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Abstract

Fluid flows, like atmospheric flows around terrains in wind farms, are governed by a broad
variety of spatio-temporal turbulent scales, thus making their real-time numerical model-
ing computationally unmanageable owing to higher resolution required to capture all the
scales. Hence, in this work, we demonstrate a novel approach to address this issue through
a combination of fast coarse scale physics-based simulator and a family of advanced ma-
chine learning algorithms like convolutional neural networks (CNNs) and generative ad-
versarial networks (GANs). The physics-based simulator generates a coarse wind field in
a real wind farm located on a complex terrain and then machine learning models enhance
these results to a much finer resolution. The results from machine learning methods are
compared with each other and against state-of-the-art interpolation methods with respect
to ground truth, which shows the superiority of the approach. We also investigate interme-
diate results within both deep learning models, gaining insight into how it reconstructs the
fully-resolved 3D velocity fields from coarser scale while respecting the local terrain.



Sammendrag

Optimal vindmølleplassering og prognoser av vindmøllers kraftproduksjon krever nøyaktig
kunnskap om vindfeltet. Generelt blir målekampanjer foretatt for å innhente informasjon
om de rådende vindforholdene i et bestemt område. Disse målekampanjene er ofte kost-
bare, og gir vinddata med meget grove oppløsninger. Et attraktivt alternativ til målekampanjene
er numeriske simuleringer, men de er begrenset av stor regnetid.

Vi presenterer en løsning gjennom en innovativ kombinasjon av tradisjonelle numeriske
løsere (numerisk fluiddynamikk kode) og avanserte maskinlæringsalgoritmer som Convo-
lutional Neural Networks (CNNs) og Generative Adversarial Networks (GANs). En tradis-
jonell numerisk løser basert på bevaringslovene til masse og bevegelsesmengde brukes
til å generere et grovt vindfelt, og deretter brukes maskinlæringsmodellene til å forfine
oppløsningen. Til slutt presenterer vi eksperimentelle resultater som reflekterer muligheten
til å forfine oppløsningen til et vindfelt og rekonstruere det originale vindfeltet ved bruk av
maskinlæringsalgoritmene. Det er ikke blitt gjort funn av tidligere presenterte løsninger
som rekonstruerer høyoppløste vindfelt i et ekte komplekst terreng.
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Chapter 1
Introduction

Optimal wind turbine siting and power production forecasting in wind farms require
accurate knowledge of local wind fields. Generally, measurement campaigns are under-
taken to obtain an insight into the prevailing wind conditions at a particular site. These
campaigns are expensive, and yield very coarse resolution wind data. Numerical simula-
tion is therefore an attractive alternative to the measurement campaigns. However, high-
resolution numerical simulation is computationally intractable. In this master thesis, we
will address this issue through an innovative combination of traditional numerical solvers
(computational fluid dynamics codes) and advanced machine learning algorithms.

1.1 Background and Motivation
In the context of upcoming technologies like digital twin (DT), internet of things (IoT)
and autonomous systems, the need for real-time simulation approaches are growing [1].
In these contexts computational fluid dynamics (CFD) simulations are considered some
of the most expensive enablers. To complicate things further, the cost of these simula-
tions scale rapidly with increasing geometric complexity and Reynolds numbers. There
are strict constraints on the resolution of the computational mesh that can be utilized to
resolve the physics of interest.

In wind engineering applications, one is generally interested in predicting terrain induced
flow features like flow channeling, mountain waves, rotors and hydraulic jump [2]. This
requires that the computational mesh has sufficiently fine resolution to resolve the terrain
accurately. This requirement makes real-time predictions computationally intractable with
the current computational infrastructure. There is, therefore, a need to resolve this issue.
Solutions to this problem range from model simplification to parameterization. Intrusive
reduced order models have been proposed for improving the computational efficiency of
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1.1 Background and Motivation

such models [3]. Still, these models tend to be unstable for turbulent flows, and their ef-
fectiveness has only been demonstrated on toy problems. To address the instability issues
with these models, non-intrusive reduced order models have been proposed [4, 5]. Never-
theless, even these approaches have been limited to academic experiments.

Recent breakthroughs in artificial intelligence (AI) and machine learning (ML) open up
new possibilities [6, 7, 8]. Deep Neural Networks (DNN) have been used to learn the dy-
namics of systems involving fluids [9, 10, 11]. Likewise, Reinforcement Learning (RL)
has been used to solve control problems related to fluid [12, 13]. Even so, traditional
DNNs fail to learn the dynamics. Lately, a new family of machine learning algorithms
called Generative Adversarial Networks (GANs) has achieved human level performance
in creative tasks like filling missing pixels, converting black and white images into col-
ored images, generating art, and converting one music genre into another, all without the
need of explicit programming. One of the achievements of GANs has been in increasing
the resolution of images. The concept was also demonstrated, in the context of fluid me-
chanics, to reconstruct high-resolution turbulence fields using coarse scale fields [14]. The
demonstration was once again for flow around cylinders.

GAN architectures were successfully applied to upscale the Particle Image Velocimetry
(PIV) measurements, which were limited to low spatial resolution [15]. A need was felt to
develop the GAN-based methodology further with different parameters and architectures
for more complex flows. Recently, GANs are used to generate new solutions of PDE-
governed systems by training on existing datasets. It is shown that turbulent flow realiza-
tions generated from GANs are able to capture several statistical constraints of turbulent
flows such as Kolmogorov’s −5/3 law and small scale intermittency of turbulence [16].
Furthermore, to improve the performance and stability of GANs, temporal coherence was
applied to GANs to generate super-resolution realizations of turbulent flows [17]. Gov-
erning physical laws in the form of stochastic differential equations were encoded into the
architecture of GANs [18].

Inspired by dynamical systems, augmenting the discriminator inputs by using residuals
and noise were introduced to training data [19]. Physical constraints such as conserva-
tion laws and statistical constraints derived from data distribution were embedded into
the generator to improve the generalization capability of the GAN-based physical system
emulator [20]. Realistic inflow boundary conditions for turbulent channel flow were pro-
duced by combining recurrent neural networks (RNN) with GANs. The combination of
RNN and GAN architecture was able to generate fully developed time-varying flow for a
long time, and was able to maintain spatio-temporal correlations for generated flow close
to those of direct numerical simulations (DNS) [21].

Bode et al. [22] presented a physics-informed enhanced super-resolution GAN (PIESR-
GAN) framework for subgrid scale modeling turbulent reactive flows. Their framework
included a loss function based on the continuity equation to enforce the physics into the
network. They illustrated the effective performance and extrapolation capability of PIES-
RGAN framework for decaying turbulence and LES of reactive spray in combustion pro-
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1.2 Objective

cess. Lee et al. [23] applied GANs for predicting the unsteady shedding of vortices behind
a cylinder. They trained their GAN for two different Reynolds numbers and showed the
capability of GAN to produce accurate results at interpolatory condition. In addition, they
demonstrated the performance of GAN for predicting flow fields with larger time step in-
terval compared to the time step employed for training.

Lee at al. [24] employed conditional GANs (cGANs) for predicting small eddies in a
three-dimensional turbulent mixing-layer. The cGANs are different from GANs in a way
that it learns the mapping of input features and randomly generated noise to the output.
Werhahn et al. [25] proposed the Multi-Pass GAN framework for super-resolution of
three-dimensional fluid flows. Their method decomposes generative problems on Carte-
sian field functions into multiple smaller problems that can be learned effectively using
two separate GANs. Specifically, first GAN upscales slices parallel to the XY -plane and
the second one refines the whole volume along the Z-axis working on slices in the Y Z-
plane. This approach leads to shorter and more robust training runs.

It is important to note that all the work we discussed above were shown to work for aca-
demic problems. In the current work we apply the approach to reconstruct high-resolution
wind field in a real complex terrain. It is demonstrated that the model learned flow be-
haviour in complex terrain dominated by valleys, hills and fjords. The GANs reconstructed
field is compared with state-of-the art interpolation techniques, which are generally em-
ployed for finding wind field at any particular site from coarse scale wind field, and also
a convolutional neural network (CNN). We demonstrate that the GANs outperform both
interpolation techniques and CNN, and provide a powerful alternative to achieve the task
of generating high-resolution wind field from inaccurate coarse scale wind field without
the need of solving complex equations in real time.

1.2 Objective
The main objective of the current thesis is to explore the possibility of replacing computa-
tionally expensive high-resolution simulations with a combination of coarse scale simula-
tion and advanced machine learning algorithms like CNNs and GANs.

1.3 Contributions
We propose a novel approach through an innovative combination of physics-based com-
putational fluid dynamics simulator and GANs, that generates high-resolution wind field
in complex terrain. A traditional numerical solver based on mass and momentum conser-
vation principles is used to generate a very coarse scale wind field, and then a pre-trained
GAN is used to refine the resolution. Finally, our model is evaluated against state-of-the-
art upsampling methods and a CNN.

In summary, the main contributions of this thesis include:

3



1.4 Thesis Structure

• We provide a physics-based simulator that consists of two different models operating
at different spatial resolutions and coupled together to make the realistic wind flow
modelling computationally manageable. This generates a coarse wind field in a real
wind farm.

• We propose a novel combination of fast coarse scale physics-based simulator and
GANs to generate high-resolution wind field in complex terrain. The GAN-based
artificial intelligence framework learns the main characteristics of the flow in com-
plex terrain.

• We present an extensive quantitative and qualitative evaluation of the generated im-
ages and our model’s capability to learn the main characteristics of the flow in com-
plex terrain. Further, we demonstrate how it outperforms common state-of-the-art
techniques.

1.4 Thesis Structure
In the following chapter, Chapter 2, we give a brief high level understanding of the numer-
ical solver and different interpolation methods. Further, we present in-depth deep learning
fundamentals, before we move towards CNN and GANs. In Chapter 3, we present the
description of the data, software and hardware framework, and discuss the hyperparame-
ter choices of our model. Chapter 4 presents the results of state-of-the-art methods, our
proposed models on the dataset and insights into the inner working of the models. Finally,
in Chapter 5, we will conclude and discuss further work.

4



Chapter 2
Theory

In the first part of this section, a brief overview of the governing equations, numerical
codes utilized and their capability is given. Wherever possible, the articles which describe
the tools in more detail are referred to. In the second part of this chapter, we give a
more in-depth explanation of each interpolation method utilized. In the third part, we first
start with a simple deep neural network before we go more in-depth into the evolution
of convolutional neural networks (CNNs) and the fundamentals of generative adversarial
networks (GANs). Finally, we combine the theory mentioned so far for our purpose.

2.1 Atmospheric Models for Data Generation
Atmospheric flows are governed by mass, momentum and energy conservation principles
given by Equations 2.1, 2.2 and 2.3 respectively.

∇ · (ρsu) = 0 (2.1)

Du

Dt
= −∇

(
pd
ρs

)
+ g

θd
θs

+
1

ρs
∇ ·R+ f (2.2)

Dθ

Dt
= ∇ · (γT∇θ) + q (2.3)

where u, ρ, p, θ,R, f represent velocity, density, pressure, potential temperature, stress ten-
sor and sink/source term (e.g. Coriolis force) respectively. Furthermore, g , γT and q de-
note acceleration due to gravity, thermal diffusivity and temperature source term. γT can
be used to model radiative heating of the atmosphere in a mesoscale modeling context. As
for the subscripts, s signify hydrostatic values, while subscript d indicates the deviation
from this value. In mathematical terms this equals to p = ps+pd, θ = θs+θd, ρ = ρs+ρd
where the hydrostatic relation is given by ∂ps/∂z = −gρs and ρs = ps/Rθ(po/ps)

Rg/Cp ,
where Cp represents the specific heat at constant pressure whileRg being the gas constant.
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2.1 Atmospheric Models for Data Generation

Again from [26], R, Pk, Gθ are given by Equations 2.4, 2.5.

Rij = νT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij (2.4)

Pk = νT

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

, Gθ = −
g

θ

νT
σT

∂θ

∂z
(2.5)

νT = Cµ
k2

ε
(2.6)

The turbulent viscosity νT given by Equation 2.6 is computed from the turbulent kinetic
energy (k) and dissipation (ε) given by Equation 2.7, 2.8.

Dk

Dt
= ∇ · (νT∇k) + Pk +Gθ − ε (2.7)

Dε

Dt
= ∇ ·

(
νT
σe
∇ε
)
+ (C1Pk + C3Gθ)

ε

k
− C2

ε2

k
(2.8)

In the current work we have used two different models operating at different spatial res-
olutions and coupled together to make this realistic wind flow modelling computationally
tractable. The large scale model is called HARMONIE and is used as a weather forecast
model in Norway. The wind field available from this model is at a horizontal resolution
of 2.5 km× 2.5 km. The resolution of the wind field is improved to 200m× 200m using
another model called SIMRA. Both these models are essentially based on the equations
presented above. One major difference between the two models is in the way turbulence
is modelled. In SIMRA a two equation turbulence model (one for turbulent kinetic en-
ergy, i.e. Equation 2.7 and another for dissipation i.e. Equation 2.8) is used, while in
HARMONIE, a one equation model given by Equation 2.7 is employed. Further, the tur-
bulent dissipation is estimated from ε = (C

1/2
µ K)3/2/`t, with `t computed by applying

the relationship

`t ≈
min(κz, 200m)

1 + 5Ri
(2.9)

where

Ri =
(g/θ)∂θ/∂z

(∂u/∂z)2
≈ −G

P
(2.10)

The stability correction (1+ 5Ri) is replaced by (1− 40Ri)−1/3 in convective conditions
and the gradient Richardson number Ri is expected to be less than 1/4. At last, the co-
efficients are (Cµ, C1, C2, C3) = (0.09, 1.92, 1.43, 1) and the coefficients (κ, σK , σε) are
(0.4, 1, 1.3), respectively [27]. The domain and mesh can be seen in Fig. 2.1b, and at this
microscale, the Coriolis effect is neglected.

6



2.2 Interpolation

(a) HARMONIE domain (b) SIMRA domain and mesh

Figure 2.1: HARMONIE-SIMRA COUPLING

2.2 Interpolation
With regards to image upscaling of digital images, there are two commonly used scaling
algorithms. The first one is the nearest neighbor (NN) interpolation technique, which is the
fastest and simplest interpolation algorithm to implement. When upsampling an image, the
algorithm chooses the value of the nearest neighboring pixel, and determines the intensity
value of it. An example can be seen from Fig. 2.2, where we have an image region of
2× 2 green pixels. During the upscaling phase to 3× 3, five additional pixels are created,
which have no color associated with the original image. When utilizing NN, the algorithm
only utilizes the color of the green pixel to assign to the new pixels. This can again lead to
a huge problem such as introducing aliasing or jagged edges, and bicubic interpolation is
therefore more often preferred.

Figure 2.2: Example of nearest neighbor interpolation.
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2.3 Neural Networks

The bicubic interpolation technique interpolates the digital image on a 2D grid of pixels.
Compared to bilinear interpolation, which only considers 2× 2 pixels, bicubic takes 4× 4
pixels into consideration and performs a cubic interpolation on each of the two dimen-
sions of the image. This results in smoother looking images and having less interpolation
artifacts. It is a simple algorithm, which adds more pixels in between the ones we al-
ready have, and appropriately fills each pixel up based on the colors of the pixels directly
surrounding it. A simple example can be seen from Fig. 2.3.

Figure 2.3: Example of bicubic interpolation.

2.3 Neural Networks
Artificial Neuron

The artificial neuron is the fundamental building block of neural networks. It was devised
as a computational model of the biological neurons of the brain. The neurons form the
fundamentals of the network, i.e. an artificial neural network (ANN). Typically, they are
modelled as seen in Fig. 2.4. The inputs to the neuron is shown on the left side as the
vector x, which are all weighted separately by the vector w and summed up together with
the bias term b. Next, the sum is injected into an activation function φ to estimate the
output y. The activation function is primarily used to saturate the range of the neurons. In
mathematical terms, a neuron is simply a multivariable function given as

y = φ

(∑
i

xiwi + b

)
(2.11)

Network Architecture

By combining layers of neurons a network is then developed. The first layer of the net-
work represents the inputs, which are then fed throughout the network reaching the output
layer as the end destination. The individual neurons in the input layer are related with a
feature in the input data, e.g. the intensity value at a particular pixel position, and for every
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Figure 2.4: The structure of an artificial neuron [28]

sample they are simply allocated values in the data. Between the input and output layers,
one can define one or more layers as hidden layers because they are internal to the network
and are usually abstracted away. In particular, given the values of the input layer and by
applying Eq. 2.11 for each individual neuron, the activations of each subsequent layer can
then be calculated. This process of connecting the input signal across the network is called
forward propagation and enables us to calculate the values of the output neurons in the
final output layer. For a specified network with fixed biases and weights, the output values
depend solely on the inputs.

Fig. 2.5 shows an example of an ANN composed of an input layer with three neurons, one
hidden layer with four neurons and the final output layer with two neurons. The amount
of neurons is defined as the size of each layer, i.e. input layer is of size two, hidden layer
of size three and final layer of size two respectively. Furthermore, a typical implementa-
tion problem of deep learning is the difficulty of deciding the size of each layer. While
the size of the input layer is straightforward, it is particularly harder to define the optimal
configuration of hidden layers by intuition. The amount and depth of neurons depend on
the complexity of the problem, which again will affect the runtime of the network and
performance. Prior work with neural networks utilized only a simple hidden layer, and
theoretical studies demonstrate that simple, single-layer networks can depict any function
with arbitrary precision [30]. Certain novel, high-performing DL architectures such as
ResNet-152 take advantage of beyond 100 layers, with approximately 100 million param-
eters, i.e. neuron weights. Between various network architectures there is a substantial
variation in classification accuracy, even for networks with similar computational com-
plexity [31]. A representational ability of a network is not the appropriate limitation, but
rather to learn a satisfactory representation during the training phase.
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Figure 2.5: An artificial neural network where each node represents a node as depicted in Fig. 2.4
[29]

Gradient Descent and Backpropagation

The training phase is defined as the process whereby the parameters of the network, i.e.
the biases and weights of the individual neurons, are modified in order for the network to
generate the true output values. The concept of a desired output is defined by means of a
given cost function, e.g. the mean squared error [30]:

C(w, b) =
1

2n

∥∥∥∥∥∑
x

y(x)− a(x,w, b)

∥∥∥∥∥
2

(2.12)

where C is the cost defined as half the average of the square error for each particular sam-
ple x. a and y signify the neural network output and the correct output for the given sample
respectively. From a quick observation, since the output a is dependent on the set of all
neuron biases and weights, i.e. b and w, the cost C is a function of these network parame-
ters, in addition to the values of y and x, which are provided by the dataset and not subject
to optimization. Thus, the equivalency of training the neural network is by minimizing
the cost function C w.r.t w and b, where the optimal neural network that ideally matches
the correct values achieve a minimal cost of zero. Even with a small neural network that
depicts a toy problem scenario, this optimization problem is analytically unmanageable
in a large dimension space. Instead, the common method is to approximate the minimum
by means of gradient descent, which is a straightforward iterative algorithm utilizing first
derivatives in the following way [30]:

pi = pi−1 − η∇C (2.13)

where pi is the parameter set (the biases and weights, combined) given by shifting from
the previous parameter set, pi−1, in the opposite direction of the gradient of the cost func-
tion. The gradient, by composition, is a vector that points in the direction of largest rate
of increase for the function, and intuitively for the objectives of minimization, the greatest
negative gradient can be found in the opposite direction. Furthermore, η is defined as the
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step-size given as a constant. In the context of machine learning, this constant is com-
monly denoted as the learning rate, since it adjusts what degree each update will change
the network parameters while training.

Intuitively, gradient descent deems considerably computationally expensive, since it is an
iterative algorithm implying possibly millions of partial derivative calculations for each
parameter. However, there exist an effective common approach of gradient descent in DL,
a method named backpropagation, resulting in computationally acceptable runtimes when
training neural networks. This method has also been redeemed several times [32].

By utilizing the previously mentioned forward- and backpropagation, we can now calcu-
late the output of a network for a specific input and a cost function, e.g. Eq. 2.12 aids as
an estimate for the distance between the ideal and actual outputs. For whichever neuron
in the output layer, its value is given by Eq. 2.11. During forward propagation the values
of these inputs of the neuron is calculated in such a way that the partial derivatives w.r.t.
the bias and weights corresponding to this particular neuron can be calculated. Addition-
ally, the activation function of the neuron and the cost function require differentiation, and
provided that the gradient of the whole training set can be composed as the average of
gradients for each individual sample [30].

From this point on, reproducing the way the biases and weights of neurons in every layer
enables us to forward propagate an input throughout a network to determine its output by
the utilization of the chain rule [32]. Then, the cost can be backpropagated in the opposite
direction of the network, beginning at the output layer and traversing backwards. Thus,
the gradient of the cost function w.r.t. all biases and weights can be calculated due to back-
propagation, and is as computationally effective as calculating the output of the network
for a given input. Through this process, the network can start with randomly initialized
biases and weights and iteratively search for better values such that the cost decreases
and approximate an ideal mapping from inputs to outputs. This stage-by-stage process is
named training the network and is where the self-learning takes place. However, there is
no guarantee that the parameter p will converge to the optimal value during gradient de-
scent.

Two failure modes common from single-variable calculus are being stuck in a local mini-
mum, resulting in a suboptimal solution, or frequently overshooting the minimum, which
slows down the convergence due to dampened oscillations, or exploding oscillations lead-
ing to catastrophic divergence. In practice, the first failure mode appears to be of limited
practical significance, partly due to sparsity of local minima in large spaces. In addition,
neural networks have a tendency to reach convergence towards resembling trained states
no matter initial values. A quote from a 2015 review article [32], this is formulated as:

In practice, poor local minima are rarely a problem with large networks. Re-
gardless of the initial conditions, the system nearly always reaches solutions
of very similar quality. Recent theoretical and empirical results strongly sug-
gest that local minima are not a serious issue in general. Instead, the landscape
is packed with a combinatorially large number of saddle points where the gra-
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dient is zero, and the surface curves up in most dimensions and curves down
in the remainder. The analysis seems to show that saddle points with only a
few downward curving directions are present in very large numbers, but al-
most all of them have very similar values of the objective function. Hence, it
does not much matter which of these saddle points the algorithm gets stuck
at. (Yann LeCun et al., Nature, 2015)

There have been extensive studies of the second failure mode, involving several challenges
that appear in larger dimensions such as intensely different gradient magnitudes in various
dimensions and saddle points. Thus, the gradient descent technique in Eq. 2.13 can first
be refined to include a momentum term, in such a way that our update technique utilizes
the record of previous update steps [30]:

mi = µmi−1 − η∇C (2.14)

pi = pi−1 +mi (2.15)

where µ is a constant that regulates to which degree we preserve the previous values of
the update steps. Notice that for µ = 0 this set of equations is identical to Eq. 2.13, i.e.
the technique has no memory of its previous update steps, and while µ is approaching 1,
the dynamics are controlled by the record of updates. The motivation behind this modified
gradient descent is how it enables the updates to build up momentum, i.e. advancing with
greater steps, in a dimension space where the gradient continuously points in the corre-
sponding directions, whilst steps ought to be relatively smaller in a dimension where the
gradient continues to change direction.

A refined optimization technique was introduced in 2014 denoted Adaptive Moment Es-
timator (Adam) [33], and is one of the most commonly used implementations of gradient
descent for neural networks. It utilizes both first order momentum, as presented above,
along with bias corrections and second order momentum. Moreover, it is considered a
notably robust algorithm where trial and error is best practice for determining an appropri-
ate learning rate. Even though the more refined optimizers are in general more stable, one
must also take into account the extra parameters that may need tuning, e.g. the exponential
decay rates of the moments.
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2.4 Convolutional Neural Networks
With the increase of hidden layers in deep neural networks, the individual neurons and its
connections in the network becomes infeasible to design by hand. Instead, when we ex-
press the activation functions in terms of convolutional kernels, a robust class of networks
arises, specifically convolutional neural networks (CNNs), with outstanding success in im-
age and pattern recognition [34]. In the later sections we will make use of more advanced
networks consisting of residual blocks, which utilize layers such as convolutions, rectified
linear units and shortcuts. In this section, these concepts will be elaborated in detail within
the context of a residual network.

Convolution Layer

From [35] a CNN is defined as:

Convolutional networks are simply neural networks that use convolution in
place of general matrix multiplication in at least one of their layers. (Good-
fellow et al., Deep Learning, 2016)

In other words, a CNN is a form of ANN that makes use of at least one convolutional layer
in its architecture. It can also be traced all the way back to Fukushima and his Neocogni-
tron [36], where he presented a hierarchical multilayered neural network conducting robust
visual pattern recognition. In mathematical terms, a convolution with regards to the neural
network can be defined as

(f ∗ g)(t) ≡
∫ ∞
−∞

f(τ)g(t− τ)dτ (2.16)

where (f ∗ g)(t) is a completely new function based on f(t) and g(t). It can be noticed as
the weighted function of f(τ) at time instant t where the weighting is given by g(t − τ).
In other terms, the convolution operator defines the output with regard to the input. In
relation to neural network terminology we can further write this theory as

s(t) = (x ∗ ω)(t) =
∞∑

τ=−∞
x(τ)(t− τ), (2.17)

where the output s(t) is often defined as the feature map. Furthermore, the inputs x and ω
are often defined as the input and kernel, respectively. Notice that Eq. 2.17 is the discrete
version of the continuous convolution operator from Eq. 2.16.

In this work we will work with wind fields depicted as images, and it would therefore be
more appropriate to introduce multidimensional arrays. If an input image I is represented
in two dimensions, then the kernel K should be represented in two dimensions as well.
Thus, we modify Eq. 2.17 into a two-dimensional version

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.18)
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We can now interpret discrete convolution as matrix multiplication, and for this reason the
kernels are often interpreted as small matrices that retrieve the desired data from the input.
In a CNN, a known kernel is the edge detection kernel, which is applied to images in order
to detect edges. Furthermore, the first level of convolution usually represents the existence
or lack of edges at specific locations and orientations in the image [32].

Fig. 2.6 shows the mathematical procedure where an image represented in matrix form is
multiplied with an edge detection kernel. A 3×3 kernel will thus decrease a n×m matrix

Figure 2.6: Convolution from a matrix point of view [37]

into a dimension of (n− 2)× (m− 2), and the resulting feature map depicts the requested
information. However, the use of convolution operator introduces a problem when we
are close to the edge of the image or if the size of the image is too small. With several
convolution layers, this problem can result in an unwanted small feature map. Nonetheless,
this problem is tackled by introducing padding, where additional zero-values are added at
the start and end of the input matrix such that the size of the resulting feature map will not
decrease. This technique can be shown as

 1 2 3
4 5 6
7 8 9

 padding−−−−−→


0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

 (2.19)

Rectified Linear Units

We introduced in Eq. 2.11 the activation function f that is utilized when we calculate the
output from a neuron. LeCun et al. [32] denotes the rectified linear unit (ReLU) as the
most commonly used activation function in deep learning applications defined as

f(z) = max(z, 0) (2.20)
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where z is the pre-activation neuron output. From Glorot et al. [38], ReLU has been proven
to outperform activation functions such as tanh and softplus in deep learning applications
related to image data. There have also been proposed various ReLU modifications, and
the one used in this work is the leaky rectified linear unit (LeakyReLU)

f(z) = max(z,−αz) (2.21)

where the non-negative constant α is of order 10−1. The reasoning behind the choice of
this activation function is to avoid vanishing gradients, which happens when the gradient
becomes truly small and will thus not update the weights significantly.

Shortcuts

Traditionally, deeper convolutional neural networks notoriously suffer from the degrada-
tion problem, i.e. accuracy reduction with increasing depth of the neural network after
arriving at a maxima. However, Liu et al. [39] achieved undoubtedly a milestone in
deep learning with the introduction of Residual Network (ResNet) utilizing shortcut con-
nections. With the introduction of convolutional layers, which take into account deeper
networks that despite everything have a sensible number of parameters, the pattern has
been for networks to turn out to be even more deeper [31].

In any event, putting aside computational confinements, training networks with many lay-
ers is troublesome. Generally, the issue is that the parameters in any specified layer cannot
be optimized autonomously for the remainder of the network, and the training strategy
fails to work adequately for any specified layer while a large number of the layers in the
network chain are poorly tuned. Several neat tricks have been uncovered to tackle this
problem, e.g. increasing the depth of networks to learn more complex relationships with
the use of unsupervised pre-training [38]. In relation to the residual blocks used in GANs,
another approach is to pre-train the network with less layers, until placing extra layers and
re-training the deeper, modified network. This kind of incremental bootstrapping method
eases a significant signal to propagate throughout the deeper neural network such that the
gradient descent optimization function properly.

In our deep learning frameworks, the residual blocks utilize shortcuts, or more elegantly
additive identity mappings. The input is forwarded through two sequential convolutional
layers in a residual block. Even so, rather outputting just this double convolution result,
it outputs instead the non-modified input and the sum of this double convolution result
[40]. The reason for this is to ensure that a significant signal propagates throughout the
network regardless of poorly tuned hyperparameters, resulting in a steadier training strat-
egy even for really deep neural networks. He et al. [40] has shown significantly better
performances with networks utilizing shortcut connections without computational load or
any extra parameters introduced, and with increased depth the results are actually getting
better.
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2.5 Generative Adversarial Network Fundamentals
Generative adversarial networks (GANs) were first described by Goodwell [41]. A gen-
erator network G takes the data distribution as input (i.e. coarse wind field) and generates
a synthetic example (i.e. fine wind field). A discriminator network D then attempts to
classify the synthetic example as either real or fake. When the two networks are trained
simultaneously both tries to outperform the other resulting in a generator that can generate
realistic output which are indistinguishable from the fake ones.

A simple analogy to describe GANs is to represent the generator as a counterfeiter who
walks into a store with counterfeited bills, while the discriminator represents a cashier
who has the knowledge of the difference between real and counterfeited bills. In the first
iteration the counterfeiter, i.e. the generator, brings a drawing of e.g. a 10 dollar bill. The
fake 10 dollar bill is definitely rejected by the cashier, i.e. the discriminator, but the coun-
terfeiter learns from this mistake, and in the next iteration the counterfeiter tries monopoly
money. As there is an evident difference between monopoly and real money, the cashier
rejects the counterfeiter, and the counterfeiter now learns that monopoly money is insuffi-
cient. Thus, for the next iteration, the counterfeiter will try to create more realistic-looking
10 dollar bills. This back-and-forth process continues until the counterfeiter is able to gen-
erate really high-quality bills.

In the most optimal conditions, after adequate epochs of training, the generator network
is substantially capable of capturing the real data distribution, while the ”smart” discrim-
inator network is incapable of distinguishing the generated images from the ground truth.
This whole process can simply be seen as a two-player minimax game, which in mathe-
matical terms can be described with the subsequent value function V (D,G) [41]:

min
G

max
D

V (D,G) = EI∼pdata (I)[logD(I)] + Ez∼pz(z)[log(1−D(G(z)))] (2.22)

where I is the real image sample (i.e. fine wind field) from the ground truth, pdata (I) rep-
resents the probability distribution of the fine wind field, and D(I) is the probability that
I derived from the real images (i.e. fine wind field) instead of the generated images (i.e.
realistic-looking wind field). z is the random noise of input generator network G, G(z) is
the generated fake image (i.e. realistic-looking wind field), andD(G(z)) is the probability
of determining whether G(z) derived from the real images or not. Throughout the entire
training process, the generator network G desires to generate the value of D(G(z)) as big
as possible, which again will diminish the value of V (D,G). As for the discriminator net-
work D, it attempts to increase the D(I) and reduce the D(G(z)), resulting in an increase
of V (D,G). Hence, the value function V (D,G) tries to modify the parameters of G to
minimize [log(1 − D(G(z)))] and modify the parameters of D to maximize [logD(I)].
This capability has been used to perform super-resolution, which increases the resolution
of an input image without introducing obvious artifacts.
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2.6 SRCNN: Super-Resolution Convolutional Neural Net-
work

In Single-Image Super-Resolution (SISR) the goal is to estimate a high-resolution, super-
resolved image ISR from a low-resolution input image ILR. The low-resolution images
ILR are obtained by applying a downsampling operation to IHR with a tuneable down-
sampling factor. SRCNN is the first deep learning method for this purpose, which can
directly learn an end-to-end mapping between the low/high-resolution images.

Fig. 2.7 shows the simple network structure layout. It is a simple CNN containing three
layers, where each layer consists of a convolution layer with an activation function. The
bicubic interpolation of a low-resolution image is the input image of the network, with
equivalent size as the output high-resolution image. From the figure, the first layer primar-
ily extracts representations and patches of low-resolution images, with a convolution of
9× 9 filter size of 64 number of feature maps and three channels. The second layer maps
the n1− dimensional representations, i.e. feature vectors, of various patches into an n2−
dimensional one, resulting in a non-linear mapping. For each mapping operation the num-
ber of patches relies on the kernel size of the second convolution layer. In the figure this is
seen as a convolution with 5× 5 filter size of 32 number of feature maps. Finally, the last
layer reconstructs the high-resolution image [42]. We will later show that the results from
SRCNN are quite good, but as mentioned earlier, the GANs have proven better results in
terms of image quality than CNN.

Figure 2.7: Network architecture of SRCNN.
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2.7 ESRGAN: Enhanced Super-Resolution Generative Ad-
versarial Network

Ledig et al. [43] introduced SRGAN, which uses a perceptual loss function based on
high-level features extracted from a pre-trained image classification model [44]. The work
used the VGG19 network [45], which was trained on over a million examples from the
ImageNet dataset [46]. This greatly improved the perceptual quality of the generated
images, but was observed to introduce high-frequency artifacts for deeper networks. A
simple high-level block diagram of super-resolution utilizing GANs can be shown in Fig.
2.8, with the velocity components (u, v, w) of the generated data concatenated and used as
input.

Figure 2.8: High-level block diagram of super-resolution using GANs.

To enhance the output quality of SRGAN, Wang et al. [47] modified the network archi-
tecture by changing the basic network building block to the Residual-in-Residual Dense
Block (RRDB) (see the red block in Fig. 2.9), calling the resulting model the enhanced
SRGAN (ESRGAN), which is the model that this work is based on. Each RRDB consists
of four convolution layers F = [fc1, fc2, fc3, fc4] where the first three layers are concate-
nated [48] such that the third convolution layer will have ×3 output feature maps, while
the last transition layer will squeeze the input feature map to the output channeled fea-
ture map. Then, the shortcut connection, which is described in Sec. 2.4, is established
between the input and the feature map of the last convolution layer in the RRDB, i.e.
x+ fc4 (fc3 (fc2 (fc1(x))) .
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Figure 2.9: Architecture of the ESRGAN model. The generator network consists of two convolu-
tional layers (3x3 kernels, 64 feature maps, and LeakyReLU activation), residual skip connections
(scaled by β = 0.2) and two upsampling layers (two sub-pixel convolutional layers). The discrimi-
nator consists of five convolutional layers, two dense layers, and a sigmoid output. The convolutional
layers have an increasing number of 3× 3 filter kernels (scaling by a factor of 2 from 64 to 512 ker-
nels), and strided convolutions are applied after each one. Zero-padding is used to control the output
shape, as is common practice.

Two sub-pixel convolution layers (see the green block in Fig. 2.9) [49] are used to upsam-
ple the feature maps by accumulating feature responses at different channels. Furthermore,
ESRGAN utilizes the Relativistic Average Discriminator (DR) [50], allowing the genera-
tor network to be trained on the relative realness of its output, rather than a hard binary
classification. This was reported to yield more consistent performance both during and
after training, as well as better looking images containing detailed textures and sharper
edges compared to previous work [47]. The relative realness of a synthetic image relative
to the original can be formulated as:

DR(xr, xf ) = σ(C(xr)− Exf
[C(xf )]) (2.23)

where xr, xf are real and synthetic examples respectively, σ the sigmoid function, C(x)
is the non-transformed discriminator output, and Exf

[·] represents the average over all the
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synthetic images in the current mini-batch. Based on this, the adversarial losses for the
generator and discriminator networks (LR

G and LR
D, respectively) are defined as:

LR
G = −Exr [ln(1−DR(xr, xf ))]− Exf [ln(DR(xf , xr))] (2.24)

LR
D = −Exr [ln(DR(xr, xf ))]− Exf [ln(1−DR(xf , xr))] (2.25)

where xf = G(xi) and xi as the input low-resolution image. The total loss for the gener-
ator and discriminator networks are then:

LG = Lpercep + λLR
G + ηL1 (2.26)

LD = LR
D (2.27)

where Lpercep is the perceptual loss term from SRGAN [43], L1 = Exi ‖G(xi)− y‖1 is
the 1-norm distance between the ground truth image y and the generated image xi, and the
coefficients (λ, η) are separate learning rates for the adversarial and L1 losses, and may be
varied during the training process. In their original work on ESRGAN, Wang et al. [47]
initialised these rates as λ = 5 · 10−3 and η = 10−2, and further reduced λ by a factor of
two every 50k iterations.

2.8 Principal Component Analysis
Principal component analysis (PCA) is a method for pattern identification in data, and
expressing the data in such a way as to highlight their similarities and differences [51]. It
is most commonly used as a dimensionality reduction method [52]. Essentially, the idea is
to depict a dataset using fewer variables than the original dataset, while keeping as much
information as possible. PCA is a straightforward five step procedure:

1. Get a dataset

2. Subtract the mean from the dataset

3. Calculate the covariance matrix

4. Calculate the eigenvectors and eigenvalues of the covariance matrix

5. Choose components and form a feature vector

In Sec. 4.2 PCA is applied to a set of images. There are numerous ways to do this.
A precise description of how this is accomplished will be presented here. We have two
objectives we wish to achieve:

1. Without presenting every single one of the images, we want to visualize as much of
the information as possible

2. To make the images necessary for the neural network, we want to determine if they
contain truly distinct data
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An image is therefore treated as a variable and the image height and width as samples. Im-
ages are obviously two dimensional and thereby can not exactly be considered as samples.
Hence, this data is unpacked into a single dimension. This is done by fetching one row at
a time from an image and attaching it to the next row. This is demonstrated in Eq. 2.28

I =

[
c00 c01
c10 c11

]
=
[
c00 c01 c10 c11

] (2.28)

If we had 128 images of size 32× 32 we gather this together such that we have a matrix of
dimensions 128×(32 ·32) = 128×1024, and apply PCA onto this matrix. As a result, we
end up with a list of components that include the variance in the original dataset. There are
two main results worth noticing. Firstly, when one component describes all the variance in
the dataset. In such a case the images hold a clear pattern, e.g. the images are all the same.
Secondly, when all components describe corresponding levels of variance, indicating no
clear pattern in the images, e.g. the images are all different.
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Chapter 3
Set-up

In this section we present our computational set-up. First, we will describe the data gen-
eration and pre-processing. Next, we will outline the software and hardware frameworks
used in this work. Then, we will discuss our choice of hyperparameters for both neural
network frameworks and quantitative evaluation metrics. Finally, we outline the complete
training workflow with respect to the GAN-based artificial intelligence framework.

3.1 Data Generation
The HARMONIE-SIMRA coupled system is utilized to generate the data used in this
work. As mentioned earlier the 2.5 km × 2.5 km horizontal resolution wind forecast data
from the HARMONIE model was used to force the SIMRA model which in turn generated
a wind field at a fine horizontal resolution of 200m × 200m over a domain of 30 km ×
30 km× 3 km. The model is operational since 1st July 2017, generating an hourly stream
of three dimensional wind field, pressure, turbulent kinetic energy and dissipation rate. For
the current work the data corresponding to the period 1st July 2017 to 1st July 2019 was
utilized. The duration corresponded to 2× 365× 24 = 17520 data points.

3.2 Data Pre-processing
Due to the enormous amount of data and limits of the available computational resource,
we demonstrate our approach in a two dimensional setting only. Two dimensional terrain-
following planes lying 40m above the terrain surface were extracted and treated as the
high-resolution data (200m × 200m) representing the ground truth. The downsampled
coarse scale data (800m×800m) was obtained using the nearest neighbor algorithm. The
downsampled data was used as the input to the generator in the GAN and the original fine
scale data was treated as the corresponding target. Furthermore, each velocity component
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was normalized using the respective min-max value of the components according to

zi =
xi −min(xi)

max(xi)−min(xi)
(3.1)

This step scales the values in the range of [0, 1]. The normalization is important in order to
make the training less sensitive to the feature scales, leading again to stable convergence.
In addition, several multiplication operations occur as the input passes through the layers
of the neural network, thus keeping the inputs between 0 and 1 averts these values from
getting too huge during the training. This problem is also known as the exploding gradient
problem. With regards to our dataset, the velocity components (u, v, w) can be seen as
three separate input channels, just like an image has the three color channels RGB respec-
tively. A simple illustration of velocity components u and v in the respective grid is given
in Fig 3.1. The details of the robustness of the operational model are explained further in
[53].

Figure 3.1: Illustration of velocity components u and v on the grid space.

The dataset was further split into training, validation and test set in the ratio 80 : 10 :
10. This translated into 14016, 1752, 1752 data points for training, validation and test,
respectively. The training set was used to train both the CNN and GAN models or in
other words, to find the optimal values of the model parameters (also called the weights).
The performance of the model was continuously evaluated during the training phase on
the validation set. This helped in tuning the model by adjusting the hyperparameters and
avoiding overfitting. Finally, the accuracy and performance of the model was tested on the
unseen test set.
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3.2 Data Pre-processing

3.2.1 Downsampling and Resolution Enhancement Algorithms
Two interpolation techniques have been employed in this work: nearest neighbor and bicu-
bic interpolation. While the former is used for creating a coarse scale wind field from the
high-resolution field as input to the generator network in the GAN-based framework, the
latter is used for simply enhancing the resolution of the coarse scale (generated using
nearest neighbor algorithm) for comparison with the GANs reconstructed high-resolution
wind field. SRCNN also takes a bicubic interpolated enlarged image as input and learns
the mapping relationship between the bicubic interpolated image and the original HR im-
age. Furthermore, the reason for choosing NN during downsampling is to create the most
foggy wind field as possible, in order to further strengthening the ability of the generator
network of recreating the high-resolution wind field. Fig. 3.2 depicts a sample image.

Figure 3.2: Sample image of the input of the network.

For a new point in the coarse mesh, the nearest neighbor algorithm selects the value of
the point (from the high-resolution mesh) nearest to it and does not consider the values of
other neighboring points at all, yielding a piecewise constant interpolant. Thus this method
is very rapid, and creates low quality blocky results.

In the current work we have compared the CNN and GANs generated high-resolution
wind field with that obtained using a bicubic interpolation. Even though the resolution
increases, a big disadvantage is artificial smoothing of the field, due to the filtering process
being based on low-pass characteristics.

24



3.3 Software and Hardware Framework

Table 3.1: Details of the computational models, number of CPU, domain extent [km], number of
mesh elements [million] and total simulation time [minutes].

Model CORES Domain N Time
HARMONIE 1840 1875× 2400× 26 46 87

SIMRA 48 30× 30× 2.5 1.6 13

3.3 Software and Hardware Framework
All the data employed in this work was available in a NetCDF (Network Common Data
Form) file format through an OpenDap server. NetCDF library was utilized for processing
the data. All the code for the CNN- and GAN-based frameworks is developed in Python
3.7.2 using the PyTorch 1.2.0 library [54], which is an open source software library de-
veloped by the AI group of Facebook with main focus on the implementation of various
neural network architectures.

The HARMONIE-SIMRA codes were carried out on the supercomputing facility ”Vilje”,
which is an SGI Altix ICE X distributed memory system that contains 1440 nodes in-
terconnected with a high-bandwidth low-latency switch network (FDR Infiniband). Each
node has two 8-core Intel Sandy Bridge (2.6Ghz) and 32GB memory, providing the total
number of cores to 23040. The system is suitable and designed for large scale parallel MPI
(Message Passing Interface) applications. The results are transformed into NetCDF [55]
and realized through an OPeNDAP server. The utilization of OPeNDAP (Open-source
Project for a Network Data Access Protocol) [56] excludes the redundant copying of the
result files on several machines for post-processing. A set of Python routines are imple-
mented to read and post-process the hosted files on the fly.

Table 3.1 presents a brief overview of the computational set-up. The HARMONIE model
operates on 1840 cores and to perform a 48 hours forecast requires a duration of approxi-
mately 87 minutes. SIMRA on the other hand, operating on 48 cores, requires a duration
of 13 minutes to complete one hourly averaged simulation each for the next 12 hours. As
for the neural network models utilized in this work, the code was run on ”Idun Cluster”
[57], which is a project among the faculties of NTNU and the IT division with the ob-
jective of providing a cluster for rapid testing and prototyping of HPC software. At this
time, Idun Cluster consists of 68 nodes. The code is mainly run on two 14-core Intel Xeon
E5-2650 v4 (2, 2Ghz) processor with 128 GB memory, and an NVIDIA Tesla P100 GPU.

25



3.4 Choice of Hyperparameters for SRCNN

3.4 Choice of Hyperparameters for SRCNN
SRCNN [58] architectures are CNN based learning algorithms that learn an end-to-end
mapping between the low/high-resolution images for enabling single-image super-resolution,
and here the mapping is represented by a deep convolutional neural network [59]. The in-
built CNN layers are able to successfully capture the spatial and temporal dependencies
in an image through the application of relevant filters (such as convolution). The parame-
ters of SRCNN used in this work are shown in Table. 3.2, which are optimized to obtain
the best performance of SRCNN. Due to gradient vanishing, the performance of SRCNN
cannot be improved by increasing the number of network layers.

Parameter Value
Input Bicubic interpolation of LR images
Number of layers 3
Parameters of 1st layer 9 ×9× 1× 64
Parameters of 2nd layer 5 ×5× 64× 32
Parameters of 3rd layer 5 ×5× 32× 1
Learning rate 1 ×10−4

Table 3.2: Table of SRCNN hyperparameters.

3.5 Choice of Hyperparameters for ESRGAN
Due to correlation in terms of tensor operations, our model is based on ESRGAN, thus
developing a strong candidate for reconstruction of coarser scale. Table 3.3 yields the
most important hyperparameters used in this work. The first hyperparameter “scale” is the
factor by which we want to enhance the resolution. We also tried to adjust the depth of
the network architecture, i.e. the number of RRDB. Even though the original ESRGAN
had great results with 23 RRDB, we experienced far better results with smaller depth and
a wider network, i.e. increasing the number of filters (features). The sharpness of the
generated images was visually more pleasing, but the number of parameters increased im-
mensely. A useful tool applied was the local feature fusion with kernel size of 1 at the
end of the residual dense block, which resulted in almost 50% reduction of the number
of weights, with no loss in performance. Hence, the training phase was much faster. One
should also note that a too wide network will cause a GPU memory explosion.

After some experimentation, 150k iterations was observed to be sufficient for convergence,
which is less than what was reported for ESRGAN [47]. To avoid excessive hyperparam-
eter tuning, the learning rates (λ, η) were also chosen to be the same as for ESRGAN, and
the decay intervals were reduced proportionately to the reduction in training time. Finally,
we should mention that in typical ML areas, the grid search algorithm is commonly used
for hyperparameter tuning. However, this process takes a huge toll on GANs since the ob-
jective function has additional added costs and thereby resulting in extra hyperparameters
to tune.
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3.5 Choice of Hyperparameters for ESRGAN

Parameter Value
Scale 4
Base no. of Features (G) 128
Base no. of Features (D) 128
Kernel size (G) 5× 5
Local Feature fusion (G) 1× 1
No. of iterations 150k
L1 learning rate η 10−2

Initial λ 5 · 10−3
λ decay λ← 0.5λ

at it. [10k, 20k, 30k, 40k]

Table 3.3: Table of ESRGAN hyperparameters.

3.5.1 Training Tricks
During training we experienced mode collapse, which is when the discriminator loss pro-
gressively decreases to zero. This non-convergence occurs when the generator maps mul-
tiple inputs to the same output. Thus, the outputs of the generator share many similar fea-
tures and the generator will accordingly learn to generate just one type of examples rather
than to generate all types. This happens due to the hard labels, i.e. Generated Images = 0
and Real Images = 1, causing the discriminator loss to approach zero rapidly. Despite the
fact that there is no suitable theoretical foundation as to how to design and train GANs,
there is a convincingly proven literature of heuristics, i.e. ”hacks”, that have empirically
shown satisfactory results in practice [60]. We utilized one-sided label smoothing, which
is the idea of replacing the hard label of real images with a value slightly less than 1, in this
case 0.9, and thereby prevents the excessive extrapolation behaviour in the discriminator.
Another hack utilized was training the discriminator twice as much as the generator to cir-
cumvent the mode collapse, and flip the labels the other way around to assist the gradient
flow in the early iterations.
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3.6 Quantitative Evaluation Metrics
The peak signal-to-noise ratio (PSNR) is usually used to measure the reconstruction qual-
ity of lossy transformation (e.g. image inpainting, image compression). Higher is better
when measuring with PSNR. In the current context it is defined via the mean squared error
(MSE) computed from the original wind field and its noisy (interpolation methods, CNN
or GAN) approximations. Mathematically:

PSNR = 20 · log10(MAX1)− 10 · log10(MSE) (3.2)

where MAX1 is the maximum possible wind magnitude. The PSNR is however, only
related to the pixel-level MSE between images, only considering about the difference be-
tween the pixel values at the same positions instead of how realistic the image looks, i.e.
human visual perception. This draws to the poor performance of PSNR in describing the
quality of the super-resolved images in real life. Nonetheless, due to the deficiency of
completely accurate perceptual metrics and the need to compare performance with litera-
ture works, PSNR is currently the most commonly used evaluation criteria for these kinds
of problems.

The L2-norm loss function is commonly known as the least squares error (LSE), and is a
strict measure of difference. The method simply minimizes the sum of the square of the
differences (S) between the target value yi and the estimated values f(xi):

S =

n∑
i=1

(yi − f (xi))2 (3.3)

3.7 Overview of the Method
The training workflow of the super-resolution reconstruction of turbulent velocity fields
using the GAN-based approach is shown in Fig. 3.3. The dataset used in this work
was generated using a unidirectionally coupled HARMONIE-SIMRA multiscale system.
HARMONIE is a meteorological program used for weather forecasting in Norway, operat-
ing at a horizontal resolution of 2.5km× 2.5km. SIMRA is a program specially designed
to model terrain-induced wind and turbulence in complex terrain at high horizontal spatial
resolution of 200m× 200m. Both these programs are based on the mass, momentum and
energy conservation principles of fluid mechanics. Furthermore, the dataset, i.e. the three
channel turbulent velocity fields, can be seen as these three colorful blocks. Next, the
input to the generator is created by downsampling the high-resolution data using nearest
neighbor by a factor of 4, creating coarser scale wind field and can be represented as these
transparent blocks. The output from the generator is a realistic synthetic example of the
training set, i.e. the fine scale wind field, and can be seen as these mid-transparent blocks
at the bottom left corner. The discriminator then evaluates if the output generated by the
generator appears realistic or fake by calculating the probabilities of the input images and
returning the training loss to adjust the biases and weights of G and D. Both G and D
networks are differential networks, and by using backpropagation algorithms as described
in Sec. 2.3, the error gradients can be obtained. These two competing networks are trained
simultaneously, each of them trying to outperform the other.
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3.7 Overview of the Method

Figure 3.3: Training workflow for GANs for enhancing wind field estimations in complex terrain.
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Chapter 4
Results and Discussions

In this section we will outline the results we generated. First, we will present and discuss
the results of various upscaling methods on new unseen data. Then, we will go more
in-depth into the training results of ESRGAN and provide a detailed comparison against
the other upscaling methods. Finally, we will investigate the intermediate layers of both
SRCNN and ESRGAN models and apply PCA to gain a statistical understanding.

4.1 Upscaling Methods
The goal of this work is to reconstruct high-resolution wind field in complex terrain with-
out conducting computationally expensive high-resolution numerical simulations. We will
first present the results from common interpolation methods and discuss the findings. Then
we shift our focus towards deep learning, more specifically the SRCNN and ESRGAN
frameworks, and evaluate the proposed models both qualitatively and quantitatively.

4.1.1 Nearest Neighbor Interpolation
As mentioned in Sec. 2.2, nearest neighbor interpolation is very fast and the simplest
one to implement. Due to its simplicity and naive solution through duplicating the nearest
neighboring pixel, we can clearly see from Fig. 4.1 that NN is nowhere close to the ground
truth in both details and sharpness. Instead, NN produces high aliasing effect that results in
jagged edges and unpleasant artifacts. Artifacts are most frequently from aliasing, which is
often caused by non-linear mixing effects generating high-frequency components prior to
sampling. As a result, the reproduced wind field is unnatural and blurry. Even though the
method is very fast, it will nonetheless produce blocky results of low quality. We therefore
turn our focus towards bicubic interpolation.
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4.1 Upscaling Methods

Figure 4.1: Zoomed in (40 × 40) ×4 enhancement qualitative results between nearest neighbor
interpolation and high-resolution fields.

4.1.2 Bicubic Interpolation
Bicubic interpolation improves the resolution exclusively based on its own contents, thus
information lost from the downsampling phase is never recovered. This is evident from
Fig. 4.2, and it can be seen how bicubic produces blurring, a moderate aliasing and an
edge halo effect. It does simply not bring any more information to the table. Instead, it
introduces some side effects such as noise amplification, computational complexity and
blurring results. In addition, it cannot recover the HR velocity fields consisting of high-
frequency information as it is basically a smoothing method. Visually, bicubic interpola-
tion exceeds nearest neighbor in terms of preserving smooth contours in the wind field,
and is somewhat closer to the ground truth.
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4.1 Upscaling Methods

Figure 4.2: Zoomed in (40× 40) ×4 enhancement qualitative results between bicubic interpolation
and high-resolution fields.

For a quantitative evaluation, the peak signal-to-noise ratio (PSNR), i.e. Eq. 3.2, is also
presented in the figure. As expected, bicubic interpolation results in a higher PSNR value
of 36.22 compared to NN which resulted in 35.46. Fig. 4.3 presents the L2-norm, i.e.
Eq. 3.3, computed from the high-resolution wind field and the reconstructed fields using
nearest neighbor and bicubic interpolation for 1800 high-resolution images. One can see
that the nearest neighbor interpolation results in significantly greater errors which is in
agreement with the observation from Fig. 4.1. Nonetheless, bicubic interpolation is still
not a suitable technique for generating finer scale wind field from coarser scale due to the
filtering process being based on low-pass characteristics. We therefore shift our focus now
to neural networks.
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4.1 Upscaling Methods

Figure 4.3: L2-norm error comparison of nearest neighbor (NN) and bicubic interpolation over part
of the test set. The samples were taken from the September-October 2019 period. Each iteration
corresponds to one hour.

4.1.3 SRCNN
Fig. 4.4 gives a comparison of the SRCNN approach, nearest neighbor and bicubic inter-
polation with respect to the ground truth. In the figure, the wind field in the first image
corresponds to the high-resolution wind field obtained by applying nearest neighbor. Sec-
ond image corresponds to the high-resolution wind field obtained by applying bicubic
interpolation on the subsampled wind field. The third image corresponds to the high-
resolution field obtained from the application of the trained SRCNN on the coarse field.
At first glance, both the bicubic and SRCNN model yield good visual aspects while nearest
neighbor is outperformed as expected. However, the difference is more evident from the
PSNR given in the respective figure, with a whole 3.5dB difference between SRCNN and
bicubic interpolation.

Figure 4.4: Comparisons of the ×4 (from left to right) nearest neighbor, bicubic interpolation,
SRCNN and high-resolution fields.
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4.1 Upscaling Methods

If we further zoom into the bicubic interpolated, SRCNN and HR images as shown in
Fig. 4.5, we can observe that the SRCNN model is somewhat closer to the ground truth
in both sharpness and details than bicubic interpolation. One of the reasons for the suc-
cess of SRCNN is due to the ability of the convolutional neural network to learn, thus
reconstructing more detailed textures than the two other interpolation methods. Bicubic
interpolation tend to produce wind fields closer to ground truth, but introduce blurring and
noise amplifying in the process. On the other hand, the SRCNN framework bring better
perceptual quality resulting in a more realistic wind field, but also introduce unpleasant
artifacts such as meaningless noise.
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Figure 4.5: Zoomed in (10 × 10) and ×4 upscaling qualitative results (from left to right) of the
bicubic interpolation, SRCNN and high-resolution fields.

Fig. 4.6 presents the L2-norm computed from the high-resolution wind fields and the
reconstructed fields using nearest neighbor, bicubic interpolation and SRCNN with respect
to the 1800 high-resolution images. We can immediately see that the nearest neighbor
method results in significantly greater error than the two other methods, while on the
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4.1 Upscaling Methods

other hand, SRCNN has consistently smaller error than bicubic interpolation. This is
in agreement with the observation from Fig. 4.5. SRCNN has learned to significantly
increase the sharpness of the coarser scale wind field and to remove some of the aliasing
effects generated from bicubic interpolation. However, it fails to fully reconstruct realistic
wind field, leading to a perceptually implausible result.

Figure 4.6: L2-norm error comparison of nearest neighbor (NN), bicubic interpolation and SRCNN
over part of the test set. The samples were taken from the September-October 2019 period. Each
iteration corresponds to one hour.

4.1.4 ESRGAN
This section presents the performance of the trained network on new unseen data set. Fig.
4.7 gives a comparison of the bicubic interpolation, SRCNN and ESRGAN approaches
with respect to the ground truth. In the figure, the wind field in the first image corresponds
to the high-resolution wind field obtained by applying bicubic interpolation on the sub-
sampled wind field. Second image corresponds to the high-resolution wind field obtained
by applying SRCNN on the subsampled wind field. The third image corresponds to the
high-resolution field obtained from the application of the trained ESRGAN on the coarse
field. It is very clear that the ESRGAN model is able to successfully reconstruct the high-
resolution field and is closest to the original high-resolution wind field in both details and
sharpness. Indeed, if we further zoom in as shown in Fig. 4.8, we can clearly see the qual-
itatively better field predicted by the ESRGAN. It is shown how SRCNN over-smooths
the wind field, while on the other hand, the framework of ESRGAN successfully learns
the main characteristics of the flow in complex terrain. Moreover, unpleasant artifacts are
nonexistent leading to more natural results, which have been a common problem in typical
GANs due to the use of batch normalization layers such as the SRGAN.

35



4.1 Upscaling Methods

Figure 4.7: Comparisons of the ×4 (from left to right) bicubic interpolation, SRCNN, ESRGAN
and high-resolution fields.
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Figure 4.8: Zoomed in (10 × 5) and ×4 upscaling qualitative results (from left to right) of the
SRCNN, ESRGAN and high-resolution fields.
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The reason SRCNN results in poor visual quality, even if the network appears to be per-
forming well, is due to the choice of loss function. When we utilize a traditional loss
function for measuring how accurate the generated image is compared to the real image,
it measures how mathematically adjacent, i.e. the Euclidean distance, as opposed to how
visually close the generated is to the real image. Furthermore, the main disadvantage of
using the MSE as loss function in applications such as super-resolution is that it is com-
puted pixel-wise, i.e. it only measures the difference between two corresponding pixels in
the generated and the real images. This motivates detecting pixel-wise averages of plausi-
ble solutions which are usually overly-smooth and thus have inadequate perceptual quality.

The smooth averages of color in an area can be seen in Fig. 4.8 for SRCNN respectively.
The ESRGAN counteracts this problem with the perceptual loss function, which measures
the visual clarity, and thus resulting in finer details. This perceptual loss, i.e. the first term
in Eq. 2.26, is the sum of the adversarial loss and content loss. One of the great benefits of
using a GAN rather than a CNN is the utilization of the adversarial loss to motivate outputs
to appear natural. This happens due to the fundamental nature of GANs: to detect data
that looks like it does not belong. The content loss compares the fine details in images by
sending the generated and original images through the feature maps of the neural network
and calculating the loss on the outputs, i.e. how realistic do these generated images look.

The first reason for the ability of ESRGAN to fully reconstruct the wind field compared to
the SRCNN model, is the replacement of simple convolution blocks with residual blocks,
thus increasing the accuracy significantly. The second reason is the incorporation of trans-
posed convolution for upsampling. In the SRCNN model, the images are first upsampled
using bicubic interpolation and then fed as input to a simple CNN. Since nearest neighbor
and bicubic interpolation are unlearnable methods, i.e. they can only be used before or
after the neural network architecture and not in between, the accuracy and speed decreases
significantly. On the other hand, ESRGAN uses two sub-pixel CNN layers for upscaling,
as seen in the last part of the generator in Fig. 2.9. Thus, the speed and accuracy increases
significantly.

As a matter of fact, the basis for the success of ESRGAN is due to the discriminator uti-
lizing the relativistic average GAN, which learns to identify whether one image is more
realistic than another. Hence, the generator is able to recover more detailed textures. Ac-
cordingly, Deng et al. [14] has shown blurry edges at the recirculation zone reconstructed
by SRGAN, which becomes more evident with the increase in upscaling factor. Another
reason is the utilization of features before activation, which ensures stronger supervision
and thus the ability to recover more realistic textures and accurate brightness. Clearly, the
discriminator network search for the high frequency information that differentiates LR and
HR images, thus forcing the ESRGAN output to contain far more high frequency details
than the output of the SRCNN.

The results are very promising, and the difference between SRCNN and ESRGAN is fur-
ther strengthened from Fig. 4.9 and Fig. 4.10, where we notice the smoothness and lack
of details in the SRCNN images.
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Figure 4.9: Comparisons of the ×4 (from left to right) bicubic interpolation, SRCNN, ESRGAN
and high-resolution fields.
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Figure 4.10: More zoomed in (10 × 5) and ×4 upscaling qualitative results (from left to right) of
the SRCNN, ESRGAN and high-resolution fields.
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It is very clear that the ESRGAN is able to successfully reconstruct the high-resolution
field consistently. The bicubic interpolated images are consistently worse than the two
other models, since information lost from the downsampling phase is never recovered.
Furthermore, SRCNN still over-smooths, but in a smaller degree than bicubic interpola-
tion. On the other hand, ESRGAN learns the features of the wind flow and utilizes that
information to recover the loss during the downsampling phase.

For a quantitative evaluation, the peak signal-to-noise ratio (PSNR) is also presented in
Fig. 4.7 and Fig. 4.9. It can be clearly seen the GAN-based approach has consistently
higher PSNR compared to the bicubic interpolation and CNN model. Fig. 4.11 presents
the L2-norm computed from the high-resolution wind field and the reconstructed fields
using nearest neighbor, bicubic interpolation, SRCNN and ESRGAN with respect to the
1800 high-resolution images. One can see that the SRCNN model results in significantly
greater errors than ESRGAN, which is in agreement with the observation from Fig. 4.10.

Figure 4.11: L2-norm error comparison of nearest neighbor (NN), bicubic interpolation, SRCNN
and ESRGAN over part of the test set. The samples were taken from the September-October 2019
period. Each iteration corresponds to one hour.

Fig. 4.12 shows more qualitative results where the wind field in the first column corre-
sponds to the high-resolution wind field obtained by applying bicubic interpolation on
the subsampled wind field. Second column corresponds to the high-resolution wind field
obtained by applying SRCNN on the subsampled wind field. The third column corre-
sponds to the high-resolution field obtained from the application of the trained ESRGAN
on the coarse field. Even though SRCNN significantly sharpens edges and is able to re-
move aliasing compared to bicubic interpolation, ESRGAN on the other hand produces
additional textures yielding a much sharper, realistic-looking result. The ESRGAN output
images contain high frequency information that is similar to the ground truth HR images,
while SRCNN tend to smooth out the images in order to achieve a higher PSNR.
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Figure 4.12: More ×4 enhanced qualitative results (from left to right) of the bicubic interpolation,
super-resolution CNN (SRCNN) Enhanced super-resolution GAN (ESRGAN) and high-resolution
fields. Note the consistently higher value of PSNR of the ESRGAN generated field in comparison
to SRCNN and bicubic interpolation.
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Faithful high-frequency information is reproduced by ESRGAN, resulting in realistic wind
field, at first glance almost indistinguishable from the ground truth fine scale wind field.
Furthermore, ESRGAN generates high-frequency patterns missing completely in the coarser
scale wind field, showing that the model is fully capable of detecting and generating pat-
terns that lead to a realistic wind field.

A suitable solution to successfully reconstruct high-resolution flow in complex terrain
is a necessity in many engineering settings, such as generating physically realistic high
frequency to compute structural loads on wind turbines or upsampling experimental data
that are constrained by sensor resolution. Due to the highly nonlinear nature of turbulence,
we believe the difficulty conditions will increase as there are fewer feasible correlations
between each velocity component. The findings here propose that the training data for our
model can be very coarse.

Computational Time

Training GANs is a tedious and relatively expensive process. There are numerous factors
that affect computational time, e.g. the validation set, which uses a runtime of 24 minutes
to iterate through. For a total of 150k iterations, this results in additional ∼ 3h worth of
time. Recall from Sec. 3.2 that a validation set is required in order to adjust the hyperpa-
rameters and avoid overfitting.

The limited memory of the GPU used in this work introduces a constraint on the batch size
that can be processed at every epoch, since the feature maps need a significant amount of
memory in the transitional layers. If the batch size is increased, the computational time
will naturally decrease. However, deciding the correct number of batches can be a difficult
task, since a larger batch size will lead to worse generalization.

Figure 4.13: Computational time between ×2 and ×4 upscaling factors.
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The computational time for the×2 and×4 upscaling factors is shown in Fig. 4.13. Notice
that the upscaling factor ×2 needs twice as less time to converge. This is expected since
the ×4 network requires far more iterations to learn the main characteristics of the flow.
In addition, the network needs far more hyperparameter tuning when transitioning from
upscaling factor ×2 into ×4, since the input wind fields into the generator are far coarser.
In other words, the generator needs more time to recreate, i.e. generate realistic-looking
wind field.

Even though the ×4 upscaling model uses nearly twice as much time to train, we need
to stress that once the model with the most satisfactory results is found, the training does
not have to be performed again. Further, the model is used as a plug and play model with
the coarser scale simulation results of SIMRA. Moreover, the SRCNN model needs around
19.5h to converge, which is nearly 30 minutes more than ESRGAN. Even with more train-
ing time, the results were inferior compared to ESRGAN. This fact further strengthens the
superior performance of ESRGAN.

While the tuning process is intuitive in control theory, GANs on the other hand lack intu-
itive control knobs that influence the generated results. This can lead to a tedious process
of adjusting hyperparameters and changing the network architectures. Since the initial few
values of losses and generated samples will often never indicate any signs of progress, each
training phase needs several hours before one can see some meaningful results. Certainly,
due to the utmost separation of spatio-temporal scales, resolving all scales in turbulent
flows have large costs.
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4.2 Insight into the Inner Working of SRCNN and ESR-
GAN

In order to interpret and understand the inner workings of the network, feature maps from
the hidden layers were extracted. Since the results from the last section proved the out-
performance of ESRGAN compared to SRCNN, we will first focus on the former. From
the description of the generator architecture in Sec. 2.7 it is noted that the first layer of the
network has 32 filters of size 3 × 3. In actual fact these filters are 3 × 3 × 3 because the
wind fields have three velocity components, which is analogue to three color channels in
digital images. Moreover, 32 is the lowest number of filters in any layer.

There exist 256 filters in some layers in the network, thus making the task of interpreting
and visualizing them individually infeasible. It is worth highlighting that the result gen-
erated by the convolution operation on the wind field, interpreted as colorful images, do
not in fact generate images that can be visualized in an understandable way. The reason
for this is that the resulting matrix values are not constrained to the 0 − 255 interval. For
that reason, to actually create visualizations, the values were normalized and the default
colormap ”viridis” from Matplotlib was utilized. The colormap maps lower values closer
to the color of dark blue and higher values closer to the color of yellow. Moreover, the
input image that was fed to the pre-trained network from which intermediate feature maps
were extracted is given by Fig. 3.2.

In Fig. 4.14 we see some plots of the intermediate images generated in the very first
convolutional layer of the generator network. It can be observed from these images that
the filters apparently generate every imaginable variant of the input image. Some filters
sharpen the image while others blur it. A ton of the original information from the input
image is preserved, because the initial convolution layers in CNNs (remember that the
generator is actually a fully connected CNN) typically act as an edge detector. In Fig.
4.14e we observe strong gradients emphasizing edges, while in Fig. 4.14f the image is
almost entirely smooth. In Fig. 4.14c and 4.14d it can be seen that edges are generated on
opposing sides.
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Intermediate results after the very first layer in the generator.

In Fig. 4.15 images reconstructed in deeper layers are presented. Not only are these inter-
esting, they also give an intuition of what filters are searching for as we move deeper into
the network. In the layers closer to the input layer, e.g. Fig. 4.15a, one can notice that
the visualizations closely resemble the input image. We recall that the colormap ”viridis”
maps low values to dark blue and high values to yellow, and this distinction is followed
throughout the layers. The generator is able to separate high and low values, as can be
seen in e.g. Fig. 4.15d. It is after the first RRDB, i.e. Fig. 4.15f, that the generator is
able to generate finer details in the middle section of the image. Gradually as one traverse
through the layers the images contain more and more details.

Recall that the generator utilizes residual learning, which scales down the residuals by
multiplying a constant of 0.2 before adding them to the main path to prevent instability.
For each residual block, the residual features after the last convolution layer are multiplied
by 0.2. Intuitively, one can interpret the residual scaling to fix the improper initialization,
thus preventing the magnitudes of input signals in residual networks from being amplified.
The results of residual scaling can therefore be seen in e.g. Figs. 4.15g and 4.15h. After
the fifth RRDB, i.e. Fig. 4.15j, the images start to make a bit more sense. Recognize
the concatenated turbulent velocity fields that correspond to the same pattern as the input
image. It is evident that the generator is able to ”remember” what the original input image
resembled. From this layer onwards, and to the end, these concatenated turbulent velocity
fields become more and more distinct as observed in Figs. 4.15n, 4.15o and 4.15p.
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(a) L1: conv (b) L2 (RDB:1): first conv (c) L6 (RDB:1): last conv (d) L11 (RDB:2): last conv

(e) L16 (RRDB: 0, RDB:3):
last conv

(f) L17 (RRDB:1, RDB:1):
first conv

(g) L22 (RRDB:1, RDB:1):
last conv

(h) L34 (RRDB:1, RDB:3):
last conv

(i) L35 (RRDB:2, RDB:1):
first conv

(j) L91 (RRDB:5, RDB:3):
last conv

(k) L92 (RRDB:6, RDB:1):
first conv

(l) L166 (RRDB:10,
RDB:3): last conv

(m) L167 (RRDB:11,
RDB:1): first conv

(n) L246 (RRDB:16,
RDB:1): last conv

(o) L251 (RRDB:16,
RDB:2): last conv

(p) L256 (RRDB:16,
RDB:3): last conv

Figure 4.15: Feature maps from intermediate layers in generator.
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The discussion has so far been based upon a bunch of images extracted from the respective
layers. As clarified earlier, there can be up to 256 feature maps in some of the hidden layers
in the generator, which is a tedious process to interpret. By conducting PCA on the images
extracted from each hidden layer individually [61], we developed to some extent statistical
understanding of the different layers. Fig. 4.16 presents the plots of the ratio of variance
for the five most prominent principal components. It seems that for the early layers, as
can be seen in in Figs. 4.16a and 4.16b, most of the information can be described using
a single principal component. Progressively, as we traverse through the layers, it appears
that more and more information is distributed over the images within a layer. In other
terms the feature maps become increasingly distinct within each layer. This fact is evident
from the first layer where all the images are quite similar, while the range of the difference
of the images is much larger in the 251st layer.

(a) L1: N=128 (b) L2 (RDB:1): N=160 (c) L34 (RDB:3): N=128

(d) L91 (RRDB:5, RDB:3): N=128 (e) L167 (RRDB:11, RDB:1):
N=160 (f) L251 (RRDB:16, RDB:2): N=128

Figure 4.16: Bar plots: PCA analysis of intermediate layers in the generator. N is the number of
feature maps.

It may be possible to use this kind of PCA as an optimization technique for the generator.
The number of filters in the respective layer could possibly be reduced, since most of the
variance is either explained by one, or only a few, principal components. The run time of
the generator would be reduced if this could be implemented. One idea is to first train the
network, and then run PCA to reduce the number of filters in the layers that are primarily
described by a few principal components. Then we retrain the network and re-calculate
PCA. This proposal can be done until the accuracy begins to fall beneath a specific thresh-
old with regards to the accuracy of the original network. Note that the network may be un-
able to train because the previous layers may have contained some important information
which PCA did not pick up. Ideally, the reduced network should have the same result as
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the original one, but this is not a guarantee. Furthermore, the computational training time
would be significantly larger, but the computational test time could be decreased while
also retaining nearly the same accuracy as the initial network. Finally, this could make it
simpler to understand and describe the network as a streamlined network is nonetheless
simpler to analyze.

Fig. 4.17 displays visualizations made by implementing images from only the first and
second most important component generated by the PCA. Notice in Fig. 4.16a that we
preserve nearly all the variance just by using the first component. Accordingly, this is seen
from Figs. 4.17a and 4.17b. Apparently, there is very few information in the second image
that cannot be identified in the first. Furthermore, we can see from Figs. 4.17c and 4.17d
that the principal components begin to refine in specific regions.

In the 251st layer, as seen in Figs. 4.17e and 4.17f, we see that the level of distinctness
has increased for the images. In Fig. 4.16f we observe that about 40% of the variance in
this image is described by the first component. It is important to stress that every layer
contains a huge amount of filters and that only a few selected convolved results have been
visualized here. Hence, it is virtually impossible to draw any conclusions in general based
on such limited visualizations.

(a) L1: First eigenvector (b) L1: Second eigenvector (c) L34 (RDB:3): First eigenvec.

(d) L34 (RDB:3): Second eigen-
vector

(e) L251 (RRDB:16, RDB:2):
First eigenvector

(f) L251 (RRDB:16, RDB:2):
Second eigenvector

Figure 4.17: Images: PCA analysis of intermediate layers in ESRGAN.
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SRCNN

Fig. 4.18 shows the input and all three layers in SRCNN. We can immediately see that the
first layer, i.e. Fig. 4.18b, is similar to the first layer of ESRGAN. Recall that the input
of the SRCNN, i.e. Fig. 4.18a, is bicubic interpolated of the LR. This may be the reason
why only three convolution layers are sufficient to yield relatively good results visually.
Nonetheless, the ability to reconstruct and express wind field features is limited with only
three convolution layers.

(a) Input (b) L1: conv (c) L2: conv (d) L3: conv

Figure 4.18: Input and feature maps from intermediate layers in SRCNN.

Once again, we apply PCA on the images extracted from all three layers individually in
order to develop some statistical understanding. Fig. 4.19 shows the plots of the variance
of the ratio for the five most prominent principal components. It appears that the variance
of the second and third component decreases as we traverse through the network. As with
the early layers in the generator, most of the information can be described by a single
principal component. Overall, we have proven far better results with ESRGAN compared
to the simplest structure of SRCNN, both quantitatively and visually, and we therefore end
the analysis of SRCNN here.

(a) L1: N = 64 (b) L2: N = 32 (c) L3: N = 3

Figure 4.19: Bar plots: PCA analysis of intermediate layers in SRCNN. N is the number of feature
maps.
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Chapter 5
Conclusion

This thesis was initiated with the overall goal:

To explore the possibility of replacing computationally expensive high-resolution simu-
lations with a combination of coarse scale simulation and advanced machine learning
algorithms like CNNs and GANs.

In this work we presented two deep learning models, SRCNN and ESRGAN for super-
resolution reconstruction of high-resolution wind fields from coarser scale, and provided
insight into the internal workings of the models. A comparison of SRCNN and ESRGAN
suggests that the GAN-based model has a better ability to reconstruct finer flow fields
from coarser input fields than CNN ones due to competitive neural networks employed by
it. Additionally, we provided a comparison between the L2-norm of the proposed models
against state-of-the-art NN and bicubic interpolation methods. We highlight the major
findings from the thesis below:

• The GAN-based artificial intelligence framework utilized in this work was able to
learn the features and main characteristics of the wind flow in complex terrain with-
out the aid of any equation or explicit programming of the physics.

• The GAN-based approach made use of the learned knowledge of the wind charac-
teristics to successfully reconstruct finer scale wind field from previously unseen
coarse wind field data.

• In a convincing manner, the GAN-based strategy convincingly outperformed both
SRCNN and the state-of-the-art bicubic interpolation technique with the L2-norm
and PSNR used as comparisons.

• Although the training of our model requires hyperparameter tuning and is a tedious
process, the training is only done once and can accomplish a speed up to 10000×
in comparison to generating the same high-resolution field using a numerical sim-
ulator, whereas computational efficiency is much required in the context of Digital
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Twin. This can enable further enhancement of wind farm optimization and resource
assessment.

• The work led to a better insight into the inner working of both proposed models.
Internal layers of the generator network were illustrated, and the multivariate data
analysis tool PCA was applied to extract information from the enormous amount of
filters utilized in the network. Examining the principal component vs. variance ratio
plots for the different layers, we noticed that most of the variance in the reconstruc-
tion of the images utilizing the trained filters in the first few layers can be interpreted
by a single component. The amount of components needed to describe the variance
in the deeper layers gradually increases.

• It is important to stress the unresolved issues with the GAN-based approach. Even
though we were able to produce outstanding results, the GANs do not generalize the
problem. If we were to choose a different location than Bessaker, the model would
potentially result in stability issues and not work as intended. Potential solutions to
improve the generalization capability are therefore proposed in the next section.

In the current work we demonstrated the strength of combining a physics-based simulator
with machine learning on a 2D dataset due to computational constraints. An extension
to 3D is straightforward. The work also shows that machine learning models such as
GANs and CNNs can be employed to enable prediction of accurate high-resolution flow
fields from coarse flow fields for complex real life flow problems. The methodology of
combining ML with physics-based models will be relevant in applications where one needs
to save computational time associated with stand-alone high fidelity physics-based models,
as now even the coarser results from physics-based can be used to reconstruct accurate
finer flow field using the power of ML. We believe our contribution will be a key enabler
for further work into applying machine learning in the fields of physics and toward Digital
Twin.

5.1 Future Work
The presented results are promising, but our model still requires further work to ensure
robustness and potentially better results. In this section, we will first discuss some im-
provements that can be made in our comparison analysis between ESRGAN and SRCNN.
Next, we briefly discuss higher upscaling factors for computational efficiency and some
techniques to reduce the computational complexity. Finally, we review different architec-
tures in order to further improve our proposed model and ensure generalization.

5.1.1 Further Improvements on the Comparison Analysis
The current work uses the L2-norm, however, more flow-based metric parameters for com-
parison of results can be developed, like comparing energy spectra of reconstructed flow
field by GANs/CNNs.
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We focused mainly on ESRGAN due to its outperformance against SRCNN, but it would
be interesting to see if we can improve the SRCNN architecture by modifying the cost
function of the network to include normalized gradients. This enables a more thorough
comparison analysis against ESRGAN.

PCA was only applied onto the generator to gain a statistical understanding of which in-
formation was generated. Hence, some aspects of the whole network are not completely
understood yet and we should emphasize the discriminator network more in future work.
What information does the discriminator actually use to classify? Also, it will be interest-
ing to investigate the possibility of applying PCA to optimize the ESRGAN architecture
even more. Further details of this optimization strategy can be found in Sec. 4.2.

One could also develop another data compression technique such as the Deep Autoencoder
and compare against the PCA algorithm. Next, show how much it is possible to compress
the data. Then, look into the possibility of on-the-fly method for dimensionality reduction,
and investigate if it is possible to use the Deep Autoencoder as a turbulence scale separator.

5.1.2 Higher Upscaling Factors
The findings here suggest that the training data for our model can be very coarse. However,
it is worth emphasizing that higher upsampling factors beyond×4 do not necessarily guar-
antee a desirable solution. At a higher upscaling factor the performance of ESRGAN is
expected to be slightly degraded, and particular fine-scale structures will be unrecoverable.
This can be due to the loss of much high-frequency information, which is in agreement
with the results from Deng et al. [14] on wake flow behind two side-by-side cylinders.
Furthermore, they experienced a minor blurring problem at the upscaling factor ×8, and
the blurring problem became more distinct with the upscaling factor ×16.

5.1.3 Computational Time Reduction
The training phase of our model was a long and tedious process. Even though the training
is only needed to be performed once after finding the optimal hyperparameters, there is still
room for improvements. One could for instance try resizing the input images to smaller
images or change the operations in the code from standard 32-bit floating point (FP32) to
half-precision floating points (FP16) to accelerate training with the slight risk of a decrease
in accuracy. Finally, it is worth trying to adopt more useful learning tricks to obtain faster
and better network training:

• Adopt H-Swish [62] activation in the discriminator to accelerate the learning pro-
cess.

• Remove the fully connected layers from the discriminator. Instead, use global aver-
aging pooling to better catch the spatial information of feature maps [63].

• In the first 10k iterations have a larger learning rate, followed by a relative small
learning rate to train the model.
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5.1.4 Architecture Improvements of ESRGAN
Since the origin of the ESRGAN model back in late 2018, there have been some improve-
ments on the network architecture. The following subsections will depict those, and should
be further explored in future work.

ESRGAN+

Rakotonirina et al. [64] extended the original ESRGAN model to further enhance the
perceptual quality of the images. In this fashion, they replaced the block used in the orig-
inal model by designing a novel block. Moreover, the generator network was introduced
to noise inputs in order to take advantage of stochastic variation. The reconstructed im-
ages contained more detailed structures and were less distinguishable from the HR images
when compared to ESRGAN. As future work, we therefore propose a new block called
Residual in Residual Dense Residual Block (RRDRB) [64] and introduce noise inputs in
the network as in [65]. Note that ESRGAN+ outperforms the original model as long as
perceptual quality is concerned.

Super-Resolution Using Segmentation-Prior Self-Attention Generative Adversarial
Network (SPSAGAN)

Since recent studies have shown that unnecessary connections may affect the performance
[66], Zhang et al. [67] investigated pruning methods to automatically remove unnecessary
connections and obtain compact residual blocks. A lightweight skip connection design
called Residual-in-Residual Sparse Block (RRSB) was introduced to prune unnecessary
connections of RRDB, yielding better performance and reducing computational time. SP-
SAGAN was shown through extensive experiments that it can generate more realistic and
visually pleasing textures in comparison to the state-of-the-art ESRGAN on many public
benchmarks, such as generating more natural water waves on the OST dataset. Hence, it
is worth investigating this suggested method. This can be done by extending our baseline
network to add a segmentation-prior self-attention (SPSA) module and make it emphasize
on the textures in the same segmentation class of the image.

Dual Reconstruction with Densely Connected Residual Network for Single Image
Super-Resolution

Recently, Hsu et al. [68] proposed an improvement of the original ESRGAN, where they
added one more shortcut between two dense blocks, along with a shortcut between two
convolutional layers inside the two dense block. This simple strategy enabled a faster
learning processing since the gradient information could be backpropagated more eas-
ily. The final super-resolution model was obtained by fusing two different models by
weighted-summing their parameters. Through experimental results, the proposed method
has demonstrated excellent performance in a real-world image super-resolution challenge.
This strategy has also been verified to further enhance the quality of the reconstructed
image contrary to the original ESRGAN in terms of both SSIM and PSNR. Additionally,
they generated more realistic details in the reconstructed images.
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