the charge material. In an ideal exper-
iment, all other factors than the tapping should be as constant as possible. For example,
the shapes of the coke beds and the conductivity in the charge material should be kept as
constant as possible, so they don’t interfere with the process. By holding the variables
constant, this would give more definite answers on how the conductivity in the coked beds
changes. At the same time, performing this type of experiment is definitely not easy, and
well beyond the scope of this work.

Finally, we explained in section 7.4 the problems associated to disregarding the dynam-
ics of the plant when using static models. To make a better model of the FeMn furnace,
we should consider its dynamics. It is possible to use Prediction Error Methods (PEM) to
model some variables in the system; however, the problem with using PEM approaches is
that one needs data of the variables to be predicted to recreate the variables. And as before,
we have been in this thesis in the situation where the most interesting variables that should
be estimated in the furnace are so that we do not have any measurements of them. This
makes it somehow a non-sense to use PEM to predict these variables, since we would not
be able to assess the effectiveness of the estimates. Another way to capture the dynamics
of the furnace is to make a physical model of the furnace using known physics equations.
Combining the static PLSR model with a physical model can indeed give a more accurate
model of the furnace. Also this, though, is beyond the scope of the thesis and should be
considered a potential further work.
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Chapter 9
Conclusion

The thesis builds on the question: What is happening inside a ferromanganese (FeMn)
furnace? Before answering this, it is essential to understand how a FeMn furnace works.
Therefore the thesis starts with a thorough evaluation of the known characteristics of such
furnaces. An evaluation that somehow motivates the question itself, since it highlights
the challenge of measuring the furnace’s internal conditions, since the typical measure-
ment systems provided in this type of plants provide limited information about the furnace
behavior.

To gain information regarding this behavior and complement the experimentally avail-
able data, NORCE has developed a finite element method (FEM) model that describes the
electrical conditions of such furnaces. This FEM model includes properties of the coke
beds and electrode positions (information that is typically not known for real furnaces,
and that is thus deemed as useful by the plant operators). Such FEM model comes though
with a disadvantage: it is indeed complex to use and time-consuming to run, making its
usage impractical for a rapidly changing furnace. To obtain a significantly faster and more
practical representation of such FEM model, the thesis explored the topic creating a meta-
model (i.e., a model of the FEM model) using data-driven methods. More precisely, we
provided a data foundation for data-driven modeling by simulating the FEM model using
an experimental design approach that was built to cover the most of the furnace operational
area. In more detail, the first data-driven models were proved to lead to a metamodel with
asymmetric properties, while the FEM model is perfectly symmetric. This made us real-
ize the need for including in the experiment design methodology strategies that preserve
symmetricity assumptions. This was obtained by grouping all variables connected to each
electrode and extending the dataset by swapping the data for two electrodes a time; with
this discovered approach, symmetry was imposed on the dataset - and on the metamodels
obtainable from this dataset.

The final metamodel, whose purpose is to work as a computationally-efficient approx-
imation of the FEM model, was then built using a PLSR approach. Leave-one-out cross-
validation was used to assess its generalization capabilities, and the results showed that the
metamodel captures the FEM model well, except for the voltages and the volume of the
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coke bed below and above the electrodes, which were decent fits.
In addition to the metamodel above, the thesis also produced an inverse metamodel,

that was built to compute the inverse relationship between the inputs and outputs. In
other words, the FEM model cannot be used to solve the problem: ”consider this output.
Which input produced it?” In other words, this inverse metamodel has been built to be
able to compute an estimate of which plant input (and thus also internal condition) leads
to a specific plant output (i.e., set of measurements from the plant sensors). To validate
the accuracy of such an inverse metamodel in estimating the inputs, leave-one-out cross-
validation was used in this case as well. The assessment showed varying results: currents
were estimated well; electrode positions, shapes of the coke beds and conductivity in the
charge material were estimated decently; the conductivity in the coke beds was proven to
be difficult to estimate.

Note though, that not all of the inputs of the metamodels are measured in the plant.
Therefore we also considered building an estimator that uses only the variables that are
actually physically measured to compute, as outputs, variables that are unknown to the
operators. In this way, the estimator can quickly estimate unknown conditions in real-
time. Such an estimator was validated using leave-one-out cross-validation too, and the
results showed that the conductivity in the coke beds and charge material, and electrode
positions are all hard to estimate. The shapes of the coke beds, steel shell powers, and
volume of the coke beds below the electrode positions are instead estimated well. The
voltages and power in coke beds are, in their turn, estimated very well. It was shown
that the electrical variables for the given electrode are the most important in estimating
such variables. For the conductivity in the coke beds and charge material, and electrode
positions, the most important variables in estimation are reactance and current. For the
voltages and power in coke beds, the resistance and active power are the variables most
influencing this estimation step.

Such estimator was also tested on real data to assess the performance on real situations.
The assessment concluded that the electrode position and conductivity in the coke beds do
not correspond to the tapping cycles and lead, therefore, too bad estimation results. The
voltage measurement is used to calculate the electrical variables used in the input of the
voltage estimation, making the estimation of the voltage invalid. The rest of the estimated
variables are hard to assess as there are no measurements available, and little information
is known about them. Summarizing, the electrode position and coke bed are not behaving
as expected, the voltage estimation is influenced by the voltage measurement, and the rest
of the variables are hard to assess. In such conditions the estimator at this stage is not
reliable. Practically speaking, this means that the estimator cannot be used as any part of
a control system, even if some of the variables that are estimated with the produced tool
might be used as assistive information by the operators.

Since the electrode positions’ estimation did not correspond to the tapping cycles, a
new estimator was built, including conductivity, shape of the coke beds, and conductivity
in the charge material (information that is typically not measured) as additional inputs for
the estimator. This was done to check how much such additional information would im-
prove the electrode positions’ estimator – in a sense, an operation that has the meaning of
assessing the benefits of having such measurements for estimation purposes. The results
from leave-out-out cross-validation led to record improvements with respect to the first es-

88



timator, since the electrode positions were now decently estimated. However, since there
exist no real-life measurements of such conductivities and shapes, experimental values
could not be used to assess the value of these variables in real-life conditions. Moreover,
in our experiments the shapes of the coke beds and the conductivity of the charge material
values were set constant, and the values for the coke beds’ conductivity was decreased lin-
early during tapping, and increased linearly in between tapping. Since the holder positions
correspond to the tapping intervals, the wanted result was to find a correlation between the
electrode position and the holder position. The results showed no correlation for different
cases of change in the conductivity of the coke beds. This means that the estimation of the
electrode position is actually unreliable.

Further, the coke beds’ conductivity was also proved to be not corresponding to the
tapping intervals in the furnace for the first estimator. Therefore we built another esti-
mator by including the electrodes positions to the set of electrical variables working as
inputs of the model for estimating the conductivity in the coke beds. Since the electrode
positions are believed to correspond to the tapping cycles, it was wanted to see if the elec-
trode position’s change makes the estimated conductivity in the coke bed correspond to
the tapping cycles. The estimator was validated using leave-one-out cross-validation, and
the results were significantly increased, giving a decent estimation of the conductivity in
coke beds. As there is no measurement of the electrode positions, the holder positions are
roughly approximated as the electrode positions. The results using real data and approx-
imated electrode position showed that the conductivity in the coke bed corresponds with
the tapping intervals.

To sum up, the metamodel is successfully representing the original FEM model. The
inverse metamodel represents the inverse of the FEM model with varying accuracy in
estimating the various variables. For the subsequent estimators, improvements in the work
can be made; suggestions are elaborated under the dedicated further work section. For
now, it is not possible to use any of the estimators in a control system, since the results are
deemed to be not accurate enough for the purpose. In our opinion, though, information
and knowledge can be generated from these estimators, and be used as a supportive tool in
understanding the behavior of the furnace in real-life conditions.
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[12] K. Stråbø, “Report - Visiting the plant in Sauda,” 2019.

[13] R. F. Schulte and C. A. Tuck, “Ferroalloys,” USGS 2016 Minerals Yearbook, 2020.

[14] M. Sparta, “Temperature profiles during shutdown,” 2019.

[15] Comsol, “COMSOL Multiphysics,” 2020.

[16] E. V. Herland, M. Sparta, and S. A. Halvorsen, “3D models of proximity effects in
large FeSi and FeMn furnaces.,” J. S. Afr. Inst. Min. Metall., vol. 118, no. 6, pp. 607–
618, 2018.

[17] P. A. Eidem, Electrical Resistivity of Coke Beds. PhD thesis, NTNU, 7491 Trond-
heim, 2008.

92



Appendix

93



94



Appendix A
Distributions of simulated data and
real data
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Figure A.1: Density plot for resistance El. A for real operational data and simulated data.
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Figure A.2: Density plot for resistance El. B for real operational data and simulated data.
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Figure A.3: Density plot for resistance El. C for real operational data and simulated data.
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Figure A.4: Density plot for reactance El. A for real operational data and simulated data.
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Figure A.5: Density plot for reactance El. B for real operational data and simulated data.
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Figure A.6: Density plot for reactance El. C for real operational data and simulated data.
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Figure A.7: Density plot for active power El. A for real operational data and simulated data.
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Figure A.8: Density plot for active power El. B for real operational data and simulated data.
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Figure A.9: Density plot for active power El. C for real operational data and simulated data.
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Figure A.10: Density plot for current El. A for real operational data and simulated data.
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Figure A.11: Density plot for current El. B for real operational data and simulated data.

98



Current El. C

De
ns

ity
Density Plot for Current El. C

Simulated data
Real data

Figure A.12: Density plot for current El. C for real operational data and simulated data.
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Figure A.13: Density plot for current El. A for real operational data and simulated data.
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Figure A.14: Density plot for current El. B for real operational data and simulated data.
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Figure A.15: Density plot for current El. C for real operational data and simulated data.
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Appendix B
Weighted regression coefficients for
metamodel
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Figure B.1: Weighted regression coefficients for average current.
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Regression coefficients for Reactive Power tot
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Figure B.2: Weighted regression coefficients for total reactive power.

Regression coefficients for Shell Power Tot
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Figure B.3: Weighted regression coefficients for total shell power.

Regression coefficients for Roof Power
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Figure B.4: Weighted regression coefficients for total roof power
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Regression coefficients for Tot Resistance
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Figure B.5: Weighted regression coefficients for total resistance

Regression coefficients for Total Reactance
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Figure B.6: Weighted regression coefficients for total reactance
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Figure B.7: Weighted regression coefficients for active power El. 1.
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Regression coefficients for Reactin Power El  1
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Figure B.8: Weighted regression coefficients for reactive power El. 1.

Regression coefficients for Shell Power El  1
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Figure B.9: Weighted regression coefficients for shell power El. 1.

Regression coefficients for Resistance El  1
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Figure B.10: Weighted regression coefficients for resistance El. 1.
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Regression coefficients for Reactance El  1
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Figure B.11: Weighted regression coefficients for reactance El. 1.

Regression coefficients for Voltage El  1
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Figure B.12: Weighted regression coefficients for voltage El. 1.
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Figure B.13: Weighted regression coefficients for volume CB1.
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Regression coefficients for Volume CB1 above El  1
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Figure B.14: Weighted regression coefficients for volume CB1 above El. 1.

Regression coefficients for Volume CB1 below El  1
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Figure B.15: Weighted regression coefficients for volume CB1 below El. 1.

Regression coefficients for Power CB1
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Figure B.16: Weighted regression coefficients for power CB.
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Regression coefficients for Active Power El  2
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Figure B.17: Weighted regression coefficients for power El. 2.

Regression coefficients for Reactive Power El  2
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Figure B.18: Weighted regression coefficients for reactive Power El2
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Figure B.19: Weighted regression coefficients for shell power El. 2.
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Regression coefficients for Resistance El  2
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Figure B.20: Weighted regression coefficients for resistance El. 2.

Regression coefficients for Reactance El  2
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Figure B.21: Weighted regression coefficients for reactance El. 2.

Regression coefficients for Voltage El  2
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Figure B.22: Weighted regression coefficients for voltage El. 2.
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Regression coefficients for Volume CB2
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Figure B.23: Weighted regression coefficients for volume CB2.

Regression coefficients for Volume CB2 above El  2
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Figure B.24: Weighted regression coefficients for volume CB2 above El. 2.

Regression coefficients for Volume CB2 below El  2
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Figure B.25: Weighted regression coefficients for volume CB2 below El. 2.
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Regression coefficients for Power CB2
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Figure B.26: Weighted regression coefficients for power CB2.
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Figure B.27: Weighted regression coefficients for power El. 3.

Regression coefficients for Reactive Power El  3
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Figure B.28: Weighted regression coefficients for reactive power El. 3.
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Regression coefficients for Shell Power El  3
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Figure B.29: Weighted regression coefficients for shell power El. 3.

Regression coefficients for Resistance El  3
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Figure B.30: Weighted regression coefficients for resistance El. 3.
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Figure B.31: Weighted regression coefficients for reactance El. 3.
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Regression coefficients for Voltage El  3
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Figure B.32: Weighted regression coefficients for voltage El. 3.

Regression coefficients for Volume CB3
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Figure B.33: Weighted regression coefficients for volume CB3.

Regression coefficients for Volume CB3 above El3
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Figure B.34: Weighted regression coefficients for volume CB3 above El. 3.
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Regression coefficients for Volume CB3 below El3
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Figure B.35: Weighted regression coefficients for volume CB3 below El. 3
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Figure B.36: Weighted regression coefficients for power CB3.
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Appendix C
Weighted regression coefficients for
inverse metamodel

Regression coefficients for El 1 pos
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Figure C.1: Weighted regression coefficients for El. 1 pos.
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Regression coefficients for Sigma CB1
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Figure C.2: Weighted regression coefficients for Sigma CB1.

Regression coefficients for Current El  1
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Figure C.3: Weighted regression coefficients for Current El. 1.

Regression coefficients for Shape 1
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Figure C.4: Weighted regression coefficients for Shape 1.
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Regression coefficients for El 2 pos
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Figure C.5: Weighted regression coefficients for El. 2 pos.

Regression coefficients for Sigma CB2
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Figure C.6: Weighted regression coefficients for Sigma CB2.

Regression coefficients for Current El  2
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Figure C.7: Weighted regression coefficients for Current El. 2.
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Regression coefficients for Shape 2

Ave
ra

ge
 C

ur
re

nt

Acti
ve

 P
ow

er
 to

t

Rea
cti

ve
 P

ow
er

 to
t

She
ll P

ow
er

 T
ot

Roo
f P

ow
er

Tot
 R

es
ist

an
ce

Tot
al 

Rea
cta

nc
e

Acti
ve

 P
ow

er
 E

l. 1

Rea
cti

n 
Pow

er
 E

l. 1

She
ll P

ow
er

 E
l. 1

Res
ist

an
ce

 E
l. 1

Rea
cta

nc
e 

El. 1

Volt
ag

e 
El. 1

Volu
m

e 
CB1

Volu
m

e 
CB1 

ab
ov

e 
El. 1

Volu
m

e 
CB1 

be
low

 E
l. 1

Pow
er

 C
B1

Acti
ve

 P
ow

er
 E

l. 2

Rea
cti

ve
 P

ow
er

 E
l. 2

She
ll P

ow
er

 E
l. 2

Res
ist

an
ce

 E
l. 2

Rea
cta

nc
e 

El. 2

Volt
ag

e 
El. 2

Volu
m

e 
CB2

Volu
m

e 
CB2 

ab
ov

e 
El. 2

Volu
m

e 
CB2 

be
low

 E
l. 2

Pow
er

 C
B2

Acti
ve

 P
ow

er
 E

l. 3

Rea
cti

ve
 P

ow
er

 E
l. 3

She
ll P

ow
er

 E
l. 3

Res
ist

an
ce

 E
l. 3

Rea
cta

nc
e 

El. 3

Volt
ag

e 
El. 3

Volu
m

e 
CB3

Volu
m

e 
CB3 

ab
ov

e 
El3

Volu
m

e 
CB3 

be
low

 E
l3

Pow
er

 C
B3

Volu
m

e 
CB1*

*2

Volu
m

e 
CB1 

ab
ov

e 
El1*

*2

Volu
m

e 
CB1 

be
low

 E
l1*

*2

Volu
m

e 
CB2*

*2

Volu
m

e 
CB2 

ab
ov

e 
El2*

*2

Volu
m

e 
CB2 

be
low

 E
l2*

*2

Volu
m

e 
CB3*

*2

Volu
m

e 
CB3 

ab
ov

e 
El3*

*2

Volu
m

e 
CB3 

be
low

 E
l3*

*2

-0.5

0

0.5

1
W

ei
gh

te
d 

re
gr

es
si

on
 c

oe
ffi

ci
en

ts

Figure C.8: Weighted regression coefficients for Shape 2.

Regression coefficients for El 3 pos
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Figure C.9: Weighted regression coefficients for El. 3 pos.

Regression coefficients for Sigma CB3
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Figure C.10: Weighted regression coefficients for Sigma CB3.
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Regression coefficients for Current El  3
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Figure C.11: Weighted regression coefficients for Current El. 3.

Regression coefficients for Shape 3
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Figure C.12: Weighted regression coefficients for Shape 3.

Regression coefficients for Sigma SH
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Figure C.13: Weighted regression coefficients for Sigma SH.
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Appendix D
Weighted regression coefficients
coefficients for the estimator

Regression coefficients for El 1 pos
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Figure D.1: Weighted regression coefficients for El. 1 pos.
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Regression coefficients for El 2 pos
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Figure D.2: Weighted regression coefficients for El. 2 pos.

Regression coefficients for El 3 pos
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Figure D.3: Weighted regression coefficients for El. 3 pos.

Regression coefficients for Sigma CB1
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Figure D.4: Weighted regression coefficients for conductivity in cokebed 1.
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Regression coefficients for Sigma CB2

Res
ist

an
ce

 E
l. 1

Res
ist

an
ce

 E
l. 2

Res
ist

an
ce

 E
l. 3

Rea
cta

nc
e 

El. 1

Rea
cta

nc
e 

El. 2

Rea
cta

nc
e 

El. 3

Acti
ve

 P
ow

er
 E

l. 1

Acti
ve

 P
ow

er
 E

l. 2

Acti
ve

 P
ow

er
 E

l. 3

Cur
re

nt
 E

l. 1

Cur
re

nt
 E

l. 2

Cur
re

nt
 E

l. 3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

W
ei

gh
te

d 
re

gr
es

si
on

 c
oe

ffi
ci

en
ts

Figure D.5: Weighted regression coefficients for conductivity in cokebed 2.

Regression coefficients for Sigma CB3
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Figure D.6: Weighted regression coefficients for conductivity in cokebed 3.

Regression coefficients for Sigma SH
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Figure D.7: Weighted regression coefficients for conductivity in charge material.
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Regression coefficients for Shape 1
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Figure D.8: Weighted regression coefficients for shape in cokebed 1.

Regression coefficients for Shape 2
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Figure D.9: Weighted regression coefficients for shape in cokebed 2.

Regression coefficients for Shape 3
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Figure D.10: Weighted regression coefficients for shape in cokebed 3.
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Regression coefficients for Steel Shell Power
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Figure D.11: Weighted regression coefficients for steel shell power.
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Figure D.12: Weighted regression coefficients for steel shell power El. 1.

Regression coefficients for Shell Power El  2
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Figure D.13: Weighted regression coefficients for steel shell power El. 2.
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Regression coefficients for Shell Power El  3
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Figure D.14: Weighted regression coefficients for steel shell power El. 3.

Regression coefficients for Volume CB1
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Figure D.15: Weighted regression coefficients for volume coke bed 1.

Regression coefficients for Volume CB2
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Figure D.16: Weighted regression coefficients for volume coke bed 2.
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Regression coefficients for Volume CB3

Res
ist

an
ce

 E
l. 1

Res
ist

an
ce

 E
l. 2

Res
ist

an
ce

 E
l. 3

Rea
cta

nc
e 

El. 1

Rea
cta

nc
e 

El. 2

Rea
cta

nc
e 

El. 3

Acti
ve

 P
ow

er
 E

l. 1

Acti
ve

 P
ow

er
 E

l. 2

Acti
ve

 P
ow

er
 E

l. 3

Cur
re

nt
 E

l. 1

Cur
re

nt
 E

l. 2

Cur
re

nt
 E

l. 3
-1.5

-1

-0.5

0

0.5

1

1.5
W

ei
gh

te
d 

re
gr

es
si

on
 c

oe
ffi

ci
en

ts

Figure D.17: Weighted regression coefficients for volume coke bed 3.

Regression coefficients for Power CB1
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Figure D.18: Weighted regression coefficients for power coke bed 1.

Regression coefficients for Power CB2
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Figure D.19: Weighted regression coefficients for power coke bed 2.
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Regression coefficients for Power CB3
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Figure D.20: Weighted regression coefficients for power coke bed 3.

Regression coefficients for Voltage El1
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Figure D.21: Weighted regression coefficients for voltage in electrode 1.

Regression coefficients for Voltage El2
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Figure D.22: Weighted regression coefficients for voltage in electrode 2.
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Regression coefficients for Voltage El3
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Figure D.23: Weighted regression coefficients for voltage in electrode 3.
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Appendix E
Code

1 %% This document is for making metamodel
2

3 clc
4 clear
5 close all
6

7 % Giving information for opploading the X and Y for training
8 sSheetX = ’Input + eff’;
9 sSheetY = ’Output’;

10 ExcelFile = ’../Data/Database_May.xlsx’;
11 iNumberOfMainVariables = 13;
12

13 %% Model order selection’
14 % Using leave-one-out cross validation
15 % Plots the explained variance, both calibrated and validated
16 Save = ’True’;
17

18 [afPctvar, ...
19 afPctvarCV] = ...
20 LOOCV_EXPVA( ...
21 ExcelFile, ...
22 sSheetX, ...
23 sSheetY, ...
24 Save);
25

26 %% Making the PLSR model (direct metamodel)
27 disp(’Making PLSR model...’)
28 iNumberOfComponents = 17;
29 Plot = ’False’;
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30 Save = ’False’;
31

32 [aafBeta, ...
33 afB0, ...
34 aafXWeightedLoadings, ...
35 aafXWeightedScores, ...
36 aafXWeights, ...
37 aafResiduals, ...
38 aafVarianceOfEstimates, ...
39 afYstdev, ...
40 afXstdev, ...
41 afXmean, ...
42 afYmean, ...
43 aafX, ...
44 aafY, ...
45 aafPerformanceIndexes, ...
46 afPctvar, ...
47 astrHeaderX, ...
48 astrHeaderY, ...
49 afVarianceOfEstimates] = ...
50 PLSR_function( ...
51 iNumberOfComponents, ...
52 ExcelFile, ...
53 Plot, ...
54 sSheetX, ...
55 sSheetY, ...
56 Save);
57 disp(’PLSR model made’)
58

59 iNumberOfSamples = length(aafX);
60

61 %% Making the weights for the interaction effects
62

63 for col = 1:size(aafX,2)
64 for row = 1:length(aafX)
65 aafXcenteredsquared(row,col) = ...
66 (aafX(row,col) - afXmean(col))ˆ2;
67 end
68 end
69 aafXSUMcenteredsquared = sum(aafXcenteredsquared)/ ...
70 (iNumberOfSamples - 1);
71 for iNumberOfVariables = 1:size(aafX,2)
72 afWeights(iNumberOfVariables) = ...
73 1/sqrt(aafXSUMcenteredsquared(iNumberOfVariables));
74 end
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75

76 % Making the weights for the original input
77 afWeightsOriginalInput = afWeights(1:iNumberOfMainVariables);
78 afXmeanMainVariables = afXmean(1:iNumberOfMainVariables);
79

80 %% LOOCV PLSR
81 [aafPerformanceIndexesCV, ...
82 afExplainedVarianceCV] ...
83 = LOOCV_PLSR( ...
84 ExcelFile, ...
85 sSheetX, ...
86 sSheetY, ...
87 iNumberOfComponents);
88

89 %% Uploading validation set
90

91 sSheetXValidation = ’Input_symmetry’;
92 sSheetYValidation = ’Output_symmetry’;
93 ExcelFile = ’../Data/Database_May_Validation.xlsx’;
94

95 [aafXValidation,astrHeaderXValidated,NotinUse] = ...
96 xlsread(ExcelFile, sSheetXValidation);
97 [aafYValidation,astrHeaderYValidated,NotinUse2] = ...
98 xlsread(ExcelFile, sSheetYValidation);
99

100 %% Prediction based on the validation set
101

102 % Normalizing the validation set
103 for i = 1:length(aafXValidation)
104 aafXValidationNormalized(i,:) = ...
105 (aafXValidation(i,:) - afXmeanMainVariables) .* ...
106 afWeightsOriginalInput;
107 end
108

109 % Making the interaction effects
110 for number = 1:length(aafXValidation)
111 afXValidationNormalized = aafXValidationNormalized(number,:);
112 counter = 1;
113 for iMainInputvariable = 1:iNumberOfMainVariables
114 for j = iMainInputvariable + 1:iNumberOfMainVariables
115 afXinteractions(counter) = ...
116 afXValidationNormalized(iMainInputvariable) * ...
117 afXValidationNormalized(j);
118 counter = counter + 1;
119 end
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120 end
121 aafXinteractions(number,:) = afXinteractions;
122 end
123

124 % Making the squared effects
125 for number = 1:length(aafXValidation)
126 afXValidationNormalized = aafXValidationNormalized(number,:);
127 counter = 1;
128 for iMainInputvariable = 1:iNumberOfMainVariables
129 afXsquares(iMainInputvariable) = ...
130 afXValidationNormalized(iMainInputvariable)ˆ2;
131 counter = counter + 1;
132 end
133 aafXsquares(number,:) = afXsquares;
134 end
135

136 % Merging x with interactions and squares
137 aafX0 = [aafXValidation, aafXinteractions, aafXsquares];
138

139 % Predicting validated y
140 aafY0 = aafX0 * aafBeta + afB0;
141

142 %% Assesing the model performance
143 fmeanYest = mean(aafY0);
144 fmeanYVal = mean(aafYValidation);
145

146 % Finding R2 and RMSE
147 iNumberOfOutputs = size(aafYValidation,2);
148 iNumberOfMeasurements = size(aafYValidation,1);
149 afR2 = zeros(1, iNumberOfOutputs);
150 afRMSE = zeros(1, iNumberOfOutputs);
151 for i = 1:iNumberOfOutputs
152 afSquaredError = (aafYValidation(:,i) - aafY0(:,i)).ˆ2;
153 afMeanOfRealY = (aafYValidation(:,i) - fmeanYVal(i)).ˆ2;
154 fSumOfEst = sum(afSquaredError);
155 fSumOfReal = sum(afMeanOfRealY);
156 fR2 = 1 - (fSumOfEst/fSumOfReal);
157 afR2(i) = fR2;
158 fRMSE = sqrt(fSumOfEst/iNumberOfMeasurements);
159 afRMSE(i) = fRMSE;
160 end
161

162 aafPerformanceIndexesVal = [afRMSE’, afR2’];
163 aafPerformanceIndexesVal = table(aafPerformanceIndexesVal, ...
164 ’RowNames’,astrHeaderY);
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165 aafPerformanceIndexesVal = splitvars(aafPerformanceIndexesVal);
166 aafPerformanceIndexesVal.Properties.VariableNames = {’RMSE’,’R2’};
167

168 %% Plotting ref vs predicted
169

170 for iPlot = 1:size(aafYValidation,2)
171 figure
172 minste = min(aafYValidation(:,iPlot));
173 storste = max(aafYValidation(:,iPlot));
174

175 plot(aafYValidation(:,iPlot), aafY0(:,iPlot), ’o’)
176 hold on
177 plot([minste, storste],[minste,storste] , ’k’, ’MarkerSize’, 2)
178 xlim([minste, storste])
179 xlabel(’Reference Y’);
180 ylabel(’Predicted Y’);
181 word = astrHeaderY(iPlot);
182 title(word{1});
183 end

1 %% Function for PLSR
2 % 1. Gives the beta and b0 scaled back to
3 % "raw" values
4 % 2. Provides scores and loadings
5 % 3. Give the calibrated perfomance in Rˆ2 and RMSE
6 % 4. Gives plots of:
7 % a) Beta coef with CI
8 % b) Reference vs. prediction plots (calibrated)
9

10 function [aafBeta, ...
11 afB0, ...
12 aafXWeightedLoadings, ...
13 aafXWeightedScores, ...
14 aafXWeights, ...
15 aafResiduals, ...
16 aafVarianceOfEstimates, ...
17 afYstdev, ...
18 afXstdev, ...
19 afXmean, ...
20 afYmean, ...
21 aafXUnscaled, ...
22 aafYUnscaled, ...
23 aafPerformanceIndexes, ...
24 afPctvar, ...
25 astrHeaderX, ...
26 astrHeaderY, ...
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27 afVarianceOfEstimates] = ...
28 PLSR_function(iNumberOfComponents, ...
29 ExcelFile, ...
30 Plot, ...
31 sSheetX, ...
32 sSheetY, ...
33 Save)
34

35 C = strsplit(ExcelFile,’_’);
36 ExcelID=C{end};
37 ExcelID = ExcelID(1:end-5);
38

39 % Upload data set
40 [aafXUnscaled,astrHeaderX,NotinUse] = xlsread(ExcelFile, sSheetX);
41 [aafYUnscaled,astrHeaderY,NotinUse2] = xlsread(ExcelFile, sSheetY);
42

43 % Changing properties of headers
44 for i = 1:length(astrHeaderY)
45 astrHeaderY(i) = strrep(astrHeaderY(i),’.’,’ ’);
46 end
47

48 % Making shorter names for astrHeaderX
49 for i = 1:length(astrHeaderX)
50 name = astrHeaderX{i};
51 name = name(1:7);
52 astrHeaderShortX{i} = name;
53 end
54

55 % Making shorter names for astrHeaderY
56 for i = 1:length(astrHeaderY)
57 name = astrHeaderY{i};
58 name = name(1:5);
59 astrHeaderShortY{i} = name;
60 end
61

62 % Set the percentile for the PI
63 fPercentile = 1.962; % 95% confidence interval with 1000 df
64

65 % Standardizing
66 [aafX,afXmean,afXstdev] = zscore(aafXUnscaled);
67 [aafY,afYmean,afYstdev] = zscore(aafYUnscaled);
68

69 % Extracting info from data sets
70 iNumberOfMeasurements = size(aafX,1);
71 iNumberOfInputs = size(aafX,2);
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72 iNumberOfOutputs = size(aafY,2);
73

74 %% Making weighted plsr model
75 % estimate the SCALED model
76 [ aafXWeightedLoadings, ...
77 aafYWeightedLoadings, ...
78 aafXWeightedScores, ...
79 aafYWeightedScores, ...
80 aafWeightedEstimatedBeta, ...
81 aafPctvar, ...
82 fEstimatedWeightedMSE, ...
83 stats] = ...
84 plsregress( ...
85 aafX, ...
86 aafY, ...
87 iNumberOfComponents);
88

89 aafXWeights = stats.W;
90 afEstimatedWeightedB0 = aafWeightedEstimatedBeta( 1, : );
91 aafEstimatedWeightedBeta = aafWeightedEstimatedBeta( 2:end, : );
92 afPctvar = cumsum(100*aafPctvar(2,:));
93

94 %% Computing Residuals of training set (weighted)
95 aafPredictedY = zeros( size(aafY) );
96 aafResiduals = zeros( size(aafY) );
97

98 for iMeasurement = 1:iNumberOfMeasurements
99 %

100 aafPredictedY(iMeasurement, :) = ...
101 aafX(iMeasurement, :) * ...
102 aafEstimatedWeightedBeta ...
103 + afEstimatedWeightedB0;
104 %
105 aafResiduals(iMeasurement, :) = ...
106 aafY(iMeasurement, :) ...
107 - aafPredictedY(iMeasurement, :);
108 %
109 end %
110

111 %% Calculating the variance of estimates
112 aafVarianceOfEstimates = zeros(iNumberOfOutputs,iNumberOfOutputs);
113 %
114 for i = 1:iNumberOfMeasurements
115 %
116 aafVarianceOfEstimates = aafVarianceOfEstimates + ...
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117 ( aafResiduals(i,:) )’ * ( aafResiduals(i,:) );
118 %
119 end;%
120 %
121 % normalize to find the estimated variance
122 aafVarianceOfEstimates = ( 1 / ...
123 ( iNumberOfMeasurements - iNumberOfInputs - 1)) ...
124 * aafVarianceOfEstimates;
125

126

127 %% Making raw beta, gives aafBeta and afB0_raw
128 for i = 1:length(afXstdev)
129 aafBeta_new(i,:) = aafEstimatedWeightedBeta(i,:) / afXstdev(i);
130 end
131

132 % multiply in std_y into beta_new
133 for i = 1:length(afYstdev)
134 aafBeta(:,i) = aafBeta_new(:,i) * afYstdev(i);
135 aafB0_new(i) = afYstdev(i) * afEstimatedWeightedB0(i);
136 end
137

138 afB0 = - afXmean * aafBeta + aafB0_new + afYmean;
139

140 %% Calculating the CI for the betas
141 W = aafXWeights;
142 P = aafXWeightedLoadings;
143 T = aafXWeightedScores;
144

145 % Calculating the covariance matrix for Beta
146 aafZ = W * inv(P’ * W) * inv(T’ * T) * inv(W’ * P) * W’;
147 %
148 % Extracting the diagonal of Z (variance of each component in B)
149 afZ = diag(aafZ);
150 %
151 % Extracting the diagonal of the covariance matrix
152 afVarianceOfEstimates = diag(aafVarianceOfEstimates);
153 %
154 % Appending the aConfidenceIntervalBoundaries
155 aafConfidenceIntervalBoundaries = zeros( ...
156 iNumberOfInputs, iNumberOfOutputs);
157 %
158 % Iterating such that the CI fo the betas for each y is calculated
159 for i = 1:iNumberOfOutputs
160 % Calculating the Beta CIs for one y in the Y set
161 %
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162 afConfidenceIntervalBoundaries = zeros(iNumberOfInputs, 1);
163 for j = 1:iNumberOfInputs
164 %
165 afConfidenceIntervalBoundaries(j) = ...
166 fPercentile ...
167 * ( afVarianceOfEstimates(i) )ˆ(1/2)...
168 * afZ(j)ˆ(1/2);
169 %
170 end
171 aafConfidenceIntervalBoundaries(:,i) = ...
172 afConfidenceIntervalBoundaries;
173 end;%
174

175 %% Assesing the model performance (calibrated)
176 aafYest = aafXUnscaled * aafBeta + afB0;
177 fmeanYest = mean(aafYest);
178 fmeanY = mean(aafYUnscaled);
179

180 % Finding R2 and RMSE
181 afR2 = zeros(1, iNumberOfOutputs);
182 afRMSE = zeros(1, iNumberOfOutputs);
183 for i = 1:size(aafYUnscaled,2)
184 afSquaredError = (aafYUnscaled(:,i) - aafYest(:,i)).ˆ2;
185 afMeanOfRealY = (aafYUnscaled(:,i) - fmeanY(i)).ˆ2;
186 fSumOfEst = sum(afSquaredError);
187 fSumOfReal = sum(afMeanOfRealY);
188 fR2 = 1 - (fSumOfEst/fSumOfReal);
189 afR2(i) = fR2;
190 fRMSE = sqrt(fSumOfEst/iNumberOfMeasurements);
191 afRMSE(i) = fRMSE;
192 end
193

194 aafPerformanceIndexes = [afRMSE’, afR2’];
195 aafPerformanceIndexes = table(aafPerformanceIndexes, ...
196 ’RowNames’,astrHeaderY);
197 aafPerformanceIndexes = splitvars(aafPerformanceIndexes);
198 aafPerformanceIndexes.Properties.VariableNames = {’RMSE’,’R2’};
199

200 %% Plotting the CI for betas
201 if strcmpi(’True’,Plot)
202 % Making a for loop for plotting Betas for all y’s
203 for iNumberPlot = 1:iNumberOfOutputs
204 figure
205 % Plotting betas for one y
206 bar(1:length(astrHeaderX), ...
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207 aafEstimatedWeightedBeta(:,iNumberPlot), ’b’)
208 hold on
209 % plot the limits
210 errorbar(aafEstimatedWeightedBeta(:,iNumberPlot) ...
211 ,aafConfidenceIntervalBoundaries(:,iNumberPlot), ’o’)
212 % labeling
213 set(gca,’XTickLabel’,astrHeaderX);
214 xtickangle(45)
215 xTick=get(gca,’xtick’);
216 set(gca,’xtick’, 1:length(astrHeaderX));
217 %xlabel(’X variables’)
218 ylabel(’Weighted regression coefficients’)
219 word = strcat(’Regression coefficients for ’, ...
220 {’ ’}, astrHeaderY(iNumberPlot));
221 title(word)
222 word = word{1};
223 word = word(find(˜isspace(word)));
224 word(word==’.’)=[];
225 %word = strcat(word{1},’.pdf’);
226 if strcmpi(’True’,Save)
227 set(gcf,’Units’,’centimeters’);
228 afFigurePosition = [1 1 20 8];
229 set(gcf,’Position’, afFigurePosition);
230 set(gcf,...
231 ’PaperPosition’,[0 0 afFigurePosition(3:4)],...
232 ’PaperSize’,[afFigurePosition(3:4)]);
233 saveas(gcf, word, ’pdf’)
234 end
235 end
236

237 % Plotting the explained variance
238 figure
239 plot(1:iNumberOfComponents,cumsum(100*aafPctvar(2,:)),’-bo’)
240 xlabel(’Number of PLS components’);
241 ylabel(’Percent Variance Explained in y’);
242 if strcmpi(’True’,Save)
243 set(gcf,’Units’,’centimeters’);
244 afFigurePosition = [1 1 20 5.5];
245 set(gcf,’Position’, afFigurePosition);
246 set(gcf,...
247 ’PaperPosition’,[0 0 afFigurePosition(3:4)],...
248 ’PaperSize’,[afFigurePosition(3:4)]);
249 ord = strcat(’Explained variance’, {’ ’}, ExcelID);
250 saveas(gcf, ord{1}, ’pdf’)
251 end

140



252

253 % Plotting ref vs real
254 for i = 1:iNumberOfOutputs
255 figure
256 h1 = plot(aafYUnscaled(:,i), aafYest(:,i), ’bo’);
257 set(h1, ’markerfacecolor’, get(h1, ’color’));
258 word = strcat(astrHeaderY(i));
259 title(word)
260 word = word{1};
261 word = word(find(˜isspace(word)));
262 xlabel(’Reference Y’)
263 ylabel(’Predicted Y’)
264 if strcmpi(’True’,Save)
265 set(gcf,’Units’,’centimeters’);
266 afFigurePosition = [1 1 20 5.5];
267 set(gcf,’Position’, afFigurePosition);
268 set(gcf,...
269 ’PaperPosition’,[0 0 afFigurePosition(3:4)],...
270 ’PaperSize’,[afFigurePosition(3:4)]);
271 ord = strcat(’refVSpredplot’, {’ ’}, word);
272 saveas(gcf, ord{1}, ’pdf’)
273 end
274 end
275

276 end % for Plot = True
277

278

279 end %function
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