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Summary

In this thesis the goal is to identify the parameters of a ferry model. The ferry will be
subject to a various numbers of passengers, which causes changes in the dynamics that
can lead to less accurate control of the ferry. A model of the ferry is implemented into the
controllers to give an output to the thrusters. When large deviations between the model
and the actual dynamics of the system occurs, the accuracy of the controllers will decrease.
It is tested through simulations if it is beneficial to identify these model changes, and give
updated parameters to the controllers.

Four different parameter estimation methods are presented, and tested against each
other in this thesis. The model of the ferry is complex with coupling terms between the
states and nonlinear terms. The nonlinear parameters are kept constant, and the inertial
matrix and the linear part of the damping matrix are identified. Two identification model
are used. The simplest method only gives estimates of the diagonal parameters in the
matrices, while keeping the coupling terms constant. This method is compared with an
iterative method that is able to estimate all the parameters of the linear matrices, also the
coupling terms. The parameter estimation is tested under ideal circumstances with per-
sistent excitation of the input signal, and with simulated conditions representing driving
under nominal operation. Under both conditions the parameters converged to the model
value.
The simplest identification model has quicker convergence rate, as it does not have the
complexity of estimating the coupling terms. This comes at the cost of the accuracy in the
estimated model. With estimation of the coupling terms the convergence time is increased
substantially, but all parameters do converge.

The parameter estimation methods are used to update the model in the controllers, and
create a indirect adaptive controller. The distance and heading error between the ferry
and the reference signal is measured to test the performance. This shows that all of the
controllers benefits from an updated model. The discrepancies in the model from the
simplest estimation method proved to be insignificant, and the increased complexity of
estimating the coupling terms helped the performance of the controllers very little.
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Chapter 1
Introduction

1.1 Motivation

Autonomous solutions are being developed on many platforms, both for vehicles on land
and in the waters. Automated routes can be very beneficial as it can optimize transportation
and free human resources from needing to operate a specific vehicle. By taking advantage
of autonomous solutions, humans can supervise multiple automated vehicles at once rather
than operating a single vehicle. With humans only needed when a vehicles can not solve
the situation it self, and with every new situation an automated solution could be designed
for the next time. This is why the marked is growing massively and new problems are
solved every day.

Implementation of autonomous ferrys can help transportation by taking advantage of
the water ways. They could take some of the burden of existing trafficated roads or be an
alternative to building new bridges and tunnels. There are several places where crossing
waters like rivers and canals is needed and this could be done with a low-cost autonomous
ferry. It is a high construction and maintenance cost associated with creating tunnels or
bridges, as well as the environmental cost from disturbing the natural environment with
permanent structures. Autonomous electrically-powered ferries can serve as a more cost
efficient solution. This could be transportation of vehicles, but also urban transport of
pedestrians or bikers, which can make it more efficient and attractive to walk or use bicy-
cles instead of cars.

For a self-driving vehicle to become fully automated without the need of supervision is
unrealistic to this date, as there is so many unforeseen situations that it needs to handle. A
group of automotive engineers from SAE International created what became the standard
for evaluating the level of autonomy (SAEinternational, 2016). The different autonomy
levels shown in Figure 1.1, gives a good perspective of the challenges designing a self-
driving vehicle.

1



Chapter 1. Introduction

Figure 1.1: Five level of autonomy for self-driving vehicles, (OPONEO.CO.UK, 2016)

The same levels of autonomy could be compared with the ferry. To start with an auton-
omy of level 3 would be good, where it does most of the steering by its self, with someone
at the controls ready to take over. To reach level 4 it would take a big step. It should handle
all conditions that it operates in, and when transporting people the cost of faults is very
high. The last level of autonomy is probably far away yet. This requires both the system,
as well as the technology for the engine to be flawless. The trust in the equipment used
should be immense, and engine stops or other system failures should be impossible. This
makes a fully autonomous self-driving vehicle very hard to create.

To achieve an autonomous operating ferry where the goal is for humans only to monitor
the operations, the system must be secure and trustworthy. Aiming to reach a autonomous
system of level 3 on the ferry, it must be robust to handle all kinds of disturbances and
changes that can occur. A model of the autonomous ferry is shown in Figure 1.2. different
number of passengers will give a variation in load and weather conditions may change
significantly with strong wind or large waves. This can change the dynamics of the ship
and must be accounted for.

2



1.1 Motivation

Figure 1.2: Model of the autonomous ferry, (Pedersen, 2019)

The plan is to install an autonomous ferry for urban transport in Trondheim, which
will transport passengers from Ravnkloa across Nidelva to Vestre Kanalkai, as shown in
Figure 1.3. The ferry should be able to transport 12 people at a time, and is ”on-demand”,
making it ready to use when someone needs transportation. Now the work is done on a
experimental ferry, milliAmpere, where the technology is being tested and developed for
use on the autonomous ferry. The previous work done with this platform is described in
section 1.2.

Figure 1.3: Planned route for autonomous ferry, (Pedersen, 2019)

3



Chapter 1. Introduction

1.2 Related work

In a previous masters thesis it was made a very precise model of milliAmpere by using
optimization based system identification, (Pedersen, 2019). This method collects data on
beforehand, and analyses the batch instead of an online system identification. An optimiza-
tion problem is used to find the parameters in the model that gives the smallest quadratic
error from the measurements. When comparing the model parameters to actual behaviour
there are small deviations which indicates discrepancies in the model that is found. In this
thesis the model parameters will be altered to simulate different mass in the tests. The pa-
rameters done from batch identification is done with an unspecified number of passengers,
under good weather conditions with small wind gusts occasionally. It will arise changes in
the dynamics of the ferry when passenger numbers and weather change. This could make
it beneficial to update the parameters, resulting in more accurate estimates for the con-
troller. An alternative could be to have different stationary models depending on number
of passengers.

It is designed controllers able to steer the autonomous ferry to the desired position,
in (Sæther, 2019), where a few different controllers for the ferry was tested. In simu-
lations it was done tests with a PIDwFF, PDwAFF and a ABC. The ABC explained in
subsection 2.2.2 uses a backstepping approach, and was the most accurate controller in
the simulations, but with excessive actuator usage. The simulation model did not account
for the time delay and slow dynamics of the thrusters, so when testing on the ferry the
ABC was to aggressive and not applicable. The PDwAFF, derived in subsection 2.2.3,
gave slightly better performance than regular feedforward, without to much extra actuator
use. By designing a more robust ABC this could be made to fit with the actuators on the
ferry. This could be compared with the other controllers together with an online system
identification for the most accurate and robust system.

System identification of ships has been done in different ways before. Optimization
techniques like using a support vector regression algorithm to find model parameters from
zig-zag maneuvering test of ships (Zhu, 2019). This does not give online system identifica-
tion, as the identification process must be done afterwards. As it is not online identification,
changes in the dynamics will not be accounted for in the model. To deal with nonlinear
ship models, the use of neural networks for system identification online is tested (Zheng,
2019). With learning algorithms it is needed computational power to process the data.
There are few who have looked at model changes due to differences in load/passengers.
Estimation of a ships mass is done with IMU based online estimation (Jonas Linder, 2015).
This method uses a roll-model and is done to investigate the roll dynamics. If the mass
could be estimated, the number of passengers would not necessarily be needed as it is the
weight that effects the model. In the ship model of milliAmpere the roll dynamics are
neglected, and therefore this is difficult to accomplish.
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1.3 Problem description

1.3 Problem description
In this thesis, the objective is to simulate the ferry with different loads and estimate the
changes in the parameters. The parameter changes due to the changed dynamics is simu-
lated to determine if the differences are significant. This will be used to investigate if it is
beneficial with an online identification system and adaptive control to compensate for the
changes.

It is tested if the changes in the dynamics is possible to estimate online, and if the
performance is increased if updated parameters is used in the controllers.

The problem formulation is summarized in the following points:

• Perform a literature study of online system identification methods

• Design and evaluate the performance of online system identification methods

• Compare the performance of traditional feedback controllers with indirect adaptive
controllers in simulations

1.4 Contributions
The ferry model is used to determine which parameters to identify. As the model is com-
plex with coupling between the states and non linear terms, it is tested how this influences
the parameter estimations. A method for identifying the coupling terms of the model ma-
trices is derived and compared to a simpler method of ignoring them and keeping them
constant. Different online parameter identification methods are implemented and tested
through simulations. The estimation methods are evaluated by their convergence time
when identifying the real values of the model, and large deviations as they are estimated.
It is estimated how different number of passengers influence the ferry model and with
these changes the existing controllers are compared to the controllers with estimation of
the parameter changes.

1.5 Outline
This thesis is organized with the following chapters: Chapter 2 presents the theory about
the ferry model, used controllers, path following and parameter estimation methods. In
chapter 3 the simulation implementation is described and the simulation results, followed
by the results of using parameter estimations in the controllers. In chapter 4 the conclusion
and future work is presented.
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Chapter 2
Theory

An overview of the theory and methods used in the simulations is presented in this chapter.

2.1 Modeling
The model of the ferry is based on a six Degrees of freedom (DOF) rigid-body which is
simplified by neglecting heave, roll and pitch, assuming they are small. This results in a 3
DOF model with the states surge, sway and yaw giving the kinematics

η̇ = R(ψ)ν (2.1)

with the state vectors η = [x, y, ψ]T , ν = [u, v, r]T . It is important to keep in mind
which coordinate system each vector is placed in. The pose vector ν is represented in the
North-East-Down (NED) frame, where the x axis points to true north, y axis to east and
z points downwards. The NED coordinate system is a tangential plane from where the
origin is placed, and does not take the earths curving into account. Since operation of the
autonomous ferry will be in a local area this does not effect navigation.

7



Chapter 2. Theory

Figure 2.1: Illustration of the coordinate system in body (Fossen, 2011)

The body frame is shown in Figure 2.1, where the moving coordinate system is fixed
to the ferrys positioning and heading. The origin is placed on the ferry, with the x axis
pointing in the longitudinal direction of the vessel, y axis in the transverse direction and
the z axis normal on x and y axis and pointing downwards. The rotation matrix transform
coordinates from body to the NED frame, and is simplified to

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.2)

The kinetics of the ferry is described from (Fossen, 2011) on the form

Mν̇ + C(ν)ν + D(ν)ν = τ + τwind + τwave (2.3)

with the matrices

8



2.1 Modeling

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (2.4a)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0

 (2.4b)

D(ν) =

d11(ν) d12 d13
d21 d22(ν) d23(ν)
d31 d32(ν) d33(ν)

 (2.4c)

where C(ν) is dependent on the inertia matrix M

c13(ν) = −m12u−m22v −m23r (2.5a)
c23(ν) = m11u (2.5b)
c31(ν) = −c13(ν) (2.5c)
c32(ν) = −c23(ν) (2.5d)

and the elements of D(ν) are defined as

d11(ν) = −Xu −X|u|u|u| −Xuuuu
2 (2.6a)

d12 = −Xv (2.6b)
d13 = −Xr (2.6c)
d21 = −Yu (2.6d)

d22(ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv2 (2.6e)
d23(ν) = −Yr − Y|v|r|v| − Y|r|r|r| (2.6f)

d31 = −Nu (2.6g)
d32(ν) = −Nv −N|v|v|v| −N|r|v|r| (2.6h)

d33(ν) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr2 (2.6i)

From (2.6), D(ν) can be divided into a linear and nonlinear part, D(ν) = DL +
DNL(ν).

The model parameters in M, C and D has been estimated by optimizing a least error
algorithm to find the most accurate parameters fitting with the test data, (Pedersen, 2019).

9



Chapter 2. Theory

2.2 Navigation and Control
It is implemented a simple guidance system with a reference filter to navigate between
waypoints. The performance of three controllers is tested. The different controllers that
have been tested give different results when taking into account tracking error, thruster
usage and dealing with disturbances and model discrepancies. The tested controllers were
variations of the PID controller and adaptive methods with reference feedforward.

2.2.1 PID controller with model reference feedforward
The PID controller is formulated in the body frame, with the error in the NED frame
rotated. The transposed of the rotational matrix with the error gives e = R(ψ)(ηd − η)
and ė = νd − ν. From this the PID controller derives to

τPID = Kpe + Ki

∫ t

0

edµ+ Kdė. (2.7)

Referenced feedforward uses the desired velocity and acceleration to calculate the
”correct” τ given the vessel model in (2.3). This gives a predicted τ to keep the de-
sired trajectory, which leaves the PID controller to compensate for modeling errors. The
feedforward force is given by

τFF = Mν̇d + C(νd)νd + D(νd)νd. (2.8)

The resulting control input of the PIDwFF is then

τPID = Mν̇d + C(νd)νd + D(νd)νd + Kpe + Ki

∫ t

0

edµ+ Kdė. (2.9)

2.2.2 Adaptive backstepping controller
The ABC is derived from a backstepping method where it is assumed discrepancies in all
matrices of the model in (2.3), represented by the pertubations δ, σ and ρ, in addition to
an external force ω:

δMν̇ + δC(ν)ν + σD(ν)ν = ρτ + R(ψ)Tω. (2.10)

This model is used to derive a backstepping controller. When choosing the control law
all the model discrepancies were simplified to be represented through the external forces.
This simplification gives estimates of forces working on the ferry in any directions, but
can not represent changes in the damping or inertia matrices which happens with changes
of the load. This controller works in a similar manner as PIDwFF with the adaptive term,
ω, acting as integral force with quicker adaptation. The control law from backstepping is
run through a low-pass filter to remove the high oscillations that is created by the adaptive
method, resulting in

τ adp = −R(ψ)T ω̂δ + Mα̇+ Cα+ Dα− z1 −K2z2 (2.11)

10



2.2 Navigation and Control

where
˙̂ωδ = −γωδRν̃

α = −K1z1 + RT η̇d

z1 = RT (η − ηd)

z2 = ν −α.

With this adaptive method the update laws for the estimates of the model discrepan-
cies, found in (2.11), are chosen so that they would converge through Lyapunov analysis
(Sæther, 2019).

2.2.3 PD controller with adaptive feedforward
When implementing the PDwAFF, (2.8) is used for finding τ . In addition the external
forces is found by implementing the adaptive term ω from the ABC. This makes it able to
compensate for disturbances and some of the discrepancies of the model. The same update
law for ω̂δ is used as in the ABC. This makes the PDwAFF as follows

τPDFF = −RT ω̂δ + Mν̇ + C(νd)νd + D(νd)νd + Kpe + Kdė (2.12)

When Adding the adaptive part in the feedforward, This acts as the integral action
in the controller. So if there are constant disturbances they are compensated for in ω̂δ .
Therefore only a PD controller is used with the adaptive feedforward.

2.2.4 Reference filter
A third order reference filter is implemented to ensure smooth an continuous signals for
the desired position, velocity and acceleration. If a step on the desired position is given
the reference filter gives a feasible signal for the ferry to follow. From the reference(r) to
the desired position(η) the transformation is given in (Fossen, 2011) on the form

η
(3)
d + (2∆ + I)Ωη̈d + (2∆ + I)Ω2η̇d + Ω3ηd = Ω3r. (2.13)

2.2.5 Line of sight navigation
To navigate through a set of waypoints a Line of sight (LOS) guidance system can be
used to give a desired position and heading (Fossen, 2011). This enables path following
for the ferry so that it can reach the docking on each side. A LOS with enclosure based
steering is used to reach the waypoints. This is done by following a straight line between
the previous waypoint to the next. A circle of acceptance is created around the ferry and
where it intercepts with the line between the waypoints gives the desired position, shown

11



Chapter 2. Theory

in Figure 2.2. The desired heading is found from the angle of the LOS vector. When the
next waypoint is within the circle of acceptance it navigates to the next waypoint.

The desired position and heading is given by

xd = xlos (2.14a)
yd = ylos (2.14b)
ψd = atan2(ylos − y(t), xlos − x(t)) (2.14c)

where ylos and xlos are found by solving the equation set

R2 = [xlos − x(t)]2 + [ylos − y(t)]2 (2.15)

tan(αk) =
yk+1 − yk
xk+1 − xk

=
ylos − yk
xlos − xk

(2.16)

The solution to these equations are found in (Fossen, 2011)(10.70 and 10.71), with condi-
tions for which solution to the 2nd order equations to use depending on current and next
waypoint.

Figure 2.2: LOS vector from intersection between circle of acceptance and waypoint line. Courtesy
of (Fossen, 2011).
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2.3 Online parameter estimation

2.3 Online parameter estimation
To achieve online parameter estimation it is possible to use an output error identification
method. By looking at the error between the model and the actual output it is possible to
converge the estimated parameters towards the real value, by using excitation in the input,
(Ioannou and Sun, 1996). This can be used to get better estimates of the parameters in the
model. A persistent excitation in the input signal is required, ensuring that all states are ex-
cited, to achieve a full convergence between the estimated and actual parameters. This can
become a problem since nominal control would not necessary excite all the states as much.

From a parameterized model of the system, θ is the parameters to be estimated. An
update law for the estimated θ(t) must be found to make the estimated values converge
towards the real ones(θ∗). There are different update methods for θ̇ that are designed
using stability analysis or optimization techniques. These methods aim to minimize the
error between measured and estimated output, and assume that when the output error goes
to zero the estimates(θ) converge towards the real parameters(θ∗ (Ioannou and Sun, 1996).
Two used methods are gradient and least-squares algorithms. The normalized estimation
error(ε) is given as the error between the measurement(z) and the estimated parameters(ẑ).

z = θ∗Tφ (2.17)

ẑ = θTφ (2.18)

ε =
z − ẑ
m2

(2.19)

In (2.19) m2 = 1 + n2s and n2s is chosen to keep ε bounded (e.g., n2s = φTφ).

2.3.1 Gradient methods
This method uses simple optimization techniques to minimize a cost function. The cost
function are variations of expressions of the error. Together with Lyapunov analysis, these
update laws are proved with global asymptotic stability properties, if the input is PE

Instantaneous cost

The gradient method using instantaneous cost is the simplest update law. With a quadratic
cost function

J(θ) =
ε2m2

2
=

(z − θTφ)2

2m2
, (2.20)

the gradient of the cost function updates the estimates of θ. Hence J(θ) goes towards
the global minimum. The gradient of the cost function is given by

∇J(θ) = − (z − θTφ)φ

m2
= −εφ (2.21)
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Chapter 2. Theory

By implementing an adaptive gain, Γ = ΓT > 0, the adaptive law for updating θ(t) is
found from the gradient method.

θ̇ = −Γ∇J(θ) (2.22)

θ̇ = Γεφ (2.23)

With a convex J(θ) this guaranties the existence of a single global minimum. The
properties of this method is bounded ε and θ, and exponentially convergence for θ(t) to θ∗

if φ is PE.

Integral cost

The integral cost function utilizes a forgetting factor, β > 0, and chooses the parameter θ
to minimize the integral square error of the past data. The forgetting factor discards data
that is old enough exponentially. the integral cost function is

J(θ) =
1

2

∫ t

0

e−β(t−τ)ε2(τ)m2(τ)dτ (2.24)

J(θ) is convex also in (2.24), so minimizing using the gradient method w.r.t θ finds
the global minimum. This gives the update law

θ̇ = −Γ∇J = Γ

∫ t

0

e−β(t−τ)
(z(τ)− θTφ(τ))

m2(τ)
φ(τ)dτ (2.25)

Where Γ = ΓT > 0 is the adaption gain, and β the forgetting factor. The update law
(2.25) can be implemented as

θ̇ = −Γ(R(t)θ + Q(t)) (2.26a)

Ṙ = −βR +
φφT

m2
, R(0) = 0 (2.26b)

Q̇ = −βQ− zφ

m2
, Q(0) = 0 (2.26c)

This results in the same stability proofs for the minimum of J(θ) with global asymp-
totic stability, with theta converging to θ∗.

2.3.2 Least-squares
The least-squares algorithm uses the sum of the squares from the error between the mod-
eled and measured data to update the mathematical model. By using this method the noise
or inaccuracies in the measurements are expected to have less effect. This is a versa-
tile method which can be equipped with covariance resetting and forgetting factor to help
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2.3 Online parameter estimation

faster convergence and adaptation against changes. The update law of θ uses a matrix P
acting as a covariance matrix, and is found by the cost function

J(θ) =
1

2

∫ t

0

e−β(t−τ)
(z(τ)− θTφ(τ))2

m2(τ)
dτ +

1

2
e−β(t)(θ − θ0)TQ0(θ − θ0) (2.27)

Hence J(θ) is convex the global minimum is given by J(θ) = 0, where the gradient
of J(θ) is

∇J(θ) = e−βtQ0(θ(t)− θ0)−
∫ t

0

e−β(t−τ)
(z(τ)− θTφ(τ))

m2(τ)
φ(τ)dτ (2.28)

The solution to the global minimum yields

θ(t) = P(t)[e−βtQ0θ0 +

∫ t

0

e−β(t−τ)
z(τ)φ(τ)

m2(τ)
dτ ] (2.29)

where

P(t) = [e−βtQ0 +

∫ t

0

e−β(t−τ)
φ(τ)φT (τ)

m2(τ)
dτ ] (2.30)

P(t) exists as Q0 = QT
0 > 0 and φφT ≥ 0. From this the update law with least-

squares is

θ̇ = Pεφ (2.31a)

Ṗ = βP−P
φφT

m2
P, P(0) = P0 = Q−10 (2.31b)

Least-squares with covariance resetting

With β = 0 this method is referred to as pure least-squares. The problem being P may
become arbitrarily small and the convergence will slow down. To prevent this covariance
resetting is added, by setting P(t) = P0 if λmin(P(t)) is smaller than the threshold. This
results in an exponential convergence for θ(t)− > θ∗ if φ is PE.

Least-squares with forgetting factor

By utilizing β 6= 0 this works as a forgetting factor for better convergence when the
behaviour of the system changes. With β 6= 0 the problem of P getting arbitrarily small
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Chapter 2. Theory

is not present, but instead there is a chance of P− > ∞. To prevent this R0 is used as a
upper limit for P, and the updated adaptation law becomes

θ̇ = Pεφ (2.32a)

Ṗ = βP−P
φφT

m2
P, if ||P(t)|| ≤ R0 (2.32b)

Ṗ = 0, otherwise (2.32c)

This ensure exponentially convergence towards θ∗ when φ is PE.

2.3.3 Discussion

The four estimation methods uses different update laws for θ. Instantaneous cost is the
simplest only taking into account the latest measurement. An improved version of this is
integral cost where the integral of ε is used to update θ. With the system being a Multiple
input multiple output (MIMO) system with nonlinear terms it could be beneficial to use
more than the latest measurement, as if there is a constant deviation between θ and θ∗ this
could be corrected with integral cost.

With the least-squares method they have the benefit of using a covariance matrix. This
makes the methods able to do more rapid changes to θ if it is larger variations in ε. When
the error becomes small and stabilizes the covariance matrix should follow, allowing less
changes to θ.

Integral cost and Least-squares with forgetting factor (LSwFF) both has a forgetting
factor. This makes them more suitable to adapt to changes that arise, like sudden changes
in the model. Least-squares (LS) which does not use forgetting factor will then converge
slower towards the changes parameters, as all of the previous measurements with around
the old parameters is still remembered.

2.4 Parameters to identify

The ship model is a nonlinear MIMO system, which brings much more complexity to
identifying parameters than a single input single output (SISO) system. To be able to use
the online estimator schemes described above, some simplifications to the model must be
done. Since the ferry has an instability in heading, parameter estimations can not be done
on matrix form as a whole system. Each state must therefore be divided and threated as an
individual estimation. By using the decoupled model of the ferry the estimations will be
done easier. The decoupled model is obtained by putting all coupling terms for surge to
zero in M and D in (2.3). Each equation for each state can then be found.
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2.5 Integral Absolute Error

m11u̇+ c13r + (d11L + d11NL)u = τu (2.33a)
m22v̇ +m23ṙ + c23r + (d22L + d22NL)v + (d23L + d23NL)r = τv (2.33b)

m32v̇ +m33ṙ + c31u+ c32v + (d32L + d33NL)v + (d33L + d33NL)r = τr (2.33c)

From the system in (2.33) the nonlinear terms and terms effected by other states can
be combined to a τσ . This gives us a linear inertia and damping term to estimate shown
in (2.34). By combining the coupling terms and nonlinear terms to τ , in each state can
be viewed as fully decoupled from each other and estimation can be done as for a SISO
system. The parameters to be estimated is mii and dii giving adaptive linear terms for
inertia and damping dynamics to compensate for the changes. The systems for parameter
estimation is

m11u̇+ d11Lu = τuσ (2.34a)
m22v̇ + d22Lv = τvσ (2.34b)
m33ṙ + d33Lr = τrσ (2.34c)

where

τuσ = τu − c13r − d11NLu (2.35a)
τvσ = τv −m23ṙ − c23r − d22NLv − (d23L + d23NL)r (2.35b)
τrσ = τr −m32v̇ − c31u− c32v − (d32L + d33NL)v − d33NLr (2.35c)

Since the initial parameters are known, these are used in the nonlinear parts to find τσ .
On the form in (2.34) the estimator schemes described in section 2.3 can be used to find
the adaptive parameters.

θ∗i =

[
mii

diiL

]
, φi =

[
ẋ
x

]
, zi = τxσ (2.36)

for i ∈ 1, 2, 3 and x ∈ u, v, r.

2.5 Integral Absolute Error
IAE is a common way of measuring the performance of a control system. This method
shows how close to a reference signal the system is over time. The weighting of the error
is equal throughout the whole measurement, meaning the error at a specific time is given
by the slope of the graph. So if the value of the IAE is constant over a time period the error
is zero. IAE is given by

IAE =

∫ t

0

|e|dt (2.37)
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Chapter 3
Simulations

3.1 Simulation Implementation
The simulations are done with Matlab with the model implemented in simulink. Here
the system with reference filter, the different controllers and the model of the ferry is
simulated. The simulations is run at a fixed step size of 0.01 seconds.

3.1.1 Reference signal
The two input signals that are used is a PE input, subsection 3.3.1, and a LOS path fol-
lower, subsection 2.2.5. This is given to the reference filter, subsection 2.2.4, so that the
reference signal for η, η̇ and η̈ is continuous and smooth. The bandwidth of the filter is
chosen low enough for the ferry to be able to follow the desired movement. A realisation
of the reference filter in a block diagram is shown in Figure 3.1. To prevent too high veloc-
ities and acceleration it is implemented a saturation on the respective states. The saturation
is put as a limit in the integral blocks, instead of a saturation on the state, which would
give integral wind-up and create large overshoots.

Figure 3.1: Realisation of a 3rd order reference filter in a block diagram, courtesy of (Fossen, 2011)
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Chapter 3. Simulations

3.1.2 Line of sight guidance system

The LOS guidance system finds a desired heading by using the function atan2(y, x),
which finds the four-quadrant inverse tangent of x and y. This gives a wrapped signal be-
tween ±180◦, going from −179◦ to 179◦ with only 2◦ change. The reference filter would
then move the heading reference the long way around ta achieve the desired heading. To
unwrap the reference signal the error between the new desired heading and the current ref-
erence signal is found and added to the current reference signal. This gives a continuous
heading reference which is not bounded if the ferry should drive in circles.

3.1.3 Controllers

The three controllers is implemented with a Matlab function which takes input from the
signals in simulink. Each controller finds the desired output by calculating the error and
system matrices for the feedforward. The output, τ , is fed to the thrusters.

3.1.4 Thrusters

From (Sæther, 2019) it is described a significant delay from a set point is given to the
thrusters react to it, as well as having quite slow dynamics when rotating and reaching the
desired force. The thruster dynamics have not been modeled so the dynamics is repre-
sented by a pure time delay of 0.5 seconds. This is the delay that was estimated for the
thrusters to react to a given set point. The thrusters has a saturated output of maximum
500Nm force in any direction and 1000Nm torque when turning. This correspond to the
thrusters on milliAmpere.

3.1.5 Model changes

The model of the ferry is derived from testing with stable conditions, with no change of
passengers(load) and only small changes in the weather conditions. To simulate how the
dynamics of the ship changes from zero to full load the model is altered. Changes in
the load is modelled by adding weight in the inertia matrix M. More mass will give an
increase of inertia and it is assumed a linear increase of the parameters in M proportionally
to the added weight. Since C is dependent of the inertia matrix(M) the changes of the
Coriolis and centripetal matrix are given from the changes of M. The calculation of a new
M is done by specifying a number of passengers with an estimated average weight and
calculating a scaling factor(KM ) for M.

KM =
weightpassengers + weightferry

weightferry
(3.1)

M = KM ·Minitial (3.2)
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The same alterations could be done with the damping matrix. Since the damping
matrix contains linaer and nonlinear terms some assumptions must be done to how the
load affects D. This is not looked into in this thesis.

3.1.6 Parameter estimation

The different parameter estimators is implemented with the methods describes in sec-
tion 2.3. The estimated parameters are given back to the controllers to update the model.
To realise the estimator algorithms a forward Euler method is used to update values, where
the change of a parameter is its derivative times the step size.

3.1.7 Estimation difficulties

One of the difficulties when estimating, is the non linear terms of DNL which can cre-
ate unwanted affects. The estimators are linear and Only the linear terms of D can be
estimated, so if there is any discrepancies in the nonlinear parameters this must be com-
pensated for in the linear term. To do this it must find a balance between quick estimation
to compensate or more robustness with slower convergence.

All of the estimator schemes uses parameters that is estimated in other cost functions.
This makes the estimators dependent on the others to find their parameters for it self to
estimate the real value exactly. This can cause trouble if other local minimums is found
between the estimators, and full stability is hard to reach before a all parameters is almost
perfect.

3.2 Simulation results

System identification of the linear parameters in the matrices M and D of the model is
tested with the methods described in section 2.3. These are tested against each other com-
paring their convergence rate towards the real values, large oscillations in the estimates
while converging and overall robustness against inaccuracies.

Testing of the various system identification methods is done by simulating the decou-
pled model of the ship and analysing how each method converges to the real values in the
model. The tests are done with PE in all the states by combining two sine signals with
different amplitude and frequency, which is used as the reference signal for desired posi-
tion of each state in the 3 DOF. The tuning of the identification methods are done with
ideal conditions, assuming the forces acting on ferry are given from the feedback loop of
the thrusters. Then the delays in the system and the thruster dynamics does not effect the
parameter identification.

The initial guess of the parameters to be estimated are chosen with an error from their
real values in the model, and is seen in Table 3.1. The error size is not the same between
all of the parameters to make sure the conditions are not identical between the inertial
or damping parameters. The inertial matrix parameters has an effect in the identification
process of the other states with coupling terms through the Coriolis matrix, especially
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when all states are excited at the same time. This could make it difficult estimating the
parameters of all states at the same time.

Table 3.1: Initial values and real values when estimating

Initial value Real value

Parameter mii dii mii dii

θ11 2200 20 2389.7 27.6
θ22 2300 60 2533.9 52.9
θ33 4900 100 5068.9 122.8
θ23 50 -40 62.4 -24.7
θ32 10 -10 28.1 -3.5

3.3 Simulations with PE

3.3.1 Persistent excitation of input
To test how the different methods work an input signal with PE of all states is chosen.
The persistence of excitation of the input is a condition to achieve the convergence rate
that each method should give, (Bitmead, 1984). To have an input consisting of a rich
enough signal, it is possible to combine multiple sine waves with different amplitude and
frequency. The reference signal for all of the states consists of a square- combined with
two sine signals. A square signal can mathematically be expressed from Fourier series
expansion as the infinite sum of sine waves containing the odd-integer harmonic frequen-
cies, (Weisstein, 2018). The resulting reference signal should therefore be able to maintain
persistent excitation of the system. The reference model gives the desired position from
the reference signal to ensure that the ferry is able to track the desired position.

The square signals are given by

gx(t) = 10 · sgn(sin(0.01t)) (3.3a)
gy(t) = 10 · sgn(sin(0.014t)) (3.3b)
gψ(t) = 0.7 · sgn(sin(0.008t)) (3.3c)

The input for each state is then

xr(t) = gx(t) + sin(0.1t) + 3sin(0.03t) (3.4a)
yr(t) = gy(t) + sin(0.1t) + 2sin(0.03t) (3.4b)
ψr(t) = gψ(t) + 0.17sin(0.08t) + 0.087sin(0.04t) (3.4c)

It was experienced during simulations that if the square signals of yr(t) and ψr(t)
triggered at the same time or close to each other the coupled terms had easier to influence
the estimation of the other state, slowing down the convergence rate. The desired position
and velocity from these signals is
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Figure 3.2: Desired position and velocity with PE of system

This gives a moving pattern shown in Figure 3.3, and will achieve PE of the system.
The ferry should not use this when in normal operation, but is a way of getting the fastest
convergence of the parameters. It could be used as a way to get good initial values with
different numbers of passengers, and will be compared with the convergence while simu-
lating nominal driving.
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Figure 3.3: Tracking of ferry in north/east with PE of system

3.3.2 Constant coupling terms
The easiest estimations are done when using constant coupling terms in M and DL. Only
the diagonal of each matrix is estimated giving an adaptive parameter for inertia and damp-
ing for each state in ν. With changes to the system matrices the coupling terms will not
be estimated, so the parameters on the diagonal will compensate for the other changes to
some degree. The initial parameters found in M also indicate that the diagonal parameters
are the most dominant, as in the diagonal parameters of Minitial in (3.5) are much larger
than the coupling terms.

Minitial =

2389.7 0 0
0 2533.9 62.4
0 28.1 5068.9

 (3.5)

A simulation with all of the different methods is shown in Figure 3.4.

Instantaneous cost

The simplest of the gradient methods only uses a constant gain to estimate the parameters.
Tuning the estimation of the parameters can be done almost individually as they appear
decoupled. The model for r has coupling terms depending on the inertia parameters of u
and v, effected by C. Hence m11 and m22 must be close to their real value before the yaw
model can converge completely.

With instantaneous cost the parameters modeling u and v converge slower than the
other methods. In particular m33 and d33 are much slower, and it has trouble keeping
an exponentially convergence, as the estimates of m33 almost stops. The estimate of d33
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stays the same for a long time until the square signal for the heading reference triggers.
The estimator gains is given by the diagonal matrix Γ and is shown in Table 3.2.

Table 3.2: Estimator parameters for instantaneous cost

Parameter Value

Γ11 diag(150, 1.5)
Γ22 diag(150, 3)
Γ33 diag(4000, 75)

Integral cost

When implementing integral cost it is a bit more complex with tuning a forgetting factor
as well as the gain. The forgetting factor decides the rate of discarding past data. A large β
keeps past data for a longer time, and the parameters that are fitted to the model converges
slower. In contrast a low β gives more aggressive estimation, only taking into account the
last measurements. Therefore β can be used as a damping factor for the estimates.

The convergence rate is some improvement when compared to instantaneous cost. The
model parameters for the states u and v reaches the real value faster than the instantaneous
cost, but the r parameters give a bad estimate before converging. The positive is that
it converges completely with m33 before instantaneous cost. the estimator gain Γ and
forgetting factor β is shown in Table 3.3

Table 3.3: Estimator parameters for integral cost

Parameter Value

Γ11 diag(3000, 5)
Γ22 diag(3000, 5)
Γ33 diag(5000, 50)
β11 0.8
β22 0.8
β33 0.2

Least-squares with covariance resetting

The LS method is almost like integral cost but with an adaptive gain(P). The adaptive gain
has an update law depending on the states and it is difficult to have any control of how P
changes. Without forgetting factor(β = 0) P is kept from becoming arbitrarily small by
resetting P. When simulating there is little control over the covariance matrix(P) except
for the bounds that are set.

The simulations of the least-squares with covariance resetting show quick convergence
with almost always moving closer to the real value. With no forgetting factor, the square er-
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ror of all measurements is used. This makes this method less robust to parameter changes,
with very good estimates of a static value. This methods gives the quickest convergence
with PE and constant coupling terms. The initial covariance matrix and minimum ||P|| of
this method is shown in Table 3.4.

Table 3.4: Estimator parameters for LS

Parameter Value

P 11 diag(1000, 10)
P 22 diag(3000, 20)
P 33 diag(10000, 100)
λmin11 1
λmin22 1
λmin33 100

Least-squares with forgetting factor

With forgetting factor the complexity of the tuning increases, with tuning β as a damp-
ing factor, and choosing a maximum for the covariance matrix. The complexity makes it
difficult to tune so that the convergence is satisfactory. This results in increased conver-
gence time and overshoot compared to the LS method. With the forgetting factor it will
be more adaptive to changes, and is similar to integral cost. The initial covariance matrix,
maximum ||P|| and the forgetting factor is shown in Table 3.5.

Table 3.5: Estimator parameters for LSwFF

Parameter Value

P 11 diag(20, 0.1)
P 22 diag(20, 0.1)
P 33 diag(500, 10)
β11 1
β22 1
β33 1
Rmax11 1000
Rmax22 1000
Rmax33 10000
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Figure 3.4: Parameter estimation with Persistent excitation and constant coupling terms

27



Chapter 3. Simulations

3.3.3 Estimated coupling terms
It is possible to estimate the coupled terms with the same methods as above. In the surge
decoupled model there are dependencies between v and r, and this parameter can be found
by estimating the effect from the coupled state. The challenge when estimating the effect
both states have at the same time, is that both parameters will compensate for the same
estimation error. Hence the error is corrected for twice, and full convergence to the real
parameters is not possible.

To achieve full convergence an iterative solution is used, where the model parameters
depending on v and r is not estimated at the same time. This gives independent measure-
ments for each calculation, while using the latest parameter estimations for the coupling
terms. The resulting online estimator is more complex with multiple estimated parame-
ters used in all of the estimator schemes. This gives uncertainties in the terms, where one
parameter is depending that the other parameters converge to reach the real value. The
overall convergence will be slower, but with more exact estimates of more parameters.

With this method the diagonal parameters and the coupling parameters is estimated
every other iteration. This gives good convergence rate, with all parameters reaching the
real value. The problem with this is if the initial guess of the diagonal parameters are far
away from the real value. Then the coupled terms will compensate for the deviations in
the other parameters. As the diagonal terms are much larger and more influential in the
model, it is beneficial to get good estimates of these before the coupled terms. To imple-
ment a faster convergence rate for the diagonal terms, a weighting system is used to give
more measurements to estimating these terms. This is done by giving multiple iterations
to update the diagonal terms before an iteration is used to update the coupled terms. This
gives a quicker convergence of the diagonal parameters, and more stable convergence for
the coupled parameters. The coupled parameters then gives a smaller overshoot and error
without over compensating to much for the other parameters. The weighting used is five
iterations estimating the diagonal of M and DL and one iteration for the coupling terms.

The instantaneous cost method is difficult tuning to satisfaction and with the overall
lack of performance compared to the other methods, it was not tested further. The other
methods have been tested and compared in Figure 3.5. They give different performances
when adding estimation of the coupled terms, and the added complexity makes some of
the online estimators hard to tune. In general the overall estimator gains needed to be
lower with estimation of the coupling terms.

Integral cost

The integral method is still relatively easy to implement, with a gain and forgetting factor
for each parameter pair in M and DL. All off the parameters converge approximately
exponential with some oscillations until all parameters converge. One of the difficulties
with this method is that the coupling terms, and especially m23, moves further away from
the initial guess before converging. estimator parameters are shown in Table 3.6.
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Figure 3.5: Parameter estimation with Persistent excitation and estimated coupling terms
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Table 3.6: Estimator parameters for integral cost with estimated coupling terms

Parameter Value

Γ11 diag(400, 4)
Γ22 diag(1500, 10)
Γ33 diag(10000,100)
Γ23 diag(5000, 150)
Γ32 diag(5000, 150)
β11 1.2
β22 1.2
β33 1
β23 0.1
β32 0.1

Least-squares with covariance resetting

With the least-squares methods it is harder to control how the estimations are updated.
The covariance matrix(P) has an update law depending on the states, and only upper
or lower bounds of P can be set. LS which does not have forgetting factor has a slow
convergence in most of the parameters. The covariance resetting helps the convergence
rate, but still the there is a small deviation which takes long time. It uses long time before
the estimates improve, nearly 400 seconds, and has a slower convergence rate than the
other methods. The difficult state m23 shows the slow convergence rate of the LS method,
as there is still a significant deviation between the estimated and true value. In Figure 3.6
the performance of the different methods of estimation m23 is shown better. Parameteres
used in the estimation is shown in Table 3.7.

Table 3.7: Estimator parameters for LS with estimated coupling terms

Parameter Value

P 11 diag(100, 1)
P 22 diag(300, 2)
P 33 diag(1000, 20)
P 23 diag(800, 20)
P 32 diag(300, 100)
λmin11 0.1
λmin22 1
λmin33 10
λmin33 40
λmin33 1
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Least-squares with forgetting factor

LSwFF Shows similar performance as integral cost with quick and stable convergence.
With the coupled parameters there is a big improvement and has the smallest deviation
to the real values before converging. The problem with the LS also effects the LSwFF
method, and is visible in Figure 3.6 as the final convergence is slow. Parameters used in
the estimations are shown in Table 3.8.

Table 3.8: Estimator parameters for LSwFF with estimated coupling terms

Parameter Value

P 11 diag(100, 0.1)
P 22 diag(10000, 1)
P 33 diag(10000, 1)
P 23 diag(20, 0.5)
P 32 diag(20, 0.1)
β11 0.1
β22 0.5
β33 0.5
β23 0.4
β32 0.5
Rmax11 2000
Rmax22 20000
Rmax33 20000
Rmax23 1000
Rmax32 1000
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Figure 3.6: Estimation of coupling term m23 with PE input
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3.4 Simulations with guidance system

3.4.1 Guidance system

One of the challenges with system identification is to excite all the states. While the ferry
is driving back and forth this may not happen. To give more realistic simulations it is
implemented a LOS enclosure based guidance system to navigate the ferry between two
waypoints. This makes it able to see how the parameter estimation will behave under
nominal driving.

The LOS guidance system uses two way points that it navigates between, representing
each side of the ferry transportation route. The guidance system finds a reference signal
for rn = [xd, yd, ψd], that navigates the ferry back and forth. The reference signal is found
from the two waypoints and is described in subsection 2.2.5. This gives a path to follow
that requires less actuator usage than the PE input, and will result in lower excitation of
the system. It should therefore be harder for the estimators to find the true values.
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Figure 3.7: LOS guidance system navigating between two waypoints

The guidance system starts in position (0, 0) and goes to (120, 20), giving the move-
ment of the ferry shown in Figure 3.7. With these two waypoints the thrusters give a
constant force large parts of the way, and the thrusters does not excite the system very
much in these parts.
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3.4.2 Constant coupling terms
With constant coupling terms the estimation of the diagonal parameters still converge with
all three methods, shown in Figure 3.8. The main difference from the PE input is the pe-
riod where it moves with constant speed forwards and not exciting the system. This gives
no update in the estimated parameters. Only when it reaches a waypoint and turns back
around is the system excited and the estimates is updated. In these short periods of turning
it is enough to give good estimates within reaching three waypoints.

Integral cost, LS and LSwFF are tested, with all estimates converging. There are some
differences, where the LS method has the quickest convergence time comparing with all
parameters. With the covariance matrix in the least-squares methods, they suppress the
error peaks for the states that have converged already and is influenced by the deviations
in the inertia parameters. These are very apparent with the integral cost showing in almost
all parameter estimation.

3.4.3 Estimated coupling terms
With estimated coupling terms the estimation takes much longer to reach their real values.
Simulations of the different methods is shown in Figure 3.9. The integral cost is with the
coupled terms very aggressive, overshooting and creating large spikes while converging.
This is similar as without the estimated coupled terms. Despite having large deviations it
is one of the fastest to converge completely when all of the parameter estimations come
close to their real values, while the least-squares methods have slower and more steady
convergence. This is evident in the model parameters of r, m32/d32 and m33/d33, when
the estimations from integral cost has converged at 3000 seconds and the other methods
still has a small error at 5000 seconds.

LS with covariance resetting has the most stable estimates with little to none overshoot
and a smooth trajectory when closing in. When considering the model parameters of r
this method has more difficulties finding the real parameter value. LSwFF behaves like an
improved integral cost, with the forgetting factor giving similar behavior.
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Figure 3.8: Parameter estimation at nominal operation and constant coupling terms
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Figure 3.9: Parameter estimation at nominal operation and estimated coupling terms
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3.4.4 Continuous estimations
The estimations become more and more time consuming as the complexity with coupled
parameters are added and little excitation of the system from nominal driving. each trip
with the ferry varies with number of passengers and the ferry can not drive back and forth
for 5000 seconds to find the correct parameters every time. Therefore it is necessary to be
able to save the estimations and continue the next trip. It is possible to save the estimations
for a specific number of passengers or with a pressure sensor measuring the load. If this
is implemented on the autonomous ferry it is possible to continue the estimations when
the passenger number or load is approximately the same on a trip in the future. With
the estimations in Figure 3.9 as an example, the final estimated values could be used as
the initial guess for the next period, and continue the convergence. This gives a huge
improvement, and the difficult parameters in yaw, m33 and d33, are estimated further in
Figure 3.10. This shows the possibilities for reaching good estimates after enough trips.
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Figure 3.10: Continuous estimation with previous estimated values as initial guess
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3.5 Indirect adaptive control

3.5 Indirect adaptive control
To test if there is any improvement in controlling the ferry, the parameter estimations
is used in the controllers with model prediction. This is the PIDwFF, PDwAFF and
ABC. The benchmark will be these controllers without any parameter updates, ”no es-
timation”.They are compared with the controllers using estimated parameter from the dif-
ferent estimation methods. To give a picture of how well the controllers can perform when
the parameter estimations have converged, a plot of the controllers with the exact model
changes is added, ”perfect estimation”. To compare the results the error and IAE is plotted
to see how the error evolves over time. The error is defined as the distance to the desired
position and degrees between the heading of the ferry and the desired heading.

The controllers gives a predictive output depending on what reference point is given
and the model implemented in the controllers. The implemented model of the controllers
is where the parameter updates are done. The test is done with 10 passengers on board.
The simulations are run for 10000 seconds, to let the estimations converge and see the
effect that this has.

3.5.1 PID with feedforward
With a PIDwFF, the controller without updated parameters gives a small error, with spikes
of 0.08m and less than 0.5◦ in error. The implementation of the online system identifi-
cation with constant coupling terms gives the errors shown in Figure 3.11. This shows
the distance error changes little even after the estimated parameters has converged. The
biggest improvement is in the heading error. The spikes are reduced exponentially until
parameter convergence at approximately 5000 seconds. This is emphasised in Figure 3.12
where the simulation with the exact parameters as in the ferry model, representing a per-
fect estimation, does not improve the error and performs slightly worse than the simulation
without estimation. The improvement of the heading error is much better, where the dif-
ferent methods perform different. Comparing with a perfect estimation all the methods
converge to having the same slope, with the LS method giving the quickest convergence.
While in the process of finding the estimates the other estimation methods reach parame-
ters that gives a worse error than not estimating any parameters. Once they close in on the
estimations, they out perform the original controller.
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Figure 3.11: Error of position and heading with PID with feedforward and constant coupling terms
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Figure 3.12: IAE of position and heading with PID with feedforward and constant coupling terms
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With the methods estimating the coupling terms the IAE is shown in Figure 3.13.
The perfect estimation does not improve the distance error compared with when only the
diagonal is estimated. Even with a perfect model in the controller there are still errors
present. This is caused by the instability of the heading, which is hard to neglect. The
complexity of the system gives the integral cost method large deviations which results in
a much worse IAE. The LS method performs equally as without the estimated coupling
terms. the LSwFF improves the convergence with estimated coupling terms, resulting in
an IAE of below 2000◦.
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Figure 3.13: IAE of position and heading with PIDwFF and estimated coupling terms

3.5.2 PD with adaptive feedforward
With the adaptive feedforward an adaptive term is used to help compensate for the changes
in the dynamics. The error of the distance in Figure 3.14, has similar amplitude of the
spikes as the feedforward without adaptive terms. When comparing the heading error
spikes it is some improvement, with them converging down to 0.05◦. The main differ-
ence is the oscillating between the turning, where the adaptive term is working to neglect
the model changes. As the estimations converge the error from the oscillating becomes
smaller, but since it is discrepancies between the models from not estimating the coupling
terms it does not converge to zero. With estimation of the coupling terms the adaptive term
must compensate much less for the model discrepancies. The error is shown in Figure 3.15
where the oscillating error almost disappears completely.
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Figure 3.14: Error of position and heading with PD with adaptive feedforward and constant coupling
terms
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Figure 3.15: Error of position and heading with PDwAFF and estimated coupling terms
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This can be seen in the IAE plots of the constant, Figure 3.16, and estimated coupling
terms, Figure 3.17. The oscillation from the adaptive term creates a larger IAE without
estimating the coupling terms, while with estimation the performance is similar to the the
PIDwFF. The heading error has the same effect from the adaptive term. With estimation
of the coupling terms the heading error is even less than without the adaptive term. All of
the methods converge around 4000 seconds. If the parameters converge to the real values
the IAE at 10000 seconds will be bellow 1000◦, further improving the standard PIDwFF.
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Figure 3.16: IAE of position and heading with PDwAFF and constant coupling terms

41



Chapter 3. Simulations

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

IAE of PDwAFF(estimated coupling terms)

 Position

Integral cost

LS

LSwFF

No estimation

Perfect estimation

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000
Heading

Integral cost

LS

LSwFF

No estimation

Perfect estimation

Figure 3.17: IAE of position and heading with PDwAFF and estimated coupling terms

3.5.3 Adaptive backstepping controller
The ABC performs different than the other controllers, where it gives a smaller distance
error than heading error. From the error plots in Figure 3.18 and Figure 3.19 it is shown that
in both cases converges quickly. The error spikes are improved from the other controllers
regarding the distance error with than 0.01 meters, but at the cost of higher heading error
spikes of approximately 0.1◦.
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Figure 3.18: Error of position and heading with ABC and constant coupling terms
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Figure 3.19: Error of position and heading with ABC and estimated coupling terms

When comparing the IAE between the constant and estimated coupling terms in Fig-
ure 3.20 and Figure 3.21, it is very little differences. The LS method outperforms the
two other methods in both cases, where the LSwFF has worst convergence with constant
coupling terms and integral cost struggles with convergence with the added complexity
of the estimated coupling terms. The difference between the perfect and no estimation is
evident in both cases, giving an improvement of the error. The advantages of estimating
the coupling terms is very few when comparing the perfect estimation of both cases. The
discrepancies from not estimating the coupling terms does not influence the error allot as
the perfect estimation graphs has approximately the same slope. The extra complexity
only results in slower convergence while using the ABC.
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Figure 3.20: IAE of position and heading with ABC and constant coupling terms

43



Chapter 3. Simulations

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

IAE of adaptive control(estimated coupling terms)

 Position

Integral cost

LS

LSwFF

No estimation

Perfect estimation

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
104 Heading

Integral cost

LS

LSwFF

No estimation

Perfect estimation

Figure 3.21: IAE of position and heading with ABC and estimated coupling terms

3.6 Discussion
With full PE it shows that it is possible to achieve full convergence of the estimated param-
eters to the model parameters. When keeping the coupling terms constant the convergence
is relatively fast with accurate estimates in approximately 400 seconds. In this case the LS
estimator outperforms the others with fastest convergence of all parameters. The biggest
difference is shown in state d33 where the methods with forgetting factor diverges from
the real value creating a big deviation before converging.

The complexity is increased when estimating the coupling terms as well, which is
shown in the excess time before convergence. The different methods perform more simi-
lar with estimated coupling terms. Integral cost still has large deviations before converging
with some parameters. The benefit of forgetting factor is shown in Figure 3.6. It seems like
the minimum of the cost function does not correspond with the model parameter before the
other parameters used in the estimations are sufficiently close to the real value. This results
in a slow convergence with the LS method, as it does not forget the bad estimations in the
beginning. Therefore without forgetting factor the estimator is less robust against changes.

When path following is introduced to simulate nominal operation the input signal is
much less exited. This results in time periods where there is almost no update of the
parameters, hence the convergence time is increased. With constant coupling terms the
performance of the tested methods act similar as with full PE. LS is the quickest with all
parameters converging around 800 seconds.
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The simulations with path following and estimated coupling terms becomes very time
consuming as the excitation of the input is reduced. With full PE all parameter estimations
are sufficiently close after 1000 seconds, while with path following some parameters uses
4000-5000 seconds. The same trend as with full PE is shown as with path following. LS
reaches good estimates of the real value quicker then the other methods, but struggles with
the final convergence, with a small error in multiple parameters at 5000 seconds. Integral
cost and LSwFF with forgetting factors struggles with bad estimates before 1000 seconds,
where some of the estimations move further away than the initial guess. From that point
the convergence rate is exponential, and surpasses the estimates from LS.

By implementing the estimations into the controllers it becomes an indirect adap-
tive controller. The distance error and heading error is taken into account. PIDwFF and
PDwAFF both uses a feedforward term where the model estimates are updated. Both of
these controllers struggle to improve the distance error, with the heading instability hard
to neglect by updating the model. This is emphasised by the IAE plots of the distance
error where no estimation and a perfect estimation of the model almost gives the same
error. Comparing the heading error the parameter estimation improves the performance
drastically for the controllers with feedforward. The slope of the IAE without estimation
is approximately seven times higher than the controller using the exact model parameters.
The overall performance comparing PIDwFF and PDwAFF is very similar which is ex-
pected as the adaptive term works as a more aggressive integral action. With the adaptive
term it suppresses the error spikes more, but with fast oscillations in between trying to
compensating for the model discrepancies.

ABC is the controller benefiting most from the parameter estimation. The IAE plots
of both distance and heading with perfect estimation is approximately doubled compared
to no parameter estimation. It manages to compensate the distance error from the heading
instability better than the other controllers. This comes at the cost of a larger IAE in head-
ing, as the perfect estimation still is worse than the other controllers without estimated
parameters.

Table 3.9: IAE of distance at 10000 second

Constant coupling terms Estimated coupling terms

Parameter Integral cost LS LSwFF Integral cost LS LSwFF

PIDwFF 3690 3714 3657 3621 3687 3706
PDwAFF 5022 4511 3976 3838 3964 4230
ABC 1124 863 1425 1373 966 1052
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Table 3.10: IAE of heading at 10000 seconds

Constant coupling terms Estimated coupling terms

Parameter Integral cost LS LSwFF Integral cost LS LSwFF

PIDwFF 2470 1542 3364 3448 1527 1805
PDwAFF 4853 2862 2742 2342 1652 2353
ABC 13957 9169 18905 18470 11519 12887

It is possible to estimate the coupling terms of the model parameters with the estima-
tion methods tested. This results in a increased complexity and convergence time. The
estimations with and without constant coupling terms is tested with controllers to see how
it effects the performance and error. The distance error Table 3.9 and the heading error
Table 3.10 in the IAE plots show the performance of the different estimation methods at
10000 seconds. The distance error of the methods is very close comparing PIDwFF and
PDwAFF, while LS performs far better than the other methods when comparing the head-
ing error.

From all of the IAE plots it becomes obvious that the best performing estimator is the
LS method. With ABC it has quick convergence and can almost keep track of the perfect
estimation. PIDwFF and PDwAFF is hard to separate when comparing the distance error,
while with the IAE of the heading error LS is smallest in all case but one, where LSwFF
barely beats LS. This is also evident in the parameter estimation plots as LS gives a close
estimated of the model parameter very quick, without diverging much in the process. In
comparison integral cost gives some very bad estimates before converging which results
in the large IAE in some cases.
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Conclusion and future work

4.1 Conclusion
The introduced estimation methods manages to identify the parameters from the model
of the ferry. When keeping the coupling terms of the model constant the convergence
time is significantly faster than when the coupling terms are estimated. When estimating
the parameters under nominal operations the excitation of the input is much lower giving
large time periods where the parameters are not updated. It still manages to converge to
the real model parameters with the little excitation, at the cost of increased convergence
time. Even if it is not realistic for the ferry to operate in the same time horizon as in the
simulations, the identification process can be saved and continued the next time the same
amount of passengers is on board. This makes it possible to achieve better estimates over
time, improving the control of the autonomous ferry.

The implementation of the Indirect adaptive controllers showed that it is possible to
improve the controllers with more accurate model parameters. ABC improved both the
positioning error and heading error substantially with an improved model, and PIDwFF
and PDwAFF reduced the error of the heading. All of the estimation methods in the IAE
plots eventually reached the same slope as when the exact model parameters were used in
the controllers. LS stood out with the best convergence rate overall and reached the lowest
IAE compared with the other methods in almost all cases.
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4.2 Future work
Future work on this project could include:

• Implement the truster allocation algorithm which is used on the ferry. This will give
more realistic simuations and the excitation of the input is more exact.

• Compare with direct adaptive control methods. Direct adaptive control does not
estimate the parameters, but uses adaptive controller gains instead, to minimize the
error. This could give good results with neglecting the instability in yaw of the ferry.

• Simulate changes in D depending on the number of passengers. Only model changes
in the inertia matrix is tested. It is reasonable to assume that a different load will
change the damping matrix as well. The damping matrix includes nonlinear terms
and could create deviations between the models.

• Test the effect of noise and disturbances in the estimations. How evident will the
Estimation drift be, and could this be compensated for.
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