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Problem Description

The AVR-DB family of microcontrollers from Microchip, includes user-configurable
op-amps as peripherals. This opens the door to creating many analog processing circuits,
without active external components. One possible use case for this is analog-to-digital con-
version, by implementing a Delta-Sigma ADC, which is not currently available in any AVR
microcontroller. While the AVR-DB does include an ADC, it is optimized for general-
purpose use, with a trade-off between resolution, sampling speed, power-consumption and
other factors. A Delta-Sigma ADC might be able to outperform the existing ADC in reso-
lution, by sacrificing other metrics.

The project consists of:

• Implementing a working Delta-Sigma ADC, using the op-amps available in the
AVR-DB family MCUs

• Characterizing this ADC with regards to accuracy and speed, and comparing it to
the on-chip SAR ADC

• Evaluating the advantages and disadvantages of the implementation
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Abstract

AVR R© MCU DB is a new family of microcontrollers from Microchip, which includes
user-configurable op-amps as peripherals. These op-amps makes it possible to implement
moderately complex op-amp circuits, without external active components, which opens
the door for low-cost and small-size applications involving analog signal processing.

This project uses these op-amps, together with other available peripherals, to imple-
ment an integrating analog-to-digital converter (ADC), in pursuit of a higher-resolution
alternative to the 12-bit on-chip ADC. Three variations of a Delta-Sigma ADC were im-
plemented, as well as a dual-slope type ADC. These were then characterized to measure
the linearity, and effective resolution.

Among the implementations, the best performing is a first-order Delta-Sigma type
ADC, with a moving-average digital filter, implemented in a core-independent way, us-
ing timer/counter peripherals. This ADC achieved close to a 12-bit usable measurement.
While this only matches the on-chip ADC, there are opportunities for improvement. Addi-
tionally, the technique could also be viable with other, lower-cost, microcontrollers, where
a on-chip might be lower resolution, or absent.
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Sammendrag

AVR R© MCU DB er en ny mikrokontrollerfamilie, som inkludere bruker-konfigurerbare
op-amper som periferifunksjoner. Disse op-ampene gjør det mulig å implementere op-amp
kretser med moderat kompleksitet, uten eksterne aktive komponenter. Dette åpner mu-
ligheten for analog signalprosessering i applikasjoner med lav kostnad og liten størrelse.

I dette prosjektet benyttes disse op-ampene, sammen med andre tilgjengelige periferi-
funksjoner, til å implementere en integrerende AD-omsetter (ADC), for å forsøke å oppnå
et alternativ til den integrerte 12-bit ADCen, med høyere oppløsning. Det ble implementert
tre varianter av en Delta-Sigma ADC, og en dual-slope type ADC. Alle implementasjonene
ble så karakterisert, for å måle linearitet og effektiv oppløsning.

Det beste ytelsen ble oppnådd med en førsteordens Delta-Sigma ADC med et digi-
talt glidende gjennomsnittsfilter, implementert uavhengig av CPUen i mikrokontrolleren.
Denne ADCen oppnådde en nær 12-bit brukbar måling. Selv om dette bare tangerer den
integrerte ADCens ytelse, er det muligheter for forbedring. I tillegg kan teknikken muli-
gens også benyttes med andre mikrokontrollere, i situasjoner uten en integrert ADC, eller
hvor denne har lavere oppløsning.
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Chapter 1
Introduction

The modern approach to signal processing typically relies on the use of the extensive
toolkit of digital signal processing (DSP). However, in order to use these tools to process
data from the physical world, it is necessary to convert the analog signals of the real world
into digital signals, thus setting the requirement for high-performance analog-to-digital
converters (ADCs). In the world of embedded systems, microcontrollers (MCUs) have
long been used for varied tasks, and since MCUs normally include an ADC as an integrated
peripheral, they are able to do both the analog-to-digital conversion, and the digital signal
processing, in the one component.

Microchip’s AVR R© MCU DB (AVR-DB) family of microcontrollers features a 12-
bit Successive Approximation Register (SAR) ADC [10]. This type of ADC is good for
general purpose applications, offering a reasonable tradeoff between resolution, sampling
rate, power requirement, and complexity. For some applications, however, this trade-off
does not accurately reflect the prevailing priorities. For measuring thermal sensors, for
example, sampling rate might not be as important as high resolution [5]. In these cases, a
different approach might be worth exploring.

The AVR-DB family of microcontrollers also includes user-configurable operational
amplifiers, or op-amps, as a peripheral. This allows the MCU to also do simple analog
signal processing, with minimal external components. This addition, along with other
common peripherals, makes it possible to implement alternative types of ADC, allowing
trade-offs customized to the application.

There are many different types of ADCs, with different trade-offs. While SAR ADCs
are a good general-purpose choice, for applications where resolution is the most important,
Delta-Sigma (∆Σ) type ADCs are likely the best choice [11]. This project focuses on
implementing a ∆Σ-ADC, using no active external components, in an attempt to improve
the resolution of the conversion result.

At the time of writing, the AVR-DB family has not yet been released. Throughout
this project, information about the microcontrollers have been taken from the preliminary
datasheet. Once released, the datasheet will be available from Microchip’s website [10].
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Chapter 1. Introduction

Collaboration with Microchip Technology Inc.

This project was a collaboration with Microchip Technology Inc. The microcontrollers
used for development and characterization were engineering samples provided by Mi-
crochip, and the testing was carried out using lab-equipment from Microchip’s Trondheim
office.
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Chapter 2
Background

2.1 Analog-to-Digital Converter Types
There exists a large variety of types of ADCs, which have different trade-offs between
conversion speed, resolution, power consumption, and other performance metrics. This
project mainly focuses on the Delta-Sigma type of ADC, but also considers a dual-slope
implementation. The following section gives an overview of the operation of these two
ADC types.

2.1.1 Delta-Sigma ADC
A delta-sigma (∆Σ) ADC is an oversampling converter. This means that it samples the
input at a higher rate than the rate required by the Nyquist–Shannon sampling theorem,
and trades away this excessive sampling rate for higher resolution. At the highest level,
a ∆Σ ADC consists of a delta-sigma modulator feeding a low-pass filter. The low-pass
filter is digital, while the modulator is implemented with an analog circuit. A benefit of
this design is that the analog circuitry can tolerate quite imprecise components, without
affecting the ADCs performance.

The ∆Σ modulator is a simple feed-back loop consisting of an integrator, an ADC, a
sample and hold, and a DAC. shown in Figure 2.1. The sample and hold is clocked at the
sample rate, fs, which is distinct from the data rate, fd. The quantizer is often as simple
as an analog comparator, effectively a 1-bit ADC. The presence of this quantizer makes the
sample and hold simple to implement, as it can be a purely digital component, often just
a 1-bit D latch. The integrator will integrate the sum of the input signal, and the feedback
term from the sample and hold [3, .p 922].

In the time-domain, the function of a 1-bit modulator can be understood as follows:
If the output is low, while the input is at some positive voltage, vin, the integrator will
start rising at a rate proportional to vin. For each clock edge, the quantizer will see if the
integrator has reached the Vref

2 , and at some point, it will be above this threshold, and the
output will go high. This will likely happen a bit after the integrator passed the threshold,

3



Chapter 2. Background

Figure 2.1: The basic block diagram for a ∆Σ modulator.

since the output is only updated on each clock edge. With the output high, the integrator
will start falling, now with a downwards rate proportional to Vref − vin. After some
number of clock cycles, the integrator output is again below Vref

2 , and the output goes low
again.

The result is that the high-time and low-time of the integrator is determined by the
rates Kvin and K(Vref − vin), where K is some constant of the integrator, along with
how much the value over- or undershoots the threshold each time. Since the amounts
of over- and undershoot can be thought of as roughly randomly distributed, the average
duty-cycle of the output will be proportional to vin.

The output from the modulator can be interpreted in a few different ways. It can be
thought of as an encoding, with the analog input voltage represented by the duty-cycle of
the signal, but it can also be interpreted as an analog signal itself. With this interpretation,
it can be modeled as a copy of the analog input voltage, mixed with a large amount of
high-frequency quantization noise. This is exploited by the converter, as a low-pass filter
is all that is needed to obtain the original signal. However, since the modulator-output
can only have one of two voltages, and the edges are locked to the modulator clock, the
low-pass filter can be implemented digitally, leveraging the power of DSP.

2.1.2 Dual-Slope ADC

One of the simplest types of integrating ADCs is the dual-slope ADC. The operation of
this type of converter can be described as follows. First, vin is multiplexed to the input
of the integrator, and this voltage is integrated over some predetermined amount of time,
∆t1. This results in a voltage on the integrator proportional to the input voltage. Next,
a known reference voltage of opposite polarity to vin is applied to the integrator input,
causing the output to fall back towards the starting point. An analog comparator triggers
once this second slope is completed, and a timer captures the time, ∆t2, this took. Since
the change in voltage for the second slope is proportional to vin, and the rate is constant,
∆t2 is also proportional to vin [3, .p 914].

Setting the equation for each slope equal to each other, with K being the constant of
integration, results in the following equation

vmax = K∆t1vin = K∆t2vref ,

4



2.2 ADC Performance Metrics

which gives the proportional relationship between ∆t2 and vin as

vin = vref
∆t2
∆t1

.

One of the benefits of this method, is that the constant of integration, as well as vmax,
is canceled out in the calculations, meaning that the accuracy of the conversion is not
affected by such things as drift in the capacitance of the integrating capacitor. Also, both
∆t1 and ∆t2 would be measured as a certain number of clock cycles, but since only the
ratio between these times are interesting, any drift in the clock frequency is also canceled
out.

A weakness in this design is that it depends on the linearity of the integrator, as any
non-linearity will be directly coupled to the ADC transfer function.

2.2 ADC Performance Metrics
In order to evaluate the performance of the ADCs implemented during this project, it is
necessary to define some metrics. Among the most common, are offset and gain error,
integral non-linearity (INL), differential non-linearity (DNL) [8], and the amount of input-
referred noise.

2.2.1 Offset and Gain Error
An n-bit ADC has some full range of inputs, Vref,n to Vref,p, and a range of output codes
from 0 to 2n − 1. In the ideal ADC, an input of Vref,n produces a 0 output code, while
the input Vref,p produces an output of 2n − 1, and each step in the transfer function is the
same size, one least-significant-bit (LSB), which equals

Vref,p − Vref,n

2n − 1
.

The first and last steps are exceptions, and should be half the size of the ordinary steps,
meaning that the first and last transitions should occur at Vin = Vref,n + 0.5 LSB and
Vin = Vref,p − 0.5 LSB respectively.

Offset error refers to the deviation of the transition between output codes 0 and 1, from
its ideal location. A positive offset error means that this transition happens at a lower
voltage, meaning that the output of the ADC is generally too high, while a negative offset
error means that the transition happens at a too high input voltage, resulting in the ADC
output being generally too low.

If the offset voltage is corrected for, so that the 0-to-1 transition is at the right location,
the last transition might not be in the correct location. This is called the gain-error, and
is a measure of the error in the average step-size of the transfer function. It is measured
as the deviation of the final transition of the ADC, from its ideal location, after the offset
error has been corrected. Positive gain error means that this transition happens for a too
low input voltage, while negative gain error means that the transition happens for a too
high input voltage.

Both of these errors can generally be calibrated for, either by trimming the analog
circuitry, or in software.

5



Chapter 2. Background

2.2.2 Non-Linearity

Even if both the first and last transition have been calibrated to be in the correct loca-
tions, there might be errors in the location of the remaining transitions. This represents a
deviation from the ideal straight-line response of the ADC, also called nonlinearity.

There are two main measures of non-linearity: differential and integral. The differen-
tial non-linearity is a measure of the size of the steps in the transfer function, while the
integral non-linearity measures the maximum deviation of the output code from the ideal
straight line [9].

2.2.3 Input-Referred Noise

Input-referred noise refers to the noise present in the ADC, modeled as an analog noise-
source on the input, when it repeatedly converts a stable input voltage. This noise is
usually modeled as a Gaussian distribution, centered at the ideal output code. In some
cases, a small amount of input-referred noise is actually desirable, as it enables additional
resolution to be obtained through averaging multiple samples. Without any noise, multiple
samples would, of course, give the same value, rendering averaging pointless.

An interesting metric which can be derived from the input-referred noise is the noise-
free code resolution. This is the number of bits of the result which are stable, and not
influenced by the input-referred noise, and represents the maximum accuracy of the ADC,
if no extra processing is done [4].

2.3 Op-amp Integrator Circuit

The main idea for this project is to implement the ∆Σ modulator using the peripherals
available in the microcontroller, and any required external components. As described in
section 2.1.1 this requires an integrator, a comparator, some sample-and-hold function-
ality, and a 1-bit digital-to-analog converter (DAC). Most of these can be implemented
using only the peripherals in the MCU, but the integrator requires a few external passive
components.

The core of all the ADC implementations in this project, is the op-amp integrator.
This circuit, shown in Figure 2.2, will integrate the input, with the time-constant being
determined by the values of the capacitor and input resistors [3, p. 230]. Intuitively, the
circuit can be understood by considering that the negative feedback-action of the op-amp
will keep the voltage at the negating op-amp input equal to Vref . This means that the
current through each resistor is proportional to the input voltage (relative to Vref ), and
this current must continue through the capacitor, charging it over time. In Figure 2.2, the
circuit is drawn with two inputs, but in general, any number of inputs can be used, each
with its own scaling, set by the input resistors.

In more rigorous terms, assuming the simplest model of an op-amp with infinite gain,
the equation for the output can be derived from the equation for a capacitor:

vout(t) = Vref − vc = Vref − 1

C

∫
icdt = Vref − 1

C

∫ ∑ vi − Vref

Ri
dt (2.1)

6



2.4 Target Architecture

Figure 2.2: Circuit diagram for the op-amp implementation of a summing integrator.

For the circuit show in Figure 2.2, with both resistors having resistance R, and the capaci-
tor having capacitance C, this equation simplifies to:

vout(t) − Vref = − 1

RC

∫
(v1 − Vref ) + (v2 − Vref )dt (2.2)

This equation shows a couple of important properties of this circuit. First, that it is
inverting. This is important to remember as the circuit is used as a building block in more
complex circuits. Second, the signal levels are all referred to Vref . This means that Vref

can be set to any suitable voltage, and the circuit will behave identically around this voltage
level.

One thing that is not modelled by this equation is the effects of the limited voltage
rails. In microcontrollers, the voltages are typically limited to the range from around 0 V,
to around VDD. This means that if the integrator moves too far in either direction, it
will saturate close to one of these limits. Another problem with the limited voltage range
comes when we want to supply an input to the integrator using the microcontroller itself.
Since the inputs are referred to Vref , and outputs from the microcontroller is limited to the
0 V to VDD range, the range of input-signals is limited to −Vref to VDD − Vref . Which
means that if Vref were to be connected to 0 V, as is typical for op-amp integrators, the
microcontroller outputs would be unable to apply negative signals to the integrator. To
mitigate this, and be able to control the integrator in both directions, Vref will be set at
VDD

2 for the circuits used in this project.

2.4 Target Architecture

The target architecture is the AVR-DB family of MCUs from Microchip [10]. This family
includes several variants of microcontrollers, but these differ only in pin count, memory-
sizes, and the number of instances of various peripherals. Table 2.1 shows selected differ-
ences between the variants. All the ADCs described in chapter 4 are compatible with any
of these, and the main development work was done using the 28-pin dual in-line package
(DIP) variant. In order to minimize parasitic effects such as lead-inductance, the 48-pin
thin quad flat pack (TQFP) was used for the characterization in chapter 5.
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Table 2.1: Selected parameters of the available parts in the AVR-DB family of MCUs [10].

Part No. Pin count Op-amps CCL LUTs

AVR128DB28 28 2 4
AVR128DB32 32 2 4
AVR128DB48 48 3 6
AVR128DB64 64 3 6

2.4.1 On-Chip ADC
The microcontroller which was used for this project already contains an on-chip ADC,
and the ∆Σ ADC is compared to this. Since the specifications of this on-chip ADC is still
being characterized at the time of writing, exact numbers are not available, but this section
outlines the general specifications of this ADC, to provide a benchmark for comparison.

The on-chip ADC is a SAR ADC, with 12-bit resolution, and a maximum sampling rate
of 100 kHz, which is equivalent to a single conversion taking 10 µs. The conversion can
be configured to be either single-ended or differential, and reference voltage is selectable
between internal or external references, or VDD.

While only a single instance of the ADC is available in the MCU, the input to this can
be multiplexed between 22 different inputs, including one channel internally connected
to an internal temperature sensor. Additionally, the ADC peripheral implements several
extra features such as window-compare interrupts, automatic accumulation of samples,
and free-running and event triggered conversion.

2.5 Peripherals
The AVR DB includes a wide range of peripheral modules. Most are available in similar
forms in earlier MCUs from Microchip, but the OPAMP peripheral is new to this family.
This project was initiated as an idea for using this OPAMP peripheral for extending the
analog-to-digital conversion capabilities of the microcontroller, so it is a central peripheral
for the project. There are several other peripherals, however, that were used in the imple-
mentations described. The relevant peripherals are listed below, and these are described in
the following sections.

• Operational Amplifier System (OPAMP)

• Event System (EVSYS)

• Timer/Counter type A and B (TCA and TCB)

• Custom Configurable Logic (CCL)

• Analog Comparator (AC)

• Serial Peripheral Interface (SPI)
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2.5.1 Operational Amplifier System (OPAMP)
The OPAMP peripheral consists of up to three operational amplifiers, each with a config-
urable resistor-ladder, and configurable input multiplexers. These op-amps can be inter-
nally connected into many standard op-amp circuits, or connected to external pins.

The 48- and 64- pin variants of AVR-DB includes all three op-amps, while the lower
pin count variants only contain two. For the setups described in chapter 4, the most impor-
tant circuit configuration is the summing integrator configuration, shown in Figure 2.2.

Since the op-amp peripheral includes a configurable resistor-ladder, it is attractive to
try to use these resistors in the integrator circuit, in order to avoid having to add them
externally. However, a limitation in the peripheral is that the inputs to the op-amp can only
either be connected to the internal resistor ladder, or to the pad, allowing connections to
external components. This means that if it is connected to the resistor-ladder, there is no
way to connect the capacitor, so external resistors are required.

The op-amps in the peripheral are powered from the same power-supply as the MCU,
which is a single-rail supply. However, the non-inverting input of each op-amp can be
internally connected to a VDD

2 reference. This effectively allows the circuit shown in
Figure 2.2 to function with positive and negative signal values, but with a VDD

2 offset.

2.5.2 Event System (EVSYS)
The event system (EVSYS) can be used to directly connect peripherals, and make them
work together without intervention by the Central Processing Unit (CPU). The system con-
sists of ten event-channels, each of which can be assigned to any of the event-generators
in the MCU. Any General Purpose I/O (GPIO) pin can be assigned to a channel, and most
of the peripherals provide some events. Peripherals can also be configured to listen to any
of the channels, and trigger certain actions based on the event. Event actions can either be
edge-triggered, or they can be level-triggered. For example, the ADC can be configured to
start a conversion on the rising edge of an event, or TCA can be configured to run as long
as an event input is high.

The following descriptions of peripherals includes more examples of what can be con-
nected to the event system, both as event producers and users.

2.5.3 Timer/Counters
A Timer/Counter (TC) is a peripheral that provides several different functionalities, based
around a simple binary counter. If the counter is clocked from a periodic clock, such as
the system clock or a prescaled version of it, or an external clock, it is called a timer. If
the timer is clocked by a sporadic signal, such as an external input, or an internal event, it
is called a counter.

As a timer, a TC can provide periodic interrupts with cycle-accurate timing, it can gen-
erate a pulse-width modulated signal on an output pin, it can generate a variable-frequency
square-wave, or it can be stopped by an internal or external trigger, functioning as a time-
to-digital converter. As a counter, it can count internal or external events, and provide a
running tally for the CPU to read, or give an interrupt when a predetermined number of
events have occurred.
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Chapter 2. Background

In AVR-DB, several variants of TCs are available. For this project, types A and B
are used. Type A (TCA) is a 16-bit counter, intended to be an as flexible as possible
general-purpose counter. Type B (TCB) is also a 16-bit counter, but with more features for
input-capture, such as counting or timestamping external events.

Many of the basic functions however, such as providing a periodic interrupt or event
signal, can be implemented with both types of TCs. This is relevant in the lower pin count
variants of AVR-DB, where only a limited number of instances of each type are available.

2.5.4 Custom Configurable Logic (CCL)

The CCL is a peripheral that can function as “glue logic” between the MCU and external
components, or between peripherals in the MCU itself. The CCL consists of up to six look-
up tables (LUTs), and a sequential block for each pair of LUTs, which can be configured
as one of several kinds of flip-flop. Each LUT has a single output, and three inputs which
can be connected to many different internal signals, or to external pins. The peripheral has
additional functionality for synchronizing asynchronous signals, filtering short glitches,
and edge-detection, but none of these features are used in this project. These features do
however require a clock, which can be selected between multiple sources, including one
of the inputs of the LUT itself.

Each sequential block takes one input each from the even- and odd-numbered LUTs,
as well as the selected clock signal from the even-numbered LUT. Depending on the con-
figuration, the block then behaves as one of several flip-flop types. The available configu-
rations are a gated D flip-flop, a JK flip-flop, a D latch, and a RS latch. The two flip-flop
configurations are clocked by the clock source from the even-numbered LUT, while the
latch configurations are not clocked, and acts instantaneously to changes on the inputs.

2.5.5 Analog Comparator (AC)

The AC is an analog comparator, which compares two analog voltages and gives a digital
output corresponding to the sign of their difference. Both inputs can be connected to
external pins, but the negating input can alternatively be connected to either a internal
bandgap reference voltage, or to an internal DAC, allowing fine control over the threshold
voltage.

The AC is not clocked, meaning it continuously compares the inputs, and outputs a
continuous result. Additionally, the comparator has a programmable amount of hysteresis,
and the output can be inverted. Finally the output can be routed into the event system, and
can drive a GPIO pin.

2.5.6 Serial Peripheral Interface (SPI)

The SPI is a synchronous data transfer interface, normally used for full duplex commu-
nication between the microcontroller and other devices. The interface is based around a
shift-register, which is loaded with the data word to transmit. Then, when operating as a
bus master, the word is shifted sequentially out on the Master-Out-Slave-In (MOSI) line,
while another word is shifted into the shift-register from the Master-In-Slave-Out (MISO)
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line. This simultaneous shifting is clocked using the Serial Clock (SCK) line, which is
driven by the bus master.

While this functionality is normally used for communication, the shift register can be
leveraged to read any bitstream, such as the one produced by a delta-sigma modulator.
This use-case is explored in chapter 4.
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Chapter 3
Design Process

This chapter describes the process of implementing the ADCs. The finished implementa-
tions, which are used in the characterization are described in more detail in chapter 4.

3.1 Initial Considerations
The first step of the design process was to understand the different types of ∆Σ ADCs, and
how they could be realized. Additionally, the resources available in the AVR-DB MCU
had to be understood, so that decisions could be made about what seemed feasible, and
what could be ruled out. It quickly became clear that the op-amp integrator would be
the main op-amp circuit required. This circuit was the first to be built and tested, giving
promising results as shown in Figure 3.1.

During this initial testing, the analog comparator peripheral (AC) was also tested, to
see how it could be connected to the op-amp output. In the pinout of the microcontroller, it
can be seen that several of the AC inputs share pins with the OPAMP outputs. Luckily, it is
possible to enable both functions on these pins, allowing the AC to be directly connected
to the OPAMP output without an external jumper. In Figure 3.1, channel 3 shows the AC
output when comparing the integrator output with VDD

2 .
After this initial testing, it was decided to attempt implementations of both first- and

second-order ∆Σ ADCs, as well as a traditional integrating multi-slope ADC, since this
would have a more-or-less identical hardware configuration as a first-order ∆Σ modulator,
consisting of a single op-amp integrator, with the output connected to an analog compara-
tor.

3.2 Prototyping
The prototyping of the implementations was done with an AVR128DB28 device in a DIP-
28 package on a breadboard, as shown in Figure 3.2. This device was selected simply
because it was the first engineering sample available, and it was convenient to use on a
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Figure 3.1: Oscilloscope plot of the operation of an op-amp integrator. Channel 1 shows the input,
generated by a signal generator, channel 2 shows the output of the integrator, and channel 3 shows
the output from an analog comparator comparing the integrator output with VDD

2
.

breadboard. One downside was that the 28-pin version of the AVR-DB only has two op-
amps in the OPAMP peripheral, potentially limiting the possible designs. This turned out
not to be a problem, however, as all the desired implementations was realizable with only
two op-amps.

3.2.1 First-Order Modulator

After the initial testing of a simple integrator, a complete first-order ∆Σ modulator was
implemented. Initially this was done with the CPU periodically reading the AC result and
applying a correcting signal to the summing integrator using a digital output pin. While
this consumed nearly all the CPU time, it verified the concept, and allowed the CPU to
also count the high and low AC readings, giving a rudimentary measurement result.

To make the modulator core-independent, the CPU reading the AC output was replaced
with a D-latch, implemented in the CCL. This allowed the modulator to run without the
CPU, but it still needed some way of counting or recording the clock cycles. This was
implemented by using two timer-counters, along with the event system.

Once this was working, the breadboard prototype was connected to the characterization-
setup to see what performance could be expected. This testing revealed one potential issue
with the input. In order to eliminate any effects of source impedance, a second op-amp
was used in unity-gain configuration to buffer the input signal. This turned out to limit the
usable range of the input, causing nonlinearities for input voltages close to the rails. This
was caused by the fact that the integrated op-amps actually saturate a bit inside the rails.
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After verifying that the voltage source in the characterization-setup had negligible output
impedance (0.2 Ω [2]), this buffer was removed, which eliminated the saturation-issues
close to the rails.

Figure 3.2: The breadboard setup for prototyping op-amp circuits and ADC implementations. Note
that the circuit-board the breadboard is mounted to is unrelated to the project, and not electrically
connected to anything on the breadboard itself.

Apart from this issue, the testing on this implementation indicated that it was work-
ing well, so the focus shifted to continuing implementing alternatives. The timer-counter
based averaging was limited by the fact that it required 2n clock cycles to be able to pro-
duce a n-bit result, giving very long conversion times. In order to use a general Finite
Impulse Response (FIR) filter, each bit in the bitstream must be handled individually. To
avoid having to do this in real-time, the SPI was used to record the bitstream, so that a
filter-kernel could be applied afterwards.

3.2.2 Second-Order Modulator
Next, a second-order modulator was implemented. This started to push the available space
in the pinout of the 28-pin device, and required some care to select compatible instances
of the peripherals. For instance, the output of OP0 (instance 0 of the OPAMP peripheral)
shares its pin with input 2 of LUT2 in the CCL, so these signals cannot be used together.
However, a compatible selection of peripherals was found, and the second-order modulator
was implemented successfully.

3.2.3 Multi-Slope ADC
Finally, the multi-slope ADC was implemented. This used the same integrator and com-
parator as the first-order ∆Σ configurations, but re-introduced the second op-amp to buffer
the input. This was necessary in order to multiplex in either the voltage input (for the first
slope), or a software-controllable DAC-voltage (for the return-slopes).
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While the hardware-configuration was mostly the same, or even a bit simpler, than
for the ∆Σ ADCs, the firmware turned out to be more challenging. Since this type of
ADC performs the conversion in several stages, which are not easily implemented in a
core-independent way, the CPU has to run code to control this process, which makes the
firmware more complex. This also meant that implementing multi-slope rundown proved
very difficult, as the initial return-slope would inevitably overshoot the threshold by much
more than a single clock cycle, due to the delay between the interrupt-trigger and the CPU
changing the input to the integrator. Multi-slope rundown was ultimately abandoned, with
only a single rundown slope being used for the characterized ADC. However, it might be
possible with more careful design, and this is discussed further in chapter 6.

3.3 Characterization PCB Design
After all the desired designs had been implemented and shown to be working, a Printed
Circuit Board (PCB) was designed in order to connect the implementations to the characterization-
setup in a reliable way, shown in Figure 3.3. Although the different implementations
require different external passive components and connections, the circuits were similar
enough that a single PCB could support all configurations by providing extra pads and
jumpers. The PCB was designed for the same interface as Microchip normally uses for
ADC characterization, allowing mostly plug-and-play operation with the lab-setup.

By this time in the project, engineering samples of the AVR128DB48 in a TQFP-48
package was available, so this was used for the characterization.

Figure 3.3: The PCB designed for characterizing the implemented ADCs.

16



Chapter 4
Implementation

This chapter describes the implementation details for each of the implemented ADCs. Two
different types of ADCs were implemented and characterized: ∆Σ and dual-slope. The
∆Σ type was additionally implemented in three different variants, resulting in a total of
four different configurations. The performance of the ADC implementations is described
in chapter 5. Since the various implementations share several subcomponents, such as the
op-amp integrator, each component is only described in detail along with the first circuit
in which they are used.

The code used for configuring and running the ADCs are listed in appendices 7.5.1 to
7.5.5. Each of the four ADC implementations share a common interface, consisting of an
initialization-function, a function to start the conversion, a check for if the conversion is
complete, and a getter-function to read back the result. In addition, the code implements
Interrupt Service Routines (ISRs) for various interrupts.

The full circuit diagrams in this chapter (figures 4.1, 4.5, 4.6, and 4.8) show both the
external components, as well as the internal peripherals used for the circuit. The dashed
line indicates the boundary between the MCU and the external components. The occupied
MCU pins are shown with the name of the relevant signal, the pin name (e.g. PD3 indicat-
ing that this is the third pin on PORTD), and in parentheses, the pin number on the 28-pin
DIP package.

4.1 First-Order ∆Σ ADC with a Rectangular Moving Av-
erage Filter (ADC1)

The first implementation consists of a first-order ∆Σ modulator, connected to a pair of
timer/counter-modules, acting as a rectangular moving average filter.

The modulator is built using one op-amp (OP0), one analog comparator (AC0), and a
pair of LUTs from the CCL (LUT0 and LUT1). The op-amp, along with the three external
components, is configured as a summing integrator. Internally in the MCU, the output of
this integrator is quantized by the analog comparator, followed by a sampling by LUT0
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Figure 4.1: The circuit making up the ∆Σ ADC, with a rectangular moving average filter.

and LUT1 from the CCL, configured as a D flip-flop. The output of this flip-flop is the
output bitstream, and it is fed back to the integrator through resistor Rf .

The bitstream is also passed, through the event-system, to timer/counter TCA0. This
timer/counter is configured to count the clock-edges of the peripheral clock, CLK PER,
while the bitstream is high. Meanwhile, TCB0 is configured to count every clock edge, and
provide an interrupt after a predetermined number of clock cycles. The result is that after
this interrupt occurs, the value in the count-register of TCA0 (TCA0.CNT) is proportional
to the average duty-cycle of the bitstream.

4.1.1 Integrator
The integrator is built as a standard summing, inverting integrator-circuit, with a feedback-
capacitor Cf , and input resistors Ri and Rf . The non-negating input of the op-amp is
connected to VDD

2 , to allow the circuit to integrate in both directions, with inputs in the
range GND to VDD.

The function of the integrator is described in section 2.3. With two input-resistors, Ri

and Rf , feedback-capacitor Cf , and Vref set to VDD

2 , (2.1) can be written:

vOP0,OUT =
VDD

2
− 1

Cf

∫
(

1

Ri
(vin − VDD

2
) +

1

Rf
(vLUT0,OUT −

VDD

2
))dt. (4.1)

One important design-decision for this circuit is choosing the values of the resistors
and the capacitor. These values must be selected large enough so that the integrator does
not saturate over the course of a clock-cycle, but small enough to give a good signal-to-
noise ratio on the output. If the input- and feedback-resistors are selected with the same
value (Rf = Ri = R), (4.1) simplifies to

vOP0,OUT =
VDD

2
− 1

RCf

∫
(vin + vLUT0,OUT − VDD)dt. (4.2)

The steepest positive slope of the output results from the lowest value integrand, which
occurs when vin = vLUT0,OUT = 0 V. At the beginning of the clock-cycle, vLUT0,OUT =
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0 V can only happen if vOP0,OUT ≤ VDD

2 , so this can be taken as the worst-case initial
value. The condition that the integrator should not saturate at the end of one clock-cycle,
from this worst-case initial state, can then be expressed as

vLUT0,OUT =
VDD

2
+

1

RCf

1

fCLK PER
VDD ≤ VDD, (4.3)

which simplifies to

RCf ≥ 2

fCLK PER
. (4.4)

This gives a simple constraint which must be met by the selection of clock frequency,
capacitance, and feedback resistance. The same derivation can be done for the symmetric
worst-case state with the steepest negative slope, occurring for vin = vLUT0,OUT = VDD,
which gives the same result.

4.1.2 Analog Comparator

The analog comparator performs the quantizer-function of the modulator, and in this way
acts as a 1-bit ADC. The comparator is connected to the integrator output by the fact that
the two signals, OP0,OUT and AC0,AINP0 share the same pin on the MCU, allowing
them to be connected with no external routing. The voltage at the negating input of the
comparator is set by an internal 8-bit DAC, configured to VDD

2 .
The peripheral operates continuously, since there is no clocked mode available. The

peripheral has settings for hysteresis and for trading higher response time for lower power,
but both these settings were only found to decrease performance. The comparator is there-
fore set to its most responsive configuration, with no hysteresis. There is also an option to
output the comparison result to an I/O pin. This is not required in operation, as the signal
can be routed through internal channels, but can be valuable for debugging purposes.

4.1.3 D Flip-Flop

The D flip-flop performs the sample-and-hold functionality of the modulator. It is imple-
mented with the CCL, using LUT0 and LUT1. Within the CCL, each LUT does not have
support for sequential logic by itself, but each pair of adjacent LUTs share a sequential
block, which can be configured in several different ways. The relevant configuration here
is the D flip-flop configuration, where the even LUT (LUT0 in this case), provides the
data-value, while the odd LUT (LUT1), provides a gate-value. The flip-flop only operates
while the gate-input is high, so LUT1 is configured to always output a “1”.

Each input of the LUT can be multiplexed between a variety of signal sources, in-
cluding the outputs of the analog comparators. The even LUT can therefore simply be
configured to pass the analog comparator output to the sequential block. The clock for the
sequential block can also be multiplexed between several different sources. In this case, it
should be clocked by the same signal that clocks the counters used in the filter, which is
the system-wide CLK PER.
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4.1.4 Feedback and Modulator Operation
In order to close the feedback-loop, and complete the ∆Σ modulator, the output bitstream
is fed back to the integrator through the feedback-resistor Rf . In the ideal case, for DC-
inputs, the average duty-cycle of the output is exactly proportional to the input voltage vin,
which relies on the input- and feedback-resistors being exactly equal. However, this might
not always be the case.

If Ri is lower than Rf , the input component becomes stronger than the feedback. This
means that if the input gets too close to either supply-rail, the feedback will be unable to
prevent the integrator from drifting away from VDD

2 , even with 0 % or 100 % duty-cycle.
This effectively limits the range of the ADC to a reduced region, centered around VDD

2 .
If Rf is lower than Ri, the feedback component becomes stronger than the input,

resulting in less extreme duty-cycles for the rail voltages. This means that 0 % and 100 %
duty-cycle falls outside of the GND to VDD input range, resulting in lower effective
resolution in this range.

In specific applications, these effects could be leveraged to either focus the available
resolution around VDD

2 , or extend the input range well beyond the MCU supply. This
possibility is discussed further in section 6.4.1.

Obtaining Full Resolution Within the Supply-Range

For this project, the goal is to get the highest possible resolution across the full supply-
range. However, even if a trimmer-potentiometer is used to set Ri as close as possible
to Rf , it is difficult to prevent integrator drift when the input voltage is very close to the
rails. In order to avoid this, the modulator can be trimmed with Rf slightly higher than
Ri, resulting in a small non-zero duty-cycle for 0 V inputs, and a slightly less than 100 %
duty-cycle for vin = VDD, effectively introducing a controlled gain-error. This keeps the
duty-cycle of the bitstream away from the saturation regions, where slight variations can
cause instability or other issues. The gain-error can then be corrected for in the software
filter. This is described further in the next section.

4.1.5 Rectangular Moving Average Filter
This first ADC implementation uses a rectangular moving average filter, implemented
using two timer/counter peripherals. TCA0 counts the high pulses of the modulator output,
while TCB0 keeps track of how long TCA0 has been counting for. In the simplest setup,
TCB0 gives an interrupt after 216−1 clock cycles, and TCA0 has then counted to between
0 and 216 − 1, giving a 16-bit measurement of the average duty-cycle.

One disadvantage of this filter is that it requires approximately 2n clock cycles to
provide n bits of resolution, giving a quite low sample rate if high resolution is required.
However, during these clock-cycles, the filter operates completely independent of the CPU.

Correcting the Gain-Error Introduced by Mismatched Ri and Rf

In order to correct for the gain-error described in section 4.1.4 without losing resolution,
a small modification is necessary. The idea is to allow TCB0 to count for more than
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216 − 1 clock cycles, which increases the gain. This also introduces an offset, which can
be canceled by starting TCA0 a bit “below” zero, meaning at a value close to the maximum.

(a) Original transfer function between vin and duty-cycle, and
TCA0.CNT.

(b) Transfer-function when Ri > Rf .

(c) Transfer-function once the correction has been implemented.

Figure 4.2: Correcting the gain-error introduced by mismatch between Ri and Rf by manipulating
the start- and end-points of the timer/counters used for filtering.

Figure 4.2 shows the steps required. In Figure 4.2a, the input- and feedback-resistances
are perfectly balanced, giving a zero duty-cycle at vin = 0 V, and a 100 % duty-cycle at
vin = VDD. After Ri is reduced, the desired input-range covers a smaller portion of the
range of duty-cycles, as shown in Figure 4.2b. Note that TCA0.CNT is still proportional
to the duty-cycle, meaning a gain-error has been introduced, centered around VDD

2 . In the
figure, the gain-error is exaggerated, to about 50 %. Figure 4.2c show the situation after
the correction has been introduced. TCB0 is allowed to count for longer, 50 % extra, in

21



Chapter 4. Implementation

this case, and TCA0 is started at a value 25 % below the maximum, which cancels the
introduced offset.

To avoid having to deal with multiple overflows of TCB0, since it now needs to count
for more than 216 clock-cycles, its prescaler can be used to slow the counting down by a
factor of two. With this slower clock, TCB0 only needs to count approximately 215 cycles,
plus the additional time needed to account for the gain-error.

An additional benefit of this solution is that the overflow-interrupt for TCA0 can be
handled, giving a way to detect out-of-range inputs. With in-range inputs, TCA0 should
overflow exactly once. If TCA0 overflows twice, this indicates that vin was higher than the
calibrated range. If the duty-cycle was low enough that TCA0 does not overflow, vin was
below the calibrated range. This does make the ADC no longer fully core-independent, but
this interrupt handler only needs to increment a variable, and will therefore only require a
few clock-cycles, once or twice per conversion.

4.1.6 Dealing with the Inverting Integrator
The block-diagram for a first-order ∆Σ ADC shown in Figure 4.4a uses non-inverting in-
tegrators, but the op-amp integrator described in section 4.1.1 is inverting. This means that
some block-diagram manipulation is required to assemble a correctly functioning circuit.
The integrator circuit and its equivalent block-diagram are shown in Figure 4.3.

(a) Circuit diagram for the op-amp implementation
of a summing integrator.

(b) Equivalent block diagram. Note that both in-
puts to the summing node are inverting.

Figure 4.3: Integrator circuit and its equivalent block-diagram

For this first ADC implementation, the simplest option is to insert an inverter at the in-
put and output of the entire ADC (Figure 4.4b). The output-inverter is easily implemented
in software, while the input-inverter, together with the integrator and summing node in
the original block-diagram, can be replaced by the op-amp implementation of an integra-
tor (Figure 4.4c). Section 4.1.6 describes the more complex solution required when two
integrators are cascaded.

4.1.7 Conversion Time
Since this ADC needs to be able to accumulate up to 216 counts, the clock rate needs
to be as high as possible to avoid the conversion taking too long. The AVR-DB can run
up to 24 MHz, but at this clock rate, the modulator does not perform well, resulting in a
large amount of noise on the measurements. This is probably in part caused by the limited
bandwidth of the internal op-amp, which is around 1 MHz.
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4.1 First-Order ∆Σ ADC with a Rectangular Moving Average Filter (ADC1)

(a) Original block diagram, with standard integrator. Note that the summing node has one
inverting and one non-inverting input.

(b) Equivalent block diagram, with inverters added to the input and output.

(c) Final block diagram, with the inverting integrator in the dashed rectangle. Note that
both inputs to the summing node are inverting.

Figure 4.4: Block diagram manipulation needed to use the inverting integrator circuit. Note that the
digital low-pass filter is not shown.
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The best results were obtained with a clock frequency of 4 MHz. At this clock speed,
each conversion takes approximately 216

4MHz = 16.38 ms.

4.2 First-Order ∆Σ ADC with FIR Filter (ADC2)

Figure 4.5: The circuit making up the second ∆Σ ADC, with a sinc-in-time FIR-filter.

The second implementation is very similar to the first, but replaces the simple rectan-
gular filter with an FIR filter, with arbitrary length and coefficients. This requires the MCU
to record the output of the modulator at each clock-cycle, so that the filtered value can be
obtained through a convolution with a filter kernel. One possibility would be to let the
CPU handle an interrupt, and manually read the output of the modulator for each bit, but
this would require a lot of CPU-intervention. Using the SPI peripheral as a shift-register,
the number of times the CPU must intervene can be reduced by approximately a factor of
eight, while also avoiding having to have the CPU handle individual bits.

4.2.1 Reading the Bitstream with the SPI
In this implementation, the modulator is controlled by the SPI peripheral. The SPI is
instructed by the CPU to transmit a dummy-byte, which causes the SCK line to produce
eight clock pulses, which in turn are used to clock the modulator. Since the SPI protocol
specifies full-duplex communication, the SPI expects data on the Master-In-Slave-Out, or
MISO line, so the output of the modulator is connected there, allowing the SPI to read the
bitstream into its shift register.

As the shift-register in the SPI only holds one byte of data, the CPU has to intervene
every eight bits. This is done by handling the “Data Register Empty” (DRE) interrupt,
which triggers when the SPI has loaded the dummy-data into its shift-register. The reason
to handle this interrupt, as opposed to the more intuitive “Receive Complete” (RXC) in-
terrupt, is that the RXC interrupt only triggers after the shift-register has shifted out all its
data, generating the eight clock-edges, which means there will be a significant delay until
new dummy-data can be sent. Handling the DRE interrupt instead allows new dummy-
data to be ready immediately once the shift-register is empty. There still seems to be a
two CPU-cycle delay between bytes, presumably as the SPI moves data between internal
registers. However, since a relatively low oversampling ratio is used, the SPI clock can

24



4.2 First-Order ∆Σ ADC with FIR Filter (ADC2)

be slowed down to 128 times relative to the CPU clock, making the two CPU-cycle delay
very short compared to the total clock period of the SPI clock.

1 ISR(SPI1_INT_vect)
2 {
3 // Read received bitstream data
4 uint8_t data = SPI1.DATA;
5 // Set new dummy-data to continue the "transmission"
6 SPI1.DATA = 0xFF;
7

8 // Fill the bitstream-array until the required number of
9 // bytes has been captured

10 if (byte_index < BITSTREAM_LENGTH_BYTES) {
11 bitstream[byte_index++] = data;
12 }
13

14 // Since the filter-kernel is symmetric, we only store
15 // one half of it in memory. To use it for both halfs of
16 // the filter, the second half of the bitstream must be
17 // reversed. To avoid having to flip all the bytes later,
18 // we can use the Data Order bit in the SPI to flip the
19 // bits for us.
20 if (byte_index >= BITSTREAM_LENGTH_BYTES / 2) {
21 SPI1.CTRLA &= ∼SPI_DORD_bm;
22 }
23

24 // Finally, clear the interrupt flag
25 SPI1.INTFLAGS = SPI_DREIF_bm;
26 }

Listing 4.1: Interrupt handler for reading the ∆Σ-modulator bitstream using the SPI.

Once triggered, the interrupt handler can read the previously received data, store it in
an array, and load another dummy-byte into the data-register. The full ISR is shown in
listing 4.1.

In order to clock the modulator from the SPI, one modification must be made to the
configuration of the CCL. In the first-order modulator, the CCL was clocked by CLK PER,
which is an internal signal. Unfortunately, there is no option to select the SPI-clock as a
clock source for the CCL, but there is an option to use input 2 (LUTn,IN2) as a clock.
This signal is therefore routed externally, from SPI1,SCK to LUT0,IN2.

4.2.2 FIR Filter

Once the DRE interrupt has been handled enough times to receive as many bits as the
oversampling ratio, the data acquisition is complete. Now, the CPU can perform the con-
volution with the filter kernel, giving the single sample of the filtered and decimated signal.

One simplifying factor in this convolution is that the output from the modulator is a
binary signal. This means that each kernel coefficient should simply either be added, or not
added to the accumulator, meaning no multiplications are necessary. As the filter kernel
is symmetric, another optimization can be implemented by only storing the first half of
it. However, this means that the second half of the bitstream must be mirrored. To avoid
having to mirror each byte in software, they can be mirrored by flipping the Data Order
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bit in the SPI halfway through the acquisition, which causes the bits to be read into the
shift-register in the reverse order.

The filter was chosen as a simple sinc-in-frequency filter, with 256 coefficients, a
cutoff-frequency of 0.004, and a cosine window function. The kernel coefficients were
computed on the device itself, using the code shown in listing 4.2.

1 #define FIR_FILTER_KERNEL_SIZE 256
2 #define FIR_FILTER_KERNEL_SCALE 65535
3

4 #define SINC(x) ((x) ? (sin(x)/(x)) : (1))
5 #define WINDOW(x) (0.5 - 0.5 * cos(2.0 * M_PI * (x)))
6

7 void fir_init_kernel(const float f_c)
8 {
9 for(int i = 0; i < FIR_FILTER_KERNEL_SIZE / 2; i++) {

10 int index = i - FIR_FILTER_KERNEL_SIZE / 2;
11 float ideal_kernel = 2.0 * f_c
12 * SINC(2.0 * M_PI * f_c * index);
13 float window =
14 WINDOW((float)i / FIR_FILTER_KERNEL_SIZE);
15 kernel[i] = (int16_t)(FIR_FILTER_KERNEL_SCALE
16 * window * ideal_kernel);
17 }
18 }

Listing 4.2: Function for calculating the coefficient for the filter-kernel.

4.2.3 Conversion Time
Since this ADC only records enough samples to be able to preform a convolution with the
filter kernel, it requires much fewer cycles to complete one conversion. Additionally, the
modulator is running at a clock frequency 128 times slower than the main clock, so the
main CPU clock can be set to the maximum 24 MHz, without degrading the modulator
performance.

With a filter-kernel of 256 coefficients, meaning the ADC requires 256 samples to
complete one conversion, this results in a conversion time of 128×256

24MHz = 1.365 ms. This
does not include the time required for the convolution, since this would depend on the
acquired data, and on how well the assembly is optimized. A rough estimate of ten cycles
on average per bit gives an additional time of 107 µs.

4.3 Second Order ∆Σ ADC with FIR (ADC3)
The third configuration is similar to the second, but implements a second-order ∆Σ mod-
ulator. The digital filter is implemented exactly the same as for the previous version.

4.3.1 Second-Order ∆Σ Modulator
To build a second-order ∆Σ modulator, a second integrator is needed. This is implemented
with OP1, and requires a second set of resistors and a capacitor, bringing the total number
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4.3 Second Order ∆Σ ADC with FIR (ADC3)

Figure 4.6: The circuit making up the third ∆Σ ADC, with a second-order modulator.

of external components to six. Functionally, the second-order modulator is very similar to
the first-order modulator. The digital filter is identical, using the SPI to read the bitstream
produced by the D flip-flop.

4.3.2 Dealing with the Inverting Integrator

As described in section 4.1.6, the fact that the integrator circuit built around the op-amp is
inverting means that the block-diagrams for the ADC must be modified. Figure 4.7 shows
the modifications needed for the second-order ADC. For the first-order ADC, the required
modifications only demanded an inversion to be added at the final output of the ADC,
which could easily be implemented in software. For the second-order ADC, the simplest
required modifications add an inverter in the feedback-path, which has to be implemented
in hardware.

4.3.3 Pin Allocation for the Added Inverter

Since the added inverter only needs to process the binary feedback-signal, it can be imple-
mented using the CCL, by configuring a LUT to take a single input, and output the inverted
result to a pin. The CCL has the possibility for LUTn to select the output of LUT[n+1] as
an input, so this connection could in theory be made internally. Unfortunately, as this third
ADC implementation occupies a significant portion of the available pins on the 28-pin
package, the options for how to allocate pins and peripherals becomes limited. In order
to fit this circuit within the 28-pin package, the connections to this inverter needs to be
made externally, including routing the output of LUT2 to its alternate pin. On the higher
pin-count packages, more peripheral options and pins are available, so this implementation
could likely be simplified.

4.3.4 Conversion Time

Apart from the added complexity in the analog circuit, and initialization code, this ADC
works identically to the first-order ∆Σ ADC with and FIR filter. Therefore, the conversion
time is the same, at 1.365 ms, plus time for the convolution.
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(a) Original block diagram, with standard integrators. Note that the summing nodes has
one inverting and one non-inverting input.

(b) Equivalent block diagram, with inverters added to both inputs and the output of the
first integrator.

(c) Final block diagram, with the inverting integrators in dashed rectangles. Note that both
inputs to both the summing nodes are inverting. The remaining inverter in the feedback to
the first integrator is implemented using the CCL.

Figure 4.7: Block diagram manipulation needed to use the inverting integrator circuit. This only
shows the modulator, not the digital low-pass filter.
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4.4 Dual Slope ADC (ADC4)

4.4 Dual Slope ADC (ADC4)

Figure 4.8: The circuit making up the dual-slope ADC.

The final implementation considered is a dual-slope type ADC. This implementation
is much simpler in terms of internal and external circuitry, requiring only two external
components, and no CCL or SPI. However, it is more involved on the software side, as the
conversion happens in several stages, with different configurations.

The idea is that OP1 is used to buffer the input, and functions as a multiplexer. This
allows either the input voltage vin, or the output from the DAC to be passed to the input of
the integrator. The sequence is that the input is integrated, controlled by TCA0 configured
to give an interrupt after a fixed amount of time, then a known voltage from the DAC is
integrated, and the time needed to cross a threshold is measured, again using TCA0.

Typically, a dual-slope ADC is illustrated as first integrating up from zero, then in-
tegrating back down to ground. This is impractical in this implementation because the
integrator saturates at zero, meaning that it is difficult to measure when it “crosses” this
threshold. Instead, the integrator is configured with the same VDD

2 offset as has been used
in the previous implementations. This means that if vin > VDD

2 , the inverting integrator
will integrate downwards, and the run-down slope must be positive, while if vin < VDD

2
the integrator will integrate upwards, meaning the run-down slope must be negative. This
is controlled in software, after the initial integration of the input, by looking at the output
of the comparator to see which direction the run-down should happen in. This comparator
also serves to detect when the run-down is completed, at which point the conversion is
complete.

The result captured in TCA0.CNT will not reflect which direction the run-down hap-
pened in, and in fact, the direction of the run-down represents a 17th bit of the result. Due
to the fact that the characterization-setup is only capable of capturing 16-bit results, this
fact is ignored in the firmware, the 16-bit value in TCA0.CNT is returned directly, and
some post-processing is done to extract the final 17-bit result. This is further discussed in
section 5.3.4.
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4.4.1 Input Buffer and Multiplexer
The OPAMP-peripheral consists of two or more op-amps, each with a controller around it,
allowing it to be configured by software. Parts of this controller are multiplexers on both
inputs of the op-amp, allowing them to be connected to a range of signal sources. The
dual-slope type ADC requires this ability in order to multiplex the input to the integrator
between the signal input and a fixed reference. The op-amp itself is configured for unity-
gain, but if gain is desirable, the resistor-ladder in the peripheral can be used to configure
up to 16 times gain.

An additional benefit of routing the input through an op-amp before the integrator is
that it buffers the signal, massively increasing the input impedance. The previous config-
urations have all connected the ADC-input to the integrator directly, which means that the
input impedance is limited to however large the input resistor is. If higher input impedance
is needed, these configurations can be extended to also buffer the input through a unity-
gain-configured op-amp.

One disadvantage of buffering the input through an op-amp is that it limits the input
range, as the op-amps in the peripheral are not capable of passing the full range from
GND to VDD. The previous configurations could all be configured for a much wider
input range, by increasing the input-resistance, but the dual-slope configuration is limited
to the linear operating range of the op-amps.

4.4.2 Possibility of Multi-Slope Run-Down
One possible improvement to this implementation would be to include a multi-slope run-
down. With this method the initial integration of vin works the same, but the following
return-integration happens with a much steeper slope. Since the steep slope causes a sig-
nificant change in voltage within each clock-edge, this will result in some overshoot. A
second return-slope can then measure this overshoot by integrating back towards the mid-
dle, now with a gentler slope. In theory, this can be repeated several times, allowing an
accurate measurement to be taken in a much shorter time.

Unfortunately, this is challenging to make work on the AVR-DB. It can be imple-
mented, by handling the AC0 interrupt in the same way as with the simple implementation
described above, but in this case the delay between the comparator interrupt, and the in-
terrupt handler becomes more of a problem. For the method to work, the integrand needs
to change very shortly after the analog comparator triggers, as it is trying to measure the
overshoot that occurred within a single clock cycle. Since there is no way of changing the
DAC value with direct peripheral-to-peripheral signaling, there will inevitably be a multi-
ple clock cycle delay, during which the integrator will keep integrating past the threshold,
washing out the overshoot.

Figure 4.9 illustrates this issue in an attempted implementation of a two-slope run-
down ADC. The traces show the two run-down slopes, with the first having a steeper
absolute slope than the second. Channel 2 (in green) shows the immediate output from
the analog comparator, and channel 3 (in purple) shows the integrator output. Here it can
be seen that the integrator continues downward well beyond the falling edge of the com-
parator. Note that this was run with a 4 MHz clock speed, meaning that the approximately
20 µs delay between the comparator falling edge and the integrator changing direction cor-
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4.4 Dual Slope ADC (ADC4)

Figure 4.9: Oscilloscope trace illustrating the delay between the analog comparator falling edge,
and the integrator changing direction. Channel 2 (in green) shows the immediate output from the
analog comparator, and channel 3 (in purple) shows the integrator output. Channel 3 has an offset of
2.5 V

responds to approximately 80 clock-cycles. While this implementation could be improved,
and it might be possible to work around this issue, to somehow obtain better results with a
dual-slope-type implementation, no further iteration was done on this method.

4.4.3 Conversion Time
Since this ADC uses the duration of the run-down slope for the measurement, this ADC
has a varying conversion time. The duration of the two slopes depends on the time-constant
of the integrator used, the input-voltage, and the voltage used for the run-down slope.

In the ideal case, the CPU should be able to count any number between 0 and 216

samples during the run-down slope. Since the integrator is not clocked, the CPU clock can
be set to the maximum possible 24 MHz, meaning that the run-down slope should ideally
take between zero and 216

24MHz = 2.731 ms. This can be tuned in after the integrator time-
constant has been set, by adjusting the DAC voltage applied during this slope.

The duration of the first slope, depends on how long the integrator needs to reach
close to saturation, which depends on the time-constant of the integrator. Using the values
Ri = 10 kΩ and Cf = 10 nF, an integrating time of 133.3 µs was found to be suitable,
corresponding to 3200 cycles of the 24 MHz CPU clock.

This results in a conversion time of between 133.3 µs and 2.864 ms. This estimate
neglects the processing time, meaning there is a few extra cycles of delay between the
slopes and at the start and end of the conversion.
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Chapter 5
Characterization

To measure the performance of the implemented ADCs, each circuit was characterized.
This is a process where known signals are applied to the ADC input, and the measurements
it provides are recorded and analyzed. From this, statistical properties about the ADC can
be derived. This chapter details the process for capturing these properties, and gives the
results for the four implementations.

Although this chapter only presents one set of characterization results of each ADC,
several adjustments were made to each in order to see what effects this had on the per-
formance. The numbers presented in this chapter represents the best achieved results. In
addition, for the second-order ∆Σ ADC, three different FIR-filters were tested. Chapter
6 includes further discussion about these adjustments, and how they affected the ADCs
performance.

5.1 Characterization Setup
The characterization was done in the Microsoft Trondheim office, using the equipment
normally used there to characterize the built-in ADCs in Microchip microcontrollers. This
is a customized Data Acquisition (DAQ) system developed by Microchip, using hardware
from the National Instrument PXI System [1], shown in Figure 5.1, and a LabView Virtual
Instrument (VI). The system communicates with the device-under-test (DUT) using a se-
rial communication interface, and custom firmware is running on the DUT to implement
this interface, and follow commands. The DAQ hardware includes a 16-bit DAC [2].

While the DAQ system contains a lot of functionality for analyzing the results, these
analyses are designed for lower bit-width results than the 16-bit measurements produced
by all the ADCs in this project. Instead of relying on this functionality, minor changes
were made to the LabView VI in order to record the full 16-bit results from the DUT, and
the data was then exported for later analysis using MATLAB. This allowed the data to be
gathered over a few days, limiting the time needed in the lab.

The characterization process starts by powering up the device, then reading back the
VDD voltage, to compensate for any voltage drop in the cabling. All tests were done with
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Figure 5.1: National Instrument PXI Instrument.

VDD configured to 5 V. Next, a stepped voltage ramp is applied, and at each step the
device is asked to take a number of measurements. These measurements are sent back to
the DAQ system, and recorded.

The two parameters of this process is the number of voltage steps, and the number
of samples to take for each voltage. Both of these parameters are specified before a
characterization-test is run. As each conversion takes some amount of time, a tradeoff
must be made between the number of samples taken, and the time required to complete the
testing. For each ∆Σ ADC implementations in this project, two tests were done. One with
8096 distinct voltage steps, and only a single sample for each step, and another test with
16 distinct voltages, and 255 measurements per voltage. The exact numbers of steps and
repeated measurements are somewhat arbitrary, but the first test was mainly intended to get
enough different samples to accurately measure the non-linearity of the transfer function,
while the second test was intended to measure the noise of repeated measurements.

5.1.1 Characterization PCB

In order to connect the DUT, and the required external components for the ADC imple-
mentation, to the DAQ hardware, a custom PCB was designed. This PCB contains the
same interface and power-supply headers as the characterization PCBs usually used with
the DAQ system. Figure 5.2 shows the PCB connected to the Microchip-designed interface
board, which is connected to the PXI Instrument.

The PCB also contains footprints for the external components, so that all four ADC
implementations can be configured by soldering or not soldering some of the components.
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Figure 5.2: Characterization PCB connected to the interface board.

Both the full schematics and the layout of the PCB is given in the Appendix.

5.1.2 DUT Firmware
The firmware running on the DUT during the testing was the same firmware used by Mi-
crochip, but modified to work with the ∆Σ-ADCs implemented in this project. At its core,
the firmware simply consists of the code required to setup and run the ADC implementa-
tion, an implementation of the serial protocol for communicating with the DAQ system,
and a loop to receive a command to start a conversion, and return the results.

5.2 Plots
In the following section, the measurement results are presented for the implemented ADCs.
For the most part, three different plot types are used, and to avoid repetition, they are ex-
plained here.

5.2.1 Transfer Function Plots
Figures 5.3, 5.6, 5.8, 5.11, 5.12, 5.15b, 5.16b, 5.17b, and 5.19, simply show the transfer
functions of the ADCs. These are scatterplots of pairs of input-voltages and output-codes,
showing the correlation between the two. These plots show results from the 8096-step run,
with only a single measurement per step.
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5.2.2 Noise Plots

Figures 5.4, 5.10, 5.14, and 5.22, show the results of the second run of each ADC, with
255 measurements per step, which is intended to measure the span of codes the ADC can
return for a fixed voltage. The dashed line at y = 0 represents the average of all 255
measurements in a given voltage step, while the blue and orange lines are the maximum
and minimum deviations from this average. Thus, the distance from the blue to the orange
line represents the maximum peak-to-peak noise which can be expected.

Upon analyzing the data, it was observed that the first few measurement of each
voltage-step occasionally gave very different measurements from the remaining. Since
this only affected the first one or two samples, it was assumed to be caused by initial
settling of the ∆Σ modulator, and the outliers were removed.

5.2.3 INL Plots

Figures 5.5, 5.7, 5.9, 5.13, 5.20, 5.21a, and 5.21b, show the measured INL. This is de-
rived from the transfer function plots, by computing a best-fit regression line, and then
measuring the vertical distance from each sample to this line.

Some of the plots are zoomed in on one part of the input-range. When this is done,
the x-axis reflects the relevant range, and it is also mentioned in the text. For INL plots
the best-fit line is then computed only for the visible part of the data, in order to obtain an
overall horizontal plot.

5.2.4 MATLAB Code

The MATLAB code used to generate the plots in this chapter can be found in the appendix.
Appendix 7.4.3 lists the code used to generate the noise plots, and appendix 7.4.1 lists the
code used to generate the transfer function and INL plots. Since the dual-slope ADC
required additional processing to decode the measurement result, the transfer function and
INL plots for this ADC were generated with a separate script, shown in appendix 7.4.2.

5.3 Results

5.3.1 First-Order ∆Σ ADC with Moving Average Filter (ADC1)

Figure 5.3 shows the raw transfer function of ADC1. This ADC was tuned to get close
to the maximum range, without saturating the ∆Σ modulator, so the output codes almost
span the full range from 0 to 216 − 1.

Figure 5.4 shows the maximum and minimum noise measured across the voltage range.
For the highest voltage in this test, all 255 samples read exactly 216 − 1, resulting in zero
noise. This is most likely caused by the measurement saturating, meaning the noise result
for that voltage is meaningless. Overall, the peak-to-peak amplitude of lies between -8.43
and 7.22 LSB.

Figure 5.5 shows the computed INL. This plot shows that voltages close to VDD

2 result
in slightly too low measurements, compared to the voltages closer to the rails. Additionally
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Figure 5.3: Transfer function for ∆Σ ADC 1. The (nearly invisible) dashed orange line is the
best-fit regression line used to calculate INL.

Figure 5.4: Plot of the noise for ∆Σ ADC 1. The red dashed lines shows the lowest deviation at
-8.43 LSB, and the highest deviation at 7.22 LSB.
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the noise can be seen to be consistent with Figure 5.4, being approximately equal to 15
LSB across the entire range.

Figure 5.5: Plot of the INL for ∆Σ ADC 1. The red dashed lines shows the range of the INL from
-12.10 LSB, to 14.58 LSB.

5.3.2 First-Order ∆Σ ADC with FIR-Filter (ADC2)
Figure 5.6 shows the raw transfer function of ADC2. Already, severe flat-spots can be
seen in regular intervals along the input-range.

Figure 5.7 shows the INL computed across the entire range. The regular flat spots
cause large swings in the INL.

In order to more closely examine the transfer function between each flat-spot, Figure
5.8 shows the transfer function of only for the data between the third and fourth flat-spot,
and Figure 5.9 show the INL computed only on this data. This shows of a triangular pattern
of four or five different linear segments, as well as some larger deviations.

Figure 5.10 shows the peak-to-peak noise of ADC2. The highest deviations in both
directions happened at the third voltage step, which lines up with the first flat spot in the
transfer function.

5.3.3 Second-Order ∆Σ ADC with FIR-Filter (ADC3)
Figure 5.11 shows the transfer function of ADC3. This ADC was implemented with equal
input- and feedback-resistors, meaning the duty-cycle goes to zero and 100 % when the
input voltage hits the rails. This causes some edge-effects close to the range limits, which
can be seen as deviations from the linear relationship at both ends of the graph.
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Figure 5.6: Transfer function for ∆Σ ADC 2. The dashed orange line is the best-fit regression line
used to calculate INL.

Figure 5.7: Plot of the INL for ∆Σ ADC 2. The red dashed lines show the range of the INL from
-1044.2 LSB, to 1043.7 LSB.
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Figure 5.8: Transfer function for ∆Σ ADC 2 between the third and fourth flat-spot.

Figure 5.9: Plot of the INL for ∆Σ ADC 2, computed for the subrange of inputs shown in Figure
5.8. The red dashed lines show the range of the INL from -423.12 LSB, to 618.52 LSB.
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Figure 5.10: Plot of the noise for ∆Σ ADC 2. The red dashed lines show the lowest deviation at
-298.35 LSB, and the highest deviation at 248.65 LSB.

Figure 5.11: Transfer function for ∆Σ ADC 3.
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Figure 5.12 shows the same transfer function, but now trimmed to avoid the problem-
atic saturation-regions. The resulting plot shows what looks like a good linear correlation,
but similarly to ADC2, there are regular disturbances along the range. In this case how-
ever, the disturbances do not seem to be as bad as the flat-spots in ADC2, and the transfer
function between them looks better.

Figure 5.12: Transfer function for ∆Σ ADC 3 with the saturation-effects close to the rails trimmed
off. The dashed orange line is the best-fit regression line used to calculate INL.

Figure 5.13 shows the INL of ADC3, trimmed to avoid the saturation regions, and
Figure 5.14 shows the noise level for repeated sampling of a fixed voltage. Again, it seems
that the noise has a peak-to-peak amplitude of 400 to 500 LSB, washing out any observable
non-linearity. In addition, the regular disturbances can be seen in Figure 5.13, causing the
maximum deviation from the ideal transfer function to be around ±650 LSB.

In order to get some data on the effect of the FIR-filter used in this ADC, three runs
were done with different filter cut-offs. Figures 5.15a, 5.16a, and 5.17a shows the three
different filter-kernels tested, with cut-offs of fc = 0.001, fc = 0.004, and fc = 0.015
respectively, and each with a cosine window function applied. The resulting transfer func-
tions are shown next to these plots.

5.3.4 Dual-Slope ADC (ADC4)
Finally, Figure 5.18 shows the transfer function of ADC4. Due to the method used here,
the raw data does not reflect the true result, so some amount of post-processing is required
to extract the result. In order to do this, first the outliers at Vin = 0 and Vin = VDD

2 were
removed, and then the slope in the first half of the data was inverted. Finally, an offset
was added to this slope to compensate for the non-zero measurement at Vin = VDD

2 . This
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Figure 5.13: Plot of the INL for ∆Σ ADC 3, computed on the trimmed input range. The red dashed
lines show the range of the INL from -663.47 LSB, to 647.05 LSB.

Figure 5.14: Plot of the noise for ∆Σ ADC 3. The red dashed lines show the lowest deviation at
-360.96 LSB, and the highest deviation at 376.04 LSB.
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(a) Filter-Coefficients (b) Transfer function

Figure 5.15: Filter Kernel and Transfer Function of ADC3 with fc = 0.001.

(a) Filter-Coefficients (b) Transfer function

Figure 5.16: Filter Kernel and Transfer Function of ADC3 with fc = 0.004.

(a) Filter-Coefficients (b) Transfer function

Figure 5.17: Filter Kernel and Transfer Function of ADC3 with fc = 0.015.
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offset was calibrated to obtain the smallest possible step in the resulting transfer function.
Figure 5.19 shows this transfer function.

Figure 5.18: Raw transfer function for ∆Σ ADC 4.

Figure 5.19: Decoded transfer function for ∆Σ ADC 4. The dashed orange line is the best-fit
regression line used to calculate INL.
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Figure 5.20 shows the INL of the post-processed transfer function of ADC4. This plot
shows pretty clearly that there is a significant difference in gain between the bottom and
top half of the input range. It can also be seen that there are some minor saturation-effects
in the outer limits of the input range, which would be expected as the input-voltage is
buffered by an op-amp with limited range.

Figure 5.20: Plot of the INL of ∆Σ ADC 4.

To get a better idea of the linearity of each half of the input range, Figures 5.21a and
5.21b shows the INL computed for only the bottom, and top half respectively. The top and
bottom of the input range is also trimmed away, as well as the small problematic area just
around VDD

2 . The result is a clear picture of the errors growing bigger as the input voltage
moves away from VDD

2 .
The last plot, Figure 5.22 shows the noise for ADC4. This plot supports the observation

that the noise increases as the input moves away from VDD

2 , increasing from a peak-to-peak
of around 30 LSB at the minimum to at most about 140 LSB.
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(a) Vin ∈ (0.1, 0.49)VDD (b) Vin ∈ (0.51, 0.9)VDD

Figure 5.21: INL of bottom and top ranges of ADC4 computed separately. The red dashed lines
show the range of the INL, -43.10 to 56.16 for the low range, and -47.67 to 50.68 for the high range.

Figure 5.22: Plot of the noise of ∆Σ ADC 4. The red dashed lines show the lowest deviation at
-73.93 LSB, and the highest deviation at 57.14 LSB.
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Discussion

6.1 General Performance of ADCs

6.1.1 ADC1

Among the four implemented ADCs, the first-order ∆Σ ADC with a moving average filter
was by far the most accurate. The ADC was calibrated to reach almost the full supply-
range of the MCU, and the maximum deviation in Figure 5.5 was below 15 LSB. This
means that if the four least significant bits of the 16-bit result are discarded, the remaining
12 bits should be correct, giving a 12-bit accurate resolution, matching the on-chip ADC.

6.1.2 ADC2

The first-order ∆Σ ADC with an FIR-filter was the worst performing ADC. As imple-
mented, the maximum deviation in INL was beyond 1000 LSB, meaning that without
post-processing, at least the lower 10 bits of the result must be discarded, leaving only 6
accurate bits.

Flat-Spots at Regular Intervals

The major deviance from the ideal transfer function that can be seen in Figure 5.6 is the
seven flat-spots that occur at regular intervals. These seem to be related to the fact that
the SPI, which is used to capture the bitstream from the ∆Σ modulator, introduces some
amount of clock jitter, as described in section 4.2.1. In these tests, the clock jitter only
amounted to every eighth clock cycle being one 128th longer, so it was considered proba-
bly negligible.

This theory was tested by reducing the prescaler on the SPI, while decreasing the CPU
clock to maintain the same modulator frequency. The effect is that the delays between
bytes are extended, amplifying the clock jitter. This change dramatically amplified this
flat-spot pattern, supporting the hypothesis that this is indeed the cause. Unfortunately,
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there is no way of operating the SPI which avoids the clock jitter altogether, meaning the
issue is hard to circumvent.

It might be possible to use another serial communication protocol, like the USART,
to achieve the same bitstream-capture, but without the clock jitter. This is discussed in
section 6.2.4. Alternatively, it might be possible to use the CPU to capture each bit sepa-
rately, using pin-interrupts and a very lightweight ISR, but this would mean using a large
proportion of the CPU-time.

6.1.3 ADC3

Compared to the results from ADC2, the second-order ∆Σ ADC, again with an FIR-filter,
performed a bit better. The maximum deviation of the INL would require 9-10 bits to be
discarded, but most of this inaccuracy is centered around a few “bad-spots”. Away from
these spots, it is probably possible to extract an 8-bit result from the ADC.

6.1.4 ADC4

Finally, the dual-slope ADC preformed surprisingly well, though again, not as well as
ADC1. Due to the directional method, the ADC returns a 17-bit result, but from the raw
INL plot, ten of these bits must be discarded in order to get a monotonic linear measure-
ment in the remaining seven bits.

However, compared to the previous INL-plots, there is an obvious structure, and if
this is calibrated to account for the difference in gain between the two halves of the input
range, only five or six bits would need to be discarded, as indicated by Figures 5.21a and
5.21b, leaving an ten or eleven bit result.

6.2 Possible Improvements to ADC Implementations

6.2.1 Improved Selection of Resistances, Capacitors, and Operating
Frequency

The work in this project focused mainly on implementing proof-of-concept versions of the
selected ADC methods, not fine-tuning any single one. While some time was taken to test
different parameters, the priority was to complete implementation and testing of all four
implementations, so that possibilities and challenges with the methods could be exposed.

If more time is invested into selecting values for the passive components, and select-
ing clock-frequency, thresholds, settings for the comparators, and other such parameters,
better performance can probably be obtained. This could be done by trial-and-error in the
lab, but it might also be valuable to create a model of the ADCs in a simulation software,
and run optimizations there. This approach would also allow analysis of the effects of
component tolerances and drift in the values over time.
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6.2.2 Improved FIR-Filter Design
The FIR-filter used in ADC2 and ADC3 was not optimized very well. A few variants
were tried, and one that worked was selected, but it was not made a focus of iteration
and improvement, other than examining the effects of varying the cutoff-frequency. More
attention to this component might extract more performance from ADCs employing the
bitstream-capture method.

6.2.3 Decreasing Latency of Software
All the firmware for this project was written in C. While most of the code is simply needed
to configure peripherals before they operate without CPU-intervention, there are certain
situations where the delay caused by code execution could impact the performance.

One example of this is the ISR which triggers at the end of both slopes of the dual-
slope ADC. While this ISR runs, the integrator is still integrating, and for the run-down,
the timer is still counting cycles until it is disabled by the code. This causes offsets in both
the integrated voltage and the timer result.

Implementing critical parts of the code in assembly would allow exact control of cycle-
accurate timing, allowing precise compensation to be applied. This would for example
allow a timer to be stopped a few cycles into the ISR, but subsequently reset to the exact
value it had when the ISR triggered, which would eliminate this source of error.

6.2.4 USART Peripheral in SPI Mode
Throughout this project, the SPI peripheral was used to capture the bitstream produced
by the ∆Σ modulator, but an issue was discovered in the fact that the SPI is unable to
perform two transmissions completely back-to-back, but it inserts a single CPU clock
cycle in between. This was assumed to be negligible during development, but it turned out
to be a probable cause of major error in the ADCs which used this technique.

The microcontroller contains several other serial communication peripherals, which
were initially considered, but the SPI was selected as the most suitable. However, the
USART module includes a master SPI mode, where it would be capable of performing the
same function as the SPI module for these ADC implementations. Basic testing indicates
that this peripheral is capable of back-to-back transmission, which might be a way of
solving this issue.

6.2.5 Using CPU Sleep-Modes to Reduce Noise During Conversion
A common method for reducing ADC noise is to stop the CPU execution while the con-
version is taking place [6]. This reduces the noise introduced by the rapidly switching
digital logic, providing a calmer environment for the analog electronics. Once conver-
sion is completed, an interrupt can wake up the CPU again, and normal operation can be
resumed.

This method could also be utilized for ADC1 and ADC4 in this project. It could possi-
bly also be applicable for ADC2 and ADC3, but the need to keep emptying the SPI.DATA
register would require the CPU to keep going into and out of the sleep mode. For ADC4,

51



Chapter 6. Discussion

the CPU only needs to wake up once during the conversion, to prepare for the run-down
slope, and for ADC1, the entire conversion can be completed with the CPU in sleep mode.

A requirement for this method is an interrupt to wake the CPU once the conversion is
complete. Luckily, all four methods in this project uses interrupts to control the flow of
the conversion already, so placing the CPU in sleep mode should not require any major
changes. One minor change is that for time-critical interrupts, the wake-up time of the
CPU must be compensated for, in addition to the response time of the ISR.

6.2.6 Multi-Bit ∆Σ-Modulator

One method which was considered, but not chosen for implementation in this project is the
multi-bit ∆Σ ADC. Instead of using a single comparator, producing a 1-bit data stream,
two more comparators can be added, along with a CCL-based thermometer-to-binary de-
coder, producing a 2-bit data stream. The required 2-bit DAC could be made by providing
two, differently weighted feedback paths to the integrator, one from each bit.

6.3 Possible Improvements to Characterization Procedure

6.3.1 Measuring Dynamic Signals

An issue with the way the characterization was done during this project is that the ADCs
were only tested with static signals. One of the major selling-points of the ∆Σ ADC topol-
ogy is the ability to move the quantization noise to higher frequencies, and then filter it
out, so it seems likely that these ADCs would be more competitive in a frequency-domain
test, where signal-to-noise ratio and Effective Number of Bits (ENOB) were measured.

6.3.2 Characterizing Long-Term Drift

DSADC1 was calibrated to give a reasonably low gain- and offset-error. No attempts were
made to characterize the drift of this calibration, nor how any other factors, might impact
the long-term stability of the ADC.

6.3.3 Characterizing Temperature Dependence

The passive components used in the ADC implementations all have some amount of tem-
perature dependence, which might cause a temperature dependence of the ADC itself. In
theory, none of the ADCs in this project depend on the exact component values, as all of
them are designed so that the absolute component values cancel out. All the ∆Σ ADCs
do however depend on the ratio of the input- and feedback-resistors, and any change to
this ratio would directly impact the gain of the ADC. Another source of error is that the
op-amp or comparators might change with temperature.
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6.4 Alternate Use-Cases
Since none of the ADCs implemented in this project could provide better performance than
the on-chip ADC in the AVR128DB MCUs, it is questionable if it would be worthwhile
to implement any of them with this microcontroller. However, there might be situations
where the techniques used in this project could be more applicable.

6.4.1 Direct Measurement of Higher-Voltage Inputs
All the ∆Σ ADCs in this project feed the input-voltage into an input-resistor, and effec-
tively measures the resulting current. This means that if the value of the input-resistor is
increased, the input-range of the ADC can be extended almost indefinitely, only limited
by the voltage-rating of the resistor used.

This means that for example, a 12 V signal could be directly measured by the ADC,
without worrying about exceeding the absolute maximum ratings of the chip. With even
higher resistances, it might even be possible to directly measure a 230 V signal. The only
requirement is that the current in the input-resistor can be balanced by the current in the
feedback-resistor, which is produced by the VDD

2 voltage difference across it.
One issue is that before the MCU has configured the modulator, the pin connected to

the summing node of the integrator will be high-impedance, which means no current would
flow through the input-resistor. This, in turn, means there is no voltage drop, which might
cause the pin to exceed the absolute maximum rating, damaging the MCU. However, this
can probably be solved by connecting a Zener-diode, or some other protection to this pin.

6.4.2 Implementation in Lower-Cost Applications
While the AVR-DB family of microcontrollers have a 12-bit ADC, there exists other
MCUs with integrated op-amps, where the on-chip ADC is not as capable (for exam-
ple the PIC16F527 [7]). In applications where cost, or other factors, limits the choice and
quality of on-chip ADCs, the techniques used in this project might be a good option. It
could also be an option to use an external op-amp, in order to implement a ∆Σ ADC with
a MCU with very limited peripherals.

Implementation Without Op-Amp

If cost is the main concern, to the extent that neither an on-chip ADC or an internal or
external op-amp is available, it might even be possible to implement any of the ADCs
in this project without an op-amp integrator. A simple low-pass filter approximates an
integrator for small amplitudes [3, p. 26], so with careful design it might be possible to
implement a ∆Σ or dual-slope ADC with only a capacitor, two resistors, and a very basic
microcontroller.

6.4.3 Enabling Differential Input
The ∆Σ ADCs all use a summing-integrator as the first stage of the circuit. Extending
this integrator with an input-resistor connected to the non-negating input, could allow

53



Chapter 6. Discussion

conversion of differential signals.
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Conclusion

This project has proposed, designed, and tested four methods of implementing ADCs using
the OPAMP peripheral present in the AVR-DB family of microcontrollers. Three of these
were ∆Σ ADCs, and one was a dual-slope ADC.

Overall, the alternate ADCs in this project were not able to match the on-chip SAR
ADC in any of the measured metrics. The first-order ∆Σ ADC with a moving average
filter came closest, giving 12 accurate bits, but the conversion time of this ADC is slightly
more than 216 = 65536 clock cycles, while the on-chip ADC typically only uses around
16 cycles.

The technique of using the SPI peripheral to capture the bitstream produced by a ∆Σ
modulator did not produce any better results than a simple moving average filter, although
the conversion time was much lower. However, as the performance was only tested for
static input-voltages, there might be an unobserved advantage with this technique for dy-
namic signals.

Without further development, these implementations do not satisfy the original goal
of implementing an ADC with higher resolution than the on-chip SAR ADC. There may
however be applications for the techniques used in this project in other niches, such as if
very high input-voltages need to be measured, or if an on-chip ADC is not available, or
less capable than the 12-bit ADC present in the AVR-DB family of MCUs.

Finally, compared to the on-chip ADC, the implementations described in this project
has the disadvantage that they introduce a significant amount of complexity, and use sys-
tem resources, both in terms of CPU time and peripherals. However, in some applications,
the customizability of these techniques could prove advantageous, possibly making them
a viable alternative.
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7.1 Future Work

7.1.1 Implementation on Less Capable MCUs
Implementing a dual-slope or ∆Σ ADC using the techniques in this project might make
more sense with less capable microcontrollers. Therefore, it would be interesting to see
what the minimum required capabilities are, and if this could be a viable alternative for
low-cost applications.

7.1.2 Improvement of the Bitstream-Capture Technique
In the AVR-DB, the bitstream-capture method could work better by using the USART
in SPI mode instead of the SPI peripheral. This could improve the two implementations
in this project which uses this technique. Additionally, the frequency-response of these
ADCs could also be characterized, to see if they have more strengths for dynamic signals.
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7.4 Appendix C

7.4.1 Matlab Code for Analyzing Transfer Function

1 % Analyze transfer function
2 close all;
3 clear;
4

5 % Read chara data
6 filename = "RawData/DSADC1_8096x1.csv";
7 T = readmatrix(filename);
8 Steps = length(T(:,1));
9 inputs = T(:,1) / (Steps - 1);

10 outputs = T(:,2);
11

12 % Trim ends if neseccary
13 range_start = 0.0 * Steps;
14 range_end = 1.0 * Steps;
15 inputs = inputs(range_start+1:range_end);
16 outputs = outputs(range_start+1:range_end);
17 Steps = length(inputs);
18

19 % Compute linear regression best fit line
20 X = [ones(Steps,1) inputs];
21 B = X\outputs;
22

23 % Compute INL as difference between data and best-fit line
24 best_fit_line = X * B;
25 INL = outputs - best_fit_line;
26

27 % Generate plots
28 figure;
29 plot(inputs, outputs, ’.’);
30 hold on;
31 plot(inputs, best_fit_line, ’--’);
32 title(’ADC1 Transfer Function’);
33 xlabel(’Input Voltage / Vdd’);
34 ylabel(’Output Code [LSB]’);
35

36 figure;
37 plot(inputs, INL);
38 yline(max(INL), ’r--’);
39 yline(min(INL), ’r--’);
40 title(’ADC1 INL’);
41 xlabel(’Input Voltage / Vdd’);
42 ylabel(’INL [LSB]’);

7.4.2 Matlab Code for Analyzing Transfer Function of ADC 4

1 % Analyze transfer function of ADC4
2 close all;
3 clear;
4

5 % Read chara data
6 filename = "RawData/DSADC4_8096x1.csv";
7 T = readmatrix(filename);
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8 Steps = length(T(:,1));
9 inputs = T(:,1) / (Steps - 1);

10 outputs = T(:,2);
11

12 % Generate plot of raw data
13 figure;
14 plot(inputs, outputs, ’.’);
15 title(’ADC4 Raw Transfer Function’);
16 xlabel(’Input Voltage / Vdd’);
17 ylabel(’Output Code [LSB]’);
18

19 % Decode directionality
20 HighRangeOffset = -6540;
21 outputs_low = -outputs(1:Steps/2);
22 inputs_low = inputs(1:Steps/2);
23 outputs_high = outputs(Steps/2+1:end) + HighRangeOffset;
24 inputs_high = inputs(Steps/2+1:end);
25

26 % Remove outliers
27 outputs_low(1) = [];
28 inputs_low(1) = [];
29 outputs_high(2) = [];
30 inputs_high(2) = [];
31 Steps = Steps - 2;
32

33 outputs = [outputs_low; outputs_high];
34 inputs = [inputs_low; inputs_high];
35

36 % Trim ends
37 range_start = floor(0.1 * Steps);
38 range_end = floor(0.49 * Steps);
39 inputs = inputs(range_start+1:range_end);
40 outputs = outputs(range_start+1:range_end);
41 Steps = length(inputs);
42

43 % Compute linear regression best fit line
44 X = [ones(Steps,1) inputs];
45 B = X\outputs;
46

47 % Compute INL as difference between data and best-fit line
48 best_fit_line = X * B;
49 INL = outputs - best_fit_line;
50

51 % Generate plots
52 figure;
53 plot(inputs, outputs, ’.’);
54 hold on;
55 plot(inputs, best_fit_line, ’--’);
56 title(’ADC4 Transfer Function’);
57 xlabel(’Input Voltage / Vdd’);
58 ylabel(’Output Code [LSB]’);
59

60 figure;
61 plot(inputs, INL);
62 yline(max(INL), ’r--’);
63 yline(min(INL), ’r--’);
64 title(’ADC4 INL of Subrange’);
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65 xlabel(’Input Voltage / Vdd’);
66 ylabel(’INL [LSB]’);

7.4.3 Matlab Code for Analyzing Noise Range

1 % Analyze noise
2 close all;
3 clear;
4

5 % Parameters for the data acquisition
6 Steps = 16;
7 SamplesPrStep = 255;
8 StartSample = 3;
9

10 % Read chara data
11 filename = "RawData/DSADC1_16x255.csv";
12 T = readmatrix(filename);
13 data_length = length(T(:,1));
14 inputs = (0:15) / 15;
15 outputs = T(:,2);
16 outputs = reshape(outputs, SamplesPrStep, Steps);
17

18 % Compute statistics for each step
19 max_deviation = zeros(Steps,1);
20 min_deviation = zeros(Steps,1);
21 midpoint = zeros(Steps,1);
22 for i = 1:Steps
23 midpoint(i) = mean(outputs(StartSample:end,i));
24 max_deviation(i) = max(outputs(StartSample:end,i)) - midpoint(i);
25 min_deviation(i) = min(outputs(StartSample:end,i)) - midpoint(i);
26 end
27

28 % Generate plot
29 plot(inputs, max_deviation);
30 hold on;
31 plot(inputs, min_deviation);
32 yline(0, ’--’);
33 yline(max(max_deviation), ’r--’);
34 yline(min(min_deviation), ’r--’);
35 title(’ADC1 Noise Range’);
36 xlabel(’Input Voltage / Vdd’);
37 ylabel(’Difference from Mean [LSB]’);
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7.5.1 C-Code for ADC1

1 /*
2 * adc1.c
3 * Delta-Sigma ADC implementation with rectangular moving average filter.
4 */
5

6 #include "adc1.h"
7 #include <avr/io.h>
8 #include <avr/interrupt.h>
9

10 volatile static uint16_t last_result;
11 volatile static bool conversion_complete = false;
12 volatile static uint8_t tca_overflows;
13

14 #define OVERCOUNTING_N 3000
15

16 void dsadc_init_modulator(void)
17 {
18 // Configure OPAMP0 to integrator
19 // Using OP0,INN (PD3, pin 9) as the virtual zero node
20 // Occupying OP0,OUT (PD2, pin 8) on same pin as AC0,AINP0
21 OPAMP.OP0CTRLA = OPAMP_OUTMODE_NORMAL_gc | OPAMP_ALWAYSON_bm;
22 OPAMP.OP0INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_INN_gc;
23 OPAMP.OP0CAL = 143;
24

25 // Enable op-amps
26 OPAMP.CTRLA = OPAMP_ENABLE_bm;
27

28 // Configure AC0 to threshold output from OP0 against Vdd/2
29 // Occupying AC0,AINP0 (PD2, pin 8) on same pin as OP0,OUT
30 VREF.ACREF = VREF_REFSEL_VDD_gc;
31 AC0.MUXCTRL = AC_MUXPOS_AINP0_gc | AC_MUXNEG_DACREF_gc;
32 AC0.DACREF = 0x80;
33 AC0.CTRLA = AC_HYSMODE_NONE_gc | AC_ENABLE_bm;
34

35 // Configure LUT0 to sample-and-hold the output from AC0 with with
CLK_PER as clock source

36 // Using LUT0,OUT (PA3, pin 25) as the output
37 CCL.TRUTH0 = 0b00000010;
38 CCL.LUT0CTRLC = CCL_INSEL1_MASK_gc;
39 CCL.LUT0CTRLB = CCL_INSEL1_MASK_gc | CCL_INSEL0_AC0_gc;
40 CCL.LUT0CTRLA = CCL_OUTEN_bm | CCL_CLKSRC_CLKPER_gc |

CCL_FILTSEL_FILTER_gc;
41

42 // Configure LUT1 to always output "1"
43 CCL.TRUTH1 = 0xFF;
44 // Configure sequencer for LUT0 and LUT1
45 CCL.SEQCTRL0 = CCL_SEQSEL0_DFF_gc;
46 // Configure LUT0,OUT to output
47 PORTA.DIRSET = (1 << 3);
48 // Enable CCL
49 CCL.LUT1CTRLA |= CCL_ENABLE_bm;
50 CCL.LUT0CTRLA |= CCL_ENABLE_bm;
51 CCL.CTRLA = CCL_ENABLE_bm;
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52

53 // Configure event channel 0 to carry the output from LUT0 to TCA
54 EVSYS.CHANNEL0 = EVSYS_CHANNEL2_CCL_LUT0_gc;
55 EVSYS.USERTCA0CNTA = EVSYS_USER_CHANNEL0_gc;
56

57 // Configure TCA to count clock cycles while EVENTA is high, handle the
overflow

58 // interrupt to detect overflows
59 TCA0.SINGLE.PER = UINT16_MAX;
60 TCA0.SINGLE.EVCTRL = TCA_SINGLE_EVACTA_CNT_HIGHLVL_gc |

TCA_SINGLE_CNTAEI_bm;
61 TCA0.SINGLE.INTCTRL = TCA_SINGLE_OVF_bm;
62

63 // Configure TCB to give an interrupt after about 2ˆ16 cycles
64 // The -61 is because the interrupt handler takes some time to launch
65 TCB0.CTRLA = TCB_CLKSEL_DIV2_gc;
66 TCB0.CCMP = 0x7FFFU - 61 + OVERCOUNTING_N;
67 TCB0.INTCTRL = TCB_CAPT_bm;
68 }
69

70 void dsadc_start_conversion(void)
71 {
72 // Reset state variables, start TCA "below" 0 to allow a non-zero duty-

cycle at 0V input
73 tca_overflows = 0;
74 conversion_complete = false;
75 TCA0.SINGLE.CNT = 0xFFFF - OVERCOUNTING_N;
76 TCB0.CNT = 0;
77

78 // Enable timer counters to start conversion
79 TCB0.CTRLA |= TCB_ENABLE_bm;
80 TCA0.SINGLE.CTRLA |= TCA_SINGLE_ENABLE_bm;
81 }
82

83 bool dsadc_conversion_complete(void)
84 {
85 return conversion_complete;
86 }
87

88 uint16_t dsadc_get_result(void)
89 {
90 // In normal cases, TCA should have overflowed exactly once. If it has

overflowed 0 or 2 times,
91 // this indicates an out-of-range input
92 if (tca_overflows < 1) {
93 return 0xFFFF;
94 }
95 if (tca_overflows > 1) {
96 return 0x0;
97 }
98

99 return UINT16_MAX - last_result;
100 }
101

102 ISR(TCA0_OVF_vect) {
103 // Count overflows of TCA
104 tca_overflows++;
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105 TCA0.SINGLE.INTFLAGS = TCA_SINGLE_OVF_bm;
106 }
107

108 ISR(TCB0_INT_vect)
109 {
110 asm volatile("nop");
111 asm volatile("nop");
112 asm volatile("nop");
113

114 // Get result
115 last_result = TCA0.SINGLE.CNT;
116 conversion_complete = true;
117

118 // Stop timer/counters
119 TCB0.CTRLA &= ∼TCB_ENABLE_bm;
120 TCA0.SINGLE.CTRLA &= ∼TCA_SINGLE_ENABLE_bm;
121

122 TCB0.INTFLAGS = TCB_CAPT_bm;
123 }

7.5.2 C-Code for ADC2

1 /*
2 * adc2.c
3 * Second order Delta-Sigma ADC implementation with rectangular moving

average
4 * filter.
5 */
6

7 #include "adc2.h"
8 #include "fir_filter.h"
9 #include <avr/io.h>

10 #include <avr/interrupt.h>
11

12 #define FILTER_KERNEL_Fc 0.004
13

14 #define BITSTREAM_LENGTH_BYTES (FIR_FILTER_KERNEL_SIZE / 8)
15

16 static volatile uint8_t bitstream[BITSTREAM_LENGTH_BYTES] = {0};
17 static volatile uint8_t byte_index = 0;
18

19 void dsadc2_init_modulator(void)
20 {
21 // Initialize the filter kernel
22 fir_init_kernel(FILTER_KERNEL_Fc);
23

24 // Configure OPAMP0 to integrator
25 OPAMP.OP0CTRLA = OPAMP_OUTMODE_NORMAL_gc | OPAMP_ALWAYSON_bm;
26 OPAMP.OP0INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_INN_gc;
27 OPAMP.OP0CAL = 143;
28

29 // Enable op-amp
30 OPAMP.CTRLA = OPAMP_ENABLE_bm;
31

32 // Configure AC0 as quantizer
33 VREF.ACREF = VREF_REFSEL_VDD_gc;
34 AC0.MUXCTRL = AC_MUXPOS_AINP0_gc | AC_MUXNEG_DACREF_gc;

67



35 AC0.DACREF = 0x80;
36 AC0.CTRLA = AC_HYSMODE_NONE_gc | AC_ENABLE_bm;
37

38 // Configure LUT0/1 as DFF
39 PORTA.DIRSET = PIN3_bm;
40 CCL.TRUTH0 = 0b00100010;
41 CCL.LUT0CTRLC = CCL_INSEL2_IN2_gc;
42 CCL.LUT0CTRLB = CCL_INSEL1_MASK_gc | CCL_INSEL0_AC0_gc;
43 CCL.LUT0CTRLA = CCL_OUTEN_bm | CCL_CLKSRC_IN2_gc |

CCL_FILTSEL_DISABLE_gc;
44 CCL.TRUTH1 = 0xFF;
45 CCL.SEQCTRL0 = CCL_SEQSEL0_DFF_gc;
46 CCL.LUT0CTRLA |= CCL_ENABLE_bm;
47 CCL.LUT1CTRLA |= CCL_ENABLE_bm;
48 CCL.CTRLA = CCL_ENABLE_bm;
49

50 // Configure SPI for bitstream capture
51 PORTC.DIRSET = PIN2_bm;
52 SPI1.CTRLA = SPI_MASTER_bm | SPI_DORD_bm | SPI_PRESC_DIV128_gc;
53 SPI1.CTRLB = SPI_BUFEN_bm | SPI_SSD_bm | SPI_MODE_1_gc;
54 SPI1.INTCTRL = SPI_RXCIE_bm;
55 SPI1.CTRLA |= SPI_ENABLE_bm;
56

57 // Set byte-index past the end of the array, indicating that no
conversion is in progress

58 byte_index = BITSTREAM_LENGTH_BYTES;
59 }
60

61 void dsadc2_start_conversion(void)
62 {
63 // Set byte_index to the start of the array to start the conversion
64 byte_index = 0;
65 }
66

67 bool dsadc2_conversion_complete(void)
68 {
69 // Conversion is done once the byte_index reaches the end of the array
70 return (byte_index >= BITSTREAM_LENGTH_BYTES);
71 }
72

73 uint16_t dsadc2_get_result(void)
74 {
75 return fir_filter_bitstream(bitstream);
76 }
77

78 ISR(SPI1_INT_vect)
79 {
80 uint8_t data = SPI1.DATA;
81 SPI1.DATA = 0xFF;
82

83 if (byte_index < BITSTREAM_LENGTH_BYTES) {
84 bitstream[byte_index++] = data;
85 }
86

87 if (byte_index >= BITSTREAM_LENGTH_BYTES / 2) {
88 // Take in bits in the second half of the bitstream in reverse order
89 SPI1.CTRLA &= ∼SPI_DORD_bm;
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90 }
91

92 SPI1.INTFLAGS = SPI_RXCIF_bm;
93 }

7.5.3 C-Code for ADC3

1 /*
2 * adc3.c
3 * Second order Delta-Sigma ADC implementation with FIR filter.
4 */
5

6 #include "adc3.h"
7 #include "fir_filter.h"
8 #include <avr/io.h>
9 #include <avr/interrupt.h>

10

11 #define FILTER_KERNEL_Fc 0.004
12

13 #define BITSTREAM_LENGTH_BYTES (FIR_FILTER_KERNEL_SIZE / 8)
14

15 static volatile uint8_t bitstream[BITSTREAM_LENGTH_BYTES] = {0};
16 static volatile uint8_t byte_index = 0;
17

18 void dsadc3_init_modulator(void)
19 {
20 // Initialize the filter kernel
21 fir_init_kernel(FILTER_KERNEL_Fc);
22

23 // Set byte-index past the end of the array, indicating that no
conversion is in progress

24 byte_index = BITSTREAM_LENGTH_BYTES;
25

26 // Configure OPAMP1 as integrator
27 OPAMP.OP1CTRLA = OPAMP_OUTMODE_NORMAL_gc | OPAMP_ALWAYSON_bm;
28 OPAMP.OP1INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_INN_gc;
29

30 // Configure OPAMP0 as integrator
31 OPAMP.OP0CTRLA = OPAMP_OUTMODE_NORMAL_gc | OPAMP_ALWAYSON_bm;
32 OPAMP.OP0INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_INN_gc;
33

34 // Enable op-amps
35 OPAMP.CTRLA = OPAMP_ENABLE_bm;
36

37 // Configure AC0 as quantizer
38 VREF.ACREF = VREF_REFSEL_VDD_gc;
39 AC0.MUXCTRL = AC_MUXPOS_AINP0_gc | AC_MUXNEG_DACREF_gc;
40 AC0.DACREF = 0x80;
41 AC0.CTRLA = AC_HYSMODE_NONE_gc | AC_ENABLE_bm;
42

43 // Configure LUT0/1 as DFF and LUT2 as inverter
44 PORTA.DIRSET = PIN3_bm;
45 PORTMUX.CCLROUTEA |= PORTMUX_LUT2_ALT1_gc;
46 PORTD.DIRSET = PIN6_bm;
47 CCL.TRUTH0 = 0b00100010;
48 CCL.LUT0CTRLC = CCL_INSEL2_IN2_gc;
49 CCL.LUT0CTRLB = CCL_INSEL1_MASK_gc | CCL_INSEL0_AC0_gc;
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50 CCL.LUT0CTRLA = CCL_OUTEN_bm | CCL_CLKSRC_IN2_gc |
CCL_FILTSEL_DISABLE_gc;

51 CCL.TRUTH1 = 0b11111111;
52 CCL.SEQCTRL0 = CCL_SEQSEL0_DFF_gc;
53 CCL.TRUTH2 = 0b00000001;
54 CCL.LUT2CTRLC = CCL_INSEL2_MASK_gc;
55 CCL.LUT2CTRLB = CCL_INSEL1_IN1_gc | CCL_INSEL0_MASK_gc;
56 CCL.LUT2CTRLA = CCL_OUTEN_bm;
57 CCL.LUT0CTRLA |= CCL_ENABLE_bm;
58 CCL.LUT1CTRLA |= CCL_ENABLE_bm;
59 CCL.LUT2CTRLA |= CCL_ENABLE_bm;
60 CCL.CTRLA = CCL_ENABLE_bm;
61

62 // Configure SPI for bitstream capture
63 PORTC.DIRSET = PIN2_bm;
64 SPI1.CTRLA = SPI_MASTER_bm | SPI_DORD_bm | SPI_PRESC_DIV128_gc;
65 SPI1.CTRLB = SPI_BUFEN_bm | SPI_SSD_bm | SPI_MODE_1_gc;
66 SPI1.INTCTRL = SPI_DREIE_bm;
67 SPI1.CTRLA |= SPI_ENABLE_bm;
68

69 // Send data to start modulator
70 //SPI1.DATA = 0xFF;
71 }
72

73 void dsadc3_start_conversion(void)
74 {
75 // Set byte_index to the start of the array to start the conversion
76 byte_index = 0;
77 }
78

79

80 bool dsadc3_conversion_complete(void)
81 {
82 // Conversion is done once the byte_index reaches the end of the array
83 return (byte_index >= BITSTREAM_LENGTH_BYTES);
84 }
85

86

87 uint16_t dsadc3_get_result(void)
88 {
89 return fir_filter_bitstream(bitstream);
90 }
91

92 ISR(SPI1_INT_vect)
93 {
94 uint8_t data = SPI1.DATA;
95 SPI1.DATA = 0xFF;
96

97 if (byte_index < BITSTREAM_LENGTH_BYTES) {
98 bitstream[byte_index++] = data;
99 }

100

101 if (byte_index >= BITSTREAM_LENGTH_BYTES / 2) {
102 // Take in bits in the second half of the bitstream in reverse order
103 SPI1.CTRLA &= ∼SPI_DORD_bm;
104 }
105
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106 SPI1.INTFLAGS = SPI_DREIF_bm;
107 }

7.5.4 C-Code for ADC4

1 /*
2 * adc4.c
3 * Dual slope ADC implementation.
4 */
5

6 #include "adc4.h"
7 #include <avr/io.h>
8 #include <avr/interrupt.h>
9

10 volatile bool integral_direction_up;
11 volatile bool conversion_done = false;
12 volatile uint16_t conversion_result = 0;
13

14 void dual_slope_init_modulator(void)
15 {
16 // Enable DAC
17 VREF.DAC0REF = VREF_REFSEL_VDD_gc;
18 DAC0.CTRLA = DAC_OUTEN_bm;
19 DAC0.DATA = 0x200 << DAC_DATA_gp; // Vdd/2
20 DAC0.CTRLA |= DAC_ENABLE_bm;
21

22 // Configure OPAMP1 to buffer
23 // Using OP1,INP (PD4, pin 10) as the input
24 // Using OP1,OUT (PD5, pin 11) as the output
25 OPAMP.OP1CTRLA = OPAMP_OUTMODE_NORMAL_gc | OPAMP_ALWAYSON_bm;
26 OPAMP.OP1INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_OUT_gc;
27

28 // Configure OPAMP0 to integrator (shunted in the idle configuration)
29 // Using OP0,INN (PD3, pin 9) as the virtual zero node
30 // Occupying OP0,OUT (PD2, pin 8) on same pin as AC0,AINP0
31 OPAMP.OP0CTRLA = OPAMP_OUTMODE_NORMAL_gc | OPAMP_ALWAYSON_bm;
32 OPAMP.OP0INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_OUT_gc;
33

34 // Enable OPAMPs
35 OPAMP.CTRLA |= OPAMP_ENABLE_bm;
36

37

38 // Configure AC0 to threshold OP0,OUT against DACREF
39 VREF.ACREF = VREF_REFSEL_VDD_gc;
40 AC0.MUXCTRL = AC_MUXPOS_AINP0_gc | AC_MUXNEG_DACREF_gc;
41 AC0.CTRLA |= AC_ENABLE_bm | AC_OUTEN_bm;
42

43

44 // Configure TCA
45 TCA0.SINGLE.CTRLA = TCA_SINGLE_CLKSEL_DIV1_gc;
46 TCA0.SINGLE.CTRLB = TCA_SINGLE_CMP0EN_bm;
47 TCA0.SINGLE.CMP0 = 3200;
48

49

50 // Enable PD6 as output (for debugging)
51 PORTA.DIRSET = PIN6_bm;
52 }
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53

54 void dual_slope_start_conversion(void)
55 {
56 PORTA.OUTSET = PIN6_bm;
57 conversion_done = false;
58

59 // MUX in the input
60 OPAMP.OP1INMUX = OPAMP_MUXPOS_INP_gc | OPAMP_MUXNEG_OUT_gc;
61 // Enable integrator
62 OPAMP.OP0INMUX = OPAMP_MUXPOS_VDDDIV2_gc | OPAMP_MUXNEG_INN_gc;
63

64 // Start TCA
65 TCA0.SINGLE.CNT = 0;
66 TCA0.SINGLE.INTCTRL = TCA_SINGLE_CMP0_bm;
67 TCA0.SINGLE.CTRLA |= TCA_SINGLE_ENABLE_bm;
68

69 // Set DACREF to Vdd/2 to enable the AC to see the direction
70 // in which the integration occurred
71 AC0.DACREF = 0x80;
72 }
73

74 bool dual_slope_conversion_complete(void)
75 {
76 return conversion_done;
77 }
78

79 uint16_t dual_slope_get_result(void)
80 {
81 return conversion_result;
82 }
83

84 ISR(TCA0_CMP0_vect)
85 {
86 // "integral_direction_up" indicates wether the v_in is above or below

Vdd/2
87 integral_direction_up = (AC0.STATUS & AC_CMPSTATE_bm);
88

89 // Configure the integrator to integrate towards the middle, with AC0
thresholding

90 // against a value slightly beyond the middle
91 if (integral_direction_up) {
92 AC0.DACREF = 0x80;
93 // Mux in high voltage
94 DAC0.DATA = (0x3FF) << DAC_DATA_gp;
95 OPAMP.OP1INMUX = OPAMP_MUXPOS_DAC_gc | OPAMP_MUXNEG_OUT_gc;
96 // Enable AC0 interrupt on falling edge
97 AC0.INTCTRL = (0x2 << AC_INTMODE_gp); // AC_INTMODE_NEGEDGE
98 }
99 else {

100 AC0.DACREF = 0x80;
101 // Mux in low voltage
102 DAC0.DATA = (0x000) << DAC_DATA_gp;
103 OPAMP.OP1INMUX = OPAMP_MUXPOS_DAC_gc | OPAMP_MUXNEG_OUT_gc;
104 // Enable AC0 interrupt on rising edge
105 AC0.INTCTRL = (0x3 << AC_INTMODE_gp); // AC_INTMODE_POSEDGE
106 }
107
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108 // Enable AC0 interrupt (after clearing the flag so that the interrupt
does

109 // not immediately fire)
110 AC0.STATUS = AC_CMPIF_bm;
111 AC0.INTCTRL |= AC_CMP_bm;
112

113 // Clear the interrupt flag
114 TCA0.SINGLE.INTFLAGS = TCA_SINGLE_CMP0_bm;
115 }
116

117 ISR(AC0_AC_vect)
118 {
119 // Configure the integrator to integrate back towards the middle
120 if (integral_direction_up) {
121 AC0.DACREF = 0x80;
122 // Mux in slightly low voltage
123 DAC0.DATA = (0x200 - 100) << DAC_DATA_gp;
124 // Enable AC0 interrupt on rising edge
125 AC0.INTCTRL = (0x3 << AC_INTMODE_gp); // AC_INTMODE_POSEDGE
126 }
127 else {
128 AC0.DACREF = 0x80;
129 // Mux in slightly high voltage
130 DAC0.DATA = (0x200 + 100) << DAC_DATA_gp;
131 // Enable AC0 interrupt on falling edge
132 AC0.INTCTRL = (0x2 << AC_INTMODE_gp); // AC_INTMODE_NEGEDGE
133 }
134

135 // Enable AC0 interrupt (after clearing the flag so that the interrupt
does

136 // not immediately fire)
137 AC0.STATUS = AC_CMPIF_bm;
138 AC0.INTCTRL |= AC_CMP_bm;
139

140 // Clear the interrupt flag
141 AC0.STATUS = AC_CMPIF_bm;
142 }

7.5.5 C-Code for the FIR-Filter

1 #include "fir_filter.h"
2 #include <math.h>
3

4 static int16_t kernel[FIR_FILTER_KERNEL_SIZE / 2]; // Only store half the
kernel

5

6 #define SINC(x) ((x) ? (sin(x)/(x)) : (1))
7 #define WINDOW(x) (0.5 - 0.5 * cos(2.0 * M_PI * (x)))
8

9 void fir_init_kernel(const float f_c)
10 {
11 for(int i = 0; i < FIR_FILTER_KERNEL_SIZE / 2; i++) {
12 int index = i - FIR_FILTER_KERNEL_SIZE / 2;
13 float ideal_kernel = 2.0 * f_c * SINC(2.0 * M_PI * f_c * index);
14 float window = WINDOW((float)i / FIR_FILTER_KERNEL_SIZE);
15 kernel[i] = (int16_t)(FIR_FILTER_KERNEL_SCALE * window * ideal_kernel)

;
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16 }
17 }
18

19 uint16_t fir_filter_bitstream(volatile uint8_t* bitstream)
20 {
21 volatile uint16_t accumulator = 0;
22

23 for(int i = 0; i < FIR_FILTER_KERNEL_SIZE; i++) {
24 if (bitstream[i / 8] & (1 << (i % 8))) {
25 if (i < FIR_FILTER_KERNEL_SIZE / 2) {
26 accumulator += kernel[i];
27 } else {
28 accumulator += kernel[FIR_FILTER_KERNEL_SIZE - 1 - i];
29 }
30 }
31 }
32

33 return accumulator;
34 }
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