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Abstract

The landing problem has been the topic of research for quite some time in the control engi-
neering community. An abundance of the systems developed in the community have relied
heavily on extensive modeling of the plant, before employing advanced control methods
whose aim is to impose control laws yielding desired behavior with respect to a specified
objective. Emanating from the renaissance machine learning (ML) is experiencing due to
exponential growth in computational power in recent years, extensive research has been
conducted in the community for exploring the potential of ML. Especially reinforcement
learning (RL), a branch within ML, has benefited notably from these advancements. To-
gether with artificial neural networks (ANNs), classical RL disciplines were augmented,
giving rise to the emergence of deep reinforcement learning (DRL). Since these DRL
methods generally do not need modeling of the plant, it was deemed interesting to explore
the potential of such techniques in robotic tasks where both plant and environment is par-
ticularly challenging to model and predict. Control of a quadrotor, although extensively
studied in the research communities, remains a challenging task for a number of reasons.
Modeling alternating and time-dependent aerodynamic forces, restrictions on GPS, lim-
ited options for state estimation and the fact that a quadcopter often is underactuated are
among these.

As such, this thesis proposes a general framework for adopting a DRL method for optimiz-
ing control for autonomous landing of a quadrotor. A quadrotor as the plant was chosen
mainly due to its applicability and manoeuvrability, allowing several areas of application.
By applying a novel DRL algorithm for control accompanied by a rudimentary planning
system for solving the quadrotor landing problem, this thesis investigates the promise of
DRL methods for drone control tasks. Two DRL agents with the specific objectives of
hovering and descending were designed, trained and tested for safe, efficient and satisfac-
tory landing on a helipad in simulated environments. Based on the results obtained in this
thesis, DRL showcases its ability to perform control tasks of complex, nonlinear robotic
systems without needing prerequisite knowledge on the plant, nor in-depth descriptions on
how the environment is affecting the plant. The findings in the thesis exhibit sufficiently
accurate control in unknown environments, and plants a seed suggesting that DRL may
become the rule rather than the exception as this particular field of study advances.
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Sammendrag

Landingsproblemet har lenge vært et omdiskutert forskningstema i reguleringsteknikkmilj-
øet. Et flertall av utviklede systemer har vært sterkt avhengig av omfattende modellering
av den kontrollerte prosessen før man utnytter etablerte reguleringsmetoder som har som
mål å påtrykke kontrollover som gir ønsket atferd relativt til et spesifisert mål. Som følge
av den fornyede tilliten maskinlæring (eng. machine learning, ML) opplever takket være
eksponentiell vekst i datamaskiners regnekraft og -kapasitet i senere år, har omfangsrik
forskning blitt gjort for å utforske potensialet til ML. Særlig forsterkende læring (eng.
reinforcement learning, RL), en gren innen ML, har dratt nytte fra denne fremgangen.
Sammen med kunstige nevrale nettverk (eng. artificial neural network, ANN) har klas-
sisk RL blitt utvidet, som har gitt opphav til fremveksten av dyp forsterkende læring (eng.
deep reinforcement learning, DRL). I og med at slike DRL-metoder på det generelle plan
ikke behøver en modell av prosessen, ble det dermed ansett som interessant å undersøke
potensialet til slike teknikker i robotikkapplikasjoner hvor både prosessen og omgivelsene
er nevneverdig utfordrende å modellere og predikere. Til tross for at forskningsmiljøer
utført omfattende studier rundt temaet, forblir regulering av en drone med fire rotorer en
utfordrende oppgave som følge av en rekke grunner. Modellering av tidsavhengige og
fluktuerende aerodynamiske krefter, posisjonering i områder hvor man opplever restrik-
sjoner på GPS-signaler, begrensede alternativer for tilstandsestimering og faktum at en
drone generelt sett er underaktuert er noen av disse.

Følgelig foreslår denne masteroppgaven et generelt rammeverk for å bruke en DRL-metode
for å optimere regulering av en drone for autonom landing. En drone bestående av fire
rotorer som prosess ble valgt, hovedsakelig grunnet dens anvendbarhet og bevegelighet,
som tillater et bredt spekter av bruksområder. Ved å anvende en DRL-metode som tilbyr
ny tilnærming til å løse dronelandingsproblemet, samt et rudimentært planleggingssys-
tem, undersøker oppgaven potensialet DRL har relativt til regulering av droner. To DRL-
agenter med spesifikke mål, henholdsvis hovere og synke, ble utformet, trent og testet
for trygg, effektiv og kravoppfyllende landing på en landingsplattform i et simulert miljø.
Basert på resultatene denne masteroppgaven har kommet frem til viser DRL dens evne til
å regulere komplekse, høyt ulineære robotikksystemer uten forhåndskunnskaper om pros-
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essen, ei heller informasjon om det rundtomliggende miljøet. Oppgavens funn fremstiller
i tilstrekkelig grad nøyaktig regulering i ukjente omgivelser og bygger under påstanden
om at dyp forsterkende læring kan utvikle seg til å bli et rammeverk som erstatter mer
tradisjonelle reguleringsmetoder når dette forskningsområdet utvikler seg ytterligere.
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Preface

This master’s thesis constitutes the culmination of my work completed at Norwegian Uni-
versity of Science and Technology (NTNU) through the spring of 2020. Supervised by
Anastasios Lekkas, the work summarizes methodologies used and presents the corre-
sponding findings this resulted in. Historically, the proposed methods have seldom been
used due to limitations in data resources and computational performance. However, sev-
eral major advances has been done in recent years to rekindle the interest for such methods.
Inspired by the advancements in the field of machine learning due to exponentially increas-
ing computational power, it was compelling to see how techniques based on a conjunction
of machine learning and reinforcement learning, so-called deep reinforcement learning,
could be applied in control tasks of robotic plants. As such, this thesis seeks to contribute
by applying deep reinforcement learning aimed to solve the autonomous landing problem
for a quadcopter.

Although offering an extensive presentation of the theory adopted, this thesis was de-
signed under the assumption that the reader inhabits prerequisite knowledge with respect
to advanced control theory, modeling, simulation and optimization. Albeit not strictly nec-
essary, rudimentary understanding of machine learning and how this theory can be applied
to other tasks is advantageous.

There are several contributions supplementing and assisting the development of this the-
sis. First and foremost, this master’s thesis serves as an augmentation to the project thesis
written in the fall of 2019, where basic understanding of the theory and more primitive
algorithms were developed and initially presented. As such, segments in this thesis stems
from this preceding work [1]. Secondly, NTNU’s Faculty of Information Technology
and Electrical Engineering provided a Dell Optiplex 7040 i7-6700 computer with Ubuntu
16.04 and ROS Kinetic for development. Further, Udacity’s tutorials in DRL implementa-
tions from their nanodegree program [2], OpenAI’s gym toolkit [3] and Spinning Up
framework were fundamental sources of inspiration for setting up and developing the DRL
methods. The programming language Python in addition to open-source software includ-
ing ROS, Gazebo, NumPy and Tensorflow were vital for the development of this thesis.
Several open-source ROS packages also formed the basis for the simulatory environment
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for the used drone, among these being ardrone autonomy [4], tum simulator [5]
and hector gazebo [6]. Supervisor Anastasios Lekkas and colleague Thomas Sund-
voll have also aided with various subjects, both for the setup for the ROS and Gazebo
frameworks and the design and implementation of the DRL methods. Although devel-
oping independent work, Thomas and I have developed interconnected theses, where the
ultimate goal was to merge our efforts to create a stand-alone drone system able to land
on a platform using perception. As such, the sub-missions and overall objectives have
been discussed extensively, as well as the mission structure and how to consolidate our
two systems together to one, complete solution. Note that figures in this thesis that do not
specifically state a source of reference are created independently. Also note that ”drone”,
”quadrotor” and ”quadcopter” are interchanged throughout this thesis, where all terms
symbolize a multirotor helicopter consisting of four rotors.

With the support and guidance of Tom Arne Pedersen, the work in this thesis was initially
aimed to be applied with DNV GL’s Revolt vessel. Preferably, the developed system
would be subject to testing in a laboratory, an open field, and finally the ocean with the
Revolt in order to test its robustness in both controlled environments and real-life settings.
Additionally, it would be advantageous to benchmark the derived solution relative to more
traditional methods for comparative purposes. However, due to COVID-19, the scope of
the thesis and, resultantly, the final product had to be scaled down.
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Chapter 1
Introduction

1.1 Background and motivation
The autonomous landing problem for unmanned aerial vehicles (UAVs) has been a widely
studied topic in recent years as communities within control theory, aerial robotics and arti-
ficial intelligence realize the potential of such systems. Their ability of remote operation in
addition to the capability to maneuver in tight spaces render UAVs highly useful with re-
spect to search-and-rescue operations [7], inspection missions [8], surveillance [9], border
patrol [10], mapping [11], transportation [12] and identification of agriculture [13].

Accordingly, extensive research has been dedicated to this topic and has resulted in rich
literature, covering the vast possibilities for solving these missions as robustly and effi-
ciently as possible. Comprehensive work has been conducted in order to develop aerial
systems able to autonomously land based on available situational awareness. Many solu-
tions adopt both low-level control accompanied by a planning system responsible for the
decision-making, which any rudimentary autonomous system must include.

With respect to the low-level control aspect of the problem, systems deploy different tech-
niques within the field of robotics in order to realize the landing objective. Among these
is model predictive control (MPC), a vastly researched and well-established control prin-
ciple which has shown promising results in previous work related to UAV landing [14,
15, 16, 17]. The ability to enforce time-dependent constraints and account for additive
disturbances during the modeling phase are some of the main attributes of MPC. Addi-
tionally, the algorithm offers great flexibility for the control engineer, as adjusting the ob-
jective function weights will directly influence the transient response of the system. These
aspects separate MPC from more traditional controller schemes, such as the proportional-
integral-derivative (PID) controller [18, 19]. Moreover, they are deemed essential when
dealing with problems that often require aggressive maneuvering, such as small UAVs
experiencing wind gusts.
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Chapter 1. Introduction

Though exhibiting promising results when successfully deployed, such model-based ap-
proaches generally require a highly accurate model of the plant in order to derive con-
trollers yielding satisfactory performance. Obtaining such accuracy during modeling is
nothing short of challenging, especially for an in-flight UAV that can experience dynamic
and aerodynamic nonlinearities depending on its position in the environment and even the
slightest misalignment between rotor blades [20, 21]. Given inaccurate model dynamics,
the error will propagate and render the state predictions imprecise, yielding insufficient
performance [22, 23]. Furthermore, a predefined model may even be rendered inaccurate
after being exposed to the environment due to outdated modeling of the environment or
even the plant. Such cases might include substantial turbulence, change of propellers on a
drone or a significant amount of rain that was not accounted for during modeling.

Given that both plant and environment can be challenging to predict during operation, the
idea of untying the controller design from modeling naturally follows. Using approaches
that are not as heavily dependent on model accuracy could lead to more flexible systems
robust to changes in both the plant and environment. As machine learning (ML) is experi-
encing a renaissance due to the exponential growth in computational power and availabil-
ity of large datasets, ML based methods were deemed promising candidates for solving
the aforementioned predicaments. For many years the Artificial Intelligence (AI) com-
munities have developed rich and robust literature for optimal system performance under
uncertainty. Methods based on this framework go under the term reinforcement learning
(RL).

Based on evaluative feedback [24] rather than instructive feedback, RL based methods are
able to train a system to act satisfactorily without knowing the model of the plant nor its
environment beforehand. The agent, analogous with the controller in traditional schemes,
interacts with the environment and receives a scalar reward based on a predefined reward
function. Since it directly relates to the agent’s objective, the reward function is often
described as the core of each RL algorithm. The agent will process the actions, the control
signals, it received rewards for and the actions it received penalties for. Based on its
experiences while exploring the environment the agent will derive a policy, a control law,
that achieves the control objective in the most optimal way.

Albeit RL methods in general offer several advantages given that they are model-free,
it is worth noting that they pose challenges that need to be taken into account from an
engineering standpoint. Since the agent’s learning process is based on exploring the envi-
ronment, such methods may have to perform exhaustive searches over the entirety of both
state and action space. This increases the time consumption before an adequate policy is
derived. Furthermore, complexity and required memory escalate as the dimensionality of
the problem increases. Lastly, RL algorithms seldom yield convergence guarantees due to
the nature of how policies are calculated in these methods, which may directly affect the
resulting policy extracted from the agent.

As a means of mitigating these challenges, the work presented by DeepMind [25] com-
bined multilayered artificial neural networks (ANNs), coined Deep Neural Networks (DNNs),
with RL principles in order to approximate values that previously had to be calculated
through computationally expensive operations. This was seen as a breakthrough in the
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RL community. RL methods using DNNs as function approximators were fittingly coined
Deep Reinforcement Learning (DRL), with DRL giving rise to some very interesting re-
sults in multiple application areas. In addition to DeepMind playing several Atari games,
the world has also seen agents beating the world champion in Go [26] and landing a UAV
[27]. The authors in both [28] and [29] train DRL agents for controlling a quadrotor. The
results show that the employed techniques are able to outperform MPC with respect to
accuracy while also being significantly less computationally expensive.

Lillicrap et al. [30] augmented DeepMind’s scheme in order to handle continuous action
spaces as well as continuous state spaces, which fitted control tasks in particular. In ad-
dition to the results presented in the paper, the community witnessed ravishing success in
various complex problems characterized by continuous action spaces, for instance robot
manipulation [30], gameplay [31], robotic locomotion [32] and curling [33]. The authors
in [34] present an overview of the principles for utilizing DRL for control. Path-following
and control of marine vessels is demonstrated in [35], where the DRL motivated solutions
outperform more traditional marine vessel control schemes. Implementation of a velocity
controller for quadrotor control is done in [36]. The paper shows that the agent is able
to outperform a well-tuned proportional-integral-derivative controller (PID) with respect
to tracking accuracy and robustness. The work showcased in [37] solves the quadrotor
hovering problem using an end-to-end DRL solution for control. This was done with rel-
atively short training time while still maintaining high precision and general performance.
The authors in [38] also use DRL to train a UAV system to land on a moving platform by
learning reference velocities.

1.2 Objective and method
This master’s thesis aims to investigate how to apply DRL as a control scheme to a quadro-
tor system in an unknown environment in order to successfully land on a fixed platform.
The thesis encapsulates research on how to solve the autonomous landing problem on a
fixed platform, in addition to deploying the system to a simulatory setting. The work pre-
sented serves as an augmentation of the project thesis completed in the preceding semester
[1]. Additionally, it is interconnected with the work done in [39], where a perception sys-
tem is developed for estimating the pose of the drone through imagery. The long-term
goal is to create a robust planning and controlling system able to land on a platform that is
detected using the aforementioned perception system.

The proposed solution consists of two components:

• The controlled system, namely the UAV. This unit contains the information required
for carrying out the task of control through only observing the environment state.

• The DRL agent, subject to training for optimizing performance. The agent com-
prises a control policy whose objective is to map the environment’s state to a control
signal, in addition to a value function returning a measure of how beneficial the
chosen control was in the given state.

In the proposed architecture both the control policy and value function are represented by
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ANNs, and are learned through trial-and-error. The DRL agent deployed is based on the
Deep Deterministic Policy Gradient (DDPG) algorithm [30], which is discussed in detail
in Chapter 2.

The reasoning for putting such strong emphasis on DRL based methods mainly stems
from the fact that modeling of both UAV dynamics in addition to its surroundings is often
a challenging, if not infeasible, task to execute. Recent results in the community, discussed
in Section 1.1, suggest that these methods have the potential to outperform the more tra-
ditional control methods. Model-based approaches such as MPC are notoriously known
for yielding satisfactory results when the model is accurate and disturbances are precisely
accounted for during the modeling process. For UAV control, this is not always possible to
do in real-life applications due to wind gusts, sudden changes in aerodynamics due to ex-
ternal effects and other unforeseen events that may affect the system during operation [21,
40]. Considering that DRL based methods are characteristically model-free approaches
and can resultantly learn how to tackle the aforementioned challenges, it is interesting
to explore the possibilities of DRL as an alternative to classic UAV control for the drone
landing problem.

1.3 Outline
This thesis is partitioned into 7 chapters, where Chapter 2 introduces basic notation along
with fundamental theory and methods. The goal of this chapter is to establish fundamental
concepts, followed by the introduction of methods to be used in the later implementations.
The chapter opens with an overview of ANNs and how to train such models, before a
comprehensive section revolving around RL is presented. Finally, the chapter is concluded
with a model of a general quadrotor with 6 degrees of freedom. Chapter 3 describes the
experimental setup, where the drone specifications and how it is controlled is presented,
in addition to displaying the software frameworks used in the thesis. Chapter 4 describes
the system design of the planner and control methodologies developed, and Chapter 5
reports the corresponding results obtained. Chapter 6 suggests possible improvements and
additions that can be conducted in future work. Finally, the thesis is summarized and
concluded in Chapter 7.
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Chapter 2
Theoretical background

This chapter aims to present the fundamental theory for developing a DRL agent capable
of completing the landing problem under environmental uncertainties. As the control prin-
ciples used to accomplish this are based on several disciplines within machine learning,
the subsequent sections aim to present two of the main pillars within ML, namely super-
vised learning and reinforcement learning. Despite our proposed solution being based on
RL, the principles within supervised learning, particularly ANNs, play a vital role in the
recent progress in DRL.

2.1 Supervised learning
Machine learning represents a field of study in computer science where machines have the
ability to learn tasks without being explicitly programmed. Supervised learning is one of
the mainstays in ML and encapsulates, in layman’s terms, learning through labeled data.

The agent is given examples from a labeled dataset, i.e. (x, y) ∈ D, where the relationship
between the known input x and the known output y is defined by the unknown function g,
namely y = g(x). The overall goal of is to obtain an approximation for this function, ĝ,
given the examples. There are various ways to build such approximators depending on the
complexity of the input, output and the relationship between them.

2.1.1 Artificial neural networks
Artificial neural networks (ANNs) prove to be well suited for continuous inputs and out-
puts, as well as being able to approximate highly nonlinear functions. As discussed further
in Section 2.3, traditional reinforcement learning algorithms suffer from learning becom-
ing intractably slow with a growing state space [41]. Luckily, ANNs came to the rescue
and provided a framework for adopting parameterized function approximation to mitigate
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Chapter 2. Theoretical background

the so-called representation problem. As such, these networks proved to be crucial build-
ing blocks for the emergence of deep reinforcement learning methods.

Inspired by the structure of neurons found in animal brains, the ANN is a learning al-
gorithm constituted by a set of interconnected nodes, also called artificial neurons. The
simplest form of these artificial neurons is the perceptron, presented by Frank Rosenblatt
in the 1950s [42].

The perceptron is assembled by a weighting vector and a bias. Given an input vector, x
= [x1, x2, . . . ]

ᵀ, the weighting vector describing the importance of each element in the
input vector,w = [w1, w2, . . . ]

ᵀ, and a bias term b, the output of the perceptron y can be
described by the following equation:

y =

{
1, if wᵀx+ b > 0

0, otherwise
(2.1)

(2.1) is depicted in Figure 2.1 where the dimension of the input is 3. The bias serves as an
adjustment term that illustrates how easily a perceptron is activated. Note that the bias can
be interpreted as a weight itself, where the corresponding input is a constant set to 1.

x1

x2

x3

yΣ

1

b
w1

w2

w3

Figure 2.1: Illustration of a perceptron consisting of an input vector of dimension 3 and a bias term.
x is inputted to the perceptron and multiplied with w. The bias term is subsequently added to the
product. This sum progresses through a step function and generates the output y.

Perceptrons are mainly used for binary classification, i.e. tasks where one wishes to decide
which class a data point belongs to. A linear decision boundary wᵀx + b = 0 decides if
x is in class 0 or 1. This subsequently renders a perceptron inadequate for problems that
do not conform to binary classes nor linear classifications.

It was recognized by the community that building a network consisting of layers of per-
ceptrons would mitigate these shortcomings. This type of network was coined multilayer
perceptron (MLP), and is known as the first adaptation of artificial neural networks. The
idea of such internal representations was first presented in [43]. The additional perceptrons
enabled MLPs to extract higher level features from the input and could thus solve more
challenging tasks.

In order to further increase flexibility in addition to limit the required number of neurons in
MLPs, activation functions were introduced. Instead of a standard Heaviside step function,
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the MLPs were now allowed to have continuous functions allowing continuous output in
a range. Evolving from (2.1), the general neuron with activation f was given as

y = f(wᵀx+ b), (2.2)

and is illustrated in Figure 2.2.

x1

x2

x3

yΣ

1

b
w1

w2

w3

f

Figure 2.2: Illustration of a neuron with nonlinear activation consisting of an input vector of dimen-
sion 3 and a bias term.

In an ANN neurons are aggregated into layers. A layer l is represented by a weighting
matrix W l and a bias vector bl. Further, each neuron in a layer is assumed to have the
same activation function f l. Given that the input to layer l is the output of the previous
layer l − 1, the output of l is given as

yl = f l(W lyl−1 + bl), (2.3)

where yl−1 is the output from layer l − 1. W l constitutes weights between neurons in
l − 1 and neurons in l. wljk expresses the weight from neuron j in layer l − 1 to neuron
k in layer l, while blk is the bias of the kth neuron in layer l. An example of a network
illustrating this notation is depicted in Figure 2.3. The network consists of 2 hidden layers
and all layers are fully connected, i.e. every neuron in one layer is connected to every
neuron in the successive layer.

By studying the figure and using the notation presented in (2.3), the weighting matrix and
bias vector for the hidden layer can be expressed as

W 1 =

w1
11 w1

21

w1
12 w1

22

w1
13 w1

23

 and b1 =

b11b12
b13

 . (2.4)

Given the input x, one can now compute the output of the first hidden layer, y1, which is
the input to the output layer. This scheme illustrates the principle of forward pass, which
render networks of this structure feed-forward ANNs.

Feed-forward ANNs possess great potential, as described by the universal approximation
theorem [44]. It states that a feed-forward network with a single hidden layer consisting
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Hidden layer

x1

w1

11

w1
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w1

13

w1

21

w1

22
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23

x2

y1

3

Output layer

w2

11

w2

21

y1

1

y1

2
y2

1

b1
1

b1
2

b1
3

b2
1

Input layer

w2

31

Figure 2.3: An example of a fully connected artificial neural network with one hidden layers, with
all their weights and biases stated.

of a finite number of neurons has the ability to approximate any continuous function on a
compact subset of Rn, under the assumption that the activation function f is non-constant,
bounded and continuous. In other words, this theorem establishes that ANNs can, in
theory, solve any problem that reduces to function approximation.

2.1.2 Deep learning
Depending on the application, various structures to ANNs are utilized. As computational
power has increased drastically in recent years, most applications no longer limit them-
selves to only one layer in the network architecture. By increasing the number of hid-
den layers, networks acquire the ability of progressively extracting higher level features
from the raw input, which is vastly useful in e.g. computer vision. From a mathematical
perspective, these networks allow more complex and nonlinear parameterizations, which
again allows modeling of more complex approximations. Since the network becomes
deeper when the number of hidden layers increases, methods adopting this architecture
are coined deep learning (DL) methods.

Deep learning is essentially an extension to the field of ML and encapsulates ANNs that
have multiple hidden layers. DL facilitate feature learning, meaning techniques that are
able to identify representations from raw input data. Since DL methods are able to extract
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such representations without manual feature engineering, these methods enable training
with minimal human intervention. This concept is emphasized in Figure 2.4.

Input
Manual
feature

engineering
Classification Output

Input Feature
learning Classification Output

Machine learning

Deep learning

Figure 2.4: Chart conceptualizing the difference between classical ML methods and DL methods.
The light blue processes indicate the location of where the agents learn, i.e. the position of the neural
networks in the systems.

The main difference between ML and DL is therefore the process of extracting features. In
classic ML methods this has to be done manually through human feature engineering. DL
has, however, demonstrated that this can be executed automatically through the adaptation
of additional layers, yielding feature learning. The drawback is that DL methods would
require a notable increase in data to succeed.

The most straightforward DL network is the deep neural network (DNN) which is simply
a feed-forward ANN with multiple hidden layers. DL also encapsulates methods tailor-
made for specific tasks, one of which being convolutional neural networks (CNNs). CNNs
are the common strategy for analyzing visual imagery. Using convolutional layers as hid-
den layers, these networks exploit hierarchical features in the data and construct complex
patterns using simpler patterns, such as lines or circles. CNNs were first used as a means
to classify handwritten numbers, separating a number into several simpler components to
obtain the correct classification [45]. Recurrent neural networks (RNNs) branch towards
analysis of temporal data, where the hidden layers are used as memory buffers to store in-
ternal states in order to interpret sequences of inputs. RNNs are vastly used in applications
where the data is sequential, such as speech recognition [46].

2.1.3 Training DL models
From the theory presented thus far it is clear that neural networks possess great potential,
concretized by the universal approximation theorem and displayed through recent results
in the community. The main challenge of DL methods, and specifically DNNs, is to obtain
the correct weights and biases, jointly referred to as the network parameters, in order to
obtain a sufficiently accurate approximator for a given problem.
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Given a dataset D consisting of N input vectors with known target outputs,

D = {(x1, t1), (x2, t2), . . . , (xN , tN )},

the error of input-output pair i can be computed as the difference between the target and
the computed, predicted output of the network, ei = ti − yi(x,θ). Here, θ expresses the
the network parameters θ = [w1

11, b
1
1, w

1
12, . . . ]

ᵀ.

The error is normally inputted into a loss function, J(θ), which serves as a metric express-
ing how far off the prediction y(xi,θ)1 was to the target value ti. Intuitively, one wishes
to minimize the loss by means of pushing the prediction towards the target. This, in turn,
renders the search for the optimal network parameters an optimization problem, a field
with rich literature.

One of the most popular computational optimization techniques is the gradient descent
algorithm. By iteratively computing the gradient of J(θ) with respect to θ, one can cal-
culate the contributing loss affiliated with each network parameter. Using this method the
magnitude and direction one needs to change each parameter in order to minimize the loss
can be found, yielding an update rule for the weights and biases that minimize the loss.
Assuming that J is differentiable with respect to θ, gradient descent states the update rule

θ ← θ − α∇θJ(θ), (2.5)

where α is the specified learning rate of the network. It is worth noting that there exist a
manifold of optimizers for minimizing the loss, such as stochastic gradient descent and
Adam [47]. Still, the majority of these stem from the concept of utilizing the loss gradient
for updating parameters.

Since the output layer in a DNN is the only layer that has a desired target value, the loss
can only be calculate at the output layer. After being computed, the loss must therefore
be passed backwards in the network, from the output layer to the hidden layers, in order
to convey the loss to these layers and provide the necessary information for calculating
parameter changes for loss minimization. Due to the flow of the loss being propagated
backwards in the network, this technique was coined backpropagation and was first intro-
duced in [43, 46].

The backpropagation algorithm computes the gradient of the loss function with respect
to each network parameter by utilizing the chain rule. This scheme computes the gradi-
ent layer by layer, iterating backward from the output layer. This ensures no redundant
calculations of intermediate terms in the chain rule, which yields reduced run-time.

Using (2.3) recursively, one can express the output of the network, y, with respect to
the input x. The result is a nested function with respect to the activations of each layer.
Consider an arbitrary hidden layer operation hl that encapsulates the weights, biases and
activation as fol lows:

hl(a) = f l(W la+ bl). (2.6)

1Though y depends upon x and θ this is omitted in the rest of the theory for simplicity.
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Given a DNN with L hidden layers the forward pass becomes:

y = hL(yL−1)

= hL(hL−1(. . . (h2(h1(x))))).
(2.7)

Figure 2.5 illustrates that the forward pass results in computing the output and subse-
quently obtaining the loss. After the forward pass, the network will propagate the loss
backwards in order to calculate ∇θJ as the product of the gradients of each layer with
respect to the layer’s input.

(⋅)hL y J(⋅)h1 (⋅)h2 (⋅)hL−1x

∂J

∂y

∂y

∂ (⋅)hL

∂ (⋅)hL

∂ (⋅)hL−1

∂ (⋅)h2

∂ (⋅)h1

∂ (⋅)h1

∂x

a

Figure 2.5: Computational graph illustrating the forward pass and the resulting backpropagation
steps for computing the loss gradient.

Ultimately, training a DNN translates to computing

∇θJ =
[ ∂J
∂θ1

,
∂J

∂θ2
, . . .

]ᵀ
(2.8)

using the chain rule on the nested function described in (2.7) and perform a gradient de-
scent update based on (2.5).

Training DNNs often pose several challenges due to the nature of supervised learning.
Since the network is only fed with training data during the learning period, there is no
real guarantee that the agent will perform well for test data that it has not previously ex-
perienced. This concept is referred to as overfitting; the network learns how to respond
to examples it has seen before but refrains from learning the underlying concepts that
the training data is based on. On the other hand, DNNs can also experience underfitting,
meaning that the network struggles to capture the underlying structure of the examples.
Furthermore, these networks may also be difficult to train with respect to stability, where
small perturbations in input can result in substantial changes in output. This causes os-
cillatory behavior during learning and may result in a network not converging. Luckily,
there are several proposed methods aiming to mitigate these challenges, such as dropout
[48], weight initialization and regularization [49], early stopping [50], parametric noise
injection [51], data augmentation [52] and batch normalization [53].

2.2 Reinforcement learning
As opposed to the classical ML approaches presented so far where the target value is given
beforehand, reinforcement learning (RL) aims its attention at making an agent learn how
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to behave in an environment where the only feedback it receives for its actions is a scalar
reward signal. Generally, the agent’s long-term goal is to execute actions at each discrete
time step that maximize the sum of the rewards acquired throughout its lifetime. The
RL problem therefore consists of the agent continuously interacting with the environment
and gaining knowledge about how to optimize its behavior, solely based on the evaluative
feedback it receives. This dynamics system is presented in the widely-accepted textbook
of Sutton and Barto [54].

The RL problem is illustrated in Figure 2.6. At time step t the agent receives a state
representation of the environment st and chooses an action, at. The agent receives a scalar
reward rt+1, and the environment evolves to state st+1. For generality, the subsequent
theoretical sections assume multidimensional states and actions.

Agent

Environment

RewardState Action 

Figure 2.6: The feedback dynamics of the reinforcement learning problem.

The following sections, inspired by the work of Sutton and Barto [54], describe the integral
theory behind the fundamental agent and lays the foundation for the more advanced RL
methods presented later.

2.2.1 Markov decision processes
Dynamic programming (DP) constitute solving complex problems by dividing them into
subproblems. The general RL problem is commonly modeled such that it fits the DP
framework and it has therefore been found advantageous to formulate an RL process as a
Markov decision process (MDP). An MDP is formally defined as a discrete time stochas-
tic control framework, dedicated to address sequential decision-making problems in the
face of uncertainty. MDPs facilitate the 4-tuple consisting of (S, A, P, R), where each
component serves its own purpose, explained as follows:

• S is a finite set of unique states available in the environment.

• A is a finite set of unique actions. The available actions for an agent often relies
upon the state s the agent finds itself in, i.e. A(s).
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• P is the transition function constructed by the transition probability
P(s′|s,a) = Pr(st+1 = s′|st = s,at = a). Here, s is the current state, a is the
action chosen while in s and s′ is the next state of the agent.

• R is the reward function containing the immediate rewards the agent receives after
transitioning from state s to state s′ due to action a:
R(s,a, s′) = E(rt | st−1 = s,at−1 = a, st = s

′).

The transition function and reward function collectively compose the model of the MDP.
What makes MDPs so powerful in terms of modeling is the predication assumptions made
regarding the state of the agent. A process satisfies the Markov property if one can pre-
dict the next state of the process solely based on its present state, without impairing the
prediction quality. Mathematically, the Markovian dynamics is described as

P(st+1|st, st−1, . . . , s0,at,at−1, . . . ,a0) = P(st+1|st,at). (2.9)

The Markov property holds great value as this ”memorylessness” characteristic heavily
reduces the number of parameters required to construct the transition model of an arbitrary
MDP. A general process with the Markov property can subsequently be described through
the decision network shown in Figure 2.7, where the probability of evolving to st+1 only
depends on st and at, as (2.9) states.

Figure 2.7: The decision network of an MDP with transition function P(s,a, s′) and reward func-
tionR(s,a, s′).

Though Figure 2.7 assumes that the transition function is on the form P(s′|s,a) and
the reward function is on the form R(s,a, s′), the structure of the transition and reward
function may vary, depending on the process. The reward function can for instance be
dependent on the state the agent arrives at and the action that took it there or only of the
state, i.e. R(s′,a) and R(s′) respectively. Given the model (P,R), the dynamics of the
problem and hence Figure 2.7 will change accordingly.

In certain settings the agent is not capable of observing its full state, which can impose
challenges for a model. Partially observable MDPs (POMDPs) handle such cases, where
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the agent experiences restrictions to state observations. POMDPs are defined as processes
that only observe evidence that can yield useful information concerning the state, without
being able to observe the state itself. The lack of full knowledge will understandably
contribute to a more complex model of the process, albeit painting a more realistic picture
of real world situations. Fortunately, POMDPs may be converted into MDPs where the
inaccessibility of the full state is still taken into account. Through the introduction of a
belief state that is deducted from the observations, the agent will have the ability to act
optimally in a partially observable environment, purely based on the belief states.

2.2.2 Rewards
The reward function was introduced as an evaluative feedback in Section 2.2.1 which
can be based on several parameters, depending on how the model is defined. The agent
receives a reward at each time step based on a reward function designed to fit the agent’s
objective. The reward function can be considered as a tool to convey what the desired
behavior of the agent is. This goal can be related to a wide selection of objectives. The
reward function may for example praise an automotive agent for following a specific path
or a marine vessel agent for holding its dynamic positioning setpoint.

The reward may also be negative, which is often considered in the literature as cost or
a penalty. The disbursement of cost has the same logical approach as handing rewards,
though the effect on the agent is negated. A marine vessel can be given a penalty for
being far away from a target value, a self-driving car can be penalized for being offset
from its desired path and a drone may experience cost for being far away from the landing
platform. Regardless of considering rewards as a carrot or a stick, it can be agreed upon
that the agent’s performance greatly relies upon the reward function, and it is hence vital
to know how to design it to obtain desired behavior. For convenience’s sake, the theory
beyond this point treats the reward as a positive feedback.

The agent seeks to maximize the total future reward over an episode, which is a subse-
quence restricted to a finite time horizon. This total reward, denoted Gt, is defined as
some variety of combination of the reward sequence. In its simplest form, the total reward
is just the sum of all registered rewards beyond t:

Gt := rt+1 + rt+2 + rt+3 + . . . + rT , (2.10)

where rt is the reward at time step t and T is the final time step, concluding the episode.
Note that the notation is simplified by omitting the reward’s dependence on states and
actions introduced in Section 2.2.1. Though simplistic, the sum of future rewards is seldom
used, and is replaced by the discounted total reward, namely

Gt := rt+1 + γrt+2 + γ2rt+3 + . . . + γN−1rt+N =

N∑
n=0

γnrt+n+1, (2.11)

where 0 ≤ γ < 1 is the discount factor. This value determines the current significance
of future rewards: a reward received k time steps in the future is worth γk−1 times what
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it would be worth if it was received immediately. Given a discount factor of 0, the agent
would only be concerned with maximizing the reward it receives at time t, rendering the
agent short-sighted or myopic. As γ approaches 1 the agent becomes more future oriented,
due to the future rewards becoming less discounted. Although it can be positive for an
agent to consider future rewards, choosing γ is a choice of design to fit with respect to the
agent’s application. If immediate reward is of highest importance and future rewards are
not, γ can be set to a lower value to suppress the importance of future rewards. On the flip
side, if an agent wants to achieve a long-term goal, the future rewards are decisive and,
accordingly, γ must be set higher.

From an analytic standpoint one can prove a relationship between returns in succeeding
time steps. Given that t < T and GT = 0 the following relationship is derived:

Gt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + · · ·
= rt+1 + γ(rt+2 + γrt+3 + γ2rt+4 + · · · )
= rt+1 + γGt+1. (2.12)

This relationship results in substantial simplifications from an algorithmic point of view.
Computing returns can now be done efficiently from the reward sequences, fitting the DP
framework well.

2.2.3 The Bellman equation
The total reward from an arbitrary state to the terminal state is closely related to the value
of being in a specific state s, V (s). The subtle, though crucial, difference between G
and V is that the former is a measured amount of the actual total reward received in a
specific sequence, while the latter is the total reward the agent expects to receive when
following an action sequence from s onward. Formulated in another way, given an action
sequence policy π that maps a state s onto an action a, V π(s) is the expected total reward,
or the value, when the agent starts in s and follows π thereafter. This can be described
mathematically as

V π(s) = Eπ {Gt | st = s} . (2.13)

In essence, a value function serves as a metric of how beneficial it is for the agent to
be in a certain state. The reason for using value functions over total rewards is that the
former form convenient tools for linking an optimality criteria to deriving action sequence
policies. Many learning algorithms for MDPs compute optimal policies through learning
value functions, for example value iteration [54].

Following a similar train of thought, the value of an action a in state s and following policy
π thereafter is named the state-action value function, often referred to as the Q-value or
the Q-function:

Qπ(s,a) = Eπ {Gt| st = s,at = a} . (2.14)

The utility of value and state-action value functions is that their values can be estimated
without the agent having a model of the environment. These quantities can be learned
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from experience, normally through trial-and-error approaches. A fundamental property
these functions satisfy is the recursive relationships between successive states, similar to
what was discussed in Section 2.2.2. With the base in (2.13) one can derive the following
relationship with a policy π:

V π(s) = Eπ{Gt | st = s}
= Eπ{rt+1 + γGt+1 | st = s} (by (2.12))

=
∑
a

π(a|s)
∑
s′

P(s′|s,a)
[
R(s,a, s′) + γEπ{Gt+1|st+1 = s′}

]
=
∑
a

π(a|s)
∑
s′

P(s′|s,a)
[
R(s,a, s′) + γV π(s′)

]
, ∀ s ∈ S. (2.15)

This is the Bellman equation for V π . It declares a relationship between the value between
successive states and can be viewed as a way to forecast the value recursively. Equation
(2.15) states that the value of s must be equal to the discounted value of the expected
next state s′ plus the reward expected for going from s to s′ due to action a. This can
be described as a one-stage look-ahead into all possible future states, where this operation
will transfer information about the successive states s′ back to the current state s. Equation
(2.15) will perform a one-stage look-ahead in order to backpropagate information about
successive state-action pairs to preceding state-action pairs. The equation states that an
agent is able to learn from every state transition that the agent experiences, and not only
from a full episode.

Equation (2.15) can be considered a powerful result, granting several RL methods the
ability to compute, approximate and learn V π . In fact, the result can be enhanced further
in virtue of Bellman’s principle of optimality, defined by Richard Bellman himself [55]:

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

This principle suggests that an optimal policy can be assembled in a sequential fashion,
where the decision problem can be divided into subproblems and the optimal action in
any subproblem will also be the optimal action for the full-scale problem. As this result
is one of the cornerstones of DP, the Bellman equation often is referred to as the dynamic
programming equation.

Bellman’s principle of optimality is considered the foundation for deriving a solution for
maximizing rewards in sequential decision problems, which leads to Bellman’s optimality
equations. RL problems generally aim to maximize the reward received over time. This
reward depends on the policy the agent follows. In the sense of returned reward, a policy
π can be deemed better than or equally good as a different policy π′ if the expected return
of the former is greater than or equal to the latter. An optimal policy, denoted π∗, will by
definition have greater or equal state value than any other policy π regardless of the state,
namely

V π
∗
(s) ≥ V π(s), ∀s ∈ S.
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An optimal policy holds the following property:

V π
∗
(s) := max

π
V π(s).

Further, it can be shown that the optimal solution V ∗ = V π
∗

satisfies

V ∗(s) = max
a∈A(s)

∑
s′∈S
P(s′|s,a)(R(s,a, s′) + γV ∗(s′)),

constituting the Bellman optimality equation for the state value. Extracting optimal actions
given the optimal state value function V ∗ can be done by the following relationship:

π∗(s) = argmax
a∈A(s)

∑
s′∈S
P(s′|s,a)(R(s,a, s′) + γV ∗(s′)). (2.16)

Equation (2.16) states the equation for a greedy policy, meaning a policy where the agent
always chooses the action that maximizes expected return. An analogous result to the
Bellman optimality equation for the state value can be derived for the Q-value:

Q∗(s,a) =
∑
s′∈S
P(s′|s,a)(R(s,a, s′) + γmax

a′
Q∗(s′,a′)).

The relationship between V ∗ and Q∗ is given as:

Q∗(s,a) =
∑
s′∈S
P(s′|s,a)(R(s,a, s′) + γV ∗(s′)),

V ∗(s) = max
a

Q∗(s,a).

Thus, (2.16) can be rewritten using the state-action value:

π∗(s) = argmax
a

Q∗(s,a). (2.17)

Equation (2.17) identifies the optimal action for a state, π∗(s), as the action that yields the
highest expected long-term reward resulting from executing action a in state s.

Q-functions are useful when implementing algorithms in RL due to the fact that they make
the weighted summation over different actions. These functions do not require forward-
reasoning steps in order to compute optimal actions in states, which is the leading reason
as to why Q-functions are preferred over value functions in model-free RL approaches.

2.2.4 Temporal difference learning
As discussed in Section 2.2.3, the Bellman equation forms the basis for solving sequential
decision problems through DP. Though the theory discussed is well-defined and robust, it
is not always feasible to implement these methods in real-life applications. DP problems
require knowledge of the model of the system, P and R, which is unlikely more often
than not. One can argue that RL methods excel for obtaining optimal policies under un-
certainties, for instance when the model of the system is not known. These methods focus
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on estimating various quantities in the system. This may include estimating the model and
subsequently use DP methods, or directly estimate V or Q without the intermediate step
of model estimation. These two approaches are called indirect and direct RL, respectively.

A general underlying mechanism for model-free methods is temporal difference learning
(TD learning), a technique utilizing Bellman’s principle of optimality. TD learning al-
lows the agent to adjust its estimate of a value every time it obtains information about
in-between steps. The agent employs bootstrapping, meaning it estimates values based
on other estimates. Each step the agent takes generates a learning example which can be
utilized to bring additional information for the estimation of V or Q. This improves the
agent’s learning efficiency as it no longer has to wait until the end of an episode to update
its estimates, as opposed to e.g. Monte Carlo methods [54]. Furthermore, only the states
that are visited will be updated, implying no redundant update computations. The simplest
TD method, coined TD(0), executes an update of the form

V (s)← V (s) + α (R(s,a, s′) + γV (s′)− V (s))︸ ︷︷ ︸
TD error

, (2.18)

where 0 < α < 1 is the learning rate of the agent, indicating how much of the newly
measured information is absorbed to the agent’s new value estimate. The TD error high-
lighted in (2.18) is a measure of the estimate error at the time of the update. Evidently, the
backup operation is performed directly after experiencing the transition from s to s′ based
on action a, while receiving reward R(s,a, s′). Analogously, one can derive the TD(0)
update for a state-action value, given that one has the additional information of the next
action a′ in the next state:

Q(s,a)← Q(s,a) + α (R(s,a, s′) + γQ(s′,a′)−Q(s,a))︸ ︷︷ ︸
TD error

. (2.19)

The underlying calculations conclude that if the TD error is positive, the agent’s tendency
to select a should be strengthened for the future. Likewise, if the TD error is negative, it
suggests that the tendency should be weakened. TD(0) portrays a scheme where the agent
bases its new estimate on a weighted sum of old estimate and the new measurements.

The general TD(0) algorithm has shown that V is assured convergence to V ∗ and the
policy π converges towards π∗ when the following constraints are met [56]:

• The values of V are stored in a lookup table.

• The learning rates satisfy:

– αt(st) ∈ [0, 1].

–
∑
t
αt(st) =∞.

–
∑
t
(αt(st))

2 <∞.

– αt(s) = 0 unless s = st.

• ∀s,a, s′: Var{R(s,a, s′)} <∞.
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2.3 Deep reinforcement learning

There have been multiple algorithms that have sprung from the TD learning principles,
among these being Q-learning and SARSA [54]. For their designated purpose these meth-
ods, as most TD methods, will be sufficient for problems that do not have a very high level
of complexity, including a small state-action space. However, for more involved problems
that require handling continuous behavior, such as control in robotics, these solutions yield
suboptimal behavior due to the discretization of the state-action space. When this space
increases the memory and computational power required to compute the values for all
combinations inevitably becomes infeasible.

2.3 Deep reinforcement learning
Algorithms such as Q-learning and SARSA are so-called tabular methods, meaning they
represent value functions, Q-functions and policies using tables with states or state-action
pairs as entries. But, as briefly mentioned in Section 2.2.4, this scheme is only feasible
when the state-action space is sufficiently small. As problems develop in complexity and
the state-action space increases, tabular techniques will require immoderate amounts of
computational power to extract solutions. This problem was recognized by Bellman as the
curse of dimensionality.

To counteract this the question arose whether or not it was possible for the agent to gen-
eralize its experiences given a limited subset of the state-action space, and hence extract
a wholesome solution for the entire space based on this. In the wake of this, function
approximators were extensively studied to attempt to accomplish exactly this.

Using the methodologies presented in Section 2.1, the birth of deep reinforcement learning
(DRL) was a fact. In general terms, DRL methods combine the methods of deep learning
with reinforcement learning to create efficient algorithms capable of scaling previously
unsolvable problems. As computational power has increased in recent years the use of
ANNs as function approximators have proven to yield several DRL systems the ability to
generalize and extract approximations of value functions and policies successfully. These
schemes have resulted in a manifold of algorithms, one of which being Deep Determin-
istic Policy Gradient (DDPG). DDPG utilize ANNs to approximate Q and π, effectively
eliminating the need to store all state-action pairs in tables as this space increases. DDPG
is presented more thoroughly in Section 2.3.3.

DRL methods are commonly divided into three subcategories: actor-only methods, critic-
only methods and actor-critic methods. The division is motivated by the the architecture
of the solutions, and what they aim to approximate. Actor-only methods aim to extract the
policy π(s), where an actor controls the actions to be executed. The second consists of
learning only the value function V (s) or Q-function Q(s,a), where the critic measures
how good the chosen action is in a given state. Actor-critic methods aim at combining
the strong points of actor-only and critic-only methods by learning both the policy and the
value function.

Since critic-only methods exclusively approximate the value function, one will need to
iterate over every action available in a state in order to find the optimal action. This renders
the critic-only method inept in environments with continuous action spaces. On the other
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hand, actor-only methods and actor-critic methods both have the ability to learn policies
with continuous action spaces, which generally is an advantageous trait when designing
control systems.

2.3.1 Policy gradient methods
The methods discussed so far have been based on first learning a value function and sub-
sequently derive the policy based on the result. This means that the policies would not
even exist without the value estimates. Policy gradient methods (PGMs) are different in
this regard. PGMs mainly seek to conquer the aforementioned issues that arise for tabular
method in relation to required memory and computational power. The simplest PGM aims
to learn a parameterized policy able to directly approximate the optimal policy without
the intermediate step of estimating value functions. This effectively eliminates the need to
estimate the value function for action selection. Additionally, earlier restriction to discrete
action spaces are discarded since this framework allow learning stochastic policies, which
can output probability distributions over actions instead of deterministic actions.

These methods are based on optimizing a parameterized policy function with respect to
the expected cumulative reward, and find the optimal policy function π∗(s) based on this.
This is achieved by utilizing gradient ascent to iteratively improve the policy with respect
to maximizing the expected return. PGMs are generally on-policy, though many policy
gradient based algorithms have made adjustments to make them off-policy.

Parameterized by parameter vector θ = [θ1, θ2, . . . ]
ᵀ, the policy is considered a probabil-

ity of executing an action a at time t, assuming that the environment is in state s at time t.
This can be expressed mathematically as

πθ(a|s) = π(a|s,θ) = Pr(at = a|st = s,θt = θ). (2.20)

The target is to learn the policy parameters based on the gradient of some performance
measure J(θ) with respect to the policy parameter vector. As stated previously, the objec-
tive in RL is generally to maximize the cumulative reward, which means that the perfor-
mance measure J is often stated as

J(θ) = E

{∑
t

γtR(st,at)
}∣∣∣∣∣
at∼πθ

(2.21)

where at is the action at t sampled from the policy πθ and st is the state at t. Equation
(2.21) assumes that the reward function does not consider the state following st. Note that,
in contrast to previous derivations, we now wish to maximize the performance measure J .
As this performance measure is sought to be maximized with respect to θ the optimization
problem may be stated as

θ∗ = argmax
θ

E

{∑
t

γtR(st,at)
}∣∣∣∣∣
at∼πθ

(2.22)

where θ∗ is the optimal policy parameter vector. Since the performance measure is to be
maximized, one can obtain θ∗ by performing gradient ascent in J , which takes the update
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form

θ ← θ + α∇θJ(θ). (2.23)

Here, ∇θJ(θ) is a stochastic estimate whose expectation approximates the gradient of J
with respect to θ.

The policy gradient scheme offers a big improvement considering it allows not only con-
tinuous state space, but also continuous action space. Comparing to critic-only methods
where one would have to iterate through all possible state-action values in order to find
the optimal action in a state, this exhaustive search is not necessary for PGMs. This is a
desirable attribute, especially for continuous control applications.

It is worth mentioning that all schemes where the learning phase of the policy is gradient-
based are classified as PGMs, regardless if they are actor-only or actor-critic methods.

There are various methods that can be adopted when calculating the gradient of the ob-
jective function J , two of which being the method of finite difference approximation and
direct policy differentiation.

2.3.1.1 Finite difference gradient approximation

One of the more established approaches for calculating the policy gradient is given by
using a finite difference. By perturbing the network parameter i by a small value ε, an
approximation of the gradient in the ith dimension can be found. The forward difference
method is expressed as:

∂J(θ)

∂θi
≈ J(θ + ε~ei)− J(θ)

ε
, (2.24)

where ~ei is a unit vector directed along the positive i axis with the same dimension as θ.

Similarly, one can use the backward difference,

∂J(θ)

∂θi
≈ J(θ)− J(θ − ε~ei)

ε
, (2.25)

or the central difference,

∂J(θ)

∂θi
≈ J(θ + ε~ei)− J(θ − ε~ei)

2ε
. (2.26)

From these approaches, the gradient of J with respect to an n-dimensional parameter
vector θ, can be calculated

∇θJ(θ) =
[∂J(θ)
∂θ1

,
∂J(θ)

∂θ2
, · · · , ∂J(θ)

∂θn

]ᵀ
, (2.27)

as presented in Section 2.1.3.

The two former methods use n evaluation steps to acquire the gradient of J , while the
latter use 2n. Despite the fact that the finite difference approaches are able to compute the
gradients of non-differentiable functions, they are ultimately are rendered inefficient and
easily affected by noise.

21



Chapter 2. Theoretical background

2.3.1.2 Direct policy differentiation

A more modern approach with higher accuracy than the finite difference method is the
direct policy differentiation. Most neural nets in today’s APIs are designed by constructing
underlying computational graphs symbolizing the signal flow in the network. By using the
chain rule and automatic differentiation on these graphs, gradients can be found easier and
more efficiently.

Assuming that the policy gradient∇θπθ(a|s) is known, the following identity holds:

∇θπθ(a|s) = πθ(a|s)
∇θπθ(a|s)
πθ(a|s)

= πθ(a|s)∇θlogπθ(a|s). (2.28)

Further calculations, including rewriting the terms for ∇θJ(θ) and πθ(a|s), allow (2.21)
to be augmented to

∇θJ(θ) = E

{
T∑
t=1

∇θ logπθ(at|st)
(

T∑
t=1

γtR(st,at)
)}

, (2.29)

where T is the number of steps in the episode.

Further, the expected value of the gradients can be approximated as the average of all
gradients over an entire simulation with N episodes. Resultantly, the policy gradient is
calculated as:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ logπθ(ai,t | si,t)
(

T∑
t=1

γtR(si,t,ai,t)
)
. (2.30)

Analyzing (2.30), one can see that the gradient of J is given as a product of the reward
and the gradient of the probability of taking the action leading to that specific reward.
Consequently, during gradient ascent, an action resulting in a higher reward will cause
the network parameters to be nudged in the direction that will render that action more
probable. Note that the nudge is proportional to the reward, meaning a higher reward will
tweak the parameters more aggressively than a small reward. In this way the policy is
altered in the direction advocating higher rewards, which is the ultimate goal of an RL
agent.

By nature, the actions chosen by an agent in a policy gradient scheme will introduce high
variance, which is known to hurt deep learning optimization. Mitigating high variances
often results in faster and more stable policy learning. Fortunately, this can be carried out
through baselines.

To reduce the variance caused by the actions, the variance for the sampled rewards are
subject to reduction. A constant baseline will be unbiased in expectation and can hence be
subtracted from the accumulated rewards. This yields reduced variance in the estimator’s
calculations without changing the expectation itself. When including a baseline to the
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computations, the loss gradient is altered to the following form:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ logπθ(ai,t|si,t)
(

T∑
t=1

γtR(si,t,ai,t)− b
)
, (2.31)

where b is the baseline.

There are several options when choosing a baseline for variance reduction. There is typi-
cally a trade-off between complexity and optimality. The simplest baseline is the

We also wish for our computations to inhabit causality, meaning that future actions do
not alter previous rewards. In other words, the policy at t′ cannot affect the reward at t if
t < t′. The lower bound of the last sum in (2.31) is therefore adopted to inhabit causality:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ logπθ(ai,t|si,t)
(

T∑
t′=t

γt
′−tR(si,t′ ,ai,t′)− b

)
, (2.32)

One of the simpler baseline is given as the average reward, namely

b =

N∑
i=1

T∑
t=1

γtR(si,t′ ,ai,t′). (2.33)

Although it is straightforward to implement, it has higher variance than its alternatives.
The optimal baseline seen from a mathematical standpoint is

b =

∑N
i=1

(∑T
t=1∇θ logπθ(ai,t|si,t)

)2 (∑T
t=1 γ

tR(si,t,ai,t)
)

(∑T
t=1∇θ logπθ(ai,t|si,t)

)2 , (2.34)

which is the expected reward weighted by gradient magnitudes.

The most common choice, however, is the on-policy value function V π(st), i.e.

b(st) = V π(st). (2.35)

This value constitutes an agent’s average return when starting in st and acts according to π
thereafter. It has been proven empirically that this specific baseline reduces variance while
encoding faster and more stable policy learning. Additionally, it serves as an intuitive
baseline in the sense that if the agent receives the return it expects to receive, the agent
should perceive the result of the episode as a ”neutral” score.

The scheme presented lays the foundation for the REINFORCE algorithm, whose pseudo
code is given in Algorithm 1 [54].

2.3.2 Actor-critic methods
The preceding section discussed the simplest form of a PGM, aiming to approximate
an agent’s policy without the use of a value function, deeming it an actor-only method.
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Algorithm 1 REINFORCE

1: Initialize θ arbitrarily and choose a baseline.
2: for each episode = 1 :M do
3: Generate trajectory using the current policy:

{s1,a1, r2, s2,a2, r3, . . . , sT−1,aT−1, rT } ∼ πθ
4: for t = 1 : T do
5: Compute∇θJ(θ) by using (2.32)
6: θ ← θ + α∇θJ(θ)
7: return θ

Though an agent seldom requires anything more than a policy in order to act, actor-critic
methods exploit a clever trick. By incorporating both policy and value functions in the
learning process, the estimate of the former can help improve the estimate of the latter,
and vice versa. Since actor-critic schemes have the ability to learn both which actions to
take and analyze how good these actions were, these methods are often superior to actor-
only methods when designing agents able to handle continuous problems. Additionally,
actor-critic methods hold the promise of delivering faster convergence compared to actor-
only methods, due to variance reduction.

As the name may suggest, actor-critic methods are based on two components: the actor
and the critic. These methods adopt many of the traits from policy gradients while also in-
cluding additional functionality. The actor takes the state as input and outputs a probability
distribution over all actions, effectively controlling how the agent behaves by learning the
optimal policy. Correspondingly, the actor follows a policy based model. The critic, on the
other hand, conducts value-based operations by evaluating the agent’s state and action by
computing the value function or Q-function. The actor and critic participate in a back-and-
forth motion where one entity receives feedback from the other in order to improve its own
performance. The dynamics between the actor, critic and the environment is illustrated in
Figure 2.8.

Both the actor and the critic are normally based on using policy gradients and value func-
tion approximation through ANNs. The methodology shown in Section 2.3.1 is adopted,
where the actor policy function πθa , which often is stochastic in these methods, is pa-
rameterized by the parameter vector θa. In a similar fashion the critic value function Vθc
or Qθc is parameterized by the parameter vector θc. Though Vθc is used in the coming
derivations, note that the critic can support both Vθc and Qθc .

The training of the two networks is performed in parallel. Through the use of gradient
ascent, a local maximum can be found in order to update the parameters of each network.
As time passes, the actor learns to produce better and better actions, i.e. it is starting to
learn a desired policy, and the critic is improving at evaluating the actions that the actor
is taking. Opposed to policy gradient methods, the update of the weights does not happen
at the end of the episode but rather at each step, inspired by TD learning discussed in
Section 2.2.4.

Since actor-critic methods rely on the actor achieving the optimal policy by learning from
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or 

Figure 2.8: The standard architecture of an actor-critic method.

the critic, the latter entity calls for some evaluation measure for the policy. The TD error,
introduced in (2.19), namely

δ = R(s,a, s′) + γVθc(s
′)− Vθc(s), (2.36)

proves to be a sensible choice for updating the critic, as the error should converge to 0
since the estimated value function approximates the true value function. Defining a critic
loss function of the form

Jc(θc) =
1

2
δ2 (2.37)

allows an update rule for the critic network that is adopted by the gradient descent scheme
given in (2.5). Assuming that the value function estimate of the next state in the TD error is
fixed and independent of θc, computing the gradient of (2.37) with respect to the parameter
vector yields

∇θcJc(θc) = δ∇θcδ = −δ∇θcVθc(s). (2.38)

Inserting this into the gradient descent formula yields the update rule for the critic, stated
as

θc ← θc + αcδ∇θcVθc(s), (2.39)

where αc is the learning rate of the critic.
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For the case of the actor we wish to maximize the cumulative reward of the policy, see
(2.21). Given an episodic update, i.e. an update when the batch size is 1, it can be shown
that the policy gradient can be approximated in the following fashion:

∇θaJ(θa) ≈ δ∇θa logπθa(s). (2.40)

Now, we use the gradient ascent scheme to find that the actor’s update rule

θa ← θa + αaδ∇θa logπθa(s), (2.41)

where αa is the actor’s learning rate. As stated in Section 2.2.4 positive TD errors indicate
that an action taken being a good one with respect to the value function, and the tendency
to select this action again should be strengthened. Analogously, if the TD error is negative
the tendency should be weakened. That is to say if δ is positive at time t, the action taken
at t performs better than the policy and the policy should adapt accordingly. Hence, by
multiplying the gradient with δ, the descent of θa is guided, meaning that θa is tweaked
towards actions which give positive TD errors.

The pseudo code for the episodic actor-critic algorithm is given in Algorithm 2 [54].

Algorithm 2 Episodic actor-critic

1: Initialize learning rates αa and αc.
2: Randomly initialize the actor and critic with weights θa and θc, respectively.
3: while training not finished do
4: Receive initial observation state s
5: while s not terminal do
6: Sample action a ∼ π(a|s)
7: Execute a and observe reward r and s′

8: Compute δ ← r+γVθc(s
′)−Vθc(s) (if s′ is terminal, then Vθc(s

′) = 0)
9: Update critic: θc ← θc + αcδ∇θcVθc(s)

10: Update actor: θa ← θa + αaδ∇θa logπθa(s)
11: Propagate state: s← s′

2.3.3 Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient, denoted DDPG, is a relatively novel DRL approach
for continuous action control [30]. The theory behind DDPG emerges from deterministic
policy gradients, a paper published by Silver et al. in 2014 [57]. This algorithm concur-
rently learns a policy in addition to a Q-function rather than a value function, meaning
DDPG adopts principles from both critic-only and actor-critic frameworks. DDPG does
this as a means of facilitating generalized solutions for tasks that extend to both continuous
state and action space. This is done by learning a policy that deterministically maps states
to specific actions using DNNs, hence the algorithm’s name.

DDPG uses the Bellman equation on off-policy data to learn both the state-action function
and the policy. By learning the state-action function instead of the value function the
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critic is allowed to learn the value of every action in all states. Since the algorithm learns
the optimal policy with off-policy data, DDPG is categorized as an off-policy actor-critic
method.

As a DRL method, DDPG aims to mitigate the problem of requiring discrete and finite
action spaces. In more simplistic algorithms such as Q-learning, the optimal action is
found by iterating over all the Q-values and choosing the action that maximizes this quan-
tity. When the action space is continuous, this search would be exhaustive, and solving
the optimization problem would be highly non-trivial. Calculating maxaQ

∗(s,a) would
therefore be a computationally expensive routine and given that this must be done every
time the agent wants to execute an action, this scheme is rendered infeasible. Since the
action space is continuous one can assume that the state-action function Q∗(s,a) is dif-
ferentiable with respect to a. This opens up the possibility to use gradient-based theory to
obtain a policy µ(s) exploiting this trait. As a result, instead of executing the expensive
routine of iterating through Q∗(s,a) to find the optimal action, DDPG approximates the
optimal action as

max
a

Q∗(s,a) ≈ Q(s, µ(s)). (2.42)

It is noted that though the published paper of DDPG includes several flexibility measures
for modeling, such as modeling transitions through a stochastic process β and considering
the visitation of states for a policy π as a distribution ρπ , these elements are not included
in the following derivations, which simplifies the notation.

Given an actor µ(s|θµ) and a critic Q(s,a|θQ), respectively parameterized by θµ and θQ

the loss function can defined as the squared error between the target and the prediction, i.e.

J(θQ) =
(
yt −Q(st,at|θQ)

)2
, (2.43)

where the target is

yt = rt + γQ(st+1, µ(st+1|θQ)). (2.44)

Note that the resulting error to be minimized in (2.43) is the TD error for a state-action
function, similar to the one presented in Section 2.3.2.

The critic is learned through the Bellman equation, similar to e.g. Q-learning. The actor,
on the other hand, must be updated by applying the chain rule to the expected return with
respect to the actor parameters:

∇θµJ ≈ ∇θµQ(s,a|θQ),
= ∇aQ(s,a|θQ)∇θµµ(s|θµ).

In [57] this result is denoted the deterministic policy gradient, which can be viewed as the
gradient of the policy’s performance.

DDPG adopts several techniques as a means of improving learning stability and allow
more efficient learning. One of such improvements was the replay buffer, allowing inde-
pendent and identically distributed (i.i.d.) inputs to the networks during training. Further,
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target networks for both the critic and the actor were added. As opposed to popular tech-
niques such as Deep Q-Networks [25], where target network parameters hold their values
constant for a fixed amount of intervals before being updated, DDPG employs a subtle
difference. Soft target updates to the target networks through Polyak averaging [58] has
proven to improve learning stability.

The critic’s target networkQ′ is parameterized by θQ
′

while the target network of the actor
µ′ is parameterized by θµ

′
. Consequently, the update of these networks can be expressed

in the following manner:

θQ
′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

where τ � 1 is the update rate constraining the target networks to change slowly which
shows to greatly improve the stability of learning.

Since the policy is deterministic, following it would lead to no exploration of the environ-
ment. In order to incorporate this within the DDPG framework, an exploration policy at
is derived by adding a noise component, N , sampled from an Ornstein-Uhlenbeck (OU)
process. The OU process xt is defined by the stochastic differential equation

dxt = θ(µ− xt)dt+ σdWt, (2.45)

where µ, θ > 0 and σ > 0 are constants, and Wt denotes the Wiener process [59]. With
this noise component, the exploration policy becomes

at = µ(st|θµt ) +Nt. (2.46)

More recent results have suggested that uncorrelated, zero-mean Gaussian noise works
well for providing the noise component for exploration2, which could simplify implemen-
tations. Integrating all these advancements together, the DDPG algorithm takes the form
shown in Algorithm 3 [30].

It should be noted that there are no guarantees that satisfying Bellman’s equations will lead
to obtaining an optimal policy. Empirically, one can derive an agent exhibiting great be-
havior and high performance, but the absence of guarantees renders such DRL algorithms
potentially unstable and brittle. Descendants of DDPG such as TD3 [60] and SAC [61] are
more evolved DRL algorithms where varying techniques are employed, aiming to mitigate
the aforementioned challenges.

2https://spinningup.openai.com/en/latest/algorithms/ddpg.html
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Algorithm 3 DDPG algorithm

1: Randomly initialize the critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ.
2: Initialize target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ

3: Initialize replay buffer R
4: for episode = 1 :M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1 : T do (for each step in episode)
8: Select action at = µ(st|θµ) +Nt according to the current policy and

exploration noise
9: Execute action at and observe reward rt and st+1

10: Store transition (st,at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si,ai, ri, si+1) from R

12: Set yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′)

13: Update the critic by minimizing the loss: J = 1
N

∑
i(yi −Q(si,ai|θQ))2

14: Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s,a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s=si

15: Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

2.4 Quadrotor dynamics
In most control approaches the kinematics of the plant builds the foundation for developing
the controller, and how accurate the model is often determines how well the controller
performs. As suggested in earlier chapters, DRL methods do not directly depend on a
model of the environment and control schemes based on these principles can therefore be
designed without having previous knowledge of the plant model.

Despite the fact that RL methods being independent from a predefined model, it is still of
high value for developers to understand the underlying physical properties of the plant for
several reasons. Prerequisite knowledge of model kinematics and dynamics often proves
integral when defining the reward function and can also be highly advantageous during
analysis of an agent’s behavior.

Correspondingly, the following section presents the equations of motion of a general
quadrotor model. This yields fundamental understanding of a quadrotor’s translational
and rotational behavior when it is not affected by external forces. Furthermore, these
equations describe how the Gazebo framework, presented in Section 3.1.1, simulates the
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drone’s behavior. Resultantly, this theory could be of valuable use when analyzing the per-
formance of an agent in addition to Gazebo’s ability to accurately simulate the quadrotor’s
behavior.

Through the derivations in [62], the nonlinear and coupled equations of motion for a gen-
eral quadrotor with 6 degrees of freedom are expressed as:

mẍ = (sinψ sinφ + cosψ cosφ sinθ)u1
mÿ = (−cosψ sinφ + sinθ sinψ cosφ)u1

m(z̈ + g) = cosθ cosφ u1
Ixxω̇x + (Izz − Iyy)ωyωz = u2

Iyyω̇y + (Ixx − Izz)ωzωx = u3

Izzω̇z = u4

(2.47)

In (2.47), x, y, and z symbolize the linear positions of the drone with respect to the world
reference frameW (also known as the earth-fixed reference frame), while φ, θ and ψ are
the roll, pitch and yaw angles inW , respectively. ωx, ωy , and ωz represent the roll, pitch,
and yaw rates of the drone in the body reference frame B, where the relationship between
W and B is illustrated in Figure 2.9. u = [u1, u2, u3, u4]

ᵀ encapsulate the control
parameters composed by the forces and moments generated by the drone propellers. m is
the mass of the quadrotor, while Ixx, Iyy and Izz are the principal moments of inertia. It
is worth noting that (2.47) assumes that the drone is axisymmetric.

Assuming that the quadrotor is in hovering mode, several simplifications can be conducted.
Firstly, (2.47) shows that all linear states are subordinated to control parameter u1, mean-
ing only one of these states are controllable. Hence, the rest of the states are subject to the
other controlled linear and angular motions. Considering only linear motion in z and in
hover mode, namely φ ≈ 0 and θ ≈ 0, the dynamics in (2.47) are simplified significantly:

m(z̈ + g) = u1

Ixxφ̈ = u2 − (Izz − Iyy)θ̇ψ̇
Iyy θ̈ = u3 − (Ixx − Izz)ψ̇φ̇
Izzψ̈ = u4

(2.48)
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2.4 Quadrotor dynamics

Figure 2.9: A visual representation of the relationship between the world frameW , where the axes
are denoted with w, and the body frame of the drone B, denoted with b. The rotation directions for
the body reference frame are also illustrated, where the right-hand rule is the convention applied.
These coordinate frames form the basis for the extraction of the equations of motion stated in (2.47).
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Chapter 3
Experimental setup

3.1 Software frameworks
The following section presents the various software frameworks used in this thesis. In
order to allow the scope of the work to be within feasible range, several frameworks were
exploited in order to execute underlying tasks, such as communication, simulation and
training DNNs. All software utilized are open-source.

3.1.1 Gazebo
Gazebo is a 3-dimensional dynamic robotics simulator that supports a range of physical
dynamics in order to generate realistic models and environments. Gazebo has the ability
to simulate complex indoor and outdoor environments and is hence able to accurately and
efficiently model the behavior of a wide range of robotic plants in various settings. The
simulator also supports sensor simulation and actuator control.

In order to fit the simulated robotic entities as closely to the real plants as possible, Gazebo
considers many vital components of a rigid object, such as mass, friction and inertia.
Gazebo offers physics simulation at a high degree of fidelity, a suite of sensors, and inter-
faces for both users and programs.

Gazebo builds upon the open source library Open Dynamics Engine (ODE) [63] for calcu-
lating the dynamics and kinematics for all rigid bodies inside the simulated environment.
Gazebo represents sensors, environmental scenes and the links and joints of robot models
through Universal Robot Description Format (URDF) files. These URDF files are repre-
sented in XML format. A URDF file describing a drone, for instance, will encapsulate
a detailed description of all elements and physical properties of the robot, its link to the
world coordinate frame and detailed 3-dimensional geometrical meshes for visualization
and realistic collision handling.
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Gazebo is a key component in the work presented, as it allowed visualization and deeper
interpretations of the modeled system at hand. It also yielded feasible and efficient testing
by allowing running code under development without having to risk a real-life drone. Re-
setting and spawning the agent in specific locations in the environment during the training
was straightforward, which was quite practical in terms of streamlining the learning pro-
cess of the DRL agent. Further, availability of additional features such as sensor and pose
measurements directly from the simulator allowed analysis and debugging of the devel-
oped software. This was done while still behaving very similarly to the real world plant
with respect to accuracy of the simulated model dynamics compared to the real version
of the drone. This, in turn, would allow more seamless transfer of logic from simulator
environments to real-life applications with only minor adjustments.

3.1.2 ROS
Robot Operating System (ROS) [64] is a collection of software frameworks tailored for
developing robot applications. It provides tools and libraries that has contributed signifi-
cantly to many advances in the field of robotics. Being open source, ROS is a key building
block for numerous advances within the research and development communities and lays
the foundation for many implementations in today’s technology.

ROS offers message-passing and package management, contributing to seamless and strai-
ghtforward communication between processes. So-called ROS topics are used for most of
the communication. Low-level control of robotic devices is also facilitated thanks to the
device drivers and hardware abstractions that ROS provides. Additionally, visualizers,
logging and sensor modeling for creating realistic scenarios is also made possible using
this framework. One of ROS’s strengths is its flexibility in terms of the programming
languages supported, among these being Python and C++. Resultantly, one can quite easily
set up modular designs for robotic applications. A ripple effect of supporting multiple
languages is that the online community advances and provides plentiful documentation.

Conveniently, ROS is embedded into Gazebo, making the communication between them
smooth. Gazebo provides services that allow ROS to pause and unpause simulations and
fetch states during training. This was found to be highly advantageous, especially when
implementing DRL based solutions that often require a controllable environment in addi-
tion to analysis during run-time.

Due to the fact that ROS interfaces well with Gazebo, has the ability to facilitate modular
solutions and provides a cooperative online community and comprehensive documenta-
tion, ROS is deemed a well-suited framework to utilize for developing applications in this
master thesis. The work presented is based on the ROS Kinetic distribution with Ubuntu
16.04 LTS as the operating system.

3.1.3 Tensorflow
Tensorflow [65] is an end-to-end open source library tailored for building, training and de-
ploying ML models, and is on the forefront of most applications that employ deep learning
approaches. Tensorflow permits automatic differentiation of neural networks by construct-
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ing computational graphs. These graphs are high-level abstraction structures that define
the data flow in a neural network, which allow Tensorflow to develop and deploy DNN
models with relative ease.

High-level APIs are also included, such as tf.keras, which is TensorFlow’s imple-
mentation of the vastly used Keras API [66]. Keras offers several implementations of
vastly used DNN building blocks, such as hidden layers, optimizers, objective functions,
activation functions and regularizers as well as dropout, batch normalization, and pool-
ing. Additional functionality such as eager execution, data pipelines and estimators allow
immediate model iteration and straightforward debugging. Tensorflow offers great frame-
works together with a Python API and comply with most necessities required for building
state-of-the-art DNN architectures while still accounting for agile prototyping, which suits
this project well.

3.2 Quadrotor platform
The quadrotor used in this thesis was the Parrot AR.Drone 2.0 Elite Edition1. The rea-
soning behind this included both price, specifications and availability for extra parts. The
drone itself costs approximately NOK 1300, deeming it one of the cheapest on the mar-
ket with similar specifications. Spare parts such as propellers and batteries were easily
attainable and the quadrotor also included a HD 720p frontal camera and a QVGA vertical
camera. Since the work consisted of developing systems that would require experimenta-
tion where the drone may be damaged during runs or can run out of power during longer
testing sessions, it was laid extra emphasis on the availability of extra parts. A camera with
relatively high resolution was also an important criteria since this would directly benefit
the accuracy of the drone’s state estimation for the interconnected perception estimation
project [39]. Since the AR.Drone 2.0 ticked all these boxes, it was deemed a suitable
candidate for the scope of this thesis.

Despite the previously mentioned specifications, the main factors for choosing the AR.Dr-
one 2.0 was that it was open source and included an already-implemented simulator for the
drone in Gazebo, facilitating unambiguous development of the methods in this thesis. It
also featured compatibility for both the real drone and the simulated drone with ROS. Us-
ing ROS as the communication protocol would deem straightforward development, since
the same code and models could be used for both the real and the simulated drone with
minor adjustments. Access to the simulator, given by the ROS package tum simulator
[5], was integral for this project in terms of training the agent as realistically and efficiently
as possible while developing the methods presented in Chapter 4. By this we mainly mean
that the behavior of the simulated drone was transferable to the real plant, such that real-
life testing would mirror simulations as accurately as possible.

3.2.1 Hardware and sensors
The AR.Drone 2.0 includes computationally capable but still lightweight hardware. The
drone is equipped with a 32-bit ARM Cortex A8 processor that runs at 1 GHz with Linux

1https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
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2.6.32 as its operating system. This allows the open source aspect of this specific drone.
It also includes a 1 GB RAM unit and a high-speed USB 2.0 for extensions, such as flight
recorders. With internal frame only the drone’s mass is 380 grams, and with the external
frame it increases to 420 grams. With the latter configuration the drone measures 53 cm×
52 cm horizontally.

The quadrotor also includes a wide range of sensors whose purpose is to stabilize the plant
and yield user-friendly and accurate motion. The AR.Drone 2.0 is supplied with an inertial
measurement unit (IMU), consisting of a gyroscope, accelerometer and magnetometer.
These sensors measure in three axes and provide translational and rotational information
of the drone. The AR.Drone 2.0 also includes a pressure sensor and altitude ultrasound
sensor for altitude estimation. This assortment of sensors, accompanied by the hardware,
aims to accurately estimate the linear and angular motion of the drone such that the velocity
controller presented in Section 3.2.2 can function as wanted.

In addition to the hardware and sensors presented, the drone features one frontal and one
vertical camera. The former is a frontal camera with 720p video quality. It has a 93 degree
lens and can record up to 30 frames per second. This camera has no stabilizing function
to the drone, but is rather used for observation purposes. The latter is a QVGA camera
and aims to measure the ground speed of the drone, helping it stabilize the horizontal
dynamics. It has a 64 degree lens and has a record rate of 60 frames per second. The
resolution of each frame is 320 × 240 but are scaled up to 640 × 360 automatically.

In addition to the USB port, this drone also has a Wi-Fi interface. Users can connect to
the drone via this Wi-Fi network and control the drone by sending velocity commands,
as well as retrieving sensor data. The former is fundamental for applying the developed
algorithms on the real plant, while the latter allows analysis of performance in addition to
debugging. All sensor measurements and estimated horizontal velocities are available to a
computer through this Wi-Fi interface at a frequency of up to 200 Hz.

The complete specifications of the Parrot AR.Drone 2.0 Elite Edition can be found at
https://www.parrot.com/global/drones/parrot-ardrone-20-eli
te-edition under ”Technical specifications”.

3.2.2 Built-in velocity controller
The physical drone does not allow manipulation of the low-level voltage signals for the
propellers directly. Rather, AR.Drone 2.0 features a built-in velocity controller. The ve-
locity controller Ar.Drone 2.0 utilizes is based on the structure depicted in Figure 3.1 and
consists of a set of cascaded PI, PD and PID controllers. The purpose of the inner loops
is to control the attitude, yaw rate and vertical velocity, while the outer loops control the
horizontal velocity, heading and altitude. This velocity controller adopts its architecture by
assuming that each axis and the altitude can be controlled independently. This assumption
holds for reasonable deviations from the hovering state. The controller’s behavior is dupli-
cated by the simulator implementation and added in the solution of tu-darmstadt-r-
os-pkg. As a result, simulations will accurately mimic the behavior of the real drone.

It is worth noting that AR.Drone 2.0’s controller deviates slightly from Figure 3.1. As a
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Figure 3.1: The controller realized in the tu-darmstadt-ros-pkg ROS package, in which
tum simulator bases their solution on. The block diagram is taken from [67].

result of the sensors the drone inhabits, it is not able to control the desired altitude pz,d
nor the desired heading ψd, only their velocities vz,d and ωz,d. In the figure, this translates
to the two bottom switches in the figure always being connected to the velocity signals.
Thus, the input to the velocity controller becomes a 4-dimensional vector expressing the
desired horizontal and vertical velocities in addition to the yaw rate, namely

vd =


vx,d
vy,d
vz,d
ωz,d

 . (3.1)

It is assumed that all velocities in (3.1) are expressed in the body frame. The simulator
operates with ranges to these values, where maximum velocity in the negative direction
translates to setting the corresponding value to −1, while 1 yields maximum velocity in
the positive direction.

Figure 3.1 illustrates that the desired horizontal velocities expressed in the body frame,
vbx,d and vby,d, are translated to desired roll and pitch angles, φd and θd, and controlled
based on these values. This is emphasized in Figure 3.2, where the figure portrays how
the roll and pitch angle of the drone respond when a step to the desired velocity in x and
y is applied. The figure also shows how accurate the velocity controller is. According to
Figure 3.2 velocity controller seems to be quite rapid in its response, and seems to stabilize
its velocity in addition to its angles quite quickly after the desired velocity is acquired.

As most of the sensors the drone is equipped with have to integrate their measurements
in order to obtain position and orientation, these quantities are subject to drifting behavior
given the design of the velocity controller. This is emphasized in Figure 3.3. The inclusion
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Chapter 3. System design and implementation

that makes the initial assumption that each axis can be controlled indepen-

dently, and for motions with small deviations from the hovering state this as-

sumption remains valid. As depicted in Figure 3.2, the inner control loop con-

trols the attitude, yaw rate and vertical velocity, while the outer control loop

controls the horizontal velocities, altitude and heading. The superscript ’b’ in

the diagram refers to the body frame. It can be seen from the figure that the

desired horizontal velocities vbx,d and vby,d are controlled indirectly by steering

the pitch and roll angles of the drone. Figure 3.3 illustrates this by an example

that shows how the drones velocity and orientation responds to a step response

in vbx,d and vby,d, and also gives an indication as to how accurate the velocity

controller is.

Figure 3.3: At t = 4 the drone receives a sudden step from 0 to 1 in the
commanded x velocity, and at t = 8 commanded y velocity also jumps to
from 0 to 1. To obey the new commands the drone tilt its corresponding axis
– pitch or roll – to gain a horizontal force component, and to remain at the
desired velocity it has to continuously "rock" the axis of rotation.

The AR.Drone simulator differ slightly from Figure 3.2 because the verti-
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Figure 3.2: Exemplification of how the velocity controller’s design introduces the coupled behavior
between the horizontal velocities and the roll and pitch angle. At t = 4 the drone receives a velocity
command purely in x. This induces a response in the pitch angle such that the drone tilts and
generates a horizontal force, pushing the drone in positive x direction. At t = 8 the same incident
occurs, although in the y direction. This induces a negative roll angle to generate velocity in the
positive y direction. Figure courtesy of [37].

of the pressure and ultra-sound sensors aids the quadrotor to directly measure its vertical
position z rather than estimating it indirectly. The drone is therefore quite competent in
altitude estimation, and therefore altitude control. Compared to the vertical position, the
horizontal position (x, y) drifts considerably since these are not controlled directly, but
rather through the pitch and roll angles. Since the roll and pitch angles are controlled
directly by the velocity controller, these will resultantly not be as affected by drift. The
yaw angle, on the other hand, is not controlled in the same fashion and will therefore
experience drift. This is also portrayed in Figure 3.3.

The inclusion of the velocity controller may be advantageous, seen that it allows the de-
veloper to base the control schemes on top of this controller and resultantly not having to
assess underlying dynamics when applying commands to the plant. It provides common
ground between the simulated plant in Gazebo and the real drone, since the dynamics of
the plant is already accounted for in the velocity controller. This can potentially lead to
higher accuracy of the simulated drone dynamics and less ambiguous behavior between
simulator and real quadrotor.
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to measuring motion in z-direction explains why the drone is drifting less in

vertical direction than in horizontal direction.

Figure 3.4: The drones position and heading drifts over time, while the roll
and pitch angles are stabilized by the velocity controller. This data was gath-
ered using a single episode, but represents the drift of the drone in general.

3.3 Dynamic positioning controller

Based on the thesis’ goal outlined in Chapter 1 and the insight into reinforce-

ment learning and computer vision provided in Chapter 2 this section proposes

a dynamic positioning controller for quadrotor positioning relative to an object

fixed to the ground plane. First the problem is formulated, then a high-level

schematic of the controller is outlined before the output of the controller and

state representation of the system is discussed. Lastly, a reward function is pro-

posed for solving the particular problem in the reinforcement learning frame-

work. The controller represents the main contribution of this thesis, which is

to explore both the feasibility and capability of current state-of-the-art rein-
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Figure 3.3: Simulation highlighting the drifting conditions of the drone’s pose, namely its position
and orientation. The simulation was conducted over a 60 second interval, where the drone was ini-
tialized at [x, y, z, φ, θ, ψ] = [0.0, 0.0, 2.0, 0.0, 0.0, 0.0]. There were no applied velocity commands
during the simulation. Figure courtesy of [37].

Unfortunately, at the time of writing there were no scientific research publications aiming
to examine the accuracy of the simulator compared to the real drone. However, the simu-
lator developers have published a video showcasing a comparison in behavior between the
real drone and the simulated drone when both are applied with the same series of velocity
commands [68].

The velocity controller can also prove to serve as a stabilizing safety guard for training
the quadrotor. With the controller the drone suggests behavior showing that no series
of velocity commands result in the quadrotor flipping upside down or rolling or pitching
such that the model in Section 2.4 no longer is valid. In contrast, such behavior would
most likely not have been present if the developer had direct access to modification of the
voltage signals.

Simultaneously, it could be argued that an RL based agent may learn more efficiently by
directly manipulating and learning the low-level voltage commands. The main argument
for desiring such an end-to-end solution is that it allows an agent to optimize its overall
behavior instead of optimizing individual modules of a hierarchy [69, 70]. Preferably,
the developers should have access to manipulating both the higher level control inputs as
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well as the low-level voltage signals for comparative and flexibility purposes for having
the ability to develop an end-to-end system. On a general note the drone market seems
to lack alternatives fulfilling this requirement, and it should still be feasible to acquire a
satisfactory behavior of an agent using this velocity controller as a base.
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Methodology and system design

4.1 System architecture and setup
Many quadrotor control approaches include a set of PID controllers aiming to regulate one
or several states. Although these approaches have proved to work quite well, there are
some significant drawbacks. Tuning the parameters of the different controllers is often not
a trivial task. Since the system is highly nonlinear and several states are coupled, changes
to the behavior of one state may propagate through the system and lead to undesired behav-
ior in other states. Tuning the controllers too aggressively may render the drone unstable,
while too cautious and passive tuning may impair the drone’s agility and responsiveness,
which may lead to the drone not being able to respond to wind gusts or other unforeseen
events.

Another popular approach is MPC. This method also exhibits well-behaved solutions,
though these are often in either controlled environments where the model is accurately
defined and wind gusts are not present, or where disturbances and other external forces
are accurately modeled. The solutions are generally inflexible to changes in the environ-
ment or deviations in the model. There are several ways of mitigating these shortcomings,
among these being to taking e.g. wind gusts into account during the modeling phase and
do extensive testing in order to obtain an accurate model of the plant and external com-
ponents. These measures can yield sufficient solutions that are capable of handling most
cases in quadrotor flight, but are often dismissed due to the nearly infeasible amount of
time and resources it would require to develop such a detailed system.

Resultantly, both methods will lead to suboptimal global performance if not enough time
and care is put into the modeling phase, motivating for alternative and more robust solu-
tions that are not as dependent on this step. Appropriately, this thesis proposes a DRL
inspired solution to quadrotor control. DRL methods have the benefit of learning a global
policy whose task is to translate the drone’s state to velocity commands and hence eradicat-
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ing the need for designing several coupled PID controllers. Further, DRL agents optimize a
performance measure defined to complete the objective. While improving its performance
the agent implicitly takes the system dynamics into account, where methods such as MPC
would have to do this explicitly. As such, DRL agents have the potential of ”understand-
ing” the underlying dynamics without having an explicit model, and act appropriately after
it has been trained.

This thesis aims to divide the general objective of the landing mission into three steps:
hover, descend and land. The first step considered the case where the drone starts at an
arbitrary position and would maneuver towards the landing platform and hover above it at
a specified height. The second step would follow up with descending towards the landing
platform while maintaining the horizontal position above it, before it reaches a specific
height. The goal is to descend while still keeping its horizontal position static. When
the drone is close enough to the platform for it to land without missing the target nor
damaging the drone itself, the final step of landing is initiated. The evolution of these
steps are illustrated in Figure 4.1, and constitute a simple planning system for completing
the landing task in the given environment where there are no obstacles and no external
disturbances other than the drift conditions previously described.

Close to
platform?Hovering? Descend Mission

complete
Start

mission

Hover at
specified

point
Landed?

No No No

Yes
Land

Yes Yes

Figure 4.1: Flow chart of the different steps to be conducted for completing the objective. Using
conventional flow chart notation, the activities are in rectangles and the decisions in diamonds. Each
decision has a set of specific requirement to output either yes or no.

Note that the planning approach presented is very rudimentary, where no real fault toler-
ance nor edge cases have been considered. For a more robust system aimed to be utilized
in real-world applications and more advanced missions, the planning system is vital and
must be investigated and designed with higher level of detail. Since it was assumed that
there were no obstacles nor external forces hindering the drone’s movement and that the
agent knew from the get-go where the landing platform was located, this simplistic plan-
ning scheme proved to be sufficient for the scope of this thesis and was therefore not
augmented further.

The two former steps of Figure 4.1 are solved independently by using the novel DDPG
algorithm, as discussed in detail in Section 4.2. Since the quadrotor inhabits a built-in
landing command both for the real plant and for the simulated drone in Gazebo, the final
landing step could be conducted using this feature instead of designing and training a
dedicated landing agent. Resultantly, this thesis aims to develop a hovering agent and
a descending agent for accomplishing autonomous landing through DRL. Each agent is
independent from the other, where their respective objectives are described as follows:

1. The hovering agent is tasked to control the drone’s linear position, (x, y, z), towards
a specific point in which the quadrotor has to be able to see the entirety of the
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platform while hovering at still.

2. The descending agent is assigned to approach the agent’s linear positions, (x, y, z),
towards the landing platform, given that the quadrotor’s initial position is in the
proximity of the point of hover. This agent is also subject to control the yaw rotation,
ψ.

It can be argued that a more direct and less time-consuming solution would be to train
one agent to directly approach the landing platform instead of executing the intermediate
step of hovering at a specific height. However, since the long term goal of this project
was to create a real-life implementation with external influences, this scheme was favor-
able in terms of safety and robustness of the solution. Though the quadrotor most likely
will consume considerably more power and be less efficient seen from a time aspect, it
was concluded that robustness and safety of the mission was of higher importance than
temporal constraints and power consumption.

The Gazebo environment used for training and testing was a world containing free space
with the helipad and the simulated AR.Drone 2.0, as depicted in Figure 4.2. Since the
Gazebo simulator had the ability to run simulations faster than real-time, the environment
for training was designed to be as simplistic as possible with only the necessary models.
This was done mainly to limit the underlying calculations that has to be conducted in order
to render other, nonessential entities in the simulation. This design detail in mind yielded
enhanced speed-up and reduced training time.

Figure 4.2: The simple simulation environment modeled in Gazebo during training.

The following sections describe how the two previously mentioned submissions were de-
signed and implemented using DRL in order to obtain a drone system able to land on a

43



Chapter 4. Methodology and system design

platform.

4.2 Quadrotor control using DDPG
As discussed earlier, this thesis mainly aims to contribute through research on how DRL
may be applied to learn control policies for controlling a quadrotor to land on a platform.
By assuming that the position of the helipad in question is known, the objective is to
create a robust system able to hover above, descend towards and land on the platform. To
accomplish this, the novel DDPG algorithm presented in Section 2.3.3 was used.

The reasoning behind adopting DDPG as the controller scheme was mainly due to it be-
ing able to handle continuous state and action spaces, in addition to being an off-policy
algorithm. The latter meant that a DDPG agent can learn a desired policy without hav-
ing to follow it itself. In practical terms, this implied that a DDPG agent has the ability
of learning its objective by observing transitions generated from a different agent. Since
exploratory learning schemes seldom avoid executing suboptimal actions, the off-policy
element of the learning process is deemed highly advantageous for a physical drone that
may be subject to safety regulations.

In coherence with the conventional actor-critic scheme illustrated in Figure 2.8, an overview
of the architecture of the implemented DDPG solution is given in Figure 4.3. The main
components are the control policy and the value function, µ(s) and Q(s,a), respectively.
The former pledges to generate a velocity command given the drone state, while the latter
has the task of evaluating how fitting the command was in that specific state.

In DDPG, both of the actor and critic are estimated through neural networks. The actor
network, µ(s|θµ), was built as a fully connected network with two hidden layers. The
input layer was of the same dimension as the state. The first hidden layer had 400 units,
while the second had 300 units in the original implementation. Both hidden layers had the
rectified linear unit (ReLU)1 as activation [71]. This was done in order to allow the network
to approximate nonlinearities in the policy. The output layer had the same dimension
as the action commands, since this layer would express the estimated optimal action to
execute, given the inputted state. In order to scale the outputs to the range [−1, 1], the
activation function at the output layer was set to the hyperbolic tangent, tanh. Following
the notation introduced in Section 2.1.3, the actor network could be presented as:

h1(s) = ReLU(W 1,µs+ b1,µ)

h2(s) = ReLU(W 2,µh1(s) + b2,µ)

µraw(s) = tanh(W 3,µh2(s) + b3,µ)

In order to ensure that the action magnitudes were within saturating limits of the actuator
controlled, namely

amin ≤ at ≤ amax, (4.1)

1The activation function of the rectifier is given as ReLU(x) = max(0, x).
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Environment

DDPG controller
Control policy

Value function

Quadrotor

Reward function

Figure 4.3: A figure highlighting the components and the signal flow of the system developed in this
thesis. The DRL controller is highlighted in blue and the environment encapsulating the quadrotor
platform in green.

the raw output would need to be scaled and shifted through a linear transformation:

µ(s|θµ) = µraw(s)ascale + ashift. (4.2)

This transformation would facilitate avoiding wear and tear on the quadrotor motors in
addition to restricting the plant’s behavior such that the control policy would not yield
unneeded aggressive actuation.

Assuming the shift and scale variables were known, this architecture constituted the fol-
lowing actor network parameters

θµ = [W 1,µ, b1,µ,W 2,µ, b2,µ,W 3,µ, b3,µ].

In similar fashion, the critic network, Q(s,a|θQ), was also modeled as a fully connected
network with two hidden layers. Each layer used ReLU and had 400 and 300 units, re-
spectively. Since the critic was tasked to approximate the Q-function, the network was
inputted a state-action pair and the output was the estimated Q-value of that specific pair.
The state was inputted at the first layer, while the action was not included until the second
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hidden layer. Summarized, the critic network had the following architecture:

h1(s) = ReLU(W 1,Qs+ b1,Q)

h2(s,a) = ReLU(W 2,Q

[
h1(s)
a

]
+ b2,Q)

Q(s,a|θQ) =W 3,Qh2(s,a) + b3,Q

Analogous to the actor parameters, the critic network parameters were given as

θQ = [W 1,Q, b1,Q,W 2,Q, b2,Q,W 3,Q, b3,Q].

With the same notation as in Section 2.1.3, Figure 4.4 summarizes the architecture used
for the actor and critic networks in this thesis.

A more detailed figure reinforcing Figure 4.3 is given in Figure 4.5. This figure shows that
the 5-tuple transition (st,at, rt, st+1, d) is stored inside the replay buffer for each step
inside the environment, where d constitutes a flag that is set whenever the agent is done
and has terminated the episode. This flag would only be set when the agent exited the valid
area. Training of the actor and critic was also done at each step, after storing the transition.
A batch of random transitions in the replay buffer was extracted and the optimizers of the
networks ensured that the network parameters were updated accordingly.
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Critic

Actor

Figure 4.4: The network architecture of the actor and critic in the implemented DDPG solution. The
state and action dimensions are denoted n and m, respectively.
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DDPG controller

Environment

Actor

Critic
 

Reward
function

Replay buffer

Quadrotor platform

Velocity
controller

State
estimation

Figure 4.5: A more detailed block diagram portraying the architecture of the system developed in
this thesis. The figure augments Figure 4.3 and illustrates the controller, highlighted in blue, and the
environment, including the quadrotor platform, in green. Further, the figure introduces the replay
buffer in addition to the modules that the quadrotor platform consists of, namely the state estimator
and built-in velocity controller. The two latter entities are boxed in red.
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4.2.1 State and action representation
For controlling a plant using DRL, it is important to give the agent sufficient amounts
of information for it to be able to learn and optimize its objective. This information is
conveyed through the state vector s. For position control of a quadrotor, a minimalistic
state vector would be the linear positions, namely

s = x = [x, y, z]ᵀ, (4.3)

This would, however, lead to suboptimal policies, as the solution would neither be in-
variant to rotation, nor accounting for the momentum of the drone when approaching a
setpoint. A state vector that holds limited knowledge will increase the difficulty in the
mapping from s to a and hence make the extraction of a policy more demanding. This
forces the agent to do extensively complex transformations of the state in the actor and
critic networks. Even though these networks are most likely capable of computing such
transformations, by manually including additional states to the state vector one reduces the
amount of network-computed transformations that need to be carried out, and subsequently
decreases the architecture complexity and training time. This renders a more flexible agent
easier to train without adding extensive computations or network restructuring.

As mentioned, the work presented in this thesis constitutes the design and implementa-
tion of two separate agents designated for hovering and descending, respectively. The
following sections present the state and action representations of these agents.

4.2.1.1 Hover

Since the objective of the hovering agent is to control the drone such that it stays at a given
3-dimensional point, it was imperative to include the positional error between the drone’s
position in W , xw, and its desired hovering setpoint in W , ph = [px,h, py,h, pz,h]

ᵀ,
namely

x̃w = xw − ph =

x− px,hy − py,h
z − pz,h

 . (4.4)

The superscript w points out that this positional error is given in the world frame, since
both x and ph are given inW . Further, by taking the arguments previously mentioned into
account, it is advantageous to include states that offer information regarding the momen-
tum of the quadrotor. In light of this, the translational velocities,

v =

vxvy
vz

 , (4.5)

and translational accelerations of the drone,

v̇ =

v̇xv̇y
v̇z

 , (4.6)
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were included in the state vector.

While v and v̇ are calculated through the manifold of sensors mounted on the drone and
thus given in the body frame, x̃w is given in the world frame. Since the velocity commands
are also given in the body frame, as stated in (3.1), a transformation between the states and
the actions is necessary in order to maintain coherence between the state at timestep t,
st, the velocity command at that timestep, at, and the resulting state in the next timestep,
st+1. By assuming that the quadrotor predominantly maintains small angles in both roll
and pitch, these angles can be neglected. Thus, the transformation from W to B only
consists of a negative yaw rotation about z. This rotation is illustrated in Figure 4.6 and is
expressed with the following rotation matrix:

Rb
w = Rz,−ψ =

cos(−ψ) −sin(−ψ) 0
sin(−ψ) cos(−ψ) 0

0 0 1

 (4.7)

Figure 4.6: A bird’s-eye view illustration of the relationship between W and B in the quadrotor
environment. The frame B′ symbolizes the body frame translated to the world frame origin. The
figure bases its axes upon the right-hand rule, such that the z axes of all three frames point outwards
from the paper.

Resultantly, the positional error in the body frame is obtained in the following manner:

x̃ = Rb
wx̃

w
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Finally, the state vector for the hovering agent became the 9-dimensional vector

s =

x̃v
v̇

 . (4.8)

It could be argued that the yaw angle could have been included in the state vector such that
the agent itself would be able to extract this transformation, but since the transformation
was easily accessible this was deemed redundant.

In the implementation of the hovering controller, the control signal was on the form

a =

vx,dvy,d
vz,d

 , (4.9)

where the subscript d denotes desired velocity. Note that all components are expressed in
the body frame, as suggested earlier. Despite the fact that the velocity controller allowed
control of the angular velocity about z, as suggested in Section 3.2.2, this was omitted
from this control task since it had no significant role for the drone completing the hovering
objective.

4.2.1.2 Descend

The descending agent would resemble the hovering agent notably, though having some
slight adjustments due to the difference in objective. In addition to the translational ve-
locities and accelerations, it also made sense to include the positional error between the
quadrotor’s position xw and the descending point pd, both given inW . Furthermore, the
objective of the descending agent included maintaining a relatively small yaw angle, thus
augmenting its functionality and objective relative to the hovering agent. This addition
to the objective was mainly motivated by future development where a computer vision
module would be adopted to estimate the landing platform’s position, see Section 4.2.3.
Resultantly, the yaw angle ψ would need to be included in the control signal a:

a =


vx,d
vy,d
vz,d
ωz,d

 , (4.10)

where ωz,d denoted the desired angular velocity in the z direction, thus controlling the
yaw rate of the plant. Identical to the hovering agent, all components of the control signal
in the descend agent is given in B.

As stated, the descending agent had the additional responsibility of driving the yaw angle
towards a desired value. The yaw angle also had to be included in the state vector in order
to convey sufficient information to the agent when it was exhibiting satisfying control in
yaw. Concatenating the position vector with the yaw angle in the world frame,

xwa =

[
xw

ψ

]
, (4.11)
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and defining the setpoint for the descending agent,

pd =


px,d
py,d
pz,d
pψ,d

 (4.12)

yielded the augmented positional error vector:

x̃a =

[
x̃

ψ̃

]
=


x− px,d
y − py,d
z − pz,d
ψ − pψ,d

 . (4.13)

This allowed the state vector s, in similarity to the control signal a, to be augmented for the
descending agent’s application. Following the extended objective of controlling the yaw
angle, a 10-dimensional vector including the yaw angle was defined as the state vector for
the descending agent:

s =

x̃av
v̇

 . (4.14)

The reason behind controlling the yaw angle towards a specific value was mainly to ensure
that the body of the drone, and thus the camera mounted on the drone, would not be rotated
with respect to the landing platform. This ability would be especially advantageous for
later augmentations of the project, where the down-facing camera on the drone would be
used by an external perception module to estimate the quadrotor’s position relative to the
landing platform.

Note that since the yaw angle now was included in the state vector, there was no need to
apply the transformation (4.7) in the same manner as for the hovering agent. The descend-
ing agent would inhabit enough information regarding its rotation relative to the world
frame to calculate this transformation itself using the actor and critic networks.

4.2.1.3 State normalization

Deep learning algorithms often benefit from data normalization, especially when the dif-
ferent features have varying scales [72]. In both the hovering agent and the descending
agent the state vectors were subject to normalization such that every variable spanned a
specific interval, aiming to boost training speed and also performance of the solutions.

In the case of this thesis, both agents were normalized such that each state variable spanned
the range [−1, 1]. If a state variable s was originally given in the range [smin, smax] and
was subject to normalization to the range [a, b], the normalized state snorm would be given
as

snorm = (b− a) s− smin
smax − smin

+ a. (4.15)
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Since x, y, z and ψ were to be controlled by the two agents, they were naturally added to
the respective state vectors. However, none of these values are restricted to any bounds
due to the open environment used, as the linear and angular position of a drone may range
between any numbers the environment allows. The agents would, in practice, have desig-
nated regions to work in, preferably in the proximity of their setpoints. As such, boundary
values were defined for x, y, z and ψ in the environment. Their values depended on the
agent and is presented in greater detail in Section 5.1.

In the case of the translational velocities and accelerations that had no preset boundaries,
tests were conducted for obtaining the minimum and maximum that the plant could acquire
for these quantities could in the environment. The following values were obtained from
several test runs for each variable:

−1.50m/s ≤ vx ≤ 1.50m/s

−1.55m/s ≤ vy ≤ 1.45m/s

−0.55m/s ≤ vz ≤ 0.55m/s

−0.3 g ≤ ax ≤ 0.3 g

−0.3 g ≤ ay ≤ 0.3 g

0.8 g ≤ az ≤ 1.2 g

These values were subsequently used for normalizing the remaining states in s in the hover
and descend agent that were not manually bounded. Note that the translational acceleration
in z direction never exceeds the bound [0.8, 1.2]. This is justified by the fact that the inertia
in z is too large while the agent’s control command is simultaneously not large enough to
cause a greater change in the acceleration in z compared to the gravitational force acting
on the plant. Hence, the majority of the acceleration in this direction will be caused by
counteracting the gravitational force generated by Earth.

4.2.2 Reward function
As discussed in Section 2.2.2, the reward function in reinforcement learning methods is
fundamental for the agent to ”understand” its objective. Hence, the agent’s behavior is
said to be shaped by this function. By convention, the reward function is not assumed to
be a part of the agent but rather the environment, as shown in Figure 4.3.

Depending on the desired behavior, there are various options for designing a reward func-
tion aiming to control a quadrotor to a desired position. Since the ideal state of the drone
includes driving the positional error towards zero, it was desirable to design a reward
function that pays the agent dividends for accomplishing this. One such function is the
boundary function, expressed as

R(x) =
{
a, if |x| < b.

0, otherwise.
(4.16)

where a is the maximum value and b is the boundary width from the center.

53



Chapter 4. Methodology and system design

The literature suggests that an RL agent will struggle to converge towards optimal behav-
ior if it is given sparse rewards, such as with the boundary function. This is mainly due
to the agent’s exploratory behavior and that there is no guarantee that it will encounter
the high-reward areas in the environment. Additionally, using the boundary function will
not guarantee that the quadrotor will hover at the exact setpoint specified, as it reaps the
same rewards as long as it is inside the boundary. Hence, the agent has no way of distin-
guishing between mediocre behavior, where the drone is in the proximity of the setpoint,
and desired behavior, where the drone is at the setpoint. Resultantly, a reward function
increasing monotonically will guide the agent towards areas of the state space with even
higher rewards.

4.2.2.1 Hover

In light of the arguments presented, a function that increases monotonically towards a peak
where the Euclidean norm of the positional error ||x̃|| equals 0 is desirable for the hovering
agent. Given that x̃ = Rb

wx̃
w, the positional error norm can be rewritten in the following

manner:

||x̃|| = x̃ᵀx̃

= (Rb
wx̃

w)ᵀRb
wx̃

w

= (x̃w)ᵀ(Rb
w)

ᵀRb
wx̃

w

= (x̃w)ᵀx̃w

= ||x̃w||

=
√

(x− px,h)2 + (y − py,h)2 + (z − pz,h)2

Thus, ||x̃|| is equal to the Euclidean distance between the drone’s position x and the set-
point ph, which serves as a reasonable quantity to optimize.

There are many functions with the attribute of increasing monotonically. In this thesis
we propose the Gaussian distribution as a reward function that endorses small positional
errors, namely

R(s) = ae−(||x̃||−µ)
2/2σ2

, (4.17)

where a is the peak amplitude, µ is the mean, σ is the standard deviation and e is the base
of the natural logarithm.

There are several reasons behind this choice of reward function. Firstly, it is quite similar
to the boundary function and relatively painless to tweak. A comparison between the
boundary function and the Gaussian is given in Figure 4.7. Secondly, a reward function
shaped as a Gaussian promotes convergence towards the peak of the bell curve, in this
agent’s case this is approaching the setpoint of hover. In addition, this reward function
shape yields a larger reward area meaning the rewards are no longer sparse, which again
facilitate faster learning.

Since the Gaussian is quite flat at the maximum, the agent may struggle to find the states
where the reward is maximized fully. The flatness might therefore yield a behavior where
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Figure 4.7: Comparison between a boundary function with a = 1.0 and b = 1.0, and a Gaussian
distribution with a = 0.0, µ = 0.0 and σ = 1.0. The figure illustrates that a smooth function such
as the Gaussian allows the agent to experience small increments in rewards even when the error is
high. This detail may greatly benefit the agent’s convergence towards desired behavior.

the agent settles for a reward of 0.95 instead of 1.0. If the standard deviation of the reward
function is sufficiently large, this difference in reward may translate to a consequential
positional error. On the other hand, if the standard deviation is sufficiently small, the
rewards may be experienced as sparse to the agent. As a means to mitigate this type of
behavior where the agent would be ”satisfied” with hovering e.g. 30 centimeters away
from the setpoint, σ would need to be chosen with care.

Many implementations use the Gaussian as a base function, meaning that this function
communicates the main target of the agent. Using a base function in the reward supports
the inclusion of additional terms that express sub-goals. These are often included to tweak
the agent’s behavior marginally. In this project, one such sub-goal was smoother control
actuation. During development, it was noticed that the agent would lean towards giving
maximum velocities when approaching the setpoint. No penalization on actuation would
result in the agent converging towards a bang-bang protocol, since this approach would
be optimal with only the Gaussian base function. When dealing with physical systems,
as in this thesis, such behavior may cause wear and tear on the actuators while also con-
suming unnecessary power. Additionally, the drone may struggle to keep its roll and pitch
angles small if the actuation is aggressively tuned, which may lead to a crash in the worst
case. Resultantly, the base function was augmented with a term penalizing high velocity
commands:

R(s,a) = ae−(||x̃||−µ)
2/2σ2 − c||a||||a||, (4.18)

where c||a|| was a small constant.

It was also noticed during development that solely setting σ to a small value was not
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enough for the drone to stay at the setpoint. Lowering the standard deviation further would
make the rewards too sparse and the agent would either learn very slowly or not converge
towards a solution at all. Resultantly, an additional sub-goal was added to the reward
function in order to convey more clearly to the agent when it is hovering well. If the
quadrotor found itself within a very small sphere with radius R from the setpoint, it would
receive an additional reward of magnitude A for every timestep it was inside this area.
Hence, the reward function for the hovering agent was finally given as

R(s,a) = ae−(||x̃||−µ)
2/2σ2 − c||a||||a||+

{
A, if ||x̃|| < R.

0, otherwise.
(4.19)

It could be argued that the inclusion of the last boundary term would yield a more sparse
reward function and thus slow down learning. Recall that the Gaussian is set as a base
for this reward function and will hence guide the agent towards this high-reward area,
allowing the agent to explore this space more frequently than it would have with only a
boundary function. This would also be shown in practice later, in Chapter 5. Note that no
penalty was given when the agent exited the valid area of the environment, although the
episode ended.

An important consideration to factor in when designing a reward function is how large the
accumulated reward can become. Revisiting the cumulative discounted reward in (2.11),
an upper bound of the value function V (s) can be calculated if the maximum obtainable
reward in each timestep, rmax, is known and the total numbers of steps N goes towards
infinity:

V (s) ≤
N∑
n=0

γnrmax
N→∞=

rmax
1− γ , ∀s ∈ S. (4.20)

With the reward in (4.19), rmax is achieved when hovering at ||x̃|| = µ with |a| = 0.
As such, rmax = a + A in this case. Setting γ = 0.99 yielded V (s) ≤ 100 · (a + A).
If the cumulative reward grows significantly large, it has the potential of threatening the
numerical stability of the calculations and may yield very large network parameters which
can, in turn, render slower training. Hence, a and A would have to be chosen wisely.

4.2.2.2 Descend

The descending agent adopted many of the ideas from the hovering agent’s reward func-
tion. Given (4.13), the pseudo-Euclidean distance of the augmented positional error is

||x̃a|| =
√
(x− px,d)2 + (y − py,d)2 + (z − pz,d)2 + (ψ − pψ,d)2. (4.21)

Motivated by the hover agent, the reward function of the descend agent, who was also
tasked to control ψ, was given as

R(s,a) = ae−(||x̃a||−µ)
2/2σ2 − c||a||||a||+

{
A, if ||x̃a|| < R.

0, otherwise.
(4.22)
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One subtle, though important difference to point out between the calculation of the reward
for the hovering and descend agent follows the fact that the yaw angle does not have the
same unit as the rest of the variables in the augmented positional error. The yaw angle is
more prone to larger alterations in value between two time steps, due to the inertia of the
drone and the nature of its movement. This would yield relatively large errors in ψ even
when the behavior was satisfactory. An error of 1 meter in the x direction would yield the
same reduction in reward as an error of 1 degree in yaw, although the latter was of lesser
significance than the former.

It should be mentioned that, for both the hovering and descending agent, the positional
error with respect to the setpoint was fed to the agents when calculating the appropriate
action commands. As such, the specific values of ph and pd themselves were not of inter-
est for the respective agents, but rather only the value of the error in each state controlled.
As such, both agents were independent of the specific value of the setpoints. As a result,
ph and pd could be altered after completed training, as long as the boundary values were
perturbed accordingly.

4.2.3 Case study using perception estimate
In the preceding sections, it has been assumed that the position of the quadrotor is given
by the Gazebo simulator through ROS topics broadcasting the drone’s ground truth pose in
the simulator. Using these topics it was possible to extract x̃w and ψ. While this works in
the simulated environment, it is advantageous for the flexibility of the system to be able to
estimate its pose independently of the ground truth topic, so the transition from simulator
to real-life settings is more seamless. This has been done in a cooperating master’s thesis
[39], where the bottom camera of the AR.Drone 2.0 was used in order to conduct pose
estimation through image streams, and broadcast this estimate to a dedicated ROS topic.
As such, the x, y, z and ψ values of the drone relative to the helipad could be obtained for
pose estimation, independently of the ground truth estimate. Note that the linear positions
in addition to the yaw angle were the only entities that were estimated through the ground
truth ROS topic updated from the Gazebo simulator. Since the velocities and accelerations
were being estimated through the internal sensors of the drone, these values would be
available both in simulations and real-life testing. As such, there was no need to alter any
logic regarding these quantities.

There were four elements in the estimation process that ensured that the drone had an
estimate of x, y, z and ψ at all times. Three of the methods used traditional computer
vision schemes when the helipad was visible to the quadrotor’s camera. The last method
exploited the IMU sensors and executes dead-reckoning to reason its position.

The computer vision methods based themselves on the geometric properties of the landing
platform, depicted in Figure 4.8, which was designed and constructed such that they could
exploit geometric features of the helipad for efficient, accurate and robust estimation. The
helipad was designed with three distinct colors, namely green, orange and white. As a
result, the three methods were distinguished between what they would detect and base
their estimate on. Each method used the outer rim of the platform, the orange arrow and
the inner corners of the H, respectively. First, the three colors were distinguished from
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each other using segmentation. Further, points on the outer rim of the green circle were
calculated as well as the orange arrow and the inner corners of the H. Thanks to the design
of the helipad, these elements could be identified using edge detection [73] and corner
detection [74]. This laid the foundation for the three methods used to calculate the position
and yaw angle.

• Ellipse: Fits all points of the outer rim of the green circle to an ellipse. The center
of the ellipse constitutes the center of the helipad and the largest radius in the ellipse
corresponds to the radius of the platform. This method has no way of estimating the
yaw angle.

• Arrow: The centroid of the H is calculated through image moments [75], and the
magnitude of the vector from the centroid to the orange arrow is used to calculate the
radius of the helipad. This can be done since the relationship between this distance
and the radius of the helipad is known. Further, the angle of this vector constitutes
the yaw angle.

• Corners: The four inner corners of the H is used to obtain center of the landing
platform, its radius and the yaw angle.

Lastly, the perception module included dead-reckoning logic such that it used the drone’s
internal sensors to reason for its position and rotation when the helipad was out of sight.
This allowed an estimate of the quadrotor’s position even when it could not detect the
platform with imagery. It was worth noting that the dead-reckoning logic assumed that
the drone had an initial estimate for the platform’s position, thus requiring a calibration
process before takeoff.

The estimate returned from the perception module depended on the distance between drone
and platform, and what was in the camera’s field of view at a given time step. If the he-
lipad was not in the field of view, the dead-reckoning module would activate. For larger
distances where the platform is visible, the estimator would calculate the quadrotor’s po-
sition relative to the platform using the ellipse method. When the drone approached the
helipad, its position and yaw angle were estimated through the arrow method. If suffi-
ciently close, it would use the corners of the H. The first three modules ran at 10 Hz, while
the dead-reckoning module ran at 100 Hz. This resulted in a ROS topic with a frequency
of 100 Hz, where the estimate would stay constant for 10 samples if the dead-reckoning
module was not used.

The fact that the yaw could be estimated was of high importance for robustness of the
solution. Despite the fact that the internal sensors of the drone offered an estimate for ψ,
that estimate was prone to drifting due to how the IMU conducts this estimation process.
As a result, the perception module allowed more accurate prediction of the yaw angle and
could help substantially when the descending agent was to align its yaw angle with the
helipad.

Since the thesis was originally aimed to apply the presented results to the Revolt vessel, a
realistic scenario with surroundings resembling this real-life setting was designed. Appro-
priately, the simulator’s world was augmented from previous training, where a vessel in an
ocean with dynamic waves was adopted. A figure illustrating this is given in Figure 4.9
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Figure 4.8: The landing platform, also referred to as helipad, seen from a bird’s-eye view. The
helipad was designed such that the perception module would have the required amount of features
to work with for the computer vision modules. The H is of size 0.20 m× 0.28 m. The distance from
the center of the helipad to the arrow tip is 0.30 m, while the radii of the orange and green circle are
0.26 m and 0.40 m, respectively. Figure courtesy of [39].

Figure 4.9: The augmented simulation environment modeled in Gazebo when using the perception
estimates. Figure courtesy of [39].
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Chapter 5
Results

5.1 Training framework
For the training stage of this thesis to be conducted, several parameters and values were
needed to be set. Both the hovering and descending agent incorporated the same param-
eters and values for their respective DDPG solutions. Emanating from Algorithm 3, the
hyperparameters to the algorithm were therefore set consistently with the original DDPG
paper [30], and are summarized in Table 5.1. Both networks adopted Adam, a widely used
optimizer within DL applications that extends the functionality of the stochastic gradient
descent [47]. In order to avoid excessively large gradient updates to the networks due to
a high Q-value outputted from the critic in addition to aggressive action commands from
the actor, the output layers in both these entities were initialized using a random uniform
distribution spanning the range [−0.003, 0.003].

Parameter Value
Batch size 64

Replay buffer size 106

Discount factor γ 0.99

Polyak parameter τ 10−3

Actor learning rate αµ 10−4

Critic learning rate αQ 10−3

Table 5.1: Table encapsulating the parameters of the DDPG solution for both the hover and descend
agent.

The literature suggests that a very large batch size for training the networks would yield
poor generalization, while a small value would lead to inefficient training [76, 77]. As a
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result, the batch size in this thesis was set to 64 where each batch was sampled from a
replay buffer incorporating 106 transitions. The replay buffer acted like a FIFO priority
queue, where the oldest transitions were substituted when the buffer was filled. This was
done since the agent would incorporate more high-quality transitions as time passes, while
the first transitions would mostly be influenced by exploratory actions and low returns.
The Ornstein-Uhlenbeck process given in (2.46) affected all states independently, with
µ = 0, θ = 0.15 and σ = 0.20.

Ultimately, the goal was to extract a policy µ(s) from training that exhibited satisfying
behavior for the objective of this thesis. As mentioned, this was conducted through the
DDPG algorithm. For each episode during training for both the hovering and descending
problem, the agents were initialized at a randomized positions inside the valid area of
each specific training environment. The hovering agent had randomized its x, y and z
components, while the descending agent also randomized ψ. Both agents were able to
execute up to 50 steps before the episode terminated. If an agent exited the valid area, the
episode would end prematurely and the agent would receive no further rewards. Thanks
to how the reward function was shaped, both agents would eventually realize that they do
not benefit from exiting the environment early, because they would miss out on additional
rewards. The training was concluded when the agent had experienced in total 50.000
training steps across all episodes.

Both controllers developed were set to operate at a frequency of 3 Hz between each action
command to the velocity controller. The extraction of this number was also a case of
trial-and-error. Using higher frequencies could, during operation, yield smoother behavior
and a more responsive agent. Albeit, it was observed that the instability during training
increased with the controller rate, where the agents would spend excessive amount of time
to train or even not converge. Although no extensive research was conducted to exploit
the reason as to why this was the case, it can be argued that the replay buffer was being
filled rapidly with relatively similar transitions when the frequency was large. This could
reduce the informative value between transitions and thus confuse the agent with respect
to its objective.

In the work conducted the point of hover the hovering agent sought to converge towards
was 2 meters above the origin in the simulator, namely

ph =

0.00.0
2.0

 . (5.1)

It was logical to assume that the drone would often be in immediate proximity to the set-
point. Resultantly, the positional error would be restricted to predefined boundary values
during training, meaning the agent would terminate the episode prematurely if it found
itself outside these bounds. In accordance with Section 4.2.1, the boundaries of x̃ in the
hovering agent was set to the following:

−2.0m ≤ x̃1 ≤ 2.0m

−2.0m ≤ x̃2 ≤ 2.0m

1.0m ≤ x̃3 ≤ 3.0m
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As such, the hovering agent was restricted to a 3-dimensional box of 4m × 4m × 2m.
The boundaries were set with the realistic real-life scenarios in mind, allowing extensive
flexibility when the agent was far from the setpoint in the horizontal plane. It was ar-
gued that the agent would most likely find itself at varying heights from the ground, both
below and above the setpoint, and the boundary was set accordingly. These state restric-
tions were introduced mainly to streamline training by avoiding training episodes where
the agent would drift further and further away from the goal and explore states that would
be inessential to the agent’s objective. Such behavior would fill the replay buffer with nu-
merous transitions that would confuse the agent and resultantly slow down or even hinder
convergence.

Further, the setpoint of the descending agent, given in (4.12) could be expressed as

pd =


0.0
0.0
0.3
0.0

 . (5.2)

The reasoning behind choosing 0.3 meters above the landing platform as the desired height
for the descending agent was that this distance rendered the drone close enough to the
platform initiate the landing phase, while simultaneously being far enough for the chassis
of the quadrotor not to hit the platform or the ground.

Since it was assumed that the descending agent would directly succeed the hovering agent
during the landing mission, the restrictions to the former agent’s positional error were
slightly altered in order to adapt to the new environment and objective. Assuming that the
hovering agent was successful in its mission to control the quadrotor towards the hovering
point ph, the boundaries of the descending agent were set appropriately. As a result, the
augmented positional error x̃a was confined in to the following values during training:

−0.15m ≤ x̃1 ≤ 0.15m

−0.15m ≤ x̃2 ≤ 0.15m

0.0m ≤ x̃3 ≤ 2.5m

−20.0◦ ≤ ψ̃ ≤ 20.0◦

As for the reward functions used for the two agents, values for the parameters in (4.19) and
(4.22) had to be defined. For the hovering agent, the basis for choosing the parameters for
the base Gaussian was the largest Euclidean distance that was possible to obtain using the
framework chosen. Given the boundaries set for the hovering agent, the largest Euclidean
distance the hovering agent can find itself from ph was

||x̃||max =
√

(x− px,h)2 + (y − py,h)2 + (z − pz,h)2

=
√
(2m− 0m)2 + (2m− 0m)2 + (3m− 2m)2

= 3m.

This value served as a guideline for choosing appropriate parameters for the Gaussian of
the hover reward function. Since the goal was to minimize the positional error, it fell
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natural to set µ as 0. Further, the choice of a only affected the maximum reward that
was possible to obtain, given in (4.21). In order to evade a situation leading to numerical
instability for the agents, a was set to 1. Lastly, σ, c||a||, A and R had to be identified
through trial and error. Summarized, the following values were given for the hovering
agent’s reward function:

a = 1

µ = 0

σ =
√
0.025

c||a|| = 0.08

A = 0.3

R = 0.03

The choice of parameters for the descending agent was conducted in the same manner
as previously presented with the hovering agent. Firstly, in order to mitigate the scaling
problem between the linear positions and the yaw angle introduced in Section 4.2.2.2,
all errors in x̃a were normalized before calculating the reward function, so they spanned
the range of [−1, 1]. Since pd was known and the boundaries of every variable in x̃a
was defined, it was possible to calculate the maximum and minimum error achievable and
normalize in the same manner as in Section 4.2.1.3 based on this. Resultantly, the largest
pseudo-Euclidean distance was calculated to be

||x̃a|| =
√

(x− px,d)2 + (y − py,d)2 + (z − pz,d)2 + (ψ − pψ,d)2 (5.3)

=
√

12 + 12 + 12 + 12

= 2.

This value would naturally deviate from the maximum Euclidean distance calculated for
the hovering agent, which had to be taken into account when choosing the value for the
width of the Gaussian curve. As opposed to ||x̃|| for the hovering agent, the unit of ||x̃a||
was not meters, since the error in yaw was expressed in degrees. When choosing the pa-
rameter values for (4.22), it fell naturally to adopt a = 1 from the hovering agent. The
descending agent also wished to drive ||x̃a|| towards 0, so µ was set to 0, similar to the
hover agent. Since the pseudo-Euclidean distance for the descending agent would in gen-
eral be smaller than the Euclidean distance for the hovering agent due to the normalization,
a smaller value for σ in (4.22) was chosen for the descending agent in order to counteract
this. Simultaneously, since the descend agent was tasked to controlling the yaw angle as
well as the linear positions, it was more challenging to reach this area. Therefore, the
radius for the additional reward was set higher. The values of σ, c||a||, A and R were
found through trial and error and the final values for the reward function parameters for
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the descend agent was hence summarized as:

a = 1

µ = 0

σ =
√
0.015

c||a|| = 0.08

A = 0.3

R = 0.05

It is worth noting that no exhaustive search was conducted to find optimal values for nei-
ther the hovering nor the descending agent, which could potentially lead to more optimal
solutions. However, these values lead to the agents exhibiting satisfying behavior, which
was sufficient for the scope of this thesis.

Recall that the velocity commands presented in (3.1) were all bounded in the range [−1, 1],
where the lower bound and upper bound would yield maximum velocity in the positive
and negative direction, respectively. The directions were given in the body frame and are
determined by the right-hand rule as per Figure 2.9. As such, (4.1) in our framework was−1.0−1.0

−1.0

 ≤ a ≤
1.01.0
1.0

 (5.4)

for the hovering agent and 
−1.0
−1.0
−1.0
−1.0

 ≤ a ≤

1.0
1.0
1.0
1.0

 (5.5)

for the descending agent.

Since the activation function of the last layer in the actor was the hyperbolic tangent and
the saturating limits of the quadrotor was in the range [−1, 1], the values for the linear
transformation of the raw action in (4.2) were resultantly as

ascale = 1, (5.6)
ashift = 0. (5.7)

ashift was set to 0 mainly due to the velocity commands having no bias towards any
direction.

5.2 Ground truth results
The following results were extracted by using the ground truth estimate given by the
Gazebo simulator, offering access to the exact values of all the necessary states. The
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estimate had no internal drift nor biases, and yielded accurate values within the simulated
environment.

Note that the subsequent sections present the results obtained by fragmenting the landing
mission, meaning the full landing mission was split hovering and descend. As a result,
the performance of the hovering and descending agent are decomposed into two parts for
analytical purposes and transparency in this section.

5.2.1 Hover
For the hovering aspect of the landing mission the training progression is depicted in Fig-
ure 5.1. Figure 5.1a portrays the episodic reward obtained by the agent in each episode,
while Figure 5.1b shows the corresponding number of steps conducted by the agent in
each episode. Recall that the agent is forced to exit an episode after 50 steps, while it exits
automatically if it finds itself outside the boundary values before all steps in an episode is
completed.

It is evident that the agent spends the first portion of training exploring the environment,
where it seems to prematurely exit the environment quite frequently. Across the 1925
episodes the agent conducted in total, it experienced an upswing in the number of executed
steps in each episode after approximately 1050 episodes, or 5700 steps. This is closely
related to the fact that it also observes a notable increase in obtained rewards, where a steep
upsurge is observed between episode number 1050 and 1200 in Figure 5.1a. Assuming that
approximately 1200 episodes, or 11.000 steps, passed before it could be characterized as
the agent had started learning the target. Using 3 Hz sampling rate for the environment and
controller, this process took roughly 61 minutes real-time. However, the Gazebo simulator
managed to run faster than real-time while still maintaining the same sampling frequency
relative to the run-time. The simulator managed to speed up the simulation relative to
real-time by a factor of 8, meaning that the agent in fact learned after less than 8 minutes.

Considering the relative complexity of the environment with two sub-goals in the reward
function and a quite large state vector, this can be deemed a quite sufficient result with
acceptable training time. The full training process was concluded after the 50.000 steps
were conducted, translating to 35 minutes.

Given the reward function (4.19) the maximum reward obtainable in an episode is 65.
However, this value assumes that ||a|| = 0 in addition to the agent spawning and staying
at ph from start to finish. The average episodic reward after the agent started learning was
found to be 24.9, which is quite robust considering that it would rarely start close enough
to ph to reap any reward of significance in the first steps of an episode. Additionally, it
was unrealistic to assume that ||a|| would be close to zero, since the agent preferred to be
penalized for large action commands as long as it arrived at the setpoint quickly, since this
would ultimately yield the highest total reward.

Resulting from the training process, the hovering agent was tested with respect to how its
response was when starting at the edges of the valid area. With the hovering agent’s area
of use in mind, five tests were conducted where the agent started above the setpoint for all
tests, with varying initial positions in the horizontal plane. The drone’s response for all
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three controlled states are illustrated in Figure 5.2 with five distinct initial positions in the
world frame. Figure 5.3 depicts the same tests, but from a bird’s-eye view as a means of
illustrating how the response in the horizontal plane was.

As the figures show, the hovering agent was capable of converging towards the setpoint
quite efficiently, evidently balancing between convergence towards ph and damped con-
troller input originating from the penalization of action magnitude1. Based on the reward
accumulated during training given by Figure 5.1a in coherence with the responses in Fig-
ure 5.2 and Figure 5.3, the agent seemed to find a satisfactory middle ground between the
goal of hovering at the given setpoint and maintaining composed actuation. The tests show
that, with varying initial position, the hovering is able to converge towards its setpoint be-
tween 20 and 30 time steps, translating to maximum 10 seconds real-time.

The plots in Figure 5.3 establish that the agent, for the most part, learned that the fastest
path towards the goal in the horizontal plane leading to maximized rewards was a straight
line from the initial position, which theory supports. However, this was not the case for
all initial positions. Although the agent eventually arrived at the setpoint, Figure 5.3c
illustrates that the drone occasionally deviated from the optimal straight-line behavior. The
fluctuating behavior exhibited in z in Figure 5.2a, Figure 5.2b, Figure 5.2c and Figure 5.2d
was also not optimal. Furthermore, the behavior where the agent deviates from x = y = 0
in Figure 5.2e was also a noteworthy shortcoming, where the optimal solution given that
initial position would naturally be actuation such that the horizontal position was kept
while the height decreased towards the desired value in z. For all of these shortcomings it
can be argued that, with an increased number of training steps, the agent could fine-tune
its behavior and diminish such suboptimal performance. Increased training steps would
naturally lead to more training, which would lead to the agent explore actions that would
improve the rewards obtained and resultantly improve its behavior. However, due to time
constraints further training was not conducted.

When it comes to the steady-state hovering, where the agent has reached the setpoint and
is tasked to remain there, Figure 5.4 illustrates the agent’s performance. It can be observed
from the figure that the total positional error ||x̃|| has a mean at around 7.5 centimeters
and a standard deviation of approximately 2.5 centimeters. The components contributing
to this error is also illustrated in the figure. Relative to the mean and standard deviation
of the error in x and y, the error in z is quite small. Although this result can emanate
from a range of reasons, it is worth recalling from Section 3.2.2 that the drone inhabited
sensors that directly measures z, while it has to estimate x and y through integration of
IMU measurements. Also recall that the horizontal position elements for this particular
drone drift in a much larger degree, as illustrated in Figure 3.3. These reasons may justify
the fact that the hovering agent performs significantly better in controlling z relative to x
and y.

Although a DRL based method such as DDPG should be able to generalize such that it
does no longer need to be within the bounds of the training environment during testing,

1Despite it being evident from both the rewards in addition to observed behavior that the agent avoided
excessive control inputs, extensive analysis of the actuation fed to the velocity controller for both the hovering
and descending agent was omitted due to time constraints.
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it was concluded that this behavior would only be a bonus and not a requirement. The
reasoning behind this was that for the scope of the objective, it was assumed that the
drone was placed sufficiently close to the landing platform and such behavior was thus not
strictly necessary.
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(a) The reward the hovering agent accumulated over each episode during training, where the reward was given as
(4.19). The reason behind the rewards close to 0 after the agent started exhibiting learning behavior is probably
due to the fact that the agent is initialized close to the boundary and the exploration policy pushes it outside
immediately.
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(b) The number of steps per episode during training of the hovering agent. One can clearly see the correlation
between the episodic reward in Figure 5.1a and the number of steps per episode, where a low episodic reward
corresponded to an episode with a low number of steps.

Figure 5.1: The reward and number of steps for each episode in the hovering agent’s training phase.
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(a) Initial position xw = [−2.0,−2.0, 3.0]ᵀ
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(b) Initial position xw = [−2.0, 2.0, 3.0]ᵀ
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(c) Initial position xw = [2.0,−2.0, 3.0]ᵀ
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(d) Initial position xw = [2.0, 2.0, 3.0]ᵀ

0 10 20 30 40 50

Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
sit

io
n 

[m
]

x

y

z

(e) Initial position xw = [0.0, 0.0, 3.0]ᵀ

Figure 5.2: Five tests of how the hovering agent approaches the setpoint, in dotted lines, with
varying initial positions. The horizontal axes illustrate time steps, while the vertical axes constitute
the drone’s position in the three dimensions.
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(b) Initial position xw = [−2.0, 2.0, 3.0]ᵀ
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(c) Initial position xw = [2.0,−2.0, 3.0]ᵀ
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(d) Initial position xw = [2.0, 2.0, 3.0]ᵀ
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(e) Initial position xw = [0.0, 0.0, 3.0]ᵀ

Figure 5.3: A bird’s-eye view of the tests illustrated in Figure 5.2. The green and red crosses
constitute the starting and finishing positions, respectively. The unit of all axes are given in meters.

71



Chapter 5. Results

x− px y − py z − pz ||x̃||
−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

E
rr

or
[m

]

Figure 5.4: Means and standard deviations of the drone’s linear position and positional error relative
to the hovering setpoint. The errors are given in meters and are calculated under the assumption that
the quadrotor is within close proximity of its setpoint. The results portrayed were subject to the same
initial positions as in Figure 5.2, where the agent was spawned at each initial position 20 times. This
resulted in 100 independent runs.
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5.2.2 Descend
Through simulations it was observed that, despite having relatively similar environments,
the training phase of the descending agent deviated from the hovering agent, especially
when the agent started to learn its objective. Recall that the valid area of the descend-
ing agent was substantially stricter compared to the hovering agent due to the predefined
boundaries. This was especially emphatic in the horizontal plane. By observation and
analysis during the training process, it became evident that no more than one single ag-
gressive action in the horizontal direction was needed for the agent to exit the boundaries
of x or y. Recall that the actions calculated by the agent during training were affected
by exploration noise, as described by (2.46). Considering that a was not not being lim-
ited by any saturation limits to ensure full flexibility for the drone, the noise component
contributed to excessive control signals to the velocity commands, resulting in the agent
finding itself outside the valid area more often. Accordingly, the descending agent was
prone to exiting the valid area more frequently than the hovering agent. This turned out to
be the case, as shown in Figure 5.5.

Although the agent experienced an upswing in rewards similar to the hovering agent, the
figure shows that it still struggled to stay within the valid area in the environment after
approximately 2700 episodes or 4200 steps. After the agent experienced this upswing, it
went on to conduct approximately 1500 more episodes. Out of these, it was calculated
that 1267 episodes ended prematurely due to the agent exiting the valid area, meaning
merely 233 episodes were conducted with 50 steps through the entire training process.
Considering the total number of episodes in the training process, this is a substantially
reduced number. In comparison, the hovering agent exited the valid area only 10 times
after it had started learning.

If the episodes where the agent exited rather immediately were omitted, it can be argued
that the agent had started learning its objective after approximately 2800 episodes, or
17.000 steps. This translated to 95 minutes real-time and 12 minutes with the speed-
up from the simulator. Similarly to the hovering agent, the training process ended after
approximately 35 minutes when all 50.000 steps were completed.

After the agent started learning its objective it would go on to average an episodic reward
of 6.8 for the episodes that did not end prematurely. Although the descending agent’s max-
imum possible reward was 65, the same arguments for not reaching this number applied
as for the hovering agent. To obtain the maximum reward the agent had to start at pd and
would require no actuation, which is highly unlikely. Although this can be viewed as a
small number considering that the maximum reward obtainable is 65, recall that that the
yaw angle was contributing significantly to increase the augmented positional error. In
addition, σ in the descending agent’s reward function was lower relative to the hovering
agent, supporting the fact that that it could be more difficult for the descending agent to
reach this area. Considering these additional alterations relative to the hovering agent, this
was considered an acceptable result for the training process of the descending agent.

Figure 5.6 shows that the descending agent mitigated the hovering agents behavior from
Figure 5.2e, where the hovering agent experienced deviations in x and y when ph was
placed directly below the initial position. Albeit this behavior presented by the hovering
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agent was not a big discrepancy, it was considered advantageous that the descending agent
kept the values of x and y close to zero as it was approaching its setpoint. Further, the
descending agent exhibited satisfying behavior in relation to controlling all four states to-
wards their desired values, as Figure 5.6 shows. Initialized x, y, z and ψ at their boundary
values set for the training of the descending agent, the drone managed to converge towards
its setpoint pd without fail for the eight tests that Figure 5.6 portrays. The tests show that
the descending agent, with varying initial position and yaw angle, never uses more than 40
steps, or 14 seconds, to arrive sufficiently close to the desired setpoint.

There were cases where the descending agent would occasionally overshoot or keep a
non-zero error in the horizontal directions, especially manifested in Figure 5.6c and Fig-
ure 5.6d. In the former, y overshoots approximately 20 centimeters in positive direction.
In the latter, the agent struggles to decrease the error in y. It can also be seen that the yaw
angle struggles with fluctuating behavior which may cause wear and tear on the propellers
of the plant. This suggests that the penalty on actuation imposed by (4.22) needs to be
adjusted for the yaw component of the action command, or even add an additional penalty
where the difference in velocity commands between time steps is considered. However,
since the mission of descending was aimed to take no more than 50 steps, or 17 seconds
with the 3 Hz controller, it was concluded that the fluctuations in ψ could be endured for
the scope of this thesis.

Emanating from the fact that the tests suggested that the agent managed to reach its setpoint
irrespective of the starting position, it was of interest to see how accurate this agent is when
it reaches its setpoint. Figure 5.7 illustrates the means and standard deviations of the four
controlled states, in addition to the positional and augmented positional error. The linear
position errors and positional error are given in meters. The yaw error is given in radians
and the augmented positional error has no SI unit, see (5.3). The results constitute the
behavior of the agent when it arrived at steady-state, i.e. in proximity to pd, where the
initial positions in Figure 5.6 were repeated 15 times, resulting in 120 independent runs.
The agent converged towards its setpoint for all of these runs. Similar to the results from
the hovering agent, the descending agent excelled notably in controlling z, where the mean
is at 0.4 centimeters with standard deviation at 1 centimeter. This particular agent seems to
struggle with centering both horizontal elements towards zero, although these errors do not
seem to exceed 8 centimeters for the 120 tests conducted. As with the hovering agent, this
result is most likely connected with the fact that the agent drifts more horizontally, while
the built-in velocity controller controls z well. The yaw angle is centered at approximately
0.025 radians, or 1.4 degrees, and has a standard deviation of merely 1.5 degrees. The
positional error has a mean and standard deviation of 7.0 centimeters and 0.2 centimeters,
respectively. The positional error and yaw error suggests that this controller controls the
relevant states quite adequately. For completeness it can be stated that the augmented
positional error was centered at 7 units with 1 unit standard deviation, although these
quantities are hard to interpret due to the lack of a tangible unit for ||xa||. Considering
that ||xa|| also included the yaw angle, this result can be considered quite robust.
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(a) The reward the descending agent accumulated over each episode during training, where the reward was given
as (4.22). The reason behind the rewards close to 0 after the agent started exhibiting learning behavior is probably
due to the fact that the boundary of the agent in the horizontal directions were quite strict, and one aggressive
exploratory action may lead the agent outside the valid area.
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(b) The number of steps per episode during training of the descending agent. One can clearly see the correlation
between the episodic reward in Figure 5.5a and the number of steps per episode, where a low episodic reward
corresponded to an episode with a low number of steps.

Figure 5.5: The reward and number of steps for each episode in the descending agent’s training
phase.
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(a) Initial position xw
a = [−0.15,−0.15, 2.0,−20.0]ᵀ
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(b) Initial position xw
a = [−0.15,−0.15, 2.0, 20.0]ᵀ
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(c) Initial position xw
a = [0.15,−0.15, 2.0,−20.0]ᵀ
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(d) Initial position xw
a = [0.15,−0.15, 2.0, 20.0]ᵀ
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(e) Initial position xw
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(f) Initial position xw
a = [−0.15, 0.15, 2.0, 20.0]ᵀ
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(g) Initial position xw
a = [0.15, 0.15, 2.0,−20.0]ᵀ
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Figure 5.6: Eight tests of how the descending agent approaches the setpoint, in dotted lines, with
varying initial positions. The horizontal axes illustrate time steps, while the vertical axes constitute
the drone’s position in the three dimensions together with the yaw angle. ψ is converted to radians
in the figures for visual purposes.
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Figure 5.7: Means and standard deviations of the drone’s error in linear position x̃, yaw angle ψ̃
given in radians and the pseudo-Euclidean distance ||x̃a||, where latter is also computed with the
yaw angle being given in radians. Further, the positional error ||x̃|| is illustrated for comparative
purposes with respect to the hover agent given in Figure 5.4.
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5.3 Case study results
The results presented in this section were derived from merging the presented framework
in this thesis together with the work conducted in [39]. As expressed in Section 4.2.3,
the main idea of this case study was to detach the solution from ground truth estimates,
which are only available in the simulated environment, and rather adopt an independent
perception module able to estimate the drone’s pose relative to the landing platform. The
chosen solution would utilize a stream of images from the down-facing camera of the
drone to calculate the drone’s values in x, y, z and ψ relative to the helipad, and feed these
values to the hovering and descending agent. In contrast to the ground truth tests, this
section merges all steps of the landing mission, such that the descending agent directly
follows the hovering agent, and that the landing command is executed when descending is
completed.

Since an external perception module was used to estimate x, y, z and ψ relative to the
landing platform, the drone had to start at the landing platform and initialize and calibrate
the dead reckoning module. Further, the drone had to be manually flown to an initial posi-
tion where the platform was visible to the agent, in order for the dead reckoning module to
be able to estimate the drone’s position from the point of initialization. As such, there was
no trivial way of initializing the agent as accurately to a specific point as in previous tests.
In previous sections, the hovering and descending agent were analyzed separately for an-
alyzing their performances irrespective of each other to ensure that each entity worked as
intended. This case study serves as an augmentation and the subsequent analysis describes
the full landing mission, from initialization to landing. As such, the tests conducted in this
section constitute results from incorporating and merging the hovering and descending
agent into one single system through the planning scheme illustrated in Figure 4.1.

With respect to this planner used, the system considered that the hovering step was com-
pleted when the hovering agent fulfilled

||x̃|| < 0.03m (5.8)

for 3 consecutive time steps, or 1 second with the 3 Hz controller. Through testing it
was found that this value was long enough for the agent to stabilize at ph while still brief
enough to avoid redundant postponement of the descending mission. Although 1 second
may seem insufficient for assuring that the hovering state has been completed and the drone
may still inhabit enough inertia to drift away, none of the tests conducted suggested that
the hovering agent was not stable after this duration. Additionally, the magnitude of the
actions imposed by the hovering agent when close to the setpoint was quite small, yielding
low values for velocity and acceleration. Furthermore, the descending agent would be
able to handle any discrepancy that would result from the unlikely event of the hovering
agent not being fully stable when the system propagates from hover to descend. As such, 1
second was considered a reasonable amount of time before it evolved its state from hover to
descend. Similarly, the system would have to observe the descending agent accomplishing

||x̃a|| < 0.05 (5.9)

for 12 time steps, or 4 seconds, in order to evolve from descend to land. The hovering
agent was stricter with its boundary due to the fact that the descending agent also had to
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take the error in yaw into account. Simultaneously, the descending agent had to hold its
position close to the setpoint for a longer period of time, since the transition from descend
to land was considered to be a move inhabiting higher risk with respect to the landing
mission. A slight deviation when transitioning from hover to descend could be rectified by
the descending agent, while this could not be done when evolving from descend to land,
considering that the landing command did not inhabit any positional control.

Due to time constraints only five tests were conducted to test the hovering and descending
agents with the perception module. The hovering and descending setpoints were unaltered
from previous analysis since they were still deemed reasonable values, even for this case
study. The respective tests are depicted in Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11
and Figure 5.12. Also consistent with previous analysis, the figures show ψ in radians for
readability and analysis, although the initial coordinates are given in degrees. Note that
the figures do not illustrate that the landing step is conducted, due to the simulator ending
the test runs immediately after the landing command has been received. However, videos
capturing each respective test run are attached in the captions to illustrate the performance
of the solution.

Generally, comparing the results in this case study to the results obtained using ground
truth estimates, the agent struggled with completing the hovering step notably due to the
unstable behavior in the horizontal plane. Both x and y in all five tests seemed to deviate
notably relative to their respective setpoints, hindering the agent from completing (5.8). On
the other hand, the hovering agent generally seemed to do a quite good job with respect to
controlling z to its desired value. As the tests show, despite the extra efforts to complete
the hovering step the hovering agent eventually settled its task and the system evolved to
descend.

From the tests conducted, it seemed that the descending agent excelled in its task. z
decreases monotonically towards the desired value while the responses in x and y are
decreased significantly compared to the hovering agent. The latter point is illustrated
especially well in Figure 5.9, where the agent switched from hover to descend. These
results can be due to the fact that this agent is overall closer to the platform, which may be
an advantage for the perception module in terms of stability and accuracy in the estimation
calculations.

The results properly exhibit the potential and advantage that DRL solutions offer. Fig-
ure 5.11 and Figure 5.12 have initial positions in z outside the boundary value for the
hovering agent. The latter even has its initial y value outside the training boundary. Yet,
the agent manages to generalize well enough to reach its setpoint in both cases.

Although all tests resulted in a successful landing, there are some challenges that arise
from these findings. The aggressive responses in the horizontal directions are unfavorable
and might even drive the drone to a position where it is not able to perceive the landing
platform, thus leaving the agent with no grounds for estimation, other than dead-reckoning,
which is prone to drift. Accordingly, such behavior may lead to failure in the landing
mission.

A big disadvantage with this framework is that the quadrotor has to see the helipad from
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the beginning of each run in order to have a robust estimate of its position, which limits
the system’s range of applicability.

Although the findings in this case study facilitate successful integration between the drone
control module and the perception module, they still give rise for questions that are not
easily researched nor answered. For instance, it is not a trivial task to research why the
horizontal components are behaving in such an aggressive manner compared to when using
only the ground truth estimates, where the responses come across as more smooth and
controlled. As such, it is difficult to say why the altitude of the drone seems to be well
controlled while the horizontal components struggle. Furthermore, it is difficult to argue
what the reason for the large disparity in the duration of runs, where Figure 5.12 spends
up to 100 steps before initiating landing while Figure 5.11 arrives at the same stage after
a mere 61 steps. Overshooting behavior is also noticed in all tests, which was not present
using the ground truth results. It is worth mentioning that further investigation to these
details was nontrivial due to the constrained collaboration.
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Figure 5.8: Initial position at xa = [−0.55, 1.53, 2.50, 9.34]ᵀ relative to the helipad. The system
switches from hover to descend at step 34, and lands after 70 steps, meaning it completed hovering
after 11 seconds and initiated landing after 24 seconds. Footage of the test.
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Figure 5.9: Initial position at approximately xa = [−1.14,−1.81, 3.02,−0.47]ᵀ relative to the
helipad. The system switches from hover to descend at step 45, and lands after 81 steps, meaning it
completed hovering after 15 seconds and initiated landing after 27 seconds. Footage of the test.
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Figure 5.10: Initial position at approximately xa = [−1.02,−0.23, 3.56,−4.96]ᵀ relative to the
helipad. The system switches from hover to descend at step 39, and lands after 76 steps, meaning it
completed hovering after 13 seconds and initiated landing after 26 seconds. Footage of the test.
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Figure 5.11: Initial position at approximately xa = [−1.26,−1.12, 4.65, 2.93]ᵀ relative to the
helipad. The system switches from hover to descend at step 29, and lands after 61 steps, meaning it
completed hovering after 10 seconds and initiated landing after 21 seconds. Footage of the test.
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Figure 5.12: Initial position at approximately xa = [−0.29,−2.59, 4.01,−0.71]ᵀ relative to the
helipad. The system switches from hover to descend at step 69, and lands after 100 steps, meaning
it completed hovering after 23 seconds and initiated landing after 34 seconds. Footage of the test.
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Chapter 6
Future work

From the findings using both the ground truth estimate and the perception module, it is
evident that the solution proposed is able to complete the landing mission for a drone
well. However, there are some elements in the work done that could be augmented or even
changed completely, both for researching how the behavior changed and most certainly
enhance the performance and applicability of the solution.

To begin with, it would be advantageous not to manually normalize the states and conse-
quently bound them to specified values during training. Despite the fact that it is desirable
to limit the environment to a specific area in order to limit training time, it can be argued
that the chosen design did not favor flexibility in the derived solutions. For instance, if the
setpoint was changed the boundaries had to be altered correspondingly for the two entities
to still have the same relative relationship. Further, only the values at the input layer were
normalized, while none of the inputs to the hidden layers were. As a means of mitigating
these elements, batch normalization could be used to automatically normalize the input to
the networks, and also the input to the hidden layers. Continuously calculating a mean and
variance for input to a node could boost training time and convergence while simultane-
ously yielding a more flexible system where the normalization would no longer depend on
the setpoint. It should be mentioned that strenuous attempts were conducted to implement
batch normalization layers to the networks using the Keras framework. However, after ex-
tensive research it was concluded that this layer had not been implemented by the creators
as it was intended to, where the running mean and variances were not calculated properly,
resulting in the network outputs being erroneous. Although it would be possible to change
framework from Keras to e.g. Tensorflow’s own and substitute tf.keras framework for
the stand-alone Keras framework, this was not completed due to time constraints.

For research purposes, it could be of significant use to attempt various state vectors to
observe how each individual state would affect an agent in reaching its setpoint. An idea
during design and development was add the roll and pitch angles of the drone to the state
vector, and rather than penalizing actuation, the reward function would penalize these
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quantities, such that the agent would not tilt in either direction and thus stay horizontal
and move at low speeds. Another potential state augmentation would be to add the ac-
tion executed in the preceding time step and penalize big alterations in action commands.
This would mitigate aggressive action control and thus oscillating behavior. Simultane-
ously, it would promote smooth convergence towards the setpoint rather than a bang-bang
approach.

Further, in order to properly benchmark the results obtained, it would be advantageous to
rigorously compare the solution obtained with more traditional methods, such as a PID
controller or MPC. Also adding disturbances, such as wind gusts or other aerodynamic
forces could help painting the picture with respect to how robust the solution is. This way,
it would be trivial to compare the DRL agents derived with the methods that seem to be
predominantly used in most real-life applications to date. Also conducting a multitude of
tests in the case study would be of interest to see how successful and robust the system is
with respect to varied initializations. It would also be favorable to analyze the actuation
and see in more detail how the penalization factor in the reward function affected the
behavior of the agents.

It would also be of interest to augment the system to run on the physical drone version of
the AR.Drone 2.0 in a laboratory, and observe the differences between a simulated and a
controlled, but real, environment. Ultimately, it would also be of great interest to augment
the functionality in order to deploy the system in a real-life setting where external forces,
realistic drifting behavior and signal delays are present.

Since the hovering agent and descending agent are quite similar in design and overall
objective, it would also be of interest to investigate how transfer learning could be applied
in this situation. Although training was quite rapid and seldom required more than one
hour, this could shorten training time remarkably and also promote better results.

Also the overall architecture of the solution could be optimized if a dedicated planning
framework, such as T-REX [78], Graphplan [79] or STRIPS [80] would have been used.
This could, as a result, open the possibility for developing one single position controller
that would have the ability to converge towards any setpoint the user inputs, effectively
eliminating the need of dedicated hovering and descending agents. It could also yield
a more robust system able to do obstacle avoidance, where the planner would have the
potential of overcoming such challenges along the way.
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Conclusion

This thesis presented an approach for applying deep reinforcement learning to drone con-
trol for autonomous landing on a helipad with a predefined location. The motivation be-
hind adopting a more state-of-the-art solution rather than the more traditional PID and
MPC approaches was mainly to develop a model-free control approach for optimal con-
trol. By letting the DRL agent explore the surroundings, learning what actions are good
and bad relative to the reward fed back and optimizing its behavior based on this value, the
thesis proposed two agents for hovering and descending, respectively, and merging their
functionality to a complete system using a rudimentary planner. Reward functions specific
to their final objective were developed and tailored for efficient training while simultane-
ously obtaining as satisfying behavior for the agents as possible. The two agents were
subject to extensive analysis regarding their training progress as well as their convergence,
robustness and accuracy post-training.

Comparing the two learning phases of the agents it was safe to say that the hovering agent
had the more efficient training, since it started learning notably earlier than the descending
agent. This allowed the hovering agent to explore the environment close to the goal more
extensively. This could contribute to fine-tuned behavior close to the hovering point. Since
the descending agent learned slower, it would not have the same opportunities to experi-
ence the space close to its setpoint in the same manner. Additionally, the latter agent was
also hindered by the strict boundaries set for the environment, thus robbing the agent for a
substantial number of episodes it could have spent exploring the environment.

The descending agent could benefit from a more forgiving environment that would allow
some deviation in the horizontal direction. Although the agent seemed to learn its objective
quite well, it can be argued that this change would boost efficiency in training significantly,
as it would not experience environment exiting as frequently.

With very high accuracy for both hovering and descending agent using the ground truth
estimates in addition to seamlessly integrate the external perception, it can be argued that
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the work in this thesis contribute in exhibiting the great potential of DRL solutions for
robotic control tasks and may hopefully standardize DRL as a control approach in such
frameworks. For all 100 runs for the hovering agent and 120 runs for the descending agent
using ground truth estimates, the agents converged towards their setpoints without fail.
Also, for 5 the case study tests, all resulted in successful landing.

Although the findings in this thesis suggest that DRL approaches grant well-performing,
model-free approaches for controlling highly nonlinear systems, there are drawbacks that
must be taken into consideration when adopting such solutions. An important point to
make is that since DRL solutions base themselves on estimating the optimal policy and
value function through artificial neural networks, these methods merely compute approxi-
mations of the optimal control law relative to a given reward function. As such, there are
no guarantees that the agent will converge after training is completed. Increasing the com-
plexity in these networks could yield more accurate approximations to the true optimal
functions, but would demand additional computational power to realize. Emerging from
this is one of the main disadvantages with deep learning, namely unstable training. The
former poses many challenges to the design of the environment and the agent, where a
small change in the reward function may be the difference between convergence to a suf-
ficient policy or not. This is a very intricate subject to research and, at the time of writing,
the author has not been able to find material suggesting any clarification to the matter. Fur-
thermore, DRL methods famously offer no stability guarantees, mainly due to the fact that
analyzing the input-output relationship in a deep neural network with numerous hidden
layers and nodes is a highly nontrivial task. It is important to consider that many of the
robotic systems to employ the DRL methodologies are not meant to serve as recommenda-
tion systems or to play Atari games, but rather physical systems with a possibility of being
damaged or even being dangerous to people. Since such solutions grant no guarantees that
an agent will behave as intended for all initial states, they must be deployed with a high
regard for safety.

With that being said, DRL in general poses a very flexible framework for complex prob-
lems that would otherwise struggle with modeling. The areas of use for DRL methods in
the last years have grown immensely, and research continues to improve the frameworks
and performances of such methods. With time the disadvantages and drawbacks presented
will most likely be mitigated, paving way for more robust, safe and well-performing solu-
tions.
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