
Atussa Koushan
H

ybrid O
bstacle Aided Locom

otion in Snake Robots

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Atussa Koushan

Hybrid Obstacle Aided Locomotion in
Snake Robots

Master’s thesis in Cybernetics and Robotics

Supervisor: Øyvind Stavdahl

June 2020

Atussa Koushan

Hybrid Obstacle Aided Locomotion in
Snake Robots

Master’s thesis in Cybernetics and Robotics
Supervisor: Øyvind Stavdahl
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

Master’s Thesis

Studentens navn: Atussa Koushan

Fag: Engineering Cybernetics

Tittel (norsk): Hybrid hindringsbasert fremdrift (HOAL) av slangeroboter

Tittel (English): Hybrid Obstacle Aided Locomotion (HOAL) in Snake Robots

Description:

A number of different principles for snake robot locomotion have been proposed and tested, many of
which are based on heuristic rules and stiff position controlled joints. A more physics-based and
compliant method is being developed which is based on the formalism of hybrid position/force
control (HPFC).
In this assignment you will study the differences between manipulator control and the free-ranging
snake robot locomotion problem in the context of so-called Dynamic HPFC (DHPFC), adapt the
method to the new problem as necessary, and assess the results in idealized scenarios.

1. Give a brief overview of the most important strategies for terrestrial snake robot locomotion, and
discuss the prospective properties of HPFC in the context of your findings.

2. Adapt the method of Dynamic Hybrid Position/Force Control, introduced by Yoshikawa et al. in 1987,
to the snake robot locomotion problem, and give a thorough description of the differences and
similarities of the snake robot case vs. the traditional manipulator case. Pay special attention to the
roles played by the so-called force and position spaces, and how these can be utilized and further
decomposed to illuminate necessary and sufficient conditions for propulsion.

3. Select a set of scenarios and a suitable control structure and simulate these on a suitable platform.
The scenarios should be chosen to illustrate and evaluate the central aspects of the method.

Veileder(e): Øyvind Stavdahl, Institutt for teknisk kybernetikk

Trondheim, 13.01.2020

Øyvind Stavdahl
Faglærer

ii

Abstract

Snake robots are serial link robots able to traverse a variety of different terrains.

Obstacle Aided Locomotion (OAL) is a method for traversing terrains prone

by obstacles like rocks and walls which a snake robot can utilize to push

itself forward while following a predetermined path. In order to control the

resulting obstacle contact forces and snake robot shape simultaneously, the

Hybrid Position/Force Control (HPFC) method is studied. The combination of

OAL and HPFC is referred to as Hybrid Obstacle Aided Locomotion (HOAL).

This report is focused on the dynamic HPFC method, which integrates

the robot dynamics into the control. The method is thoroughly studied and

adapted to the snake robot case. Furthermore, some additions to the method

are proposed and tested. The simulator SnakeSIM, which is based in the

Robotic Operating System (ROS), has been used for all experiments. An

explanation and evaluation of the simulation framework is provided in the

report.

It has been found that the simultaneous control of force and position for

a snake robot with several contact points is achievable, but highly dependent

on the number of snake robot links and contact points. More specifically, the

iii

iv ABSTRACT

experiments suggest that at least two actuated joints should be located between

each contact point for successful control. Because the testing was limited to

a snake robot with only six links and very simple control goals, it is believed

that this number might be higher for more complex scenarios.

Sammendrag

Slangeroboter er seriekoblede roboter som evner å traversere en mengde

forskjellige terreng. Obstacle Aided Locomotion (OAL) eller hindringsbasert

fremdrift er en metode for traversering av terreng preget av mye steiner eller lik-

nende hindringer som slangeroboten kan utnytte for å dytte seg selv fram langs

en forhåndsdefinert bane. For å kunne styre de resulterende kontaktkreftene

fra hindringer og slangerobotens form samtidig er Hybrid Position/Force Con-

trol (HPFC) eller hybrid posisjons- og kraftstyring studert. Kombinasjonen av

OAL og HPFC er omtalt som Hybrid Obstacle Aided Locomotion (HOAL).

Denne rapporten fokuserer i hovedsak på den dynamiske HPFC-metoden

der robotdynamikken er integrert i kontrollen. Metoden er studert grundig og

nøye tilpasset slangerobottilfellet. Videre er noen forbedringer til kontrollmeto-

den foreslått og testet. Simulatoren SnakeSIM, som bygger på rammeverket

Robotic Operating System (ROS), er tatt i bruk for utførelsen av alle eksperi-

menter. En forklaring og evaluering av simulatoren er gitt i rapporten.

Det ble bemerket at hybrid styring av kraft og posisjon for en slangerobot

med flere kontaktpunkter er oppnåelig, men høyst avhengig av antallet slanger-

obotledd og kontaktpunkter. Eksperimentene antyder at minst to aktuerte ledd

v

vi SAMMENDRAG

mellom hvert kontaktpunkt er nødvendig for tilfredsstillende kontroll. Fordi

testingen var begrenset til en slangerobot med kun seks lenker og veldig enkle

kontrollmål, så er det antatt at dette minstekravet kan være høyere for mer

komplekse scenarioer.

Preface

This report covers the master’s thesis for the Cybernetics and Robotics study

program at the Norwegian University of Science and Technology (NTNU). The

work is a continuation of the independent project work conducted during the

previous term, and some parts of this report are taken directly from that work.

This is stated explicitly in the concerning sections. Furthermore, a lot of the

ideas behind this work are inspired by my supervisor Stavdahl’s earlier notes

and the discussions we have had on the topic.

The simulator used in this project has been developed by Sanfilippo at

NTNU with considerable contribution from skilled students. The code for the

method developed in this project is written and integrated to the simulator

by me. The figures presented throughout the report are also designed by me,

unless stated otherwise.

The unfortunate COVID-19 situation that arose early this year has certainly

had an impact on the project flow. There has been a significant lack of theo-

retical discussions and brainstorming with fellow students, which for me is

something that usually has a very positive effect on my work. Luckily, I have

still had digital meetings with my supervisor throughout the entire semester

vii

viii PREFACE

and I want to praise him for his continuous engagement and availability.

Atussa Koushan

28.05.2020

Trondheim, Norway

Contents

Abstract iii

Sammendrag v

Preface vii

Nomenclature xiii

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Previous work . 1

1.2 Scope of the project . 3

1.2.1 Thesis assignment interpretation 3

1.2.2 Contributions . 4

1.3 Model specifications . 5

1.3.1 Simplifications . 5

ix

x CONTENTS

1.3.2 Assumptions . 6

1.3.3 Further model description 7

1.4 Report structure . 8

2 Background theory 11

2.1 Terrestrial snake robot locomotion strategies 11

2.1.1 Traditional locomotion strategies 12

2.1.2 Central pattern generators (CPGs) 14

2.1.3 Obstacle-aided locomotion (OAL) 14

2.1.4 Locomotion strategies with compliance control 16

2.2 Snake robot kinematics . 20

2.2.1 Constrained kinematics 24

2.3 Snake robot dynamics . 26

2.4 Snake robot constraint formulation 29

3 Dynamic HPFC for snake robots 33

3.1 Hybrid position/force controllers 34

3.1.1 Traditional HPFC . 35

3.1.2 Dynamic HPFC . 40

3.2 Passive joints consideration . 50

3.3 The utility of dynamic HPFC in snake robot locomotion 53

3.4 Application challenges related to dynamic HPFC 55

3.4.1 Computational challenges 55

3.4.2 Differences with the traditional manipulator case 58

3.5 Task analysis . 60

3.5.1 The overall task of the snake robot 61

3.5.2 Lower level control tasks 61

CONTENTS xi

3.5.3 Task restrictions . 62

3.5.4 Task oriented control scheme 66

3.6 Hybrid obstacle aided locomotion (HOAL) 68

3.6.1 General strategy for HOAL 69

3.6.2 Conditions for propulsion 70

4 Simulator 75

4.1 Background info . 75

4.1.1 Motivation for the simulator choice 76

4.2 Simulator architecture . 77

4.2.1 ROS . 77

4.2.2 Gazebo . 78

4.3 General simulation setup . 80

5 Simulations 83

5.1 Simulator configuration for experiments 84

5.2 Simulator validity test . 86

5.3 Essential position control . 89

5.4 Force control with various CKC formulations 94

5.4.1 Regular CKCs . 96

5.4.2 Minimal CKCs . 98

5.5 Position control with active joint torque focus 100

5.5.1 Control torques computed for both passive and active

joints . 101

5.5.2 Control torques computed for only active joints 103

5.6 Simultaneous position/force control 105

xii CONTENTS

6 Discussion 109

6.1 The snake robot dynamic HPFC method 109

6.1.1 Differences with traditional HPFC 110

6.1.2 Mathematical formulations 111

6.1.3 Passive joints . 112

6.1.4 Closed kinematic chains 113

6.1.5 Control structure . 114

6.2 Simulation limitations . 115

6.2.1 Snake robot model . 115

6.2.2 Force sensor signal . 116

6.2.3 Simulator user-friendliness 117

6.3 Dynamic HPFC for HOAL . 117

7 Conclusion 119

7.1 Insights from simulations . 120

8 Future work 121

8.1 Dynamic HPFC method . 121

8.2 HOAL . 122

8.3 Simulation platform . 123

Bibliography 123

Nomenclature

The following list describes several symbols and abbreviations used in the

report. All units follow the SI unit system.

Abbreviations

HPFC Hybrid Position/Force Control

OAL Obstacle Aided Locomotion

HOAL Hybrid Obstacle Aided Locomotion

CKC Closed Kinematic Chain

Control symbols

Kp Proportional gain

Ki Integral gain

τc Joint motor control torques

τP Joint torques for desired position control

τF Joint torques for desired force control

Robot dynamics symbols

τ Generalized torques

xiii

xiv NOMENCLATURE

M Mass matrix

C Coriolis matrix

g Gravity matrix

L Lagrangian

K, P Kinetic and potential energy

I Moment of inertia of rod

EF Task frame axes of force constraints

EP Task frame axes of position constraints

Robot kinematics symbols

n Number of links

nc Number of obstacles in contact

N Number of generalized coordinates

m Link mass

l Link length

q Generalized coordinates

φi Joint angle of link i relative to preceding link

θi Angle of link i relative to the base frame

(x0, y0) Position of tail in base frame

(xi , yi) Position of endpoint of link i in base frame b

(xc,i , yc,i) Position of contact point on link i in base frame b

k Distance from joint to contact point on proceeding link

NOMENCLATURE xv

Tbi Transformation matrix from base frame to frame of link i

Tbci Transformation matrix from base frame to frame of contact point on link i

vi Velocity of endpoint of link i in base frame b

vc,i Velocity of contact point on link i in base frame b

Jt Task Jacobian

Jc Constraint Jacobian

rt Task space coordinates

rc Constraint space coordinates

Spaces

F Force space

M Motion space

C Constraint space

P Propulsion space

S Shape space

R Space of real numbers

xvi NOMENCLATURE

List of Tables

4.1 Simulated snake robot model properties 80

4.2 Simulated obstacle model properties 81

5.1 Simulation configuration for simulator validation test 86

5.2 Simulation configuration for position control experiment 89

5.3 Simulation configuration for force control experiment 94

5.4 Simulation configuration for double position control experiment 100

5.5 Simulation configuration for simultaneous position and force

control experiment . 105

xvii

xviii LIST OF TABLES

List of Figures

1.1 Model of snake robot with n links 7

1.2 Model of snake robot and obstacles 8

2.1 Illustration of some traditional locomotion strategies [2]. 13

2.2 Obstacle-aided locomotion illustration [21] 16

2.3 Model of snake robot with notation 21

2.4 Snake robot global link angles 23

2.5 Snake robot contact parameters 25

3.1 Model of snake robot and obstacles illustrating the task and

contact frames . 42

3.2 Snake robot losing contact with obstacle 56

3.3 Obstacle changing contact from one link to another 56

3.4 Industrial robot manipulator polishing a car 59

3.5 Snake robot in environment with varying obstacle types 60

3.6 First method of defining the closed kinematic chains 63

3.7 Second method of defining the closed kinematic chains 64

3.8 Force application yielding no propulsion 72

xix

xx LIST OF FIGURES

3.9 Force application yielding propulsion 72

3.10 Snake robot desired path following 73

4.1 Message passing system in ROS 78

4.2 Gazebo graphical user interface 79

4.3 Overview of nodes and topics used in the project experiments . 81

5.1 Initial snake robot configuration for dynamic HPFC experiments 85

5.2 Illustration of validation test . 87

5.3 Snake robot joint torques from simulator validation test 88

5.4 Screenshot from validation test Gazebo simulation 88

5.5 Control diagram for essential position control 90

5.6 Results from filtered position control 91

5.7 Results from unfiltered position control 92

5.8 Snake robot after filtered position control 93

5.9 Snake robot after unfiltered position control 93

5.10 Control diagram for force control 95

5.11 Results from experiment with regular CKCs 97

5.12 Results from experiment with minimal CKCs 99

5.13 Control diagram for position control with active joint torque focus101

5.14 Results from position control experiment with torque calculation

for all joints . 102

5.15 Results from position control experiment with torque calculation

for only active joints . 104

5.16 Control diagram for dynamic HPFC 106

5.17 Results from simultaneous force and position control 108

Chapter 1

Introduction

This chapter presents the most relevant previous research contributions to

the studied snake robot locomotion method and the hybrid position/force

control method. Furthermore, the scope of the project and its contributions are

summarized. The simplifications and limitations, as well as the snake robot

model description can also be found in this chapter. Lastly, the structure of the

report is described.

1.1 Previous work

The department of engineering cybernetics at the Norwegian University of

Science and Technology (NTNU) has made significant contributions to the

field of snake robot control, related to both aquatic snake-like propulsion and

efficient snake robot locomotion on flat surfaces [1].

Some common modes of snake robot locomotion on flat surfaces are lateral

1

2 CHAPTER 1. INTRODUCTION

undulation, concertina locomotion and sidewinding. Lateral undulation and

sidewinding are dependent on ground friction for the snake robot to propel

itself forward, whereas concertina locomotion utilizes walls or narrow spaces

that the snake robot can anchor itself against and push itself forward [2].

Terrestrial snake robot locomotion can also be achieved in terrains with more

defined irregularities, such as rocks. In 2011, Liljebäck et al. [3] proposed a

locomotion strategy for continuously adapting the shape of the snake robot

to the environment to avoid obstacle jams during straight line path following.

Directional compliance, proposed by Wang et al. [4] in 2020, is a novel method

that adapts the snake robot stiffness so that it conforms to the environment in

some directions and resists in others and thus uses obstacles to enhance the

existing propulsion mode. Both of these strategies are reactive methods that

consider obstacles already encountered.

Obstacle Aided Locomotion (OAL) is on the other hand a method that uses

obstacles as the main part of the locomotion strategy and always seeks to find

the obstacles that can profit the propulsion the most. The idea of this method,

which was introduced by Transeth et al. [5] in 2008, is that the snake robot

pushes against obstacles in order to propel itself forward along a predefined

path. The principle is comparable to lateral undulation, where ground friction

is used instead of obstacles to push against. It is thus possible to say that

OAL is a very discrete special case of lateral undulation. For this reason it is

believed that solutions and findings related to OAL can later be used to profit

and optimize snake robot locomotion gaits like lateral undulation.

In OAL it is desired to control the force against obstacles and shape of the

robot independently. Thus, Stavdahl [1] proposed a combination of OAL and

Hybrid Position/Force Control (HPFC), leading to the term Hybrid Obstacle Aided

1.2. SCOPE OF THE PROJECT 3

Locomotion (HOAL). Klafstad [6] summarized the theory around this concept in

2018, and it was further investigated and tested by the author in her previous

project work [7] in 2019, both with emphasis on the HPFC method introduced

by West and Asada [8] in 1985. This method was developed after the concept

was first introduced by Raibert et al. in 1981 [9], and aims at controlling

constrained robot manipulators based on kinematic projections of the motion

and force such that these variables comply with both the allowable and desired

behaviour of the snake robot. Yoshikawa [10] advanced the method in 1987 by

including the dynamics of the robot in the control calculations.

The research of HPFC has mainly been focused on the control of traditional

robot manipulators. Nansai et al. [11] applied HPFC on snake robots with

wheels in 2016. The wheels restrict direct sideways movement of the robot

and can therefore be considered as obstacles on the sides of the snake robot.

The HPFC was however not applied for the locomotion purpose of the robot,

but for a typical robot manipulator task the snake robot was set to execute. A

lot of work still remains when it comes to combining snake robot OAL with

HPFC. Because the behaviour of the snake robot is driven by its dynamics, the

research is now continued to explore the dynamic HPFC method in light of

HOAL.

1.2 Scope of the project

1.2.1 Thesis assignment interpretation

The detailed assignment for this thesis is provided in the very beginning of the

report. The author’s perception is that the main focus lies on mathematically

4 CHAPTER 1. INTRODUCTION

adapting the dynamic HPFC method of Yoshikawa [10] to the snake robot case

with special attention to the snake robot force and position spaces. A control

structure should then be designed and implemented in a carefully selected

simulator to conduct experiments that help evaluate important aspects of the

developed method. A discussion of how the dynamic HPFC method can be

used to achieve HOAL should also be carried out.

1.2.2 Contributions

The most significant contributions from this project are listed below.

• A mathematical adaptation of the dynamic HPFC method for snake

robots intended to perform HOAL.

• An analysis of further control requirements, as well as suggestions to as-

sociated improvements and modifications to the dynamic HPFC method.

• A discussion of the requirements to the snake robot itself and its configu-

ration relative to the obstacles it is in contact with for successful dynamic

HPFC and HOAL.

• Thorough selection of a suitable simulator, as well as a review of this

simulator and a comparison to other corresponding simulators.

• A guiding description of the simulator structure and how it generally

can be utilized.

• Implementation and testing of the the developed snake robot model and

dynamic HPFC method in the simulation environment.

• A discussion of the findings in light of HOAL.

1.3. MODEL SPECIFICATIONS 5

• Proposals for further improvements to the snake robot dynamic HPFC

method and control structure.

• Suggestions to some key aspects for achieving HOAL and a discussion

of these.

1.3 Model specifications

This section presents the physical aspects of the snake robot model used

throughout the report. The model has three main parts, namely the environ-

ment, the snake robot and the obstacles. The value of all variables needed to

express the model and control goals are assumed known at all times. Further

simplifications and assumptions are presented below. The parts Assumptions

and Further model description are taken from the previous work of the author [7],

but some of the assumptions are modified to conform with the current project.

1.3.1 Simplifications

Snake robots performing OAL are typically in contact with several obstacles

at a time and it is thus desired to control the snake robot at several contact

points simultaneously. A higher number of joints and therefore actuators are

beneficial for execution of this kind of control. However, in order to reduce

the dimensions of the dynamic and kinematic calculations, the snake robot

model used for testing consists of six links and five joints, which has limited

the possible test variations.

The computed snake robot model is designed for a very specific scenario in

which it is assumed that there are three contacts between a predefined set of

6 CHAPTER 1. INTRODUCTION

snake robot links and obstacles at all times. Consequently, all movement of the

snake robot can only be performed in the bounds of this assumption, meaning

at most one link length displacement.

Another simplification made in the mathematical model is that the snake

robot and obstacles are assumed to be 2D bodies, although they have 3D

properties in the simulator. However, since all movement and control happens

in the 2D plane it is not considered to have been a very evident deficiency.

The collisions between the snake robot and obstacles are not modeled

because it is assumed that the contact is maintained at all times. However,

small collisions are experienced by the simulator as a result of a sensitive force

sensor and the contact point on a link moving within the range of the link.

1.3.2 Assumptions

Assumptions 1-6 are taken from Stavdahl [1], whilst assumptions 7-9 are

specific for this project.

1. All parts of the model are assumed to be rigid.

2. The robot has n joints and all links have length l and mass m.

3. Only flat, 2-dimensional cases are considered.

4. The robot has no lateral extension.

5. There is no friction.

6. Obstacles have no spatial extent, only a static position in the plane.

7. Any link is in contact with at most one obstacle at the time.

1.3. MODEL SPECIFICATIONS 7

8. The robot is in touch with obstacles in its start configuration.

9. Contact between a link and an obstacle is maintained.

1.3.3 Further model description

The snake robot

The snake robot itself is modeled as a simple planar robot manipulator with

links and joints. The main difference between the snake robot and a classic

robot manipulator is the property that the snake robot is not physically attached

to any fixed point in the world. This frees one constraint. However, it is still

relevant to express the position of the first link of the snake, also denoted as

the tail. This is performed by introducing three virtual joints to the model;

two translational and one rotational joint. These joints are not controllable and

merely for describing the kinematics, dynamics and constraints. The model of

the snake robot is visualized in Figure 1.1, where physical robot links are blue

and the virtual ones are green.

𝑦

𝑥

Figure 1.1: Model of snake robot with n links

8 CHAPTER 1. INTRODUCTION

The environment

The environment is the (x,y)-plane in Figure 1.1, and consists of nothing but

the robot and the obstacles.

The obstacles

The obstacles are modeled as rigid points in the plane and any contact with

them is considered a point contact. Figure 1.2 shows three obstacles in contact

with a snake robot.

𝑦

𝑥

Figure 1.2: Model of snake robot and obstacles

1.4 Report structure

It is assumed that the reader is familiar with basic robotics and control theory.

A more thorough explanation of the topics can be found in [12], [13], [14], [2].

To begin with, the report introduces a set of different terrestrial snake

robot locomotion strategies in Chapter 2. This chapter also covers the required

mathematical background theory for understanding the dynamical HPFC

1.4. REPORT STRUCTURE 9

method. The dynamic HPFC method is then thoroughly explained in Chapter

3. All related considerations and limitations are also provided here and the

method is put in the context of HOAL. Chapter 4 explains the structure of

the chosen simulator and how it is used for the simulated experiments, which

are presented in Chapter 5. The results from the experiments and general

analysis of the dynamic HPFC method on snake robots are discussed in

Chapter 6. Lastly, Chapter 7 concludes the work and Chapter 8 proposes some

ideas for future research and possible improvements based on the challenges

encountered in this project.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background theory

This chapter gives an overview of some of the most important strategies for

terrestrial snake robot locomotion to address the first part of the thesis project

description. Section 3.3 in Chapter 3 further discusses the use of HPFC together

with these locomotion strategies. The rest of this chapter focuses on theory

required to adapt the method of dynamic HPFC to the snake robot model.

This includes an explanation of the snake robot kinematics, dynamics and

constraints.

Some parts of this chapter are fully or partly taken from the previous project

work of the author [7]. This is stated in the respective sections.

2.1 Terrestrial snake robot locomotion strategies

Several methods have been proposed for snake robot locomotion, most of

which are inspired by nature. This part presents some of the well established

11

12 CHAPTER 2. BACKGROUND THEORY

strategies, as well as the newer approach, obstacle aided locomotion, which

this report is based on. Finally, compliance control in snake robot locomotion

is presented to open up for a comparison to what the hybrid position/force

control offers.

2.1.1 Traditional locomotion strategies

Lateral undulation is the fastest and by far the most commonly implemented

locomotion gait for snake robots [15]. It is a continuous movement of the

entire body of the snake relative to the ground. The locomotion is obtained

by propagating sine-waves from the front to the rear of the snake [16], as

illustrated in figure 2.1a. Successful propulsion by lateral undulation requires

that the snake has some grip to the surface enabling it to glide forward without

slipping sideways [17]. This again puts requirements on the friction coefficients,

namely that the coefficient in lateral direction have to be greater than in the

forward direction. If the movement is conducted without slipping, every part

of the body will pass through the same points on the ground.

Concertina locomotion is not employed on open ground, but rather in

narrow spaces where the available range of motion is limited. The motion

is carried out by curving the body to create an anchor against the narrow

environment (see figure 2.1b). The snake alternates between curving the back

and front part of the body so that the front part can be stretched forward and

the back part can be drawn up [2].

A resembling mode of locomotion is sidewinding, in which one part of the

body acts as an anchor while the other part is moved forward. The part that

moves forward is simply lifted off the ground and displaced while the other

2.1. TERRESTRIAL SNAKE ROBOT LOCOMOTION STRATEGIES 13

part stays put, typically in areas with loose sand [2]. It can be seen as a kind of

spiraling motion. Figure 2.1c gives a visual explanation of this gait.

(a) Lateral undulation

(b) Concertina locomotion

(c) Sidewinding

Figure 2.1: Illustration of some traditional locomotion strategies [2].

14 CHAPTER 2. BACKGROUND THEORY

2.1.2 Central pattern generators (CPGs)

The information presented in this section is taken from [18].

A central pattern generator for locomotion control is where neuroscience

meets robotics. CPGs consist of neurons that produce an oscillating, rhythmic

output without requiring sensory information. In nature, CPGs play an im-

portant role in periodic actions like breathing, walking and other modes of

locomotion. While sensory feedback is not needed for generating the rhythms,

it plays a very important role in shaping the rhythmic patterns. This is funda-

mental for keeping CPGs and body movements coordinated.

The method produces stable rhythmic patterns and is able to rapidly re-

turn the system to its normal rhythmic behavior after transient perturbations.

Furthermore, CPG models tend to reduce the dimensionality/complexity of

the control problem in that they have only a few control parameters. These

parameters allow modulation of the locomotion, for instance the speed and

direction or even the type of gait. This allows for higher-level controllers to

circumvent the generation of multidimensional motor commands and stick to

higher level control signals.

CPGs can be applied to cyclic locomotion gaits like lateral undulation,

sidewinding and concertina locomotion since they are based on rhythmic

patterns.

2.1.3 Obstacle-aided locomotion (OAL)

Aforementioned locomotion strategies are first and foremost successful in

plain, obstacle-free environments where ground friction can be used to achieve

propulsion. The OAL method, on the other hand, considers flat environments

2.1. TERRESTRIAL SNAKE ROBOT LOCOMOTION STRATEGIES 15

with obstacles. The obstacles can be compared to the ground friction in other

locomotion gaits like lateral undulation. This is because both obstacles and

ground friction are used to push against. Thus, OAL can be seen as a kind of

discrete special case of lateral undulation. The rest of the explanation of OAL

is taken from the project work of the author [7].

Instead of avoiding physical contact between the robot and obstacles, ob-

stacle aided locomotion aims at profiting from it by using the obstacles as

push-points to propel itself forward. This concept is illustrated in Figure 2.2.

OAL was first introduced by Transeth et al. in 2008 [5]. The motivation behind

this method was based in the ability of biological snakes to utilize irregularities

in the terrain for more efficient locomotion.

Liljebäck et al. [2] describe two major challenges related to OAL:

1. It is unknown in advance when and where the snake robot will make

contact with its environment.

2. The development of a strategy for adjusting the shape of the robot so

that forward propulsion is achieved in any given contact situation.

The following hypothesis is also stated in [2].

Obstacle-aided snake robot locomotion can be achieved by producing body

shape changes where the links in contact with obstacles are rotated so that

the components of the contact forces in the desired direction of motion are

increased.

Holden et al. [19] address the second challenge by formulating an opti-

mization problem that seeks to minimize energy consumption while achieving

propulsion along a user-defined desired path. The output of this optimization

16 CHAPTER 2. BACKGROUND THEORY

Figure 2.2: Obstacle-aided locomotion illustration [21]

is the optimal motor torque inputs. In addition to a user-defined path, this

method assumes that the desired link angles at the obstacles are given.

Bayraktaroglu et al. [20] mention that only the trajectory of the leading link

should be arbitrarily determined. Moreover, Bayraktaroglu et al. [20] state that

in a steady smooth motion, the trajectory of the leading link must be computed

as a function of available push-points for the next contact, and the desired

position and orientation of the following links are those that mimic the motion

of the leading link.

2.1.4 Locomotion strategies with compliance control

Biological snakes cannot in any way be seen as rigid animals. Robots, on the

other hand, are by default very rigid, both in the body material and actuators

used. Compliant control is fundamental when dealing with unstructured envi-

2.1. TERRESTRIAL SNAKE ROBOT LOCOMOTION STRATEGIES 17

ronments because it implicitly controls the energy transfer to the environment

[22].

Two main methods can be applied to snake robots to mimic the compliant

and adaptive behavior between snakes and the environment they traverse. The

first method is using a compliant controller for the actuators, in which they

adapt a spring-like behavior. The shape-based compliance and directional

compliance, among others, go under this category and are explained here. The

second method is directly designing the robot with compliance, meaning that

the mechanical parts are compliant.

Shape-based compliance

A very common way of controlling the shape of snake robots has been speci-

fying the motion of each individual joint directly. This works well as long as

the snake robot is traversing a flat surface without obstacles that would lead

to great deviations from the planned motion. In environments with obstacles,

on the other hand, Liljebäck et al. [23] proposed a specification of the motion

of the robot in terms of shape control points (SCPs). These points specify which

coordinates it is desired that the snake goes through. The points are further

connected with a shape curve defined by an interpolation technique. The

desired joint angles of the snake robot are eventually found by aligning a

virtual robot with the shape curve and adapt its joint angles.

The work of [23] is based on a model of the snake robot crawling by lateral

undulation on a flat surface with circular obstacles. The compliant behavior of

the snake robot is then achieved by assigning mass-spring-damper dynamics to

the SCPs, making the SCPs and thus the shape curve compliant. [23] propose

that the adaptive behavior of the shape curve should depend on the direction of

18 CHAPTER 2. BACKGROUND THEORY

the contact force with respect to the forward direction of motion. Consequently,

a natural choice is to make the shape curve highly compliant for obstructive

contact forces and less compliant for propulsive contact forces.

Directional compliance

The disadvantage of shape-based compliance is that not all terrain features are

helpful for locomotion. Some might impede the movement of the robot instead

of aiding it. Because of this, a novel approach called directional compliance has

been proposed by Wang et al. [4]. The approach is an improved version of the

shape-based compliance controller that adapts the compliance according to the

information it has about the obstacles. This information is obtained from the

force measured through the joints of the robot. Thus, it is what can be called a

reactive controller. Directional compliance allows the robot to selectively admit

forces applied on one side and reject forces from the other side [4].

The most substantial discovery of Wang et al. [4] is that the amplitude of

the shape parameters act as an indication of the robot’s forward progression.

Thus, the amplitude difference from the nominal value is used to determine

whether the robot should increase or decrease it’s curvature at certain segments

of its body. Wang et al. [4] denote admitting external forces that result in

increases in curvature as positive directional compliance and admitting forces

that result in decreases in curvature as negative directional compliance. The

known shape-based compliance is the nominal compliance of the controller.

Furthermore, a filter function is used to adapt this nominal compliance and

include the two other modes.

In summary, directional compliance enables the robot to either push away

from, or comply to, terrain features, based on the torque feedback measured

2.1. TERRESTRIAL SNAKE ROBOT LOCOMOTION STRATEGIES 19

over time [4]. This dynamical system strategy was proven successful even in a

three dimensional environment. However, the main aim of this controller is

utilizing obstacles the snake robot "by chance" collides with in order to avoid

getting stuck between obstacles, rather than following a specific path. This

means that the method is unlikely to choose the most optimal path to move

forward, as is desired in OAL.

Mechanical compliance

When a robot is mechanically compliant, it typically means that it has flexible

or soft mechanics. Several technologies have been explored to realise this

property, like pneumatic, hydraulic, polymers etc. [22]. According to Calanca

[22], most of the implementations at the current state of the art make use

of traditional electric motors with the addition of a soft element and/or a

compliant controller.

Mechanical compliance allows for implicitly controlling the power trans-

ferred to the environment and to exhibit displacement if a force is applied.

Furthermore, it is obvious that the response time of a mechanical compliant

system always will be faster than a system with a compliant controller. The

relation of compliance control to position and force control, is that an ideal

position controlled system has zero compliance whilst an ideal force controlled

system has infinite compliance [22].

20 CHAPTER 2. BACKGROUND THEORY

2.2 Snake robot kinematics

This section is a modified part of the previous work of the author [7]. The

modifications are:

• re-made figures

• variable notations

• fixed mistake in (2.5)

• altered vector of generalized coordinates for the constained case in 2.2.1.

The snake robot is modeled as a serial chain, which is a system of rigid

bodies in which each member is connected to two others, except for the first

and last members that are each connected to only one other member [14]. As

opposed to traditional robot manipulator models, the first joint in the snake

robot model is not physically connected to a base.

The vector of generalized coordinates q for a snake robot with n links is

q = [φ0 φ1 ... φn−1 x0 y0]
T . (2.1)

The coordinates (x0, y0) and φ0 represent the position and orientation of the

tail of the snake robot in reference to the base frame (x, y). These coordinates

cannot be directly controlled and will therefore be referred to as virtual coordi-

nates. The generalized coordinates φ1, ..., φn−1, corresponding to the actuated

joints, refer to the angle of the following link relative to the preceding link. The

number of generalized coordinates including two position coordinates and n

joint angles is N = n + 2.

2.2. SNAKE ROBOT KINEMATICS 21

𝑦

𝑥

𝑦0

𝜙0

𝜙1

𝑥0

𝜙𝑛−1

Figure 2.3: Model of snake robot with notation

The model of the snake robot with the named variables are illustrated in

Figure 2.3.

Homogeneous transformation matrices are used to express the pose (posi-

tion and orientation) of the links in relation to the base frame. This means that

as long as the joint angles and size of the snake robot are known, the Cartesian

positions can be calculated. The homogeneous transformation matrix for the

end point of link i from the base frame b is given by (2.2). The base frame will

stay put regardless of motion of the robot. Note also that the link length l is

assumed equal for all the links.

Tbi = Dx(x0)Dy(y0)
i−1

∑
k=0

Rz(φk)Dx(l) (2.2)

The translation and rotation matrices are given by

22 CHAPTER 2. BACKGROUND THEORY

Dx(x) =


1 0 x

0 1 0

0 0 1

 , Dy(y) =


1 0 0

0 1 y

0 0 1

 ,

Rz(φ) =


cos φ − sin φ 0

sin φ cos φ 0

0 0 1

 .

(2.3)

The transformation matrix from the reference frame to the center of link i

can be found in the same manner. The only difference is that the very last

translational matrix has to take the argument l/2 instead of l. This is useful to

keep in mind as it will be used in Section 2.3 for the derivation of the kinetic

energy of the links.

As mentioned earlier, the transformation matrix Tbi can be used to find the

absolute orientation and position of the tip of link i in the base frame. The

resulting matrix can be written on the form

Tbi =

Rbi(θi) tr
ri

0T 1

. (2.4)

The position is directly extracted from tr
ri = [xiyi]

T . The orientation θi is found

by comparing Rbi to Rz and solving for θi.

The global link orientations θi are visualized in Figure 2.4.

2.2. SNAKE ROBOT KINEMATICS 23

𝑦

𝑥

𝑙

𝜃1

𝜃3

𝜃𝑛

𝑚

Figure 2.4: Snake robot global link angles

Alternatively, one can directly compute the position of the center of a link i

from the expressions below

xi = x0 +
i−2

∑
k=0

l cos (
k

∑
j=0

φj) +
l
2

cos (
i−1

∑
j=0

φj)

yi = y0 +
i−2

∑
k=0

l sin (
k

∑
j=0

φj) +
l
2

sin (
i−1

∑
j=0

φj),

(2.5)

where 1 ≤ i ≤ n.

Forward and inverse instantaneous kinematics

The well known Jacobian lets us transform between Cartesian and joint veloci-

ties. It is derived by taking the partial derivative of the x and y position of link

1 ≤ i ≤ n with respect to all generalized coordinates

24 CHAPTER 2. BACKGROUND THEORY

Ji =

 ∂xi
∂q1

... ∂xi
∂qN−1

∂xi
∂qN

∂yi
∂q1

... ∂yi
∂qN−1

∂yi
∂qN

. (2.6)

The relationship between the Cartesian velocity v of the point (xi, yi) on the

robot and the joint velocities q̇ can thus be written as

vi = Ji(q)q̇ and q̇ = Ji(q)†vi. (2.7)

The first equation is formally referred to as the forward instantaneous kine-

matics, whereas the second one is referred to as the inverse instantaneous

kinematics. J(q)† is the Moore-Penrose [24], [25] pseudo inverse of the Jaco-

bian, which has to be used as a result of the Jacobian being non-square.

2.2.1 Constrained kinematics

For the case in which the robot is in contact with the environment, the motion

will be constrained. The obstacles found in the environment are modelled as

single frictionless points. The only constraint imposed by the environment is

that the robot cannot penetrate the obstacles. It can, however, both apply an

arbitrary large force against them or move along them.

The model assumes that any link can be in contact with at most one obstacle

at the time. To represent the mentioned constraint, the vector of generalized

coordinates is expanded with 2nc further elements, where nc is the number of

obstacles in contact. The updated vector q is now

2.2. SNAKE ROBOT KINEMATICS 25

𝑦

𝑥

𝜙𝑐,𝑛𝑐

𝑘1
𝑘𝑛𝑐

Figure 2.5: Snake robot contact parameters

q = [φ0 ... φn−1 x0 y0 k1 ... knc φc,1 ... φc,nc]
T , (2.8)

where N = n + 2 + 2nc is the new number of generalized coordinates.

The newly introduced coordinates k1, ..., knc ≥ 0 represent the distance to

the contact point from the preceding joint to the link in contact. For instance,

if link 2 is the first link in contact with an obstacle, then the coordinate k1 is

the distance between the joint connecting link 1 and 2 and the contact point

measured along the second link, as illustrated in Figure 2.5. Furthermore,

φc,1, ..., φc,nc are the angles from the links in contact to the global x-axis. This

variable is later used to describe the constraint that the obstacles are fixed in

space. An example is illustrated in Figure 2.5 for the last link in contact with

an obstacle. Seeing as there is no actuation force directly connected to the

obstacle-related coordinates, they will be referred to as virtual joints or virtual

coordinates.

The position of a contact point 1 ≤ j ≤ nc on link 1 ≤ i ≤ n in the base

frame can be derived through the corresponding transformation matrix (2.9).

Tbci = Dx(x0)Dy(y0)
i−2

∑
k=0

(Rz(φk)Dx(l))Rz(φi−1)Dx(k j) (2.9)

26 CHAPTER 2. BACKGROUND THEORY

Constrained instantaneous kinematics

The Jacobian matrix related to the velocity of the contact point can be derived

in the same manner as in the unconstrained case. The only difference is that

the partial differentiation of the contact point (xc, yc) is now taken with respect

to the extended vector of generalized coordinates (2.8). The resulting contact

Jacobian for a contact point on link 1 ≤ i ≤ n is thus

Jc,i =

 ∂xc,i
∂q1

... ∂xc,i
∂qN−1

∂xc,i
∂qN

∂yc,i
∂q1

... ∂yc,i
∂qN−1

∂yc,i
∂qN

. (2.10)

This Jacobian will end up being quite sparse, seeing as the coordinate of a

contact point is independent of all other contact coordinates. This is a property

that can be exploited using sparse solvers if the snake robot has a large number

of links.

The relationships between the Cartesian velocity of a contact point on link

1 ≤ i ≤ n and the joint velocities can now be expressed as

vc,i = Jc,i(q)q̇ and q̇ = Jc,i(q)†vc,i. (2.11)

2.3 Snake robot dynamics

This section, similar to the last section, is taken from [7]. The only modifications

made are the variable notations and an error fix in (2.19).

The snake robot has n− 1 joint actuators that all can apply torques to their

corresponding joints. The dynamics describe how the robot moves in response

2.3. SNAKE ROBOT DYNAMICS 27

to these actuator forces. For simplicity, it is assumed that the actuators do not

have dynamics of their own and, hence, arbitrary torques can be commanded

at the joints of the robot [26].

The dynamics of the snake robot will be expressed using the joint space

equations of motion formulation

M(q)q̈ + C(q, q̇) + g(q) = τ. (2.12)

Because the movement is restricted to the 2D plane, the gravitational term g(q)

can be neglected and the equations of motion can be rewritten to

M(q)q̈ + C(q, q̇) = τ, (2.13)

where M(q) and C(q, q̇) is the mass matrix and Coriolis matrix respectively.

τ is the vector of generalized torques corresponding to the generalized coordi-

nates (2.1). Furthermore, the elements corresponding to the virtual coordinates

will be zero at all times.

Solving (2.13) with respect to q̈ yields

q̈ = M−1(q)(τ − C(q, q̇)). (2.14)

Several methods exist for finding the equations of motion for a robot. The

Euler-Lagrange method [12], which is chosen here, is based on the difference

in kinetic energy (K) and potential energy (P) of the system, also known as the

Lagrangian

28 CHAPTER 2. BACKGROUND THEORY

L = K− P. (2.15)

The equations of motion can now be expressed as a second order partial

differential equation

d
dt

∂L
∂q̇
− ∂L

∂q
= τ. (2.16)

Again, simplifications can be made from the restricted movement in the world

and thus the potential energy P can be neglected. The Lagrangian is therefore

simply equal to the kinetic energy, which is the sum of the kinetic energy for

every link [27]. Furthermore, the kinetic energy for one link i is divided into

two parts, Ktranslational and Krotational . The kinetic energy can now be express as

K =
n

∑
i=1

(Ktranslational,i + Krotational,i), (2.17)

where the translational and rotational kinetic energy is given in (2.18) and

(2.19) respectively.

Ktranslational,i =
1
2

m(ẋ2
i + ẏ2

i) (2.18)

Here m is the link mass, and (ẋi, ẏi) make out the velocity of the center of the

link found by differentiating (2.5) with respect to time.

Krotational,i =
1
2

Iθ̇2
i (2.19)

2.4. SNAKE ROBOT CONSTRAINT FORMULATION 29

θ̇i is the rotational velocity of link i with respect to the base frame. Furthermore,

every link has the same moment of inertia, namely I = (1/12)ml2. This is

the moment of inertia of a rod, corresponding to the moment of inertia of a

cylinder with zero radius [12].

2.4 Snake robot constraint formulation

Figure 2.5 illustrates the used model of the snake robot and its environment.

When looking at this model, it is evident that the snake robot will experience

constraints if it tries to move its links in the directions of the obstacles. One

way of expressing this constraint is limiting the velocity of the links in contact.

The position of contact on link i was in 2.2.1 denoted as (xc,i, yc,i). Thus, the

corresponding velocity vc,i can be written (ẋc,i, ẏc,i).

The velocity of this point is not constrained in every direction, but in the

direction normal to the link. This follows from the assumption of the contact

being a point contact. The normal velocity can be found with the use of the

angle θi of link i with respect to the base frame. From basic trigonometric laws,

the normal velocity is found to be

vnc,i = −sin(θi)ẋc,i + cos(θi)ẏc,i. (2.20)

Since there can only be one contact per link and the contact can only take place

at one side of the link at the time, the link can still move away from the obstacle

with a velocity normal to the link. Holden et al. [19] introduce a variable γi

that holds information about which side of the link the obstacle is positioned.

30 CHAPTER 2. BACKGROUND THEORY

The variable can take the values −1, 0, 1, where γi = 1 for obstacles to the right

of the link and vice versa. γi = 0 for links not in contact with any obstacles.

The allowed normal direction of movement for link i can now be expressed

as

γivnc,i ≥ 0. (2.21)

It might be desired to stay in touch with the obstacle for propulsion purposes.

Because of this, it is reasonable to simplify the constraint equation to not let

the contact point on the link move in any normal direction to the link at that

point. The constraint can thus be expressed as

γivnc,i = γi(−sin(θi)ẋc,i + cos(θi)ẏc,i) = 0 (2.22)

Moreover, the side of the contact is insignificant if the velocity is limited in

both directions. (2.22) is further simplified to

vnc,i = −sin(θi)ẋc,i + cos(θi)ẏc,i = 0. (2.23)

In robot manipulator theory it is common to use both the base coordinate

frame and a coordinate frame related to the end effector. The end effector

coordinate system is irrelevant for the contact point velocities. It is however

possible to define the velocities in coordinate systems related to the contact

points. A coordinate system related to the contact point on link i is (xt,i, yt,i),

where the x-direction is the direction of the link in contact. This means that

2.4. SNAKE ROBOT CONSTRAINT FORMULATION 31

the rotation of this coordinate system relative to the base coordinate system

is θi. The subscript t stands for task and is introduced for its purpose in the

dynamic hybrid position controller explained in 3.1.2.

Since the velocity normal to the link in the task coordinate frame is the

velocity along the y-axis, the constraint on link i can be rewritten to

ẏt,i = 0, (2.24)

which is much simpler than (2.23).

32 CHAPTER 2. BACKGROUND THEORY

Chapter 3

Dynamic HPFC for snake

robots

This chapter explains the dynamical HPFC method of [10] adapted to the

snake robot case and what is here referred to as the traditional HPFC method,

namely the method of West and Asada [8]. Furthermore, the advantages and

challenges that come with adapting the dynamical method to a snake robot

model are presented and discussed. Some modifications attempting to make

the control more robust are also suggested. Lastly, the method is put into

the context of HOAL, and further requirements for HOAL are suggested and

reviewed.

33

34 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

3.1 Hybrid position/force controllers

The goal of the snake robot is to push against obstacles in a fashion that yields

forward propulsion along a path. Consequently, the robot will have to curve

itself along the path whilst applying a force to the obstacles considered advan-

tageous. The behavior of the robot has to comprise with the constraints arising

from the contact, which further motivates the use of hybrid position/force

control (HPFC).

HPFC is not a control method per se, but rather a method for determining

when and in which directions force or motion control should be applied. It

is desired to control motion along the unconstrained motion directions and

force along the constrained motion directions. Different approaches to this

problem exist. One is the use of selection matrices, introduced by Raibert

and Craig et al. [9]. The disadvantage of this approach is that the directions

in which force and motion should be controlled has to be recalculated for

every step. In another approach, introduced by West and Asada [8], two

projection matrices are used as filters in joint space to automatically select

between position and force controlled vectors. There is however a disadvantage

to this method as well, which is that the dynamics of the robot are ignored. A

thoroughly studied method called dynamic HPFC, developed by Yoshikawa

[10], is therefore presented and adapted to the snake robot.

The theory on traditional HPFC up until the part Passive joints, as well as

this introduction, are a modified part of the earlier project work of the author

[7]. The rest of the section is focused on the dynamic HPFC method adapted

to the snake robot case.

3.1. HYBRID POSITION/FORCE CONTROLLERS 35

3.1.1 Traditional HPFC

Like mentioned above, velocity and force can be controlled in the directions

in which they are not constrained. The end effector space of a robot can be

divided into two orthogonal domains, a position domain and a force domain.

These domains are complementary to the directions of the corresponding

constraints at the end effector. It is logical to conclude that if there is contact

with the environment, motion cannot be controlled freely. On the other hand,

if there is no contact, there is no direction in which the robot can apply a

force. Ergo, the force and motion control directions do not overlap and the

domains are orthogonal. This means that position and force can be controlled

independently and arbitrarily in these domains.

The following relationships are based on the Jacobian introduced in 2.2.1.

v = Jq̇, τ= JTf (3.1)

An important observation is that constraints due to contact with the envi-

ronment are constraints due to a closed kinematic chain. In general, this is

something that occurs when at least two points of the robot are in contact with

the environment. For the snake robot this might not always be the case. It is

however possible to define a virtual closed kinematic chain where the robot is

connected to the base with the virtual joint variables x0, y0 and φ0. A separate

Jacobian is calculated for each closed kinematic chain, as explained in 2.2.1.

Relationship (3.2) comes from the motion being constrained at a contact

point.

36 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

v̇ci = Jciq̇ = 0 (3.2)

The solution to (3.2) can be proven to be

q̇ = (I− J+ciJci)y, (3.3)

where y can be an arbitrary vector, as it will yield zero end effector motion.

Furthermore, since the matrix Jci might be non square, the pseudo inverse J+ci

is used. For a closed kinematic chain, the work done at the end of the chain

must also be zero. Therefore, the sum of the work done by each of the joints

must be zero:

τT q̇ = τT(I− J+ciJci)y = 0. (3.4)

(3.4) has the general solution

τ= (J+ciJci)
Tz, (3.5)

where z can be an arbitrary vector.

The allowable motion is now characterized by [I− J+ciJci] and the allowable

forces by [J+ciJci]
T. These matrices are orthogonal projectors in joint space onto

the allowable position and force variations respectively. A further explanation

of this result is given in Chapter 5 of [8]. The projectors will be abbreviated to

3.1. HYBRID POSITION/FORCE CONTROLLERS 37

jPap = [I− J+ciJci] and jPa f = [J+ciJci]
T = [I− (

j
apP)T]. (3.6)

The subscript j denotes joint space, and ap and a f stand for allowable positions

and allowable forces respectively. It can be observed that these projection

matrices project onto the nullspace of the respective constraint directions. This

can further be related to the concept of task priority, in which tasks with

lower priority are performed in the null-space of higher priority tasks [28].

An important observation is that the mapping onto the allowable force and

position spaces are in this method purely determined by the kinematics of the

robot.

Multiple constraints

If there are several contact points, projection matrices are calculated for each

constraint, and the final projection matrices are found by taking the union and

intersect of the different jPa f and jPap respectively.

Passive joints

The presence of passive joints in the robot imposes additional constraints on the

allowable forces. This is because the force in a passive joint is uncontrollable.

[8] present two methods of including this constraint. One of which is using a

diagonal matrix A that denotes which joints are passive and which are active.

A 1 on the diagonal indicates an active joint whereas a 0 indicates a passive

joint. This matrix has to be manually initialized before controlling the robot.

It can then be combined with the allowable force projection by taking the

38 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

intersect of the space spanned by A and jPa f .

Task analysis

An end effector task may consist of both a movement and force application

onto a surface. The projectors jPa f and jPap make sure the force and movement

are performed in the allowable force and movement directions respectively. A

specific task may however not be possible to perform within the restrictions of

these spaces.

Essential position variables are defined as the movement directions of the

end effector which must be controlled in order to perform the task correctly.

At the same time, arbitrary position variables are those directions of movement

which do not have to be controlled precisely. The terms essential force variables

and arbitrary force variables follow the same logic, just for the force directions.

According to [8], the total number of essential variables, position plus force,

is equal to the minimum number of controllable actuators in the manipulator

necessary for performing the task.

The essential position and force direction can be described by the matrices

(3.7) and (3.8) respectively.

Ep =

[
ep1 ... epα

]
(3.7)

E f =

[
e f 1 ... e f β

]
(3.8)

Each column vector e f i, epi describes one direction. Following, the number of

essential position directions is α and the number of essential force directions is

3.1. HYBRID POSITION/FORCE CONTROLLERS 39

β. The orthogonal projections onto the essential position and force spaces are

given by (3.9) and (3.10) respectively.

wPep = Ep(ET
p Ep)

−1ET
p (3.9)

wPe f = E f (E
T
f E f)

−1ET
f (3.10)

The inverse in the two equations above is, probably by mistake, not included

in [8]. The w denotes that the projectors are defined in work space coordinates.

In order to combine these projectors with the allowable position and force

projectors, it is desirable to define them in the joint space coordinate system.

The precondition for this to be possible for the essential position space is that

the number of joints linking the base of the manipulator to the end effector

is greater than or equal to three (given the two dimensional case). For the

essential force space, the number of active joints has to be greater than or equal

to three. The joint space projectors can then be found by

jPep = J+t wPepJt (3.11)

jPe f = J+c wPe f (J
T
c)

+. (3.12)

The Jacobian Jt relates the task specific coordinates to the joint space. Section

3.1.2 explains how this Jacobian can be found for the snake robot case.

Eventually, the projections in joint space that project onto the allowable

motion and force spaces and result in the desired motion and force necessary

40 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

to perform the task are given by (3.13) and (3.14) respectively.

jFp = jPap(jPep jPap)
+

jPep (3.13)

jF f = jPa f (jPe f jPa f)
+

jPe f (3.14)

3.1.2 Dynamic HPFC

The solution of West and Asada [8] does not take the manipulator dynamics

into account. Nevertheless, in a real system, the dynamics play a significant role

in the resulting behavior of the robot. For this reason, Yoshikawa [10] designed

the dynamic hybrid control method which incorporates the constraints into

the manipulator dynamics. More specifically, the solution of [8] filters the

commanded joint torques and velocities to conform to the constraints and the

essential variable space. This is explained in more detail in 3.1.1. The essence of

the solution of [10] however, is that the robot dynamics and constraint equations

are combined before the commanded torques and angles are calculated.

This section aims at describing the improved method, and the content is

based on the paper of [10]. The symbolic conventions used are for simplicity

the same as in the paper. The next section will explain further how the theory

and these symbols apply to the snake robot case and the snake robot specific

theory presented in the previous chapter (2.2-2.4).

It is worth noting that the solution of Yoshikawa is designed for a robot

manipulator with a static base where the only constraint present is targeted at

the manipulator end effector. For this reason, special effort has been put into

3.1. HYBRID POSITION/FORCE CONTROLLERS 41

finding a suitable formulation of the snake robot constraints. Additionally, the

difference between the coordinate spaces introduced in the paper are easy to

confuse and special attention has been directed at thoroughly defining these

spaces for the snake robot so that the following calculations can be as clear and

logical as possible.

Description of variables

A brief overview of the most significant new variables used in this section is

provided below. The most general variables correspond to the ones presented

in 2.2.

• rt: task coordinates related to the contact point (task) coordinate system

• rc: constraint coordinates related to the fixed obstacle coordinate system

• EF: axes of constraints on the force in the task frame

• EP: axes of constraints on the position in the task frame

• Jt: Jacobian relating the joint coordinates q̇ to the task coordinates ṙt

• τc: control torque

• τF: torque from the desired force

• τP: torque from the desired position

The task and obstacle (constraint) frames rt and rc are visualized in Figure

3.1. The values for both rt,i = [xt,i, yt,i, θt,i] and rc,i = [xc,i, yc,i, θc,i] are defined

with respect to the base frame. It should be noted that the task frame, as

opposed to the constraint frame, is allowed to rotate with respect to the base

frame.

42 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

𝑦

𝑥

𝑥𝑐,2

𝑦𝑐,2

𝑥𝑡,2

𝑦𝑡,2

𝑦𝑐,1

𝑥𝑐,1

𝑦𝑡,1

𝑥𝑡,1 𝑥𝑡,𝑛𝑐

𝑦𝑡,𝑛𝑐

𝑥𝑐,𝑛𝑐

𝑦𝑐,𝑛𝑐

𝜃𝑡,2 𝜃𝑡,𝑛𝑐

Figure 3.1: Model of snake robot and obstacles illustrating the task and contact

frames

Description of constraints

In order to take the dynamics into account, the constraints are directly included

into the dynamic equations of motion of the robot. This is done by expressing

the constraints as a set of hypersurfaces that the robot can not physically

pass. It should be noted that the focus in the paper of Yoshikawa [10] is

on manipulator end-effector constraints and not general constraints, which

should be used in the snake robot case. The constraint hypersurfaces are

also expressed in the end-effector coordinates. Another important aspect of

the paper is that it only addresses bilateral hypersurfaces (and not unilateral

surfaces), meaning that the effector is prohibited from leaving the surface in

any direction.

The m hypersurfaces expressing a given constraint are given by

pi(rt) = 0, i = 1, 2, ..., m, (3.15)

3.1. HYBRID POSITION/FORCE CONTROLLERS 43

where rt is the end effector position in a fixed reference frame. Differentiating

(3.15) with respect to time yields

EF ṙt = 0, (3.16)

where the vectors of EF are the unit normal vectors to the hypersurfaces in

(3.15).

By comparing the expression (2.24) of the constraint on link i found in 2.4

to (3.16), it is possible to extract the matrix EF,i and a logical choice of rt,i and

ṙt,i presents itself. Specifically, if one chooses

rt,i =

[
xt,i yt,i θt,i

]T
∈ R3, (3.17)

then ṙt,i = [ẋt,i, ẏt,i, θ̇t,i]
T ∈ R3 and the matrix EF,i can by comparison be found

as

EF,i =

[
0 1 0

]
∈ R3. (3.18)

The subscript i will now be used as the constraint number, where nc is the

number of constraints. This is the same as the number of contact points. The

angle θt,i of the link at the contact point is the angle θ of the link with respect

to the base frame (see Figure 3.1). It can by inspection be seen that EF,i fulfills

the criteria of being of unit size.

44 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

The coordinate space rt should be able to aid in expressing all the constraints

present on the snake robot. Therefore, it is chosen as

rt =

[
rT

t,1 rT
t,2 . . . rT

t,nc

]T
∈ R3nc . (3.19)

The same goes for ṙt. Furthermore, the matrix EF describing the unit normal

vectors to all the hypersurfaces can now be written as

EF =



EF,1 01×3 . . . 01×3

01×3
. . .

...
...

. . . 01×3

01×3 . . . 01×3 EF,nc


∈ Rnc×3nc (3.20)

Differentiating (3.16) further gives

EF r̈t + arF = 0, arF = ĖF ṙt, (3.21)

where the first term is believed to be the acceleration in the direction of the

hypersurface, i.e. the force direction, and arF ∈ Rnc is believed to be an

acceleration resulting from the relative movement of the task frame.

Furthermore, EP is chosen so that all the vectors in the relation

E =

EP

EF

 (3.22)

3.1. HYBRID POSITION/FORCE CONTROLLERS 45

are mutually independent unit vectors. The matrix EF represents the coordinate

axes normal to the constraint surfaces, and EP represents the coordinate axes

complementing EF. Another way to display this is seeing EF and EP as the

axes for force and position constrained directions respectively.

From the equations

Eṙ =

EP ṙt

0

 and Er̈t =

EP r̈t

−arF

 (3.23)

it can be seen that the velocity to the constraint surface is zero, which is natural

seeing as the end-effector should be physically unable to move through the

surface.

For the snake robot, a simple choice of EP,i with unit vectors complementing

EF,i is by inspection found to be

EP,i =

1 0 0

0 0 1

 ∈ R2×3. (3.24)

This is a very logical choice, seeing as the snake robot link in contact is

allowed to rotate about the obstacle and move along the obstacle. Again, EP,i

corresponds to the i’th constraint. Combining all EP,i gives

EP =



EP,1 02×3 . . . 02×3

02×3
. . .

...
...

. . . 02×3

02×3 . . . 02×3 EP,nc


∈ R2nc×3nc (3.25)

46 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

and E ∈ R3nc×3nc .

Kinematics and dynamics

In [10], the relation between the joint variable vector q and the end effector

position rt is expressed as

rt = c(q). (3.26)

The following equations are generated by differentiating 3.26.

ṙt = Jtq̇, Jt =
∂c(q)
∂qT (3.27)

r̈t = Jtq̈ + aq, aq = J̇tq̇ (3.28)

For the snake robot case, the matrix Jt contains the Jacobians of all the contacts.

Jt =


Jt,1

Jt,2
...

Jt,nc


∈ R3nc×N (3.29)

The Jacobian Jt,i ∈ R3×N for a single contact point with respect to the contact

point task variable vector rt,i is found as

3.1. HYBRID POSITION/FORCE CONTROLLERS 47

Jt,i =


∂xt,i
∂q1

. . . ∂xt,i
∂qN

∂yt,i
∂q1

. . . ∂yt,i
∂qN

∂θt,i
∂q1

. . . ∂θt,i
∂qN

. (3.30)

Furthermore, aq ∈ Rnc .

Calculation of the joint driving force

The torque resulting from the contact force is found by

τF = JT
t ET

F fF. (3.31)

The total torque τ applied to the robot will be the difference between the motor

torque τc and the constraint torque τF.

τ = τc − τF (3.32)

Combining the torque in (3.32) with the equations of motion given in (2.13)

gives

M(q)q̈ + JT
t ET

F fF = τc − C(q, q̇) (3.33)

and

EFJtq̈ = −EFaq − arF. (3.34)

48 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

Lastly, it can be shown that combining (3.33) and (3.34) yields the expressions

q̈ = M−1(b1 + (EFJt)
TK(b2 − EFJtM−1b1)), (3.35)

fF = −K(b2 − EFJtM−1b1). (3.36)

K, b1 and b2 are given by

K = (EFJtM−1JT
t ET

F)
−1

b1 = τc − C(q, q̇)

b2 = −EFaq − arF.

(3.37)

Eventually, it is possible to calculate the joint control torque. It consists of a

component based on the desired movement r̈t,d in the contact point frame and

a component based on the desired force fFd applied to the constraint surfaces.

The direction of the desired force should correspond to which side of the snake

robot the obstacle is. This can either be implemented into the higher level

controller requesting these forces, or one could introduce a vector γ like in

2.4. This vector consists of positive and negative units corresponding to the

different obstacle placements. When multiplied with fFd it will simply negate

the forces that should be applied to obstacles on the right side of the snake

robot.

τc = τP + τF (3.38)

3.1. HYBRID POSITION/FORCE CONTROLLERS 49

The torque τP is found by solving the equations of motion given in (2.13) based

on the desired values of the joint accelerations.

τP = M(q)q̈d + C(q, q̇) (3.39)

τF = JT
t ET

F fFd (3.40)

q̈d = J+t (E
−1

r̈EP,t,d

−arF

− aq) + (I− J+t Jt)k (3.41)

Here the vector r̈EP,t,d = EP r̈t,d. Furthermore, J+t denotes the pseudo inverse

of the Jacobian. The last term is included for redundant manipulators, where

the vector k is an arbitrary time function representing the arbitrariness of the

joint accelerations. It can be observed that the term (I− J+t Jt) is the same as

the projection matrix jPap onto the allowable motion space from 3.1.1.

According to Yoshikawa [10] the position and force can be simultaneously

controlled by applying the sum of the joint torque τP for achieving the desired

acceleration and the joint torque τF for achieving the desired force as long as

the robot is not in a singular state.

Describing the desired acceleration through r̈t,d might not be the most

intuitive task. It is therefore suggested that EP is chosen in such a manner that

a function ṙP,t = s(rt) exists and satisfies

ṙP,t = EP ṙt. (3.42)

50 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

If this holds, then

r̈P,t = r̈EP,t + arP, arP = ĖP ṙP,t. (3.43)

Given that rP,t is given by rP,t,d and the described dynamics and constraints

are correct, the system given by (3.38)-(3.41) will be able to realize both the

desired position and force.

3.2 Passive joints consideration

The problem that arises when computing τP from (3.39) in 3.1.2, is that the

motor torques will be calculated for all joints, including the passive joints.

Since the passive joints are unactuated, it is not feasible to pursue all parts of

this control command. The objective is thus to change the dynamic calculations

to only apply torques to the active joints. It should be noted that this challenge

is more crucial for snake robots with few (active) joints. This is because a

large number of active joints will dominate the control and a bigger part of the

control torque can be realised.

One idea is using the dynamic coupling characteristics between the passive

and active joints, as proposed by Arai et al. [29]. This method assumes

that there is a certain amount of active joints that can take arbitrary values

determined by the other active and passive joints desired to control. That

means that all joint variables still cannot be controlled to their desired values

and it has to be determined which joints this should apply to. The reason for

this is that the system is underactuated. A similar approach is suggested by

Transeth et al. [30]. However this method assumes that only the active joints

3.2. PASSIVE JOINTS CONSIDERATION 51

make out the control reference. Because it is not yet clear whether or not it will

be desired to control the value of the passive joints in the HOAL scheme, the

rest of this section is based on the work of Arai et al. [29].

The total number of joints is now denoted n, whereas r of these joints are

active. To start off, the elements of the familiar variables q and τ should be

rearranged with dimensions as follows

q =

φ

ψ

 n− r

r
=


φ

ψact

ψpas


n− r

2r− n

n− r

(3.44a)

τ =

τact

0

 r

n− r
. (3.44b)

Here ψ are the r joint variables, both passive and active, that will be controlled

to their desired value. φ contains the remaining n − r active joint values.

Furthermore, the corresponding generalized force vector τ is divided into an

active and a passive part. The part corresponding to the passive joints is zero

because the generalized forces on the passive joints by definition are zero.

The inertia and Coriolis matrices M(q) and C(q, q̇) can now be rearranged

accordingly. The dimensions of the rows and columns are indicated in (3.45a)

and (3.45b).

M(q) =

M11(q) M12(q)

M21(q) M22(q)


n−r r

r

n− r
(3.45a)

52 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

C(q, q̇) =

C1(q, q̇)

C2(q, q̇)

 r

n− r
(3.45b)

Using (3.45a) and (3.45b), the equations of motion (2.13) can be split into the

two separate equations

M11φ̈ + M12ψ̈ + C1 = τact (3.46a)

M21φ̈ + M22ψ̈ + C2 = 0. (3.46b)

When the values for q and q̇ are inserted and the desired values ψ̈d are

assigned to the accelerations ψ̈, (3.46b) is considered a linear equation with

regard to φ̈. The coefficient matrix M21 corresponds to the dynamic coupling

between the accelerations of φ and the generalized forces of the passive joints,

and it depends on the structure and mass distribution of the manipulator [29].

Solving (3.46b) for φ̈ yields

φ̈ = −M−1
21 M22ψ̈d −M−1

21 C2. (3.47)

This is given that the matrix M21 is nonsingular. Arai et al. [29] proved that

this is also the condition for output controllability. The generalized forces on

the active joints can be found by substituting (3.47) into (3.46a).

τact = (M12 −M11M−1
21 M22)ψ̈d + C1 −M11M−1

21 C2 (3.48)

If the generalized forces τact are applied to the active joints, the resulting

3.3. THE UTILITY OF DYNAMIC HPFC IN SNAKE ROBOT LOCOMOTION53

accelerations will be φ̈ and ψ̈d [29].

From the dimensions of φ and ψ it can be deduced that if the number of

active joints r equals the total number of joints n, all joint variables can be

controlled. This is what would be referred to as a fully actuated system. If,

on the other hand, there were no active joints, the dimension of ψ would be

zero and all variables would be uncontrollable. These two cases are both quite

intuitive. The more vital question is exactly how many of the joints are required

to be active in order to achieve the desired control goal. This is equivalent to

the question of how many of the joint variables are desired to be controlled,

and is dependent on the full HOAL algorithm.

Seeing as the joints desired to be controlled will change continuously for

a snake robot traversing a terrain with obstacles, this is probably not the

most robust solution. The bottom line is however that the control torques are

mapped to the active joints and all of them can now be commanded to the

snake robot. The method is tested in 5.5 and further discussed in 6.1.3.

3.3 The utility of dynamic HPFC in snake robot lo-

comotion

Most of the snake robot locomotion strategies today are intended for flat

surfaces. Lateral undulation and sidewinding are two of these strategies

presented in 2.1.1. Even though they are based on flat surfaces, they require

some amount of ground friction to yield propulsion. Either way, the snake

robot body motions are the basis for the propulsion. A position controller for

the joint angles of the snake robot would thus induce a satisfying behavior.

54 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

Consequently, a hybrid position/force controller would simply be an overkill

for these strategies. The concertina locomotion strategy, on the other hand,

is conducted in narrow spaces where the snake robot anchors itself against

the environment. This is also explained further in 2.1.1. A joint controller is

sufficient in this case as well if only the curling up and stretching out of the

robot is considered. It might however be desired for the snake robot to push

against its environment at the same time as this movement takes place. A

hybrid position/force controller could then be useful to simultaneously realize

these control goals.

Compliance control, presented in 2.1.4, is another control option for adapt-

ing to the environment. The main difference between compliance control

and dynamic HPFC is that the compliance controller is a so called reactive

controller, meaning that the robot will change its curvature according to the

environment when a contact feedback has been received. The dynamic HPFC

contrarily uses a feedforward term for dynamic force, enabling it to always

control both the force and position precisely. The success of this method does

to a large degree depend on a correct modeling of the dynamics of the robot

and good perception of its environment.

The locomotion method which can take the most advantage of the dynamic

HPFC is the OAL method presented in 2.1.3. The possibility to control position

and force simultaneously and independently in different directions allows the

snake robot to both move between obstacles and push against them at the same

time. Furthermore, the dynamical control facilitates a dynamical or compliant,

rather than stiff, behavior. This is beneficial for the mechanical parts of the

snake robot which can then experience a lower level of strain and wear and

tear.

3.4. APPLICATION CHALLENGES RELATED TO DYNAMIC HPFC 55

3.4 Application challenges related to dynamic HPFC

There are surely several ways of implementing and designing the dynamic

HPFC control logic on a snake robot. This section will focus on the challenges

related to the application of the suggested design scheme in 3.1.2. Special atten-

tion is paid to the chosen variable spaces and the consequences of configuration

transitions when the snake robot moves.

3.4.1 Computational challenges

Whenever the snake robot achieves successful forward or backward propulsion

it will slide along the obstacles that are by its side. Eventually the contact

between a given link and an obstacle will be lost. At this point, the obstacle

will either be left alone or come in contact with a neighboring link. These two

scenarios are illustrated in Figures 3.2 and 3.3 respectively. If the contact is

completely lost, it means that one constraint is lost as well and nc = nc − 1.

This will in turn lead to the variable rt, describing the position of the contacts,

shrinking. Consequently the mapping matrix E to the allowed force and

movement directions will also shrink. The most significant challenge in this

case is changing the dimensions of the affected variables in real-time. One

option could be keeping all variable spaces unchanged and instead set the

parts of E corresponding to the lost constraint to zero so that it has no impact

on the following solution.

If, on the other hand, the snake simply slides in a way that the contact is

transferred to an adjoining link, the size nc and dimensions of all variables will

remain unchanged. In addition to this, the obstacle will lie on the same side of

the snake as it already was, which enables the direction of the desired force

56 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

Figure 3.2: Snake robot losing contact with obstacle

�1
�1

Figure 3.3: Obstacle changing contact from one link to another

application to the obstacle to stay the same. Thus, the constraint will generally

be on the same form. The only thing that has to change is the description of the

position variables in rt belonging to the new contact point. Again, the change

is most probably slim since the two first variables (xt, yt) describe the position

of the contact point, and the obstacle is assumed to be static (meaning its

position will not change even though the calculation of the position changes).

Furthermore, the adjoining link adopting the contact is probable to have a

similar angle θt relative to the base frame as the previous link given that the

desired path is well designed and defined. From this it follows that the joint

variable φc back to the obstacle frame will stay similar to what it was as well.

These aspects obviously make the implementation simpler and the control

3.4. APPLICATION CHALLENGES RELATED TO DYNAMIC HPFC 57

sequence smoother and more predictable.

Even though the numerical value of the mentioned variables do not change

drastically, the Jacobian will have to be recalculated since the variables now

are described by a new subset of the joint variables. Finding a new expression

for the Jacobian matrix and its derivative in real-time is not a trivial, nor fast,

operation. One option would of course be pre-computing J and J̇ for every link

that could be in contact with an obstacle and only employ the ones that are

relevant at the specific time instance. There is however still a challenge related

to this case. The generalized joint variables q contain the distances k from

the contact points to the preceding joints. It is important that these distances

are not mixed and that they are only used once. In other words, two contact

points should not be described by the same k. As a consequence of this, the

Jacobian for every link would have to be computed with all the possible k’s.

Logically, this would in turn lead to a large number of pre-computed matrices

as the number of links and obstacles grow. In addition to this, the right set of

Jacobians would have to be chosen in real-time while administering that they

all use unique k’s. This should be done without changing the existing setup

more than necessary in order to avoid jumps in the control. It is very much an

achievable task, but at the same time an extra challenge.

With a contact moving from one link to another, the corresponding joint

variable k describing the position of the contact point will change and the

manner in which it is computed will also change. This is once again an

achievable, yet challenging task to perform in real-time. It should also be noted

that the value of this k will probably experience a jump. This is because the

contact moves from the end of a link to the beginning of a link, or vice versa,

and the distance is always measured with respect to the preceding joint of

58 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

the link in contact. This is illustrated in Figure 3.3. On the other hand, it is

reassuring that the matrices M(q) and C(q, q̇) are unaltered by the change

of a k. This is logical since these matrices describe the dynamics of the snake

robot alone.

The biggest challenge arises if the number of contact points increase. This

means that the dimension of all variables will have to increase correspondingly

and the Jacobians have to be either re-computed or re-assembled. It is in

this case important to keep in mind the challenge associated with memory

allocation in the software being used.

3.4.2 Differences with the traditional manipulator case

One significant challenge related to snake robots as opposed to traditional

robot manipulators is the presence of passive joints at the base of the robot. The

passive joints of the snake robot that are attached to the base frame, [φ0, x0, y0]

are included in the description of the position of every link and contact point.

This means that if they were actuated, they could have influenced all the points

that are desired to control, given that the robot is not stuck between obstacles.

The dynamic hybrid position/force controller could therefore introduce a

desired joint acceleration value q̈d for these passive joints when recalculating

from the desired contact point accelerations r̈t,d. Since these joints are passive,

they are also uncontrollable and a desired control input on the joints is not

realizable. A greater number of joints will generally make this challenge less

significant because it leads to a larger degree of controllability of all contact

points.

When it comes to the assignments of traditional robot manipulators and

3.4. APPLICATION CHALLENGES RELATED TO DYNAMIC HPFC 59

Figure 3.4: Industrial robot manipulator polishing a car

snake robots, they are usually a lot more repetitive and pre-defined for robot

manipulators. A typical task for an industrial hybrid position/force controlled

robot manipulator is polishing a known surface with a given pressure. An

example is given in Figure 3.4. The snake robot might also be familiar with

the shape of its current environment, but this is something that is constantly

changing as the robot moves through the world. Thus, the position and force

application requirements are constantly changing as well. Furthermore, since

the snake robot is eventually meant to traverse outdoor environments, it will

encounter different kinds of obstacles as illustrated in Figure 3.5. They can

differ in both size and texture, and be either soft or rigid. Thus, there are a

lot of factors the snake robot will have to take into account. For this project

however, the environment and control goals are significantly simplified.

There is also a considerable difference in the typical constraints on a snake

robot and a traditional manipulator. Manipulators usually only have con-

straints or obstacles in the close environment of the end effector in which the

manipulator is performing a task. It might also have some limitations regarding

the motion span of its joints, but this applies to snake robots as well, though

60 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

Figure 3.5: Snake robot in environment with varying obstacle types

perhaps to a smaller degree. The environment the snake robot is traversing may

as mentioned contain various and spread out obstacles, making the constraints

different from time to time. If, however, a robot is in an undesirable position

between obstacles, a snake robot might have an advantage in that it can exit

its current configuration from several different directions since no part of it is

fixed to any point in the world.

3.5 Task analysis

Even though the control solution presented in 3.1.2 decomposes the workspace

in force and movement directions, there are some restrictions as to which tasks

can be performed by the robot. To analyze this, it is beneficial to look at what

kind of tasks a snake robot is required to achieve. In particular, the tasks of

a snake robot moving according to the OAL principle will be covered in this

section. Both a higher level path following goal and a lower level control goal

is presented. It is the lower level goal that will be further investigated in this

project, but it is still important to keep in mind what the final purpose of the

snake robot is.

3.5. TASK ANALYSIS 61

Lastly, the task restrictions are discussed, followed by a mathematical

adaption of the control scheme in 3.1.2 based on the theory of West and Asada

[8] described in 3.1.1. This adaption is constructed to allow for the control of

the task-relevant variables in cases where all task space variables cannot be

controlled independently.

3.5.1 The overall task of the snake robot

The motivation behind implementing the OAL principle on a snake robot is

to make it move from one point in space to another by utilizing the obstacles

present in its environment. In a "real world" situation, solely moving around is

not enough and the snake robot will normally have some auxiliary assignment

as well. This can typically be documenting its surroundings with a camera or

similar equipment attached to its foremost link, referred to as its head. This

again makes the snake robot’s exact path from the starting point to the end

point relevant, and the path following of the head of the snake robot is thus

the overall goal. When a path has been designed, this goal can be decomposed

in tasks consisting of the global position and orientation of the snake robot

head. In traditional robot manipulator theory, this would be referred to as the

end-effector movement.

3.5.2 Lower level control tasks

Because the base of traditional manipulators are fixed to the ground, they can

move the end effector in a desired manner simply by following the inverse

kinematics. This is of course given that the robot’s degrees of freedom satisfy

the desired end effector movement. For snake robots, on the other hand, it is

62 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

more complicated. In order to reach the higher level path following goal, the

snake robot has to push itself forward in a purposeful manner utilizing the

obstacles in the environment. By purposeful it is meant that the direction of

the force application against the obstacles have to conform with the desired

propulsion direction given by the path. This is where the hybrid position/force

control comes into play. The robot has to both position itself in a certain manner

alongside the obstacles and push against them with a given force magnitude.

The general idea is that at any point in time a task will be given by a

higher level path following algorithm which is assumed implemented. The

information provided should include which obstacles are to be utilized and

how the snake robot is to utilize them. In other words, the tasks sent to

the hybrid position/force controller simply consist of a desired positioning

(orientation) by every obstacle and force to be applied to the obstacles.

3.5.3 Task restrictions

The question is, what are the restrictions to which tasks the higher level path

following algorithm can command the snake robot to perform? It is obvious

that not any given combination of position and force can be simultaneously

achieved.

The restrictions lie in the composition of the snake robot, meaning how

many joints the robot consists of. A higher number of joints, and thus actuators,

enables the robot to control a higher number of variables. At the same time, a

higher number of contact points imposes a higher number of constraints on

the system and therefore limits the controllability. That is not to say that few

contact points are desired, because they are after all a necessity for successful

3.5. TASK ANALYSIS 63

propulsion.

For every contact point there are three possible variables that can be con-

trolled. In 3.1.2 it is defined that two of these variables belong to the position

control. That is the movement along the obstacle and rotation by or around the

obstacle. The remaining variable is reserved for the force against the obstacle.

To analyze the restrictions to how many and which of these variables can be

controlled for a given robot, it is useful to look at the robot’s closed kinematic

chains (CKCs). A kinematic chain is said to be closed when it contains one or

more loops [12]. In the snake robot case loops arise between points fixed in the

world (base frame). These points are the base of the robot, meaning the start

of the first virtual translational joint, and every obstacle contact point. This is

always true since it is assumed that the position of the obstacles are fixed in

the world.

The number of CKCs is the same as the number of contact points on the

robot. However, they can be expressed in several different ways. The first

method is to define all closed kinematic chains from the base to every contact

point. This is depicted in Figure 3.6, where b denotes the base and rc,i denotes

the different contact points.

𝑦

𝑥𝑏

𝑟𝑐,1
𝑟𝑐,2 𝑟𝑐,3

𝐶𝐾𝐶3𝐶𝐾𝐶2
𝐶𝐾𝐶1

Figure 3.6: First method of defining the closed kinematic chains

64 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

It is also possible to define the CKCs sequentially through the robot. Starting

at the base again, the first CKC will be from the base to the first contact point.

Moving further, the second chain will be from the first to the second contact

point, then from the second to the third, etc. This definition of the CKCs is

depicted in Figure 3.7, and will from now on be referred to as a minimal CKC

representation. There are still many possible ways of defining the CKCs, but

the two mentioned methods are the most relevant in this case.

𝑦

𝑥𝑏

𝑟𝑐,1
𝑟𝑐,2 𝑟𝑐,3

𝐶𝐾𝐶3
𝐶𝐾𝐶2

𝐶𝐾𝐶1

Figure 3.7: Second method of defining the closed kinematic chains

The number of available actuators for controlling the variables at a single

contact point are limited by the placement of the preceding contact point. This

is because the CKC between these two points always is the smallest CKC with

the least number of actuators and thus the so called bottleneck for the control.

To better explain this, the example snake robot illustrated in figures 3.6

and 3.7 is studied. In Figure 3.6 there are four actuators included in the third

CKC (CKC3) which is describing the third contact point. However, when

looking at the closed kinematic chain for the same contact point described

from its preceding contact point (depicted in Figure 3.7), only two actuators

are included. Simply by studying the two figures it is also possible to see that

the latter method always gives the minimal CKCs.

3.5. TASK ANALYSIS 65

The ideal way of designing snake robots that require a high level of control-

lability is to include a very high number of joints. This way, even the minimal

CKCs will have a sufficiently high number of actuators to make control at every

contact point practically independent of the other contact points. Manipulators

with such a large number of actuators are referred to as hyperredundant manipu-

lators. According to [28], a manipulator is considered to be hyperredundant

if its controllable configuration space degrees of freedom are comparable to,

or exceed, its task space degrees of freedom. Furthermore, it is stated that

such manipulators have an enhanced potential to use their extra joints for

maneuvering within tight obstacle fields. The term hyperredundant can be

adapted to snake robots as well, and it is now obvious that hyperredundancy

is a requirement for an ideal OAL-driven snake robot.

Singularity avoidance

A common problem when using Jacobian matrices for the inverse kinematic

computations is the presence of singularities. A robot configuration q is singu-

lar if the task Jacobian matrix Jt is rank-deficient here [28]. This configuration

is not ideal since it means that it is impossible to generate task space velocities

in certain directions. Task space velocities are for the snake robot velocities of

the contact points vector rt. This is referred to as the end effector velocity in

traditional robot manipulator theory.

An effect of a singularity is that the resulting joint space velocities can

grow uncontrollably big. This effect is experienced not only at the singular

configuration itself but also in its neighborhood [28]. According to Chiaverini

et al. [28], the distance to these singularities can be characterized through

measurements based on the determinant of the Jacobian or the individual

66 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

singular values of the matrix like the smallest singular value. If the snake

robot consists of more joints than it needs for execution of the desired task, the

additional degrees of freedom can be used to steer the snake robot away from

singularities or avoid them at a planner level by analyzing these measurements.

A more detailed description of the matter is presented in [28]. It should be

noted that whether or not the robot is redundant depends both on the number

of joints and the number of contact points desired to control, i.e. the task.

Furthermore, the snake robot does not necessarily lose mobility in all task

directions even though it is at a singular configuration. This is noteworthy since

it might not be desirable for the snake robot to move in every possible direction

anyway. In 3.5.4 it is explained how the desirable or essential movement

directions can be expressed and further utilized for control.

3.5.4 Task oriented control scheme

In 3.1.1 it is stated that there are certain directions of force and movement that

are essential for performing a task. It is further claimed that the number of

essential directions can not be greater than the number of controllable actuators

in the robot necessary for performing the task. In 3.5.3 it is explained that the

number of available controllable actuators is limited by the minimal CKC.

For the snake robot, the force and movement directions of a task are

described by EF and EP. The number of essential directions in EF and EP

together can not exceed the number of active joints in the minimal CKC.

In the example in Figure 3.7, a maximum number of three variables at the

second contact point could be desired to control. However, it is seen that

the corresponding CKC only contains one actuator, meaning that at most one

3.5. TASK ANALYSIS 67

variable has to be chosen for control. In other words, the maximum number

of essential variables that can be defined for performing a task at the second

contact point is one.

As explained in 3.1.1, the essential position and force directions can be

described by (3.9) and (3.10). The filters (3.13) and (3.14) can then be used to

focus the control on these essential directions, also taking into account which

directions the robot is allowed to move and apply force in. This is of course

given that the requirements regarding the number of active joints are fulfilled.

The force filter jF f , which is based on the allowable and essential force

directions, can intuitively be combined with the input torque τF for the de-

sired force found by (3.40). It should be noted that the defined essential force

directions and desired forces fF,d have to correspond with each other. Com-

bining the position filter jFp with the position control torque from (3.39) is

unfortunately not as intuitive. This is because the filter is designed to map the

joint velocities and not the joint torques. The dynamic HPFC control structure

simply takes the desired contact point variables and directly computes the

desired joint accelerations. This means that there is no intermediate step with

joint velocities, as would have been convenient for the position filtering.

Under certain conditions and requirements, however, there are ways of

combining the filter directly with the position control torque τP. First, it is

known that as long as the position control is in fact performed in the position

space, any acceleration q̈ should lead to a change in velocity rather than

force application. This again means there is a direct relationship between

the joint accelerations and the velocities leading to the same "rules" being

applicable for the two variables. Second, it is known that at very low velocities,

the relationship between the joint torques and joint accelerations become

68 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

approximately linear. This is because the moment of inertia of the links is

constant in the used snake robot model. Again, it can be stated that the same

rules apply for the position torque and desired position joint accelerations.

Conclusively, the position filter jFp can be used directly on the input torque for

the desired position. It is again important that the essential position directions

and desired position variables correspond.

Under the mentioned conditions, the new input control torques can be

found by

τc = jFpτP + jF f τF. (3.49)

3.6 Hybrid obstacle aided locomotion (HOAL)

The motivation behind using dynamic HPFC for the OAL is that this locomo-

tion method requires both interaction with the environment, meaning force

application, and purposeful movement of the snake robot body. Instead of

constantly switching between force and position control of the snake robot, the

dynamic HPFC can manage to control both of these attributes simultaneously

in different directions. Furthermore, the dynamic method is studied in this

thesis because it is believed that the dynamics play an important role in the

behavior of the snake robot and contribute to a dynamic rather than stiff con-

trol. This is even more significant in outdoor environments with friction, as

opposed to a sterile, frictionless simulation environment. The downside is that

modeling the friction and other traits of the environment becomes harder as

the surroundings get more complex and diverse.

3.6. HYBRID OBSTACLE AIDED LOCOMOTION (HOAL) 69

Being able to predict the dynamical response of the snake robot enables the

feed forward control and thus a smoother control trajectory. The dynamics of

going from no contact to contact have not been modeled in this project, and is

believed to be a very complex task. It is yet to be assessed whether or not the

collision-modeling can profit the overall control of the snake robot at all.

This section does not give any definite answers to how the HOAL scheme

can be implemented. It does however discuss related challenges and provides

some suggestions as to how the problem can be approached.

3.6.1 General strategy for HOAL

There is much more to HOAL than just pushing against obstacles and changing

the shape of the robot at the same time. The snake robot needs an end goal, or

at least a temporary goal to follow. The approach for reaching this goal should

be assisted by a defined path from the current location of the snake robot.

This path should be designed not only to allow the snake robot to pass by

constructive obstacles for propulsion, but also to make it propel itself forward

in the best way possible from start to finish. The best way is here considered to

be a path that is both minimizing the distance and the energy usage. These

attributes are of course not independent of each other.

A suggestion to a general procedure for achieving HOAL is given below

1. Establish the position of the end goal of the snake robot head.

2. Design a path from the current location of the snake robot to the end

goal. Here, the distance should be minimized while taking into account

that enough obstacles have to be passed by to achieve propulsion. The

70 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

orientation of the robot along these obstacles should be taken into account

as well.

3. Determine the desired force magnitudes against each obstacle based on

the desired propulsion speed of the snake robot head.

4. Use dynamic HPFC and a suitable control structure to realize the desired

forces and position/orientation defined by the steps above.

3.6.2 Conditions for propulsion

There are some criteria that have to be fulfilled for the HOAL algorithm to be

successful. First, it requires knowledge of the environment and the position of

the obstacles within a given relevant range. Second, as mentioned earlier, the

modeling of the dynamics should be as accurate as possible.

It is also relevant to look at the position and force spaces of the robot. In

which direction is the snake robot actually able to apply forces? In which direc-

tions can it move freely? In which directions will movement lead to forward

propulsion? In what configurations will the snake robot be jammed? These are

all very important questions that should be addressed in the construction of

the desired path.

According to Stavdahl [1], the position or motion space M can be decom-

posed into a shape space S and a propulsion space P. Furthermore, the force

space F is referred to as the constraint space C because it does not directly

yield propulsion. The knowledge about these spaces can be utilized to design

a path and a set of desired forces that support the snake robot in propelling

itself forward.

3.6. HYBRID OBSTACLE AIDED LOCOMOTION (HOAL) 71

In 3.1.1 it is shown how the allowable motion and force spaces can be de-

duced from the constraint Jacobian Jc. Based on the same logic, the Jacobian JP

relating the joint velocities to the desired velocity of the snake robot head along

the given path can be used to find the propulsion space. The pseudoinverse

J+P can be used to find the joint velocities related to a given snake robot head

velocity vP. The relation is given in (3.50).

q̇ = J+P vP (3.50)

Furthermore, (I− J+P JP) represents the orthogonal projection matrix in the null

space of JP [28]. That means that joint velocities projected onto this space yield

zero velocity for the snake robot head. The shape space S can now be found as

the remaining part of the motion space M that is not spanned by P.

For propulsion it is not desired that the snake robot head is moved in an

arbitrary direction, but rather in a specific direction defined by the desired path.

Therefore, a necessary condition for propulsion will be that this particular

direction is within the span of the propulsion space. Finding the general

criteria for when this is satisfied still remains to be answered.

According to Bayraktaroglu [20] a necessary condition for propulsion in a

push-point-based locomotion approach is that the snake robot is in contact with

and can push against at least three obstacles simultaneously. Bayraktaroglu [20]

further states that the total exterior forces and moments applied to a system

must overcome the inertia and compensate perturbations in order to make it

move with respect to a fixed reference frame. From this it follows that the

directions in which the snake robot pushes against the obstacles is vital. To

visualize this, two examples are presented. The first one is given in Figure

72 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

3.8, in which it is obvious that no forward motion can be obtained from the

resulting contact forces and the configuration is thus in the constraint space C.

In Figure 3.9 however, one of the links is able to push against an obstacle

with a force f3 that has a component in the forward (right) direction, enabling

the snake robot to slide along the obstacle. This means that the propulsion

space P is non-empty. The two other forces f1 and f2 contribute to keeping the

end part of the snake in line. Additionally, they can be regarded as a kind of

base for the snake robot to push against. If they were not included, the attempt

to push against the third obstacle would only lead to a change of the snake

robot’s shape, meaning the configuration would be in the shape space S.

𝑓1 𝑓3

𝑓2

Figure 3.8: Force application yielding no propulsion

𝑓1

𝑓3

𝑓2

Figure 3.9: Force application yielding propulsion

3.6. HYBRID OBSTACLE AIDED LOCOMOTION (HOAL) 73

The last example presenting forward propulsion does not include a desired

trajectory for the snake robot to follow. Certain criteria will have to be met

in the generation of the trajectory as well, and will typically be based on the

composition of the snake robot. If the links are very long the snake robot will

naturally not be able to shape itself along a very tightly curved path. If, on

the other hand, the link length approaches zero the snake robot will resemble

a natural snake and the limitations to its shape will decrease significantly.

This type of robot is also referred to as a continuum robot, which according

to Robinson et al. [31] is a continuously bending, infinite-degree-of-freedom

structure. The goal in HOAL is not to adapt the snake robot composition to fit

the path, but rather the path to fit the snake robot.

Figure 3.10 shows one case in which the curves of the desired path are

sufficiently large for the snake robot to follow and one case in which the snake

robot is physically unable to adjust itself perfectly to the desired path. The

obstacles necessary for propulsion are left out in the illustrations.

(a) Successful path adjustment (b) Unsuccessful path adjustment

Figure 3.10: Snake robot desired path following

It is clear that a distinct set of conditions for the desired path should be

74 CHAPTER 3. DYNAMIC HPFC FOR SNAKE ROBOTS

determined before the path planner is implemented. One hypothesis suggested

by Stavdahl [1] is that if the path consists of straight lines and circle segments,

the radius of the circle segments have to be at least the same length as the

snake robot link. The resulting curvature can be defined through the osculating

circle, which is the circle that best approximates the curve at a point [32]. The

radius of this circle is denoted r, and the upper limit for the curvature is given

by

κmax ≤
1

rmin
=

1
L

. (3.51)

Chapter 4

Simulator

The SnakeSIM simulator [33] has been chosen for performing the experiments

considered relevant for this project. This chapter will give an overview of the

software and how it is used in this project with the intention of making further

contributions and usage easier. The simulator is based in the Robotic Operating

System (ROS) [34] and Gazebo [35], and for an in-depth understanding, it is

suggested to look at the ROS and Gazebo tutorials online.

4.1 Background info

SnakeSIM is a virtual rapid-prototyping framework developed by Sanfilippo et

al. [33] to allow researchers to design and simulate perception-driven obstacle-

aided locomotion (POAL) in a safe and rapid manner. The core of the simulator

is based in the Robotic Operating System (ROS) [34]. This is where the robot

model and control is defined. Furthermore, it is connected to Gazebo [35],

75

76 CHAPTER 4. SIMULATOR

providing both a robust physics engine and a real-time graphical user interface.

SnakeSIM has an additional interface towards the RViz visualization tool. This

part will however not be explained further as it has not been applied in this

project. Lastly, it should be noted that ROS is currently only supported on the

Ubuntu operating system, and has a command line based interface. Ubuntu

version 16.04, ROS Kinetic and Gazebo version 7.0 are used in this project.

The simulator has been modified to fit even better to the project. The

main contribution is the implementation of the dynamic controller. Certain

properties of the simulator, like visual perception and 3D movement, have

been neglected. The main purpose of the experimentation in the simulator is

to evaluate the performance of the dynamic hybrid position/force controller

and the modifications made for it to be used on snake robots.

4.1.1 Motivation for the simulator choice

The customization of SnakeSIM towards the case of obstacle-aided locomotion

is a crucial reason for why this particular simulator is chosen to conduct the

experiments. It offers a setup with the desired frictionless environment, a

simple snake robot and obstacles. A simpler version of a simulator with the

same purpose was developed in MATLAB by the author [7]. However, this

simulator lacked the integration of the physics describing the result of interac-

tion between obstacles and the snake robot. The Gazebo physics engine in the

SnakeSIM contributes to more realistic results in the experiments compared to

what could be achieved with the MATLAB simulator.

Another MATLAB simulator tested is one developed by Transeth et al. [5].

This simulator is also designed for the simulation of OAL. Nevertheless, its

4.2. SIMULATOR ARCHITECTURE 77

graphical user interface can not be compared to that of Gazebo. In addition,

it is understood that the architecture of SnakeSIM is more modular, which

allows for a smoother integration of additions to the program. This is again

essentially due to the way ROS is designed. A more thorough explanation of

ROS is provided in 4.2.

4.2 Simulator architecture

4.2.1 ROS

As mentioned above, the SnakeSIM simulator is based in and run from ROS,

which is a set of open source software libraries and tools designed to build

robot applications. The use of nodes ensures the modular architecture of ROS.

A node is an independent part of the program that has a specific computational

task. More specifically, it is an executable file from a ROS package. An example

of this is the position controller node or the collisions node, detecting and

reporting collisions. The nodes are in this project programmed using C++, but

another supported alternative is Python. The modular architecture of ROS even

allows for the nodes to be developed with different programming languages

without any complications.

Even though the nodes can be run independently, they might need data

from one another for useful computations. The nodes therefore communicate

with each other through the use of topics. A topic is simply a set of variables

that can be continuously updated by a node. Updating these variables is

referred to as publishing to the topic. At the same time other nodes may read

the values posted on this topic. This is done by subscribing to the topic. There

78 CHAPTER 4. SIMULATOR

����

����

����

����

����

�����

�����

������ℎ

���������

Figure 4.1: Message passing system in ROS

is no limit to how many nodes can publish and subscribe to a specific topic.

An illustration of this message passing system is presented in Figure 4.1.

The nodes are able to find each other and communicate thanks to the ROS

master. It registers all the running nodes and tracks topic publishing and

subscriptions.

4.2.2 Gazebo

The ROS-based program is set up to launch the Gazebo 3D physics simulator.

Gazebo is adapted to accurately simulate the snake robot in the desired envi-

ronment with obstacles. All simulated objects, meaning the snake robot and

the obstacles, have attributes like mass and velocity. This allows for realistic

behaviour when interaction and collisions occur. The configuration of the

simulated snake robot and obstacles is implemented according to the Universal

Robotic Description Format (URDF) [36]. This is an XML-based file format

used to describe elements like links, joints, sensors and actuators and how

these elements connect to each other.

4.2. SIMULATOR ARCHITECTURE 79

The added sensors are able to communicate properties like forces, torques,

contact points, etc. These properties, as well as all physical variables, are

reported back to ROS by Gazebo. At the same time, Gazebo subscribes

to information from the ROS controller nodes sending joint motor torque

commands to the snake robot. The physics engine is then able to use all this

information to present a realistic resulting movement. It is also possible to

move and influence the simulated objects directly through the graphical user

interface (GUI) provided by Gazebo (see Figure 4.2).

Figure 4.2: Gazebo graphical user interface

80 CHAPTER 4. SIMULATOR

4.3 General simulation setup

In the past, the simulator has been used to mimic an existing snake robot

prototype, namely the Mamba snake robot [37]. This snake robot has 14

identical links and 13 joints connecting these links. The visualization of the

model can be seen in Figure 4.2. In order to make computations simpler and

thus the real time factor of the simulation higher, the robot is scaled down to

have 6 links and 5 joints for most of the experiments. As can be observed from

the figure, the joints are not modeled as mechanical parts. They are therefore

not visible, but placed mid-air between two neighboring links. Further model

details can be found in Table 4.1. This table shows that the links of the snake

robot model have three dimensional properties, meaning both width, length

and height. All experiments are however still only conducted in the two

dimensional ground plane.

Value Unit

Link mass 1 [kg]

Link length 0.2 [m]

Link height 0.1 [m]

Link width 0.1 [m]

Joint offset 0.3 [m]

Table 4.1: Simulated snake robot model properties

When it comes to the configuration of the obstacles, it is based on the obstacle

triplet model [33]. The three obstacles are modeled as identical immovable

cylinders in the simulator. Still, any contact with the snake robot is frictionless

4.3. GENERAL SIMULATION SETUP 81

point contact. The obstacles are positioned at the middle of the links on either

the left or right side. Further details about the obstacle model can be found in

Table 4.2.

Value Unit

Number of obstacles 3

Mass 1 [kg]

Radius 0.1 [m]

Height 0.2 [m]

Table 4.2: Simulated obstacle model properties

/world_setup

/gazebo

/snakebot_robot_pose

/snakebot_spawner

/snakebot_DHPFC

/gazebo/set_model_state

/snakebot/joint_states

/snakebot/robot_pose

/gazebo/model_states

/gazebo/link_states

/ft_sensor_topic

/gazebo_gui

/snakebot/joint_effort_controller/command

Figure 4.3: Overview of nodes and topics used in the project experiments

Not all available nodes have been employed for the experiments conducted

in this project. An overview of the relevant nodes and the information flow

82 CHAPTER 4. SIMULATOR

between them is presented in Figure 4.3. The nodes are depicted as blue ovals

and the arrows describe the messages passed between them through topics.

Furthermore, a list of the most useful topics for high level control are listed

below.

• "/snakebot/pushpoints"

Information about the detected obstacle pushpoints. This includes contact

normals and tangents, as well as position of contact point and information

about which links are in contact with an obstacle.

• "/snakebot/robot_pose"

Global position of all snake robot links.

• "/snakebot/joint_states"

Angles of all joints relative to their preceding link. This topic also provides

the corresponding velocity of the joints.

• "/snakebot/joint_01_effort_controller/command"

Joint torque command to the specific joint actuators.

• "/ft_sensor_topic_01"

Wrench in specific joint measured by the force/torque sensor in Gazebo.

Chapter 5

Simulations

This chapter presents four simulation experiments that aim at visualizing some

of the theory presented in Chapter 3. The experiments cover the mapping

onto the essential and allowable position space described in 3.5.4, the use of

various closed kinematic chain formulations described in 3.5.3, the computation

of control commands for active joints only, described in 3.2, and lastly the

simultaneous control of position and force. All these experiments investigate

modifications of the dynamic HPFC method presented in 3.1.2.

In addition to these control experiments, an experiment for validating the

physics of the simulator is initially provided. Furthermore, the simulator

setup and related limitations are presented to give a general overview of the

experiment framework.

83

84 CHAPTER 5. SIMULATIONS

5.1 Simulator configuration for experiments

All experiments are executed in a sterile simulation environment only contain-

ing a frictionless ground, the snake robot and three obstacles. The simulator

validation test is performed with a snake robot consisting of 14 links. The

snake robot is however shrunk to six links for the remaining experiments. This

is because the dynamic HPFC method relies on the computation of the dynam-

ical model of the snake robot. This model is computed using the MATLAB

Symbolic Math Toolbox [38] and MATLAB scripts developed in the previous

project of the author [7].

Using the dynamical model of the snake robot is computationally expensive

because the matrices for the equations of motion of the snake robot get very

large for a large number of links. Furthermore, the MATLAB program is unable

to calculate the dynamics of a snake robot with a large number of links within

a tolerable time frame. Consequently, the control experiments are performed

with a snake robot consisting of six links and five joints.

From the presented theory in earlier chapters it is known that the perfor-

mance of HOAL in snake robots and generally the dynamic HPFC of snake

robots is more ideal for snake robots with a large number of links. The fact

that the snake robot consists of six links in the control experiments is therefore

a limitation to the experiments. Another limitation is the placement of the

obstacles. The computed mathematical model used for the control is calcu-

lated for a given obstacle-snake robot configuration. That is, the obstacles are

in continuous contact with links 2, 3 and 5 on the right, left and right side

respectively.

The initial configuration of the snake robot is the same for all experiments,

5.1. SIMULATOR CONFIGURATION FOR EXPERIMENTS 85

which is a stretched out position along the x-axis, starting in the origin. The

joint angles do however deviate slightly from zero as a result of the physics

simulator pushing the snake robot away from the static obstacles. This byprod-

uct is probably also contributing to the encountered unsteady force sensor data

from the snake robot. The initial configuration of the six link snake robot and

the obstacles is shown in Figure 5.1. The green and blue lines in this figure

are indications of axes and viewing angle in the simulator and can be ignored

both here and in following simulator captures.

Figure 5.1: Initial snake robot configuration for dynamic HPFC experiments

The control experiments are all based on the dynamic HPFC from 3.1.2. The

modifications and control structure for the different experiments are presented

in the respective sections. All control goals are chosen as simple values to focus

the results on the deployed methods. These desired values describe the force

against the obstacles and the angle of links in contact with the obstacles. Only

a subset of the variables are chosen to be controlled to their desired value for

the different experiments.

86 CHAPTER 5. SIMULATIONS

5.2 Simulator validity test

The purpose of this experiment is to test the performance and validity of the

physics engine in the simulator. In particular, the interaction forces arising

from contact between the snake and obstacles are studied.

The idea is to control the snake robot to a completely stretched out stiff

configuration while obstacles are symmetrically placed in contact around its

center. At the same time, the snake robot should apply a constant motor torque

to the center link. The obstacles are placed in a manner that prevents the joints

from getting displaced. In order to still stay stretched out, all other joints will

have to apply a torque calculated by the joint PID controller.

The simulator configuration for this experiment is summarized in Table 5.1.

The link and obstacle specific configurations can be found in 4.3.

Value Unit

Number of obstacles 3

Number of links 14

Initial joint angles 013×1 [rad]

τ7 −2 [Nm]

[Kp, Ki, Kd] [10, 3, 0.3]

Table 5.1: Simulation configuration for simulator validation test

The placement of the obstacles and snake robot is illustrated in Figure 5.2.

As can be observed from the figure, the two outermost obstacles will establish

a counter force to the resulting force from the middle joint motor torque. The

resulting joint torques from this scenario are expected to comply with the well

5.2. SIMULATOR VALIDITY TEST 87

� �

�7

Figure 5.2: Illustration of validation test

known relationship

τ = r× f , (5.1)

where r is the distance from the force origin to the joint.

Since all joints are separated with equal distances and the snake robot

is completely stretched out, it is expected that the torques follow a linear

relationship with respect to their placement from the center. In addition, since

the obstacles are symmetrically placed around the center of the robot, it is

expected that the torque values are symmetrical around the center joint as well.

The resulting joint torques are plotted in Figure 5.3. The x-axis of this plot

describes the joint number from the center joint. In order to retrieve the joint

torques from the static state part of the simulation, the data was recorded after

the snake robot and controller had settled into a steady state.

From the figure it is obvious that the joint torques have a close to sym-

metrical and linear relationship. The fifth and sixth joints from the center are

exceptions here. That is as expected since they are not between the outer and

middle obstacles. A reason for why the graph is not completely linear or sym-

metrical is probably that it depends on the exact positioning of the obstacles

and robot, and this might change slightly after the motor torques are applied.

In addition, it depends to a large degree on the controllers effort to "stretch out"

the snake robot. From studying Figure 5.4 it is possible to see that the snake

robot is ever so slightly bent. Regardless, this experiment is considered to have

88 CHAPTER 5. SIMULATIONS

validated the interaction force computations of the simulator successfully.

-6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

Figure 5.3: Snake robot joint torques from simulator validation test

Figure 5.4: Screenshot from validation test Gazebo simulation

5.3. ESSENTIAL POSITION CONTROL 89

5.3 Essential position control

This experiment covers reference following for the angle of a link in contact

with an obstacle. The motivation is to show the impact of the mapping to the

joined essential and allowable position space. More specifically, the use of the

filter jFp from (3.13) is studied. This method is also described in more detail in

3.5.4.

Link number 5, which is in contact with the foremost obstacle, is controlled

to a constant angle θt,d,3 measured with respect to the base frame. The con-

trolled variable is referred to as θt,3, and is the only essential variable the filter

takes into account in this example. A simulation without the filter is also

included to show the importance of defining which variables are essential for a

given task when the total number of task variables is greater than the number

of actuated joints.

Value Unit

Number of obstacles 3

Number of links 6

θt,3,d 0.3 [rad]

[Kp, Ki] [0.05, 0.005]

Essential variables [θt,3] [rad]

Table 5.2: Simulation configuration for position control experiment

The setup for this experiment is presented in Table 5.2. It should be noted

that the force control is left out. This can also be seen in the control diagram of

the experiment presented in Figure 5.5. The position filter is included in the

90 CHAPTER 5. SIMULATIONS

diagram, although it is only active for the first simulation of the experiment.

𝝉𝑃

(3.39)

𝐫𝑡,𝑑

− +
PI

𝐫𝑡,𝑒
(3.41)

𝐪̈𝑑 𝐫̈′

𝑡,𝑑

𝐪, , , ,𝐪̇ 𝐫𝑡 𝐫̇𝑡 𝐟𝐹

𝐫𝑡

𝑗𝐅𝑝

Figure 5.5: Control diagram for essential position control

The global contact link angle, joint angles and joint torques from the

experiments are presented in Figures 5.6 and 5.7. As one could imagine, the

latter figure shows the unfiltered control case. The contact link is in this case

quite far from reaching its reference and the control does not seem to be very

purposeful. The corresponding joint angle values show that the snake simply

turns its first actuated joint, resulting in the tail of the snake robot spinning

around before getting stuck. The behavior of the snake robot in the filtered

example makes more sense, as it simply bends the joint preceding to the link

and compensates by bending the following joint in the opposite direction.

The configuration of the snake robot at the end of the filtered and unfiltered

simulations is better understood by looking at Figures 5.8 and 5.9 respectively.

From the last figure it is also evident that the robot has lost contact with some

of the obstacles, which means that the mathematical model the controller is

based on no longer is valid. This is likely to have contributed to the strange

control sequence.

5.3. ESSENTIAL POSITION CONTROL 91

10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 15 20 25 30 35 40 45 50 55
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

10 15 20 25 30 35 40 45 50 55
-0.1

0

0.1

0.2

0.3

0.4

Figure 5.6: Results from filtered position control

92 CHAPTER 5. SIMULATIONS

10 20 30 40 50 60 70

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

10 20 30 40 50 60 70

-2

0

2

4

6

8

10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.7: Results from unfiltered position control

5.3. ESSENTIAL POSITION CONTROL 93

Figure 5.8: Snake robot after filtered position control

Figure 5.9: Snake robot after unfiltered position control

94 CHAPTER 5. SIMULATIONS

The explanation of the presented results is that the unfiltered case tries to

control all possible position variables in r, meaning all contact link angles and

the translational position along every contact point. This sums up to 6 variables.

However, the robot only has 5 actuators. Furthermore, the last actuator can not

be taken into account since it is located after the last contact point. This results

in a total of 4 actuators that may be utilized for the control. Needless to say,

trying to control 6 variables is infeasible for this snake robot. Increasing the

number of joints and links would give it a much better basis for achieving the

task.

5.4 Force control with various CKC formulations

The purpose of this experiment is illustrating the differences between the use

of the two closed kinematic chain (CKC) formulations described in 3.5.3. The

first simulation is run with minimal CKCs, and the second one is run with the

regular CKCs defined with respect to the base frame.

Value Unit

Number of obstacles 3

Number of links 6

fF,d 2 [N]

[Kp, Ki] [0.5, 0.003]

Table 5.3: Simulation configuration for force control experiment

The snake robot is in contact with three obstacles, whereas the force against

the second and third obstacle is controlled. The desired force magnitude fF,d is

5.4. FORCE CONTROL WITH VARIOUS CKC FORMULATIONS 95

2 N for both contacts. The simulation configuration is summarized in Table 5.3

and is common for both simulations. The control structure for this experiment

is given in Figure 5.10.

𝝉𝐹

(3.40)

𝐟𝐹

PI

𝐟𝐹,𝑑

+

−

𝐟 ′

𝐹,𝑑 𝐟𝐹,𝑒

𝐪, , , ,𝐪̇ 𝐫𝑡 𝐫̇𝑡 𝐟𝐹

Figure 5.10: Control diagram for force control

It should be mentioned that very thorough tuning of control parameters

could improve the results of both simulations, although a great deal of tuning

already has been conducted. Furthermore, the control is quite twitchy as

a result of the unsteady force sensor feedback. The experiment in 5.6 is

conducted with low pass filtering of these sensor signals, and proves that the

control consequently gets smoother as well.

96 CHAPTER 5. SIMULATIONS

5.4.1 Regular CKCs

For the first simulation, the regular CKC formulations are used. This means

that all contact points are described with respect to the base frame of the robot,

as illustrated in Figure 3.6 in 3.5.3. It can be seen that the two CKCs for the

second and third obstacle are overlapping. As a result, the first two joint

motors will be used to control both contact points. The motors for joints 3 and

4 will however still be reserved to the control of the third contact point. From

the input torque plot in Figure 5.11 it can be observed that all joint motors

except for the last one are actuated. The last one is left out as it is positioned

after both controlled contact points.

Figure 5.11 also presents the resulting contact forces. As expected, the

contact force for the third contact point is much better controlled than for the

second contact point. This is because it has more actuators available, again

making it more robust. In addition, it is known that the actuators used for

the second contact point are shared for both controls. Consequently, the input

torques τ3 and τ4 used only for the third contact are much more stable than

the shared input torques τ1 and τ2.

Another reason for why fF,2 never reaches its desired value can be that the

joint torques related to this control reach the saturation limit, which has an

absolute value of 2 in this experiment. Unfortunately, it was found that larger

motor torques easily led to the contact being lost at some moments. This is

highly undesired as the mathematical model assumes contact at all times.

5.4. FORCE CONTROL WITH VARIOUS CKC FORMULATIONS 97

10 15 20 25 30 35
0

5

10

15

20

25

10 15 20 25 30 35

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.11: Results from experiment with regular CKCs

98 CHAPTER 5. SIMULATIONS

5.4.2 Minimal CKCs

For the second simulation, the minimal CKC formulations are used, meaning

that the CKC for the second obstacle is defined from the first to the second

obstacle point, and the CKC for the third obstacle is defined from the second

to the third obstacle. This formulation is easier understood from Figure 3.7 in

3.5.3. It can be observed that the CKC belonging to the third obstacle contains

two joints, whereas the second one only contains one joint.

Figure 5.12 shows the resulting contact forces and joint torques from the

simulation. It can be observed that both forces are close to the desired value.

Nonetheless, the force fF,3 against the third obstacle is considerably more stable

than the force fF,2 against the second obstacle. It is not implausible that this is

a result of the third contact point having one more joint available for control.

This increases the robustness of the control. In addition, it is known that the

joint connecting link 3 and 4 will influence the third link, which is in contact

with the second obstacle. This can further be seen as a disturbance on the

control of the second contact force.

From the control torques in Figure 5.12, it is evident that only the motors on

joints 2, 3 and 4 are used. This is logical, as it is exactly what the corresponding

CKCs allow. Since the controllability increases with the current minimal CKC

formulation, the control is also significantly smoother than in the previous

simulation.

5.4. FORCE CONTROL WITH VARIOUS CKC FORMULATIONS 99

10 15 20 25 30
0

5

10

15

20

10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.12: Results from experiment with minimal CKCs

100 CHAPTER 5. SIMULATIONS

5.5 Position control with active joint torque focus

As seen in 3.1.2, the equations of motion are used to find the desired torques

satisfying the desired joint accelerations. However, the equations of motion do

not consider that some of the joints are passive and thus joint torques will be

assigned to all joints, both passive and active. This is of course an issue since

the computed solution relies on the realization of these torques.

Value Unit

Number of obstacles 3

Number of links 6

θ2,d −0.2 [rad]

θ3,d 0.2 [rad]

First sim.:[Kp, Ki] [3, 0.01]

Second sim.:[Kp, Ki] [1, 0.001]

Table 5.4: Simulation configuration for double position control experiment

This experiment aims at illustrating the difference in just ignoring the

passive joint torque commands and in mapping all joint torques over to the

active joints. Because the focus is on the position torques τP, the link angles by

the second and third obstacles are controlled. They are first controlled by using

the equations of motion as in (3.39). Here the torques for the passive joints are

simply neglected. The second simulation shows control where all torques are

mapped to the active joints, as explained in 3.2. For this experiment it is simply

chosen that the desired values of the active joints should be followed and that

the passive joints could take resulting arbitrary values. This is probably not the

5.5. POSITION CONTROL WITH ACTIVE JOINT TORQUE FOCUS 101

𝝉𝑃 ,𝑎𝑐𝑡

(3.48)

𝐫𝑡,𝑑

− +
PI

𝐫𝑡,𝑒
(3.41)

𝐪̈𝑑 𝐫̈′

𝑡,𝑑

𝐪, , , ,𝐪̇ 𝐫𝑡 𝐫̇𝑡 𝐟𝐹

𝐫𝑡

Figure 5.13: Control diagram for position control with active joint torque focus

optimal choice of variables to control, but a method for explicitly determining

this has not yet been developed. The matter is discussed further in 6.1.3.

The minimal CKC formulation is used for both simulations, which implies

that the desired angles are defined according to the previous contact point.

Further simulation configurations are presented in Table 5.4. The control

structure for the experiment is given in Figure 5.13. The equation (3.48) in the

diagram is substituted with (3.39) for the first simulation.

5.5.1 Control torques computed for both passive and active

joints

For this simulation, the control torques from (3.39) belonging to the active

variables were commanded to the snake robot. The rest of the motor torque

commands were simply ignored. The resulting torques and contact link angles

can be seen in Figure 5.14. The contact link angle θt,3 settles at a value close to

its desired value. However, θt,2 is very far from reaching its desired value and

102 CHAPTER 5. SIMULATIONS

the control is overall considered unsuccessful.

30 40 50 60 70 80 90 100 110 120 130
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

20 40 60 80 100 120 140
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 5.14: Results from position control experiment with torque calculation

for all joints

From Figure 5.14 it can also be observed that the joint torques reach a

saturation limit, which is probably the reason for why very little change is

5.5. POSITION CONTROL WITH ACTIVE JOINT TORQUE FOCUS 103

noticed in the joint angles. The saturation is in place to keep the snake robot

from making large sudden movements that would move it outside of the scope

of the model. A higher saturation limit is also tested without further success.

Another reason for the static behavior of the angles is the configuration of the

snake robot and obstacles, presented in 5.1. When all applied joint torques

are negative the snake robot will try to curve up towards the two right side

obstacles. By doing so it is mainly just pushing against the obstacles, much

like the experiment in 5.1. This will logically lead to a jam rather than any

movement.

5.5.2 Control torques computed for only active joints

This time all control torques are calculated to be commanded to the active

joints, which means that no commands are ignored. The desired passive joint

acceleration values are on the other hand ignored. Therefore, this is not an

optimal approach either and required a lot of tuning to get it right. The results

are presented in Figure 5.15. θt,2 still deviates slightly from its desired value

θt,d,2, but the performance is considered much better than in the previous

simulation.

It should be noted that the snake robot is moving quite slowly in both of

the simulations. This means that C(q, q̇), the part of the dynamics dependent

on the joint velocities, is playing a very inessential role here. To investigate this

method more thoroughly, further experiments should be carried out with a

larger number of snake robot joints, more rapid movements and last but not

least, a more intelligent and reasoned choice of joints that should be precisely

controlled.

104 CHAPTER 5. SIMULATIONS

20 40 60 80 100 120 140 160 180 200 220
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

20 40 60 80 100 120 140 160 180 200 220
-1

-0.5

0

0.5

1

Figure 5.15: Results from position control experiment with torque calculation

for only active joints

5.6. SIMULTANEOUS POSITION/FORCE CONTROL 105

5.6 Simultaneous position/force control

This last example combines the explored methods from the previous exper-

iments 5.4-5.5. That means that the minimal CKC formulation explained in

3.5.3 is applied, and that the joint torques are computed for only the active

joints as explained in 3.2. The rest of the control method is according to the

dynamic HPFC control scheme presented in 3.1.2.

Value Unit

Number of obstacles 3

Number of links 6

fF,d,3 1 [N]

θt,d,3 0.1 [rad]

Force:[Kp, Ki] [1, 0.005]

Position:[Kp, Ki] [3, 0.005]

Table 5.5: Simulation configuration for simultaneous position and force control

experiment

In this experiment, both position and force is controlled for the third contact

point. More specifically, the angle of the link in contact with the third obstacle

and the force this link applies to the obstacle are controlled. The exact desired

values, as well as general simulation configurations for the experiment, are

given in Table 5.5. The values were chosen with the intuition of what would

be achievable for the snake robot from its initial configuration. The control

structure for the simulation is given in Figure 5.16.

106 CHAPTER 5. SIMULATIONS

𝝉𝑐

𝝉𝑃

𝝉𝐹

(3.40)

+

+

𝐟𝐹

PI

𝐟𝐹,𝑑

+

−

𝐟 ′

𝐹,𝑑 𝐟𝐹,𝑒

(3.48)

𝐫𝑡,𝑑

− +
PI

𝐫𝑡,𝑒
(3.41)

𝐪̈𝑑 𝐫̈′

𝑡,𝑑

𝐪, , , ,𝐪̇ 𝐫𝑡 𝐫̇𝑡 𝐟𝐹

𝐫𝑡

Figure 5.16: Control diagram for dynamic HPFC

5.6. SIMULTANEOUS POSITION/FORCE CONTROL 107

The resulting contact link angle, contact force and joint torques are pre-

sented in Figure 5.17. In this experiment, the torque values controlling the

force are much smoother than the force signal, as opposed to the experiment

in 5.4. This is because the force sensor signal is filtered before it is sent to the

controller. The force signal shown in the figure is unfiltered.

From Figure 5.17 it can also be seen that both the desired angle and force is

reached. However, the angle takes longer to reach its reference and does have

a slightly irregular trajectory. Both this and the very sensitive force signals can

be a result of the nature of the simulator used.

From the input torque plot in Figure 5.17 it can be observed that the

commanded torques τ1, τ2 and τ3 are used only for the position control since

they are smoother, whereas τ4 and τ5 are used for both position and force

control. The idea of Yoshikawa [10] is that this can still yield successful HPFC

given that the dynamical model is correct. The position and force loops are

included to compensate for possible modeling errors.

108 CHAPTER 5. SIMULATIONS

20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

20 30 40 50 60 70 80 90
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.17: Results from simultaneous force and position control

Chapter 6

Discussion

This chapter describes the effects of the different modifications and adaptions

made to the dynamic HPFC method. The discussion is based on the performed

experiments in Chapter 5 and the mathematical analysis carried out in Chapter

3. It further evaluates the chosen simulator, SnakeSIM, and the implementation

of the dynamic HPFC method in this simulator. Lastly, the application and

requirements of the dynamic HPFC method for HOAL are assessed. Some

improvements to the mentioned topics are proposed throughout the chapter.

6.1 The snake robot dynamic HPFC method

This section discusses the modifications made to the dynamic HPFC method

in order to adapt it to snake robots.

109

110 CHAPTER 6. DISCUSSION

6.1.1 Differences with traditional HPFC

As the name implies the dynamic HPFC method of Yoshikawa [10] described in

3.1.2 depends on the dynamical model of the robot. This is the main difference

from the plain HPFC method of West and Asada [8] described in 3.1.1, and

makes the calculations significantly more complex. It is however believed that

it pays off in the resulting ability to predict the dynamical behaviour of the

snake robot.

In this project, the dynamics are calculated using the Euler Lagrange

method. It was discovered that the computations get quite extensive for snake

robots with a large amount of links. An alternative method is provided by

Liljebäck et al. [2], which is significantly easier to apply to snake robots with

many links. The disadvantage with this method is however that it is based on

the center of mass of the snake robot, which is an irrelevant parameter for the

HOAL problem. An option is adapting this method to depend on the position

of the tail instead, which is already part of the generalized coordinates in the

presented snake robot model.

The assumption of no friction made in this project surely simplifies the

snake robot dynamical calculations. On the other hand, it is known that

friction contributes to dissipation of energy, which again naturally contributes

to stability of the system. At the same time it can lead to control deviations.

Regardless of the merits and disadvantages, friction plays a significant role in

physical situations and should therefore later be included in the model.

The traditional HPFC method is able to analyze whether or not a task

is achievable by mapping onto the joined space of allowable and essential

directions of the task. These essential directions have to be defined by the user.

6.1. THE SNAKE ROBOT DYNAMIC HPFC METHOD 111

For dynamic HPFC, the allowable motion and force directions have to be pre-

defined as well, but the user or planner algorithm additionally has to consider

task combinations that are in fact achievable. For instance, the snake robot

might be in a position to push against and shape itself along five obstacles, but

depending on the composition of the snake robot and the distribution of these

obstacles, achieving all control goals simultaneously might not be feasible.

A possible solution is evaluating the mapping filters (3.13) and (3.14) of

West and Asada [8] and the property that they have zero rank if the task is

outside the combined allowable and essential spaces. Ideally, the information

gained from these filters should be exploited by the HOAL planner algorithm,

leaving the controller to simply realise any task it is requested to.

6.1.2 Mathematical formulations

It should be mentioned that since it is the first time the dynamic HPFC

method has been adapted to snake robots, the chosen formulations can still

be challenged. The formulation of the contact points are based on the idea

of which variables the HOAL algorithm will desire to control. That is the

global orientation of the contact links and the directions along and against the

obstacles. When the minimal CKC formulation was implemented and used to

compute the Jacobians, these variables were no longer all defined with respect

to the base frame, but rather the frame of the preceding contact point. The

intuition behind what the desired variables should be was then somewhat lost.

Still, this can easily be solved by defining all desired values with respect to the

base frame and use homogeneous transformation matrices to input the right

formats to the controller.

112 CHAPTER 6. DISCUSSION

6.1.3 Passive joints

An issue that was encountered during the testing is that the dynamic HPFC

method does not consider that some of the joints are passive and thus unactu-

ated. Consequently, it computes motor commands for these joints as well as

for the active joints. These commands cannot be realised, and merely ignoring

them leads to unwanted behaviours, as was seen in the experiment in 5.5. This

observation motivated the suggested solution described in 3.2, where a subset

of the joint variables (ψ) are picked for reference following and the generalized

control forces are calculated only for the active joints. This was tested and

presented in 5.5, and led to a considerable improvement in the results.

It is however not believed that this is the most optimal solution to the prob-

lem, because it requires continuous determination of the variable subset ψ and

rearrangement of the generalized coordinates and dynamics matrices. There

has so far not been developed any explicit method for determining the subset

of the joint variables that are the most significant for achieving a given task,

and it is an essential matter that should be investigated further. A lot of trial

and error, both with the variable subset and tuning of the internal controllers,

was conducted before satisfying results were attained in the experiment in 5.5.

Furthermore, the arbitrariness term (I− J+t Jt)k in (3.41) for the calculation

of the desired joint accelerations q̈d has not been explored extensively and

thus not been included in the experiments. It is also more significant for snake

robots with a large number of links where the arbitrariness of the motion is

higher. However, one idea is combining the choice of k with the choice of the

subset ψ of the joint variables mentioned above. If the term (I− J+t Jt)k can

influence which joint variables are assigned the most vital values for reaching

6.1. THE SNAKE ROBOT DYNAMIC HPFC METHOD 113

a goal, then ψ could be altered less frequently. This is simply a hypotheses,

and other ways of exploiting the influence of k should be studied as well.

It should also be noted that since the vector k will be projected onto the

nullspace of the robot, there are a lot of variations of k which will yield the

same resulting projected vector. This decreases the span of variations that have

to be investigated.

6.1.4 Closed kinematic chains

The analysis of the closed kinematic chains (CKCs) in 3.5.3 concludes that a

higher number of joints leads to a higher level of controllability. Because the

variables desired to control are related to the contact points, the arrangement of

the obstacles in touch with the snake robot have an impact on the controllability

as well. That is, if for instance all obstacles are gathered at the back part of the

snake robot, it will not be able to exploit all of its joints to control the contact

point variables. In other words, it is desired to have a snake robot with a large

number of joints configured so that there are sufficiently many joints between

every contact point to make control of the contacts close to independent of each

other. A higher number of joints also allows for a higher number of solutions

to every control problem and will thus increase the dexterity.

In case it is not important to control all contact points accurately, one should

implement an algorithm that can find the largest CKC for every contact point

desired to control that does not overlap with any other active CKCs. This way

the utilization of the snake robot joints can be maximized and the controllability

increased. On the other hand, it is sensible to always control all contact forces

based on the fact that a mechanical snake robot can break or get damaged

114 CHAPTER 6. DISCUSSION

under too much pressure.

6.1.5 Control structure

When the complexity of a controller increases, it is typically dependent on a

greater amount of feedback parameters from the system to execute all of its

calculations. Thus, it is dependent on the accuracy of a greater amount of

parameters. The dynamic hybrid position/force controller for the simulated

snake robot has access to accurate data of position, velocity and force. These

parameters are used both for the dynamic HPFC and for the inner control

loops considering the desired forces and positions. Even though the data was

considered to be of good quality, considerable tuning had to be conducted to

optimize the inner control loops and approach an optimal controller.

For this project, the velocities and displacements have been kept small in

order to stay within the validity bounds of the mathematical model of the snake

robot and its constraints, and the control parameters are tuned correspondingly.

A more thorough tuning of control parameters should thus later be conducted

for a faster, yet stable, response of the system.

The inner control loops, which consider the position and force errors, can

be utilized to weigh the control of the different variables. I.e., it is possible to

control some variables more strictly than others if they are recognized as more

vital for achieving the propulsion goal. To figure out which variables are the

most important, the necessary conditions for propulsion should be explicitly

determined and analyzed.

Furthermore, PI control was chosen for the inner control loops since all

motion was very slow either way. It is however suggested to implement PID or

6.2. SIMULATION LIMITATIONS 115

PD controllers in the continuation of the research of this project. In addition,

the desired contact point accelerations were calculated directly from the desired

position variables, rather than the velocities. It is not believed to have had any

negative consequences in the scope of this project, but should also be altered

in future implementations.

Since singularities have not turned out to be prominent in the vicinity of

the experiments in this project, singularity avoidance has not been included in

the control. It should however be implemented when the scope of the testing

is increased.

6.2 Simulation limitations

6.2.1 Snake robot model

The most important deficiency in the quality of the simulation experiments

is that the number of links is quite low. The reason for this is explained in

6.1.1. In future experiments it is recommended to use a snake robot with

a large number of links so that the controllability increases and artefacts or

disturbances from control of adjacent contact points are minimal.

Another disadvantage is that the movements have to stay within the bounds

of the model description, meaning contact with the links have to be maintained

at all times. It was discovered that uncontrolled oscillations could occur when

the snake robot violated this assumption. When the movement span increases

it is also more likely that the snake robot ends up in or approaches a singular

configuration, which leads to large joint velocities. However, the purpose of the

experiments in this project is not achieving propulsion, but to test the dynamic

116 CHAPTER 6. DISCUSSION

HPFC method on a snake robot.

Another resulting limitation to the test quality is that the dynamical model

is less significant and influential for very slow movements where the velocities

are close to zero. Therefore, the dynamical part of the implemented method

has not been tested as extensively as it could have been in a different test and

model environment.

6.2.2 Force sensor signal

The force sensor signal from the physics simulator is notably more unsteady

than the other signals provided. A reason for this can be that calculating forces

in collisions is very complex. The links in contact did not collide with the

obstacles very frequently during simulations. However, it is believed that the

unsteadiness of the signal is a result of the contact point on the contact link

constantly changing. The displacements might not be big, but enough for the

simulator to register a new contact point and thus recalculate the force with

new parameters. It was observed that when the robot was lying completely still

the force signals were much steadier. According to Guillaume [39], continuous

contact is excluded because contact will only happen on the triangle edges of

an object.

Despite the unsteady force signals, the controller is able to drive the contact

forces to oscillate around the desired value. Lowpass filtering the force sensor

signals was further observed to have a positive impact on the control, as can

be seen in the experiment in 5.6.

An unfortunate trait of the physics simulator is that it has a tendency to

push the snake robot ever so slightly away from the obstacles when it is lying

6.3. DYNAMIC HPFC FOR HOAL 117

still. The movement is not significant, but the problem is that it results in the

contact force signal and information about the contact point being lost.

6.2.3 Simulator user-friendliness

Using the ROS/Gazebo SnakeSIM simulator is not quite plug-n-play, and it

is recommended to reserve enough time to understand the principles of the

program structure and how it should be used. Both knowledge about the

Ubuntu operating system and the use of the command line is required.

The previously made modules for this simulator are well developed and

it intuitively follows which modules should be deployed. On the other hand,

there is lacking documentation of the different modules and the simulator in

general, which made familiarization with the program very time consuming.

6.3 Dynamic HPFC for HOAL

The experiment in 5.6 shows that simultaneous control of position and force

against a single obstacle is achievable with the presented modifications to the

dynamic HPFC method. This experiment is, however, not enough to determine

whether or not dynamic HPFC is the best method to be used for HOAL.

Further experiments with larger velocities, a higher number of snake robot

links and simultaneous control of several contact points should be carried out

to substantiate the idea. It can, however, be concluded that the results are an

indication that the research is moving in the right direction.

Furthermore, it has been shown that the amount of links, and in particular

the amount of links between contact points, is vital for the performance of

the dynamic HPFC method and thus the HOAL scheme. The results of the

118 CHAPTER 6. DISCUSSION

experiment in 5.4 suggest that at least two actuated joints are needed for

accurate control of the force at one contact point. It is also achievable with one

actuator, given that the snake robot is able to push against another obstacle

to stay in place, but this is less optimal. An important factor that should be

considered is that the control situations and goals were very simple in this

project, and the minimum requirement might thus increase for more complex

scenarios. Ideally, hyperredundant snake robots should be used, as described

in 3.5.3.

In order to focus the control on variables that are in fact desired to be

controlled by a given HOAL algorithm, it was suggested in 3.5.4 that the

position and force filters from the traditional HPFC method can be combined

with the dynamic HPFC method. This was proven to be successful in the

experiment described in 5.3. However, several conditions and requirements

have to be fulfilled for the proposed method to be valid, and it is therefore

not believed that it is scalable to bigger experiments with higher velocities. As

mentioned in 6.1.1, it should still be investigated if these filters can be exploited

by any part of the HOAL algorithm.

Chapter 7

Conclusion

This project has studied the adaptation and application of dynamic HPFC

on snake robots to allow for both natural and virtual constraints on position

and force to be met during propulsion. The focus has been on controlling

variables that are considered necessary for achieving HOAL. That includes

the position and orientation of the snake robot alongside obstacles and the

contact force between the snake robot and obstacles. A lot of the contributions

to the research topic have been formulations and definitions for the snake

robot dynamic HPFC problem. This chapter concludes the insights from the

simulations of the dynamic HPFC method and the developed modifications to

the method for it to be suitable for snake robots performing HOAL.

Surely, a great deal of further testing is required to support the dynamic

HPFC method for snake robots. There is also room for improvements, both

when it comes to the mathematical foundation and the test environment. These

aspects are regarded in Chapter 8.

119

120 CHAPTER 7. CONCLUSION

7.1 Insights from simulations

From the experiments it can be concluded that the modifications made to

the dynamic HPFC method are not alone sufficient for controlling the several

contact points of a snake robot independently. This is especially the case for

snake robots with a moderate number of joints. However, the performance

was considerably increased with the developed additions that assign certain

actuated joints to certain contacts so that the control of the different contacts

do not overlap.

The control managed to steer the position and force to follow constant

reference values within small bounds of the initial configuration of the snake

robot. The low number of snake robot joints limited the experiments and only

very specific scenarios could be tested. It can be concluded that the number

of snake robot links relative to the number of obstacles is very essential for

controllability. More specifically, the number of links between every obstacle

contact is important. This was investigated through the study of the different

closed kinematic chains present in the snake robot and the inclusion of these

in the control.

One solution for considering the presence of passive unactuated joints

based on the dynamic coupling of the snake robot was presented and tested.

From the experiment it is obvious that some adaption of the dynamical joint

torque calculation is indeed necessary, although this method might not be

the most ideal, as discussed in Chapter 6. The solution should be developed

further and adapted more thoroughly to the snake robot case.

Chapter 8

Future work

This chapter proposes some ideas for future research within the field of HOAL,

with special emphasis on the dynamic HPFC method. Possible improvements

based on the challenges encountered in this project and the analysis carried

out in Chapter 3 are suggested.

8.1 Dynamic HPFC method

As mentioned earlier, further testing should be carried out to evaluate the

developed method for dynamic HPFC of snake robots. Since it has been

understood that snake robots with a large number of links are ideal for the

HOAL scheme, it is desired to conduct further testing with a much bigger

snake robot. The tests should still be conducted in an enclosed simulator

test environment so that different aspects can be analyzed under isolation

of unknown outer disturbances and with accurate position and force data

121

122 CHAPTER 8. FUTURE WORK

available. The SnakeSIM simulator is recommended for further tests as well.

However, a better method of calculating the dynamics of a snake robot with

arbitrarily many links should be implemented.

Furthermore, with a higher number of links, and thus an increased dexterity

level, a greater amount of solutions to the control problem will present them-

selves. It is therefore desired to analyze the arbitrariness of the behaviour of

hyperredundant snake robots. Special emphasis should be put on addressing

the arbitrariness term in the calculation of the desired joint accelerations.

A better solution for isolating the commanded control torques to only apply

to actuated joints should also be investigated. By preference, the proposed

solution can be adopted, but it is recommended to identify a more mathemat-

ical and automatic way of finding exactly which joints should be controlled

precisely and which can take arbitrary values resulting from the controlled

joints. A proposition is looking at the span of the snake robot propulsion space

and the desired velocity directions along the given path. Seeing as a necessary

condition for propulsion is that the velocity direction along the path lies within

the propulsion space, the underlying criteria for this could be analyzed and

used to study the influence and importance of the different joints, both active

and passive.

8.2 HOAL

When the dynamic HPFC method for snake robots has been established, it can

be combined with the suggested HOAL algorithm. There are of course several

other parts that need to be studied and established as well. This includes

the development of automatic path planner and path following algorithms.

8.3. SIMULATION PLATFORM 123

Section 3.6.2 discusses some of the necessary criteria for propulsion that should

be considered by these algorithms. An important topic that needs to be

investigated further is the span of the different spaces, namely the shape,

constraint and propulsion space of the snake robot. From this, criteria will

follow for how the desired path should be designed with respect to the given

snake robot and obstacles in its environment. Additional criteria that could

benefit the snake robot locomotion is minimizing the energy consumption

(discussed by Holden et al. [40], [19]) and the traversed distance. Methods like

model predictive control (MPC) and reinforcement learning (RL) are suggested

to be investigated in future work. Lastly, the inclusion of the position of the

snake robot head to the dynamic HPFC task space vector rt could be useful for

the path following component.

8.3 Simulation platform

The research field of snake robot OAL/HOAL is growing, and it is therefore

believed that a common robust simulation platform for testing would be of

great convenience. SnakeSIM is a great base here, but comprehensive work

should be put into generalizing it for a more seamless adaptation to different

simulation scenarios. A detailed user guide and documentation of the platform

would also vastly benefit the research community.

124 CHAPTER 8. FUTURE WORK

Bibliography

[1] Ø. Stavdahl. “Working note: Hybrid Position/Force Control for Per-

ception Driven Obstacle Aided Locomotion (HOAL) in Snake Robots”.

Unpublished. 2019.

[2] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl. Snake robots:

modelling, mechatronics, and control. Springer Science & Business Media,

2012.

[3] P. Liljeback, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl. “Snake robot

locomotion in environments with obstacles”. In: IEEE/ASME Transactions

on Mechatronics 17.6 (2011), pp. 1158–1169.

[4] T. Wang, J. Whitman, M. Travers, and H. Choset. “Directional Compli-

ance in Obstacle-Aided Navigation for Snake Robots”. In: arXiv preprint

arXiv:2003.01774 (2020).

[5] A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Liljebäck.

“Snake robot obstacle-aided locomotion: Modeling, simulations, and

experiments”. In: IEEE Transactions on Robotics 24.1 (2008), pp. 88–104.

[6] T. Klafstad. “Hybrid Position/Force Control for Obstacle Aided Locomo-

tion in Snake Robots”. Unpublished. 2019.

125

126 BIBLIOGRAPHY

[7] A. Koushan. “Simulator for Obstacle Aided Locomotion in Snake Robots”.

Unpublished. 2019.

[8] H. West and H. Asada. “A method for the design of hybrid position/force

controllers for manipulators constrained by contact with the environ-

ment”. In: Proceedings. 1985 IEEE International Conference on Robotics and

Automation. Vol. 2. IEEE. 1985, pp. 251–259.

[9] M. H. Raibert, J. J. Craig, et al. “Hybrid position/force control of manip-

ulators”. In: Journal of Dynamic Systems, Measurement, and Control 103.2

(1981), pp. 126–133.

[10] T. Yoshikawa. “Dynamic hybrid position/force control of robot manipu-

lators – description of hand constraints and calculation of joint driving

force”. In: IEEE Journal on Robotics and Automation 3.5 (1987), pp. 386–392.

[11] S. Nansai, M. R. Elara, and M. Iwase. “Dynamic Hybrid Position Force

Control using Virtual Internal Model to realize a cutting task by a snake-

like robot”. In: 2016 6th IEEE International Conference on Biomedical Robotics

and Biomechatronics (BioRob). IEEE. 2016, pp. 151–156.

[12] K. M. Lynch and F. C. Park. Modern Robotics. Cambridge University Press,

2017, pp. 272–286.

[13] K. M. Lynch and F. C. Park. Modern Robotics. Cambridge University Press,

2017, pp. 421–429.

[14] K. J. Waldron and J. Schmiedeler. “Kinematics”. In: Springer Handbook of

Robotics. Springer, 2016, pp. 11–36.

BIBLIOGRAPHY 127

[15] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A. Transeth, Ø. Stavdahl, and P.

Liljebäck. “Perception-driven obstacle-aided locomotion for snake robots:

the state of the art, challenges and possibilities”. In: Applied Sciences 7.4

(2017), p. 336.

[16] A. A. Transeth and K. Y. Pettersen. “Developments in snake robot mod-

eling and locomotion”. In: 2006 9th International Conference on Control,

Automation, Robotics and Vision. IEEE. 2006, pp. 1–8.

[17] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl. “A review

on modelling, implementation, and control of snake robots”. In: Robotics

and Autonomous Systems 60.1 (2012), pp. 29–40.

[18] A. J. Ijspeert. “Central pattern generators for locomotion control in

animals and robots: a review”. In: Neural networks 21.4 (2008), pp. 642–

653.

[19] C. Holden, Ø. Stavdahl, and J. T. Gravdahl. “Optimal dynamic force

mapping for obstacle-aided locomotion in 2D snake robots”. In: 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.

2014, pp. 321–328.

[20] Z. Y. Bayraktaroglu and P. Blazevic. “Understanding snakelike locomo-

tion through a novel push-point approach”. In: (2004).

[21] F. Sanfilippo, Ø. Stavdahl, and P. Liljebäck. “SnakeSIM: A ROS-based

rapid-prototyping framework for perception-driven obstacle-aided loco-

motion of snake robots”. In: 2017 IEEE International Conference on Robotics

and Biomimetics (ROBIO). IEEE. 2017, pp. 1226–1231.

128 BIBLIOGRAPHY

[22] A. Calanca, R. Muradore, and P. Fiorini. “A review of algorithms for

compliant control of stiff and fixed-compliance robots”. In: IEEE/ASME

Transactions on Mechatronics 21.2 (2015), pp. 613–624.

[23] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl. “Compliant

control of the body shape of snake robots”. In: 2014 IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 4548–4555.

[24] E. H. Moore. “On the reciprocal of the general algebraic matrix”. In: Bull.

Am. Math. Soc. 26 (1920), pp. 394–395.

[25] R. Penrose. “A generalized inverse for matrices”. In: Mathematical proceed-

ings of the Cambridge philosophical society. Vol. 51. 3. Cambridge University

Press. 1955, pp. 406–413.

[26] R. M. Murray. A mathematical introduction to robotic manipulation. CRC

press, 2017, pp. 155–189.

[27] E. Rezapour, K. Y. Pettersen, P. Liljebäck, J. T. Gravdahl, and E. Kelasidi.

“Path following control of planar snake robots using virtual holonomic

constraints: theory and experiments”. In: Robotics and biomimetics 1.1

(2014), p. 3.

[28] S. Chiaverini, G. Oriolo, and I. D. Walker. “Kinematically redundant

manipulators”. In: Springer handbook of robotics (2008), pp. 245–268.

[29] H. Arai, S. Tachi, et al. “Position control of manipulator with passive

joints using dynamic coupling”. In: IEEE transactions on Robotics and

Automation 7.4 (1991), pp. 528–534.

BIBLIOGRAPHY 129

[30] A. A. Transeth, N. van de Wouw, A. Pavlov, J. P. Hespanha, and K. Y. Pet-

tersen. “Tracking control for snake robot joints”. In: 2007 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems. IEEE. 2007, pp. 3539–

3546.

[31] G. Robinson and J. B. C. Davies. “Continuum robots-a state of the art”.

In: Proceedings 1999 IEEE international conference on robotics and automation

(Cat. No. 99CH36288C). Vol. 4. IEEE. 1999, pp. 2849–2854.

[32] M. Kline. Calculus: an intuitive and physical approach. Courier Corporation,

1998.

[33] F. Sanfilippo, Ø. Stavdahl, and P. Liljebäck. “SnakeSIM: a ROS-based

control and simulation framework for perception-driven obstacle-aided

locomotion of snake robots”. In: Artificial Life and Robotics 23.4 (2018),

pp. 449–458.

[34] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng. “ROS: an open-source Robot Operating System”. In: ICRA

workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[35] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an

open-source multi-robot simulator”. In: 2004 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566).

Vol. 3. IEEE. 2004, pp. 2149–2154.

[36] Open Source Robotics Foundation. Tutorial: Using a URDF in Gazebo.

2014. url: http://gazebosim.org/tutorials/?tut=ros_urdf (visited on

04/18/2020).

http://gazebosim.org/tutorials/?tut=ros_urdf

130 BIBLIOGRAPHY

[37] P. Liljebäck, Ø. Stavdahl, K. Y. Pettersen, and J. T. Gravdahl. “Mamba-A

waterproof snake robot with tactile sensing”. In: 2014 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. IEEE. 2014, pp. 294–

301.

[38] The MathWorks Inc. Symbolic Math Toolbox. Natick, Massachusetts, United

State, 2019. url: https://www.mathworks.com/help/symbolic/.

[39] A. Guillaume. “User and Simulation Interface for Snake Robot’s Perception-

Driven Obstacle-Aided Locomotion”. Unpublished. 2016.

[40] C. Holden and Ø. Stavdahl. “Optimal static propulsive force for obstacle-

aided locomotion in snake robots”. In: 2013 IEEE International Conference

on Robotics and Biomimetics (ROBIO). IEEE. 2013, pp. 1125–1130.

https://www.mathworks.com/help/symbolic/

Atussa Koushan
H

ybrid O
bstacle Aided Locom

otion in Snake Robots

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Atussa Koushan

Hybrid Obstacle Aided Locomotion in
Snake Robots

Master’s thesis in Cybernetics and Robotics

Supervisor: Øyvind Stavdahl

June 2020

	Abstract
	Sammendrag
	Preface
	Nomenclature
	List of Tables
	List of Figures
	Introduction
	Previous work
	Scope of the project
	Thesis assignment interpretation
	Contributions

	Model specifications
	Simplifications
	Assumptions
	Further model description

	Report structure

	Background theory
	Terrestrial snake robot locomotion strategies
	Traditional locomotion strategies
	Central pattern generators (CPGs)
	Obstacle-aided locomotion (OAL)
	Locomotion strategies with compliance control

	Snake robot kinematics
	Constrained kinematics

	Snake robot dynamics
	Snake robot constraint formulation

	Dynamic HPFC for snake robots
	Hybrid position/force controllers
	Traditional HPFC
	Dynamic HPFC

	Passive joints consideration
	The utility of dynamic HPFC in snake robot locomotion
	Application challenges related to dynamic HPFC
	Computational challenges
	Differences with the traditional manipulator case

	Task analysis
	The overall task of the snake robot
	Lower level control tasks
	Task restrictions
	Task oriented control scheme

	Hybrid obstacle aided locomotion (HOAL)
	General strategy for HOAL
	Conditions for propulsion

	Simulator
	Background info
	Motivation for the simulator choice

	Simulator architecture
	ROS
	Gazebo

	General simulation setup

	Simulations
	Simulator configuration for experiments
	Simulator validity test
	Essential position control
	Force control with various CKC formulations
	Regular CKCs
	Minimal CKCs

	Position control with active joint torque focus
	Control torques computed for both passive and active joints
	Control torques computed for only active joints

	Simultaneous position/force control

	Discussion
	The snake robot dynamic HPFC method
	Differences with traditional HPFC
	Mathematical formulations
	Passive joints
	Closed kinematic chains
	Control structure

	Simulation limitations
	Snake robot model
	Force sensor signal
	Simulator user-friendliness

	Dynamic HPFC for HOAL

	Conclusion
	Insights from simulations

	Future work
	Dynamic HPFC method
	HOAL
	Simulation platform

	Bibliography

