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Abstract

This master thesis reviews state-of-the-art image segmentation algorithms for the purposes
of automatic corrosion damage segmentation and classification. Automatic image analysis
is needed in order to process all data retrieved from drone-driven industrial inspections.
Image classification can alert an inspector that a damage is present, whereas image seg-
mentation can further specify its shape and location. This could be the first step towards
estimation of total damaged surface area of a construction, an often-used metric to ini-
tiate maintenance. To this end, 608 images with corrosion damages are instance-wise
annotated with binary segmentation masks. Additionally, a general, two-stage data aug-
mentation scheme empirically shown to significantly reduce overfitting is developed. With
this scheme, the neural networks PSPNet and Mask R-CNN obtains, respectively, 86.6 %
and 84.1 % frequency weighted IoU on a 50-image test set. It is concluded that image
segmentation can aid automating industrial inspections of steel constructions in the future,
and that instance segmentation algorithms are likely more useful than semantic segmen-
tation algorithms, due to its applications to a wider range of use-cases. However, current
performance with the rather small dataset used is not good enough to construct a reliable
autonomous system yet.

For further work, the dataset should be extended with more classes, e.g. crack in con-
crete, paint flaking, intact steel construction and corrosion on rebar. This could also include
classes for different degrees of severity of damages. Furthermore, ways to estimate total
percentage of damaged construction coating, and applying time series prediction methods
to forecast damage development, can be researched.

Keywords: image segmentation, machine learning, industrial inspections, corrosion.
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Sammendrag

Denne masteroppgaven studerer avanserte bildesegmenteringsalgoritmer for automatisk
korrosjonsskade-segmentering. Automatisk bildeanalyse er nødvendig for å prosessere all
data som samles inn med dronebaserte industrielle inspeksjoner. Bilde-klassifisering kan
informere en inspektør om at en skade er til stede, mens bildesegmentering kan videre
spesifisere dens form og lokasjon. Dette er et første steg mot å kunne estimere totalt
areal skadet overflate på en konstruksjon, et ofte brukt mål for å sette i gang vedlike-
hold. For dette formålet er 608 bilder annotert med binære instans-segmenteringsmasker.
Dessuten er det utviklet en to-stegs metodikk for å kunstig øke antall treningsbilder. Meto-
dikken er empirisk vist å betydelig redusere såkalt overfitting. Med denne metodikken
oppnår de nevrale nettverkene PSPNet og Mask R-CNN henholdvis 86.6 % og 84.1 %
frekvensvekted IoU på et 50-bilder testsett. Det konkluderes at bildesegmentering kan
bistå i å automatisere industrielle inspeksjoner av stålkonstruksjoner i fremtiden, og at
instans-segmenteringsalgoritmer trolig er mer nyttige enn såkalte semantic-segmenterings-
algoritmer, grunnet mulighet for flere anvendelser. Nåværende oppnådd ytelse er imidler-
tid ikke god nok til å konstruere et autonomt system enda.

I videre arbeid burde datasettet utvides med flere klasser, for eksempel sprekk i be-
tong, malingsavflaking, intakt stålkonstruksjon og korrosjon på armeringsjern. Nye klasser
kan også skille mellom ulike grader av alvorlighet på skader. Dessuten kan det stud-
eres nærmere hvordan arealestimering av skadet konstruksjonsoverflate kan gjøres, og om
en kan bruke tidsserieprediksjonsmetoder til å forutsi hvordan en skade vil utvikle seg i
fremtiden.

Nøkkelord: bildesegmentering, maskinlæring, industrielle inspeksjoner, korrosjon.
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Preface

This master thesis is the final assignment of my five-year master program in engineering
cybernetics, and the result of a collaboration between NTNU and SINTEF. The thesis
problem description was proposed January 21st, 2020, and the final report was delivered
June 1st, 2020.

The thesis is written entirely and independently by me. My supervisors gave me very
few restrictions, allowing me to propose a problem description myself and pursue paths I
have found interesting. All contributions, text and figures are original work by me.

In collaboration with my supervisors I have also written a scientific paper based on the
thesis submitted to the 32nd International Conference on Tools with Artificial Intelligence.
The paper is attached in the appendix and also delivered as a separate file along with this
thesis.

The first weeks of the project were spent constructing a dataset with annotated cor-
rosion damages and researching image segmentation algorithms. It was decided to im-
plement and evaluate PSPNet and Mask R-CNN for the purposes of corrosion damage
segmentation. The main implementation is based on publicly available code but modified
to fit the needs of this project. Following weeks were devoted to studying various data aug-
mentation methods and how to properly evaluate image segmentation algorithms. Some
augmentation schemes are specifically designed for the corrosion dataset, whereas others
are based on examples in the documentation of the framework used. The final month and
a half were spent training network models, analyzing results, writing a scientific paper and
finishing this report.

Raw images to construct the corrosion dataset was originally provided by Norwegian
Public Roads Administration and later shared with me by SINTEF. The Department of
Engineering Cybernetics provided all necessary hardware and an office to work in. Due
to the circumstances caused by covid-19, however, most of the work had to be done from
home with a remote connection to hardware at NTNU. This was, of course, not optimal,
but did not cause any delay with regards to final delivery.

A few sections in the thesis are loosely based on sections from my project thesis last
semester. Citations are provided in the specific sections, and the project thesis is delivered
along with this thesis.

I would like to thank my three supervisors Aksel Andreas Transeth (SINTEF), Annette
Stahl (NTNU) and Ole Øystein Knudsen (SINTEF). Transeth has guided me superbly on
how to structure, write and convey a good master thesis. Stahl has provided good sugges-
tions on research topics and valuable discussions of machine learning methods. With his
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beyond academia. I also want to thank my supervisors for giving me freedom and faith,
allowing me to work independently and research topics I have found interesting. Finally, I
would like to thank my beautiful girlfriend Elsie Margrethe Staff Mestl for all the support,
love and care throughout this work and for diligent proofreading. The thesis would not be
as good as it is without your help.

Simen Keiland Fondevik
NTNU, Trondheim
June 1st, 2020
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Chapter 1

Introduction

Parts of Section 1.1 and Section 1.3 are based on the authors project thesis from last
semester [14].

1.1 Motivation and Background

The National Association of Engineers (NACE) International estimated in 2016 corro-
sion damages to have an annual cost of 2.5 trillion USD [30], equivalent to 3.4 % of global
GDP. Corrosion is a major problem that wear down the steel constructions and can severely
reduce their strength, as shown in Figure 1.1a. Constructions in humid and salty environ-
ments are particularly exposed, and regular inspections and quality controls are therefore
necessary. NACE International estimates savings between 375 – 875 billion USD annually
by using already available corrosion control practices.

Inspection of corrosion damages is usually performed through visual inspections on-
site. However, there are many areas not easily accessible to inspectors, for instance due to
hazardous conditions or simply because it is out of reach. Additionally, manual inspections
can be time consuming, expensive and subjective. An interesting approach is therefore to
use unmanned aerial vehicles (UAVs) with a mounted camera to take photos of potentially
damaged areas. Multiple companies are already specializing in drone-driven industrial
inspections, e.g. AirSens, Scout and Orbiton [2, 27, 43]. The UAVs could take photos
of constructions without the need for human assistance. Images can then be sent to a
cloud service for storage, logging or further analysis on a remote computer. The concept
is illustrated in Figure 1.2.

Inspecting images manually is tedious and time consuming, particularly if the UAVs
are not well aware of what is worth reporting. With an increasing number of images to
inspect, the error rate is also likely to increase. Even more so, manual inspection of images
is subject to human subjectivity. One person may conclude the image contains a damage
in need of maintenance, while a colleague could say no maintenance is necessary.

The vast amount of data automatically collected using UAVs can simply render manual
processing of images infeasible. An automatic image analysis framework is therefore
needed, both in terms of efficiency and objectivity. This again allows for more frequent

1



(a) Corrosion Damage. (b) Segmented Image.

Figure 1.1: (a) Corrosion damages are a major problem in humid and salty environments. Inspections must be
performed regularly to verify intactness of metal constructions, such as bridges and oil platforms. (b) Using
machine learning, corrosion damages can be detected, localized and its shape be outlined automatically. This
process is referred to as image segmentation and is the topic of this thesis.

Figure 1.2: UAV inspecting a bridge. Images taken are wirelessly send, to a cloud service and a remote computer
for further analysis. This removes the need for inspectors on-site, increasing efficiency and reducing costs and
danger.

2



inspections and thereby detection of damages at an earlier stage.

This thesis studies how automatic image segmentation of corrosion damages can be
performed using machine learning. Image segmentation is the process of detecting and
outlining objects of interest in images, as shown in Figure 1.1b. There are multiple reasons
why this is useful, and why it is superior to simple image classification, i.e. sorting images
as corrosion vs. not corrosion. First, successful segmentation of corrosion damages allows
an autonomous system (e.g. a UAV) to better understand its surroundings and thereby be
able to, for instance, focus the camera in the right direction. Second, estimation of total
damaged area of a construction is an often-used criterion to initiate maintenance. Image
segmentation is a necessary first step towards this goal.

1.2 Aim and Scope of the Thesis

There are a number of different algorithms for image segmentation, ranging from simple
thresholding methods to sophisticated neural networks. Machine learning has become
increasingly popular in recent years and is now the de-facto standard for a wide range of
visual tasks. For image segmentation there are mainly two types of problems; semantic

segmentation and instance segmentation. The former is concerned with classifying each
pixel in images as belonging to a class, not separating instances from each other. Instance
segmentation, on the other hand, also distinguishes between instances of the same class.
Both methods have shown to be successful in a variety of different fields of study, such as
medical and satellite image analysis.

Although promising, existing research on image segmentation to detect corrosion is
limited. The aim of this thesis is therefore to assess the applicability of state-of-the-art
image segmentation methods to detect corrosion damages, for the purposes of automating
industrial inspections. To this end, a dataset for image segmentation of corrosion damages
is constructed and used to evaluate two different neural networks. It is a goal for this corro-
sion dataset to also facilitate further research beyond the scope of this thesis. Furthermore,
extensive data augmentation methods are evaluated, with the aim of constructing a general
augmentation scheme suitable for any dataset similar to the corrosion dataset.

Due to the nature of the problem and limited time frame of the master thesis, not ev-
ery aspect of corrosion damage segmentation is covered. First, only a small selection of
machine learning algorithms are implemented and tested. The selection is done based
on a literature review of publicly available methods. Second, the dataset only has binary
segmentation masks, i.e. the machine learning models are trained with the two classes cor-

rosion and background. An extension of this master thesis can study the addition of more
classes, such as crack in concrete and paint flaking. Furthermore, segmentation masks
will treat all corrosion damages alike, not differentiating between light and severe corro-
sion. Third, the dataset contains images of corrosion damages taken in daylight above
water only. Additionally, the images are biased towards bridge constructions and resulting
dataset may not represent general corrosion damages accurately. Finally, highly optimiz-
ing all hyperparameters is not opted for in this thesis as it is time consuming, network
dependent and not needed for a general assessment of the image segmentation methods.
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1.3 Previous Work

This section presents an overview of previous work on automatic damage detection. Both
traditional computer vision and machine learning methods for image segmentation are
referenced.

1.3.1 Damage Detection using Traditional Computer Vision

Damage detection has been studied using different methods over the past decades. Gu-
natilake et al. [19] used a remote controlled directional light source mounted on an aircraft
to simulate lighting produced by inspectors’ flashlights. Edge detection algorithms on the
resulting live imagery was then used to detect cracks and corrosion on the aircraft surface.

Siegel and Gunatilake [51] further studied detection of cracks and corrosion on aircraft
surfaces. A pipeline consisting of pre-processing/enhancement of the image and wavelet1

based feature extraction was found to perform the best for corrosion detection, whereas a
fuzzy logic algorithm worked best for cracks.

Livens et al. [38] studied general classification of corrosion images by performing
a wavelet decomposition of the images and computing its energy signatures. An LVQ-
network2 was then used for classification.

Lee, Chang, and Skibniewski [34] observed that the above methods work well for
damages with long linear shapes and distinct edges, such as for cracks. To better handle
small scattered spots of corrosion, the authors performed per-channel statistical analysis
on RGB-images utilizing the fact that rust has a characteristic red/brown color.

Generally, traditional computer vision approaches for corrosion damage detection is
performed by a color and/or texture analysis. Such algorithms suffer if optimal features
are not identified.

1.3.2 Damage Detection using Machine Learning

Using machine learning, the need to manually identify common domain features is re-
moved. Machine learning used for damage detection dates back to (at least) 1999 when
Moselhi and Shebab-Eldeen [42] used a three-layer neural network to detect defects in
underground sewer pipes.

Petricca et al. [45] compared a traditional computer vision approach based on the num-
ber of red pixels in an image with a convolutional deep learning approach for detecting
rust. The deep learning network was based on AlexNet [31], and the authors found this to
be superior to traditional computer vision.

Atha and Jahanshahi [4] further studied the use of convolutional neural networks for
corrosion assessment on metallic surfaces. They used a sliding window approach and
tested the effects of different window sizes and color spaces for a few different network
architectures. Their findings suggest using 128 × 128 windows along with VGG16 [52],
while both the RGB and YCbCr color space performed well.

1A mathematical function recovering weak signals from noise.
2Algorithm similar to nearest neighbor.
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Direct end-to-end image classification of corrosion damages and paint flaking is also
studied by Holm et al. [24, 23]. Holm et al. tested a number of classic, well-known con-
volutional neural networks and found VGG19 [52] to perform the best.

Fondevik [14] extended the research by Holm et al. and evaluated state-of-the-art clas-
sification networks and optimizers. The results show that newer and smarter network
architectures outperform often used networks such as VGG [52] and ResNet [21], for the
purposes of corrosion damage image classification.

Less research exists on corrosion damage detection, localization and segmentation us-
ing artificial intelligence. State-of-the-art methods such as Mask R-CNN [22] have, how-
ever, been applied to other types of damages: Moisture marks of shield tunnel linings were
segmented by Zhao, Zhang, and Huang [59] using Mask R-CNN. They compared Mask R-
CNN with a previously proposed fully convolutional network by the same authors, a region
growing algorithm and a thresholding algorithm. First, machine learning-based methods
were found to significantly outperform region growing and thresholding. Second, Mask
R-CNN outperformed the previously proposed FCN, suggesting the former should be used
to detect damages similar to moisture marks.

Zhang, Chang, and Bian [57] used Mask R-CNN to detect and segment damages on
vehicles. With a 2000 image dataset, the authors achieved promising results.

Detection of road damages has been studied by numerous people due to a road damage
detection and classification challenge held as part of the 2018 IEEE International Confer-
ence [53, 56, 3]. However, as submissions were evaluated based on intersection over union
scores for bounding boxes, no found produced segmentation masks for the road damages.

Cha et al. [5] also applied object detection to a dataset with construction damages.
Using Faster R-CNN, the model was successfully trained to detect corrosion, cracks in
concrete and steel delamination using a dataset with 2366 images. The authors conclude
that Faster R-CNN can be used with unmanned aerial vehicles to replace human-oriented
industrial inspections in the future. Note, however, that Cha et al. performed object detec-
tion only, i.e. segmentation masks were not predicted.

To summarize, previous work is usually either focused on the simpler task of object
detection, or image segmentation of "simple" damages, i.e. damages clearly standing
out from the surroundings (e.g. both tunnel linings and car bodyworks have smooth,
monochrome surrounding surfaces). Research on true image segmentation of corrosion
damages is lacking.

1.4 Contributions

The main contributions of this master thesis is three-fold:

1.4.1 Dataset Construction

Prior to this work, no dataset with annotated segmentation masks for corrosion damages
was found available. A dataset is therefore constructed with binary segmentation masks.
608 images containing corrosion damages are annotated with the software LabelBox. The
dataset is constructed with instance-wise segmentation masks allowing for direct use of
state-of-the-art instance segmentation algorithms. The dataset can also easily be converted
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to semantic segmentation masks with a simple script merging instances. A statistical anal-
ysis and summary of the dataset is also provided. The dataset was primarily constructed
for usage in this thesis but is highly relevant for further work as well.

1.4.2 Data Augmentation

Annotating images is time-consuming, resulting in only 608 annotated images within the
time frame of this master thesis. Fortunately, images of corrosion damages are highly aug-
mentable, i.e. we can generate additional, artificial images by randomly altering existing
images. Finding useful augmentation techniques with approximately optimal hyperpa-
rameters, however, is challenging due to the huge search space and time requirements of
trial and error. It is experimented with a wide range of data augmentation techniques in-
cluding a proposed general data augmentation scheme requiring very little trial and error.
This method is two-staged; first train with heavy data augmentation for a relatively large
number of epochs, followed by fine tuning with little to no data augmentation for a few
epochs. The hyperparameters for the heavy augmentations can be chosen very liberally
as fine tuning is performed with more correct images afterwards. The data augmentation
scheme is shown to significantly reduces overfitting, and also improve performance for
instance segmentation using Mask R-CNN.

1.4.3 Assessment of Methods for Corrosion Damage Segmentation

State-of-the-art methods for semantic segmentation and instance segmentation are evalu-
ated on the corrosion damage dataset. Models implemented are restricted to PSPNet [58]
and Mask R-CNN [22]. Their performance is compared and analyzed, and their applicabil-
ity with regards to defined use-cases are discussed. Furthermore, the assessment highlights
research areas in need of further work.

1.5 Outline

The thesis is structured as follows. Chapter 2 presents preliminary background theory
for the purpose of introducing corrosion and machine learning to readers unfamiliar with
these topics. It begins with a short introduction to the basics of corrosion damages in Sec-
tion 2.1. Machine learning and neural networks are then defined, and their inner mechanics
explained in Section 2.2.

Chapter 3 follows with a literature study on image segmentation. Its purpose is to dis-
cuss use-cases of image segmentation for industrial inspections and investigate available
image segmentation methods. The chapter begins with Section 3.1 discussing use-cases
of image segmentation, and particularly how segmentation of corrosion damages can aid
automating industrial inspections. Next, necessary requirements for an image segmenta-
tion framework to be used in industrial inspections are defined in Section 3.2. Finally,
Section 3.3 reviews numerous algorithms and machine learning networks with potential
for corrosion damage segmentation.

Chapter 4 details methods and implementation. How the dataset was constructed, as
well as a statistical analysis of it, is covered in Section 4.1. This is followed by a discussion
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of data augmentation methods in Section 4.2. Metrics used to evaluate the performance
of different image segmentation algorithms are then discussed in Section 4.3. Implemen-
tation, including hardware, software and hyperparameter configurations, are specified in
Section 4.5. The chapter ends with an outline of the conducted experiments in Section 4.4

Results and corresponding discussions are presented in Chapter 5. Evaluation of PSP-
Net and Mask R-CNN with varying training schemes are given in Section 5.1 and Sec-
tion 5.2, respectively. A summary and overall discussion is provided in Section 5.3.

Finally, conclusions and further work are found in Section 6.1 and Section 6.2 of Chap-
ter 6.
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Chapter 2

Preliminaries

This chapter presents preliminary theory on corrosion damages and machine learning in
Section 2.1 and Section 2.2, respectively. Corrosion damages are only briefly reviewed as
it is not the main focus of the thesis. Please also note that Section 2.2.1, Section 2.2.3 and
partly Section 2.2.5 are loosely based on the authors project thesis written Autumn 2019
[14].

2.1 Controlling Corrosion on Steel Constructions

Corrosion is the process in which metals oxidize, i.e. react with the environment into a
more chemically stable form with lower energy. This typically happens in humid and salty
environments, such as on oil platforms and bridges. If the metal corroding is steel, the
term rust is often used. This is by far the most common type of corrosion and is easily
recognized by its red/brown color. Corroded copper and zinc, on the other hand, turns
turquoise and white, respectively.

Corrosion is essentially an attack on the metal. It degrades properties such as thick-
ness of cross section, strength, appearance and magnetic permeability. In worst case, metal
constructions collapse due to undetected corrosion damages or lack of necessary mainte-
nance, potentially leading to fatalities. Extensive inspections are therefore essential in
order to detect damages and initiate maintenance as soon as possible.

Uniform corrosion, i.e. corrosion evenly distributed on the exposed surface of the
metal, is often easily detected, repaired and future behavior predicted. An example is
shown in Figure 2.1a. Corrosion pits, on the other hand, is much more challenging. As
shown in Figure 2.1b, corrosion pits are local holes penetrating deep into the metal creating
seemingly small damages, while causing potentially severe damages to the integrity of the
construction.

To avoid development of corrosion, metal constructions are often protected with layers
of paint. This protects the metal from the aggressive environment as long as the paint is
intact. The paint will, however, degrade over time, as shown in Figure 2.1c. Early detection
and repair of paint flaking can therefore avoid corrosion of the actual construction.

Constructions with very long design lifetimes, such as bridges, are additionally often
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coated with a layer of metallic zinc in between the metal and paint. Thus, if the paint
degrades or is damaged, the layer of zinc starts corroding instead of the steel construction
itself. The zinc layer essentially works both as a sacrificial anode and a barrier, preventing
corrosion of the construction.

(a) Uniform corrosion. (b) Corrosion pits. (c) Degraded paint.

Figure 2.1: Different types of damages. (a) Uniform corrosion, in which the entire metal surface is evenly
corroded. (b) Corrosion pits, a type of corrosion damage in which holes penetrate into the metal. (c) Degraded
paint, or paint flaking, where the protected metal is exposed to the environment enabling corrosion.

As construction damages are continuously forming, every little damage cannot be re-
paired immediately. The Norwegian Public Roads Administration (NPRA) therefore uses
estimated area of damaged coating as a criterion to initiate maintenance. Today the area
fraction of damaged coating is estimated manually, which introduces a large level of un-
certainty, due to the complexity of the task and the fact that many people are involved
in the process. Automatic calculation of total damaged area from a set of images would
increase the accuracy of the estimate by eliminating the "human factor". However, this is
a very challenging task. One necessary component in such a system is the ability to de-
tect and outline corrosion within images, i.e. performing image segmentation of corrosion
damages. Current state-of-the-art methods for image segmentation are based on artificial
intelligence and machine learning, topics of which are discussed in the next section.

2.2 Artificial Intelligence and Machine Learning

This section gives an introduction to artificial intelligence (AI) and machine learning in
order to give readers unfamiliar with key concepts the necessary foundation to understand
this thesis. Readers familiar with these topics may skip to Chapter 3.

2.2.1 Artificial Intelligence

There are many definitions of AI. Russell and Norvig categorizes AI definitions into four
categories [48]; thinking humanly, thinking rationally, acting humanly and acting ratio-

nally. Perhaps the most wide and general definition is proposed by Kurzweil and can be
classified as acting humanly: "AI is the art of creating machines that perform functions
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that require intelligence when performed by people." [32]. An elaborate discussion of the
abilities of AI is subordinated in this thesis. Kurzweil’s definition is therefore sufficient.

Classical AI is highly focused on logic, i.e. designing rational agents. Being rational
means to do what has the best expected outcome, given the current knowledge [48]. This
can be obtained through carefully designed condition-action pairs. A very simple example
is a thermostat maintaining a specific temperature t0. Whenever the temperature is below
t0 it is increased. Otherwise, if the temperature is above t0, it is decreased. In many cases,
however, covering all relevant pre-conditions is impractical and maybe even impossible.
Image recognition is one such example. Hard coding rules for what a cat in an image
looks like would require thousands of lines of code. However, even small children can
easily distinguish cats from dogs and other objects. This is the motivation for machine

learning (ML); a subset of AI focused on learning from experience rather than by a set of
rules.

2.2.2 Machine Learning

The idea of ML is that if an algorithm is provided lots of sample data, it can build a
mathematical model predicting underlying information on new data. Samuel, who coined
the term in 1959, broadly defined ML as a ”field of study that gives computers the ability

to learn without being explicitly programmed”. Typical examples are image and speech
recognition.

ML is only recently adapted to a wide range of fields of study for two main reasons.
First, a vast amount of data is needed for the algorithm to learn underlying patterns. For-
tunately, more data is available than ever before, with cameras and sensors collecting a
variety of data at a rate not possible for humans to process. Enough data is, however, not
enough for ML to work. We also need a learning algorithm, a method to train the program
on sample data. The backpropagation algorithm, explained in Section 2.2.3, does exactly
this, but requires a lot of computational resources. Although enough training data and
computing power is still an obstacle for making ML available to everyone, the situation is
constantly improving.

2.2.3 Neural Networks

ML is usually based on artificial neural networks. It is used to learn a mapping from
input data to some desired output. The inspiration comes from the human brain and its
interconnected biological neural network.

Intuition

At its core, neural networks are very simple. The network is a computational graph and its
nodes are called neurons. The neurons are structured in layers as shown in Figure 2.2 and
perform a mathematical function on a given input. The output value is fed forward to all
neurons connected by an edge. These edges between neurons contain adjustable weights,
one weight for each edge in the network. The weights are multiplied with whatever value
is passed along the edge. Thus, when data enters the network, its data points are multiplied
with some weights and transformed by some neuron functions. The goal of ML is to adjust
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these weights such that the output of the network describes the input in a sensible way. An
example is the input being pixel values of an image, and the output being a single value
between 0 and 1 representing the probability of the image containing a cat.

The neural network shown in Figure 2.2 is called a fully connected neural network

since all neurons in one layer are connected to all neurons in the neighboring layers. In
this particular network, the input consists of three data points labeled x1, x2 and x3. The
output is two values, y1 and y2. Neurons and layers in between are often referred to as
hidden neurons and hidden layers, respectively. The size of the input layer is determined
by the shape of the input data (e.g. number of pixels in an image), and the size of the
output layer is determined by how many values we want to describe the input data by. The
number of hidden layers and neurons to use depend on the task to be solved. Generally,
for big datasets and complex tasks we want more neurons than for simple tasks or small
datasets. The number of hidden layers and neurons define the architecture of the network.

𝑥!
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𝑥#

𝑦!
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input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

Figure 2.2: A fully connected neural network. Every node, or neuron, in every layer is connected to all neurons
in both the previous and next layer. Each edge in the graph corresponds to an adjustable weight between two
neurons. The first layer (green) is the input layer and its size is determined by the shape of the input data (e.g.
number of pixels in an image). Following layers (blue) are referred to as hidden layers containing hidden neurons.
The number of hidden layers and how many neurons each layer should contain, define the model architecture and
is dependent on the task to be solved. The output layer (red) takes as input the output of the final hidden layer
and computes a vector of values representing the input data in some way.

The Perceptron

To understand the inner mechanics of neural networks it is easier to start with a simpler
architecture. The simplest neural network is the perceptron; a single neuron as illustrated
in Figure 2.3. It takes as input a weighted sum of input data, z =

∑

i wixi = wx. Again,
the vector x can for instance be pixel values in an image, and w the vector of adjustable
weights on the edges between the input data and the single neuron. The sum is passed to an
activation function f producing the output y = f(z). f can be any mathematical function
mapping the weighted sum to an activation of the neuron. If y is small, it means the neuron
is not activated by its input, whereas if y is large the neuron expresses excitement of the
input.

The weights are initialized with random numbers, meaning the first input data passed
through the perceptron will yield a random output y. If we know what the output should
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Figure 2.3: A single neuron in a neural network called a perceptron. It takes as input the data points x1, ..., xn

multiplied by corresponding weights w1, ..., wn, passes its sum to an activation function f and predicts the
output y = f(wx) indicating how activated, or excited, the neuron is.

be, e.g. 1.0 if we know there is a cat in the image, we can adjust the weights so as to get a
better output value for this particular image. The next image is then still likely to predict
an incorrect output, but perhaps slightly better than for the previous image. We adjust the
weights to better classify this image as well and repeat. For each image we pass through
the perceptron, the weights are, hopefully, improving and becoming more general, i.e. start
understanding the general concept cats, rather than just remembering what images it has
seen.

The structure of the perception is, however, very simple and thus limiting. In practice
it cannot be used to detect cats in images, as a single perceptron can only classify linearly

separable data. Linearly separable data, in the two-dimensional case, is data that can
be divided into two classes by a single straight line. An example of such is shown in
Figure 2.4a. Here the plus-data points (belonging to one class) can be distinguished from
the minus-data points (belonging to a different class) by a straight line. In the case of non-
linearly separable data, as shown in Figure 2.4b, more than one, and often curved, lines
are necessary. In such cases, multiple neurons are needed in the network.

Adjusting the weights of a neural network essentially corresponds to adjusting the
shape, slope and positions of the separating lines in Figure 2.4. The next question, then, is
how exactly is this performed?

Adjusting the Weights

Constructing a neural network to predict an output ŷ
1 for some input data x is easy. The

challenging part is knowing how to properly adjust the weights. First, we need a way for
the network to evaluate the quality of the output, as this will affect how much the weights
are to be adjusted. This is done using an objective function. A simple objective function is
mean square error (MSE) which squares the difference between the desired output y and
network-predicted output ŷ,

MSE =
1

n

n
∑

i=1

(ŷi − yi)
2

.

1A vector in the general case, and a hat to indicate it being an estimator/prediction.
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(a) Linearly separable data. (b) Non-linearly separable data.

Figure 2.4: (a) Linearly separable data can (in the case of two dimensions) be separated by a single line. A single
perceptron has the expressive power to do this. (b) Non-linearly separable data is not separable by a single,
straight line. A single perceptron does not have the expressive power to tackle such data, meaning more neurons
are needed.

We want to minimize this function, as this will minimize the error in the predictions.
By taking the gradient of the objective function (essentially the chain rule) with respect to
a specific weight in the network, we know in what direction to adjust this specific weight.
This is exactly what the backpropagation algorithm does; it computes the negative gradient
of the objective function with respect to each weight, multiplies this with a constant called
the learning rate2, and changes the weights accordingly. We use the negative gradient as
we want to minimize the objective function, and the learning rate decides (scale-wise) how
much to adjust the weights each time (usually a value within the range 10−1 – 10−6). If
backpropagation is performed for multiple images, the weights will (hopefully) converge
to values where they no longer change much for new images. At this point, when new
input data enters the network, the predicted output is expected to be close to the desired
output. This means the network can, for instance, predict whether there is a cat in the
image or not.

Loss Functions and Activation Functions

Objective functions are in the field of machine learning usually called loss functions, and
the error correspondingly called loss. For classification problems, i.e. predicting a discrete
class label such as corrosion for the input data, the loss function cross entropy is more often
used than MSE. In the simple case of binary classification (two classes), cross entropy loss
takes the form

−(y log p + (1 − p) log (1 − p))

where the predicted output p = ŷ is assumed to be a probability distribution (i.e. value
between 0 and 1).

As for activation functions in each neuron we have multiple options. Traditionally, the
sigmoid function

f(z) = σ(z) =
ez

ez + 1

2In practice, during training, the learning rate is usually scheduled to change over time for better convergence.
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was used as it squeezes the weighted sum z between 0 and 1 like a probability distribution.
In recent years, however, the rectified linear unit f(z) = ReLU(z) = max(0, z) (and
variations of it) is almost always used as its derivative (1 if z > 0 else 0) is more suitable
for backpropagation.

If we are to predict, say, one out of K possible labels for some input, the network
should have K neurons in its output layer. Using sigmoid or ReLU we could then see
what neuron yj in the output layer is most activated, i.e. has the largest value, and the
corresponding class j would be the predicted label. More often, however, the softmax
activation function is used in the final layer as it produces a probability distribution over
all K classes:

Softmax(z)j =
ezj

∑K

k=1
ezk

= ŷj

If the output is, for instance, ŷj = 0.8 for the jth neuron in the final layer, it means the
network is 80 % certain the input belongs to class j. As the final layer now represents a
probability distribution, the sum of all its activations equals 1.

Convolutional Neural Networks

Neural networks discussed above consists of fully connected layers, also known as linear
layers. In terms of image tasks this has the drawback of being one-dimensional. If an
image is input to such a neural network, it must first be flattened, i.e. concatenating all
rows of pixels to construct a one-dimensional array. In addition, color images have a third
dimension for the RGB-channels also in need of flattening. The result is that neighboring
pixels are no longer necessarily next to each other.

The idea of convolutional neural networks is therefore to preserve the 3D structure
of color images (width Wi, height Hi and channel depth Di with Di = 3 for RGB im-
ages). Instead of having input be a one-dimensional array of elements, we use a three-
dimensional matrix referred to as a feature map. The weights previously attached to edges
in linear layers are now exchanged for filters.

A filter is a three-dimensional structure of adjustable weights with spatial dimensions
F × F (often 3 × 3), and depth equal to the depth of the feature map to which it is applied.
We move the filter from left to right and top to bottom over the feature map and compute
the element-wise product at each location. Taking the sum, we obtain a single scalar value
for each location, as shown in Figure 2.5. Applying the filter over the entire input feature
map at regular spacing, referred to as stride S, thus produces a new 2D output feature map.
To make the size of the filter and stride fit the input feature map dimensions, zero padding,
i.e. neutral pixels, are added if necessary.

The idea is that a filter looks for specific features such as lines and corners in an image,
and outputs where in the feature map this is present. If K such filters are applied, we can
look for multiple different features in the same feature map. That is, each filter generates a
new 2D feature map, and together they construct a 3D output of depth K. More precisely, a
convolutional layer accepts input dimensions Wi ×Hi ×Di and requires the hyperparame-
ters3 K = number of filters, F = filter size, S = stride and P = amount of zero padding.

3A hyperparameter is a parameter describing the network architecture or training procedure, e.g. learning
rate, number of epochs (number of training iterations), filter size and how many layers to freeze.

15



𝐾 filters

𝐷!

𝐻!

𝑊!

𝐻"

𝑊"

input feature map output feature map

Figure 2.5: Convolutional neural layers. A filter (dashed lines inside blue box) applied to a feature map (blue
box) producing a single scalar value (small, light square). A filter detects features in the input and is applied over
the entire input map, thus producing an output feature map (red plane). Furthermore, multiple filters are applied
over the same input feature map, resulting in a 3D output of depth equal to the number of filters (green box). For
input dimensions Wi × Hi × Di the convolutional layer produces a new output feature map with dimensions
Wo = (Wi − F + 2P )/S + 1, Ho = (Hi − F + 2P )/S + 1 and Do = K where K = number of filters,
F = filter size, S = stride and P = amount of zero padding.

The layer produces an output feature map with dimensions Wo = (Wi − F + 2P )/S + 1,
Ho = (Hi − F + 2P )/S + 1 and Do = K. See Figure 2.5.

Multiple convolutional layers are stacked to construct a convolutional neural network.
The first layer in a convolutional neural network for image tasks has spatial dimensions
equal to the input image dimensions (e.g. 256 × 256 pixels) and depth 3 if the image is
an RGB color image (depth 1 for grayscale). Multiple filters are then run over this feature
map to create a new feature map, usually of smaller spatial size and larger depth. This is
the input to the next convolutional layer. All weights to be adjusted are found in the filters.
The final layer(s) in a convolutional neural network for image classification are usually
standard linear layers as these can constitute a probability distribution over the different
classes.

Deep Learning

A single convolutional layer can only detect simple features. These features are, however,
used in the next layer to detect more complex, composite features.

The term deep learning comes from using many layers in a neural network. In early
days of machine learning, networks tended to be shallow as training deeper networks is dif-
ficult. Particularly two problems of training deep neural networks have given researchers
a challenge over the years. First, during backpropagation two similar, yet opposite, major
problems can occur. If the gradient is small, when multiplied repeatedly for each layer dur-

16



ing the chain rule, the product converges towards zero. Backpropagation then works fine
for the deep layers close to the output, while the early layers are practically unchanged.
This is called the vanishing gradient problem. On the other hand, when the gradient is too
large it can explode, called the exploding gradient problem. These problems are mainly
an issue for deep networks and not that relevant for shallow architectures. Fortunately, de-
velopment of new techniques, such as ReLU activation function and batch normalization4,
has allowed for really deep networks with hundreds of layers.

Second, deep networks have lots of trainable weights, or parameters, increasing the
chance of overfitting. When a mathematical model is fit so closely to the training data that
it does not generalize well to new data, it is said to overfit. In terms of image classification,
we can think of overfitting as if the algorithm starts remembering what images it has
seen rather than what characterizes them. If the same few images are used for training
over and over again this will easily occur. Two common solutions are usually applied:
Either decrease the number of parameters in the model using a smaller architecture with
fewer weights or increase the amount of training data. Researchers have put a great effort
into minimizing overfitting through smart network architectures [14] as large amounts of
training data can be infeasible to collect. The opposite problem, i.e. the network not being
able to capture underlying information, is called underfitting. This is usually easily solved
by increasing the capacity of the network, i.e. using a bigger network.

2.2.4 Classification, Object Detection and Segmentation

Machine learning using labeled data is referred to as supervised learning. Supervised
learning for vision tasks is often divided into three categories; image classification, object
detection and image segmentation. Figure 2.6 illustrates the different types of supervised
learning using an image of cats as an example.

Image classification (Figure 2.6a) is concerned with assigning a class label to images
as described earlier, e.g. finding all images in a dataset containing one or more cats. The
image is classified as a whole, even if the visual scene is comprised of many different el-
ements. Image classification using neural networks became increasingly popular after the
network AlexNet [31] significantly improved state-of-the-art performance back in 2012.
Since then, numerous improved architectures have been proposed, including ResNet [21],
MobileNet [25] and EfficientNet [55].

Object detection (Figure 2.6b) takes classification a step further by localizing where
in the image the objects are located. The output is rectangular bounding boxes around the
different objects in the image and a corresponding class label, as shown in Figure 2.6b.
Training data must have a similar structure, meaning a dataset for object detection is more
complex than for image classification and requires more work to construct. In addition to
localizing the objects in an image, object detection also has the benefit of handling objects
of different classes in the same image. R-CNN [16] and its improved descendants Fast
R-CNN [15] and Faster R-CNN [46] have shown compelling performance on a variety of
object detection tasks.

The third type of supervised learning, image segmentation, classifies all pixels in an

4Batch normalization is a technique to normalizes the layers by adjusting and scaling the activations for better
stability.
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Figure 2.6: Different types of supervised learning for vision tasks. (a) In classification problems, the whole
image is assigned a class label, e.g. cats. (b) In object detection, each individual object of interest is both
localized and classified, thereby allowing for objects of different classes. (c) Semantic segmentation algorithms
assign a class label to each and every pixel in an image. Note that semantic segmentation does not distinguish
between multiple instances of the same class. (d) Instance segmentation can be seen as a combination of object
detection and semantic segmentation, in which all instances are separately outlined and classified.

image as belonging to a specific class. Matching each class to a color, the output is a color
map of the original image outlining object shapes. Semantic segmentation (Figure 2.6c)
treats all pixels of a class the same, whereas instance segmentation (Figure 2.6d) also
distinguishes between different instances of the same class. Instance segmentation can thus
be seen as a combination of object detection and semantic segmentation and is considered
one of the most difficult visual supervised learning tasks.

To predict segmentation masks, convolutional neural networks for image segmentation
usually have a stack of deconvolution layers, rather than the linear layers used for simple
image classification. A deconvolution layer increases the spatial dimensions to any de-
sired size, allowing us to adjust weights based on pixel-wise cross entropy loss between
predicted and true segmentation masks of the same size.

A dataset for image segmentation has one or more segmentation masks for each im-
age, i.e. a representation of the shape of all instances in the image. These are referred
to as the ground truths. Such a dataset is even more challenging and time consuming to
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construct than datasets for object detection since every object must be outlined in detail.
For semantic segmentation, FCN [39], U-net [47] and PSPNet [58] are popular architec-
tures/algorithms, whereas for instance segmentation the common choice is Mask R-CNN
[22].

2.2.5 Transfer Learning

Training deep learning models requires lots of training data and computational resources.
Fortunately, many computer vision tasks can still be solved with deep learning through
transfer learning. When a network is trained from scratch, its weights are initialized to
random numbers. There are different theories on what probability distribution gives the
best starting point [33], but either way the weights will be far from the result after many
iterations of training.

If a network is pre-trained on a big, general dataset, however, the resulting weights
probably form a fairly good starting point for other tasks as well. In terms of image
classification and segmentation, it makes sense to use pre-trained weights since detection
of line segments, corners etc. is similar for all types of images. Thus, weights for early
layers can be unchangingly transferred to new tasks, whereas deeper layers detecting more
complex features can be retrained, or fine-tuned, on a new target-specific dataset. Using
pre-trained models designed to solve one type of task to solve a different task by fine-
tuning its layers, is called transfer learning.

Transfer learning will be used in this thesis to solve the problem of corrosion damage
segmentation. This will be necessary as the dataset to be used is rather small by today’s
standards. In addition, designing a new network architecture with proper hyperparameters
is challenging. Success is much more likely when using a network architecture proven to
work well on different tasks.

ImageNet [26] is the most commonly used dataset for transfer learning for image clas-
sification models. It can also be used for image segmentation to more easily detect relevant
high-level features. Datasets specifically designed for image segmentation, however, are
usually a better option as these contain both images and complete segmentation masks.
Pascal VOC 2012 [12], Cityscapes [8] and ADE20K [61] are popular datasets for se-
mantic segmentation, whereas Microsoft COCO [37] is the de facto standard for instance
segmentation.
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Chapter 3

Image Segmentation of

Construction Damages

Image classification networks have been very popular over the last decade. Image seg-
mentation, however, is a much more challenging task and is still in the early phase of
being adapted to a wide range of application areas. An increase in number of published
papers on image segmentation occurred in the years following the release of Mask R-CNN
[22] in 2017, which is state of the art for instance segmentation. Image segmentation of
construction damages, however, is still lacking.

This chapter starts by defining use-cases of image segmentation for industrial inspec-
tions in Section 3.1. This is followed by Section 3.2 discussing requirements for an image
segmentation framework to be used for industrial inspections. Finally, a number of differ-
ent image segmentation algorithms are reviewed in Section 3.3. Methods based on both
traditional computer vision and machine learning are presented.

3.1 Use-Cases of Construction Damage Segmentation for

Industrial Inspections

For construction damages in images, there are numerous potential applications for image
segmentation. Its real usefulness emerges when automatic inspection systems are used
to collect a vast amount of image data. The best such solution is likely camera-enabled
UAVs, as is already in the early stage of being adapted to industrial inspections [27, 2, 43].
UAVs have the great benefits of being more efficient than human inspectors, can access
areas otherwise difficult to reach and allows for more frequent inspections – all at lower
costs. Combined with intelligent damage detection software, this can eliminate the need
for most human inspectors as well as being more accurate and objective.

One straight forward use-case of UAVs with image segmentation software is remote
controlling the UAV to take images of a construction. Images containing a damage can
then be saved along with sensor data locating where and at what altitude the images were
taken. This allows an inspector to study the damages remotely and initiate maintenance
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where needed.
Furthermore, image segmentation can aid a UAV in becoming autonomous, i.e. re-

moving the need for an operator to control the UAV. For this to work optimally, the system
should be combined with 3D models of the construction and SLAM1 to help keep track of
what parts of the construction is covered and to avoid many duplicate reports of the same
damage.

Pure image segmentation has no concept of actual sizes, only the size of segmented
objects relative to the image frame. Combined with 3D models and SLAM, however, the
real size of damages can be computed. Furthermore, the total area of damaged surface can
be tracked. This is particularly useful as it is an often-used metric to initiate maintenance.
If the total damaged area is monitored for all constructions of relevance, maintenance can
be automatically and efficiently scheduled.

With autonomous UAVs able to recognize damages, we can efficiently monitor dam-
ages over time, e.g. weekly take an image of all known damages. Time series predictions
can then potentially be used to forecast how a damage will continue to develop. If this is
successful, it can help estimate future expenses related to maintenance and prevent dan-
gerous damages from developing.

To summarize, the benefits of image segmentation of construction damages are vast
and many. There are, however, many challenging requirements needed to be overcome for
the image segmentation software to be useful in the above use-cases. These are discussed
next.

3.2 Requirements of Image Segmentation for Industrial

Inspections

If a UAV is remote controlled by an operator, damages can be outlined and presented for
an inspector to decide if maintenance is needed. The main requirement is for the software
to have good recall, i.e. avoid missing any damages.

If we are to remove the human involvement altogether, the task becomes much harder.
First, to be able to estimate total damaged surface and navigate autonomously, the software
must not only be able to recognize damages, but also the constructions themselves. A
dataset with annotated constructions as well as damages is then needed. Furthermore,
prediction performance needs to be accurate if estimated damaged area is to be used as a
reliable criterion to initiate maintenance.

Second, some damages need immediate maintenance and cannot wait for the remaining
construction to degrade and trigger maintenance. An ideal image segmentation system
should therefore also be able to identify the severity of damages. This is likely a very
difficult task for multiple reasons. First, an image may not reveal whether the damage is
present on the surface only or if the whole cross section is damaged. Second, determining
the potential consequences of a damage requires lots of domain and construction specific
knowledge. Two images of seemingly identical corroded bolts, for instance, can have
dramatically different importance to the intactness of a construction.

1Simultaneous localization and mapping (SLAM) is the problem of constructing a model of the environment
through investigation, while simultaneously keeping track of where in the model the agent is present.
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It is difficult to define a definitive threshold for accepted prediction performance. First,
as will be discussed in Section 4.3, there are many ways to evaluate segmentation perfor-
mance. Second, the degree of support by human inspectors greatly affects the require-
ments. Needless to say, the software should not fail to notice important damages, and
avoid reporting too many false positives. For binary segmentation, this will likely require
at least 90 % IoU (see Section 4.3 for definition). Furthermore, instance segmentation is
considered more versatile for the above discussed use-cases, meaning good distinction of
instances is important.

Additionally, there are requirements for the segmentation framework in terms of com-
putational speed and memory consumption. For a UAV to operate autonomously, it needs
to process images at a rate close to video standards, i.e. 24 images per second. Else, the
lag would be too big for the UAV to fly and navigate properly. Lower frame rates can
be acceptable for an automatic system, i.e. a system partly supervised by an operator or
specifically designed to work in a pre-specified area. Furthermore, peak memory usage
should not exceed available memory. To process sufficiently many images per second, a
GPU is likely needed, meaning its video memory is the constraining parameter, not the
CPU’s RAM.

Summarizing, the challenges are many and difficult. Partly autonomous industrial in-
spections are only a realistic goal in the future if accurate damage segmentation proves
successful. The following section therefore reviews different algorithms that can be eval-
uated for construction damage segmentation.

3.3 Algorithms for Image Segmentation

This section presents various methods for image segmentation. First reviewed are thresh-
olding, clustering and region growing; traditional computer vision algorithms suitable for
simple tasks. Next, fully convolutional networks for image segmentation are reviewed,
particularly FCN, U-Net and PSPNet, the latter considered state of the art. This is followed
by a presentation of Mask R-CNN, which is state of the art for instance segmentation.

Presentation of traditional computer vision methods for image segmentation is based
on various courses at NTNU, particularly lectures from TTK25 Computer Vision for Con-
trol [40]. Literature search for machine learning-based methods is largely based on the
website Papers Width Code [6]. It has ranked entries for most machine learning tasks,
with links to corresponding published papers and code.

3.3.1 Thresholding

The simplest algorithm for image segmentation is thresholding. Thresholding segments
an image purely based on pixel values in the image. For binary segmentation, a pixel is
considered a positive class if the pixel value is above a specified threshold. For multi class
segmentation, ranges of pixel values must be specified. The method is very efficient and
easy to implement. The main challenge lies in selecting the threshold value, for which
several methods exist: Constant thresholding values are very inflexible and requires all
images to have a very similar color distribution. Histogram methods use the pixel inten-
sity distributions to localize interesting values for each image, such as peaks and valleys.
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Examples of such methods are balanced histogram thresholding and Otsu’s thresholding
algorithm [44].

The very characteristic red/brown color of corrosion damages makes thresholding an
interesting option. However, the algorithm is very sensitive to different lighting conditions,
and anything with colors similar to corrosion damages would be falsely reported as a
damage. Classification performance is therefore expected to be poor, and hence we need
something more versatile.

3.3.2 Clustering

Whereas thresholding only uses individual pixel values to determine the class, clustering
methods also incorporate positional information. An area densely covered with red/brown
pixels, for instance, is much more likely to be actual corrosion than random single red/brown
pixels.

The easiest clustering algorithm is perhaps K-means clustering: K pixels are ran-
domly chosen as initial cluster centers, and all pixels are classified as the nearest cluster
center. The distance is usually measured as a weighted combination of different features,
such as pixel color, pixel intensity and Euclidean distance. The image is now segmented
into K different clusters, each representing an instance of a class. The cluster centers are,
however, randomly chosen, meaning the segmentation is likely very poor. New cluster
centers are therefore computed as the center of each cluster, before the algorithm iterates.
This effectively moves some pixels from one class to another. We terminate when the
cluster centers no longer move between iterations. Figure 3.1 illustrates three iterations of
K-means clustering for general data points in two-dimensional space.

(a) Iteration 0. (b) Iteration 1. (c) Iteration 2. (d) Iteration 3.

Figure 3.1: K-means clustering based on Euclidean distance. (a) Initially the data points (green) are not assigned
any cluster. We randomly sample K initial cluster centers (X’s, here K = 2). (b) All data points are then
assigned to the closest cluster center, separating the data into K clusters. (c) New cluster centers are selected as
the center of each cluster. Data points now closer to a different cluster center changes label. (d) We continue
until the cluster centers no longer move around.

K-means clustering is simple to implement and is guaranteed to converge, although
it may converge to a local optimum only. Other drawbacks include that the number of
clusters, K, must be known in advance, the clusters are assumed to have a circular shape
(as defined by the distance measure) and no noise modeling is included (i.e. outliers can
badly affect the result). It is worth noting that modifications to K-means clustering exist,
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overcoming some of these cons, for instance an adaptive K-means algorithm eliminating
the need to specify the hyperparameter K [60].

An alternative clustering algorithm is DBSCAN [10] (density-based spatial clustering
of applications with noise). DBSCAN creates clusters based on pixels densely packed
together. It starts with a random pixel and adds to this all unlabeled pixels nearby if the
number of such neighbors is above a specified threshold (i.e. if the density is big enough).
This process is then recursively applied to all newly added pixels.

The main benefit of DBSCAN is that no assumptions on the number and shape of seg-
mentation areas are needed and that noise/outliers are automatically taken care of. How-
ever, now the cluster density (i.e. the threshold for adding a pixel) must be known in
advance and assumed uniform.

For the purposes of construction damage segmentation and industrial inspections, clus-
tering methods fall short for numerous reasons. First, we do not know in advance how
many damage instances there are in an image, rendering K-means clustering infeasi-
ble. Similarly, requiring uniform clusters renders DBSCAN infeasible. Second, clustering
methods divide the entire image into instances, but do not actually classify them as specific
classes. Additionally, the background is unnecessarily divided into instances for all sorts
of irrelevant objects.

3.3.3 Region Growing

With region growing, pixels are selected as seed points and the local surrounding area is
analyzed to determine which pixels should belong to the same class. Surrounding pixels
of similarity, usually in terms of pixel value, are thereby added, iteratively increasing a
cluster region. The algorithm is similar to clustering methods but has fewer assumptions
on the input data and can create more precise segmentation masks. The only parameter
needed specified is the allowed difference D between pixels for them to be added to the
cluster, with the assumption that neighboring pixels within a region has similar values.

The main drawback of region growing is that the result is highly dependent on selecting
good seed points. In fact, the order in which we grow the seeds can affect the resulting
masks. The algorithm is illustrated in Figure 3.2.

Region growing is not suitable for construction damage segmentation for multiple rea-
sons. First, a general value for D suitable for all images is practically non-existent. A
too small value results in too many instances, whereas too large value generates too big
instances. Second, region growing requires relatively high contrast between different re-
gions, whereas corrosion damages often have smooth edges. Finally, similar to clustering
methods, the image is segmented without labeling each instance a specific class.

Generally, the above reviewed image segmentation methods are mostly suitable for
very specific, simple tasks, e.g. analysis of conveyor belt images taken by a stationary
camera. Images taken during industrial inspections are more general, comprising a wide
range of different scenes. The remainder of this chapter therefore studies image segmen-
tation methods based on machine learning, which better handle complex data.
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(e) Iteration 5.

Figure 3.2: Region growing with allowed neighbor difference D = 1. (a) A random pixel is selected as the first
seed (blue). (b) All neighboring pixels are recursively added to the region if its value differs by at most D. When
no more pixel can be added, we select a new seed (green). (c)–(e) We continue selecting new seeds and grow the
corresponding region until all pixels are classified.

3.3.4 FCN

Classification networks usually consists of a stack of convolutional layers followed by
one or more linear layers. The final linear layer creates a probability distribution over the
predicted classes, i.e. a one-dimensional vector not suitable for pixel-wise predictions.

An FCN is a network architecture using only convolutional layers, i.e. no need for lin-
ear layers, sliding windows or sub-networks for region proposals. Long, Shelhamer, and
Darrell [39] introduced in 2014 FCNs for semantic segmentation trained end-to-end with
supervised pre-training for pixel-to-pixel predictions. Their work is based on the success
of deep classification networks such as VGG [52] and GoogLeNet [54]. When referring
to FCN in the following, the architectures by Long, Shelhamer, and Darrell is to be under-
stood, even though FCN is also used as a generic term describing all convolutional-based
architectures without linear layers.

In order to produce a segmentation mask as output, the final layer(s) of existing clas-
sification networks must be altered to transform coarse outputs to dense pixel maps. The
authors of FCN describe multiple solutions and found deconvolution to perform the best.
Deconvolution adds padding around and/or in between pixels of a feature map before a reg-
ular filter is applied as in usual convolution, see Figure 3.3. The result is a spatially larger
feature map in which the up-sampling is learned during training. Note that deconvolution
also performs the convolution operation, and hence the name transposed convolution is
perhaps better.

Transforming pre-trained classification networks performing well on ImageNet [26]
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(a) Regular Convolution. (b) Deconvolution.

Figure 3.3: (a) Regular convolution as described in Section 2.2. Using zero padding (white tiles) the spatial
dimensions remain the same. (b) Deconvolution, in which zero padding is added in between pixels (blue tiles)
before regular convolution is applied over the resulting feature map. The result is an up-sampled feature map
with increased spatial dimensions. The weights in the filters of a deconvolution layer thus learns how to properly
up-sample a feature map.

to an FCN for semantic segmentation is done as follows: The final classification layer is
removed, and all remaining linear layers replaced by convolutional layers with K 1×1 fil-
ters. The filters will predict one of the K classes for each point in the feature map. Finally,
a deconvolution layer is appended to up-sample the outputs to pixel maps of spatial size
similar to the input image. The resulting network is illustrated (as FCN-32s) in Figure 3.4.
Fine-tuning with per-pixel cross entropy loss on the ground truth and predicted segmen-
tation masks then gives reasonable results. Applied to VGG16 [52], the authors achieved
state-of-the-art performance at the time. For GoogLeNet, however, the performance was
not compelling.

The above FCN architectures produce coarse segmentation masks with low level of
details. The authors therefore added links from early layers to the prediction layer. This
enables the network to use the coarse outputs to make local classification (what) and the
finer, earlier layers to better put the shape of the output mask into context (where). Multiple
placements and combinations of skip connections were tested as shown in Figure 3.4.
The result is significantly improved performance of 62.7 % mIoU (mean intersection over
union, see Section 4.3 for definition) for the best network named FCN-8s, as measured on
the PASCAL VOC 2011 [11] test data set. Additional links had diminishing improvements
and therefore only introduces unnecessary complexity.

Long, Shelhamer, and Darrell found increasing performance when using a bigger
dataset than the original VOC dataset of 1112 images. Interestingly, however, no gain
was found using artificial data augmentation such as flipping and translation.

FCN has potential for construction damage detection. Being a machine learning algo-
rithm, it overcomes most problems with traditional computer vision algorithms discussed
earlier. On the other hand, FCNs are just modifications of plain classification networks,
i.e. they are not specifically designed from scratch for image segmentation. Additionally,
as the field of AI is developing fast, FCNs are now rather old and outperformed by newer
network models.
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Figure 3.4: FCN architectures for semantic segmentation based on VGG16. Grids shown represent relative
spatial sizes after pooling and prediction layers (that is, intermediate convolutional layers are not shown). FCN-
32s is the naive network directly up-sampling 32x yielding coarse segmentation masks. Fusing predictions from
pool4 with 2x up-sampled predictions from pool5 yield FCN-16s, which produces better and more detailed
segmentation masks. Even better performance is obtained with FCN-8s which fuses pool3 predictions with 2x
up-sampled predictions from the fused feature map used in FCN-16s.

3.3.5 U-Net

Introduced in 2015, U-Net [47] improved on the original FCN architecture. Ronneberger,
Fischer, and Brox created a U-shaped architecture and a training strategy requiring fewer
training images yet also providing higher resolution segmentation masks.

The new architecture consists of two parts: First is a regular convolutional network
typically used for image classification. Like many popular network architectures, it uses
3 × 3 convolutional filters, ReLU activation functions and max pooling2. This forms
a contracting path from the input image down to a wide feature map with low spatial
dimensions, see Figure 3.5. The second part of the network is an almost symmetrical
expanding path using deconvolutions to obtain a feature map (i.e. a segmentation mask) of
approximately same spatial size as the input image. Finally, links between the contracting
and expanding paths, on corresponding heights/levels, are added in order to propagate
information forward from early layers. This is somewhat similar to the links in the original
FCN, but a key difference is the increased number of feature channels in the links and
the up-sampling part of the network, allowing for more flow of contextual information
resulting in better classification. Furthermore, the links are somewhat simplified, and the
number used increased, providing better feature propagation at different scales.

2Max pooling returns the maximum value within a grid of values, usually used to reduce spatial dimensions
of feature maps in convolutional neural networks
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The original U-Net architecture is illustrated in Figure 3.5 and was originally devel-
oped for biomedical image segmentation. Later the model has been adapted to a wide
range of vision tasks, and varieties of the architecture have been developed. An example is
ResNet-U-Net adding residual connections in addition to the longer copy-resize connec-
tions.

3x3 conv + ReLU

1x1 conv

2x2 max pool

2x2 deconv

copy + crop

input 

image

segmentation

mask

1 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 2

Figure 3.5: The original U-Net architecture. Forming a U-shape, the left-hand side is a contracting path and the
right hand side an expanding path. Links between the two paths allow for contextual flow, similar to the links in
FCN. The number above each layer denotes the number of feature maps/channels. White boxes indicate copied
feature maps. In this very architecture, the input image is gray scale and the output a binary segmentation mask.

With limited training data, the authors extensively used artificial data augmentation.
This was essential in order for the network to be invariant to translation and rotation, as
well as contrast variations and shape deformations of biological structures. In particular
they found that by adding random elastic deformations, performance was significantly
improved.

There are multiple aspects making U-Net interesting for construction damage segmen-
tation. First, it was originally designed for biomedical imaging. In biomedical images,
very much like for construction damages, there are not as many rich features defining an
object as for common everyday objects. This is further discussed in Section 4.1 detailing
the corrosion dataset constructed for this thesis. Second, unlike FCN, the authors found
improved performance with U-Net through data augmentation. This was crucial since
their dataset was small. With 608 images, the corrosion dataset too is considered small by
modern standards. However, much like FCN, U-Net is rather old and is now outperformed
by newer, more sophisticated networks.
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3.3.6 PSPNet

Humans have a tremendous ability to distinguish and classify seen objects, even from
a young age. We could say our inference is two-stage: First we recognize the shape,
color and size of an object. From this alone we can often conclude accurately what we
are looking at. Next, we use surrounding visual clues to further increase our certainty.
For instance, if a vehicle is seen on a river, it is likely a boat even if it looks like a car.
The previously reviewed segmentation algorithms struggle to utilize this kind of global
information; if it looks like a car, it certainly must be a car.

PSPNet [58], short for pyramid scene parsing network, aims at solving this discrep-
ancy. It was developed by Zhao et al. in 2016 and is still one of the very best-performing
networks on multiple popular segmentation datasets, e.g. Cityscapes [8], PASCAL VOC
2012 [12] and ADE20K [61].

The links from early layers in both FCN and U-Net can be seen as an attempt to in-
corporate global contextual information in the predictions. Zhao et al. found, however,
that these descriptors are very generic. Their solution is a pyramid pooling module: Input
images are first passed through a standard semantic backbone network, e.g. ResNet [21],
to produce a feature map. See Figure 3.6. We then perform sub-region average pooling

at N = 4 different spatial sizes: The first level is just global average pooling, i.e. each
channel in the feature map is summed and divided by the spatial size. This constructs
the green 1 × 1 × C feature map in Figure 3.6. In parallel, the feature map is divided in
a 2 × 2 sub-grid to compute local average pooling in each quadrant. This produces the
yellow 2 × 2 × C feature map in Figure 3.6. Similarly, 3 × 3 × C (blue) and 6 × 6 × C
(red) feature maps are computed by sub-region average pooling. The number of levels in
this "pyramid", N , can be altered to construct different architectures, with N = 4 in the
original implementation.

co
n
v

p
o
o
l

co
n
v

co
n
v

co
n
v

co
n
v

u
p
-s
a
m
p
le

C
N
N

Input image
Feature map from 

backbone CNN

Sub-region 

average pooling
PredictionConcatenation

Figure 3.6: PSPNet architecture. The key contribution of PSPNet is a pyramid pooling module performing sub-
region average pooling at different scales. This better incorporates contextual information, resulting in increased
performance.

In total we now have N · C channels, so to maintain the weights of global features,
1 × 1 convolution is applied to each feature map, decreasing the channel dimensions from
C to C/N . The feature maps are then immediately up-sampled to the size of the original
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feature map. Next is concatenation of all feature maps, i.e. both the original and up-
sampled feature maps. Finally, a convolutional layer is added to produce the prediction
with segmentation masks.

The idea behind the pyramid with sub-region average pooling is that we obtain local
information from all areas within an image and at different scales. Intuitively, a small
sub-region layer could recognize a vehicle and a bigger sub-region layer could recognize
a surrounding river, implying the vehicle is likely a boat.

On the Cityscapes [8] and Pascal VOC 2012 [12] datasets, PSPNet obtains 78.4 %
and 82.6 % mIoU, respectively. Comparing this to 65.3 % and 62.2 % for FCN, shows a
huge improvement. For the very challenging ADE20K dataset [61], PSPNet achieves a
test score of 55.4 % mIoU. Four years after its release, this is still the second ever highest
reported test score. To obtain these results, two additional key methods were adapted in
addition to the pyramid pooling module. First is an auxiliary loss added in the backbone
network to help optimize the learning process, similar to ideas in GoogLeNet [54]. Second
is data augmentation, including random horizontal flipping, image resizing, slight rotations
and Gaussian blur.

PSPNet is likely a great option for construction damage segmentation. First and fore-
most, PSPNet is state of the art without bells and whistles. Second, PSPNet exists in both a
50- and 100layer version. A reduced network size is desirable for the small dataset used in
order to avoid overfitting. Finally, good understanding of contextual information is highly
relevant for construction damages: Corrosion is only present on metals, cracks in concrete
only appear on, well, concrete, and so forth. That said, the dataset used in this thesis
only contains segmentation masks for corrosion damages, and hence knowledge about
surrounding metal is not explicitly taught. Full potential of PSPNet is therefore likely not
obtained in this thesis.

3.3.7 Mask R-CNN

Mask R-CNN [22] was introduced in 2017 by He et al. and has since been state-of-the-art
for instance segmentation. The algorithm extends Faster R-CNN [46], which again builds
upon the papers Fast R-CNN [15] and R-CNN [16]. This section reviews Mask R-CNN
without explicitly introducing its predecessors first. Keep in mind, therefore, that most of
the foundations for Mask R-CNN should be credited to the authors of R-CNN (Girshick
et al. [16]) and Fast/Faster R-CNN (Girshick [15] and Ren et al. [46]).

Mask R-CNN is a two-stage network: In the first stage the image is scanned for region
proposals, i.e. areas likely to contain an object. In the second stage, these proposals are
classified, and corresponding bounding boxes and segmentation masks are generated. In
order to explain Mask R-CNN in detail, as it is very complex, it is convenient to break it
down into four parts; a backbone network, a region proposal network, classification and
bounding box regression of region proposals, and finally a segmentation mask prediction
branch. An overview of the entire network is shown Figure 3.7 putting each of these four
parts into context.
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Figure 3.7: Complete Mask R-CNN pipeline. The backbone network first detects features in an input image.
To better capture features at different scales, a feature pyramid network (FPN) is often used as the backbone
network. Next, a region proposal network (RPN) suggests object candidates, known as regions of interest (RoI).
Before classifying and constructing a segmentation mask for the RoIs, Mask R-CNN performs RoI align, a
method of aligning the RoIs to properly work with the prediction sub-networks. The final steps of Mask R-CNN
are class prediction, refinement of bounding box location and generation of segmentation masks, all of which are
performed in parallel.

Backbone Feature Pyramid Network

Mask R-CNN starts with a backbone network whose purpose is to serve as a feature ex-
tractor. Any convolutional neural network designed for image classification can be used,
e.g. ResNet [21]. The input images are through this network transformed to a feature map
with smaller spatial size and increased number of channels detecting high-level features.
This forms a contracting path with increasing semantic value and decreasing resolution.

Ideally, however, we want both high-resolution feature maps and big semantic value.
We can obtain both using a feature pyramid network (FPN) [36]: Given a regular network,
referred to as bottom-up, we add an additional "opposite" network, referred to as top-down.
See Figure 3.8. The first layer in the top-down network (M5) is constructed using a 1 × 1
convolutional filter from the final layer in the bottom-up network. The second layer (M4)
is a summation of the previous layer (M5) up-sampled and the corresponding layer in the
bottom-up network (C4) with a 1 × 1 filter. This continues for as many layers as desired,
but usually the top-down network is chosen somewhat smaller than the bottom-up network
for computational complexity reasons. From the top-down network we can apply a filter
to each layer (typically 3 × 3) to produce the final feature maps (P5–P2). The key point,
now, is that these feature maps have strong semantic value and are available at different
scales, the latter allowing the backbone network to more easily detect objects at different
scales.

Region Proposal Network

The next step in Mask R-CNN is a region proposal network (RPN). RPNs are neural
networks scanning an image for regions of interest (RoI), i.e. areas likely to contain a
relevant object. To do this, boxes, or anchors, are created over the entire image in a sliding
window-like fashion, see Figure 3.9a. To cover the entire image and capture all types of
objects, the boxes have varying size and aspect ratios. High recall (percentage of relevant
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Figure 3.8: Feature pyramid network (FPN). A bottom-up network (C1–C5) detects features in an image like
any other classification network. ResNet is often used. A top-down network (M5–M2) working in the opposite
"direction" is constructed by adding its previous layer up-sampled and corresponding layers in the bottom-up
network convolved. Each of these new layers are then used to produce prediction layers (P2–P5) containing high
semantic value at multiple different scales.

instances reported) is crucial in this stage, as non-detected objects cannot be detected in
later phases. Approximately 200 000 anchors are therefore instantiated, meaning many
will overlap and cover the same object.

In Mask R-CNN, we do not apply RPN directly to the image itself, but rather on
the feature maps produced by the backbone network. This significantly speeds up the
algorithm as the backbone network and RPN share computation.

Two outputs are computed for each anchor. First is a binary classification score indi-
cating whether the anchor likely covers a relevant object (a positive anchor) or just covers
parts of the background (a negative anchor). Second, for each anchor, the RPN outputs a
bounding box refinement, i.e. a prediction of how much the anchor box should be moved
and resized to better cover the object. All negative anchors can be discarded immediately,
as shown in Figure 3.9b. Positive anchors with high probability of containing an object are
RoI candidates. Many such anchor boxes will, however, likely overlap much. We there-
fore remove all sub-optimal anchors overlapping too much with a better, different anchor,
a process referred to as non-max suppression. See Figure 3.9c. Remaining anchors are the
final RoIs. Note that in the case of multi-class object detection/segmentation, the anchors
have no knowledge about which class it represents, just that it is an area worth investigat-
ing. Furthermore, any anchor can be discarded in later stages if it is found to not fit any
class.
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(a) All Generated Anchors. (b) Negative Anchors Discarded. (c) Non-Max Suppression.

Figure 3.9: Proposal and suppression of anchors. (a) Anchors with all sorts of sizes and aspect ratios, i.e.
potentially interesting areas, are generated over the entire image. (b) All negative anchors, i.e. anchors classified
as covering background, are discarded immediately. (c) As multiple positive anchors may overlap, we remove all
sub-optimal anchors, a process referred to as non-max suppression. In practice, anchors are not generated over
the actual images directly, but rather over the feature maps from the backbone network.

Classification and Bounding Box Regression of RoIs

The third stage of Mask R-CNN takes as input the RoIs produced by the RPN in the
previous stage and computes two new outputs. This is not as straight forward as it might
seem. Whereas neural networks for classification typically assume fixed sized inputs, the
RoIs can take on different aspect ratios and sizes. A solution to this problem is RoI pooling
[15]. Assume we have an h × w RoI which we need scaled to H × W by max pooling.
Since h/H and w/W in the general case are non-integers, the dimensions do not match
up perfectly. In RoI pooling we simply round to the nearest integer and divides the RoI
into a sub-grid of this size. We then take the maximum value within each cell to construct
the desired H × W feature map. What effectively happens is a quantization altering the
RoI slightly. This method is widely used in object detection algorithms as classification
is robust to small translations. Simply put, a rectangle outlining an object is still decently
outlining the object if it is moved slightly.

For segmentation masks, however, this is problematic as we want good pixel-to-pixel
accuracy. The authors of Mask R-CNN therefore proposed RoI align, which uses bi-linear
interpolation to avoid any quantization. First, instead of rounding the fractions h/H and
w/W to integers, the floating numbers are kept. We then divide the RoI into bins as
before, but now allowing decimal-sized sub-grids not perfectly fitting the RoI pixel grid.
See Figure 3.10. We want to extract one value from each sub-grid to constitute the W ×H
output feature map. Each sub-grid will, however, cover parts of multiple RoI pixel values.
To make sure all these pixel values are accounted for, we apply bi-linear interpolation.
That is, within each sub-grid we first sample four evenly distributed points, shown as red
dots in Figure 3.10. For each point, we find the four closest pixel centers, depicted as
green dots in Figure 3.10. Interpolating these values, we obtain a combined value for the
sampled point. This is repeated for all sampled points. We can then apply max pooling to
the four values within each sub-grid. Effectively we use the entire RoI when computing
subsequent feature maps.

Back to Mask R-CNN, RoI align is used to properly align and scale the RoIs. Two
values are then computed for each RoI. While the RPN only distinguishes between back-
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Figure 3.10: RoI align. Since the 2 × 2 output grid does not fit the RoI pixel values (background grid) perfectly,
each cell in the grid covers parts of multiple feature map pixels. To account for all of them, four points (red dots)
are sampled in each cell. For each point, we locate the four neighboring pixel centers and interpolate the values.
With four computed values in each cell we can now perform max pooling to obtain the desired 2 × 2 output.

ground and potential objects, the first output of the current stage further classifies the
objects as a specific class (e.g. dog, cat, etc.). A deeper sub-network is needed for this
finer classification. Note also that this network can still predict an RoI as background, in
which case it will be discarded.

The second output for each RoI is a further refinement of its bounding box. This
works similar to the RPN but should produce more accurate bounding boxes due to better
abstracted features, i.e. knowledge about the correct class.

Segmentation Masks

The network constructed this far is essentially Faster R-CNN [46] (with the addition of
RoI align), an algorithm suitable for object detection. The main contribution in Mask R-
CNN (besides RoI align) is an additional network branch to compute segmentation masks.
The branch is a fully convolutional network running in parallel with the prediction of class
label and bounding box offset. To keep the computational complexity low, small masks of
size 28 × 28 are generated. The masks are, however, soft masks (i.e. 0 − 255 rather than
binary 0/1), meaning they incorporate more information and can be scaled up to full sized
binary masks during inference.

In many networks the class label is dependent on the generated masks, meaning dif-
ferent classes compete in forming the segmentation mask. This can lead to segmentation
masks "averaged" over multiple classes. Mask R-CNN, on the other hand, generates masks
individually optimized for each and every class, and uses the result from the independent
class prediction branch to keep the correct mask only. The authors found this decoupling
to be important for good instance segmentation results.
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Complete Network

The complete Mask R-CNN network is schematically illustrated in Figure 3.7. The pipeline
can be summarized as follows: A backbone network abstracts useful features and reduces
the spatial size. This network can be any typical classification network, but usually a fea-
ture pyramid network (FPN) is used for better scale invariance. A region proposal network
(RPN) takes these features as input and generates regions of interest (RoIs). As the RoI
bounding boxes have different size and aspect ratios, we use a method called RoI align to
properly scale and align them. From here we have two separate branches. The first branch
puts a class label to each RoI, as well as refines the precise location of the bounding boxes.
The second branch uses a fully convolutional network to, for each RoI, predict a segmen-
tation mask for each class. The two branches are in other words decoupled, allowing the
second branch to suggest masks for all classes, instead of them competing against each
other to create one "averaged" mask. Finally, the classification result from the first branch
is used to discard all but the correct class mask.

Prior to Mask R-CNN, MNC [9] and FCIS [35] were considered state of the art for
instance segmentation, winning the COCO 2015 and 2016 challenges, respectively. Mask
R-CNN outperform both by a significant margin using all common evaluation metrics.
Furthermore, Mask R-CNN is very streamlined compared to most alternatives.

Mask R-CNN is an interesting candidate for construction damage segmentation. First,
as each image in the dataset contains information about the shape of every instance, the
network is provided a lot more information to learn characteristic features. In a way, the
dataset is increased from 608 examples (# images) to 4631 examples (# instances). Per-
formance of Mask R-CNN may therefore exceed PSPNet by a great margin. On the other
hand, Mask R-CNN also has to learn how to separate corrosion into individual instances.
As will be discussed in Section 4.1, this was found difficult to even do manually, and
hence the performance may also be significantly worse than for semantic segmentation
algorithms.

Second, many of the use-cases outlined in Section 3.1 requires the inspection system to
have a concept of instances, e.g. to ensure a damage is only counted once when estimating
area. In other words, instance segmentation is likely needed to reach the full potential of
image segmentation for the purposes of automating industrial inspections.
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Chapter 4

Methods and Implementation

This chapter details methods and implementation used in this master project. Section 4.1
presents how a dataset for image segmentation was collected, annotated and structured.
Also given is a statistical analysis of the dataset. Section 4.2 then explains the methods
of data augmentation used to compensate for the relatively small dataset size. Section 4.3
reviews commonly used evaluation metrics for image segmentation and gives reasons for
what was used in this project. This is followed by an outline of the experiments con-
ducted in Section 4.4, whose results are presented in Chapter 5. Finally, in Section 4.5,
implementation details for each tested network is given.

4.1 Dataset

A total of 608 images were used in this project. This section explains how the images were
collected, annotated and structured.

4.1.1 Data Acquisition

Holm [23] was provided 240 000 images from The Norwegian Public Roads Administra-
tion for his master thesis work on image classification using machine learning. The images
were taken during real inspections and contained a wide variety of different scenes. Holm
manually evaluated and categorized 7523 of these images into five folders; paint flaking,
white corrosion, red corrosion on steel constructions, corrosion on reinforcement bars and
no corrosion. Due to very few images found for the class white corrosion, it was discarded
and only the four remaining classes were used for training. This dataset is the starting
point for this master project as well but cannot be used directly as it does not contain any
segmentation masks.

4.1.2 Annotation Software and Number of Classes

To produce segmentation masks for a set of images, dedicated annotation software is
highly recommended. Labelbox [50] offers a complete solution for image annotation and
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was chosen for a number of reasons: Up to 2500 images it is free to use, has rich annota-
tion tools and is web based with all data stored in the cloud, allowing working from any
computer at any time. Additionally, multiple users can work on the same dataset (feature
not used) and it provides statistics of the annotation process, such as total time spent.

Ideally, we would want detailed segmentation masks for all objects in the images, e.g.
corrosion, reinforcement bars, metal constructions, concrete, cracks in concrete, and so
forth. Annotating a small portion of images with this level of detail was quickly revealed
too time consuming: First, metal constructions tend to have very complex shapes (wires,
beams, bolts, fences, etc.) tedious to outline. Second, as metal and concrete are often
painted, the surfaces may look very similar. Consequently, it was very difficult to annotate
all areas in the images with certainty. If even a human annotator finds it difficult, it for
sure will be difficult to teach a neural network the difference.

Fortunately, general corrosion on steel has a characteristic red color and is easier to
detect. Furthermore, corrosion is, by far, the most important type of damage to detect dur-
ing inspections. It was therefore chosen to continue only with this one class. 2557 images
were collected by Holm for this class and hence uploaded to Labelbox. The Labelbox
annotation interface is shown in Figure 4.1.

Figure 4.1: Interface of Labelbox [50] used for image annotation.

4.1.3 Image Annotation

With just one class the segmentation masks are binary; all pixels surrounded by a drawn
polygon correspond to corrosion, whereas all remaining pixels are to be interpreted as a
neutral class, i.e. background. For implementation reasons it is useful to also count the
background class as a distinct class. It will in the following therefore be referred to two
classes, but keep in mind we are just considering corrosion versus not corrosion.

For semantic segmentation, all corroded pixels can be segmented as one instance, i.e.
as the union of a set of polygons. For instance segmentation, however, we need to divide
the damages into multiple instances. In typical segmentation problems this is straight
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forward. A person, for instance, is very well defined; the annotated instance should contain
the apparent parts of a head, a body, two arms and two legs. Similarly, a ball should
have a circular shape and a door is an (often skewed) rectangle with well-defined edges.
Corrosion damages, on the other hand, is much more challenging to annotate.

Challenges Related to Annotating Corrosion Damages

First and foremost, it can be challenging to decide what is really corrosion and what is
dirty brown/red-like surfaces. An example is shown in Figure 4.2a. Furthermore, corro-
sion has a tendency to smudge onto surrounding areas, for instance covering concrete with
corrosion. The smudged areas are not damaged themselves but are still visually corroded.
An example is shown in Figure 4.2b. Similarly, the boundaries between corroded and un-
corroded areas are often smooth/gradually changing. An example is shown in Figure 4.2c.
With no sharp edges, it is very difficult to decide where the annotation should start and
end.

Next, corrosion damages are not "objects" as in the typical interpretation of the word.
Consequently, there are few to none shape characteristics defining a corrosion damage.
The damages can take on all sorts of shapes and sizes, making it difficult to distinguish
individual instances. In fact, a general definition of an instance of corrosion is practically
impossible to make. Figure 4.2g shows an example in which it is obvious to consider
three distinct instances, whereas in the other examples there are many ways to separate
instances.

Finally, a corroded area is often not completely and evenly corroded. It may contain
scattered corrosion, as shown in Figure 4.2h, and creating detailed masks only contain-
ing true corrosion is tedious and impractical. Similarly, some images have areas heavily
corroded, with lighter corrosion surrounding it. An example is shown in Figure 4.2i. This
will either lead to instances with varying degree of intensity or instances surrounding other
instances, depending on how annotation is performed.

Annotation Solutions Opted for

There is no one correct solution to the above issues. It is important, however, to be consis-
tent and to choose segmentation masks useful for machine learning algorithms.

Dirty/brown/red surfaces were excluded as best as possible. Since missing a damage
is worse than reporting a few excess damages, a fairly liberal approach was chosen in
which cases of doubt were annotated as corrosion. For the same reason, mask boundaries
were drawn to contain as much corrosion as possible. This was also chosen to ensure light
corrosion was detected.

Areas with smudged corrosion were annotated as corrosion for two reasons: First,
it was difficult to determine where the damage ends, and the smudge begins. Second,
as smudged areas are visually similar to true corrosion, it would likely be confusing for
machine learning algorithms to learn the difference.

Separating corroded areas into instances was perhaps the most challenging task. Due
to the wide range of different shapes and sizes, it was difficult to be consistent. In fact,
consistency is not well defined in this case. Corroded areas with lots of background in
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(a) Red/Brown Surfaces. (b) Smudged Corrosion. (c) Smooth Boundaries.

(d) Corresponding Mask to (a). (e) Corresponding Mask to (b). (f) Corresponding Mask to (c).

(g) Well-Defined instances. (h) Scattered Corrosion and Un-
defined Number of Instances.

(i) Heavy Corrosion Surrounded
by Light Corrosion.

(j) Corresponding Mask to (g). (k) Corresponding Mask to (h). (l) Corresponding Mask to (i).

Figure 4.2: A selection of different types of images annotated and corresponding instance segmentation masks.
Colors are randomly assigned to instances for visibility, and have no further interpretation.
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between were separated as distinct instances. Corroded areas were also considered sepa-
rate instances if their sizes were similar and boundaries sharp. Continuous corroded areas
were considered one instance, even if the resulting shape was very wide or tall (e.g. metal
beams), unless it was evident from the image that the damage is spread over different
objects (e.g. across two neighboring beams).

Regarding scattered corrosion, small uncorroded areas within larger-region segmenta-
tion masks were accepted. This was necessary to maintain a reasonable annotation time
and was considered not harming training of machine learning models. Very small corro-
sion dots not part of a cluster or scattered region were ignored for the same reason and to
reduce training time for instance segmentation.

Finally, heavy corrosion was annotated as one instance, with surrounding light cor-
rosion as a separate instance, but only when the difference/boundary was strong/obvious.
This decision was made as it was considered the best for machine learning algorithms (e.g.
edges are very important features).

Figure 4.2 shows examples of the above-mentioned challenges with corresponding
segmentation masks indicating the solutions chosen. Note that for semantic segmentation,
all instance masks were merged to one, eliminating some of the aforementioned problems.

4.1.4 Quality Control

During annotation, produced segmentation masks may be slightly inaccurate, inconsistent
or corroded areas missed. For better quality control, all images were therefore reviewed
four weeks after the final image was annotated (12 weeks after the first image was anno-
tated).

Roughly one third of the images were altered before approval. Although seemingly a
lot, most changes just fixed inconsistency regarding what is considered worth annotating
and not, usually in the direction of including more smudged corrosion. No major annota-
tion mistakes were revealed in the process. Whether the quality control increased actual
performance is uncertain as the non-reviewed dataset was never systematically tested. It
is, however, reasonable to assume that (1) training becomes slightly easier with the up-
dated dataset, and (2) that evaluation metrics yield more accurate scores due to greater
consistency.

4.1.5 Downloading and Splitting Dataset

Labelbox stores all annotations as a json file, i.e. a structured text file, according to the
format in the below (simplified) listing: The file is a list with structured information for
each annotated image. The first entry, for each image, is a unique ID followed by a link
to the original image. The field "Label" then contains a list named "objects" containing all
instances for that image. For each instance, a unique ID, its class value (in our case always
"corrosion") and a URL to the instance mask is provided.

[ {
" ID " : " l a b e l _ i d " ,
" Labe led Data " : " u r l t o o r i g i n a l image " ,
" Labe l " : {
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" o b j e c t s " : [ { " f e a t u r e I d " : " ID1 " ,
" i n s t a n c e U R I " : " u r l t o i n s t a n c e mask 1"
" v a l u e " : " c l a s s f o r i n s t a n c e 1"}

{" f e a t u r e I d " : " ID2 " ,
" i n s t a n c e U R I " : " u r l t o i n s t a n c e mask 2"
" v a l u e " : " c l a s s f o r i n s t a n c e 2 " } ] ,

}
} ]

A python script was used to download the annotated dataset using the json file, see
Appendix B. A folder was created for each image, with names corresponding to the IDs
in the json file. For instance segmentation, all instance masks were saved as separate PNG
files in a sub-folder below the original image. For semantic segmentation, all instance
masks for an image were combined and saved as one image.

Dividing the dataset into training, validation and test sets was done using command line
operations. 50 images were randomly selected for testing, 50 images for validation and the
remaining 508 images were used for training. The entire pipeline from data acquisition to
a ready-to-use dataset is illustrated in Figure 4.3.

No corrosion

Paint flaking

Corrosion on steel

Corrosion on rebars

White corrosion

.json.py

image ID X

image_x.png

masks

mask_1.png

mask_2.png

Images were taken during industrial

inspections
Holm manually classified the

images into five folders

Images of corrosion on steel

were uploaded to LabelBox

for annotation

Annotations were stored as 

URLs in a .json file

A python script downloaded

the annotated dataset

Figure 4.3: Pipeline from data acquisition to dataset with annotated images ready for segmentation algorithms.
The resulting file structure shown is for instance segmentation. For semantic segmentation, the python script
merged all masks to one PNG file.

4.1.6 Dataset Summary and Analysis

The final dataset consists of 608 images with a total of 4631 instances. The entire dataset
took 43.3 hours to construct (effective time, excluding breaks), averaging to 4.3 minutes
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per image. An additional 8 hours were spent during the quality control review. Table 4.1
summarizes statistics of the annotated dataset.

Table 4.1: Metadata statistics of the annotated dataset.

# Images # Instances Corroded Pixels Avg. Image Size Avg. Aspect Ratio

608 4631 19.1 % 4.46 MP 1.32 ≈ 4 : 3

Analyzing the distribution of percentage corroded area in the images yields the his-
togram shown in Figure 4.4. On average 19.1 % of the pixels in the dataset were annotated
as corroded. This imbalance allows a network to predict each and every pixel as back-
ground and still obtain an unreasonably high accuracy of 80.9 %. Section 4.3 discusses
other possible evaluation metrics accounting for this.
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Figure 4.4: Distribution of percentage corroded pixels in an image in the dataset. On average, each image in the
dataset has 19.1 % corroded pixels.

The distribution of the instance sizes, relative to the size of their images, is shown in
Figure 4.5. The instances average to no more than 2.53 % relative the image frame (note
the logarithmic y-axis), i.e. most instances are very small. The heavy concentration of
small damages means instance segmentation algorithms might learn this as a characteristic
feature for corrosion damages. That is, larger damages may perform worse than small
damages. On the other hand, larger instances are easier to "see" due to larger number
of features (edges, red/brown surface, etc.). Additionally, some small damages might
implicitly get removed if images are scaled down during training. In conclusion, the size
imbalance is not expected to cause any major problems. After all, Mask R-CNN uses a
feature pyramid network for the very purpose of detecting instances of different scales.

608 images are rather few by modern machine learning standards. For instance, 5000
images were used by Zhao, Zhang, and Huang to detect moisture marks using Mask R-
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Figure 4.5: Distribution of instance sizes as percentage of the image size. On average, each instance in the dataset
is 2.53 % of the size of its image. Please note the logarithmic y-axis.

CNN [59] and 9000 images were used in the 2018 IEEE road damage detection competi-
tion. Commonly used datasets with everyday objects, such as PASCAL VOC 2012 [12],
Cityscapes [8], ADE20K [61] and COCO [37] contain up to 120 000 annotated images.

On the other hand, binary image segmentation should allow for much smaller datasets.
ADE20K, for instance, contains 3196 classes which is a much more challenging task. Ad-
ditionally, the corrosion dataset is highly augmentable, as will be discussed in Section 4.2.
Extensive data augmentation can vastly and effectively increase the dataset size. 608 im-
ages might therefore be feasible.

As annotating images is very time consuming, it was there chosen to settle with a 608-
image dataset and rather focus on good data augmentation methods. Two key points should
be noted, however. First, if in further work the dataset is extended with more classes, more
images are likely needed. Second, to avoid overfitting on the small dataset, small network
models should be considered. See Section 4.5 for details.

4.2 Data Augmentation

Artificial data augmentation can increase the effective number of images used for training.
Keras has support for some basic data augmentation out of the box, but a better option is
the Python library imgaug [28]. It supports more than 100 different image transformations,
each of which has one or more parameters to tune its mode and intensity. Additionally,
imgaug has support for combining transformations in smart ways, e.g. sometimes per-
forming horizontal flipping and always performing either random rotation or brightness
adjustments or both.
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4.2.1 Standard Method

Finding an optimal augmentation scheme is impractical as the search space is huge. A
natural starting point is researching what others have done with success. However, little
research is found on image augmentation for the type of images used in this project. Most
research use very restrictive data augmentation, and the actual performance gain is very
rarely reported. The most commonly used augmentations on datasets somewhat similar to
the one used in this project is horizontal flipping [59, 5, 53] and brightness, contrast and
grey scale adjustments [56, 3]. Furthermore, most experiments in the literature (not limited
to damage-like datasets), use only a one-stage data augmentation method, i.e. constant data
augmentation performed to all images for the entirety of the training process.

Only performing flipping and slight color adjustments, as described above, is very con-
servative, and the corrosion dataset may benefit from heavier augmentation approaches.
Finding the right balance between heavy augmentations and light augmentations, how-
ever, is difficult. Too strong augmentations can "break" the images, whereas too weak
augmentations may have no effect and can increase the chances of overfitting. Extensive
and time-consuming experiments, with lots of hyperparameter tuning, are needed to find
the one augmentation process performing best. Additionally, different network models
may have different optimal augmentation configurations, meaning the search process must
be performed individually for each network.

4.2.2 Proposed Method

A different solution is therefore proposed in this thesis: First train the neural network with
heavy augmentations, followed by fine-tuning with little or no augmentation. The hy-
pothesis is that a two-stage data augmentation scheme will reduce overfitting and increase
performance. Similar methods may have been adapted before, but no references are found
in the literature.

The heavy augmentations, although perhaps breaking some of the images, should pro-
duce a useful starting point for the weights of neural networks. In fact, training on artifi-
cially augmented images, followed by fine-tuning without augmentations, can be viewed
as a method of transfer learning. This comparison was very briefly drawn by Mikołajczyk
and Grochowski [41].

An objective with a heavy/light two-stage augmentation scheme is for it to be general
and applicable to any highly augmentable datasets. This would remove the need for in-
dividually tuning the augmentation configurations for different networks and datasets. In
this thesis, only different networks are tested. Investigating how the scheme generalizes to
other datasets is suggested as further work.

Heavy data augmentation will not replace standard transfer learning. Rather it is an
intermediate step between general images and corrosion images. The majority of training
epochs (e.g. 30 – 100) should be performed with heavy augmentations as this dataset is
more difficult. Training is then continued with little or no augmentation for relatively few
epochs (e.g. 1 – 30).

There are a number of ways to construct a generic, heavy augmentation scheme. The
transformations used in this project was based on examples and default values in the im-
gaug documentation [28]. The resulting full, detailed augmentation scheme used in this
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thesis can be found in Appendix C. An overview of applied transformations is given below.

Geometric Transformations

Geometric transformations are applied identically to both the image and the corresponding
segmentation mask. The following geometric transformations were used in the heavy
augmentation scheme.

• Horizontal/Vertical Flipping: As corrosion damages have no directional orienta-
tion, we can randomly flip images both horizontally and vertically. This was applied
to each image 50 % of the time.

• Rotation: Correspondingly, damages can be rotated. With random flipping both
horizontally and vertically, we need only randomly rotate images ±45◦ to effectively
obtain full rotational freedom. Rotation was applied 50 % of the time.

• Scale: Damages can be of any size. To increase scale invariance, images were
randomly scaled to 80 %–120 % of their original size 50 % of the time. Scaling was
applied individually per axis (horizontally and vertically).

• Translation: Translating a damage, either horizontally, vertically or both, can in-
crease positional invariance. Images were therefore randomly translated ±20 % rel-
ative to the height/width of the image, individually per axis. This, too, was per-
formed 50 % of the time for each image.

• Shear Mapping: Stretching rectangular images to a parallelogram alters the shape
of the damage and can increase robustness of the model. Shearing images randomly
in the range ±16◦ was applied 50 % of the time.

Some of the above transformations generate new pixels, e.g. to fill the empty space in
corners when rotating an image. New pixels were assigned a solid random color.

Non-Geometric Transformations

Non-geometric transformations alter the pixel values and can increase robustness to dif-
ferent light conditions, contrast levels, color variations, etc. Such augmentations are only
applied to the images and not the segmentation masks. The following non-geometric trans-
formations were used in the heavy augmentation scheme. In the following, "sometimes"
means that a random selection of up to 5 of the below listed transformations were applied
to each image.

• Brightness: As images during inspection can be taken under vastly different light-
ing conditions, it is beneficial to alter the brightness of images. This was obtained
by sometimes multiplying either all pixel values or random subareas by a value in
the range 0.5–1.5.

• Add: Somewhat similar to brightness, sometimes a random value in the range −10
to 10 was added to all pixels. Half the time, the value was sampled individually per
channel (RGB).
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• Contrast: For similar reasons, adjusting the contrast in images is beneficial. Linear
contrast was therefore sometimes used, half the time individually per channel.

• Hue and Saturation: Transforming images from the RGB color space to HSV (hue,
saturation, value) allows for easy change of color (hue) and its intensity (saturation).
Adjusting these values and transforming back to RGB can increase robustness to
color variations. Changes of ±20 % were sometimes applied.

• Grayscale: Similar to hue/saturation, further robustness to colors can be achieved
by sometimes randomly converting images partly to grayscale.

• Blur: To simulate areas out of camera focus, blur can be added. Sometimes either
Gaussian, average or median blur was applied with moderate, random intensity.

• Invert: Sometimes image channels were inverted with a probability of 5 % (sampled
individually per channel), i.e. pixel value v was changed to 255 − v.

• Gaussian Noise: Robustness to noise can be achieved by sometimes randomly
adding noise. Half the time, the noise was sampled individually per channel and
pixel, the other half of the time it was only sampled once per pixel.

• Edge Detection: Edges are highly relevant features for neural networks. Sometimes
a method of edge detection was applied, highlighting the edges in images.

• Sharpen: Sometimes images were sharpened, i.e. enhancing the definition of edges.
This is somewhat similar to edge detection above but is a more natural approach as
the edges are not artificially highlighted.

• Emboss: Emboss is yet another method of enhancing the appearance of edges. This
was sometimes applied.

• Superpixel: Sometimes converting images to their superpixel representation (i.e.
grouping pixels based on similarity, effectively reducing the resolution of the color
space) was applied 50 % of the time. This effectively creates a cartoon-like effect,
increasing robustness to image resolution.

• Dropout: Sometimes adding artificially small black boxes may remove common
features of a damage, forcing neural networks to also pay attention to less important
features.

Figure 4.6 shows a few results of the heavy data augmentation scheme on three exam-
ple images.

Tested Augmentation Schemes

The strength of the heavy data augmentation is easily adjusted by two simple parameters;
number of non-geometric transformations performed, and the probability of performing a
geometric transformation. Adjusting individual transformation parameters/intensities is of
course also possible but contradicts the purpose of this being a general scheme.
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(a) Example 1.

(b) Example 2.

(c) Example 3.

Figure 4.6: Heavy data augmentation scheme on three example images. Many of these results are too heavily
augmented for regular use in neural networks. However, training on such images lays a foundation for further
fine-tuning with little or no data augmentation.
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Chapter 5 shows results of using the above described heavy data augmentation fol-
lowed by light augmentation in the form of horizontal and vertical flipping. A semi-heavy
version in which the strength was reduced was also tested. Finally, training with flipping
only and various augmentations considered realistic at low intensities, both for the entire
training process, was tested. See Appendix C for details.

4.3 Evaluation Metrics

In order to evaluate the performance and usefulness of different methods, we need good
evaluation metrics. A number of options are available for image segmentation. This sec-
tion first discusses the importance of execution time and memory consumption. The met-
rics accuracy, recall, precision, specificity, Fβ-score and IoU are then defined, and reasons
for what was used in this project is given.

4.3.1 Execution Time

An essential part of evaluating the usefulness of a machine learning model is its run-time.
For real life applications of neural networks, this translates to inference time, i.e. average
or maximum time used to predict a segmentation mask for an image. A road line detection
network for autonomous vehicles, for instance, is useless if inference time exceeds the
time before an action is needed.

Inference time will vary depending on hardware, back-end and implementation, and
is therefore irrelevant on its own. Given the specific configuration at which the inference
time was measured, however, gives an idea of how it will run on different hardware. Fur-
thermore, comparisons between models using the same configurations is a good indication
of relative speed differences. Inference time is therefore reported for each model in Chap-
ter 5.

Training neural networks is a one-time offline process, and corresponding training time
is therefore usually less important. Furthermore, training times vary with dataset size and
complexity of data augmentation methods used. Is therefore not used to evaluate any
model, but still reported for reproducibility reasons and to guide fellow researchers on
what to expect.

4.3.2 Memory Consumption

Similar to execution time, memory constraints can render a neural network model use-
less for a specific target hardware. However, actions can be taken to reduce the memory
footprint with only minor loss in performance, e.g. decrease the batch size, use lower res-
olution images or train a smaller network model. Additionally, installing more memory is
usually easier than to increase the computational capabilities of a system. Memory foot-
print is therefore arguably less constraining than inference time but should still be reported
and taken into consideration when evaluating a model. In this regard, peak memory usage
is the limiting factor and is reported in Chapter 5.
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4.3.3 Prediction Performance

TP, TN, FP and FN

To evaluate the performance of predictions, we must first identify whether a prediction is
correct or not. This is usually done in terms of true positives, true negatives, false positives
and false negatives, defined as follows.

• True positives (TP): Total number of pixels predicted as positive (i.e. corrosion)
that are, in fact, positive. These are correct predictions.

• True negatives (TN): Total number of pixels predicted as negative (i.e. background)
that are, in fact, negative. These are correct predictions.

• False positives (FP): Total number of pixels predicted as positive that are, in fact,
negative. These are incorrect predictions.

• False negatives (FN): Total number of pixels predicted as negative that are, in fact,
positive. These are incorrect predictions.

Positive and negative here refers to whether a pixel belongs to a specific class (positive) or
not (negative). See Figure 4.7 for a visualization of each term in relation to segmentation
masks.

We can now define useful evaluation metrics for classification models. In the follow-
ing, when referring to TP, TN, FP and FN, it is to be interpreted as the total number of
such pixels in the entire dataset.

Accuracy

Accuracy is an intuitively simple metric measuring the proportion of pixels correctly clas-
sified,

Accuracy =
TP + TN

TP + TN + FP + FN
=

# correct pixels
# total pixels

.

Accuracy is a widely used metric. There is, however, a big drawback to accuracy for prac-
tical use. The corrosion dataset, for instance, has 19 % positive pixels and 81 % negative
pixels. We can therefore easily obtain a seemingly good model with 81 % accuracy by
predicting all pixels as negative. We should therefore only use accuracy as a definitive
metric when the target classes are well balanced, thus rendering accuracy unavailing for
the corrosion dataset.

Precision

Precision measures how many of the positively predicted pixels really are positive, relative
to the total number of positive predictions,

Precision =
TP

TP + FP
.

As can be seen from the equation, maximizing precision corresponds to minimizing FPs.
Precision is a good metric when it is important not to report too many FPs. An example
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of such is medical treatment, which can be harmful if the patient really does not have the
assumed disease. Security clearance approval is another example where high precision is
needed. It is, however, trivial to obtain 100 % precision by simply predicting any input as
a negative, e.g. decline any security clearance application or predict no pixel as corrosion.
This is, of course, impractical.

Recall

Recall (also called sensitivity) measures the proportion of positive pixels that are predicted
as positive pixels,

Recall =
TP

TP + FN
.

As can be seen from the equation, maximizing recall corresponds to minimizing FNs.
Recall is a good metric when it is important not to miss any FNs, e.g. when diagnosing
patients. However, similar (but opposite) to precision, a big drawback of recall is that
100 % recall is easily obtained by predicting any example or pixel as a positive.

Specificity

Specificity is the exact opposite of recall, measuring the proportion of truly negative pixels
that are predicted as negative pixels,

Specificity =
TN

TN + FP
.

Similar to precision, maximizing specificity corresponds to minimizing FPs. Specificity
is a less used metric in the context of machine learning compared to precision and recall,
partly because of the Fβ-score discussed below. 100 % specificity is obtained by classify-
ing any pixel as a negative pixel, thus too being a rather useless metric when optimized
alone.

Fβ-score

As seen for precision, recall and specificity above, we should not exclusively optimize
either without taking other metrics into consideration. An attempt to solve this could be
taking the arithmetic mean of precision and recall; (precision + recall)/2. This, however,
often gives unreasonably good scores to models with a big difference in precision and
recall values. As an example, consider the case where a model is to predict the presence of
corrosion in images, using a dataset in which 2 % of the pixels really are corroded. If the
model predicts all pixels as positives (i.e. as corrosion), precision and recall values are,
respectively, 2 % and 100 %, thus giving a mean value of (2 + 100)/2 % = 51 %.

A better solution, the F1-score, is taking the harmonic mean of precision and recall,

F1 = 2 ·
precision · recall

precision + recall
=

2 · TP
2 · TP + FP + FN

.

Applied to the previous example, we get F1 = 2 · 2 · 100/(2 + 100) % = 3.92 %, which is
a much better evaluation of the actual performance. A criticism, however, of the F1-score
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is the fact that it weights precision and recall equally. In many practical scenarios one is
more important than the other. A generalization in which recall is considered β times as
important as precision therefore exists,

Fβ =
(

1 + β2
)

·
precision · recall

(β2 · precision) + recall
.

The most commonly used Fβ-scores are F1 and F2. In the field of image segmentation, the
term dice coefficient is sometimes used instead of F1.

IoU

Intersection over union, IoU, is a very popular metric for object detection and segmenta-
tion. It is particularly useful for instance segmentation as not all pixels contribute to every
instance. As the name suggests, it is defined as the intersection between the ground truth
mask and the predicted mask, divided by the union of the two masks. It can also be defined
in terms of TP, FP and FN as

IoU =
Intersection

Union
=

TP
TP + FP + FN

.

See Figure 4.7 for a visual explanation.

ground truth

prediction

intersection union

TP

TN

FP

FN

Figure 4.7: Visualization of TP, TN, FP, FN, intersection and union between a predicted segmentation mask and
the corresponding ground truth.

Comparing the formulas for IoU and F1, reveals a big similarity. In fact, their values
are always within a factor of two of each other, F1/2 ≤ IoU ≤ F1, and their ratio can be
explicitly stated in terms of IoU,

IoU

F1

=
1

2
+

IoU
2

.

Additionally, for machine learning we can state something even stronger: IoU and F1

are always positively correlated, meaning if model A is better than model B as evaluated
by either metric, model A is also better than model B under the other metric. That is not
to say, however, that the two metrics are equivalent in the sense that whichever to use is
irrelevant. Their difference is apparent when evaluating how much better one model is
compared to another. When averaging the scores over a dataset, IoU tend to penalize bad
predictions more than F1 (since the latter weights TPs more).
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Mean and Frequency Weighted Metrics

The above discussion of evaluation metrics implicitly assumed a specific class was under
consideration. All classes should be accounted for, however. In the case of the corrosion
dataset, we need to calculate IoU for both corrosion predictions and background predic-
tions. These scores can be reported individually, or we can take the mean, referred to as
mean intersection over union (mIoU).

If, however, one or more classes have a relatively low number of ground truth pixels
present in the dataset, mIoU can be somewhat misleading. Assume a model is to segment
white squares with a black border, in addition to corrosion and background. This is a very
simple task, likely yielding 100 % IoU for white box predictions. Even if such boxes were
present in just one image, the score would be 100 % for that class. Effectively, this would
increase the mIoU score by an unreasonable amount.

A solution is frequency IoU (fIoU), in which each class is weighted by their relative
frequency in the dataset when computing the mean. In case of the corrosion dataset, the
two classes are imbalanced (19.1 % vs. 80.9 %), suggesting fIoU is likely a better metric
than mIoU.

Choice of Prediction Evaluation Metrics

In the literature, IoU, and in particular mIoU, is the most common metric for image seg-
mentation. Class-wise IoU and mIoU will therefore be reported for each tested model.
fIoU will also be reported. Since the dataset is imbalanced, fIoU will be emphasized.

When evaluating instance segmentation predictions, all instances were merged to one
and evaluated against the correspondingly merged ground truth mask. This was done for
two reasons. First, although Mask R-CNN predicts many reasonable instance masks, they
do not necessarily match the way instances are separated in the ground truth masks. This
result in unreasonably bad IoU scores. Second, merging instances makes performance of
semantic and instance segmentation models more comparable as they are evaluated on the
same terms. A consequence is that separation of instances is not fully assessed for Mask
R-CNN.

Training, Validation and Test Sets

Models were trained on the training set and performance monitored on the validation set.
The test set, however, was not used until all training configurations were decided, e.g.
number of epochs, augmentation schemes, learning rate, etc. This is important since alter-
ing training parameters to increase validation performance essentially means we indirectly
train on the validation images. Performance on the test set is therefore a better repre-
sentation of true performance, and hence weighted the most in Chapter 5. Gaps between
performance on training data and test data can then be used to see if models are overfitting.

4.4 Experiments

It is interesting to compare state-of-the-art methods for semantic segmentation and in-
stance segmentation for the purposes of corrosion damage detection. From the literature
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review, PSPNet was found a great candidate for semantic segmentation. It has superb
performance without bells and whistles and is relatively easy to understand. Also, open
source implementations are available. Benchmarking other reviewed network models for
semantic segmentation is considered redundant as their performance is expected to be sub-
par relative PSPNet. Mask R-CNN was chosen for much the same reasons as for PSPNet.
Additionally, it is by far the most well-known instance segmentation algorithm.

The following experiments were conducted, whose results are presented and discussed
in Chapter 5.

• Transfer learning: The advantages of transfer learning for the corrosion dataset
was established by training PSPNet for 70 epochs both with and without transfer
learning from ADE20K [61].

• Common data augmentation: Common data augmentation techniques were tested
by training both PSPNet and Mask R-CNN for 70 epochs with flipping as the only
data augmentation.

• Advanced data augmentations: The proposed two-stage augmentation scheme
was evaluated by training both networks for 50 epochs with heavy data augmen-
tation, followed by training for 20 epochs with only horizontal and vertical flipping
as data augmentation. Also tested for PSPNet is the performance of a semi-heavy
version of the same scheme and a composite augmentation scheme with "realistic"
transformations only. The latter was applied constantly to all epochs. See Ap-
pendix C for details on each augmentation scheme.

• Non-corroded images: Finally, prediction masks for selected, difficult images not
part of the corrosion dataset were analyzed. The images contain no corrosion but
has areas with red/brown-like colors easily misinterpreted as corrosion.

4.5 Implementation

This section specifies the implementation of PSPNet and Mask R-CNN, as well as the
system on which the experiments were conducted.

4.5.1 Implementation of PSPNet

The implementation of PSPNet is based on the GitHub repository by Divam Gupta [20].
Parts of the code base had to be updated to work properly with the imgaug library used for
image augmentation. All relevant configuration parameters used are specified in Table 4.2.
PSPNet-50 was chosen over PSPNet-101 as the corrosion dataset is small. ADE20K [61]
was used for transfer learning as it is the most versatile and challenging dataset available
for semantic segmentation. Default values for optimizer, image size and batch size were
used.
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Table 4.2: PSPNet Configuration.

Backbone ResNet-50
Transfer learning dataset ADE20K [61]
Optimizer Adadelta (default, adaptive learning rate)
Image size 473 × 473 (default)
Batch size 2 (default)

4.5.2 Implementation of Mask R-CNN

The excellent implementation by Abdulla [1] available on GitHub was used for Mask
R-CNN. The most relevant network parameters used are listed in Table 4.3. All other
parameters use default values.

Table 4.3: Mask R-CNN Configuration.

Backbone ResNet-50
Transfer learning dataset COCO [37]
Optimizer SGD with momentum (default)
Learning rate 0.001 (default)
Learning momentum 0.9 (default)
Image size 512 × 512
Batch size 1
Max instances per image 50
Detection confidence threshold 90 %

The 50-layer ResNet backbone was chosen for the same reason as for PSPNet. Addi-
tionally, Mask R-CNN has a vast memory consumption, meaning a decreased model size
was beneficial. The COCO [37] dataset was used for transfer learning, as it is de facto
standard for instance segmentation and the only option available. All default parameters
regarding optimizer were used, as initial testing with more advanced optimizers such as
Adam [29] was unsuccessful. The implementation requires the image size to be six times
divisible by 2. The closest such number to 473 (the image size used for PSPNet) is 512
and therefore used for Mask R-CNN. A batch size of 1 was needed in order to not exceed
the memory capacity of the GPU. Limiting the maximum number of instances to predict
per image also decreased the memory footprint. It was opted for a maximum value 50,
half of the default value 100. Finally, a confidence score of at least 90 % was chosen as
the limit for accepting an instance as a positive RoI/prediction. This value was chosen
relatively high since we have only two classes.

Compared to the original Mask R-CNN, which was implemented in Pytorch [13] rather
than Tensorflow [18], the implementation by Abdulla has two main differences. First,
bounding box ground truths are not explicitly provided, but determined on the go as the
smallest box encapsulating the entire instance mask. Second, the Pytorch implementation
used a learning rate of 0.02, which was found too large for Tensorflow as the weights
tended to explode. A learning rate of 0.001 is therefore used instead. Additionally, for
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this project, it was opted for a learning rate schedule halving the learning rate every 10th
epoch to better ensure convergence of the weights. This was not needed for PSPNet as it
uses an adaptive optimizer/learning rate.

4.5.3 System

All experiments were run on the hardware and software versions listed in Table 4.4 and
Table 4.5, respectively. The newest version of Python, v. 3.8, was not compatible with
Tensorflow at the beginning of this master thesis, and hence the older version 3.7 was used.
Similarly, the Mask R-CNN implementation by Abdulla [1] does not support Tensorflow
2.0 (or above), and hence it was opted for version 1.14.0 instead. All packages, drivers
and software were installed and managed in an Anaconda environment.

Table 4.4: Hardware Configuration.

CPU Intel Core i7-6850K (6 cores @ 3.6 GHz)
RAM Corsair 32 GB DDR4 @ 2666 MHz (2 × 16 GB, CL16)
GPU NVIDIA Titan X (Pascal) (12 GB GDDR5X)
Storage (dataset) Seagate Barracuda 1TB SATA HDD @ 7200 RPM

Table 4.5: Software Configurations.

OS Microsoft Windows 10 Home Edition
Python v. 3.7.6
Keras v. 2.3.1
Tensorflow tensorflow-gpu v. 1.14.0
CUDA v. 10.0
CuDNN v. 7.6.5
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Chapter 5

Results and Discussion

This chapter presents and discusses results from conducted experiments. PSPNet is first
reviewed in Section 5.1, followed by Mask R-CNN in Section 5.2. Readers only interested
in the main results may skip to the summary in Section 5.3.

5.1 Results for Semantic Segmentation using PSPNet

This section evaluates PSPNet on the corrosion dataset with and without transfer learning,
and with various data augmentation schemes. Predicted segmentation masks are visualized
and compared in Section 5.3.

5.1.1 Transfer Learning

PSPNet was trained both with and without transfer learning from ADE20K [61]. Resulting
test frequency IoU values are compared in Figure 5.1. Final class-wise IoU, mean IoU and
frequency IoU without and with transfer learning are listed in Table 5.1 and Table 5.2,
respectively.

Table 5.1: IoU for PSPNet trained without transfer learning.

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 94.2 % 76.8 % 85.5 % 90.9 %
Validation 86.8 % 61.2 % 74.0 % 81.2 %
Test 83.0 % 48.9 % 65.9 % 77.1 %

Discussion

Even though ADE20K is very dissimilar to the corrosion dataset, it is reasonable to expect
performance gain from transfer learning. This has to do with basic features, such as edges,
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Table 5.2: IoU for PSPNet trained with transfer learning from ADE20K [61].

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 96.8 % 86.7 % 91.8 % 94.9 %
Validation 90.2 % 65.1 % 77.7 % 84.7 %
Test 92.3 % 65.0 % 78.6 % 87.5 %
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no transfer learning dataset
transfer learning from ADE20K

Figure 5.1: Frequency IoU on test set for PSPNet trained with no transfer learning vs. trained with transfer
learning from ADE20K.

being similar across all types of images. For similar reasons, training should also converge
faster.

Both of these advantages are observed for PSPNet. First, final performance is im-
proved by a significant margin, both on validation and test data. Second, whereas transfer
learning from ADE20K results in a flat curve after roughly 20 epochs, training without
transfer learning never really converges within the 70 epochs. Lack of convergence is also
evident in Table 5.1 revealing a big discrepancy between performance on validation and
test data.

Without transfer learning, weights may at one point be decent by chance, but in the
next epoch be really bad since the weights are not stable. The weight from ADE20K,
however, are already in local minima to begin with, and are therefore more stable. We
may conclude that transfer learning from ADE20K unquestionably increases performance.
Transfer learning is therefore used in all following experiments.

5.1.2 Random Flipping Data Augmentation

PSPNet was trained both using horizontal flipping only, and using both horizontal and ver-
tical flipping. Resulting test frequency IoU values are plotted in Figure 5.2. Comparison
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between performance on training, validation and test sets (using flipping both horizontally
and vertically) are plotted in Figure 5.3. Final class-wise IoU, mean IoU and frequency
IoU are listed in Table 5.3 and Table 5.4.

Table 5.3: IoU for PSPNet trained with horizontal flipping as data augmentation.

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 96.7 % 85.9 % 91.3 % 94.6 %
Validation 90.6 % 66.6 % 78.6 % 85.3 %
Test 91.7 % 62.5 % 77.1 % 86.7 %

Table 5.4: IoU for PSPNet trained with horizontal and vertical flipping as data augmentation.

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 95.3 % 80.1 % 87.7 % 92.4 %
Validation 90.9 % 68.0 % 79.4 % 85.9 %
Test 92.2 % 64.7 % 78.5 % 87.5 %
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Figure 5.2: Frequency IoU on test set for PSPNet trained with horizontal flipping only as data augmentation vs.
both horizontal and vertical flipping as data augmentation.

Discussion

Image flipping is the most commonly used type of data augmentation. Most datasets can
be flipped horizontally without altering the essence of the images or segmentation masks.
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Figure 5.3: Frequency IoU on training, validation and test set for PSPNet trained with horizontal and vertical
flipping as data augmentation.

Vertical flipping is less used as most real-life objects are never present upside down in
normal images. In our case, however, flipping should be applicable both horizontally and
vertically due to the non-directional properties of corrosion damages.

A first observation from Figure 5.2 is that flipping both horizontally and vertically
seems to have a minor positive effect compared to only flipping horizontally. However,
compared to no augmentation in the previous section, no drastic performance gain is ob-
tained with either flipping scheme. This is a somewhat surprising result as the dataset is
increased up to four times its original size.

Lack of improved performance could be caused by three different reasons; (1) the data
augmentation method essentially has no effect on images, (2) we are underfitting or (3)
we are overfitting.

Flipping only produces images with new damage locations, i.e. the shape and size of
damages themselves do not change. The effective dataset size is therefore nowhere near up
to four times increased if the damages in the dataset are already well distributed location-
wise. However, we should still see somewhat improved performance, rendering this cause
unlikely.

Underfitting is also highly unlikely since the dataset used is rather small and PSPNet
is designed for much bigger datasets with many more classes, i.e. PSPNet has more than
enough capacity.

However, this discrepancy between small dataset size and large network capacity has
great potential for overfitting. In fact, this is exactly what is observed in Figure 5.3 as well
as in Table 5.3 and Table 5.4: Whereas performance on validation and test data stagnate
already around epoch 15, performance on training data continuously improve for all 70
epochs. The resulting trained models have tremendous performance on training images
and see no reason to do things differently as these are the only images used to give the
models feedback on performance. The true performance on never-before-seen images is,
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however, much worse.
The best way to handle overfitting is increasing the dataset. This is not possible within

the time frame of this master thesis, and hence left as further work. A different solution is
reducing the capacity of the trained model. However, this was already taken into consider-
ation by using PSPNet-50 rather than the standard, larger PSPNet-101. Different models
with even smaller capacity might be viable but is left as further work as well. A third
option is artificially augmenting the dataset even more. This is tested next.

5.1.3 Composite Data Augmentation

PSPNet was trained using the heavy data augmentation scheme detailed in Section 4.2.
Resulting test frequency IoU values are plotted in Figure 5.4, with corresponding final
class-wise IoU, mean IoU and frequency IoU listed in Table 5.5.

Figure 5.5 further shows a comparison of a wide range of different augmentation
schemes. ”Semi heavy” augmentation refers to the same augmentation scheme as heavy,
but with reduced probability of applying each transformation. ”Light/real” augmentations
refer to a combination of affine geometric transformations and light non-geometric color
changes. See Appendix C for further details of each scheme.

Table 5.5: IoU for PSPNet trained for 50 epochs with heavy data augmentation followed by 20 epochs with light
data augmentation (horizontal and vertical flipping).

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 93.8 % 75.6 % 84.7 % 90.3 %
Validation 89.7 % 66.7 % 78.2 % 84.7 %
Test 91.3 % 63.7 % 77.5 % 86.6 %

Discussion

As was discussed in Section 4.2, the heavy data augmentation scheme alters images a lot,
and maybe so much so that the contents of some images are broken. This could result in
relatively bad classification performance in early epochs and longer convergence times.
This is not a problem, however, as the objective in this stage is to facilitate a better and
more robust starting point for the weights of the network. Good IoU scores are then later
pursued during the light augmentation part of the scheme. This should, hopefully, reduce
overfitting.

Several interesting observations can be made from Figure 5.4. First, convergence is
substantially delayed compared to no augmentation (Figure 5.1) and flipping (Figure 5.3).
This is reasonable as the images are more difficult and varying.

Second, as expected, a performance gain is observed at the 50-epoch mark for both
training and test data. At this point images are easier to segment. As the validation data
only consists of 50 images, the random nature of machine learning might be the reason
why performance on validation data does not experience the same performance boost after
50 epochs.
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Figure 5.4: Frequency IoU on training, validation and test set for PSPNet trained with heavy data augmentation
for 50 epochs followed by 20 epochs with light data augmentation (horizontal and vertical flipping).
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Figure 5.5: Frequency IoU on test set for PSPNet trained with various data augmentation schemes.

Third, and most interestingly, the discrepancy between performance on training and
validation/test data is significantly reduced compared to previous results. In other words,
the heavy augmentation scheme reduces overfitting. This is not to say, however, that actual
segmentation performance on the current dataset is improved. Instead it means that if we
are able to levitate performance on training data, we can expect test data performance to
improve accordingly. Simply put, non-overfitted models are more reliable.

Figure 5.5 compares frequency IoU performance using a number of different aug-
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mentation schemes. As shown, no augmentation scheme improves performance over no
augmentation. As the dataset used is rather small, this is somewhat surprising. On the
other hand, lack of performance gain using data augmentation coincide with multiple ref-
erences in the literature. For instance, no gain using data augmentation was found by the
authors of FCN. Additionally, none of the reviewed papers in Chapter 3 used extensive
data augmentation beyond flipping, slight rotations and minor color/contrast adjustments.

We can conclude that data augmentation can be used to reduce overfitting on the corro-
sion dataset. For better performance on test data, however, we need a bigger dataset or an
improved algorithm. Introducing more classes for different types of construction damages
will likely better utilize the capacity of PSPNet. This is suggested as further work

5.1.4 Inference Time and Memory Footprint

Peak memory usage, average inference time per image and average training time per epoch
for various data augmentation schemes are listed in Table 5.6.

Table 5.6: Peak memory usage [GB], inference frame rate [img/s] and average time per epoch [s] for training
PSPNet on the corrosion dataset using various data augmentation schemes. Inference and training were per-
formed on a Titan X (Pascal) GPU with 2 image batch size, see Section 4.5 for details.

Memory Inference No Augmentation Flipping Light/Real Heavy (stage 1)

10 GB 3.7 img/s 106 s 107 s 410 s 411 s

Discussion

Training times of PSPNet on the corrosion dataset using various data augmentation schemes
are reported for reproducibility reasons and to guide fellow researchers on what to expect.
No further discussion of training times is considered relevant as this is a one-time offline
process dependent on dataset size, data augmentation scheme, etc.

As for memory usage, 10 GB fits on most modern, high-end GPUs (Titan X (Pascal),
for instance, has 12 GB video memory). Such graphics cards, however, are usually rather
large and heavy, meaning a UAV might not be able to carry one. A solution could be remote
computation at a central computer or using an even smaller network. The former solution
will require superb band-with and response time of the wireless connection, whereas the
latter might decrease performance.

Inference time (time to predict segmentation masks), although highly hardware-depen-
dent, is of great importance. When averaged over the entire dataset, PSPNet predicts 3.7
segmentation masks per second on average. This is quite far from standard video frame
rate of 24 images per second, even though inference is run on a high-end GPU. It should
be noted, however, that PSPNet was never designed for real-time predictions. A larger
frame rate is achievable using images of lower resolution, but likely at the cost of lower
classification performance. Another solution is using networks specifically designed for
real-time video segmentation. Related work has obtained more than 100 frames per second
while maintaining a decent base level of accuracy [7].
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5.2 Results for Instance Segmentation using Mask R-CNN

This section evaluates Mask R-CNN on the corrosion dataset using various data augmen-
tation schemes. Results for Mask R-CNN follow the same structure as for PSPNet. Parts
of the discussions in this section are therefore brief. Predicted segmentation masks are
visualized and compared in Section 5.3. Transfer learning from MS COCO [37] was used
in all experiments.

5.2.1 No Data Augmentation

Mask R-CNN was first trained without any data augmentation to define a performance
base line. Resulting test frequency IoU values are plotted in Figure 5.6. Final class-wise
IoU, mean IoU and frequency IoU are listed in Table 5.7.

Table 5.7: IoU for Mask R-CNN when trained without data augmentation.

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 94.7 % 78.9 % 86.8 % 91.7 %
Validation 88.0 % 57.1 % 72.5 % 81.3 %
Test 89.5 % 54.4 % 72.0 % 83.4 %
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Figure 5.6: Frequency IoU on training, validation and test set for Mask R-CNN trained with no data augmenta-
tion.

Discussion

It is evident from Figure 5.6 that the network is severely overfitting. Whereas performance
on training data continuously improves for the first 60 epochs before stagnating, perfor-
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mance on validation and test data never really increase after the first few epochs. After 50
epochs, the weights in the network seem to have stabilized to a degree where validation
and test data performance no longer oscillate between epochs. At this points, frequency
IoU on the training set is approximately 13 % higher than for validation data, a huge gap
indicating the network struggles to generalize.

The difference between frequency IoU on validation and test data in Figure 5.6 may be
explained by the fact that more pixels contain background in the test set compared to the
validation set, and that background IoU on the test set is higher than for the validation set.
Additionally, small variations are to be expected when the dataset size, and particularly
the size of the test and validation set, are small. The discrepancy should therefore not be
emphasized.

As discussed for PSPNet, we are dependent on more images, better networks or better
data augmentation to reduce overfitting and hopefully increase test performance. The next
section therefore tests random flipping as data augmentation.

5.2.2 Random Flipping Data Augmentation

Mask R-CNN was trained with horizontal and vertical flipping as data augmentation. Re-
sulting frequency IoU values are plotted in Figure 5.7. Final class-wise IoU, mean IoU
and frequency IoU are listed in Table 5.8.

Table 5.8: IoU for Mask R-CNN when trained with horizontal and vertical flipping as data augmentation.

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 92.7 % 70.4 % 81.5 % 88.5 %
Validation 87.6 % 58.6 % 73.1 % 81.3 %
Test 90.2 % 58.7 % 74.4 % 84.7 %

Discussion

We see from Table 5.8 that using flipping as data augmentation decreases overfitting com-
pared to no augmentation (Table 5.7). The difference between validation and training
frequency IoU is reduced from 10.4 to 7.2, and corresponding numbers for the test set is a
reduction from 8.3 to 3.8.

Similar to the previous section, when training without any data augmentation, there is
a rather big discrepancy between validation and test performance. A similar explanation
applies to Figure 5.7, but it is somewhat surprising that flipping does not seem to decrease
the gap. In fact, the gap is enlarged by 1.3 percentage points. This could indicate that
flipping enhances the networks certainty in cases where it is actually incorrect. On the
other hand, as discussed earlier, varieties are to be expected when the validation and test
set each contain only 50 images.

The main cause of the overfitting reduction is training IoU being lower. Essentially,
the artificially increased dataset size makes it harder for Mask R-CNN to ”remember”
seen images, and hence the resulting performance is more reliable. What is particularly
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Figure 5.7: Frequency IoU on training, validation and test set for Mask R-CNN trained with horizontal and
vertical flipping as data augmentation.

interesting, however, is that actual performance is also increased with flipping as data
augmentation. That is, for PSPNet data augmentation was only found to reduce overfitting,
but for Mask R-CNN both validation and test performance is increased using flipping. A
possible explanation is that the real benefits of data augmentation are more prominent for
larger datasets with more varying examples. In terms of number of images, the dataset
used for Mask R-CNN is equally large as the dataset used for PSPNet, but in terms of
training examples the number is vastly increased if we consider each instance a separate
image.

The model still overfits more than desired, however. Further data augmentation is
therefore tested in the next section.

5.2.3 Composite Data Augmentation

Mask R-CNN was trained with the heavy data augmentation scheme detailed in Sec-
tion 4.2. Resulting frequency IoU values are plotted in Figure 5.8. Final class-wise IoU,
mean IoU and frequency IoU are listed in Table 5.9.

Table 5.9: IoU for Mask R-CNN trained for 50 epochs with heavy data augmentation followed by 20 epochs
with light data augmentation (horizontal and vertical flipping).

Dataset Background IoU Corrosion IoU Mean IoU Frequency IoU

Training 92.0 % 68.0 % 80.0 % 87.4 %
Validation 87.9 % 60.9 % 74.4 % 82.0 %
Test 89.9 % 56.5 % 73.2 % 84.1 %
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Figure 5.8: Frequency IoU on training, validation and test set for Mask R-CNN trained with heavy data augmen-
tation for 50 epochs followed by 20 epochs with light data augmentation (horizontal and vertical flipping).

Discussion

Yet again the heavy data augmentation scheme is shown to reduce overfitting. The dif-
ferences between training performance and validation/test performance in Figure 5.8 are
significantly smaller compared to no augmentation (Figure 5.6) and random flipping (Fig-
ure 5.7). This corresponds well with results for PSPNet using the same data augmentation
scheme. Furthermore, a performance boost similar to for PSPNet occurs at the 50 epochs
mark on training and test data. Validation performance remains roughly constant even
after switching to light augmentation, also corresponding well with the somewhat odd
validation behavior discussed earlier.

Similar to flipping, although not as prominent, the heavy data augmentation scheme
increases test performance compared to no augmentation. Combined with significantly
less overfitting, it is easy to argue that the heavy data augmentation scheme is very useful
for Mask R-CNN on the corrosion dataset.

It would be interesting to further investigate how the heavy data augmentation scheme
would facilitate even larger or more complex dataset with more classes. Due to limited
time of the master thesis, this is suggested as further work.

5.2.4 Inference Time and Memory Footprint

Peak memory usage, average inference time per image and average training time per epoch
for various data augmentation schemes are listed in Table 5.10.
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Table 5.10: Peak memory usage [GB], inference frame rate [img/s] and average time per epoch [s] for training
Mask R-CNN on the corrosion dataset using various data augmentation schemes. Inference and training were
performed on a Titan X (Pascal) GPU with 1 image batch size, see Section 4.5 for details.

Memory Inference No Augmentation Flipping Heavy (stage 1)

10 GB 1.4 img/s 1750 s 1780 s 1720 s

Discussion

As seen in Table 5.10, Mask R-CNN is a computationally demanding network. After
all, it consists of four sub-networks, each of which is relatively large. The main reason
training Mask R-CNN is considerably slower than PSPNet, however, is that each instance
is provided as a separate png file. That is, an image with spatial size H × W annotated
with K instances constitutes a H × W × K input matrix, i.e. K times as large as a
corresponding image for semantic segmentation.

Since PSPNet is much more efficient than Mask R-CNN, yet still fairly slow, it is obvi-
ous that more research is needed to obtain good classification performance with reasonable
inference speed.

5.3 Comparison and Summary of Results

5.3.1 Comparison of Predicted Segmentation Masks

IoU is a number representation of performance. More interesting, perhaps, is the actual
predicted segmentation masks. Prediction masks for both Mask R-CNN and PSPNet when
trained with the heavy data augmentation scheme are shown in Figure 5.9 along with
corresponding raw images and ground truth masks. Furthermore, Figure 5.10 compares
predicted segmentation masks for difficult images containing no corrosion.

Discussion

It is evident from Figure 5.9 that PSPNet is more aggressive than Mask R-CNN, i.e. it has
greater recall. For PSPNet, any output feature map pixel greater than 0.5 is considered
corrosion, whereas for Mask R-CNN a damaged area must first be considered a region of
interest with sufficiently large probability. In this thesis, a confidence threshold of 90 %
was chosen, meaning higher recall for corrosion is easily obtained for Mask R-CNN by
reducing the required RoI acceptance probability. Doing so, however, might increase the
number of false positives. Furthermore, accepting more RoIs can result in an increased
number of instances rather than a more aggressive approach on existing instances. This is
undesirable as Mask R-CNN already has a tendency to construct unnecessary many and
complicated instances. The first three examples in Figure 5.9, for example, have embedded
instances where the ground truth only has one instance.

As discussed in Chapter 4, defining and distinguishing corrosion instances is difficult.
Still, Mask R-CNN seems to correspond well with the ground truth instances. Although
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image ground truth Mask R-CNN PSPNet

Figure 5.9: Predicted segmentation masks for Mask R-CNN and PSPNet, trained with the heavy data augmen-
tation scheme, compared with corresponding raw image and ground truth. Instances are assigned random colors
with no further interpretation.
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image ground truth Mask R-CNN PSPNet

Figure 5.10: Predicted segmentation masks for Mask R-CNN and PSPNet, trained with the heavy data augmen-
tation scheme, on images not containing any corrosion. Instances are assigned random colors with no further
interpretation.
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some instances by Mask R-CNN are divided into multiple small instances as seen in Fig-
ure 5.9, the algorithm very rarely merges multiple ground truth instances into one. It
can be questioned, however, whether instance correspondences between ground truths and
Mask R-CNN predictions are good enough for the use-cases discussed in Chapter 3. For
general corrosion detection it is of little relevance. However, for damage area estimation
and to know if a damage is severe or not, good correspondence could be of great impor-
tance. Similarly, if monitoring a damage over time is to be performed autonomously, good
correspondence is needed.

Overall, the predicted segmentation masks seem promising. When predicted for non-
corroded images, however, the situation changes vastly. Figure 5.10 compares predicted
masks for hard images especially selected to contain red/brown colored areas. These im-
ages are not part of the corrosion dataset and were therefore neither used for training nor
during calculation of IoU. It is immediately evident from Figure 5.10 that both Mask R-
CNN and PSPNet suffer from false positives. Simply put, the algorithms predictions, and
PSPNet in particular, are too heavily based on the color properties of corrosion. In terms
of the previously discussed use-cases, the networks will consequently report too many
damages, over-estimate areas and generally be too pessimistic regarding the integrity of a
construction.

Two solutions are proposed. First, it is important to remember that the corrosion
dataset contains no images similar to those shown in Figure 5.10. As every training ex-
ample contains at least one corroded area, a predicted segmentation mask without any
corroded pixels would in fact be peculiar. Train on images without corrosion in addi-
tion to the current corrosion dataset might therefore improve the prediction masks in Fig-
ure 5.10. This is not performed in this thesis since images containing no corrosion are
not supported by the used implementation of Mask R-CNN. Incorporating background
only images would require changes to the framework. Furthermore, background only im-
ages would introduce more imbalance to the dataset, enabling decent IoU by predicting all
pixels as background.

A second solution is constructing a two-stage pipeline: First classify images in two
categories, corrosion vs. no corrosion, and then apply image segmentation to all corroded
images. This might be a viable approach as previous work has found such classification
to perform very well on corrosion and background images [14]. Extending upon this idea,
it should be possible to train the first sub-networks of Mask-RCNN to better learn the
distinction between background only images and corrosion images using both types of
images. We could then freeze early layers and continue training the latter sub-networks
on corrosion images only. This would be beneficial as the classification and segmentation
networks share computation. Again, this would require major changes to the Mask R-CNN
framework. A similar strategy should be applicable to the backbone network of PSPNet
as well.

5.3.2 Summary and Assessment of Image Segmentation for Indus-

trial Inspections

Table 5.11 summarizes IoU for the most important results. It is evident from the last
column that the heavy data augmentation scheme significantly reduces overfitting for both
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PSPNet and Mask-RCNN. Additionally, Mask R-CNN obtains higher test performance
using this scheme. It is therefore concluded that the heavy data augmentation scheme has
great potential and should be investigated further.

Table 5.11: Summary of training and test frequency IoU for PSPNet and Mask R-CNN trained without data
augmentation and with the heavy data augmentation scheme.

Network Data Augmentation Training fIoU Test fIoU Difference

PSPNet None 94.9 % 87.5 % 7.4
PSPNet Heavy + light 90.3 % 86.6 % 3.7
Mask R-CNN None 91.7 % 83.4 % 8.3
Mask R-CNN Heavy + light 87.4 % 84.1 % 3.3

Regarding general performance of image segmentation, and its applicability to indus-
trial inspections, it is more complex to draw a conclusion. First, it is difficult to compare
obatined IoU values with previous results on other datasets. PSPNet, for instance, obtains
85.4 % mIoU on Pascal VOC 2012 [12], but only 44.9 % mIoU on the more challenging
dataset ADE20K [61]. Nevertheless, obtained IoU values and predicted masks are not
good enough for an autonomous system to be relied on, especially in terms of false pos-
itives on non-corroded areas of red/brown-like colors. A larger dataset would of course
likely increase performance, but it is difficult to estimate by how much. Training on back-
ground only images in addition to corrosion images might also be a viable option but
requires modifications to the existing frameworks. Either way, only segmenting corrosion
damages has limited potential compared to a model able to predict all sorts of construction
damages as well as intact constructions. Constructing a larger and more complex dataset
should therefore be a priority in further work.

Second, although PSPNet obtains slightly better IoU on the test set, Mask R-CNN,
and instance segmentation in general, is considered a more versatile approach with more
application areas. Additionally, the performance difference is likely caused by the more
aggressive predictions produced by PSPNet, which can be achieved for Mask R-CNN as
well by accepting more RoIs.

Regarding time and space complexity, both networks requires a high-end GPU with
decent amount of video memory in order to run somewhat efficiently. The frame rate is
still nowhere close to video standards of 24 img/s, achieving 3.7 img/s and 1.4 img/s for
PSPNet and Mask R-CNN, respectively. Smaller, more efficient networks or better hard-
ware are therefore needed before the full potential of image segmentation can be applied
to industrial inspections.
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Chapter 6

Conclusion and Further Work

6.1 Conclusion

This master thesis contains three main contributions. Each contribution is concluded be-
low.

6.1.1 Dataset

No dataset of construction damages was available prior to this work. A 608-image dataset
of annotated corrosion damages was therefore constructed. The images were taken during
real inspections of steel bridges and comprise a wide range of different scenes. Due to
it being a time-consuming task, only binary segmentation masks were created, indicating
where in images corrosion is present. The segmentation masks consist of a total of 4631
instances, most of which are very small, averaging to 2.53 % relative the image frame.
19.1 % of the pixels in the dataset contain corrosion.

Annotating images was a challenging task. First, it can be difficult to know precisely
where corrosion begins and ends, for instance due to corrosion smudging or dirty surfaces
looking similar to corrosion. Second, unlike most everyday objects, there are few char-
acteristics properly defining a corrosion instance. Consequently, there are many equally
advantageous ways to divide a corroded construction into instances.

The corrosion dataset is a first step towards creating a big, general dataset with many
different classes, such as crack in concrete, paint flaking and intact steel. The current
version of the dataset, however, is rather small and best serves as a utility for proof of con-
cepts. This could, and hopefully will, benefit other researchers and further work beyond
the scope of this thesis.

6.1.2 Data Augmentation

Modern deep learning methods can obtain great results but are highly dependent on high-
quality training data. 608 images are in this regard rather few, and data augmentation
was therefore utilized to increase the effective dataset size. A variety of different data
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augmentation schemes were tested, ranging from simple flipping to a sophisticated, two-
stage scheme consisting of both heavy and light augmentations.

The results of this thesis find only minor performance gain using data augmentation.
Overfitting, however, is significantly reduced for both PSPNet and Mask R-CNN, espe-
cially using the two-stage heavy data augmentation scheme. This means the trained net-
works become more reliable, and increased performance is hopefully more easily obtained
with more annotated images.

The proposed heavy data augmentation scheme might be useful for other highly aug-
mentable datasets as well. Evaluating the data augmentation scheme on other datasets is
suggested as further work.

6.1.3 Assessment of Image Segmenting for Construction Damage De-

tection

State-of-the-art methods for semantic segmentation and instance segmentation were evalu-
ated for the purpose of automating industrial inspections. Specifically, quality of predicted
masks, memory consumption, inference speed and possible use-cases were discussed with
regards to the neural networks PSPNet and Mask R-CNN.

It is concluded that image segmentation can aid automating industrial inspections of
steel constructions in the future, and that instance segmentation algorithms are likely more
useful than semantic segmentation algorithms, even though Mask R-CNN is outperformed
by PSPNet in terms of IoU on the corrosion dataset. The obtained results in this thesis is,
however, not good enough to construct a reliable, fully autonomous system as of yet.

Three major tasks remain. First and foremost, the dataset must be vastly enlarged. In-
creased recall for corrosion, fewer false positives and more classes are some areas in need
of improvement and hopefully obtained with more training data. Second, more efficient
networks and better hardware are needed to produce predictions at a faster frame rate.
With the current implementation, image segmentation is only possible for post-analysis
or real-time segmentation with lag. Finally, ways to estimate total damaged area, forecast
damage development and classification of damage severity need more research in order to
reach the full potential of image segmentation.

6.2 Further Work

Image segmentation of corrosion damages is by no means fully studied. The following are
some suggestions for further work on this topic.

6.2.1 More Classes

Trained models in this project only has a concept of corrosion. However, there are many
other damages of relevance in industrial inspections as well, such as paint flaking, crack
in concrete and white corrosion (i.e. corroded zinc layers). Additionally, it is beneficial to
detect different parts of a construction, such as intact steel, corrosion and wires.

Implementation-wise, minimal changes are needed to incorporate new classes. Fur-
thermore, data acquisition is not needed as the original raw dataset provided by Norwe-
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gian Public Roads Administration has thousands of unused images. The challenge lies
in annotating more images. First, all current images must be reviewed and masks for the
new classes must be added. Second, as the dataset becomes more complex and the current
images are biased towards corrosion damages, more images must be annotated.

6.2.2 Test the Heavy Data Augmentation Scheme on Other Datasets

The heavy data augmentation scheme is shown to greatly reduce overfitting for both PSP-
Net and Mask R-CNN on the corrosion dataset. To investigate its general applicability,
further research should be done to test it on other highly augmentable datasets as well.
Examples of such datasets may for instance be found in the area of medical imaging.

6.2.3 Train using Adversarial Images

As red/brown colored areas within images containing no corrosion are easily predicted as
corrosion, it would be interesting to provide the network models with increased number
of such difficult examples. Note that the implementation used for Mask R-CNN does not
support pure background images, but it should be possible to overcome this with some
modifications to the framework used.

A generalization of the above idea is using adversarial images, as explained by Good-
fellow, Shlens, and Szegedy [17] to increase performance and reduce overfitting for image
classification. Adversarial images are ”formed by applying small but intentionally worst-

case perturbations to examples from the dataset, such that the perturbed input results in

the model outputting an incorrect answer with high confidence” [17]. That is, the authors
took regular images, computed in what direction each pixel value should be altered for
the prediction to change the most1, and then used this image for training. The original
and modified image may look identical to the naked eye, but all small differences in total
constitutes a wrong prediction and hence valuable training data for the network.

The authors used adversarial images for image classification. Further work can re-
search if this is applicable to image segmentation of the corrosion dataset as well.

6.2.4 Efficient Inference on Mobile Processors

Both PSPNet and Mask R-CNN are dependent on high-end hardware to run somewhat
efficiently. Full-sized GPUs are very expensive and might not fit on a UAV, however,
meaning ways to obtain more lightweight predictions run on a mobile processor would be
interesting further work.

6.2.5 Estimation of Damaged Surface Area

As discussed in Section 3.1, successful image segmentation of construction damages can
enable estimation of damaged surface area using a UAV. This is useful as not all damages
can be repaired immediately. Instead, maintenance is initiated when total damaged coating
area exceeds a given threshold.

1The perturbations needed are computed as the gradient of the loss function with respect to the input, multi-
plied by a small scaling factor.
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Lots of work still remains before this is a reality, however. First, the segmentation
algorithm must accurately segment intact constructions as well as damages themselves.
Second, SLAM or similar methods should be adapted for the UAV to be aware of its sur-
roundings. Finally, a 3D model of the construction to be inspected should be incorporated
in order to ensure the whole construction is inspected and to store exactly where an image
was taken.

6.2.6 Classification of Construction Damage Severity

Some damages need immediate maintenance and we cannot wait for the total area of the
construction to degrade before taking an action. Further work could therefore study how
to also classify the severity of damages. One straight forward solution is considering
different levels of severity as different classes, e.g. one class for light corrosion, one class
for medium corrosion and one class for severe corrosion.

What makes up a severe damage, however, is not necessarily obvious from 2D image
only. First, one part of a construction might be more important for the integrity of the con-
struction than others. Second, a damage might be hardly visually present on the surface of
a construction, yet still cause major problems to its integrity, e.g. corrosion pits discussed
in Section 2.1. Using 3D images and other sensor data would therefore be interesting to
incorporate into a machine learning model.

6.2.7 Forecasting Damage Development

An interesting topic of research is applying time series prediction methods to corrosion
damages. The idea is that given a series of images taken over time of the same damage, an
algorithm might be able to forecast how the damage will develop in the future. This would
help inspectors better schedule when maintenance is needed, what damages to prioritize
and estimate future costs related to maintenance.

It is uncertain whether currently available methods can forecast damage development
sufficiently well purely based on time series images. Corrosion development models and
domain knowledge might need to be incorporated in addition to a machine learning al-
gorithm. Besides, a dataset must first be constructed, which will take time as damages
must be monitored over time. For proof of concept, a viable approach might be to arti-
ficially accelerate corrosion development in a laboratory. This would also make it easier
to take accurate images. An artificial dataset might perhaps also be constructed based on
corrosion development models.
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Hlaváč and Radim Šára. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995,
pp. 538–543. ISBN: 978-3-540-44781-8.

79

http://www.image-net.org/about-stats
http://www.image-net.org/about-stats
https://www.scoutdi.com
https://www.scoutdi.com
https://github.com/aleju/imgaug
http://arxiv.org/abs/1412.6980
http://impact.nace.org/documents/Nace-International-Report.pdf
http://impact.nace.org/documents/Nace-International-Report.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382
https://www.sciencedirect.com/science/article/pii/S0926580505000981
https://www.sciencedirect.com/science/article/pii/S0926580505000981
https://arxiv.org/abs/1611.07709
http://arxiv.org/abs/1611.07709
http://arxiv.org/abs/1611.07709
https://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312


[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Net-
works for Semantic Segmentation”. In: CoRR abs/1411.4038 (2014). arXiv: 1411.
4038. URL: http://arxiv.org/abs/1411.4038.

[40] Leonardi Marco. “TTK25 Computer Vision for Control, Lecture Notes Autumn
2019”. University Lecture. 2019.

[41] A. Mikołajczyk and M. Grochowski. “Data augmentation for improving deep learn-
ing in image classification problem”. In: 2018 International Interdisciplinary PhD

Workshop (IIPhDW). 2018, pp. 117–122.

[42] Osama Moselhi and Tariq Shebab-Eldeen. “Classification of Defects in Sewer Pipes
Using Neural Network”. In: Journal of Infrastructure Systems 6 (1999). DOI: 10.
1007/978-3-642-31439-1_19. URL: https://doi.org/10.1007/
978-3-642-31439-1_19.

[43] Orbiton. Homepage Orbiton. URL: https://orbiton.no.

[44] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”. In: IEEE

Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66.

[45] Luca Petricca et al. “Corrosion Detection Using A.I : A Comparison of Standard
Computer Vision Techniques and Deep Learning Model”. In: vol. 6. May 2016,
pp. 91–99. DOI: 10.5121/csit.2016.60608.

[46] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506.01497.
URL: http://arxiv.org/abs/1506.01497.

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015).
arXiv: 1505.04597. URL: http://arxiv.org/abs/1505.04597.

[48] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. ISBN: 9781292153964.

[49] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”.
In: IBM Journal of Research and Development 3.3 (1959), pp. 210–229.

[50] Manu Sharma and Brian Rieger. LabelBox. https://labelbox.com. 2018.

[51] Mel Siegel and Priyan Gunatilake. “Remote Enhanced Visual Inspection of Air-
craft by a Mobile Robot”. In: IEEE Workshop on Emerging Technologies, Intelli-

gent Measurement and Virtual Systems for Instrumentation and Measurement (Aug.
1999).

[52] Karen Simonyan and Andrew Zissermann. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: (Apr. 2015). URL: https://arxiv.org/
pdf/1409.1556.pdf.

[53] Janpreet Singh and Shashank Shekhar. “Road Damage Detection And Classification
In Smartphone Captured Images Using Mask R-CNN”. In: CoRR abs/1811.04535
(2018). arXiv: 1811.04535. URL: http://arxiv.org/abs/1811.
04535.

80

https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://doi.org/10.1007/978-3-642-31439-1_19
https://doi.org/10.1007/978-3-642-31439-1_19
https://doi.org/10.1007/978-3-642-31439-1_19
https://doi.org/10.1007/978-3-642-31439-1_19
https://orbiton.no
https://doi.org/10.5121/csit.2016.60608
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://labelbox.com
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/abs/1811.04535
http://arxiv.org/abs/1811.04535
http://arxiv.org/abs/1811.04535


[54] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR abs/1409.4842
(2014). arXiv: 1409.4842. URL: http://arxiv.org/abs/1409.4842.

[55] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks”. In: CoRR abs/1905.11946 (2019). arXiv: 1905 .
11946. URL: http://arxiv.org/abs/1905.11946.

[56] W. Wang et al. “Road Damage Detection and Classification with Faster R-CNN”.
In: 2018 IEEE International Conference on Big Data (Big Data). 2018, pp. 5220–
5223.

[57] Quinghui Zhang, Xianing Chang, and Shanfeng Bian Bian. “Vehicle-Damage-
Detection Segmentation Algorithm Based on Improved Mask RCNN”. In: IEEE

Access 8 (2020). URL: https://ieeexplore.ieee.org/document/
8950115.

[58] Hengshuang Zhao et al. “Pyramid Scene Parsing Network”. In: CoRR abs/1612.01105
(2016). arXiv: 1612.01105. URL: http://arxiv.org/abs/1612.
01105.

[59] Shuai Zhao, Dong Ming Zhang, and Hong Wei Huang. “Deep learning–based im-
age instance segmentation for moisture marks of shield tunnel lining”. In: Tun-

nelling and Underground Space Technology 95 (2020), pp. 103–156. ISSN: 0886-
7798. DOI: https://doi.org/10.1016/j.tust.2019.103156.
URL: http://www.sciencedirect.com/science/article/pii/
S0886779819301452.

[60] Xin Zheng et al. “Image segmentation based on adaptive K-means algorithm”. In:
EURASIP Journal on Image and Video Processing 2018 (Dec. 2018). DOI: 10.
1186/s13640-018-0309-3.

[61] Bolei Zhou et al. “Scene Parsing through ADE20K Dataset”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2017.

81

https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://ieeexplore.ieee.org/document/8950115
https://ieeexplore.ieee.org/document/8950115
https://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1612.01105
https://doi.org/https://doi.org/10.1016/j.tust.2019.103156
http://www.sciencedirect.com/science/article/pii/S0886779819301452
http://www.sciencedirect.com/science/article/pii/S0886779819301452
https://doi.org/10.1186/s13640-018-0309-3
https://doi.org/10.1186/s13640-018-0309-3


82



Appendices

83





Appendix A

Scientific Paper Submitted to

ICTAO 2020

This master thesis is considered highly relevant for the industry and further work. It was
therefore decided to write a scientific paper based on the obtained results. As of delivering
this thesis, the paper is submitted to the 32nd International Conference on Tools with
Artificial Intelligence. The conference was supposed to take place in Maryland, USA in
the beginning of November 2020. However, due to the circumstances concerning covid-
19, it is changed to an all-digital event.

The scientific paper is written by the author of this thesis and reviewed by his supervi-
sors before submission. The paper is attached below.
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Abstract—In this paper we assess image segmentation algo-
rithms for the purposes of automatic corrosion damage segmen-
tation. Automatic image analysis is needed in order to process
all data retrieved from drone-driven industrial inspections. This
could be the first step towards estimating total damaged area of
a construction, an often used metric to initiate maintenance. To
this end we provide three main contributions. First, 608 images
with corrosion damages are instance-wise annotated with binary
segmentation masks to construct a dataset. Second, an advanced,
two-stage data augmentation scheme is developed and empirically
shown to significantly reduce overfitting. Finally, Mask R-CNN
and PSPNet are evaluated on the corrosion dataset using this
and other data augmentation methods. With 77.5% and 73.2%

mean IoU for Mask R-CNN and PSPNet, respectively, the results
are very promising. It is concluded that image segmentation can
aid automating industrial inspections of steel constructions in the
future, and that instance segmentation is likely more useful than
semantic segmentation due to its applications to a wider range
of use-cases. However, current performance given the rather
small dataset used, is not considered good enough to construct
a reliable, fully autonomous inspection system as of yet.

Index Terms—semantic segmentation, instance segmentation,
PSPNet, Mask R-CNN, industrial inspection, corrosion.

I. INTRODUCTION

NACE1 International estimated in 2016 corrosion damages

to have an annual cost of 2.5 trillions USD [1], equivalent

to 3.4% of global GDP. Corrosion is a major problem that

wear down steel constructions and can severely reduce their

strength. Constructions in humid and salty environments are

particularly exposed. Regular inspections and quality controls

are therefore necessary.

Inspection of constructions is usually performed visually on-

site. However, there are many areas not easily accessible to

inspectors, for instance due to hazardous conditions or simply

because it is out of reach. Additionally, manual inspections can

be time consuming, expensive and subjective. An interesting

approach is therefore to use unmanned aerial vehicles (UAVs)

to take photos of potentially damaged areas. Images are sent

to a cloud service or remote computer for further analysis. The

concept is illustrated in Fig. 1.

Inspecting images manually, however, is also tedious, time

consuming, and subject to human subjectivity. With an in-

creasing number of images to inspect, the error rate is also

likely to increase. The vast amount of data automatically

1National Association of Engineers.

Fig. 1: Concept of a UAV inspecting a bridge. Images are sent

to a cloud service/remote computer for further analysis.

collected using UAVs can simply render manual processing

of images infeasible. An automatic image analysis framework

is therefore needed, both in terms of efficiency and objectivity.

This again allows for more frequent inspections and thereby

detection of damages at an earlier stage.

In this paper we study how automatic image segmentation of

corrosion damages can be performed using machine learning.

There are multiple reasons why this is useful, and why it is

superior to simple image classification, i.e. sorting images as

corrosion vs. not corrosion. First, successful segmentation of

corrosion damages allows an autonomous system (e.g. a UAV)

to better understand its surroundings and thereby be able to,

for instance, focus the camera in the right direction and aid

navigation. Second, estimation of total damaged area of a

construction is an often-used criterion to initiate maintenance.

Image segmentation is a necessary first step towards this goal.

Although promising, existing research on image segmen-

tation to detect corrosion damages is limited. The aim of

this paper is therefore to assess and improve the applicability

of state-of-the-art image segmentation for the purposes of

automating industrial inspections. To this end, we provide

three main contributions: First, since no other dataset was

found available, a proof-of-concept dataset containing 608

annotated images with corrosion damages is constructed. Sec-

ond, an advanced, two-stage data augmentation scheme is

developed to artificially increase the dataset size. The scheme



is empirically shown to significantly reduce overfitting and

improve performance for Mask R-CNN. Finally, state-of-the-

art algorithms for semantic and instance segmentation are

evaluated on the corrosion dataset using this and other data

augmentation methods.

II. RELATED WORK

Traditional computer vision methods for corrosion damage

detection are generally based on a color and/or texture analysis

[2]–[5]. Due to the characteristic red/brown color of corrosion,

very simple algorithms such as thresholding can obtain decent

results on certain images. Traditional computer vision suffers,

however, if optimal features are not easily identified.

Using machine learning, the need to manually identify

common domain features is removed. Machine learning used

for damage detection dates back to (at least) 1999 when

a three-layer neural network was used to detect defects in

underground sewer pipes [6].

In [7], a traditional computer vision approach based on

the number of red pixels in an image was compared to a

convolutional deep learning approach for detecting rust. The

deep learning network was based on AlexNet [8], and the

authors found this to be superior to traditional computer vision.

[9] studied convolutional neural networks for corrosion

assessment on metallic surfaces using sliding windows. Their

findings suggest 128 × 128 windows along with the image

classification network VGG16 [10].

Direct end-to-end image classification of corrosion damages

and paint flaking is also studied in [11] and [12]. The results

show that newer and smarter network architectures outperform

common networks such as VGG [10] and ResNet [13], with

EfficientNet [14] obtaining the best performance.

Object detection was applied to a dataset with various

construction damages in [15]. Using Faster R-CNN [16], the

model was successfully trained to detect corrosion, cracks in

concrete and steel delamination. The authors conclude that

Faster R-CNN can be used with UAVs to replace human-

oriented industrial inspections in the future. Note, however,

that authors performed object detection only, i.e. segmentation

masks were not predicted.

A concrete crack detection method was proposed in [17]

based on the FCN architecture [18]. The authors found that

cracks are reasonably detected and accurately evaluated.

In [19], moisture marks of shield tunnel linings in images

were segmented. Mask R-CNN [20] was compared with a

previously proposed fully convolutional network by the same

authors, a region growing algorithm and a thresholding algo-

rithm. Mask R-CNN was found superior.

To summarize, previous work is usually either focused on

the simpler task of image classification and object detection,

or image segmentation of ”simple” damages, i.e. damages

clearly standing out from the surroundings (e.g. tunnel linings

have a smooth, monochrome surface). Research on true image

segmentation of corrosion damages is lacking.

III. STATE OF THE ART

Image segmentation is the problem of outlining relevant

objects in images. We typically distinguish between semantic

segmentation and instance segmentation. Semantic segmen-

tation classifies every pixel in an image as one of multi-

ple classes, whereas instance segmentation also distinguishes

between different instances of the same class, e.g. outlining

each individual person within an image rather than the whole

group as one. Thus, instance segmentation can be considered

a combination of object detection and semantic segmentation.

A. Semantic Segmentation

FCN [18], introduced in 2014, was the first fully con-

volutional network trained end-to-end with supervised pre-

training for pixel-to-pixel predictions. The base network is a

modification of the classification network VGG [10] in which

linear layers are exchanged for deconvolution layers to up-

sample the feature maps. Increased performance was then

obtained by fusing the output layer with intermediate layers

through element-wise addition.

U-Net [21] build upon the success of FCN to further

improve performance in 2015. The network forms a U-shape

with the first part being a contracting convolutional path

similar to any image classification network (e.g. ResNet [13]).

This is followed by an almost symmetrical expanding path

increasing the spatial dimensions of the feature maps to

construct a segmentation map. To better incorporate location

information of features, links between corresponding layers

in the contracting and expanding path were added. U-Net

obtained impressive results at the time using very few training

images.

PSPNet [22] was introduced in 2016 with the aim of

improving utilization of contextual information. Humans have

a tremendous ability to distinguish and classify seen objects,

even from a young age. First, we recognize the shape, color

and size of an object, from which we can often conclude

accurately what we are looking at. Next, we use surrounding

visual clues to further increase our certainty. For instance, if

a vehicle is seen on a river, it is likely a boat even if it looks

like a car. FCN and U-Net struggle to utilize this kind of

global information; if it looks like a car, it certainly must be

a car. The main contribution of PSPNet is a pyramid pooling

module performing sub-region average pooling. In short, the

algorithm collects contextual information at different scales

through average pooling, up-scales the produced feature maps

and finally uses convolutional layers to produce a segmentation

mask. When published, PSPNet improved state of the art on

numerous datasets, and is still one best-performing semantic

segmentation networks to date.

B. Instance Segmentation

Since published in 2017, Mask R-CNN [20] has become the

de facto standard for instance segmentation. The algorithm can

be divided into four parts. First is a backbone network serving

as a feature extractor. This can be any image classification

network, but usually a feature pyramid network [23] is used



(a) Easy image to annotate. (b) Difficult image to annotate.

Fig. 2: Instance segmentation masks for two images. (a) Three instances are immediately recognized, and their boundaries

are sharp, making it easy to annotate the image. (b) With a large number of potential instances, some areas more severely

corroded than others, boundaries being smooth, etc., this is a very challenging image to annotate. Black indicate no corrosion,

i.e. background. Instances are assigned random colors and have no further interpretation.

to better detect features at different scales. Second is a region

proposal network (RPN). RPNs are neural networks scanning

an image for regions of interest (RoI), i.e. areas likely to

contain a relevant object. The RoIs are then used as input to

the third stage of Mask R-CNN; classification and bounding

box regression of RoIs. A sub-network is used to assign a

class label to each RoI and compute refinements to their loca-

tions and sizes. Finally, and in parallel, a fully convolutional

network predicts a segmentation mask for each RoI. In fact,

one mask for each possible class label is generated, before the

result from the independent class prediction network is used

to keep the correct mask only.
Mask R-CNN has been adapted to a wide range of different

datasets with great results. Compared to many alternatives, the

algorithm is very streamlined, yet still state of the art in terms

of prediction performance.

IV. METHODS AND IMPLEMENTATION

A. Dataset Construction

As no dataset for corrosion damage segmentation was avail-

able prior to this work, a new dataset was constructed from

scratch. The images used were taken during real inspections

of steel bridges by NPRA2. A large number of images known

to contain corrosion damages were uploaded to the online

software Labelbox [24] for instance-wise labeling. Ideally,

we would want segmentation masks for all sorts of damages,

such as cracks in concrete and paint flaking, as well as intact

construction. This, however, is very time consuming and it was

therefore opted for binary segmentation masks only indicating

where corrosion is present. A total of 4631 instances were

labeled across 608 images. In total, 19.1% of the pixels

contained corrosion with an average instance size of 2.53%

relative to the image frame.
In addition to time consuming, annotating corrosion dam-

ages is also challenging. First, the boundaries of corrosion

are often smooth, making it difficult to accurately outline

2The Norwegian Public Roads Administration.

the damage. Second, unlike most everyday object, there are

few rich characteristics defining a corrosion damage instance.

Hence, separating instances can often be done in multiple

equally good ways. Third, a surface can look corroded, but

in reality, be only dirty or contain smudged corrosion from

nearby corroded steel. Fig. 2 shows two example images with

corresponding segmentation mask, one very easy to annotate

and one very difficult.

B. Data Augmentation

608 images are rather few by modern standards. Extensive

data augmentation was therefore tested as it increases the

effective number of training images and acts as a method of

regularization. The most commonly used data augmentation

scheme found in the literature is horizontal flipping. Slight

rotations, minor color/contrast/brightness perturbations and

cropping/translation are also often-used. However, corrosion

damages have no direction/orientation, nor any defined size,

shape or absolute color. Only using the previously mentioned

data augmentations is therefore fairly conservative with respect

to the corrosion dataset. Applying too heavy data augmenta-

tion, on the other hand, can break the contents of images and

consequently render bad training examples.
A more sophisticated, two-stage scheme is therefore pro-

posed in this paper: First train using heavy data augmentation,

followed by fine-tuning using none or light data augmentation

(e.g. flipping). Heavy data augmentation could for instance

use a combination of various affine transformations, edge

enhancements, added noise or blur and dropout. The idea is

that during the first stage, weights in neural networks will

obtain a better starting point than those obtained directly from

transfer learning using general datasets. Optimal weights are

then searched for in the second stage as usual. Since training

examples of the first stage are more difficult, we train the

networks for a relatively large number of epochs (e.g. 30–100)

before fine-tuning for relatively few epochs (e.g. 1–30). This

data augmentation scheme will in the following be referred to

as the two-stage data augmentation scheme.



Fig. 3: First stage of the two-stage data augmentation scheme

applied to an example image (top left).

Fig. 3 shows seven possible outputs from heavy data aug-

mentation of an example image.

C. Evaluation Metrics

Evaluation of trained models are based on inference speed,

peak memory usage and intersection over union (IoU) for

predicted segmentation masks. Ideally, video standard frame

rate of 24 images per second is desirable for inference as

this would enable real-time image segmentation. Peak memory

usage has no further requirements than not to exceed available

memory. IoU measures how well a predicted mask corresponds

to the ground truth segmentation mask, and is defined as

follows:

IoU =
Intersection

Union
=

TP

TP + FP + FN
(1)

TP, FP and FN refer to, respectively, true positives, false

positives and false negatives. IoU is calculated for both cor-

rosion (cIoU) and background (bIoU). For simple comparison

of models, however, mean intersection over union (mIoU) is

mainly used:

mIoU =
cIoU + bIoU

2
(2)

50 images were set aside as a test set and not used until

final evaluation of trained models. An equally large validation

set was used to evaluate the models while experimenting

with different network configurations and data augmentation

schemes. The remaining 508 images were used for training.

The test set is emphasized when evaluating the models.

As discussed in Section IV-A, there are potentially many

ways to divide a corroded image into instances. Thus, even

if Mask R-CNN predicts good instance masks, performance

might be reported as poor since instances are separated differ-

ently compared to the ground truth. It was therefore decided

to merge all predicted instances from Mask R-CNN when

computing mIoU. This also makes it easier to compare the

network with PSPNet. The true, instance-wise predictions are

manually analyzed by visually comparing them against the

ground truth masks.

D. Implementation

All experiments and implementation were done with

Python, Keras, Tensorflow and the comprehensive data aug-

mentation library imgaug. Configurations for the first stage of

the two-stage data augmentation scheme is based on exam-

ple values in the library documentation [25]. Hardware and

software configurations are detailed in Table I and Table II,

respectively.

The implementation of PSPNet is based on the GitHub

repository by Divam Gupta [26]. Parts of the code base was

modified to work properly with imgaug. All relevant config-

uration parameters used are specified in Table III. PSPNet-50

was chosen over PSPNet-101 in order to decrease overfitting

as the corrosion dataset is small. ADE20K [27] was used for

transfer learning as it is the most versatile and challenging

dataset available for semantic segmentation. Default values for

optimizer, image size and batch size were used for simplicity.

The excellent implementation by Waleed Abdulla [28] avail-

able on GitHub was used for Mask R-CNN. Relevant hyper-

parameters are listed in Table IV.

TABLE I: Hardware Configuration.

CPU Intel Core i7-6850K (6 cores @ 3.6 GHz)
RAM Corsair 32 GB DDR4 @ 2666 MHz
GPU NVIDIA Titan X (Pascal) (12 GB GDDR5X)
Storage (dataset) Seagate Barracuda 1TB SATA HDD @ 7200 RPM

TABLE II: Software Configurations.

Operating System Microsoft Windows 10 Home
Python v. 3.7.6
Keras v. 2.3.1
Tensorflow tensorflow-gpu v. 1.14.0
CUDA v. 10.0
CuDNN v. 7.6.5
imgaug v. 0.4.0



TABLE III: PSPNet Configuration.

Backbone network ResNet-50 [13]
Transfer learning dataset ADE20K [27]
Optimizer Adadelta (default, adaptive)
Image size 473× 473 (default)
Batch size 2 (default)

TABLE IV: Mask R-CNN Configuration.

Backbone network ResNet-50 [13] (with FPN [23])
Transfer learning dataset COCO [29]
Optimizer SGD with momentum (default)
Learning rate 0.001 (default)
Learning momentum 0.9 (default)
Image size 512× 512

Batch size 1

Max instances per image 50
Detection confidence threshold 90%

The 50-layer ResNet backbone was chosen for the same

reason as for PSPNet. Additionally, Mask R-CNN has a vast

memory consumption, meaning a decreased model size is

beneficial. The COCO [29] dataset was used for transfer

learning, as it is the de facto standard for instance segmen-

tation and the only available option. All default parameters

regarding optimizer were used, as initial testing with more

advanced optimizers such as Adam [30] was unsuccessful.

The algorithms require the image size to be six times divisible

by 2. The closest such number to 473 (the image size used

for PSPNet) is 512 and therefore used for Mask R-CNN. A

batch size of 1 was needed in order not to exceed the memory

capacity of the GPU used. Limiting the maximum number of

instances to predict per image was also done to decreases the

memory footprint. It was opted for a maximum value of 50

(default being 100). Finally, a confidence score of at least 90%

was chosen as the lower limit for accepting an instance as a

positive RoI/prediction. This value was chosen relatively high

since we have only two classes (corrosion and background).

Compared to the original Mask R-CNN, which was imple-

mented in Pytorch rather than Tensorflow, the implementation

used in this paper has two main differences. First, bounding

box ground truths are not explicitly provided in the dataset, but

determined during run-time as the smallest box encapsulating

the entire instance mask. Second, the Pytorch implementation

used a learning rate of 0.02, which was found too large for

Tensorflow as the weights tended to explode. A learning rate

of 0.001 was therefore used instead. Additionally, we opted

for a learning rate schedule halving the learning rate every

10th epoch, ensuring better convergence. (No explicit learning

rate schedule was used for PSPNet as it uses an adaptive

optimizer.)

V. RESULTS

Table V compares training and test mIoU for PSPNet and

Mask R-CNN when trained for 70 epochs with and with-

out various data augmentation schemes. ”Flipping” refers to

random horizontal and vertical flipping, whereas ”Two-stage”

refers to heavy data augmentation for 50 epochs followed by

TABLE V: Training and test mIoU for PSPNet and Mask R-

CNN trained with various data augmentation schemes.

Network Data augm. Train mIoU Test mIoU Difference

PSPNet None 91.7% 78.6% 13.1

PSPNet Flipping 87.7% 78.5% 9.2

PSPNet Two-stage 84.7% 77.5% 7.2

Mask R-CNN None 86.8% 72.0% 14.8

Mask RCNN Flipping 81.5% 74.4% 7.1

Mask R-CNN Two-stage 80.0% 73.2% 6.8

TABLE VI: Inference frame rate and peak memory usage of

PSPNet and Mask R-CNN.

Network Inference frame rate Peak memory usage

PSPNet 3.7 imgs/s 10 GB
Mask R-CNN 1.4 imgs/s 10 GB

flipping for 20 epochs. Inference speed and peak memory

usage for both networks are listed in Table VI. Predicted

segmentation masks for PSPNet and Mask R-CNN compared

with corresponding ground truth instance masks are shown

in Fig. 4. Finally, Fig. 5 shows prediction masks for images

containing no corrosion.

VI. DISCUSSION

A. IoU Scores

We see from Table V that the gap between mIoU on

training data and test data is significantly reduced by data

augmentation, i.e. overfitting is reduced. Particularly the two-

stage data augmentation scheme is shown to produce models

generalizing better to new, unseen images. This is not to say,

however, that actual segmentation performance on the current

dataset is necessarily improved. Instead it means that if we

are able to levitate performance on training data, we can

expect test data performance to also improve. Trained models

are, simply put, more reliable. This is important as overfitted

models give a false sense of security.

That said, actual mIoU for Mask R-CNN as measured on

the test set is improved by data augmentation. Since PSPNet

is not experiencing a similar performance boost from data

augmentation, it might indicate that data augmentation is more

useful for instance masks rather than semantic segmentation

masks. This seems plausible as a data augmented damage is

still a unique damage, whereas for semantic segmentation the

whole image, so to say, is changed. This could perhaps leave

us with a segmentation mask no longer representing realistic

corrosion in a useful way. On the other hand, the authors of

PSPNet did find increased performance using data augmenta-

tion, indicating the results of Table V are representative for

the corrosion dataset only. The main differences between the

corrosion dataset and other datasets found in the literature is its

small size and few classes. Further work should investigate if

an enlarged and more complex version of the corrosion dataset

would benefit more from data augmentation in general, and the

two-stage data augmentation scheme in particular.
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Fig. 4: Predicted segmentation masks for Mask R-CNN and PSPNet compared with corresponding raw images and ground

truths. Instances are assigned random colors with no further interpretation.



B. Predicted Segmentation Masks

When studying the predicted segmentation masks shown in

Fig. 4, several interesting observations can be made. First,

PSPNet is more aggressive than Mask R-CNN, i.e. it has

greater recall. High recall is important in industrial inspections

in order not to miss any dangerous damages. For PSPNet,

any output feature map pixel greater than 0.5 is considered

corrosion, whereas for Mask R-CNN a damaged area must

first be considered a region of interest with sufficiently large

probability. In this paper, we used a confidence threshold of

90%, meaning higher recall for corrosion is easily obtained for

Mask R-CNN by reducing this value. Doing so, however, could

increase the number of false positives. Furthermore, accepting

more RoIs can result in increased number of instances rather

than more aggressive, existing instances. This is undesirable as

Mask R-CNN already has a tendency to construct unnecessary

many and complicated instances. The first three examples in

Figure 4, for instance, have instances inside other instances

where the ground truth only has one instance.

As discussed in Section IV-A, defining and distinguishing

corrosion instances is difficult. Still Mask R-CNN seems

to correspond well with the ground truth. Although some

instances are divided into multiple small instances in the ex-

amples in Figure 4, Mask R-CNN very rarely merges multiple

ground truth instances into one. It can be questioned, however,

whether instance correspondences between ground truths and

Mask R-CNN predictions are good enough for the use-cases

discussed in Section I. For general corrosion detection it is of

little relevance. For estimation of damage area and severity, on

the other hand, good correspondence is of great importance.

Similarly, if monitoring a damage over time is to be performed

autonomously, good correspondence is needed.

Overall, predicted segmentation masks seem promising.

When predicted for non-corroded images, however, the situa-

tion is somewhat different. Fig. 5 compares predicted masks

for hard images especially selected to contain red/brown col-

ored areas. These images are not part of the corrosion dataset

and were therefore neither used for training nor for calculation

of IoU. It is immediately evident that both Mask R-CNN and

PSPNet suffer from false positives. Simply put, the algorithms

predictions, and PSPNet in particular, are too heavily based on

the color properties of corrosion. In terms of the previously

discussed use-cases, the networks will consequently report

too many damages, over-estimate areas and generally be too

pessimistic regarding the integrity of a construction.

Two solutions are proposed. First, it is important to re-

member that the corrosion dataset contains no images sim-

ilar to those shown in Figure 5. As every training example

contains at least one corroded area, a predicted segmentation

mask without any corroded pixels would in fact be peculiar.

Training on images without corrosion in addition to the

current corrosion dataset might therefore reduce the number

of false positives. This is not done in this paper since images

containing no corrosion are not supported for by Mask R-

CNN. Incorporating background only images would require

Image Mask R-CNN PSPNet

Fig. 5: Predicted segmentation masks for Mask R-CNN and

PSPNet on images not containing any corrosion. Instances are

assigned random colors with no further interpretation.

changes to the framework. Furthermore, background only

images would introduce more imbalance to the dataset.
A second solution is constructing a two-stage pipeline: First

classify images in two categories, corrosion vs. no corrosion,

and then apply image segmentation to all corroded images.

This might be a viable approach as previous work has found

such classification to perform very well on corrosion and

background images [11], [12]. Extending upon this idea, it

should be possible to train the first sub-networks of Mask-

RCNN to better learn the distinction between background only

images and corrosion images using both types of images.

We could then freeze early layers and continue training the

latter sub-networks on corrosion images only. This would

be beneficial as the classification and segmentation networks

share computation. Again, this would require major changes

to the Mask R-CNN framework. A similar strategy should be

applicable to the backbone network of PSPNet as well.

C. Image Segmentation for Industrial Inspections

Although promising results are found in this paper, general

performance is not good enough for a fully autonomous system

yet, especially in terms of false positives on non-corroded

images with red/brown-like colors. A larger dataset would

of course likely increase performance, but it is difficult to

estimate by how much. Training on background only images

in addition to corrosion images might also be a viable option

but requires modifications to existent frameworks. Either way,

only segmenting corrosion damages has limited potential com-

pared to a model able to predict all sorts of damages as well



as intact construction. Collecting a larger and more complex

dataset should therefore be a priority in further work.

Although PSPNet obtains slightly better IoU on the test

set, Mask R-CNN and instance segmentation in general are

considered more versatile for the purposes of industrial inspec-

tions using a UAVs. Additionally, the performance difference

is likely caused by the more aggressive predictions by PSPNet,

which can be achieved for Mask R-CNN as well by accepting

more RoIs.

Regarding time and space complexity, both networks require

a high-end GPU with descent amount of video memory in

order to run somewhat efficiently. The frame rate is still

nowhere close to video standards of 24 imgs/s, with 3.7 imgs/s

and 1.4 imgs/s for PSPNet and Mask R-CNN, respectively.

Smaller, more efficient networks or better hardware are there-

fore needed before the full potential of image segmentation

can be applied to industrial inspections.

VII. CONCLUSION

In this paper we have evaluated PSPNet and Mask R-

CNN on a constructed 608 image dataset for the purposes

of segmenting corrosion damages and to automate industrial

inspections. A two-stage data augmentation scheme was devel-

oped and empirically shown to significantly reduce overfitting,

in addition to improve performance for instance segmentation.

With 73.2% mIoU and decent instance mask correspondence,

the obtained results are very promising. However, current

performance is not considered good enough to design a

reliable, fully autonomous inspection system as of yet. With

a larger and more complex dataset, performance is expected

to increase, and a wide range of possible use-cases emerge.

Further work should therefore collect more data and introduce

additional classes, such as crack in concrete, paint flaking and

intact steel.
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Appendix B

Dataset Download

The Python script used to download the dataset from Labelbox given a json file is given
below. For semantic segmentation, the downloaded masks are merged into one.

from PIL import Image

import requests , urllib, json, os, csv, sys

from urllib.request import urlopen

from pathlib import Path

from collections import Counter

import re

def create_dir_if_missing(path):

if not os.path.exists(path):

os.makedirs(path)

return True

return False

def clean_string_for_filename(name_str):

pattern = re.compile(’[^a−zA−Z0−9_−]’)

string = re.sub(pattern, "", name_str)

return string

def save_from_url(image_url , save_path):

im = Image.open(urlopen(image_url))

im.save(save_path)

def parseCSV(file_name):

with open(file_name , "r") as f:
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csv_info = csv.DictReader(f, delimiter=’,’)

export_info = []

for row in csv_info:

row["Label"] = json.loads(row[’Label’])

export_info.append(row)

return export_info

def downloadExportData(export_info , directory , save_masks=True):

if not isinstance(directory , Path):

directory = Path(directory)

save_dir = directory /

clean_string_for_filename(export_info[0]["Project Name"])

create_dir_if_missing(save_dir)

print("Downloading images and masks to:")

print(save_dir)

total = len(export_info)

next = 1

cur = 0

print("0\%")

for row in export_info:

subdirectory = save_dir / row[’ID’]

if create_dir_if_missing(subdirectory):

save_base_image(row, subdirectory)

if save_masks:

save_mask_images(row, subdirectory)

cur += 1

perc = (cur / total) ∗ 100

if perc >= next:

print("{}\%".format(round(perc)))

next += 1

def downloadImages(export_info , directory):

downloadExportData(export_info , directory , False)

def save_base_image(label, directory):

im_path = label[’Labeled Data’]
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external_id_cleaned = clean_string_for_filename(label["External ID"])

if not external_id_cleaned:

external_id_cleaned = label["ID"] + "_Image"

name = external_id_cleaned + ".png"

save_path = directory / name

save_from_url(im_path, save_path)

def save_mask_images(label, directory):

mask_dir = directory / "masks"

create_dir_if_missing(mask_dir)

mask_counter = Counter()

if not label[’Label’]:

return

for obj in label[’Label’][’objects’]:

o_class = obj[’value’]

mask_name = o_class + "_" + str(mask_counter[o_class]) + ".png"

mask_counter.update([o_class])

im_path = obj[’instanceURI’]

save_path = mask_dir / mask_name

save_from_url(im_path, save_path)

if __name__ == ’__main__’:

# to run: python3 download_export . py <FILENAME>, [SAVE_DIRECTORY]

filename = sys.argv[1]

try:

download_dir = sys.argv[2]

except IndexError:

download_dir = os.path.expanduser("~") + "/folder/path/"

file_type = filename.split(’.’)[−1]

if file_type == ’json’:

with open(filename, "r") as fp:

exported_data = json.load(fp)

elif file_type == "csv":

exported_data = parseCSV(filename)

else:

raise NameError

downloadExportData(exported_data , download_dir)
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Appendix C

Data Augmentation

C.1 Flipping

Horizontal and vertical flipping are applied straight forwardly with 50 % probability as
follows.

flipping_augmentation = iaa.Sequential([

iaa.Fliplr(0.5), # horizontally f l ip 50\% of all images

iaa.Flipud(0.5), # vertically f l ip 50\% of all images

])

C.2 Heavy Data Augmentation

The heavy data augmentation sequence below is likely too heavy on its own. It should
therefore be followed by a number of epochs with flipping or none data augmentation.
Default values are mostly used [28]. The augmentation scheme referred to as semi-heavy
is identical to the below listing, except the function sometimes is defined with probability
30 %, and a maximum of three non-geometric augmentations were applied at once.

# Adjusting the definition of sometimes

# adjusts how heavily images are augmented

sometimes = lambda aug: iaa.Sometimes(0.5, aug)

# Define our sequence of augmentation steps

heavy_augmentation = iaa.Sequential([

# Apply the following augmenters to most images .

# Flipping

iaa.Fliplr(0.5), # horizontally f l ip 50\% of all images

iaa.Flipud(0.5), # vertically f l ip 50\% of all images
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# Apply affine transformations to some of the images

# − scale to 80−120\% of image height / width (each axis independently )

# − translate by −20 to +20 relative to height / width (per axis )

# − rotate by −45 to +45 degrees

# − shear by −16 to +16 degrees

# − order: use nearest neighbour or bilinear interpolation ( fast )

# − mode: use any available mode to f i l l newly created pixels

# see API or sciki t−image for which modes are available

# − cval : i f the mode is constant , then use a random brightness

# for the newly created pixels (e .g . sometimes black ,

# sometimes white )

sometimes(iaa.Affine(

scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},

translate_percent={"x": (−0.2, 0.2), "y": (−0.2, 0.2)},

rotate=(−45, 45),

shear=(−16, 16),

order=[0, 1],

cval=(0, 255),

mode=’constant’

)),

# Execute 0 to 5 of the following ( less important ) augmenters per

# image. Don’ t execute all of them, as that would often be way too

# strong .

iaa.SomeOf((0, 5),

[

# Convert some images into their superpixel representation ,

# sample between 20 and 200 superpixels per image, but do

# not replace all superpixels with their average , only

# some of them (p_replace ) .

sometimes(

iaa.Superpixels(p_replace=(0, 1), n_segments=(20, 200))

),

# Blur each image with varying strength using

# gaussian blur (sigma between 0 and 3.0) ,

# average /uniform blur ( kernel size between 2x2 and 7x7)

# median blur ( kernel size between 3x3 and 11x11 ) .

iaa.OneOf([

iaa.GaussianBlur((0, 3.0)),

iaa.AverageBlur(k=(2, 7)),

iaa.MedianBlur(k=(3, 11)),

]),

# Sharpen each image, overlay the result with the original
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# image using an alpha between 0 (no sharpening) and 1

# ( fu l l sharpening ef fect ) .

iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),

# Same as sharpen , but for an embossing ef fect .

iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

# Search in some images either for all edges or for

# directed edges . These edges are then marked in a black

# and white image and overlayed with the original image

# using an alpha of 0 to 0.7.

sometimes(iaa.OneOf([

iaa.EdgeDetect(alpha=(0, 0.7)),

iaa.DirectedEdgeDetect(

alpha=(0, 0.7), direction=(0.0, 1.0)

),

])),

# Add gaussian noise to some images .

# In 50\% of these cases , the noise is randomly sampled per

# channel and pixel .

# In the other 50\% of all cases i t is sampled once per

# pixel ( i . e . brightness change ) .

iaa.AdditiveGaussianNoise(

loc=0, scale=(0.0, 0.05 ∗ 255), per_channel=0.5

),

# Either drop randomly 1 to 10\% of all pixels ( i . e . set

# them to black) or drop them on an image with 2−5\% percent

# of the original size , leading to large dropped

# rectangles .

iaa.OneOf([

iaa.Dropout((0.01, 0.1), per_channel=0.5),

iaa.CoarseDropout(

(0.03, 0.15), size_percent=(0.02, 0.05),

per_channel=0.2

),

]),

# Invert each image’s channel with 5\% probability .

# This sets each pixel value v to 255−v .

iaa.Invert(0.05, per_channel=True), # invert color channels

# Add a value of −10 to 10 to each pixel .

iaa.Add((−10, 10), per_channel=0.5),
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# Change hue and saturation

iaa.AddToHueAndSaturation((−20, 20)),

# Change brightness of images (50−150\% of original value)

# or change the brightness of subareas .

iaa.OneOf([

iaa.Multiply((0.5, 1.5), per_channel=0.5),

iaa.FrequencyNoiseAlpha(

exponent=(−4, 0),

first=iaa.Multiply((0.5, 1.5), per_channel=True),

second=iaa.ContrastNormalization((0.5, 2.0))

)

]),

# Improve or worsen the contrast of images .

iaa.LinearContrast((0.5, 2.0), per_channel=0.5),

# Convert each image to grayscale and then overlay the

# result with the original with random alpha . I . e . remove

# colors with varying strengths .

iaa.Grayscale(alpha=(0.0, 1.0)),

# In some images move pixels locally around (with random

# strengths ) .

# This is , and the next , augmentation is very slow and

# therefore , unfortunately , not used .

# sometimes(

# iaa . ElasticTransformation (alpha=(0.5, 3.5) , sigma=0.25)

# ) ,

# In some images distort local areas with varying strength .

# sometimes( iaa . PiecewiseAffine ( scale=(0.01, 0.05)))

],

# Do all of the above augmentations in random order

random_order=True

)

],

# Do all of the above augmentations in random order

random_order=True

)

102



C.3 Realistic Augmentations

The following augmentation sequence only applies transformations that could be consid-
ered natural. That is, the produced images should be somewhat realistic, and not too heav-
ily augmented. This augmentation scheme was therefore applied in all training epochs
when used.

def geometric_augmentations():

return iaa.Sequential([

iaa.Fliplr(0.5),

iaa.Flipud(0.5),

iaa.Sometimes(0.5, iaa.Affine(

scale={"x": (0.9, 1.1), "y": (0.9, 1.1)},

translate_percent={"x": (−0.2, 0.2), "y": (−0.2, 0.2)},

rotate=(−90, 90),

shear=(−16, 16),

cval=(0, 255),

)),

iaa.Sometimes(0.5, iaa.Crop(percent=(0, 0.3))),

])

def non_geometric_augmentations():

sometimes = lambda aug: iaa.Sometimes(0.25, aug)

return iaa.Sequential([

sometimes(iaa.Multiply((0.5, 1.5))),

sometimes(iaa.GaussianBlur(sigma=(0, 2.0))),

sometimes(iaa.MultiplyHue((0.9, 1.1))),

sometimes(iaa.MultiplySaturation((0.9, 1.1))),

sometimes(iaa.Grayscale(alpha=(0.0, 0.5))),

sometimes(iaa.ChangeColorTemperature((4000, 6000))),

sometimes(iaa.GammaContrast((0.5, 2.0)))

], random_order=True)

realistic_augmentation = iaa.Sequential([

geometric_augmentations(),

non_geometric_augmentations()

], random_order=True)
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Appendix D

Code for PSPNet

See GitHub implementation by Divam Gupta for full framework [20].

D.1 Load and Train Model

import imgaug as ia

import imgaug.augmenters as iaa

import matplotlib.pyplot as plt

import os

from keras_segmentation.predict import model_from_checkpoint_path , evaluate

from keras_segmentation.models.model_utils import transfer_weights

from keras_segmentation.models.pspnet import pspnet_50

from keras_segmentation.models.pspnet import pspnet_101

from keras_segmentation.pretrained import pspnet_50_ADE_20K

train_new_model = True

if train_new_model:

pretrained_model = pspnet_50_ADE_20K()

model = pspnet_50(n_classes=2)

transfer_weights(pretrained_model , model)

else:

checkpoints_path = os.path.join(’checkpoints’, ’pspnet’)

model = model_from_checkpoint_path(checkpoints_path)

EPOCHS = 70

BATCH_SIZE = 2
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dataset = ’dataset’

history = model.train(

verify_dataset=False,

batch_size=BATCH_SIZE ,

validate=True,

steps_per_epoch=508//BATCH_SIZE ,

val_steps_per_epoch=50//BATCH_SIZE ,

train_images=os.path.join(dataset, ’train_images’),

train_annotations=os.path.join(dataset, ’train_segmentation’),

val_images=os.path.join(dataset, ’val_images’),

val_annotations=os.path.join(dataset, ’val_segmentation’),

checkpoints_path=os.path.join(’checkpoints’, ’pspnet’),

epochs=EPOCHS,

do_augment=False,

optimizer_name=’adadelta’,

augmentation_name=’aug_heavy’

)

D.2 Evaluation, Prediction and Visualization

import glob

import random

import json

import os

import six

import cv2

import numpy as np

from tqdm import tqdm

from .train import find_latest_checkpoint

from .data_utils.data_loader import get_image_array ,

get_segmentation_array , DATA_LOADER_SEED ,

class_colors , get_pairs_from_paths

from .models.config import IMAGE_ORDERING

random.seed(DATA_LOADER_SEED)

local_class_colors = [(0, 0, 0), (0, 0, 255)]

mask_rcnn_colors = local_class_colors + class_colors

106



def model_from_checkpoint_path(checkpoints_path):

from .models.all_models import model_from_name

assert (os.path.isfile(checkpoints_path+"_config.json")

), "Checkpoint not found."

model_config = json.loads(

open(checkpoints_path+"_config.json", "r").read())

latest_weights = find_latest_checkpoint(checkpoints_path)

assert (latest_weights is not None), "Checkpoint not found."

model = model_from_name[model_config[’model_class’]](

model_config[’n_classes’],

input_height=model_config[’input_height’],

input_width=model_config[’input_width’])

print("loaded weights ", latest_weights)

model.load_weights(latest_weights)

return model

def get_colored_segmentation_image(seg_arr, n_classes ,

colors=class_colors):

output_height = seg_arr.shape[0]

output_width = seg_arr.shape[1]

seg_img = np.zeros((output_height , output_width , 3))

print("N_CLASSES =", n_classes)

for c in range(n_classes):

seg_arr_c = seg_arr[:, :] == c

seg_img[:, :, 0] += ((seg_arr_c)∗(colors[c][0])).astype(’uint8’)

seg_img[:, :, 1] += ((seg_arr_c)∗(colors[c][1])).astype(’uint8’)

seg_img[:, :, 2] += ((seg_arr_c)∗(colors[c][2])).astype(’uint8’)

return seg_img

def get_legends(class_names , colors=class_colors):

n_classes = len(class_names)

legend = np.zeros(((len(class_names) ∗ 25) + 25, 125, 3),

dtype="uint8") + 255

class_names_colors = enumerate(zip(class_names[:n_classes],

colors[:n_classes]))

107



for (i, (class_name , color)) in class_names_colors:

color = [int(c) for c in color]

cv2.putText(legend, class_name , (5, (i ∗ 25) + 17),

cv2.FONT_HERSHEY_COMPLEX , 0.5, (0, 0, 0), 1)

cv2.rectangle(legend, (100, (i ∗ 25)), (125, (i ∗ 25) + 25),

tuple(color), −1)

return legend

def overlay_seg_image(inp_img, seg_img):

orininal_h = inp_img.shape[0]

orininal_w = inp_img.shape[1]

seg_img = cv2.resize(seg_img, (orininal_w , orininal_h))

fused_img = (inp_img/2 + seg_img/2).astype(’uint8’)

return fused_img

def concat_lenends(seg_img, legend_img):

new_h = np.maximum(seg_img.shape[0], legend_img.shape[0])

new_w = seg_img.shape[1] + legend_img.shape[1]

out_img = np.zeros((new_h, new_w, 3)).astype(’uint8’) +

legend_img[0, 0, 0]

out_img[:legend_img.shape[0], : legend_img.shape[1]] =

np.copy(legend_img)

out_img[:seg_img.shape[0], legend_img.shape[1]:] =

np.copy(seg_img)

return out_img

def visualize_segmentation(seg_arr, inp_img=None, n_classes=None,

colors=class_colors , class_names=None,

overlay_img=False, show_legends=False,

prediction_width=None, prediction_height=None):

if n_classes is None:

n_classes = np.max(seg_arr)+1

seg_img = get_colored_segmentation_image(seg_arr, n_classes ,
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colors=colors)

if inp_img is not None:

orininal_h = inp_img.shape[0]

orininal_w = inp_img.shape[1]

seg_img = cv2.resize(seg_img, (orininal_w , orininal_h))

if (prediction_height is not None) and (prediction_width is not None):

seg_img = cv2.resize(seg_img, (prediction_width ,

prediction_height))

if inp_img is not None:

inp_img = cv2.resize(inp_img,

(prediction_width , prediction_height))

if overlay_img:

assert inp_img is not None

seg_img = overlay_seg_image(inp_img, seg_img)

if show_legends:

assert class_names is not None

legend_img = get_legends(class_names , colors=colors)

seg_img = concat_lenends(seg_img, legend_img)

return seg_img

def predict(model=None, inp=None, out_fname=None,

checkpoints_path=None, overlay_img=False,

class_names=None, show_legends=False, colors=class_colors ,

prediction_width=None, prediction_height=None):

if model is None and (checkpoints_path is not None):

model = model_from_checkpoint_path(checkpoints_path)

assert (inp is not None)

assert ((type(inp) is np.ndarray) or

isinstance(inp, six.string_types)),\

"Input should be the CV image or the input file name"

if isinstance(inp, six.string_types):

inp = cv2.imread(inp)

assert len(inp.shape) == 3, "Image should be h,w,3 "
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output_width = model.output_width

output_height = model.output_height

input_width = model.input_width

input_height = model.input_height

n_classes = model.n_classes

x = get_image_array(inp, input_width , input_height ,

ordering=IMAGE_ORDERING)

pr = model.predict(np.array([x]))[0]

pr = pr.reshape((output_height ,

output_width , n_classes)).argmax(axis=2)

seg_img = visualize_segmentation(pr, inp, n_classes=n_classes ,

colors=colors, overlay_img=overlay_img ,

show_legends=show_legends ,

class_names=class_names ,

prediction_width=prediction_width ,

prediction_height=prediction_height)

if out_fname is not None:

cv2.imwrite(out_fname , seg_img)

return pr

def predict_multiple(model=None, inps=None, inp_dir=None, out_dir=None,

checkpoints_path=None, overlay_img=False,

class_names=None, show_legends=False,

colors=local_class_colors ,

prediction_width=None, prediction_height=None):

if model is None and (checkpoints_path is not None):

model = model_from_checkpoint_path(checkpoints_path)

if inps is None and (inp_dir is not None):

inps = glob.glob(os.path.join(inp_dir, "∗.jpg")) + glob.glob(

os.path.join(inp_dir, "∗.png")) + \

glob.glob(os.path.join(inp_dir, "∗.jpeg"))

inps = sorted(inps)

assert type(inps) is list

all_prs = []

for i, inp in enumerate(tqdm(inps)):
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if out_dir is None:

out_fname = None

else:

if isinstance(inp, six.string_types):

out_fname = os.path.join(out_dir, os.path.basename(inp))

else:

out_fname = os.path.join(out_dir, str(i) + ".jpg")

pr = predict(model, inp, out_fname ,

overlay_img=overlay_img , class_names=class_names ,

show_legends=show_legends , colors=colors,

prediction_width=prediction_width ,

prediction_height=prediction_height)

all_prs.append(pr)

return all_prs

def evaluate(model=None, inp_images=None, annotations=None,

inp_images_dir=None,

annotations_dir=None, checkpoints_path=None):

if model is None:

assert (checkpoints_path is not None),\

"Please provide the model or the checkpoints_path"

model = model_from_checkpoint_path(checkpoints_path)

if inp_images is None:

assert (inp_images_dir is not None),\

"Please provide inp_images or inp_images_dir"

assert (annotations_dir is not None),\

"Please provide inp_images or inp_images_dir"

paths = get_pairs_from_paths(inp_images_dir , annotations_dir)

paths = list(zip(∗paths))

inp_images = list(paths[0])

annotations = list(paths[1])

assert type(inp_images) is list

assert type(annotations) is list

tp = np.zeros(model.n_classes)

fp = np.zeros(model.n_classes)

fn = np.zeros(model.n_classes)
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n_pixels = np.zeros(model.n_classes)

for inp, ann in tqdm(zip(inp_images , annotations)):

pr = predict(model, inp)

gt = get_segmentation_array(ann, model.n_classes ,

model.output_width , model.output_height ,

no_reshape=True)

gt = gt.argmax(−1)

pr = pr.flatten()

gt = gt.flatten()

for cl_i in range(model.n_classes):

tp[cl_i] += np.sum((pr == cl_i) ∗ (gt == cl_i))

fp[cl_i] += np.sum((pr == cl_i) ∗ ((gt != cl_i)))

fn[cl_i] += np.sum((pr != cl_i) ∗ ((gt == cl_i)))

n_pixels[cl_i] += np.sum(gt == cl_i)

cl_wise_score = tp / (tp + fp + fn + 0.000000000001)

n_pixels_norm = n_pixels / np.sum(n_pixels)

frequency_weighted_IU = np.sum(cl_wise_score∗n_pixels_norm)

mean_IU = np.mean(cl_wise_score)

return {

"frequency_weighted_IU": frequency_weighted_IU ,

"mean_IU": mean_IU,

"class_wise_IU": cl_wise_score

}
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Appendix E

Code for Mask R-CNN

See GitHub implementation by Waleed Abdulla for full framework [1].

E.1 Load and Train Model

"""

Usage: import the module ( see Jupyter notebooks for examples) , or run from

the command line as such:

# Train a new model starting from pre−trained COCO weights

python3 damage_detection .py train

−−dataset=/path / to / dataset −−weights=coco

# Resume training a model that you had trained earlier

python3 damage_detection .py train

−−dataset=/path / to / dataset −−weights=last

# Train a new model starting from ImageNet weights

python3 damage_detection .py train

−−dataset=/path / to / dataset −−weights=imagenet

# Apply inference to an image

python3 damage_detection .py tes t

−−weights=/path / to / weights / f i l e .h5 −−image=<URL or path to f i le>

"""

import os

import sys

import json

import datetime

import numpy as np

import skimage.draw

from imgaug import augmenters as iaa
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# Root directory of the project

ROOT_DIR = os.path.abspath("../../")

# Import Mask RCNN

sys.path.append(ROOT_DIR) # To find local version of the library

from mrcnn.config import Config

from mrcnn import model as modellib, utils, visualize

from keras.callbacks import LearningRateScheduler

# Path to trained weights f i l e

COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR , "mask_rcnn_coco.h5")

# Directory to save logs and model checkpoints , i f not provided

# through the command line argument −−logs

DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")

############################################################

# Configurations

############################################################

class DamageConfig(Config):

"""Configuration for training on the toy dataset .

Derives from the base Config class and overrides some values .

"""

# Give the configuration a recognizable name

NAME = "damage"

# We use a GPU with 12GB memory, which can f i t two images .

# Adjust down i f you use a smaller GPU.

IMAGES_PER_GPU = 1

# Number of classes ( including background)

NUM_CLASSES = 1 + 1 # +1 for background

# Number of training steps per epoch

STEPS_PER_EPOCH = 508

VALIDATION_STEPS = 50

# Skip detections with < 90% confidence

DETECTION_MIN_CONFIDENCE = 0.9

#LEARNING_RATE = 0.001 # 0.001

OPTIMIZER = "SGD" # default is SGD
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# Reducing memory

BACKBONE = "resnet50"

IMAGE_MIN_DIM = 512 # similar to PSPNet

IMAGE_MAX_DIM = 512

MAX_GT_INSTANCES = 50

############################################################

# Dataset

############################################################

class DamageDataset(utils.Dataset):

def load_damage(self, dataset_dir , subset):

"""Load a subset of the damage dataset .

dataset_dir : Root directory of the dataset .

subset : Subset to load: train or val

"""

# Add classes .

self.add_class("damage", 1, "corrosion") # +1 since 0=BG

# Train or validation dataset

assert subset in ["train", "val"]

dataset_dir = os.path.join(dataset_dir , subset)

image_ids = next(os.walk(dataset_dir))[1]

for image_id in image_ids:

image_example_dir = os.path.join(dataset_dir , image_id)

(_, _, file_names) = next(os.walk(image_example_dir))

file_name = file_names[0]

image_path = os.path.join(image_example_dir , file_name)

image = skimage.io.imread(image_path)

height, width = image.shape[:2]

self.add_image(

"damage",

image_id=image_id , # use ids from LabeBox

path=image_path ,

width=width, height=height)

def load_mask(self, image_id):

"""Generate instance masks for an image.

Returns:
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masks: A bool array of shape [height , width , instance count] with

one mask per instance .

class_ids : a 1D array of class IDs of the instance masks .

"""

info = self.image_info[image_id]

# Get mask directory from image path

mask_dir = os.path.join(os.path.dirname(info[’path’]), "masks")

# Read mask f i l e s from .png images

mask = []

for f in next(os.walk(mask_dir))[2]:

if f.endswith(".png"):

m = skimage.io.imread(os.path.join(mask_dir, f),

as_gray=True).astype(np.bool)

mask.append(m)

mask = np.stack(mask, axis=−1)

class_ids = np.ones([mask.shape[−1]], dtype=np.int32)

# Return mask, and array of class IDs of each instance .

return mask.astype(np.bool), class_ids

def load_mask_semantic(self, image_id):

"""Generate instance masks for an image.

Returns:

masks: A bool array of shape [height , width , instance count] with

one mask per instance .

class_ids : a 1D array of class IDs of the instance masks .

"""

info = self.image_info[image_id]

# Get mask directory from image path

mask_dir = os.path.join(os.path.dirname(info[’path’]), "masks")

# Read mask f i l e s from .png images

mask = None

mask_initialized = False

for f in next(os.walk(mask_dir))[2]:

if f.endswith(".png"):

if not mask_initialized:

mask = skimage.io.imread(os.path.join(mask_dir , f),

as_gray=True).astype(np.bool)

mask_initialized = True

else:

m = skimage.io.imread(os.path.join(mask_dir, f),

as_gray=True).astype(np.bool)

116



mask = np.add(mask, m)

mask = [mask]

mask = np.stack(mask, axis=−1)

class_ids = np.ones([mask.shape[−1]], dtype=np.int32)

# Return mask, and array of class IDs of each instance .

return mask.astype(np.bool), class_ids

def image_reference(self, image_id):

"""Return the path of the image. """

info = self.image_info[image_id]

if info["source"] == "damage":

return info["path"]

else:

super(self.__class__ , self).image_reference(image_id)

def lr_scheduler(epoch, lr):

decay_rate = 0.5

decay_step = 10

if epoch % decay_step == 0 and epoch:

return lr ∗ decay_rate

return lr

def train(model):

"""Train the model . """

# Training dataset .

dataset_train = DamageDataset()

dataset_train.load_damage(args.dataset, "train")

dataset_train.prepare()

# Validation dataset

dataset_val = DamageDataset()

dataset_val.load_damage(args.dataset, "val")

dataset_val.prepare()

# Custom callbacks

change_lr = LearningRateScheduler(lr_scheduler , verbose=1)

print("Training network heads")

model.train(dataset_train , dataset_val ,

learning_rate=config.LEARNING_RATE ,
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epochs=60,

augmentation=aug_flipping(), # see appendix C

custom_callbacks=[change_lr],

layers=’all’)

############################################################

# Interface

############################################################

if __name__ == ’__main__’:

import argparse

# Parse command line arguments

parser = argparse.ArgumentParser(

description=’Train Mask R−CNN to detect construction damages.’)

parser.add_argument("command",

metavar="<command>",

help="’train’, ’test’ or ’evaluate’")

parser.add_argument(’−−dataset’, required=False,

metavar="/path/to/dataset/",

help=’Directory of the construction damage dataset’)

parser.add_argument(’−−weights’, required=True,

metavar="/path/to/weights.h5",

help="Path to weights .h5 file or ’coco’")

parser.add_argument(’−−logs’, required=False,

default=DEFAULT_LOGS_DIR ,

metavar="/path/to/logs/",

help=’Logs and checkpoints directory (default=logs/)’)

parser.add_argument(’−−image’, required=False,

metavar="path or URL to image",

help=’Image to apply inference on’)

args = parser.parse_args()

# Validate arguments

if args.command == "train":

assert args.dataset, "Argument −−dataset is required for training"

elif args.command == "test":

assert args.image, "Provide −−image to apply inference on"

elif args.command == "evaluate":

assert args.dataset, "Argument −−dataset is required for training"

assert args.weights, "Argument −−weights is required for evaluation"

print("Weights: ", args.weights)

print("Dataset: ", args.dataset)
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print("Logs: ", args.logs)

# Configurations

if args.command == "train":

config = DamageConfig()

else:

class InferenceConfig(DamageConfig):

# Set batch size to 1 since we’ l l be running inference on

# one image at a time . Batch size = GPU_COUNT ∗ IMAGES_PER_GPU

GPU_COUNT = 1

IMAGES_PER_GPU = 1

config = InferenceConfig()

config.display()

# Create model

if args.command == "train":

model = modellib.MaskRCNN(mode="training", config=config,

model_dir=args.logs)

elif args.command == "test":

model = modellib.MaskRCNN(mode="inference", config=config,

model_dir=args.logs)

elif args.command == "evaluate":

model = modellib.MaskRCNN(mode="inference", config=config,

model_dir=args.logs)

# Select weights f i l e to load

if args.weights.lower() == "coco":

weights_path = COCO_WEIGHTS_PATH

# Download weights f i l e

if not os.path.exists(weights_path):

utils.download_trained_weights(weights_path)

elif args.weights.lower() == "last":

# Find last trained weights

weights_path = model.find_last()

elif args.weights.lower() == "imagenet":

# Start from ImageNet trained weights

weights_path = model.get_imagenet_weights()

else:

weights_path = args.weights

# Load weights

print("Loading weights ", weights_path)

if args.weights.lower() == "coco":

# Exclude the last layers because they require a matching

# number of classes

119



model.load_weights(weights_path , by_name=True, exclude=[

"mrcnn_class_logits", "mrcnn_bbox_fc",

"mrcnn_bbox", "mrcnn_mask"])

else:

model.load_weights(weights_path , by_name=True)

# Train , tes t or evaluate

if args.command == "train":

train(model)

elif args.command == "test":

apply_interference(model, image_path=args.image)

elif args.command == "evaluate":

evaluate_model(model)

else:

print("’{}’ is not recognized. "

"Use ’train’ or ’test’".format(args.command))

E.2 Evaluation, Prediction and Visualization

def apply_interference(model, image_path=None):

# Load image

image = skimage.io.imread(image_path)

# Run detection

results = model.detect([image], verbose=1)

# Visualize results

r = results[0]

class_names = ["BG", "corrosion"]

visualize.display_instances(image, r[’rois’], r[’masks’],

r[’class_ids’], class_names , r[’scores’])

def evaluate_model(model):

dataset_val = DamageDataset()

dataset_val.load_damage(args.dataset, "val")

dataset_val.prepare()

image_ids = dataset_val.image_ids

iou_corr_list = []

iou_bg_list = []
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for image_id in image_ids:

image = dataset_val.load_image(image_id)

mask_gt, class_ids = dataset_val.load_mask(image_id)

mask_gt = combine_masks_to_one(mask_gt)

result = model.detect([image], verbose=0)[0]

predicted_masks = result["masks"]

if predicted_masks.shape[−1] == 0:

continue

mask_pred = combine_masks_to_one(predicted_masks)

iou_corr = compute_overlaps_masks(mask_gt, mask_pred)[0][0]

iou_bg = compute_overlaps_masks(mask_gt, mask_pred , BG=True)[0][0]

print(image_id , "IoU =", (iou_corr, iou_bg))

iou_corr_list.append(iou_corr)

iou_bg_list.append(iou_bg)

mean_corr_iou = sum(iou_corr_list) / len(iou_corr_list)

mean_bg_iou = sum(iou_bg_list) / len(iou_bg_list)

print("Total mean values")

print("Corrosion IoU =", mean_corr_iou)

print("BG IoU=", mean_bg_iou)

print("Mean IoU =", (mean_corr_iou + mean_bg_iou) / 2)

def combine_masks_to_one(masks):

combined_mask = masks[:, :, 0]

for i in range(masks.shape[−1]):

combined_mask += masks[:, :, i]

return np.expand_dims(combined_mask , 2)

def compute_overlaps_masks(masks1, masks2, BG = False):

"""Computes IoU overlaps between two sets of masks .

masks1, masks2: [Height , Width , instances]

"""

# I f either set of masks is empty return empty result

if masks1.shape[−1] == 0 or masks2.shape[−1] == 0:
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return np.zeros((masks1.shape[−1], masks2.shape[−1]))

# flat ten masks and compute their areas

if BG:

masks1 = np.reshape(masks1 < .5,

(−1, masks1.shape[−1])).astype(np.float32)

masks2 = np.reshape(masks2 < .5,

(−1, masks2.shape[−1])).astype(np.float32)

else:

masks1 = np.reshape(masks1 > .5,

(−1, masks1.shape[−1])).astype(np.float32)

masks2 = np.reshape(masks2 > .5,

(−1, masks2.shape[−1])).astype(np.float32)

area1 = np.sum(masks1, axis=0)

area2 = np.sum(masks2, axis=0)

# intersections and union

intersections = np.dot(masks1.T, masks2)

union = area1[:, None] + area2[None, :] − intersections

overlaps = intersections / union

return overlaps

def overlay_prediction_single_maskrcnn(pr=None, inp=None,

out_dir=None, overlay_img=True, colors=mask_rcnn_colors):

if isinstance(pr, six.string_types):

pr = cv2.imread(pr, 0)

if isinstance(inp, six.string_types):

out_fname = os.path.join(out_dir, os.path.basename(inp))

inp = cv2.imread(inp[:−4] + ".jpg")

assert len(inp.shape) == 3, "Image should be h,w,3 "

seg_img = visualize_segmentation(pr, inp, colors=colors,

overlay_img=overlay_img ,)

if out_fname is not None:

cv2.imwrite(out_fname , seg_img)

return pr

122



def overlay_predictions_all_maskrcnn(pr_dir=None, inp_dir=None,

out_dir=None,

overlay_img=True, colors=mask_rcnn_colors):

for f in next(os.walk(pr_dir))[2]:

print("File name =", f)

if "DS_Store" in f:

print("Skipping DS_Store file")

continue

if f.endswith(".png"):

pr = os.path.join(pr_dir, f)

inp = os.path.join(inp_dir, f)

overlay_prediction_single_maskrcnn(pr, inp,

out_dir, overlay_img , colors)
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