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Task Description

Task Description

The provider of the navigation system on the NTNU Cyborg has gone out
of business, leaving deprecated code on the Cyborg’s navigational software.
Development of a new navigation stack is thus required in order to fulfill the goal
of autonomous navigation. The student shall:

• Develop a new navigation stack, replacing the outdated system.

• The navigation stack should perform mapping, localization, path planning,
and obstacle avoidance.

• Design the navigation stack in a way that fully replace the inputs and outputs
from the old stack, thus not requiring any modification to other modules in
the ROS network.

• Focus on the localization system and develop a method for optimizing its
performance.
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Abstract

Abstract

As part of NTNU Cyborg’s long-term research effort aimed at developing an
autonomous robot interacting with a biological neural network in a closed-loop
system, a prototype robot named The Cyborg has been under development. Major
parts of the current navigation system on the Cyborg consists of legacy code,
thus posing limitations on navigational functionality and possibilities for future
development. The objectives of this project have been to address those issues by
re-implementing the navigation stack with a more robust and flexible design, and
optimize the localization system based on a quantitative study.

With the Robot Operating System (ROS) navigation stack as foundation,
a network of ROS nodes have been developed to solve the navigation tasks
of mapping, localization, path planning, and obstacle avoidance. Various path
planning algorithms have been tested and tuned based on experimental data,
and the localization system have been improved based on a quantitative study of
variance convergence in the estimated pose calculated by the Adaptive Monte Carlo
Localization (AMCL) algorithm. The final version of the implemented navigation
stack solves all four navigation tasks with a behavior customized for social human-
robot interactions. Additionally, the performance of the AMCL algorithm was
improved by 55.6% with respect to variance convergence time in the calculated
pose estimations. Even though some navigational functionality is lost from the old
system, the new navigation stack serve as a solid foundation that allows for a great
number of modifications and improvements in the future. The modular design and
use of open source code makes the system more robust to bugs, isolated issues, and
hardware/software changes.
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Sammendrag

Sammendrag

Som en del av NTNU Cyborg’s langsiktige mål om å utvikle en autonom robot som
kan kommunisere med biologiske nevrale nettverk i en lukket sløyfe konfigurasjon
har en prototypet robot med navnet The Cyborg vært under utvikling. Store
deler av navigasjonssystemet på Cyborgen består av utdatert kildekode, noe som
setter funksjonelle begrensninger for navigasjon og muligheter for videreutvikling.
Målet for dette prosjektet har derfor vært å re-implementere den utdaterte
navigasjonsstacken med et nytt, mer robust og fleksibelt design, samt å optimalisere
lokaliseringssystemet basert på en kvantitativ studie.

For å løse de fire primære navigajsonsproblemene med kartlegging, lokalis-
ering, banestrying og kollisjon unngåelse har et nettverk med ROS noder blitt
utviklet med grunnalg i Robot Operating System (ROS) sin navigasjonsstack.
Ulike banestyringsalgoritmer har blitt testet og konfigurert basert på eksperimentell
data, og lokaliseringssystemet har blitt forbedret basert på en kvantitativ studie
av konvergenstiden for variansen i de estimerte posisjonene kalkulert av Adaptive
Monte Carlo Localization (AMCL) algoritmen. Den endelige versjonen av den re-
implementerte navigasjonsstacken løser alle de fire nevnte navigasjonsproblemene
med en oppførsel som tilfredsstiller menneske-robot interaksjon. I tillegg har lokalis-
erings algoritmen blitt forbedret med 55.6 % med hensyn til konvergenstiden for
variansen i de estimerte posisjonene fra AMCL algoritmen. Til tross for at ikke
alle funksjonene fra det tidligere navigasjonssystemet har blitt implementert, så
fungerer det re-implementerte navigasjonssystemet som et fleksibelt grunnlag som
muliggjør en mengde forbedringer og videreutvikling i fremtiden. Det modulære
designet og bruken av åpen kildekode gjør systemet mer robust mot bugs, pro-
gramvarefeil og utbytting av maskinvare/programvare.
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Chapter 1: Introduction

1 | Introduction

1.1 The NTNU Cyborg

The NTNU Cyborg project is an interdisciplinary project involving the depart-
ments of Engineering Cybernetics, Computer Science, and Neuromedicine and
Movement Science at the Norwegian University of Science and Technology (NTNU).
The project has served as an interdisciplinary research platform for students and
employees at NTNU since its beginning in 2015 with the main goal of enabling com-
munication between living nerve tissue and a robot - thereby creating a Cyborg.
This is done by growing a biological neural network over Micro-Electrode Arrays
(MEAs). During development, the biological neurons organize into networks and
communicate with each other through electrical signals. The MEA captures these
signals, enabling an interface between the biological neural network and the robotic
system. The robot will ultimately be the mechanical platform of the Cyborg system
that the biological neurons communicate through. The purpose is not for the neu-
rons to control all functions on the robot, but rather to perform simple tasks. The
main challenge is to realize reliable communication between biology and electron-
ics. Should this succeed, then one can start to look at the integration of technology
in people with nerve dysfunctions in order to restore lost functionality. Because of
this, the research not only promotes technological advancement, but it is also of
great importance to the medical sector.

Since reliable communication between the neurons and the robot is yet to be
achieved, the current purpose of the Cyborg is to showcase the project, and invoke
interest among students in social robots by having an autonomous robot roaming
the campus hallways and interacting with people it encounters.

1.2 Motivation and Goal

A central part of the NTNU Cyborg project is to develop an autonomous robot
able to safely roam the campus hallways. For this purpose, the Pioneer LX robot
was purchased in 2015 from Adept MobileRobots to serve as the foundation for
future development. Since then, it has undergone several hardware and software
iterations in order to realize sufficient navigational behavior. However, the core
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software library Advanced Robot Navigation and Localization (ARNL) used for
autonomous navigation has until now remained unchanged.

ARNL was delivered as an embedded software solution for the navigation
system on the Pioneer LX robot, with support for, and simple integration with
several software applications developed by MobileRobots. This has enabled rapid
prototyping of the Cyborg in which limited time and resources have been spent
on developing both high- and low-level navigation software. However, the simple
integration between MobileRobots’ hardware and software comes at the expense of
flexibility and configurability since the system is mostly constrained to its existing
features, leaving limited possibilities for developers working on the navigation
system. This solution, therefore, achieves simple integration at the expense of
limited possibilities for future development. Additionally, Adept MobileRobots
went out of business in 2018, thus ceasing further development and support for its
products.

The NTNU Cyborg project utilizes the Robot Operating System (ROS)
framework [1] which is widely used for robotic development, and has a large online
community. Since the project’s birth in 2015, there has been made continuous
progress by ROS developers worldwide to develop navigational functionality for a
wide variety of robots. As a result, the ROS navigation stack [2] serve as a go-to
foundation for many robot developers, since it provides a great number of useful
tools and is supported for most robots. Until now, there has been no research on
the Cyborg project with the goal of migrating to a new navigation stack. The
goals for this project is therefore to design, implement, test, and tune a navigation
system, with the ROS navigation stack as a foundation. Figure 1.1 shows a high-
level overview of the software architecture on the Cyborg, and where the navigation
stack will be implemented.
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Figure 1.1: Software architecture on the Cyborg. Red circle marks where the new
navigation stack will be implemented.

1.3 The Issues of a Global Pandemic

Midway through the semester, a global pandemic forced a lockdown of the NTNU
campus, abruptly ceasing access to the Cyborg and further testing. Even though
most of the intended experiments were conducted before the lockdown, some had
to be carried out in simulations and some had to be canceled. The initial plan
was to configure the path planners and localization modules based on quantitative
studies, however, since the lockdown happened before the scheduled experiments
for the path planners, the configuration was done based on simulations and
visual/empirical results. Additionally, a final test analyzing the performance of the
navigation stack as a whole could not be conducted. This could have been done in
a simulation, however, because of the discrepancies between the simulations and
the live robot it was not prioritized.

3



Chapter 1: Introduction

1.4 Outline

This paper is divided into two parts. Part I includes the necessary background
and theory for the succeeding parts of the paper. Part II documents specifications,
methodology, results, and other work done by the author.

Chapter 1 serves as introduction for the thesis. Relevant background
information on the NTNU Cyborg project and project goal and motivation are
presented here.

Chapter 2 presents related work in two sections. The first section presents
a literature review of relevant papers covering the implementation and design of
autonomous systems, as well as and navigational concept. The second section
presents the other ongoing Master’s project on the NTNU Cyborg.

Chapter 3 presents necessary background and theory. The first couple of
sections aim to explain basic navigation concepts used later in the paper, followed
by documentation of current software and hardware.

Chapter 4 presents the core concepts and tools of the Robot Operating
System, which is a fundamental framework on the Cyborg. This chapter aims to
explain how the ROS architecture works to get a more intuitive understanding of
the succeeding chapters where the different ROS concepts will be used extensively
to implement the navigation stack.

Chapter 5 aims to give a brief introduction to the field of mobile robot
path planning. Sections 5.1 to 5.3 presents an overview of what the path planning
problem is, followed by section 5.4 and section 5.5 explaining some theory on the
A* graph search algorithm and Dynamic Window Approach (DWA).

Chapter 6 aims to give a brief introduction to the field of mobile robot
localization. Section 6.2 presents a literature review of relevant papers on the field
of mobile robot localization, followed by a section looking at the differences between
localization-based navigation and programmed solutions. Section 6.4 further
explains the localization algorithm called Adaptive Monte Carlo Localization
(AMCL) which is used on the final version of the localization system.

Chapter 7 defines specifications and requirements for the design and
implementation of the navigation stack.

Chapter 8 presents the design and implementation of the navigation stack.
In this chapter, design and implementation are interwoven, and discussion on both
topics will be presented closely. Section 8.1 presents the high-level design of the
navigation stack, and the succeeding section focuses closer on the specific elements
presented in section 8.1.

Chapter 9 documents the configuration of the path planners in the navigation
stack. This chapter shows how the path planners and costmaps have been tuned
based on visual and qualitative analysis.

Chapter 10 presents a quantitative study of the AMCL algorithm used in the
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localization system. The chapter documents an experiment looking at convergence
properties for variance estimated by the AMCL algorithm. The AMCL node is
tuned based on the results presented here.

Chapter 11 serves as a discussion chapter for the whole paper. Assessment
of both general and specific aspects of the project will be discussed in this chapter.
Some thought for future development is also included here.

Chapter 12 gives some concluding remarks of the project.
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Chapter 2: Related Work

2 | Related Work

2.1 Literature Review

Due to the complexity of autonomous navigation systems, most of the work
presenting a complete application has - in one way or another - implemented
its own system architecture and navigation framework. Early papers from the
eighties [3, 4] describes a complete system able to navigate outdoors in a large
environment, where Carnegie Mellon University (CMU) researchers developed a
system to autonomously navigate through a network of sidewalks and intersections
in the CMU campus. More recently, the Defence Advanced Research Projects
Agency (DARPA) grand challenge in 2005 [5], and the DARPA urban challenge
in 2009 [6] boosted the development of autonomous cars, resulting in several
contributions to the field and several papers from participant teams [7, 8, 9]
describing the architecture and design of their navigation system. Observing these
papers show that the different architectures share similar features like parallel
communications, processes, tasks, etc., which could be reusable between them.
This was in fact one of the major factors that motivated the creation of ROS [1].
The ROS navigation stack is the most well-known and widely spread framework to
develop autonomous navigation applications. It provides a variety of useful tools,
but it also has some limitations [10]: it is solely designed to work on differential
drive and holonomic robots, and it assumes that the robot can be controlled by
sending x, y, and theta velocities. Additionally, it requires a planar laser for
mapping and localization purposes, and it performs best with robots with a circular
shape. Other recent literature presents some complete applications like [11, 12],
however, these papers aim to solve specific problems and are thus not designed for
general purpose. Efforts in producing more general frameworks for different levels
of autonomous systems can also be found in [13] where the focus was high-level
project management and software development, and in [14] where the focus was
low-level trajectory planning and obstacle avoidance in car-like robots. A generic
framework is presented in [15] as an alternative to the ROS navigation stack,
however, it focuses mainly on planning and control of wheeled robots that have
various kinematic constraints instead of covering the whole navigation problem.
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2.2 Master’s Pojects on the NTNU Cyborg Spring
2020

2.2.1 Graphical User Interface by C. Nilsen
C. Nilsen is developing a Graphical User Interface (GUI) module for the Cyborg.
The goal for this module is to support remote control and monitoring of the Cyborg.
His solution focuses on a cloud-based, reactive single-page-application that is built
and tested using the Vue framework. His work allows the Cyborg to be remotely
controlled in real-time with a click-to-send interactive map. Additionally, the GUI
supports teleoperation control with an on-screen joystick. The GUI also enables
monitoring and control of states in the Cyborg’s behavior system.

2.2.2 Computer Vision technology by O. M. Brokstad
O. M. Brokstad is developing a Computer Vision (CV) module for the Cyborg.
This includes the development and configuration of vision hardware and object
detection software. His project is motivated by the several advantages of improving
interactions between the Cyborg and people it encounters. The aim is to implement
a system capable of detecting and classifying human behaviors, allowing the Cyborg
to become more socially intelligent.

2.2.3 Behavior system by J. Kalland
J. Kalland is researching on the use of behavior trees and how to implement them in
the Cyborg’s software. Her work also includes augmenting the visual and auditory
functions on the robot, as well as researching the use of PAD values in the Cyborg’s
behavior.
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3 | Background

3.1 Introduction

This chapter aims to give some brief background information on concepts within
navigation theory (section 3.2), followed by documentation of the current software
and hardware architecture (section 3.3 and section 3.4, respectively).

3.2 Navigation Theory

For any mobile robot, the ability to navigate in its environment is essential. When
a mobile robot wants to move to a specific location, it must find that location and
calculate a path that it can move along while simultaneously avoiding obstacles.
This section will briefly present the basic concepts of a robot navigation system,
which refers to the robot’s ability to plan a path towards a goal location given its
position relative to a reference coordinate frame. These two fundamental concepts
are localization and path planning.

3.2.1 Localization
Robot localization is the process of determining where a robot is with respect to its
environment. Localization is a fundamental concept in autonomous robots since
positional awareness is essential in order to make decisions about future actions. In
a typical robot localization system, a map of the environment is available, and the
robot is equipped with sensors capable of sensing the environment and monitoring
the robot’s motion. The localization problem then becomes the task of estimating
the position and orientation of the robot in the map by using these sensors. Since
the sensor readings rarely exhibit exact values, the localization system needs to
be able to deal with noisy data and generate not only an estimate of the robot’s
location but also an uncertainty measure of the location estimate.

3.2.2 Path Planning
Planning a path from location x to a location y while avoiding obstacles and
reacting to environmental changes might be a trivial task for a human, but not
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so straightforward for an autonomous robot. A robot can use different sensors to
perceive the environment and to update its environment map, both with a level
of uncertainty. In order to calculate some motion actions that lead to the desired
goal location, it can use a variety of different decision and planning algorithms that
take into account the specific robot’s kinematic and dynamic constraints.

Path planning is used in different fields where the environment is either fully
known, partially known, or entirely unknown. All cases are still active fields of
research, where different methods and algorithms are developed to solve a specific
path planning problem. For the Cyborg, the environment will, for the most part,
be partially unknown.

3.2.3 Odometry
Odometry is the use of data from motion sensors to estimate the change in position
over time. It is used in robotics to estimate the position of the robot relative
to a starting location. On a wheeled robot like the Cyborg, the odometry is
often calculated from wheel encoders and/or Internal Measurement Units (IMU).
Wheel encoders can measure how far the wheels have rotated, and based on the
circumference of the wheels, it can compute traveled distance. However, this
method is sensitive to errors since what essentially happens is the integration of
velocity measurements over time to give position estimates. Therefore, precise
data collection from sensors, instrument calibration, and processing is required for
odometry to be used effectively.

3.2.4 Costmap
The pose of a robot, and its distance to obstacles, are estimated based on the
odometry and readings from its sensors. Using this information, an occupancy grid
map can be generated by a mapping algorithm to define the occupied, free, and
unknown area in the environment. A costmap takes the occupancy grid map as
input and calculates movable-, possible collision-, and obstacle area when taking
into account the shape of the specific robot.

The costmap is generally divided into two separate costmaps: a global costmap
used to calculate a path plan for navigating the global area of the fixed map,
and a local costmap used for path planning and obstacle avoidance in the robots
local area. Although the purpose of the global and local costmaps differ, they are
represented in the same way. Both costmaps consists of cells with values ranging
from 0 − 255 that are used to identify whether the robot is movable or colliding
with an obstacle. How these calculations are made depends on the developers
configuration (see section 9.4 for the Cyborgs costmap configuration). Figure 3.1
show the relationship between costmap values and the corresponding distance to
obstacles.
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Figure 3.1: Relation between costmap values and distance to obstacle [16].

Figure 3.2: Visualization of the costmap in RVIZ.

Visualizing the costmap can be useful to get a sense of what the navigation
system can “see” and where it is desirable to move. In fig. 3.2, the costmap is
visualized as a color gradient ranging from dark blue (area with a low probability
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of collision) to red (area with a high probability of collision) to turquoise (collision
area). The square shape with strong colors about the robot represents the local
costmap, whereas the faded colors on the rest of the map represent the global
costmap.

3.2.5 Coordinate Transforms

Figure 3.3: Five of the coordinate frames on the Cyborg.

Coordinate transforms is an important concept to understand when it comes
to robotics. A robotic system might contain several subsystems with certain
functionality, and to predictably control these subsystems, knowledge about their
respective coordinate frames in relation to each other is essential. Otherwise, the
objective of controlling them would be impossible.

An example of two subsystems often found on a robot is its wheels and laser
sensor. The laser senses the environment to perform navigation, and the wheels
are used to move the robot around. Since the wheels and laser are not located at
exactly the same spot on the robot, the navigation system needs to be provided
with this information to make use of them.

The wheels and laser are obviously not located at exactly the same spot on
the robot, so in order to make use of them, information about exactly where they
are on the robot is needed. Specifically, information about where on the robot
they are placed and what way they are facing, in other words, their position and
orientation.

• Position: A vector of three numbers (x, y, z) that describes how far an object
has traveled along each axis with respect to some origin.
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• Orientation: A vector of three numbers (roll, pitch, yaw) that describes how
far an object has rotated about each axis with respect to some origin.

• Pose: The position and orientation paired together is called the pose. The
pose varies in six dimensions and is sometimes referred to as a 6D pose.

A common convention is to reference the origin of the different parts in relation
to a common origin on the robot base. Such a reference frame is usually chosen
to be the geometric centroid on the robot. For the Cyborg, this reference frame
is called “base_link”, and is located on ground level, in the center between the
two wheels. The positive x-axis is pointing forward, the positive y-axis is pointing
left, and the positive z-axis is pointing up. Figure 3.3 shows five of the coordinate
frames on the Cyborg. Note that all frames are connected to base_link by yellow
lines. These represent the transformation between the base_link coordinate frame
and the other frames.

3.3 Software

3.3.1 The Navigation Module

Figure 3.4: Context diagram of the navigation module prior to the work done in
this project [17].

The software architecture on the Cyborg consists of several modules responsible for
high level control of auditory, visual, emotional, and navigational behavior. The
most recent work on the NTNU Cyborg project implemented a navigation module
responsible for high level navigation control of the Cyborg. It’s main purpose is
to interface the navigation controller (previously ARNL) with other modules in
the network. Figure 3.4 shows a context diagram of the navigation module as a

15



Chapter 3: Background

result of A. Babayan’s work in [17]. The module interfaces the ARNL node through
an action interface and receives current location updates on a ROS topic. These
concepts will be explained in chapter 4. Figure 1.1 shows where the navigation
module will be placed in the new system architecture.

3.3.2 ARIA
Advanced Robot Interface for Applications (ARIA) is the core development library
on the robot. Written in the C++ language, ARIA is a client-side software for
easy, high-performance access to and management of the Pioneer LX base, as
well as the many accessory robot sensors and effectors. This makes it possible to
control navigational parameters and receive sensory data from its internal sensors.
Accessing ARIA can be done either through low-level commands or through its
high-level action infrastructure. Supported programming languages are Python,
Java, and MATLAB. ARIA automatically handles all communication with the
components on the robot including (but not limited to) the laserscanner, sonar,
and bumpers sensor, by sending and receiving messages with the robot’s embedded
firmware.

3.3.3 RVIZ
ROS visualization - or RViz - is a general purpose 3D visualization environment for
robots, sensors, and algorithms. This tool is widely used for robots developed with
ROS because it can be used for any robot and is configurable for any particular
application. Data can easily be visualized in RViz by subscribing to topics that
have built-in plugins for ROS visualization.

3.3.4 MATLAB
MATLAB is a programming platform designed specifically for engineers and
scientists, and is widely used to analyze data, develop algorithms, and create
models and applications, among other things. The basic data element in MATLAB
is an array that does not require dimensioning. This allows for solving technical
computing problems, especially those with matrix and vector formulations, in a
fraction of the time it would take to write a program in a scalar non-interactive
language such as C.

Several tools have been developed for MATLAB. The ROS Toolbox enables
access to ROS functionality in MATLAB, such as communication with a ROS
network, interactively explore robot capabilities, and visualize sensor data. During
this project, MATLAB and its ROS toolbox have been used to analyze and plot
data.
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3.4 Hardware

3.4.1 Pioneer LX - The Cyborg Base

Figure 3.5: The Pioneer LX base.

The MobileRobots Pioneer LX is an autonomous navigation robot developed
by Adept MobileRobots. It is capable of carrying loads up to 60 kg and serves as
the Cyborg’s navigational base. It includes a robot control system and embedded
computer capable of running Linux, differential drive system with encoder feedback,
as well as a laser rangefinder sensor, ultrasonic sensors, and bumper sensors. The
robot base is delivered with a software development kit including pre-installed
software and tools for control, navigation, and communication.

The Pioneer LX has two degrees of freedom and is controlled by requesting
translational and rotational velocity. The Pioneer LX controller automatically
controls the drive system to achieve the requested velocities. The controller uses
encoders to automatically integrate wheel odometry to maintain requested velocity,
and combined with data from an internal gyroscope, computes an estimation of the
robot pose [18]. The Pioneer LX features the following hardware:

• Intel D525 64-bit dual core CPU @1.8 GHz

• Intel GMA 3150 integrated graphics processing unit

• Intel 6235ANHMW wireless network adapter

• Ports for ethernet, RS-232, USB, VGA, and various other analog and digital
I/O

• SICK 300 and SICK TiM 510 laser scanner

• Sonar sensors and a bumper panel

• Joystick for manual control
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• A 60 Ah battery

• Chargin station

SICK S300 Laser Scanner

Light Detection And Ranging (LiDAR) sensors, also referred to as laserscanners,
is a sensor used to measure distance to objects by using a laser as its source.
Laserscanners have the advantage of high speed, high performance, real time data
acquisition, and is widely used in the field of robotics. They work by calculating
the difference of the wavelength when the laser source is reflected by an object,
and they often measure a windows between 180 to 360 degrees. Even though it is
not necessary to know how exactly a LiDAR works, it is important to be aware of
possible limitations and warnings: First, the strong laser beam used as light source
can be damaging for the eye. Secondly, surfaces like glass and transparent plastic
tend to reflect and scatter the light source in many directions, leaving inaccurate
measurements. Lastly, only the horizontal plane is scanned, thus resulting in 2D
data.

The on-board SICK S300 laserscanner is a precise scanning sensor that
provides 500 readings in a 250-degree field of view with a maximum range of 15
meters. The laser operates in a single plane positioned about 19.1 cm above the
floor.

Sonars

The Pioneer LX contains four short-range sonar sensors for extra sensing near the
floor both in the front and rear. The rear sonar is especially useful when docking
since the robot then has to back up onto the docking station.

Bumpers

A bumper panel with two pairs of sensors is mounted at the front of the base,
should the navigation system fail and crash into an obstacle. It can then indicate
a left, middle or right side bumper hit.

Encoders and Gyroscope

Each wheel on the robot has an encoder that tells how far the wheels have turned,
and in which direction. Each wheel also has a Hall sensor, and the core contains
a gyroscopic sensor to measure rotation. These sensors are used to calculate the
odometry, and they provide feedback to the robot controller as it maintains the
requested velocities.
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4 | Robot Operating System

4.1 Introduction

This chapter presents the necessary background theory on the Robot Operating
System framework, which is a fundamental concept to understand for the
succeeding parts of this paper. The chapter is organized as follows: Section 4.2
gives a brief explanation of what ROS is and why it is useful for robot developers.
Section 4.3 presents the ROS architecture and the three main levels of concept.
This section explains the concepts of nodes, messages, topics, etc., and how the
processes in a ROS network are connected. section 4.4 introduces the ROS graph,
which is a useful tool when working with ROS.

4.2 What is The Robot Operating System?

The Robot Operating System, or ROS in short, is an open-source framework widely
used in the field of robotics. The purpose of ROS is to serve as a common software
platform for developers who are building different kinds of robots. The platform
enables people to share code with certain functionality that with minor changes can
be implemented in another robotic system. A common phrase to describe the main
benefit of ROS is that developers do not “reinvent the wheel”. The framework
provides services like hardware abstraction, low-level device control, message-
passing between processes, implementation of commonly-used functionality, and
package management. It also provides libraries and tools for obtaining, building,
writing, and running code across multiple computers [19].

The argument for using the ROS framework is that it provides all the parts
of a robot software system that would otherwise have to be written manually. It
allows the developer to focus on the parts of the system they do care about without
spending an excessive amount of time with the parts they don’t care about.

19



Chapter 4: Robot Operating System

4.3 The ROS Architecture

The ROS architecture can essentially be divided into two conceptual levels. The
filesystem level and the computation graph level. These will be further explained
in the following sections. In section 4.3.1, some concepts will be used to explain
how ROS is formed internally, i.e. the folder structure and required files it needs to
work, and section 4.3.2 will present how processes and systems communicate with
each other.

4.3.1 The Filesystem Level
ROS is often referred to as a meta-operating system since it not only offers tools
and libraries, but also functions often seen in operating systems like hardware
abstraction, package management, and a developer toolchain. Similar to a real
operating system, ROS files are organized in a particular manner, depicted in
fig. 4.1.

Figure 4.1: The ROS filesystem level

Packages

Packages are the main unit for organizing software in ROS. They form the atomic
level and has the minimum structure and content needed to create a program within
ROS. A package may contain runtime processes (nodes), libraries, configuration
files, and so on. The goal of a package is to provide just enough functionality such
that it can easily be reused. There are several tools for managing packages, all of
which are well documented on the ROS Wiki website [20]. A common convention
for the directory-structure of ROS packages looks like this:

• include/package_name: Includes the headers of required libraries.

• msg/: Contains the message types.
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• src/package_name/: Contains the source files of the programs.

• srv/: Contains the service types.

• scripts/: Contains the executable scripts.

• CMakeLists.txt: This is the CMake build file which is the input to the
CMake build system for building packages.

• manifest.xml: This is the package manifest file that defines properties about
the package such as version number, package name, authors, dependencies
and catkin packages.

Manifests

The manifest file (manifest.xml) is found in a package directory and it contains
a minimal specification about the package. The main role of this file is to declare
dependencies in a language-neutral and operating-system neutral way. The most
used tags in the manifest file are <depend> that shows which packages that must
be installed before installing the current package, and <export> which tells the
system what flags should be used to compile it.

Stacks

Packages in ROS are organized into stacks. While the goal of packages is to create
minimal collections of code for easy re-use, the goal of a stack is to simplify the
process of code sharing, thus being the primary mechanism in ROS for distributing
software. Stacks collect packages that together provide some kind of functionality,
e.g. a navigation stack. They need a basic structure of files and folders which can
be created manually or with the command tool roscreate-stack.

Stack Manifests

Similar to the manifest file of a package, the stack manifest file (stack.xml)
provides metadata about the stack and declares dependencies on other stacks.

Message types

ROS uses a simplified message description language for describing the data values
that ROS nodes publish. With this description, ROS can generate the right source-
code for these types of messages in several programming languages. There are two
parts to a message file: fields and constants. Fields define the type of data to be
transmitted in the message, e.g. string or int32, while the constants define the
name of the fields. A table of the supported standard built-in types can be found
in the ROS Wiki [20]. Listing 1 shows an example of a .msg file.
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1 int32 id
2 string name
3 float32 vel

Listing 1: An example of a message file.

Service types

ROS uses a simplified service description language for describing ROS service types.
It builds upon the message format to enable request/response communication
between nodes. The service descriptions are stored in the srv/ sub-directory of a
package as .srv files.

4.3.2 The Computation Graph level

ROS creates a network where all the processes are connected. The basic concepts
of a computation graph are nodes, master, parameter server, messages, services,
topics and bags, all of which provide data to the graph in different ways.

Figure 4.2: The ROS Computation graph level.

Nodes

A node is essentially a process that performs computation. A typical robot control
system will comprise many nodes that control different functions, i.e. one node
for controlling the wheel motors, one node to perform localization, one node to
perform path planning, and so on. A good convention is to have many nodes that
perform a specific function rather than a large node that makes everything happen
in the system.
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The use of nodes provides several benefits to the system: Debugging becomes
easier since the node separates the code and functionalities such that crashes
are isolated to individual nodes. The code complexity is also reduced compared
to monolithic systems where functionally distinguishable aspects are interwoven.
Another powerful feature of ROS nodes is the possibility to change parameters when
starting the node, i.e. the node name, topic names, and parameter values. This is a
useful way of re-configuring the node without having to recompile the code. Nodes
communicate with each other using topics, services and the parameter server, all
of which will be further explained in the next couple of sections.

Master

The ROS Master is a name service for ROS. It keeps track of all the running nodes,
topics, and services available, and enables nodes to locate one another. Once
the nodes have located each other, they communicate in a peer-to-peer fashion.
The ROS master makes communication between nodes simple by initializing all
the messages and services without actually connecting the nodes, as illustrated in
fig. 4.3.

Master

Publisher Subscriber

Publishing /topic on 
localhost: 1234

Message data for /topic

Subscribing to /topic

Localhost: 1234 is
Publishing on /topic

Figure 4.3: Illustration of how the ROS master enables communication between
a publisher and subscriber.

Parameter Server

The parameter server is a dictionary that nodes use to store and retrieve parameters
at runtime. Since it’s not designed for high-performance, it is best used for storing
static data such as configuration parameters. The parameter server is meant to be
globally viewable and is accessible via network application programming interfaces
(APIs) such that the configuration state of the system can be monitored and
modified if necessary. The provided command-line tool rosparam can be used
to access and modify the stored parameters. Some commonly used code for the
parameter server in Python are listed in listing 2.
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1 # Get parameter
2 value = rospy.get_param('/node_name_space/parameter_name')
3

4 # Check existence of parameter
5 rospy.has_param('parameter_name')
6

7 # Set parameter
8 rospy.set_param('parameter_name', parameter_value)

Listing 2: Commonly used code for the parameter server in Python.

Messages

Nodes communicate with one another by publishing messages to topics. A message
is a simple data structure supporting standard primitive types like integers, floating
points, Boolean, as well as arrays and customized types developed by the user. The
format of a message file is simply a field and a constant on each line as shown in
listing 1.

Topics

Topics are buses used by nodes to transmit data in a publish/subscribe fashion
intended for unidirectional, streaming communication. A node can send a message
by publishing it to a given topic, and a node that wishes to receive this data
can subscribe to the same topic, given that it has the same message type as the
publisher. This way of communication decouples the publisher from the receiver,
resulting in nodes not necessarily knowing whom they are communicating with.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics.

Node 1 Node 2 Node 3

Topic 1
/odom

Topic 2
/cmd_vel

x: 0.1
y: -1
z: 0

Forward: 0.2
Turn: 0

Node
Topic
Message

Wheel odometer Path Planner Motor controller

Figure 4.4: Illustration of ROS nodes, topics and messages.

Figure 4.4 is depicting how the concept of nodes, topics, and messages work
in an example with three nodes responsible for a specific navigation function. This
system of nodes will together perform a simple navigation task. Declaration of
simple publishers and subscribers in Python is shown in listing 3 and listing 4.

24



Chapter 4: Robot Operating System

1 def talker():
2 pub = rospy.Publisher('chatter', String, queue_size=10)
3 rospy.init_node('talker', anonymous=True)
4 rate = rospy.Rate(10)

Listing 3: Declaring a publisher node in Python.

Line 2 in listing 3 declares that the node is publishing to the chatter topic
using the message type String. The queue_size limits the amount of queued
messages if any subscriber is not receiving them fast enough. Line 3 tells rospy the
name of the node, in this case, talker. Line 4 creates a Rate object, rate, which
is a convenient way of looping at the desired rate (10 Hz in this case).

1 def callback(data):
2 rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data)
3

4 def listener():
5 rospy.init_node('listener', anonymous=True)
6 rospy.Subscriber("chatter", String, callback)
7 rospy.spin()

Listing 4: Declaring a subscriber node in Python.

The code for the subscriber is similar to that of the publisher, except a new
callback-based mechanism is introduced for subscribing to messages. Line 6 in
listing 4 declares that the node is subscribing to the chatter topic. When a new
message is received, the callback function is invoked with the message as the first
argument. Line 5 tells rospy the name of the node. The anonymous=True flag tells
rospy to generate a unique name for the node such that multiple listener nodes
can run easily. Line 7 simply keeps the node from exiting until the node has been
shutdown.

Services

In cases where it necessary to communicate with nodes and receive a reply, topics
do not suffice since they work in a unidirectional fashion. This request/reply model
is realized via services. Services are just synchronous remote procedure calls - they
allow one node to call a function that executes in another node. Service calls are
well suited to things that only need to be executed occasionally, and that take a
bounded amount of time to complete. An example of this can be a discrete action
that a robot might do, such as taking a picture with a camera or turning on a
sensor.

A service is defined by a pair of messages - one for the request and one for the
reply. A node can offer a service under a specific name that a client can call by
sending it a request message. A client can also make a persistent connection to a
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service, which enables higher performance at the cost of less robustness to service
provider changes [21].

Listing 5 shows how a simple service node can be written. The node is declared
in line 5 with the name add_two_ints_server, and the service is declared in line
6. This line declares a new service named add_two_ints with the AddTwoInts
service type. All requests are passed to handle_add_two_ints function which
returns instances of AddTwoIntsResponse. Additionally, just like the subscriber in
the previous section, rospy.spin() on line 7 keeps the code from exiting until the
service is shut down.

1 def handle_add_two_ints(req):
2 return AddTwoIntsResponse(req.a + req.b)
3

4 def add_two_ints_server():
5 rospy.init_node('add_two_ints_server')
6 s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints)
7 rospy.spin()

Listing 5: Service node example in Python.

Listing 6 shows how a simple client node can be written. Line 2 is a convenient
method that blocks until the service named add_two_ints is available. On line 4
the handle add_two_ints is created, which can be used just like a normal function
in Python. The exception on Line 7 will run if the call fails.

1 def add_two_ints_client(x, y):
2 rospy.wait_for_service('add_two_ints')
3 try:
4 add_two_ints = rospy.ServiceProxy('add_two_ints', AddTwoInts)
5 resp1 = add_two_ints(x, y)
6 return resp1.sum
7 except rospy.ServiceException, e:
8 print "Service call failed: %s"%e

Listing 6: Client node example in Python.

Actions

ROS services are useful for synchronous request/response interactions in the cases
where the asynchronous ROS topics don’t fit. However, services aren’t always the
best fit either, particularly when the request is more than a just a “set the value of
x” instruction. An example of this the case when the robot is tasked to move to a
specific goal location. In the case of services, a caller sends a request containing the
goal location, then waits for an unknown amount of time to receive the response
of what happened. When using services, the caller has no information about the
robot’s progress towards the goal, and the caller can’t cancel or change the goal.
ROS actions address these shortcomings.
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ROS actions are intended at controlling time-extended, goal-oriented behav-
iors like in the case mentioned above. Unlike synchronous services, actions are
asynchronous. An action uses a goal to initiate a task, and sends a result when the
task is complete. It also uses feedback to provide updates on the progress towards
the goal, and also allows for the goals to be cancelled. In the case of a moving
robot, a goal could be a message that contains information about where the robot
should move to in the world. The feedback provided could be the robot’s current
pose along the path, and the result could be the final pose of the robot. These three
parameters are defined in an action specification file. The layout of this .action
file is shown below:

1 # Define goal
2 goaltype goalname
3 ---
4 # Define result
5 resulttype resultname
6 ---
7 # Define feedback
8 feedbacktype feedbackname

Listing 7: Example layout of an action specification file.

The ActionClient and ActionServer communicate via a ROS action protocol.
The client and server then provide a simple API in order to request goals on the
client side, or to execute goals on the server side, via function calls and callbacks.
Figure 4.5 illustrates this concept.

Figure 4.5: Client-Server interaction via the ROS action protocol [22].
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1 from example.msg import example_action, example_goal
2

3 # Create client and connect to server
4 rospy.init_node('example_client', example_action)
5 client = actionlib.SimpleActionClient('example', example_action)
6 client.wait_for_server()
7

8 # Create and send goal
9 goal = example_goal()

10 client.send_goal(goal)
11 client.wait_for_result(rospy.Duration.from_sec(5.0))

Listing 8: Simple ActionClient in Python.

The code in listing 8 shows how to set up a simple ActionClient and send a
goal to an ActionServer. Line 1 imports the action type and messages. Line 4
Initializes the node with the name example_client. Line 5 initializes the client
and connects it to the action server with type example_action. Line 6 waits until
the client is properly connected to the server before execution. Line 9 creates the
goal and on line 10 the goal is sent to the server. Line 11 waits for the result for
5.0 seconds.

1 from example.msg import example_action, exaple_result
2

3 # Create and start server
4 ActionServer = actionlib.SimpleActionServer('server', example_action, execute,

auto_start = False)↪→

5 ActionServer.start()
6

7 def execute(goal):
8 # Implement functionality for the robot here
9 ActionServer.set_succeeded()

Listing 9: Simple ActionServer in Python.

The code in listing 9 shows how to setup a simple ActionServer. Line 1 imports
the action type and messages. Line 4 creates the ActionServer named server with
action type example_action. The function execute runs when a goal arrives.
Line 5 starts the ActionServer. Line 7 defines the function execute where the
functionality of the action is implemented. Line 9 sets the terminal state of the
ActionServer and publishes the result message to the client.

Rosbag

A Rosbag is a file created by ROS to store message data. A variety of tools have
been developed for bag-files, making it possible to store, process, analyze, and
visualize the data. They are commonly used to “record” a session in ROS in order
to reproduce the same exact same data transmissions when analyzing or debugging
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algorithms. This is done by sending the topics and messages at the same time as
when they were recorded.

4.4 The ROS graph

A simple and intuitive way of illustrating the current state of a ROS session is with
a directed graph depicting running nodes and the publisher-subscriber connections
between those nodes through topics. A tool for generating such a graph is the
rqt_graph [23]. The ROS graph in fig. 4.6 shows an example of how such a graph
might look like. The graph in this figure is actually showing the ROS graph of the
navigation stack during the development process.

Figure 4.6: Example of a ROS graph. Oval shapes represent nodes, rectangles
represent topics.
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5 | Mobile Robot Path Plan-
ning

5.1 Introduction

Moving from one place to another is a trivial task for a human who can interpret and
calculate how to move in a split second. For a robot, however, such an elementary
task is a major challenge. The problem of path planning is a fundamental problem
in the field of autonomous robotics - namely finding a path for the robot to move
along while avoiding obstacles. Safe and efficient robot navigation requires strong
and robust path planning algorithms since the generated path greatly affects the
performance of the robot application. The principal objective of the navigation
process is to minimize the traveled distance as this also influences other metrics
such as energy consumption and processing time.

This chapter presents a brief overview of mobile robot path planning and
provides the necessary background on this topic for the succeeding parts of the
paper. Section 5.2 and section 5.3 aims to give a brief introduction to the path
planning problem and the difference between local and global planning. Section 5.4
presents the A* graph search algorithm used in the navigation stack, followed by
a brief explanation of the Dynamic Window Approach (DWA) in section 5.5.

5.2 Overview of the Path Planning Problem

Recent years have seen a revolution in robotics. A variety of robotic systems have
been developed, and they have shown their effectiveness when performing different
tasks in different areas such as factory robotics, airports, home environment, and so
on. The robot needs to be embedded with intelligence to ensure optimal executing
of the task at hand. However, implementing intelligence in robotic systems imposes
a huge number of research challenges, navigation being one of the most fundamental
ones. For a robot to successfully finish the navigation task, it has to know its
position relative to the position of its goal. Additionally, it has to consider its
immediate environment and be able to dynamically adjust its actions in order to
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reach its goal. In other words, to solve the navigation problem, the robot needs to
know the answer to the three following questions: Where am I? Where am I going?
How do I get there?. These questions relate to the three fundamental navigation
concepts localization, mapping and path planning, respectively.

• Localization: The ability of the robot to determine its location in the
environment. The location can be presented as a reference relative to a local
environment (e.g. center of a hallway), topological coordinate (e.g. in room
12), or in absolute coordinates (e.g. longitude, latitude, altitude).

• Mapping: To identify where the robot has been moving so far, it requires
a map of its environment. The map can either be placed directly into the
robot’s memory, or it can be gradually generated when the robot explores
and senses its environment (Simultaneous Localization and Mapping).

• Path planning: To find a path for the robot, the goal position must be
given in advance which requires an addressing scheme that it can follow.
The addressing scheme indicates where the robot has to go from its starting
position. A robot might for example be requested to go to a certain location
on a school campus by simply giving it the location name (e.g. cafeteria). In
other scenarios, addresses can be given in relative or absolute coordinates.

Path planning is the aspect of navigation that answers the question: What
is the best way to get there? There are, however, several issues that need to
be considered in the path planning problem, as shown in fig. 5.1. Most of the
proposed solutions in previous research have been focusing on finding the shortest
path from the start position to the goal position. Other approaches have been
focusing on optimizing computational time and enhancing smooth trajectory of
the robot [24]. Research has also been done on navigating autonomous robots in
complex environments [25].

Issues	in	path	planing	with	obstacle
avoidance

Complex	environments Natural	MotionMovable	obstacles

Multi-agent	robot

Complex	map-terrain Finding	shortest	path

Producing	smooth
trajectory

Figure 5.1: Issues related to path planning.

Independent of the issue considered in the path planning problem, three
important concerns need to be considered: safety, efficiency, and accuracy. Ideally,
the robot should find its path in a short amount of time while using as little energy
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as possible. Besides, it should safely avoid obstacles that exist in the environment,
and it should accurately follow the generated path.

5.3 Path Planning Categories

The main problems in mobile robot path planning can be divided into three
categories relating to the knowledge the robot has about its environment, the
environment nature, and the approach used to solve the problem.

Environment nature: Robots might need to perform path planning in both
static and dynamic environments. A static environment does not change, i.e.
the start and goal positions are fixed, and obstacles do not vary locations over
time. A dynamic environment on the other hand, might include obstacles and goal
positions that vary over time. Path planning in dynamic environments is therefore
a more complex problem than in static environments due to the uncertainty of
the environment. Consequently, the algorithms need the ability to adapt to any
unexpected change such as a moving goal location or moving obstacles in the pre-
planned path.

Map knowledge: Mobile robots rely on existing maps when performing path
planning. They use the map as a reference to identify initial and goal location, and
the link between them. The amount of knowledge about the map is an important
factor when designing the path planning algorithms, in fact, path planning can be
divided into two categories based on this knowledge: In the first class, the robot is
provided with a map a priori. This class of path planning is known as global path
planning. The second class assumes no a priori knowledge about the environment
(i.e. no map). As a result, it has to use sensors to determine the location of
obstacles, and construct an estimated map in real-time during the search process
to acquire an appropriate path towards the goal while avoiding obstacles. This type
of path planning is known as local path planning. Table 5.1 shows the differences
between the two classes.

Completeness: The path planning algorithm can be classified as either exact
or heuristic, depending on its completeness. An exact algorithm finds the optimal
solution (if it exists), whereas heuristic algorithms find a “good enough” solution
in a shorter amount of time.
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Local path planning Global path planning

Reactive navigation Deliberative navigation

Sensor-based Map-based

Fast response Slower response

Assumes incomplete workspace
area

Workspace area is known

Generates a path and moves to-
wards the goalwhile avoiding ob-
stacles

Generates a feasible path before
moving towards the goal

Done online Done offline

Table 5.1: Differences between local and global path planning.

5.4 The A* Graph Search Algorithm

Approaches	used	to
solve	oath	planning

Roadmap
method A*Potential	field

method

Cell
decomposition

method
Dijkstra ACO GA Tabu	search

Classical
approaches

Graph	search
approaches

Heauristic
approaches

Figure 5.2: Different approaches used to solve the path planning problem.

Since the mid 20th century when research on path planning started, there have
been numerous design solutions attempting to solve the path planning problem.
They can be generalized into three categories: classical approaches, heuristic
approaches, and graph search approaches, as depicted in fig. 5.2. The early
stages of path planning research were dominated by classical approaches such
as roadmap, potential field, and cell decomposition. However, they have been
shown to pose several shortcomings such as deficiencies in global optimization and
robustness. The heuristic approaches aimed at solving the shortcomings of the
classical approaches. There have also been developed a wide variety of graph search
algorithms over the last decades that have been tested for path planning such as
Dijkstra, breadth-first search (BFS), depth-first search (DFS), Bellman-Ford, A*
[26], etc. This section will cover the A* (pronounced “A star”) algorithm which is
an extension of Dijkstra’s algorithm. A* is one of the most efficient algorithms for
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path planning, however, it can be time-consuming to reach the optimal solution
depending on the number and density of the obstacles. The algorithm is presented
in algorithm 1.

When finding the shortest path, A* evaluates each grid cell in the map
according to an evaluation function given by:

f(n) = h(n) + g(n) (5.1)

where g(n) represents the accumulated cost of reaching the current cell n from
the start position S:

g(n) =

 g(S) = 0

g(parent(n)) + dist(parent(n), n)

 (5.2)

h(n) is the estimated cost of reaching the goal position G from the current cell
n in the least path, defined as the Euclidean distance from n to G. This estimated
cost is known as the heuristic. f(n) is the estimated minimum cost of all paths to
the goal cell G from the start cell S. The tie-breaking factor tBreak is multiplied
with h(n) in order to favor a certain direction in case of ties. This ensures that the
algorithm doesn’t explore all equally likely paths at the same time, which in a big
grid environment would be very costly. The tie-breaking coefficient is often chosen
as:

tBreak = 1 +
1

length(Grid) + width(Grid)
(5.3)

A* relies on two lists: an open list and a closed list. The open list contains cells
that might fall along the best path, and should thus be checked out. The closed
list on the other hand contains cells that have already been explored. Each cell
is characterized by five attributes: ID, parentCell, g_cost, h_cost, and f_cost.
When starting the search, the neighboring cells of the start position S is expanded,
and the cell with the lowest f_cost is selected from the open list, expanded, and
added to the closed list. This process is repeated for each iteration. Additionally,
two conditions are checked when exploring the neighbor cells of the current cell:

1. The cell is ignored if it already exists in the closed list.

2. If the cell already exists in the open list, then the g_cost of this path to the
neighbor cell is compared with the g_cost of the old path to the neighbor
cell. If the cost of using the current cell to get to the neighbor cell is lower,
then the parent cell is changed to the current cell, and g, h, and f costs of
the neighbor cell are recalculated.

This whole process is repeated until the goal position is reached. By working
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backward from the goal cell G, the algorithm goes from each cell to its parent until
it reaches the starting cell S, and the shortest path in the grid map is found.

Algorithm 1 A_star(Grid, Start, Goal)
Initialization:
ClosedSet = empty set; . Set of already evaluated nodes
OpenSet = Start; . Set of nodes to be evaluated
came_from = the empty map; . Map of navigated nodes
tBreak = 1+1/(length(Grid)+width(Grid)); . Coefficient for breaking ties
g_score[Start] = 0; . Cost from Start along best known path
f_score[Start] = heuristic_cost(Start, Goal); . Estimated total cost from
Start to Goal

while OpenSet is not empty do
current = the node in OpenSet having the lowest f_score;
if current = Goal then

return reconstruct_path|(came_from, Goal);
end
Remove current from OpenSet;
Add current to ClosedSet;
for each free neighbor v og current do

if v in closedSet then
continue;

end
tentative_g_score = g_score[current] + dist_edge(curent, v);
if v not in OpenSet or tentative_g_score < g_score then

came_from[v] = current;
g_score[v] = tentative_g_score;
f_score[v] = g_score[v] + tbreak * heuristic_cost|(v,Goal);
if neighbor not in OpenSet then

Add neighbor to OpenSet;
end

end
end

end
return failure;
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5.5 Dynamic Window Approach

Dynamic Window Approach (DWA) is an online collision avoidance strategy
developed by S. Thrun et al. in 1997 [27]. It is a method for selecting a velocity
that quickly reaches the target point by taking into account the specific dynamics
and constraints on a particular mobile robot. The two main components in
the DWA algorithm consists of generating a valid search space and selecting an
optimal solution in the search space. The optimization goal is to select a velocity
and heading that takes the robot to its goal with maximum clearance from any
obstacles. Figure 5.3 illustrates how a robot’s velocity search space might look
like, with the translational velocity v and the rotational velocity ω as axes. In
the velocity search space, the robot has a maximum allowable velocity in both
directions based on hardware limitations and configuration. This is called the
Dynamic Window. In the dynamic window, the objective function G(v, ω) is used
to calculate the translational and rotational velocity that maximizes the objective
function by taking into account the direction, velocity, and collision of the robot.

Figure 5.3: Velocity search space and the dynamic window.
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6 | Mobile Robot Localiza-
tion

6.1 Introduction

This chapter will introduce the concept of mobile robot localization, ultimately
presenting the probabilistic localization scheme called Adaptive Monte Carlo
Localization (AMCL), which is the system that is integrated and analyzed as part
of this thesis. Mobile robot localization refers to the problem of determining the
pose of a robot relative to a given map of its environment. It is sometimes called
position tracking or position estimation. Mobile robot localization in particular is
a subset of the general localization problem, which is the fundamental perceptual
problem in robotics. This is because most robotic applications require knowledge
of the location of the robot with respect to objects that are being manipulated or
avoided.

The localization problem can essentially be seen as the problem of coordinate
transformation. Maps are represented in a global coordinate system independent
of the robot’s pose. Localization is the process of establishing the relation between
the map coordinate system and the robot’s local coordinate system. If the robot
knows this coordinate transformation it can express the location of objects of
interest within its own coordinate system, which is a crucial prerequisite for robot
navigation.

Unfortunately, the pose of the robot can usually not be sensed directly, since
most robots do not have a noise-free sensor for measuring pose. Therefore, the pose
has to be calculated based on data from sensors. The key difficulty then arises from
the fact that the pose can not be derived from a single measurement. Instead, the
robot has to integrate sensor data over time to sufficiently determine its pose.
Figure 6.1 shows a general localization schematic for a mobile robot localization
system.
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Encoder Prediciton	of	position
(e.g.	odometry)

Position	update
(Estimation)
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Raw	sensor	data	or
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Position

Predicted	position

YES

Figure 6.1: General schematic for mobile robot localization.

6.2 Related Work

Mobile robot localization is a well studied field in robotics, and different approaches
for solving the localization problem have been proposed in the past. Some relevant
research include the use of panoramic vision [28], omnivision [29], perspective
cameras [30], condensation algorithm for vision-based localization [31], Monte-
Carlo localization with stereo vision [32], and localization by tracking geometric
beacons [33]. Probabilistic approaches have also been successfully applied to
localize mobile robots with respect to a given map. Such approaches often rely
on techniques such as histogram filters [34], Extended Kalman Filters (EKF) [33],
or particle filters, often referred to as Monte-Carlo localization (MCL) [35].

Regarding vehicle localization, the most commonly used sensors are cameras
[36, 30, 32, 29], laser scanners [35, 37], or GPS receivers. Laser rangefinders are
especially popular for robotic applications, since they provide precise data about
the distance to obstacles and they require very little pre-processing of the data
itself. Position errors for these lasers between 0.05 m and 0.2 m have been reported
in [35] and [38] for mobile robots using SICK laser scanners with the standard
Monte-Carlo localization approach.
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6.3 Localization-based Navigation versus
Programmed Solutions

Suppose a mobile robot in an indoor environment is tasked with navigating from
a room A to a room B. When developing its navigation system, it is clear that
the robot will need sensors and motion a control system to achieve this task. It
is less evident, however, whether the robot requires a localization system or not.
Localization may seem mandatory in order to successfully navigate between two
rooms and accurately predict its location with respect to a map as well as detecting
when it has arrived at the goal location. However, explicit localization to a given
map is not the only approach for goal detection.

An alternative approach suggests that, since sensors and effectors are noisy and
can be information-limited, one should avoid using a geometric map for localization.
Instead, a set of behaviors can be designed that together results in the desired robot
motion. This behavior-based approach avoids explicit reasoning about the robots
location and position, and thus generally avoid explicit path planning as well.
Instead, the robot can rely on procedural solutions to its navigation task. For
example, the behavioralist approach to navigation between the two rooms can be
to design a right-wall-following behavior and a detector for room B that is triggered
by some condition, such as the color of the floor. An example architecture of this
specific problem is shown in fig. 6.2. The key advantage of this approach is that
it is easy to implement in a single environment with few goal positions. However,
it suffers from several disadvantages: It does not scale to other or more complex
environments, and the underlying procedures such as the right-wall-follow behavior
can often not be applied in different circumstances.

Sensors

Communicate	data

Actuators

Follow	right	wall

Avoid	obstacles

Discover	new	area

Detect	goal	position

Coordination	/	fusion

Figure 6.2: Example architecture for behavior-based navigation.

In contrast to the behavior-based approach, the map-based approach includes
both localization and path planning modules. In map-based navigation, the robot
continuously tries to localize by using sensor data to update its estimated position
with respect to a map of the environment. Some of the key advantages for such a
map-based approach is that the robot’s belief about its position is available to the
human operators, and it’s scalable to new environments. However, there is also
a disadvantage regarding the map itself: Since the given map is “trusted” by the
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robot, a wrong or inaccurate map might result in undesirable behavior.

Sensors

Motion	control

localization	/	map-building

Perception

Actuators

Path	planning

Figure 6.3: Example architecture for map-based navigation.

6.4 Adaptive Monte Carlo Localization

Adaptive Monte Carlo Localization is a probabilistic localization system for robots
moving in two dimensions, developed by Thun et al. [39]. The system implements a
set of probabilistic localization algorithms in order to solve the localization problem.
This section aim to describe how the algorithm works.

Monte Carlo Localization (MCL), also known as particle filter localization, is
an algorithm commonly used for robots to localize using a particle filter. The
algorithm uses a given map of the environment to estimate the position and
orientation of a robot as it moves and senses its environment. A particle filter is
used to represent the distribution of likely states, where each particle is representing
a possible state, i.e., a hypothesis of where the robot is. The algorithm can either
be initialized with an initial position estimate defined by the operator, or with
a uniform random distribution of particles over the whole configuration space,
meaning the robot have no information about its initial position, and assumes it is
equally likely to be at any point in the environment. Whenever the robot moves,
the algorithm shifts the particles to predict its new state after the movement. When
the sensors on the robot senses something, the particles are resampled based on
recursive Bayesian estimation, i.e., how well the predicted state correlate with the
actual sensed data. Ultimately, the particles converge towards the actual position
of the robot.

The state of a robot depends on the application and design. For example, the
state of a two dimensional robot typically consists of a tuple (x, y, θ) for position
x, y and orientation θ. The estimate of the robot’s current state is a probability
density function distributed over the state space. In the MCL algorithm, the
estimate at time t is represented by the set Xt = {x1t , x2t , . . . , xMt }. Each particle
contains an estimate of the robots state, and the regions in the state space with
many particles correspond to a greater possibility that the robot will be there.
Additionally, the MCL algorithm assumes the Markov property, that is, the current
state’s probability distribution only depends on the previous state and not states
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before that, i.e. Xt only depends on Xt−1. This means that the algorithm only
works if the environment is static and does not change over time.

Given a map of the environment, the goal of the algorithm is to determine the
robots pose within the environment. At each time t, it takes as input the previous
estimate Xt−1 = {x1t−1, x

2
t−1, . . . , x

M
t−1}, an actuation command ut, and sensor data

zt, and outputs the updated estimate Xt (see algorithm 2).

Algorithm 2 MCL(Xt−1, ut, zt)

X̄t = Xt = ∅;
for m = 1 to M do

x
[m]
t = motion_update(ut, x

[m]
t−1);

w
[m]
t = sensor_update(zt, x

[m]
t );

X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉;

end
for m = 1 to M do

Draw x
[m]
t from X̄t with probability ∝ w[m]

t ;
Xt = Xt + x

[m]
t ;

end
return Xt

Monte Carlo localization can be improved by adaptively sampling the particles
based on an error estimate using the Kullback-Leibler Divergence (KLD). Initially,
the algorithm requires a large sample size M in order to cover the entire map with
a uniformly random distribution of particles. However, maintaining such a large
sample size when the particles converges is computationally inefficient. AMCL
(also known as KLD-sampling) is a variant of Monte Carlo Localization where the
sample size, Mx, at each iteration is calculated such that, with probability 1 − δ,
the error between true posterior and the sample-based approximation is less then
the variable ε. The idea in AMCL is to create a histogram overlaid on the state
space. The bins are initially empty, and at each iteration, a new particle is drawn
from the previous weighted particle set with a probability that is is proportional to
its weight. Instead of the resampling done in MCL, the adaptive MCL algorithm
draws particles from the previous weighted set and then applies sensor and motion
updates before placing the particles into their bins. The algorithm tracks the
number of non-empty bins, k, and if a particle is placed in a previously empty bin,
the value of Mx is recalculated. This process is repeated until the sample M is the
same as Mx.

Since AMCL removes redundant particles from the particle set by only
increasing Mx when a new bin has been filled, it consistently outperforms and
converges faster the classic MCL.
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Chapter 7: Specifications and Requirements

7 | Specifications and Require-
ments

7.1 Specifications

Specifications for the navigation stack have been selected based on the problem
description on page i.

1. The navigation stack must be implemented in ROS as a stack of ROS nodes.

2. Communication with other ROS nodes must use ROS protocols.

3. The navigation stack must provide the navigation module presented in
section 3.3.1 with location updates on a ROS topic with message type
geometry_msgs/PoseWithCovarianceStamped.

4. The navigation stack must provide an implementation of an action interface
that interfaces the navigation module. Specifically:

(a) The ActionServer must take in goals containing
geometry_msgs/PoseStamped messages.

(b) The ActionServer must provide feedback containing the current position
of the Cyborg in the environment.

(c) The ActionServer must provide status information on the goals that are
sent to navigation stack.

(d) The action interface should enable the navigation module to cancel goals.

5. The navigation stack must provide localization functionality as a ROS node.

6. The navigation stack should utilize a map of the environment, provided by a
ROS node.

7. The navigation stack must include a ROS node interfacing the peripherals on
the Cyborg.

8. The navigation stack must include a navigation controller performing path
planning and obstacle avoidance. Specifically:
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(a) The navigation controller must output velocity commands on a ROS
topic.

(b) The navigation controller should include recovery functionality for when
the Cyborg gets stuck.

(c) The navigation controller should utilize local and global costmaps to
perform local and global path planning.

9. The navigation stack must include a ROS node interfacing the robot controller
on the Pioneer LX base.

7.2 Requirements

1. The navigation stack must be able to control the Cyborg, which is a
differential drive robot.

2. The navigation stack must be able to utilize the SICK S300 laserscanner
mounted on the Cyborg.

3. The navigation stack must be designed to work on the oval shape of the
Cyborg.
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8 | Design and Implementa-
tion

8.1 System Overview

Navigation	controllerCyborg	navigation	module

Map	information

Sensor	information

Odometry	information

Transform	information

Cyborg	base	controller

Action	interface

Goal	pose

Status	current	pose

Navigation	stack

Velocity	commands

Existing	modules

Implemented	modules

Localization

Figure 8.1: High-level overview of the navigation stack design.

The navigation stack is designed as a set of nodes and algorithms that use
sensor and odometry information, as well as transformations and goal positions in
order to produce safe velocity commands to the Cyborg base controller. Figure 8.1
shows a high-level design overview of how the navigation stack is implemented in
the existing Cyborg ROS network. The navigation controller module is responsible
for moving the Cyborg to a desired location by linking together a global and local
path planner to accomplish its global navigation task. It relies on inputs from
a localization algorithm, as well map, sensor, odometry, and transform data to
output velocity commands that will move the Cyborg to the desired location.
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At a high level, the navigation stack works as follows:

1. A navigation goal is sent to the navigation stack using an action call specifying
a goal pose in the map coordinate frame.

2. A path planner algorithm in the global planner calculates a shortest path
from the current pose to the goal pose by using the map.

3. The path from the global planner is passed to the local planner, which tries
to follow the global path when taking local changes into account. It uses
information from the laserscanner to avoid obstacles, and if it gets stuck, it
can ask the global planner to calculate a new path for it to follow.

4. When the Cyborg gets close to its goal pose, the action terminates, and the
Cyborg has arrived.

This chapter will cover the lower-level design and implementation of the green
modules in fig. 8.1, going more into detail on their functionality and inner workings.
A full list of topic published by each node in the network is presented in appendix A.
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8.2 Navigation Controller

global_planner

dwa_local_planner

global_costmap

local_costmap

Recovery	behaviors
clear_costmap_recovery

rotate_recovery

move_base

Internal	path
nav_msgs/Path

Desired	goal
/move_base_simple/goal

geometry_msgs/PoseStamped

Velocity	commads
/cmd_vel

geometry_msgs/Twist

Sensor	information

Topic
Message	type

Node

Plugin	interface

Map	information

Transform	information

Odometry	information

Figure 8.2: The move_base node.

The main function of the navigation controller is to move the Cyborg from its
current position to a desired goal position. The existing navigation module (not to
be confused with the navigation controller) was designed to interface the navigation
controller through an action server. The move_base package [40] is therefore
implemented as the main controller node, as it provides an implementation of
an action that, given a goal in the world, will attempt to reach it with the mobile
base.

The navigation task within the move_base node takes place a two distinct
levels. The global planner calculates a path from the Cyborg’s current pose to
a given goal pose, while the local planner provides movement towards a general
direction while allowing for path flexibility to avoid obstacles. When the move_base
node receives a goal pose, it computes a path to the given location and then
successively produces velocity commands to the Cyborg’s base controller. If at
some point the Cyborg is unable to follow its plan, for example if a narrow doorway
is being blocked, it will enter a recovery behavior and re-plan accordingly. If the
recovery behavior also fails then the task will be aborted. Throughout the whole
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process, the move_base node provides constant feedback as to the current location
of the Cyborg, as well as the status of the navigation process through the action
interface. The goals can also be preempted, meaning that navigation towards some
location will give up if it is given a new goal pose.

The move_base node also incorporates global and local costmaps that are
being used with the global and local planners, respectively. The costmaps store
and maintain information in the form of an occupancy grid about the obstacles
in the environment, indicating where the Cyborg should navigate. The costmaps
are constantly being updated based on the sensor readings to include dynamic
obstacles or obstacles not pre-defined in the map.

8.2.1 Global Planner

The global path planner operates on the global costmap, which is initialized from
the generated map of the NTNU campus. It is responsible for calculating a long-
term plan that takes the Cyborg from its current position to the goal position
before it starts moving. It does this by taking the Cyborg’s current position, goal
position, and global costmap as input, and then uses a grid-based search algorithm
to compute a shortest, collision-free path.

Selecting a global planner

Three global planner packages were considered when deciding which method to use
for creating global plans for the Cyborg. These were carrot_planner [41], navfn
[42] and global_planner [43].

• carrot_planner: This planner is the simplest of the three. It checks if a
given goal point is an obstacle, and if it is, it walks back along the vector
between the robot and the goal until a goal point that is not in an obstacle is
found. Eventually it passes the valid goal as a plan to the local planner, thus
not doing any global path planning which in complicated indoor environments
is not very practical.

• navfn and global_planner: navfn provides a fast interpolated navigation
function that is used to create plans. It assumes a circular robot and operates
on a costmap to find a minimum cost plan from a start point to an end point
using Dijkstra’s algorithm. global_planner is a more flexible replacement
of navfn with additional options such as support for the A* search algorithm,
quadratic approximation and grid path. figs. 8.3 to 8.6 illustrates the concept
of these options.

The flexibility of global_planner with support for different robot shapes
and search algorithms was deemed the best solution. The tuning of global planner
parameters as well as other relevant navigation parameters will be discussed in
chapter 9.
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Figure 8.3: Dijkstra’s path. Figure 8.4: A* path.

Figure 8.5: Standard behavior. Figure 8.6: Grid path.

8.2.2 Local Planner
In order to transform the global path into useful waypoints, the local planner
calculates new waypoints by taking into consideration dynamic obstacles and the
Cyborgs vehicle constraints. In order to calculate the local path at a specified
rate, the map is reduced to the surroundings of the Cyborg which is updated
as the Cyborg is moving around. It is not possible to utilize the whole map
because of computational constraints and limited range of the sensors. Therefore,
with the updated local map and the global waypoints, the local planner generates
avoidance strategies for dynamic obstacles and attempts to match the trajectory
as much as possible to the global path from the global planner. Ultimately,
it outputs appropriate velocity commands to the Cyborg base controller as
geometry_msgs/Twist messages on the /cmd_vel topic.

Selecting a local planner

Three packages was considered when deciding which method to use for gen-
erating local plans for the Cyborg. These were dwa_local_planner [44],
eband_local_planner [45] and teb_local_planner [46].

• dwa_local_planner: This planner provides an implementation of the
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Dynamic Window Approach (DWA) to local robot navigation. Given a
global plan to follow and a local costmap, the dwa_local_planner computes
velocity commands to the robot base.

• eband_local_planner: This planner computes an elastic band within the
local costmap, and attempts to follow the path generated by connecting the
center points of the band using various heuristics. This method is further
explained in [45].

• teb_local_planner: Timed Elastic Band (TEB) locally optimizes the
robot’s trajectory with respect to trajectory execution time, separation from
obstacles, and compliance with kinodynamic constraints at runtime. This
method is further explained in [46].

Since the global and local path planners in the navigation stack are designed
to work with costmaps, the dwa_local_planner was chosen. This decision is
also supported by the fact that eband_local_planner has limited support for
differential drive robots, and teb_local_planner requires additional data about
obstacles.

The DWA algorithm

The basic steps of the DWA algorithm is as follows:

1. Discretely sample in the Cyborg’s control space (dx, dy, dθ)

2. For each sampled velocity, perform forward simulation from the Cyborg’s
current state to predict what would happen if the sampled velocity were
applied for some (short) period of time.

3. Evaluate each trajectory resulting from the forward simulation, using a metric
that incorporates characteristics such as; proximity to obstacles, proximity to
the goal, proximity to the global path, and speed. Discard illegal trajectories.

4. Pick the highest-scoring trajectory and send the associated velocity to the
Cyborg base.

5. Rinse and repeat.

The DWA performs local path planning by using sample-based optimization.
The algorithm samples a control action in the feasible velocity space, which for the
Cyborg is a translational and angular velocity pair, and simulates the trajectories
according to a given simulation length based on the Cyborg’s motion model.
An important thing to note is that the control action is kept constant along
the whole prediction horizon, meaning that it cannot predict motion reversals,
etc. After simulating the trajectory from each sample, the best candidate is
selected based on a specific cost function and constraints, such as distance from
the global path, distance from obstacle, smoothness, etc. Consequently, the DWA
includes two simplifications in order to reduce the computational load while still
achieving a certain amount of control performance. The cost function can be non-
smooth, which makes it well-suited for grid-based evaluations such as evaluating
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the occupancy grid in the costmap. Furthermore, the DWA does not get stuck in
local minima based on its initialization.

8.2.3 Local and Global Costmaps

The costmap_2d package [47] is used to provide an implementation of a two-
dimensional costmap that takes sensor data from the Cyborg’s environment, builds
a 2D occupancy grid, and inflates the obstacles based on a specified inflation radius.
In costmap_2d, the costmaps are composed of three layers: a static layer, obstacle
layer, and inflation layer. The static map layer directly interprets the map provided
to the navigation stack by the map_server node. The obstacle map layer includes
2D and 3D obstacles, and the inflation layer is where those obstacles are inflated
in order to calculate the cost for each 2D costmap cell. Figure 8.7 shows how these
layers are combined to generate a “master” costmap.

The navigation controller utilizes two costmaps: a global costmap and a
local costmap. The global costmap is generated by inflating the obstacles on the
map provided by the map server node, whereas the local costmap is generated by
inflating obstacles detected by the Cyborg’s sensors.

Figure 8.7: Costmap layers [48].

8.2.4 Recovery Behaviors

The move_base node has been designed to enter a recovery behavior state if the
Cyborg gets stuck and fails to find a valid plan. This might for example happen if
a narrow doorway is being blocked, or if the Cyborg is surrounded by people. In
this case the Cyborg will take the following actions to attempt to clear out space;
First, obstacles outside of a defined region will be cleared from the Cyborg’s map.
After that it will perform an in-place rotation to clear out space. In the case where
this also fails, the Cyborg will more aggressively clear its map by removing all
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obstacles outside the region of which it can rotate in-place, followed by another in-
place rotation. Should all this fail, the Cyborg will consider its goal infeasible and
the goal will be aborted. A flowchart illustrating the Cyborg’s recovery behavior
is shown in Figure 8.8.

Conservative	reset Clearing	rotation Clearing	rotationAggressive	reset

Navigating Aborted

Stuck Stuck Stuck

StuckClear Clear Clear Clear

Stuck

Figure 8.8: Recovery behavior state.

8.3 Transform Information

Topic
Message	type

Node

joint_state_publisher robot_state_publisherURDF

Joint	states
/joint_states

sensor_msgs/JointState

Transforms
/tf

tf/tfMessage

Figure 8.9: Diagram illustrating the flow from URDF to transform frames.

The robotic system on the Cyborg has seven 3D coordinate frames that change
over time. The tf package [49] is used to keep track of these frames as they
transform over time. tf maintains the relationship between coordinate frames in a
tree structure buffered in time and enables the transformation of points and vectors
between any two coordinate frames at any desired point in time. This approach
builds on the ROS philosophy of taking a distributed approach, using ROS topics
to share transform data. Any node can publish the current information for some
transform(s), and any node can subscribe to transform data. Data from all nodes
together complete the picture of the robot. tf keeps track of all transformations
by sending messages that contain a list of transforms specifying the names of the
frames involved (parent and child), their relative pose, and the exact time that
their transforms were measured.

In order to generate the internal transforms on the Cyborg, that is,
the transforms between base_link and l_wheel, r_wheel, the two packages
joint_state_publisher [50] and robot_state_publisher [51] are used in
conjunction with a model description of the Cyborg in the Unified Robot
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Description Format (URDF), which is an .xml file that represents the model
of the Cyborg. The joint_state_publisher node reads the URDF and
publishes the corresponding joint state values on the /joint_states topic as a
sensor_msgs/JointState message. This message contains the state of each joint,
i.e. the position and velocity of the joint, and the effort that is applied in the joint.
The robot_state_publisher uses this data to calculate the forward kinematics
of the Cyborg and publishes the resulting transform tree via tf. This process
is illustrated in Figure 8.9. Transformations between map → odom and odom →
base_link are provided by the amcl and RosAria nodes respectively. All nodes
are configured to check for changes to the transform tree at a rate of 10 Hz. The
resulting transform tree is depicted in Figure 8.10.

odom

laser_frame

l_wheel

r_wheel

base_link

deck

Broadcaster:	/amcl Broadcaster:	/RosAria

Broadcaster:	/robot_state_publisher

Broadcaster:	/RosAria

Map

Broadcaster:	/robot_state_publisher

Broadcaster:	/robot_state_publisher

Figure 8.10: Transform tree of the Cyborg.
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8.4 Map Information

Topic
Message	type

Node

Map	information
/map

nav_msgs/OccupancyGrid
map_server

Local	files
glassgaarden.yaml
glassgaarden.png

Figure 8.11: Map server

The navigation stack does not necessarily need a-priori map information in order
to function. If initialized without a static map it will only “see” obstacles that are
detected by its sensors, and thus only be able to avoid those. For the unknown
areas, it will generate an optimistic global path that might (most likely) hit unseen
obstacles. Even though it is able to re-plan a path around these unseen obstacles
when they are detected, a better solution is to initialize the navigation stack with
a pre-generated static map. This is handled by the map_server package [52] which
takes a generated map as input and serves the map to the navigation controller
node on the /map topic. The generated map is stored as a pair of files: a .yaml file
that describes the map meta-data and points to the image file, and a .pgm image
file that encodes the occupancy data. The image does this by representing the
state of each cell as either free (white pixels), occupied (black pixels), or unknown
(grey pixels). Figure 8.12 shows the partially generated map of Glassgården that
is being used by the navigation stack.

Figure 8.12: Static map of Glassgården used by the map_server.
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8.5 Sensor and Odometry Information

Topic
Message	type

Node

Position	and	sensor	data RosAriaARIA
actuators,	encoders

Odometry	data
/odom

nav_msgs/Odometry

Laser	data
/LaserScan

sensor_msgs/LaserScan

Figure 8.13: Sensor and odometry information

Odometry data of the Cyborg provides information about its current position with
respect to the starting position. This information is essential for the local planner
in the navigation controller to perform path planning. The main odometry sources
on the Cyborg are the wheel encoders and Internal Measurement Units (IMU).
Furthermore, the navigation controller is dependent on sensor data in order to
update its costmaps and perform obstacle avoidance. The main sensor source on
the Cyborg is the SICK S300 laserscanner.

The ARIA library provides both odometry and sensor data from the Pioneer
LX base, which is interfaced with ROS through the RosAria package [53]. RosAria
publishes odometry information on the /odom topic as nav_msgs/Odometry mes-
sages containing estimates of the position and velocity of the Cyborg. Additionally,
laserscan data is published on the /LaserScan topic as sensor_msgs/LaserScan
messages.
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8.6 Localization
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Figure 8.14: Localization, transforms from odometry to map.

The Adaptive Monte Carlo Localization algorithm is used to perform localization
on the Cyborg. The AMCL algorithm is implemented in the amcl package [54],
which consists of a node that reads laserscan data, map data, and transform
data in order to output an estimated pose in the map on the /amcl_pose
topic as geometry_msgs/PoseWithCovarianceStamped messages. Additionally,
the amcl node publishes transforms between the odometry and map frame to the
transformation tree.

The amcl node also requires an initial pose estimation. This value can be set
by configuring the node to initialize with a specific initial pose, or by publishing
a geometry_msgs/PoseWithCovarianceStamped message to the /initialpose
topic. Furthermore, the global_localization service allows for the algorithm
to initialize with a randomly distributed initial pose estimation over the whole
map.
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8.7 Base Controller

Topic
Message	type

Node

Velocity	commands
/cmd_vel

geometry_msgs/Twist
RosAria ARIA

actuatros,	encoders
Velocity	commands

Figure 8.15: The base controller

The local planner in the navigation controller outputs velocity commands as
geometry_msgs/Twist messages which consist of velocities in free space broken
into its linear and angular parts. As mentioned in section 8.5, the RosAria
node interfaces ARIA with ROS and is thus responsible for relaying the velocity
commands to ARIA, which in turn sends the commands to the Cyborg’s embedded
motion controller to perform motor control.

8.8 Launching the Navigation Stack

All ROS files on the Cyborg is located in the catkin workspace source directory.
All ROS files for the navigation stack is organized as presented on the following
page. The two ROS launch files, cyborg_config.launch and move_base.launch,
located under cyborg_2dnav are responsible for launching all the necessary nodes
in the navigation stack in a simple fashion. The contents of these files are shown in
appendix C.1 and appendix C.2. Launching the navigation stack is done by typing
“roslaunch cyborg_config.launch” and “roslaunch move_base.launch” in
two separate terminals. The two terminal windows will then print information on
robot specific elements and transform data in one terminal, and general navigation
feedback in the other terminal.

61



Chapter 8: Design and Implementation
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8.9 Conclusion

The navigation stack has been implemented as a set of ROS nodes that together
perform the navigation tasks of mapping, localization, path planning, and obstacle
avoidance. Figure 8.16 shows the resulting design of the navigation stack when
putting all the aforementioned parts together. The topics on which the nodes
publish to are depicted in red. The presented design replaces the previous ARNL
based system in a “plug-and-play" fashion in which the inputs and outputs of the
navigation stack remain the same. This way, other modules in the Cyborg’s ROS
network is not affected and does not have to be modified.

AMCL
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global_planner

dwa_local_planner

global_costmap

local_costmap

recovery	behaviors
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Estimated	pose
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Figure 8.16: Resulting design architecture of the implemented navigation stack.
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9 | Configuration of Path Plan-
ners

9.1 Introduction

The job of the navigation system is to calculate a safe path for the Cyborg to
execute, by processing data from sensors, odometry and the environment map.
However, achieving desired navigational behaviour and maximizing its performance
requires some fine tuning of parameters. Section 9.2 and section 9.3 presents the
process of tuning the local and global path planners, respectively, and in section 9.4
their corresponding costmaps are configured.
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9.2 Local Planner

9.2.1 Robot Configuration Parameters

Parameter Value Description

acc_lim_x [m/s2] 1.0 Translational acceleration limit

acc_lim_theta [rad/s2] 0.36 Rotational acceleration limit

max_vel_x [m/s] 1.7 Maximum translational velocity

min_vel_x [m/s] -0.1 Minimum translational velocity

max_vel_theta [rad/s] 0.17 Maximum rotational velocity

min_vel_theta [rad/s] -0.17 Minimum rotational velocity

Table 9.1: Robot configuration parameters.

Velocity and Acceleration

The dynamics of the Cyborg, e.g. velocity and acceleration, is essential for the
local planner which takes odometry data as input and outputs velocity commands
that control the Cyborg’s motion. Setting maximum and minimum velocity
and acceleration correctly is therefore important for the local planner to behave
optimally.

Obtaining maximum velocity: According to the documentation of the
Pioneer LX [18], the maximum translational velocity is 1.8 m/s, and its maximum
angular velocity is 0.18 rad/s. These values were verified by controlling the base
manually with a joystick while subscribing to the odometry topic, which relays
linear and angular velocities. Running the Cyborg forward until it reached constant
speed revealed that the maximum translational velocity actually was 1.7 m/s,
slightly less then what was specified in the documentation. This difference is
likely due to wear of the Cyborg’s motors after several years of testing, as well as
additional weight on top of the base. Manually rotating the Cyborg in place until
reaching constant angular velocity revealed an actual maximum angular velocity
of 0.17 rad/s, again slightly less than the documented value.

Obtaining maximum acceleration: According to the documentation of
the Pioneer LX base the maximum translational acceleration is 1.0 m/s2 and the
maximum rotational acceleration is 0.36 rad/s2. Verification of these values was
done by echoing odometry data which includes timestamps on each reading. The
acceleration was calculated by logging the time it took for the Cyborg to reach
constant maximum velocity (ti) while reading position and velocity information
from the odometry data. By denoting tt and tr as the time used to reach maximum
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translational and angular velocity respectively, the maximum accelerations can be
calculated by the following equations:

at,max = max
dv

dt
≈ vmax

tt
(9.1)

ar,max = max
dω

dt
≈ ωmax

tr
(9.2)

Minimum values: The minimum translational velocity allowed for the
Cyborg was set to −0.1 m/s in order to enable it to back off when it needs to
unstuck itself. The minimum rotational velocity was also set to a negative value of
-0.17 rad/s to allow for rotations in both directions.

9.2.2 Forward Simulation

Parameter Value

sim_time 1.5

vx_samples 10

vth_samples 20

sim_granularity 0.04

controller_frequency 20

Table 9.2: Forward simulation parameters.

The second step of the DWA algorithm (section 8.2.2) performs forward simulation.
Here, the local planner takes as input velocity samples and examines their
respective circular trajectories. Each sample is simulated as if it was applied to the
robot base for a given time interval. This time interval is controlled by the sim_time
parameter. Longer simulation time makes the local planner produce longer paths
which are often desirable, however, a longer simulation time also requires more
computational power. Setting sim_time to a very low value (≤ 1.0) resulted in
poor performance, especially when navigating through narrow doorways. This is
because of insufficient time to calculate an optimal path that actually goes through
the doorway. On the other hand, since the DWA algorithm produces trajectories
as simple arcs, setting sim_time to a very high value (≥ 5.0) resulted in long
curves that are not very flexible. Additionally, it was found that sim_time values
above 2.0 caused unwanted stuttering motion as the controller was computationally
saturated. A forward simulation time of 1.5 seconds was found to work the best.
Figures 9.1 to 9.2 illustrates the effect of sim_time on the local plan where the
yellow line represents the the local path.
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The two parameters vx_samples and vth_samples defines the number of
samples to use when exploring the x and theta velocity space. By similar reasoning
as with the forward simulation time, high values (more samples) often achieve
better performance. However, these values also affect the computational load.
Setting the number of samples in translational directions to 10 was found to
work well. Experimentation also showed that prioritizing the theta velocity space
by setting vth_samples higher then the translational samples resulted in better
performance. This is likely due to rotation being a more complicated condition
than moving straight ahead. Consequently, vth_samples = 20 was found to work
well.

The sim_granularity parameters define the step size in meters to take
between points on a given trajectory. A lower value means that more points on the
trajectory will be examined, thus affecting computational load. Again, a trade-off
between performance and computational load was made, and a sim_granularity
value of 0.04 was found to result in sufficient performance.

Figure 9.1: sim_time = 1.5 Figure 9.2: sim_time = 4.0
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9.2.3 Trajectory Scoring

Parameter Value

path_distance_bias 32.0

goal_distance_bias 20.0

occdist_scale 0.02

Table 9.3: Trajectory scoring parameters.

The DWA algorithm maximizes an objective function to calculate optimal velocity.
The cost of this objective function is calculated as follows:

C = path_distance_bias ·D1 + goal_distance_bias ·D2 + occdist_scale · Co
(9.3)

where

C = Cost of the DWA local planner objecvtive function
D1 = Distance [m] to path from the endpoint of the trajectory
D2 = Distance [m] to local goal from the endpoint of the trajectory
Co = Maximum obstacle cost along the trajectory in obstacle cost (0-254)

In eq. (9.3), path_distance_bias is the weight of how much the local planner
should try to stay close to the global path. Experimentation showed that a high
value made the local planner prefer trajectories on the global path, but as a result,
the Cyborg had trouble adjusting to dynamic changes in its local environment. On
the other hand, a low value resulted in too much deviation from the global path.
path_distance_bias = 32.0 was found to result in sufficient behavior.

goal_distance_bias is the weight of how much the local planner should try
to reach its local goal. Experiments showed that increasing this parameter made
the local planner less attached to the global path, similar to the effect of decreasing
path_distance_bias. This is because the local planner prioritizes its local goal
more than the global goal. goal_distance_bias = 20.0 resulted in a satisfactory
behavior in which the local planner is moderately attached to the global path, with
some leeway to allow for adaptivity in its dynamic local environment.

occdist_scale is the weight of how much the local planner should try to avoid
obstacles. A high value for this parameter makes the local planner more prone to
avoid obstacles. However, experiments showed that that too high values resulted
in indecisive behavior in which the local planner was unable to generate paths
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that adhere to the obstacle avoidance weight. occdist_scale = 0.02 resulted in
a satisfactory behavior in which the local planner was able to navigate crowded
and/or narrow environments while prioritizing obstacle avoidance to a moderate
degree.

9.3 Global Planner

Parameter Value

allow_unknown False

default_tolerance 0.2

use_dijkstra False

use_quadratic True

use_grid_path False

lethal_cost 253

neutral_cost 66

cost_factor 0.55

Table 9.4: Global planner parameters.

The most important parameters for the global planner and their respective values
are shown in table 9.4.

With allow_unknown set to false, the global planner is not allowed to generate
paths that traverse unknown space in the map. This makes the Cyborg only
navigate the mapped area.

The default_tolerance parameter specifies the tolerance on the goal point
of the global planner, that is, the planner will attempt to create a plan that is as
close to the specified goal as possible but no further than default_tolerance (in
meters) away. To allow for some flexibility on the goal position, this value was set
to 0.2 meters.

use_dijkstra is set to false in order to use the better performing A* algorithm
instead of Dijkstra. With use_quadratic = true, a quadratic approximation of
the potential is used instead of a simpler calculation. Additionally, use_grid_path
is set to false to allow for paths that does not follow the grid boundaries. Instead,
a gradient descent method is used.

In table 9.4, the last three parameters lethal_cost, neutral_cost, and
cost_factor determine the actual quality of the calculated global path. From
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the source code of the global planner [55], it can be seen that the cost values for
the global planner is calculated from the following equation:

C = neutral_cost + cost_factor · Cm (9.4)

where

C = Cost values calculated by the global planner
Cm = Incoming costmap cost values (0 - 252)

With neutral_cost = 50, and with incoming costmap values that range from
0 to 252, cost_factor need to be approximately 0.8 to ensure that the input values
are spread evenly over the output range of 50 to 253. Setting the cost_factor
too high will result in cost values that plateau around obstacles. In this case the
planner may for example treat the whole width of a narrow hallway as equally
undesirable and thus not calculate paths down the center. Extreme neutral_cost
values have the same effect. Figures 9.3 to 9.8 show the effect of nautral_cost
and cost_factor on global path planning where the green line is the generated
global path. The chosen values of neutral_cost = 66 and cost_factor = 0.55
was found to yield the best results. lethal_cost was set to a relatively high value
of 253, since lower values that were tested failed to produce any path, even when
a feasible path was obvious.
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Figure 9.3:
cost_factor = 0.01

Figure 9.4:
cost_factor = 0.55

Figure 9.5:
cost_factor = 3.35

Figure 9.6:
neutral_cost = 1

Figure 9.7:
neutral_cost = 66

Figure 9.8:
neutral_cost = 233
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9.4 Costmap Parameters

The performance of the path planners is highly affected by their costmaps. Correct
configuration of costmap parameters is therefore essential to achieve optimal
navigation. In ROS, costmaps are composed of three layers: A static map layer,
obstacle map layer, and inflation map layer. The static map layer directly interprets
the map provided to the navigation controller by the map_server node. The
obstacle map layer includes 2D and 3D obstacles, and the inflation layer is where
those obstacles are inflated in order to calculate the cost for each 2D costmap cell.

The navigation controller utilizes two costmaps; a global costmap and a local
costmap. The global costmap is generated by inflating the obstacles on the map
provided by the map_server node, whereas the local costmap is generated by
inflating obstacles detected by the Cyborg’s sensors. This section will cover the
most important parameters regarding these costmaps.

9.4.1 Footprint

The Cyborg’s footprint represents the contour of the Pioneer LX base. It is
represented by a two dimensional array on the form:

[[x0, y0], [x1, y1], · · · , [xn, yn]] (9.5)

The array contains two-dimensional points in relation to the centroid of the
Cyborg that together define its contour. Adding more points will result in a
”smoother“ contour, however, an approximation of the Cyborg’s contour as shown
in eq. (9.6) was deemed sufficient.

[[0.348, 0.348], [−0.696, 0.696], [−0.5,−0.5], [0.5,−0.5]] (9.6)

The footprint is used to compute the radius of the inscribed and circumscribed
circle, which are used to inflate obstacles in a way that fits the shape of the Cyborg.
For safety reasons, the contour is defined to be slightly larger than the actual
contour of the Cyborg.

9.4.2 Inflation

The inflation layer consists of cells with values ranging from 0 to 255 that determine
the cost of the particular cell. Each cell is categorized as either free of obstacles,
occupied, or unknown. The two parameters that define the inflation properties are
inflation_radius and cost_scaling_factor. inflation_radius determine the
radius in meters to which the map inflates obstacle cost values, that is, how far
away the zero cost point is from the obstacle. cost_scaling_factor is a scaling
factor applied to cost values during inflation that is inversely proportional to the
cost of a cell. This means that higher values will make the decay curve steeper.
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Parameter Value

inflation_radius 1.75

cost_scaling_factor 2.58

Table 9.5: Inflation parameters.

Experimenting with the inflation parameters revealed that a gentle inflation
curve, as opposed to a steep curve, worked best in most situations. A gentle
inflation curve causes the path planners to generate paths that are in the middle
between obstacles rather than close. Having a steeper inflation curve would result
in shorter paths and more effective navigation with respect to traveled distance,
however, this is not an important priority for the Cyborg. When the Cyborg
navigates in the middle between obstacles, it has more options to re-plan or unstuck
itself if needed, and it is less likely to collide with obstacles if the localization
precision is low.

sl

Figure 9.9: Steep inflation curve.
inflation_radius = 0.55
cost_scaling_factor = 5.0

Figure 9.10: Gentle inflation curve.
inflation_radius = 1.75
cost_scaling_factor = 2.58
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10 | Quantitative Study of the
AMCL Algorithm

10.1 Introduction

The Adaptive Monte Carlo Localization algorithm performs localization for the
Cyborg. In order to analyze and tune parameters in the localization algorithm, an
experiment measuring variance in the algorithm’s pose estimates was conducted.
As described in section 6.4, the Monte Carlo Localization algorithm maintains two
probabilistic models, a measurement model and a motion model. On the Cyborg,
the measurement model corresponds to the model of its SICK S300 laserscanner,
whereas the motion model corresponds to the model of its odometry. In the
following sections, parameters related to the overall filter model, odometry model,
and laser model will be tuned based on the experiment results.

10.2 The Pose Covariance Matrix

The amcl node outputs the Cyborg’s estimated pose in the map as a
geometry_msgs/PoseWithCovarianceStamped message which includes the vari-
ance of the x, y, and θ components. This Covariance Matrix, Mcov, is a 6-by-6
matrix where the principle diagonal is the variance σ2

i , with i = {x, y, θ}. Equa-
tion (10.1) shows a simplified version of this matrix where non-interest variables
are surpressed.

Mcov =



σ2
x covxy . . . 0

covxy σ2
y . . . 0

...
...

. . .
...

0 0 . . . σ2
θ


(10.1)
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Only five of the 36 values in the covariance matrix differ from zero. The
covxy values tell how much one variable influences the other in terms of direction
(not intensity). because of this, we only care about the three variances on the
principal diagonal in the following experiment. These values are used as metrics to
measure the performance of the AMCL algorithm since they indicate how well the
algorithm estimates the Cyborg’s pose. The lower the variance, the more reliable
the estimates are.

10.3 Experiment Setup

Figure 10.1: Testing environment with estimated pose from the amcl node (blue)
and the Cyborg’s odometry (red).

To quantitatively and qualitatively analyze the change in variance when adjusting
the amcl parameters, an experiment in the Cyborg’s operating environment was
conducted. Figure 10.1 shows the entrance area in Glassgården, used as test
environment. To minimize the effect of other nodes on the amcl node, specifically
changes in the generated path, an identical open-loop trajectory was manually
published in all experiments. All experiments were initialized with the same initial
pose, however, a small variance in the actual initial pose of the Cyborg is to be
expected, since it was manually placed on the starting position. Several trials was
conducted for each configuration, and the x, y, and θ variances was measured,
combined, and averaged in order to compare their mean values from different
configurations. Figure 10.1 show the Cyborg’s paths over the experiment map,
one estimated by the AMCL node and one measured by the Cyborg’s odometry.
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At each parameter change, a bagfile from all topics were recorded for posterior
analysis.

The five variables found to impact the localization performance the most
was the minimum and maximum number of particles used in the particle filter
(min_particles and max_particles), the maximum error between the true
distribution and the estimated distribution (kld_err), and minimum translational
and angular movement required before performing a filter update (update_min_d
and update_min_a). The following section presents the results of different
configurations of these parameters.

10.4 Overall filter model

Parameter Value

min_particles 100

max_particles 500

update_min_d 0.1

update_min_a 0.1

resample_interval 1

transform_tolerance 0.3

Table 10.1: Final filter model parameters

10.4.1 Minimum and maximum number of particles

As mentioned in section 6.4, the number of particles in the filter is adaptive. The
parameters min_particles and max_particles define the allowed interval that the
adaptive algorithm must stay within. In this experiment, four different intervals
were tested, and the results are presented in fig. 10.2. An immediate observation
is that the configuration with min_particles = 100, max_particles = 500
resulted in the fastest convergence at approximately 15 seconds. While in theory,
one might expect that the more particles and a wider interval would yield a better
result, however, this result proves otherwise. This can be partly explained by two
reasons: 1) A high value of max_particles might not impact the algorithm too
much since it is adaptive and might not use the maximum number of particles in
all pose estimates. 2) Having a wide interval with more particles requires more
computational power, which was repeatedly found to be a bottleneck factor on the
Cyborg. The longer time the algorithm needs to calculate the estimates, the longer
time it takes for it to converge.
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A more complicated environment might require the use of more par-
ticles, however, in the Cyborg’s operating environment, a configuration of
min_particles = 100, max_particles = 500 resulted in best performance.
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Figure 10.2: Variance convergence for different intervals of particles in the
particle filter.

10.4.2 Minimum translational and rotational movement
The AMCL algorithm uses odometry information to resample and update the
particle filter. The two parameters update_min_d and update_min_a defines the
translational and rotational movement required before performing a filter update.
In theory, a higher update frequency (less movement required before performing
an update) would lead to faster convergence. However, the results in fig. 10.3
show that the fastest decrease in variance occur with update_min_a = 0.1 and
update_min_d = 0.1. The experiments showed that more frequent updates than
this was too computationally expensive for the Cyborg’s computer, thus resulting in
a slower convergence with update_min_a = 0.05 and update_min_d = 0.05. The
purple graph in fig. 10.3 shows how the algorithm fails to converge to a reasonable
value when the update values are set too high. With these values, the Cyborg was
unable to localize properly and the test had to be aborted after 17 seconds in order
to avoid a collision.
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Figure 10.3: Variance convergence for different translational and angular update
values.

10.4.3 Resample interval and transform tolerance
The parameter resample_interval defines the number of filter updates required
before resampling. This value is set to 1 to optimize performance, thus resampling
at every filter update. transform_tolerance defines the time with which to post-
date the localization transform, making them valid slightly longer into the future.
The value of this parameter was adjusted such that it is just high enough to cover
the lag in the system. With too low tolerance, the frames might never be valid
when considering the lag in the system. On the other hand, too high tolerance
would result in less accurate localization. For the Cyborg, a transform tolerance
of 0.3 seconds was found to be a good trade-off.
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10.5 Odometry model

Parameter Value

kld_err 0.05

kld_z 0.90

odom_alpha1 0.2

odom_alpha2 0.2

odom_alpha3 0.8

odom_alpha4 0.2

Table 10.2: Final odometry model parameters

10.5.1 Kullback-Leiber Distance Error
The kld_err (Kullback-Leiber distance error) parameter defines the threshold
error between the true and estimated distribution. It adapts the number of
samples needed for the error to respect the threshold. Figure 10.4 shows the
convergence properties with four different values. The result show that the lowest
threshold (kld_err = 0.01) yields the fastest convergence at approximately 30
second. However, all configurations converge to roughly the same variance after 40
seconds, and the difference is not as substantial as with with the particle interval
in the previous section.

During experimentation, the Cyborg displayed a slight stuttering behavior
with kld_err = 0.01. Therefore, a configuration with kld_err = 0.05 was
chosen instead, since their convergence properties are relatively similar.
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Figure 10.4: Variance convergence for different values of kld_err.

10.5.2 Low vs. high noise in odometry model

Three different configurations for the odometry model parameters kld_z and
odom_alpha1 to odom_alpha4 was tested. The configurations suggests an odometry
model with low noise, high noise, and default noise, respectively. Table 10.3 shows
the specific parameter values for each model.

Parameter Default Noisy Low-noise

kld_z 0.90 0.5 0.99

odom_alpha1 0.2 0.4 0.05

odom_alpha2 0.2 0.4 0.05

odom_alpha3 0.2 0.4 0.05

odom_alpha4 0.2 0.4 0.05

Table 10.3: Parameter values for odometry model with default, high, and low
measurement noise.
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The parameter kld_z is an upper standard normal quantile for (1− p), where
p is the probability that the error on the estimated distribution will be less then
kld_err (analogous to the variable ε in section 6.4). Low values thus correspond
to a noisy odometry model and vice versa. The odom_alpha1 to odom_alpha4 pa-
rameters specifies the expected noise in odometry’s rotation/translation estimates
from the rotation/translational components, respectively. High values thus suggest
a noisy model and vice versa.

Figure 10.5 presents the variance convergence properties when testing the
three noise models on the Cyborg. µ(σi), with i = {x, y, θ} is the mean variance
between the x, y and θ components. The result suggests moderate noise in the
Cyborg’s odometry, since the default parameters yields the best performance. The
low noise model performs the worst with variance converging to about the double
that of the default and noisy model. However, the noise in odometry’s translational
estimate from the translational component (odom_alpha3) was found to notably
higher then the rest, and was thus adjusted to it’s final value of 0.8.
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Figure 10.5: Variance convergence for different noise levels in the odometry model
configuration.
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10.6 Laser model

Parameter Value

laser_max_beams 60

laser_z_hit 0.5

laser_z_rand 0.5

laser_sigma_hit 0.2

laser_likelihood_max_dist 2.0

Table 10.4: Final laser model parameters.

The most significant parameters relating the model of the SICK S300 laserscanner is
presented in table 10.4. laser_max_beams defines how many evenly-spaced beams
to use in each scan when updating the filter. More beams used generally lead
to faster convergence and more accurate localization, however, this parameter
greatly impacts computational load. laser_max_beams = 60 was found to be
a good trade-off between performance and computational efficiency. For the
remaining four parameters laser_z_hit, laser_z_rand, laser_sigma_hit, and
laser_likelihood_max_dist, three configurations suggesting a noisy laser model,
low-noise model, and default model was tested.

Parameter Default Noisy Low-noise

laser_z_hit 0.5 0.9 0.3

laser_z_rand 0.5 0.7 0.3

laser_sigma_hit 0.2 0.4 0.1

laser_likelihood_max_dist 2.0 4.0 1.0

Table 10.5: Parameter values for laser model with default, high, and low
measurement noise.

The laser_z_hit parameter is a weight factor relating to the case when a
laser beam hits an obstacle. laser_z_rand relates to the uniform distribution
which is used to model the situation in which there might exist some unexplained
measurements. In the Cyborg’s environment, we can expect some unmodelled
obstacles (obstacles not in the map, like people), increasing laser_z_rand will
thus model the Cyborg’s environment more accurately. However, the absence of
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unmodelled obstacles during the experiment might lead to a misleading result in
fig. 10.6, where the default configuration resulted in the best performance. Since
extensive testing in a crowded environment was not conducted, laser_z_rand
is kept to its best performing value, however, future developers should consider
increasing it when tuning the system to a crowded environment.

laser_sigma_hit refers to the standard deviation for the Gaussian model
used in the z_hit part of the model, and laser_likelihood_max_dist is the
maximum distance to do obstacle inflation on the map. Both values are increased
in order to incorporate higher measurement noise.

The experimentation result for the three noise models is presented fig. 10.6.
The default configuration yields the best convergence properties, with convergence
after approximately 15 seconds. The low-noise model performs the worst, whereas
the high-noise model performs very similarly to the default model. Although the
default values are chosen, future developers should highly consider the high-noise
model in order to incorporate “noise” from dynamic obstacles.
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Figure 10.6: Variance convergence for different noise levels in the laser model
configuration.

10.6.1 LaserScan header

Readings from the Cyborg’s laserscanner are published to the /scan topic with
type sensor_msgs/LaserScan, which contains a header with parameters that are
dependent on the specific laserscanner used. These parameters are:

• angle_min: start angle of the scan [rad]

• angle_max: end angle of the scan [rad]

• angle_increment: start angle of the scan [rad]

• time_increment: time between measurements [s]
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• scan_time: time between scans in seconds [s]

• range_min: minimum range [m]

• range_max: maximum range [m]

During experimentation, it was observed that incorrect values caused the laser
readings to not coincide with the map of which it operates (see figs. 10.7 to 10.8, the
red dots are readings received from the laserscanner). The correct values was found
from the SICK S300 documentation [18] and was set to the values in table 10.6.

Figure 10.7: Incorrect values in Laser-
Scan message header.

Figure 10.8: Correct values in Laser-
Scan message header.

Parameter Value

angle_min [rad] -2.3562

angle_max [rad] 2.3562

angle_increment [rad] 0.0087

time_increment [s] 0.00009

scan_time [s] 0.013

range_min [m] 0.0

range_max [m] 20.0

Table 10.6: Header parameters in LaserScan message.
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10.7 Conclusion
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Figure 10.9: Overall difference between default and tuned AMCL parameters.

This section examined the distinct influence of each tested parameter on the AMCL
algorithm. The Cyborg ran the same paths in order to enable a comparison between
parameter changes, and the result of localization was evaluated by analyzing the
covariance matrix provided by the amcl node.

Figure 10.9 shows the difference in variance convergence between default
AMCL parameters and the tuned configuration as a result of the preceding
experiment. The top figure shows the specific variances of the x, y, and θ
components between the default (dotted) and tuned (solid) configurations, while
the bottom figure shows the mean of the three components.

The result in fig. 10.9 shows that the tuned configuration achieves considerably
better convergence properties, with a mean variance of 0.02 after ≈ 8 seconds,
compared to the same variance after ≈ 18 seconds for the default configuration
(approximately 55.6 % decrease). From the top figure, it is clear that the biggest
difference comes from the x component. A reason for this could be the specific
layout/design of the testing environment, where the x component of the localization
estimate was impacted the most. For example, if the Cyborg was to localize when
moving through a very long and evenly spaced corridor in the horizontal x-direction,
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it would likely have a greater variance in the x-component, since the laser will
struggle to sense unique features in the environment in the x-direction (since the
laser has limited range it would not be able to detect anything straight forward in
the long corridor).

All the final parameter values for the filter, odometry, and laser model are
presented in table 10.7 on the following page.
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Parameter Value

Filter model

min_particles 100

max_particles 500

update_min_d 0.1

update_min_a 0.1

resample_interval 1

transform_tolerance 0.3

Odometry model

kld_err 0.05

kld_z 0.90

odom_alpha1 0.2

odom_alpha2 0.2

odom_alpha3 0.8

odom_alpha4 0.2

Laser model

laser_max_beams 60

laser_z_hit 0.5

laser_z_rand 0.5

laser_sigma_hit 0.2

laser_likelihood_max_dist 2.0

Table 10.7: Tuned AMCL parameters.
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11 | Discussion

11.1 Introduction

The overall navigation system, as it stands at the end of this project, is a well-
functioning foundation for further development. All planned modules presented
in the specifications have been met. However, some modules are only capable of
demonstrating basic functionality, leaving room for further improvement in terms
of robustness, tuning, functionality, and ease of use. This chapter will discuss
some of the work and implementations presented in chapters 8 to 10. First, an
overall assessment of general topics in the project will be presented, followed by a
discussion of navigation results and the quality of the AMCL study presented in
chapter 10.

11.2 Overall Assessment

11.2.1 ROS as Development Framework
Choosing ROS as a development framework has likely been a contributing factor
to achieving a functional solution. Despite ROS’ steep initial learning curve and
novel structure, it quickly proved to be a flexible and rich tool. Experienced ROS
developers will likely be able to rapidly implement and test concepts regarding
navigation and robotics. The worldwide community of developers using ROS as
a primary framework to develop mobile robots has resulted in a rich set of tools
and functionality packages that anyone can implement and further develop. This
is even encouraged by many package creators. Furthermore, the node structure in
ROS is a convenient way structuring the system into modular, self-contained, and
reusable modules. This is what enables ROS developers to share modules, and will
hopefully benefit future development on the NTNU Cyborg as well.

11.2.2 Limitations in Computational Power
The embedded computer on the Pioneer LX running the Intel D525 central
processing unit (CPU) proved to be a bottleneck factor when configuring modules
in the navigation stack. This was especially noticeable when tuning the local path
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planner (section 9.2), specifically the three parameters sim_time, vx_samples, and
vth_samples, which have a great impact on obstacle avoidance and navigational
behavior in general. The quality of the generated local paths when tuning
these parameters to favor performance was consistently better than with a
configuration favoring computation time. However, vx_samples is essentially
limited to values below 10, as higher values cause the path planning algorithm
to exceed the controller frequency, resulting in stuttering behavior in which the
Cyborg repeatedly stops and waits for the planner to calculate a path, moves for a
bit, and then stops again. Even though this issue was most prevalent in the local
path planner, other modules such as costmap, global planner, and localization were
also affected.

In order to optimize the navigation system with respect to performance
and computation time, future projects should experiment both with soft and
hard real-time requirements. This entails experimenting with different frequency
combinations in the navigation and base controller, as well as modifying the time
sequence of events. For soft real-time requirements, the time sequence of events
is more important than the actual time to execute the actions. Hard real-time
requirements on the other hand require the execution times to be fast enough for
the time constraints to be absolutely met.

11.3 Navigation

Integrating the foundations of the ROS navigation stack was in itself a fairly
straight forward procedure. However, customizing and tuning it to work optimally
with the Cyborg was a more complicated and time-consuming process. During
development, the navigation stack was tested both on a simulated version of the
Cyborg and the live robot. It quickly became apparent that the navigational
behavior exhibited in simulations did not tightly coincide with the real robot. This
made it difficult to rapidly test and prototype navigational functionality since tests
relying on simulations would be of less significance. Instead, the tests often had to
be conducted on the live robot in limited public areas.

11.3.1 Tuning

There exist no official tuning strategies for the navigation stack in ROS besides
a basic guide [56] consisting of several “change and check” procedures that are
mostly based on experience and educational guesswork. This strategy is both time-
consuming and most likely will not lead to an optimal solution. Because of this,
a more quantitative approach focusing specifically on localization was conducted,
hopefully contributing towards an optimal tuned configuration in the future.

The more qualitative experiments conducted when tuning path planners and
costmaps actually prove to work pretty well. The RViz software was very helpful
for visualizing how the Cyborg “sees” its environment as costmaps, and how
they affected the path planners. This visually based tuning approach enabled
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rapid testing and resulted in satisfactory behavior from the path planners. It is,
however, recommended that future projects conduct a more thorough experiment
that optimizes performance based on metrics such as distance to obstacles, accuracy
at target, time to reach the goal, path length, lateral and tangential stress, and so
on.

11.3.2 Performance
Live testing showed reliable and promising results, although not entirely without
some quirks. The Cyborg sometimes exhibited inconsistent navigational behavior
when entering a narrow hallway or a door. This is likely due to the local costmap
being generated slightly different each time the Cyborg enters the particular area,
which in turn affects how the path plans are calculated. This was especially a
problem with a low resolution on the local costmap. Additionally, there is no
memory on the Cyborg, i.e. it does not remember how it entered a room through a
doorway, so it needs to calculate both the costmap and the path each time it tries
to enter the same area.

The localization performance was observed to exhibit inconsistent behavior
in some areas of Glassgården where the distance to the nearest obstacle is at
its highest. Particularly, the entrance area by the cafeteria was found to be a
reoccurring source for this issue. Since the SICK S300 laser scanner has a max
measuring distance of 15 meters, it will in some circumstances struggle to accurately
sense its environment, which in turn leads to bad localization in which variance in
the pose estimates increases. This was, however, not a significant issue, since the
localization algorithm only showed minor spikes in variance, and quickly converged
to a low value once distinct features were detected again.

The most prevalent side effect of the limitations in computational power
was poor obstacle avoidance. Initial testing of the navigation system resulted in
several (safe) collisions with dynamic obstacles such as test subjects walking in
front of the Cyborg. The primary source for this issue was found to be too long
calculation times for the local planner. Either the Cyborg was moving too fast on
a collision path to be able to calculate a new, collision-free path, or the algorithm
simply took too long. This forced limitations on path planner and localization
configurations in which computer efficiency had to be prioritized over performance.
This was, perhaps, most prevalent when tuning minimum and maximum number of
particles in the AMCL particle filter, where a computationally heavy configuration
significantly reduced performance. Figure 11.1 shows how the computationally
friendly configuration of min = 100, max = 500 converges ≈ 35 seconds faster
than the rest.
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Figure 11.1: Difference in settling time between computationally friendly/heavy
configurations.

11.3.3 Social Navigation

A primary goal for the NTNU Cyborg project is to have a social robot roaming the
campus hallways. Even though the current state of the navigation system is able to
take the Cyborg from point A to point B in an efficient and collision-free fashion,
one might argue that the navigational behavior is lacking social intelligence.

As an example, consider a scenario in which the Cyborg is navigating a hallway
with a person as depicted in fig. 11.2. As the Cyborg and person approach each
other, it is unclear what the Cyborg should do to efficiently navigate past the
person. For two people passing each other, this is a trivial task in which they
have a shared body of implicit knowledge about social situations, and they share
several social cues in order to manage the interaction. These things typically lacks,
however, in a human-robot interaction, and the person might feel anxious and
threatened as a result. In fact, a study by Mutlu and Forlizzi [57] looking at
autonomous delivery robots in a hospital environemnt found that patients felt
“disrespected” by the behavior of the robots because of its navigational behavior.

In the current navigation algorithm, the Cyborg is programmed to take a most
efficient path, often leading to a path that drives down the center of the hallway
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until a collision with the person is imminent. The Cyborg treats every person as
it would with any other obstacle, not taking into account the fact the person is a
moving, decision-making entity that will react the the movements of the Cyborg.
From the perspective of the person, they will have no way to predict which side
the hallway the Cyborg will pass, resulting in high uncertainty and inefficient task
behavior.

Some ways to address these problems could be to incorporate a visual or
auditory signal from the Cyborg, indicating that it is aware of the humans presence.
This could for example be realized by incorporating computer vision and object
detection systems. Another solution could be to modify the Cyborg’s costmaps to
reflect the social behavior wanted in the planned paths. This solution, however,
requires precise and careful tuning, since imposing too hard constraints on the
costmap space might lead to infeasible paths past a person in a narrow hallway.
Using computer vision technology to detect which side of the hallway the person
is closest to, and linearly decrease the cost in the opposite direction could, on the
other hand, could be a feasible solution.

Figure 11.2: Illustration comparing current costmap configuration (top) and
potential modification (bottom) enabling “social navigation”. Yellow circle indicates
the Cyborg, green circle indicates a person, intensity of the red color correspond to
the intensity of the cost in the costmap.
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11.4 Quality of AMCL study

The results of the AMCL study presented in section 10.7 shows a significant
improvement the AMCL algorithm in terms of variance in the estimated pose.
The improvements was also visible when observing and comparing the Cyborg’s
behavior both with default and tuned configuration. After tuning the algorithm
and achieving faster variance convergence, the Cyborg exhibited more “confident”
behavior in which it seemed less hesitant and stuttery when pursuing a goal. With
default configuration, the Cyborg often rotated back and forth several times when
trying to pursue its local path, since the the uncertainty (high variance) in the pose
estimates caused the local planner to generate inconsistent paths.

The result is clearly positive with respect to the metric studied, however, a
more thorough analysis comparing different algorithms, runtime, execution time,
etc., would be beneficial in terms of validity of the study. Instead of looking
at the variance, the algorithm could be evaluated by manually measuring the
exact pose of the Cyborg and compare it with the estimated from the AMCL
algorithm. Additionally, potential cause-effect relationships between parameter
changes was not researched, and the experiment was only conducted the one
specific environment presented in fig. 10.1. The testing environment did not
include dynamic obstacles, and is only representative for a portion of the
Cyborg’s operating environemnt. Empirical evidence suggest that the localization
performance does not vary between different locations on the Campus, however, the
absence of moving obstacles is a crucial difference between the experiment setup
and the Cyborg’s live environment.

Several trial runs were conducted for each parameter change, however, the
number of runs was not kept consistent for all parameter changes. A minimum of
5 runs were conducted for each change, but some trials had to be run more then
that. In the cases where the five first runs produced almost the same result, no
more runs was carried out. However, in the cases where the results did differ, a
couple of extra runs was conducted to achieve the most accurate representation of
the data. This introduces a bias to the experiment which could affect the results.
Ideally, more runs should be conducted for each trial, and no human bias should
be introduced.

11.5 Proposed Future work

• Social Navigation: Implement social navigational behavior. This entails
working with computer vision in conjunction with path planners and
costmaps to develop a “socially inteligent” behavior.

• Docking: Docking functionality has to be implemented in order to
autonomously operate on the NTNU campus. The previous ARNL system
had embedded functionality for docking, however, the new navigation stack
doesn’t. This entails finding out how to represent the docking station in the
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map, how to move to it from any point in the environment, high-level control
for when the Cyborg should dock (the RosAria node provide battery status
on the battery_state_of_charge topic), and low level control dealing with
the docking task itself. The open source code for ARNL [58] can be useful,
since it is a wrapper and uses ARIA classes (ArDocking.h).

• Quantitative study of path planners: Several algorithms exist for mobile
robot path planners. The current grid based A* algorithm should be tested
against other grid-based and heuristic approaches. An interesting heuristic
approach are the use of neural networks, or hybrid versions of a grid-based
algorithm and neural network [59].

• More robust recovery behavior: Augment the current recovery behavior
functionality to achieve more robustness. A possible option is to develop new
recovery behaviors and use SMACH to continuously run through different
recovery behaviors. Possible recovery behaviors could be to back of to a
previously visited point, setting a temporary goal very close to the Cyborg.
More robust recovery will increase the Cyborg’s durability and decreasing the
need for human intervention, resulting in a higher degree of autonomy.

• Compare the current navigation stack with previous ARNL stack:
A comparison of navigation performance between the new navigation stack
and the old ARNL system was not conducted, since the primary goal was
to replace, and not necessarily improve the navigation stack. However, I
recommend that future projects conduct such an analysis to identify potential
weak points in the system, and to further improve it.
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12 | Conclusion

This research aimed to implement a new navigation system on the NTNU Cyborg
and optimize the localization performance. Based on the ROS navigation stack,
the navigation system have been implemented as a set of ROS nodes that together
perform the navigation tasks of mapping, localization, path planning, and obstacle
avoidance. The presented result include design and implementation decisions,
analysis and configuration of local and global path planners. Additionally, based
on a quantitative study of variance convergence in the estimated pose calculated
by the Adaptive Monte Carlo Localization algorithm, the localization system was
improved, reducing the variance convergence time from 18 to 8 seconds compared
to the default configuration.

The modular design of the implemented navigation stack fully replaces the
inputs and outputs of the old ARNL based system. As a result, other modules
in the Cyborg’s ROS network are not directly affected and does not have to be
modified to fully function. However, the new navigating stack does not fully replace
functionalities provided by the old ARNL system such as docking, wandering
behavior, and jog position mode.

The localization performance was improved by conducting a quantitative
analysis of the Adaptive Monte Carlo Localization algorithm. By measuring
variances in the estimated pose calculated by the AMCL node and tuning relevant
parameters accordingly, convergence time was reduced from 18 seconds to 8
seconds, a reduction of approximately 55.6%.

Even though some navigational functionality is lost from the old system, the
current navigation stack serve as a solid foundation that allows for a great number
of modifications and improvements in the future. The modular design and use
of open source code makes the system more robust to bugs, isolated issues, and
hardware/software changes. Additionally, the ROS community can now be utilized
fully, as modules no longer are limited to legacy code. The longevity of the system
has been prolonged, and it is now up to creative minds in the future to develop the
next generation of the navigation system.
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A | List of Topics

A.1 RosAria

Topic name

/RosAria/S3Series_1_laserscan

/RosAria/S3Series_1_pointcloud

/RosAria/battery_recharge_state

/RosAria/battery_state_of_charge

/RosAria/battery_voltage

/RosAria/bumper_state

/RosAria/motors_state

/RosAria/parameter_descriptions

/RosAria/parameter/updates

/RosAria/odom

/RosAria/sonar

/RosAria/sonar_pointcloud22

Table A.1: Topics published by the RosAria node.

Page A1



Appendix A: List of Topics

A.2 move_base

Topic name

/move_base/NavfnROS/plan

/move_base/TrajectoryPlannerROS/cost_cloud

/move_base/TrajectoryPlannerROS/cost_cloud

/move_base/TrajectoryPlannerROS/global_plan

/move_base/TrajectoryPlannerROS/local_plan

/move_base/TrajectoryPlannerROS/parameter_descriptions

/move_base/TrajectoryPlannerROS/parameter_updates

/move_base/cancel

/move_base/cmd_vel

/move_base/current_goal

/move_base/feedback

/move_base/global_costmap/costmap

/move_base/global_costmap/costmap_updates

/move_base/global_costmap/footprint

/move_base/global_costmap/inflation_layer/parameter_descriptions

/move_base/global_costmap/inflation_layer/parameter_updates

/move_base/global_costmap/obstacle_layer/parameter_descriptions

/move_base/global_costmap/obstacle_layer/parameter_updates

/move_base/global_costmap/parameter_descriptions
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/move_base/global_costmap/parameter_updates

/move_base/global_costmap/static_layer/parameter_descriptions

/move_base/global_costmap/static_layer/parameter_updates

/move_base/goal

/move_base/local_costmap/costmap

/move_base/local_costmap/costmap_updates

/move_base/local_costmap/footprint

/move_base/local_costmap/inflation_layer/parameter_descriptions

/move_base/local_costmap/inflation_layer/parameter_updates

/move_base/local_costmap/obstacle_later/parameter_descriptions

/move_base/local_costmap/obstacle_layer/parameter_updates

/move_base/local_costmap/parameter_descriptions

/move_base/local_costmap/parameter_updates

/move_base/parameter_descriptions

/move_base/parameter_updates

/move_base/result

/move_base/status

/move_base_simple/goal

Table A.2: Topics published by the move_base node.
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A.3 AMCL

Topic name

/amcl/parameter_descriptions

/amcl/paramete_updates

/amcl_pose

/amcl/particlecloud

/tf

/initialpose

Table A.3: Topics published by the amcl node.

A.4 joint_state_publisher

Topic name

/joint_states

Table A.4: Topics published by the joint_state_publisher node.

A.5 robot_state_publisher

Topic name

/tf

Table A.5: Topics published by the robot_state_publisher node.
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A.6 map_server

Topic name

/map

/map_metadata

Table A.6: Topics published by the map_server node.

A.7 cyborg_navigation

Topic name

/cyborg_navigation/current_location

/cyborg_navigation/navigation/cancel

/cyborg_navigation/navigation/feedback

/cyborg_navigation/navigation/goal

/cyborg_navigation/navigation/result

/cyborg_navigation/navigation/status

Table A.7: Topics published by the cyborg_navigation node.

A.8 Other

Topic name

/initialpose

Table A.8: Topics either published manually or through RVIZ.
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Appendix B: RQT Graph

B | RQT Graph

Figure B.1: RQT graph of the Navigation Stack
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Appendix C: Launch Files

C | Launch Files

C.1 Cyborg Configuration

1 <launch>
2 !-- Run ROSARIA, Sensors and odometry -->
3 node pkg="rosaria" type="RosAria" name="RosAria" output="screen">
4 param name="publish_aria_lasers" value="true"/>
5 remap from="RosAria/pose" to="RosAria/odom" />
6 remap from="RosAria/cmd_vel" to="RosAria/cmd_vel" />
7 param name="port" value="/dev/ttyUSB0" type="string"/>
8 /node>
9

10 !-- Set up transform configuration -->
11 param name="robot_description" textfile="$(find

robot_state_publisher)/amr-ros-config/description/urdf/pioneer-lx.urdf"/>↪→

12 node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" />↪→

13 node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />↪→

14

15 </launch>

Listing 10: Cyborg configuration launch file.
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Appendix C: Launch Files

C.2 Navigation Controller

1 launch>
2 master auto="start"/>
3 !-- Run map server -->
4 arg name="map_file" default="$(find map_server)/maps/glass_gang.yaml"/>
5 node name="map_server" pkg="map_server" type="map_server" args="$(arg map_file)"/>
6

7 !--- Run AMCL -->
8 include file="$(find amcl)/examples/amcl_diff.launch" />
9

10 node pkg="move_base" type="move_base" respawn="false" name="move_base"
output="screen">↪→

11 remap from="odom" to="RosAria/odom" />
12 remap from="cmd_vel" to="move_base/cmd_vel"/>
13

14 rosparam file="$(find cyborg_2dnav)/costmap_common_params.yaml" command="load"
ns="global_costmap" />↪→

15 rosparam file="$(find cyborg_2dnav)/costmap_common_params.yaml" command="load"
ns="local_costmap" />↪→

16 rosparam file="$(find cyborg_2dnav)/local_costmap_params.yaml" command="load" />
17 rosparam file="$(find cyborg_2dnav)/global_costmap_params.yaml" command="load" />
18 rosparam file="$(find cyborg_2dnav)/base_local_planner_params.yaml" command="load"

/>↪→

19 /node>-
20

21 node name="rviz" pkg="rviz" type="rviz" args="-d $(find
robot_state_publisher)amr-ros-config/description/urdf/cyborg.rviz"/>↪→

22 /launch>

Listing 11: Navigation controller launch file
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