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Problem description

Autonomous vehicles are increasingly used in both scientific and commercial appli-
cations. During autonomous or semi-autonomous operations, the capability to avoid
static and dynamic obstacles without human intervention is crucial for mission success
and vehicle safety. In complex environments with dynamic obstacles the vehicle has
to react quickly to obstacles, which can make the time consumption of motion plan-
ning algorithms unacceptable. Hence, there is a need for reactive collision avoidance
algorithm for avoiding moving obstacles.

A common approach to reactive collision avoidance is the velocity obstacle ap-
proach, where obstacles are represented in the velocity space. The algorithm has been
successfully applied to both non-holonomic systems and underactuated marine sys-
tems. The theoretical foundation of the algorithm, however, still needs to be expanded.
In particular, it is interesting to investigate cases such as

• Analytical proof of vehicle safety when avoiding obstacles,

• Mathematical analysis of combining velocity obstacles with other goal-reaching
behaviors, such as target reaching or path following.

The following subtasks are proposed for this assignment:

1. Perform a literature review on the topic of collision avoidance, with particular
focus on velocity obstacles and on tools for analyzing a collision avoidance
algorithm;

2. Implement the velocity obstacle method in a simulated environment;
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3. Employ an analysis technique to prove safety for nonholonomic and underactu-
ated vehicles avoiding a single, circular obstacle;

4. Combine the proof with target-reaching and path-following algorithms.
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Abstract

This thesis presents a mathematical analysis of the velocity obstacle algorithm for
collision avoidance of a moving obstacle in the plane. The velocity obstacle algorithm
can be used for local navigation among dynamic obstacles by continually computing a
set of unsafe velocities, and avoid the velocities inside this set. Themethod is commonly
used for reactive collision avoidance as it requires only limited knowledge of the
obstacle behaviour and is computationally inexpensive. A drawback of the previous
analyses of the algorithm is the assumption that the vehicle and the obstacle are
constrained to follow specific types of paths or that the velocities are assumed constant.
Additionally, few consider the vehicle’s dynamics when applying the algorithm, which
in collision avoidance scenarios can be fatal if unaccounted for. In this thesis, we
analyze the algorithm without these limitations. We provide conditions ensuring that
a nonholonomic vehicle avoids a collision with an obstacle capable of both turning and
accelerating towards the vehicle at any given moment in time. We extend the analysis
to provide conditions under which safety is ensured for an underactuated vehicle, i.e.
a vehicle unable to produce control forces in one or more of its degrees of freedom,
in the presence of a moving obstacle. The theoretical proofs of collision avoidance
are combined with proofs of target reaching and path following, and supported by
numerical simulations.
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Sammendrag

Denne masteravhandlingen presenterer en matematisk analyse av hastighet hindring
algoritmen (eng. the velocity obstacle algorithm) for kollisjonsunngåelse i det horison-
tale planet. Algoritmen, som er hyppig brukt for reaktiv kollisjonsunngåelse, er basert
på å regne ut samtlige hastighetsvektorer fartøyet kan inneha, som ved et ubestemt
tidspunkt i fremtiden, fører til en kollisjon mellom fartøyet og en hindring. Ved å alltid
unngå disse hastighetene unngår derav fartøyet en kollisjon med den spesifikke hin-
dringen. En ulempe ved tidligere analyser av algoritmen er at fartøyet og hindringen
er begrenset til å følge rette linjer, eller at hastighetene er antatt konstante. I tillegg
tar få i betraktning dynamikken til fartøyet, som i kollisjonssituasjoner kan være
avgjørende. I denne avhandlingen undersøker vi algoritmen uten slike begrensinger.
Vi gir betingelser for at et ikke-holonomt fartøy unngår kollisjon med en hindring som
beveger seg med tidsvarierende hastighet. Videre utvider vi analysen til å garantere
kollisjonsunngåelse for et underaktuert fartøy, det vil si et fartøy som ikke kan styre
en eller flere av sine frihetsgrader direkte. Vi kombinerer kollisjonsunngåelse med
føring av fartøyet mot et ønsket mål eller en sti. Numeriske simuleringer er inkludert
for å validere de teoretiske resultatene.
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Chapter 1

Introduction

Autonomous vehicles have in recent years become a field of large interest. During
autonomous operation, the vehicle must be able to navigate in complex, dynamic
environments without human intervention, using inputs from sensors and/or cameras.
To achieve the mission goal, the vehicle must depend on guidance and navigation
systems. Avoiding obstacles along the path is a crucial part of the navigation, as a
collision can in the worst case lead to an inoperable vehicle, and will in most cases
involve mission failure. In this thesis, we will analyse a collision avoidance algorithm,
the velocity obstacle (VO) algorithm [5], in combination with guidance laws for target
reaching and path following. The guidance laws will ensure that the vehicle achieves
the desired motion along a path or towards a target, while the collision avoidance
algorithm makes the vehicle avoid obstacles that are present along the way.

The velocity obstacle algorithm is based on describing obstacles in the velocity
space by computing, for each obstacle, and at each moment in time, the set of velocities
resulting in a future collision. Collision-free navigation is achieved by maintaining
velocities outside the union of these sets. The concept can be used for motion planning
purposes by searching over a tree of successive, feasible maneuvers. However, we will
analyze the algorithm for so-called reactive collision avoidance. Reactive algorithms
compute only one next action at every instant, and can consequently cope with
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2 CHAPTER 1. INTRODUCTION

highly dynamic and unpredictable environments. Such algorithms require only local
information about the environment and are less computationally demanding than
classical planning algorithms, which are both time-consuming and require an extensive
world model. For vehicles with limited computational power, reactive algorithms
present a suitable navigation method. Reactive algorithms can be employed in hybrid
architectures, in order to reduce the search space of planning algorithms, or as a
back-up algorithm for increased redundancy.

The analysis presented in this thesis will specifically consider underactuated ve-
hicles. This class is very rich and includes vehicles such as automobiles, airplanes,
and marine vehicles. In particular, we will investigate the algorithm applied to an
underactuated marine vehicle modeled in 2D, also known as a surface vehicle. Surface
vehicles equipped with stern propellers and steering rudders are able to generate a
forward thrust (in the surge direction), and a momentum in yaw, but are unable to
control the side-ways force (in the sway direction), and is thus underactuated in sway.
Although the vehicle cannot explicitly control the force in the side-ways direction,
such forces are induced by the vehicle’s turning motion through dynamic coupling.
Large swaying motions can in the worst case make the vehicle collide side-ways into
an obstacle, it is therefore necessary to consider the underactuated dynamics during
the control design and analysis of such systems.

Before analyzing the full model of an underactuated surface vehicle, we will study
the kinematic model of the system for reactive collision avoidance of an obstacle. The
analysis will be based on the unicycle model, subject to nonholonomic constraints. This
model represents the kinematics of a large class of systems, the results are therefore
applicable to many different vehicle types. The original formulation of the algorithm
is furthermore based on constant velocities, and suggests that the concept does not
deal well with nonholonomic constraints. The objective is to remove such limitations,
and derive conditions for which safety is ensured in the general case.

Collision avoidance of obstacles will be combined with guidance of the vehicle.
Analysis of guidance laws is not the primary goal of the thesis, but collision avoidance
in combination with guidance systems is however interesting to investigate. The
guidance algorithms we will consider can be classified as reactive algorithms; they
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require no planning, and the next action is based on the current information. The
guidance laws are furthermore easily implemented on a wide variety of vehicles and
require few measurements. Since both algorithms are reactive, the control system
can transition between collision avoidance and nominal guidance based on specific
conditions, without any planning involved.

1.1 Motivation

Autonomous and unmanned vehicles present a large potential for both scientific
and commercial applications. They have been employed in several areas, such as
subsea inspection and intervention, surveillance, transportation, and space operation.
The vehicles are required to navigate in unknown environments while performing
autonomous or semi-autonomous operations, and the capability of avoiding static
and dynamic obstacles is important for achieving the mission goal. Motion planning
algorithms can be applied for avoiding obstacles if information about the environment
is known. However, the information is often limited, non-existing or erroneous.
The vehicle may therefore experience unexpected changes and must be able to react
quickly to avoid collision, making the time-consumption of motion planning algorithms
unacceptable. For this purpose, reactive algorithms present a more suitable approach.
Reactive algorithms base decisions on the current information about the environment,
meaning there is no planning involved. While reactive algorithms can be applied
as the sole navigation method, they also work well in combination with, or as a
backup tomotion planning algorithms. Reactive algorithms are furthermore interesting
when used to generate motion primitives for planning algorithms. Safe and efficient
algorithms can significantly reduce the search space of an optimization problem, while
also guaranteeing vehicle safety even in cases when the search does not converge to a
solution [20].

A common approach to reactive collision avoidance in dynamic environments
is the velocity obstacle approach [5], where obstacles are represented as cones in
the velocity space. The cones, called velocity obstacles, represent the set of constant
velocities causing a collision between the vehicle and an obstacle at some future time.
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Maintaining velocities outside of the set guarantees a collision-free trajectory of the
vehicle. The concept has been largely applied for reactive collision avoidance of moving
obstacles, and for decentralized, reactive navigation in multi-agent systems.

Autonomous operations of marine vehicles require that guidance, navigation and
control is performed with high safety, as the consequences of a collision can be se-
vere. The International Regulations for Preventing Collisions at Sea (COLREGS) were
originally made for ships operated by a crew, but have been successfully applied for
autonomous sea navigation using velocity obstacles [9, 15]. The VO algorithm has
furthermore been employed for unmanned and autonomous marine navigation in 2D
for surface vehicles [9, 3, 15, 29], and in 3D for underwater vehicles [30]. Although
COLREGS provides higher safety of the vehicle in scenarios with oncoming vehicles,
an important consideration in the study of collision avoidance algorithms is the ability
to guarantee vehicle safety. To be able to provide such a guarantee, the vehicle dynam-
ics should be considered both in the design and analysis of the collision avoidance
algorithm. It is therefore both relevant and important to consider the underactuated
dynamics of marine vehicles when applying the VO algorithm in collision avoidance
scenarios, which in previous work have been neglected. Underactuation in the side-
ways (sway) direction is common for surface vehicles, even though some vehicles
can generate side-ways forces using e.g. tunnel thrusters. At maneuvering speeds,
thrusters providing side-ways stabilizing forces loose their effectiveness [12], thus
making the vehicle underactuated at those speed, causing the swaying motion to
become significant at times. Uncontrolled forces in the lateral direction can be fatal
in collision avoidance scenarios if they are not accounted for. In order to guarantee
vehicle safety, such consideration must thus be included.

Another important consideration in the analysis of collision avoidance algorithms is
the liveliness property, i.e. the algorithm ensures that the vehicle will progress towards
its goals. It is so forth interesting to investigate the VO algorithm in combination
with separate vehicle goals. Autonomous marine vehicles are commonly dependent
on guidance systems to move from one place to another. It is in such cases relevant
to analyse scenarios where the vehicle both navigates among moving obstacles, and
moves towards a goal position or along a path.
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1.2 Literature review

Collision avoidance (CA) is a critical part of autonomous operations due to the severe
consequences of a failure. Surveys of existing CA algorithms are given in Hoy et al. [7]
and Huang et al. [8], where the latter specifically considers methods for ship collision
avoidance. CA algorithms are often divided in two groups, reactive algorithms and
motion planning algorithms. As the name suggests, the latter group generally depends
on planning, and often rely on optimization methods. This can be computationally
expensive and time-consuming for autonomous vehicles with complex dynamics,
navigating in dense environments. Optimization problems can furthermore become
computationally intractable for large and complex search spaces. Hence, autonomous
vehicles must generally rely on backup solutions that are computationally simpler and
yet provably safe, i.e. reactive algorithms.

A common approach for reactive collision avoidance in the robotics community
is the artificial potential field [14], which assumes the robot is moving in an abstract,
artificial force field. The potential field has two components; an attractive force which
makes the robot move towards it, and a repulsive force making the robot move in
the opposite direction. The forces are generated by the goals (attractive) and the
obstacles (repulsive), which are stronger near the goal or obstacle, and weaker at a
distance. The method provides a continuous search for a solution as the robot moves
under the influence of the potential field to reach the goal. Unfortunately, the method
has several drawbacks in producing local minima causing the robot to get trapped,
causing oscillations due to narrow passages or obstacles in general, and not generating
passages between closely spaced obstacles.

A reactive algorithm that has been applied to both nonholonomic and underacted
vehicles is the constant avoidance angle (CAA) algorithm [25, 26, 27]. The algorithm
makes the vehicle avoid collision with an obstacle by steering the vehicle so that its
velocity vector keeps a constant avoidance angle from the obstacle. To decide when
collision avoidance is needed, the algorithm computes a vision cone of the obstacle,
describing unsafe moving directions. If the obstacle is moving, the vision cone is
expanded to yield a compensated vision cone, accounting for the obstacle velocity.
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The algorithm has been mathematically analyzed and proven to guarantee safety of
both kinematic and dynamical systems.

A similar concept to the CAA algorithm is the velocity obstacle algorithm [5]. The
method is based on the computation of all velocities resulting in a collision between
the vehicle and an obstacle, forming a cone-shaped set of unsafe velocities. Among
several moving obstacles, the cones are combined to one unified set. Any velocity
outside of this set ensures collision-free navigation of the vehicle, making the method
flexible in the choice of solution. The vehicle can additionally maintain its nominal
behaviour in the presence of obstacles as long as unsafe velocities are avoided. Thus,
the method avoids restricting the vehicle motion more than necessary. The main
drawback is however that the method is based on linear approximations of the obstacle
and vehicle velocities, in addition to the assumption that the vehicle can change speed
and orientation simultaneously.

Although the velocity obstacle algorithm works well for systems that are able
to move in any direction, the concept struggles with systems subject to constraints
restricting the overall motion. Several variations of the algorithm have been suggested
to overcome this issue. Wilkie et al. [28] generalizes the velocity obstacle concept
to include kinematic constraints of a car-like robot which can only move, at any
instant, with a velocity parallel to the rear wheels. Owen and Montano [20] addresses
the problem of avoiding moving and static obstacles while a robot drives towards
a goal, by mapping the robot motion and dynamical environment into the velocity
space. The robot is constrained to move along straight or circular paths, which is a
common constraint imposed to nonholonomic robot motions. However, the obstacles
are assumed to move with constant velocities and along straight paths. Thus, the
method suffers from the same drawback as the original velocity obstacle algorithm in
that regard.

The nonlinear velocity obstacle presented in Shiller et al. [21] can be used to handle
obstacles moving along arbitrary trajectories, as is done in Large et al. [18]. Although
the approach deals with one of the shortcomings of the algorithm, it introduces the
assumption that the obstacle’s trajectory can be exactly known or closely estimated.

The acceleration-velocity obstacles (AVO) is presented by van den Berg et al. [24],
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which accounts for constraints in the vehicle’s acceleration, inspired by the concept
of velocity obstacles. The method combines velocity obstacles with acceleration
constraints by letting the robot choose a velocity outside the AVO set, and apply
proportional acceleration control to arrive at this velocity. The concept is extended
to reciprocal collision avoidance [23], by evaluating the obstacles as other vehicles
reacting to the changes in the environment, rather than passively moving entities.
The concept of reciprocal collision avoidance was proposed by van den Berg et al.
[23], and later generalized by Bareiss and van den Berg [2], called reciprocal velocity
obstacles. The concept is designed for decentralized, real-time, multi-agent navigation.
The behaviour of the other agents are taken into account by implicitly assuming that
other agents makes the similar collision avoidance reasoning. The navigation method
then avoids oscillating behaviour of the agents, while provably ensures agent safety.

Lalish et al. [17] presents a velocity obstacle approach to the n-vehicle collision
avoidance problem, applied to unicycle-type vehicles with constant speeds and actua-
tion constraints. Similar to the reciprocal velocity obstacles [23], proof of agent safety
is derived by assuming that all agents follow the same collision avoidance algorithm.
Other applications of velocity obstacles in multi-agent navigation include [16, 22].

The algorithm has been employed to prevent collision for several vehicle types,
such as aerial vehicles in Alonso-Mora et al. [1] and Mercado Velasco et al. [19],
underwater vehicles in Zhang et al. [29], and surface vehicles in Kuwata et al. [15]
and Huang et al. [9] where the algorithm is used for implementing the International
Regulations for Preventing Collisions at Sea (COLREGS). The velocity obstacle method
is extended to 3D in Jenie et al. [10] and Jenie et al. [11], specifically designed for
collision avoidance of unmanned aerial vehicles (UAVs). The 3D velocity space is
divided into a set of discrete planes where the 2D velocity obstacle approach is applied
to each plane. However, the 3D extension does not address vehicle constraints and
dynamics which is a considerable drawback.

1.3 Assumptions

The general assumptions for restricting the scope of the thesis are as follows:
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Assumption 1.1. No disturbances are present.

Assumption 1.2. Required measurements are available and perfectly measured.

Assumption 1.3. Motion is restricted to the horizontal plane.

1.4 Contributions

The main contributions of the work presented in this thesis are as follows:

• A mathematical analysis of the velocity obstacle method with time-varying
velocities. The original VO method is based on linear approximations of the
velocities of a vehicle and an obstacle. By describing the algorithm geometrically,
we show by an analysis of the nonautonomous system that the same concept
applies to time-varying velocities;

• A complete analysis of the performance of a nonholonomic vehicle following the
velocity obstacle algorithm, for collision avoidance of a moving obstacle with
time-varying velocity. The vehicle is required to maintain a constant forward
speed, and has restricted turning rate. Despite this, the analysis shows that the
vehicle can safely avoid a moving obstacle, even in the case where the obstacle
is able to turn and accelerate towards the vehicle. This is in contrast to the
original formulation of velocity obstacles, which both assumes that the obstacle
maintains a constant velocity, and does not deal well with vehicles with restricted
forward speed and nonholonomic constraints;

• A mathematical analysis of the algorithm applied to an underactuated surface
vehicle, where we explicitly account for the dynamics of the vehicle when inves-
tigating safety in the presence of a moving obstacle. The vehicle is underactuated
in the side-ways (sway) direction, and is hence unable to generate side-ways
stabilizing forces. We show, for a proper choice of the vehicle’s yaw rate (turning
motion), that the magnitude of the sway speed can be upper bounded, and that



1.5. OUTLINE 9

under these conditions, collision avoidance is achieved for the vehicle with
underactuated dynamics;

• Proofs of collision avoidance of an obstacle are combined with proofs of target
reaching and path following, by the pure pursuit and LOS guidance laws.

• Simulation studies of the algorithm applied to the specific systems validating
the theoretical results.

1.5 Outline

The thesis is organized as follows:

Chapter 2 provides some mathematical preliminaries;

Chapter 3 presents the mathematical modeling of an underactuated marine vehicle,
moving in 3 degrees of freedom. The model is derived using maneuvering theory;

Chapter 4 presents guidance laws for path following and target reaching. The
relationship between the heading, course and crab angles is discussed;

Chapter 5 presents the velocity obstacle algorithm for collision avoidance in 2D.
A preliminary analysis of the fundamental concept behind the algorithm is given,
proving that a vehicle is ensured to maintain at least a minimum distance from an ob-
stacle at all times, by continually avoiding the velocities inside the velocity obstacle set;

Chapter 6 applies the velocity obstacle algorithm to a unicycle-type vehicle subject
to nonholonomic constraints. The vehicle is restricted to maintain a constant forward
speed, and has limited turning rate. A minimum threshold distance is formulated
deciding when the vehicle’s avoidance maneuver must be initiated, and a lower bound
on the vehicle’s required turning rate is derived, ensuring that the vehicle can turn
faster away from an obstacle than the obstacle is capable of turning and accelerating
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towards it. These conditions are combined with proofs of target reaching and path
following, ensuring that all goals of the vehicle are achieved. Simulations are included
to verify the theoretical results;

Chapter 7 includes the underactuated sway dynamics of a surface vehicle in the
unicycle-model. The vehicle is restricted to maintain a constant forward speed and
is required to reach a target position in the world frame, maintain a limited sway
speed, and avoid a moving obstacle in its path. The control system compensates for
the vehicle’s sway speed when controlling its heading as to steer the vehicle towards
the right course, and the VO algorithm is set to generate course references rather than
heading references. Conditions are derived under which the sway speed is bounded,
combined with collision avoidance of a moving obstacle and target reaching by the
pure pursuit guidance law. Simulations are provided to support the results of the
analysis;

Chapter 8 applies the VO algorithm to the full model of an underactuated surface
vehicle. The vehicle is, as before, required to maintain a constant forward speed. In
addition, the vehicle is required to maintain a limited sway speed. Feedback linearizing
controllers are employed to stabilize the surge and yaw dynamics exponentially. To
deal with discontinuities in the yaw rate input, a yaw rate smoothing function is pro-
posed. Conditions are given ensuring that the vehicle is guaranteed to avoid collision,
in combination with both target reaching and path following, while maintaining a
constant surge speed and limited sway speed. Simulations are presented to verify the
theoretical results;

Chapter 9 gives the concluding remarks, and discusses some future research topics.



Chapter 2

Mathematical Preliminaries

This chapter presents some mathematical preliminaries to the following chapters. We
will specify some frequently used notation, define the rotation matrices and convention
for the principal rotations, and state some stability definitions and theorems.

2.1 Notation

We will here give an overview of the notation used in this thesis.
The space Rn is the Euclidean space of dimension n. The Euclidean norm of a

vector u ∈ Rn is denoted ∥u∥. A vector u in a reference frame a is denoted ua. The
direction of a vector u = [ux, uy]

⊤ ∈ R2 is denoted ∠u, and is defined as

∠u ≜ atan2(uy, ux). (2.1)

The position of a reference frame b, with respect to a reference frame a, is denoted paab.
The velocity vector of frame b, with respect to frame a, is denoted vaab ≜ ṗaab. The
rotation matrix used to rotate a vector from a reference frame b, to a reference frame
a, is denotedRa

b , so that va = Ra
bv

b.
Three different reference frames will commonly be seen in the thesis. The inertial

11
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reference frame, approximated by the NED frame, denoted n, the Body attached
reference frame of the vehicle, attached to the pivot point of the vehicle, denoted b,
and the Body attached reference frame of an obstacle, attached to the center of the
obstacle, denoted o.

Finally, the trigonometric functions sin(·), cos(·), and tan(·) are, for brevity, de-
noted s(·), c(·) and t(·), respectively.

2.2 Principal rotations

Using the zyx-convention, the Euler angles roll ϕ, pitch θ and yaw ψ, are used to
decompose a rotation into three principal axis of rotation, given by

Rx,ϕ ≜


1 0 0

0 c(ϕ) −s(ϕ)

0 s(ϕ) c(ϕ)

 , (2.2)

Ry,θ ≜


c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)

 , (2.3)

Rz,ψ ≜


c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

 . (2.4)

2.3 Stability definitions and theorems

We will here state some necessary definitions and theorems regarding the stability
properties of nonautonomous systems. All of the presented material is found in Khalil
[13].
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Consider the nonautonomous system

ẋ = f(t, x), (2.5)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz1 in x
on [0,∞)×D, and D ⊂ Rn is a domain that contains the origin x = 0. Let the origin
be an equilibrium of (2.5) for t = 0, i.e.:

f(t, 0) = 0, ∀t ≥ 0. (2.6)

Definition 2.1. Khalil [13, Definition 4.4]. The equilibrium point x = 0 of (2.5) is

• stable if, for each ϵ > 0, there is δ = δ(t, ϵ) > 0 such that

∥x(t0)∥ < δ =⇒ ∥x(t)∥ < ϵ, ∀t ≥ t0 ≥ 0. (2.7)

• uniformly stable if, for each ϵ > 0, there is δ = δ(ϵ) independent of t0 such that
(2.7) is satisfied.

• unstable if it is not stable.

• asymptotically stable (AS) if it is stable and there is a positive constant c = c(t0)

such that x(t) → 0 as t→ ∞, for all ∥x(t0)∥ < c.

• uniformly asymptotically stable (UAS) if it is uniformly stable and there is a pos-
itive constant c, independent of t0, such that for all ∥x(t0)∥ < c, x(t) → 0 as
t→ ∞, uniformly in t0; that is, for each η > 0, there is T = T (η) > 0 such that

∥x(t)∥ < η, ∀t ≥ t0 + T (η), ∀∥x(t0)∥ < c. (2.8)

• globally uniformly asymptotically stable (UGAS) if it is uniformly stable, δ(ϵ) can
be chosen to satisfy lim

ϵ→∞
δ(ϵ) = ∞, and, for each pair of positive numbers η and

1See Khalil [13, Lemma 3.2]
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c, there is T = T (η, c) > 0 such that

∥x(t)∥ < η, ∀t ≥ t0 + T (η, c), ∀∥x(t0)∥ < c. (2.9)

2.3.1 Lyapunov stability

Lyapunov function candidates can be used to analyze the stability properties of a
system. The following theorems are included for orientation.

Theorem 2.1. Khalil [13, Theorem 4.8]. Let x = 0 be an equilibrium point for (2.5)
andD ⊂ Rn be a domain containing x = 0. Let V : [0, ∞)×D → R be a continuously
differentiable function such that

W1(x) ≤ V (t, x) ≤W2(x), (2.10)
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0, (2.11)

∀t ≥ 0 and x ∈ D, whereW1(x) andW2(x) are continuous positive definite functions
on D. Then, x = 0 is uniformly stable.

Theorem 2.2. Khalil [13, Theorem 4.9]. Suppose the assumptions of Theorem 2.1 are
satisfied with the inequality (2.11) strengthened to

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x), (2.12)

∀t ≥ 0 and x ∈ D, whereW3(x) is a continuous positive definite function on D. Then,
x = 0 is uniformly asymptotically stable (UAS). Moreover, if r and c are chosen such
that Br = {∥x∥ ≤ r} ⊂ D and c < min

∥x∥=r
W1(x), then every trajectory starting in

{x ∈ Br |W2(x) ≤ c} satisfies

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀t ≥ t0 ≥ 0, (2.13)
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for some class of KL2 function β. Finally, ifD = Rn andW1(x) is radially unbounded,
then x = 0 is globally uniformly asymptotically stable (UGAS).

2See Khalil [13, Definition 4.3]
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Chapter 3

Modeling of Underactuated
Surface Vehicles

In this chapter, we present the modeling of an underactuated surface vehicle. The
surface vehicle is modeled using maneuvering theory, in 3 degrees of freedom (DOF).
The modeling is based on Fossen [6], details regarding the presented theory can hence
be found in [6].

3.1 Kinematics

To describe a marine craft moving in 6 DOF, six independent coordinates are needed
to determine the position and orientation of the craft. The first three coordinates and
their time-derivatives describe the position and translational motion of the vehicle
along the x, y and z axes. The last three coordinates and time-derivatives describe the
orientation and rotational motion about these axes. The first three motion components
are called surge, sway and heave, and the last three are called roll, pitch and yaw.

17
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3.1.1 Reference frames

The vehicle kinematics must be described with respect to a reference frame. The inertial
frame, often referred to as the world frame, is an important frame to identify. This
frame is where Newton’s equations of motion apply, and is a frame whose points do not
accelerate. Moreover, the inertial frame acts as a reference for all other reference frames,
and must be defined before any other frames can be assigned. In local navigation, the
inertial frame can be approximated by the North-East-Down (NED) frame, and these
terms will be used somewhat interchangeably. In the NED frame, denoted n, the xn

axis points towards the true North, the yn axis points towards East, and the zn axis
points downwards, normal to the Earth’s surface.

The Body frame, denoted b, is a non-inertial coordinate frame, attached to the body
of the vehicle. The xb axis points along the surge motion, the yb axis along the sway
motion, and the zb axis along the heave motion. The body-attached reference frame
is commonly used to describe the linear and angular velocity of the craft, while the
position and orientation of the craft is usually described in the NED frame.

3.1.2 6 DOF Kinematics

The generalized positions and velocities of a marine vehicle are given by

η = [xn , yn , zn , ϕ , θ , ψ ]
⊤
, (3.1)

η̇ =
[
ẋn , ẏn , żn , ϕ̇ , θ̇ , ψ̇

]⊤
, (3.2)

where Θ = [ϕ , θ , ψ ]
⊤ are the Euler angles, representing roll, pitch and yaw. The

velocities of the vehicle can be described in the Body frame as

ν = [u , v , w , p , q , r ]
⊤
, (3.3)

where ν1 = [u , v , w]
⊤ represents the surge, sway and heave speeds, and ν2 =

[p , q , r ]
⊤ represents the roll, pitch and yaw rates.

The following notation will be adopted for vectors in the coordinate systems b and



3.1. KINEMATICS 19

n:

pnnb =


xnb

ynb

znb

 ∈ R3 Position in n, vnnb =


ẋnb

ẏnb

żnb

 ∈ R3 Linear velocity in n,

vbnb =


ub

vb

wb

 ∈ R3 Linear velocity in b, ωbnb =


pb

qb

rb

 ∈ R3 Angular velocity in b,

Θnb =


ϕb

θb

ψb

 ∈ R3 Euler angles from n to b, Θ̇nb =


ϕ̇b

θ̇b

ψ̇b

 ∈ R3 Euler angle rates,

η =

pnnb
Θnb

 ∈ R6 Generalized coordinates, ν =

vbnb
ωbnb

 ∈ R6 Body velocities.

The linear velocity in n, vnnb, can be obtained from the body-fixed linear velocity,
vbnb, by the Euler angle rotation matrix, defined as

Rn
b := Rz,ψbRy,θbRx,ϕb , (3.4)

where the matricesRz,ψ ,Ry,θ andRx,ϕ are defined in Chapter 2. Moreover,

vnnb = R
n
b v

b
nb. (3.5)

The body-fixed angular velocity vector, ωbnb, is related to the Euler rate vector,
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Θ̇nb, through a transformation matrix T (Θnb) according to

Θ̇nb = T (Θnb)ω
b
nb. (3.6)

The transformation matrix T (Θnb) is not unique, and can be found in several ways,
for instance:

ωnnb =


ϕ̇b

0

0

+R⊤
x,ϕb


0

θ̇b

0

+R⊤
x,ϕb

R⊤
y,θb


0

0

ψ̇b

 . (3.7)

By comparing (3.6) and (3.7) we find this particular transformation matrix as

T−1(Θnb) =


1 0 −sθb
0 cϕb cθbsϕb
0 −sϕb cθbsϕb

 =⇒ T (Θnb) =


1 sϕbtθb cϕbtθb
0 cϕb −sϕb
0 sϕb/cθb cϕb/sθb

 (3.8)

It can be noticed that the transformation matrix is non-singular for pitch angles equal
to θb = ±π

2 . Moreover, T−1(Θnb) ̸= T⊤(Θnb), meaning T (Θnb) /∈ SO(3). To
circumvent this issue, an alternative representation of the vehicle’s orientation can be
used, the quaternion representation. However, this is not a problem for surface vessels
restricted to move in the horizontal plane.

The 6 DOF kinematic equations can be summarized as

η̇ = JΘ(η)ν

⇕vnnb
Θ̇nb

 =

R(Θnb) 03×3

03×3 T (Θnb)

vbnb
ωbnb

 . (3.9)

3.1.3 3 DOF Kinematics

A common simplification of (3.9) is the 3 DOF representation, obtained by the as-
sumption that the roll and pitch angles are small during normal operation. Most
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surface vehicles are passively stabilized in roll at maneuvering speeds, and the unmod-
eled dynamics in heave and pitch can be considered as wave-induced disturbances.
Assuming ϕb ≈ 0, θb ≈ 0, the Euler angle rotation matrix from Equation (3.4) is
reduced toRn

b ≈ Rz,ψb , and the transformation matrix from Equation (3.8) becomes
T (Θnb) ≈ I3.

The 3 DOF kinematic equations can be written in the simple form:

vnnb
ψ̇b

 =


cos(ψb) − sin(ψb) 0

sin(ψb) cos(ψb) 0

0 0 1


vbnb
rb

 , (3.10)

where vnnb = [ẋnb , ẏ
n
b ]

⊤, and vbnb = [ub , vb]
⊤. Note that when considering the 3

DOF model, the notation presented in the previous section may still be employed,
however, the vectors will only contain the modeled dynamics, and thus have a different
dimension.

3.2 Dynamics

The dynamics of the vehicle can be described using maneuvering theory [6]. In ma-
neuvering theory, the frequency-dependent added mass and potential damping are
approximated by constant values, under the assumption that the vehicle is moving
with constant, maneuvering speed. The hydrodynamic coefficients can be assumed
frequency-independent at those speeds, enabling fluid-memory effects to be neglected.
The resulting model is a nonlinear mass-damper-spring system, with constant coeffi-
cients.

The maneuvering equations of motion can be written in the general form:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = Bu, (3.11)

whereM =M⊤ is the inertia matrix comprehensive the added mass, C(ν) is the
Coriolis-centripetal matrix including added mass,D(ν) contains the hydrodynamic



22 CHAPTER 3. MODELING OF UNDERACTUATED SURFACE VEHICLES

damping terms, and g(η) contains the gravitational/buoyancy forces and moments.
The hydrodynamic damping terms become nonlinear when quadratic damping is
included. For convenience, we only model the linear damping, rendering the damping
matrix constant,D(ν) :=D.

The control input from the vehicle’s actuators are contained in the vector u. B is
the input matrix, mapping the input signals to control forces and moments. The model
(3.11) will be explained in greater detail in the following section.

3.2.1 3 DOF Dynamics

In 3 DOF, the state vectors become ν = [ub , vb , rb ]
⊤ and η = [xnb , y

n
b , ψb ]

⊤. The
dimension of the matricesM ,C , andD is hence R3×3. Since the vehicle is moving in
the horizontal plane, gravitational and buoyancy effects can be neglected, i.e. g(η) = 0.
We assume that the vehicle has a homogeneous mass distribution, is port-starboard
symmetric, and that the origin of the body, ob, lies along the center-line of the craft.
For this particular geometry, the structure of the inertia matrix (included added mass),
M , and the hydrodynamic damping matrix,D, becomes

M =


m11 0 0

0 m22 m23

0 m32 m33

 , D =


d11 0 0

0 d22 d23

0 d32 d33

 , (3.12)

wherem32 := m23. The Coriolis-centripetal matrix (included added mass), C , can be
computed directly fromM , as presented in Fossen [6]:

C =

 03×3 −S(M11ν1 +M12ν2)

−S(M11ν1 +M12ν2) −S(M21ν1 +M22ν2)

 , (3.13)

where

M6DOF :=

M11 M12

M21 M22

 ,
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ν1 = [u, v, w]
⊤, and ν2 = [p, q, r]

⊤. For the 3 DOF state space, we find C as

C =


0 0 − (m22vb +m23rb)

0 0 m11ub

m22vb +m23rb −m11ub 0

 . (3.14)

It can be noticed that C is skew-symmetric: C = −C⊤.

The vehicle is equipped with a thruster generating force in the surge direction, and
a rudder to generate yaw momentum. The input vector takes the form u = [δu , δr ]

⊤

where δu is the surge input, and δr is the rudder input. We assume that the surge
thrust only affects the surge dynamics. The rudder angle can however both affect the
yaw and sway dynamics. The structure of the input matrix,B, becomes

B =


b11 0

0 b22

0 b32

 . (3.15)

To remove the effect of the rudder on the sway dynamics, we can perform a coordinate
transform. The procedure is described in Fossen [6], and is quite common in order to
take advantage of the crafts geometry. The origin of the body, ob, is translated by the
distance

ξ ≜ −b22m33 − b32m23

m22m33 −m2
23

(3.16)

along the center-line of the craft to the point oc.

Remark 3.1. The coordinate transform corresponds to placing the origin of the body-
attached reference frame of the vehicle to its pivot point, i.e. the point in which the
vehicle rotates about.

The position of ob with respect to oc is given by rcb ≜ [−ξ , 0 , 0 ]. The transformation
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matrix is then straight-forward to compute:

H =


1 0 0

0 1 −ξ

0 0 1

 . (3.17)

The equations of motion about oc is given by

H⊤MHν̇ +H⊤C(ν)Hν +H⊤DHν =H⊤Bu. (3.18)

Remark 3.2. The coordinate transform does not change the structure, nor the prop-
erties of the matricesM , C ,D andB.

The effects of the rudder input on the sway dynamics are now removed:

(H⊤MH)−1H⊤Bu = [gu, 0, gr]
⊤
, (3.19)

where gu and gr are the control forces in surge and yaw respectively, defined as

gu ≜ δu
b11
m11

, (3.20)

gr ≜ δr
b32m22 − b22m23

m22m33 −m2
23

. (3.21)

Since the coordinate transform preserves the original structure of the inertia, Coriolis,
and damping matrix, we will adopt the notation of (3.12) and (3.14) for the transformed
matrices to this end. The notation (3.19) will be employed for the control forces.

Solving the 3 DOF equations of motion with respect to v̇bnb = [u̇b , v̇b, ṙb ]
⊤ yields

u̇b = fu(vb, rb) + gu,

v̇b = fv(ub, vb, rb),

ṙb = fr(ub, vb, rb) + gr,

(3.22)
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where
fu ≜ rb

rbm23 + vbm22

m11
− vb

d11
m11

, (3.23)

fv ≜ vb
d22m23 − d32m22 − ubm22 (m22 +m11)

m22m33 −m2
23

+ rb
d32m23 − d33m22 + ubm23 (m11 −m22)

m22m33 −m2
23

,

(3.24)

fr ≜ vb
d32m23 − d22m33 + ubm23 (m11 +m22)

m22m33 −m2
23

+ rb
d33m23 − d23m33 + ub

(
m2

23 −m11m33

)
m22m33 −m2

23

.

(3.25)

3.3 Assumptions overview

We present an overview of the model assumption in this section.

Assumption 3.1. The vehicle model is expressed in the Body frame, in reference to
the NED frame, attached to the center line of the craft at the pivot point.

Assumption 3.2. The vehicle has a homogeneous mass distribution and is port-
starboard symmetric.

Assumption 3.3. Pitch and heave motions are treated as wave induced disturbances,
and are hence neglected.

Assumption 3.4. The vehicle is passively stabilized in roll; roll motions can be ne-
glected.

Assumption 3.5. The vehicle is moving in the horizontal plane; gravitational and
buoyancy forces can be neglected.

Assumption 3.6. Nonlinear damping can be neglected, only linear damping is mod-
eled.

Assumption 3.7. The control input in surge only affects the surge dynamics.
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Chapter 4

Guidance Laws

In this chapter, we will present the guidance laws used for generating references for
the vehicle to reach a target position, and follow a straight line path, in the NED frame.
Guidance systems are in general used to achieve the desired motion of the vehicle
towards a static or moving point, or along a path. We will describe two separate
methods for these purposes, which later in the thesis will be applied to the vehicle, in
combination with collision avoidance of an obstacle. The theory presented is based on
Fossen [6].

4.1 Definitions of heading, course and crab angles

The relationship between the heading, course and crab angles is important to address
before presenting the guidance laws.

Definition 4.1 (Heading angle ψ). The angle ψ from the xn axis to the xb axis, where
n denotes the NED frame and b denotes the Body frame, by a positive rotation about the
zn axis by the right-hand screw convention.

The heading angle can be measured using a magnetic compass, and is defined even for
zero speeds.

27
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Figure 4.1: The heading, course and crab angles.

Definition 4.2 (Course χ). The angle χ from the xn axis to the velocity vector of the
vehicle, where n denotes the NED frame, by a positive rotation about the zn axis by the
right-hand screw convention.

The course angle describes the direction in which the vehicle is moving in the NED
frame. The course is thus only defined for positive speeds.

The motion of the vehicle moving in the horizontal plane can be described kine-
matically by (3.10), as

ẋn = u cos(ψ)− v sin(ψ), (4.1)

ẏn = u sin(ψ) + v cos(ψ). (4.2)

These equations can be expressed in the form

ẋn = U cos(ψ + βc) := U cos(χ), (4.3)

ẏn = U sin(ψ + βc) := U sin(χ), (4.4)



4.2. LINE OF SIGHT GUIDANCE 29

where U =
√
u2 + v2 is the speed of the vehicle. The course χ can be written as

χ = ψ + βc, (4.5)

where βc is the crab angle, given by

βc = tan−1
( v
u

)
= sin−1

( v
U

)
. (4.6)

Definition 4.3 (Crab angle βc). The angle βc from the xb axis to the velocity vector
of the vehicle, where b denotes the Body frame, by a positive rotation about the zb axis
by the right-hand screw convention.

The relationship between the heading, course and crab angles is shown in Figure
4.1. When the vehicle is guided towards a goal, it will be given course commands. If
the vehicle controls its heading angle, it must account for the crab angle, βc, induced
by the side-ways (sway) speed, in order to maintain the desired course.

4.2 Line of sight guidance

Line of sight (LOS) guidance is a three-point guidance scheme, which involves the use
of a reference point in order to construct a straight line-path going to the position
of the target. The LOS guidance vector points from the interceptor (i.e. the vehicle),
towards a point on this line, denoted pnlos = [xnlos , y

n
los]

⊤. Two main methods exist for
computing the desired course of the vehicle using LOS guidance. We will consider the
lookahead-based steering, which employs a lookahead distance to direct the vehicle
towards the path. This method has several advantages over the similar, enclosure-based
steering.

In lookahead-based steering, the point pnlos is situated a constant lookahead distance
∆ > 0 from the direct projection of the vehicle position pnnb on to the path, illustrated
in Figure 4.2. The desired course is computed through two components, as

χnlos(ye) ≜ χp + χr(ye), (4.7)
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Figure 4.2: Geometry of the line of sight (LOS) guidance.

where
χp = α (4.8)

is the path-tangential angle (see Figure 4.2), and

χr(ye) = arctan

(
−ye
∆

)
(4.9)

is the velocity-path relative angle, ensuring that the vehicle is steered towards the
point pnlos. The path-tangential angle, α, and cross-track error, ye, are computed by

α = atan2 (ynt − ynr , x
n
t − xnr ) , (4.10)

ye = − (xnb − xnt ) sin(α) + (ynb − ynt ) cos(α), (4.11)

where pnt = [xnt , y
n
t ]

⊤ is the target position, and pnr = [xnr , y
n
r ]

⊤ is the reference
point.
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Figure 4.3: Geometry of the pure pursuit guidance.

The steering law (4.9) can be interpreted as a saturated control input:

χr(ye) = arctan (−Kpye) : R → [−π/2, π/2] , (4.12)

where Kp = 1
∆ > 0 . The lookahead distance determines the convergence of the

vehicle to the path, where a short distance yields an aggressive steering. A larger
distance yields a more delicate steering, but longer convergence time. If the course
reference is tracked, the guidance law (4.7) ensures that the cross-track error converges
to the origin, i.e. lim

t→∞
ye(t) = 0.

4.3 Pure pursuit guidance

Pure pursuit guidance belongs to the two-point guidance schemes, only involving
the interceptor and the target. The guidance velocity is aligned with the LOS vector
between the interceptor and the target, thus generating a motion directly towards the
target’s current position. The method is similar to a predator chasing its pray, and
often leads to a tail-chase of moving targets.

The geometry of the guidance law is shown in Figure 4.3. The pure pursuit guidance
velocity is given by

vnpp ≜ −κ p̃

∥p̃∥
, (4.13)

where p̃ ≜ pnnb − pnt , and κ > 0 is effectively the speed of the vehicle. The desired
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(a) Simulation of the LOS guidance law,
with lookahead distance∆ = 10 m.
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(b) Simulation of the pure pursuit guidance
law, with κ = 2 m/s.

Figure 4.4: The vehicle following of the LOS and pure pursuit guidance laws. The
target position is equal to pnt = [120, −40]

⊤ marked by an ’X’. The vehicle, with
initial position [0, 0]

⊤, maintains a constant surge speed u = 2 m/s, and zero sway
speed.

course is found from (4.13) as χnpp ≜ atan2(ynt − ynb , x
n
t − xnb ).

To illustrate the presented methods, trajectories of the kinematic vehicle (3.10)
following the LOS and pure pursuit guidance laws can be seen in Figure 4.4, for reaching
a static target. The reference point for the LOS guidance was chosen as [0, −40]. The
LOS guidance law yields a gradual convergence of the vehicle to the path, on which
it eventually reaches the target. When employing the pure pursuit guidance law, the
vehicle takes the shortest path towards the target.



Chapter 5

The Velocity Obstacle
Algorithm

This chapter presents the velocity obstacle algorithm in 2D. The main concept behind
the algorithm is to compute the set of velocities, which at any future point in time,
result in a collision between the vehicle and an obstacle. By maintaining velocities
outside of this set, the vehicle is ensured to avoid a collision with the obstacle. We will
employ this algorithm for reactive collision avoidance of a circular obstacle, moving
with time-varying velocity.

Collision avoidance of an obstacle will be combined with other goal-reaching
behaviour of the vehicle. In particular, the vehicle’s nominal behaviour consists of
traveling towards a target or along a path, by the use of guidance laws. For this reason,
the vehicle’s control system has two modes; guidance mode and collision avoidance
mode. The control system transitions between these two modes based on specific
safety conditions.

In collision avoidance mode, the vehicle reactively avoids an obstacle by following
the VO algorithm. As stated before, the collision avoidance scheme is based on the
computation of all velocities resulting in a collision between the vehicle and a nearby
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obstacle. If the vehicle maintains an unsafe velocity simultaneously as the obstacle
is within a close range of the vehicle, then the vehicle should perform an avoidance
maneuver and change its current velocity to a safe one. Evidently, the vehicle should
avoid unsafe velocities until it can safely exit collision avoidance mode, and nominal
guidance can resume.

A preliminary analysis of the collision avoidance algorithm will be given. We
will prove that the fundamental concept behind the algorithm guarantees collision
avoidance, regardless of the kinematic and dynamical properties of the system. That is,
by consistently maintaining velocities outside the set of unsafe velocities, the distance
between the vehicle and an obstacle will always remain larger than a chosen minimum
distance.

5.1 Obstacle model

In this section we will define the model used to describe a moving obstacle. We will
state some necessary assumptions regarding the obstacle model and describe the
required obstacle measurements for the implementation of the algorithm.

The velocity obstacle algorithm can deal with obstacles of any shape. However,
we consider an obstacle with circular shape for convenience. The obstacle is modeled
as a moving, circular domain Do, with radius Ro. Since it can be difficult to estimate
the dynamics of the obstacle, it is modeled as a nonholonomic vehicle to capture the
essential motion of any moving hindrance:

ẋno = uo cos(ψ
n
o ), (5.1a)

ẏno = uo sin(ψ
n
o ), (5.1b)

ψ̇no = ro, (5.1c)

u̇o = ao, (5.1d)

where xno and yno are the Cartesian coordinates of the obstacle center, uo is the forward
speed, ao is the forward acceleration, and ψno and ro are the obstacle heading and
heading rate, respectively. The position of the obstacle center is denoted pnno ≜
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[xno , y
n
o ]

⊤, with associated velocity vector vnno ≜ [ẋno , ẏ
n
o ]

⊤.
We require the obstacle’s turning rate and forward acceleration to be bounded:

Assumption 5.1. The obstacle’s heading rate, ro, and forward acceleration, ao, are
bounded by

ro ∈ [−ro,max, ro,max]

ao ∈ [−ao,max, ao,max] ,
(5.2)

where ro,max ≥ 0 and ao,max ≥ 0 are constant parameters.

And finally, the obstacle’s speed cannot be arbitrarily large, i.e. it needs to meet the
following condition:

Assumption 5.2. The obstacle’s forward speed uo ≥ 0 is bounded by

uo ≤ uo,max, (5.3)

where uo,max ≥ 0 is a constant parameter.

5.1.1 Extended obstacle domain

To implement the algorithm, we map the the vehicle into the configuration space of
the obstacle, by reducing the vehicle to a point, and extending the obstacle domain by
a radius that compensates for at least the area of the vehicle. The extended obstacle
domain is denoted Do|ϵ, with radius defined as Ro|ϵ ≜ Ro + dϵ, where dϵ > 0

is a constant design parameter. To this end, the extended obstacle domain will be
represented by a dotted line encircling the obstacle, as e.g. in Figure 5.1.

5.1.2 Required obstacle measurements

Consider Figure 5.1. As previously stated, the algorithm can deal with obstacles of any
shape. A requirement is however that the obstacle shape can be measured, in addition
to the obstacle size. In our case, this corresponds to the circular domain Do, and the
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xn

α db,o
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Figure 5.1: Required obstacle measurements, in reference to the NED frame.

radius Ro. Moreover, the vehicle must be able to detect the obstacle, and sense the
distance db,o ≜ ∥pnnb − pnno∥ and the orientation α ≜ atan2(ynb − yno , x

n
b − xno ). Note

that pnnb ≜ [xnb , y
n
b ]

⊤ denotes the vehicle’s Cartesian coordinates, in correspondence
with the notation presented in Chapter 3. The required measurements are available
through a variety of sensors, such as lasers, radars and sonars, or alternatively through
cameras.

In order to compensate for the obstacle’s motion, the velocity of the obstacle, vnno,
must be measured. If the previously mentioned sensors provide Doppler measurements,
then the obstacle velocity is available as well. The obstacle velocity can alternatively
be computed using tracking algorithms.

5.2 Algorithm definition

In this section, we will present the velocity obstacle algorithm for reactive collision
avoidance of a circular obstacle. We will present the concept as it is done in Fiorini
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(a) The collision cone.

vo

(b) The velocity obstacle.

Figure 5.2: Illustration of the collision cone and the velocity obstacle.

and Shiller [5], and subsequently describe the algorithm geometrically, in order to
locate unsafe directions for the vehicle to avoid. We will state the specific conditions
for deciding if the vehicle’s control system should switch from nominal guidance
to collision avoidance and vice versa, and finally present the heuristics deciding the
structure of the avoidance maneuver for the vehicle to avoid a collision with a moving
obstacle.

5.2.1 Terminology

In this section, we introduce the concept of the velocity obstacle for a single obstacle.
The concept is based on the computation of all instantaneous velocities resulting in a
collision between the vehicle and an obstacle:

Definition 5.1 (Collision). A collision occurs between the vehicle and the obstacle if
∥pnnb − pnno∥ < dsep, where dsep is the minimum allowed separation distance between
the vehicle and obstacle centers.

Let the vehicle’s velocity vector be denoted as vnnb ≜ ṗnnb, and define the ray l(p,v)
going from the position p, along the direction of v, as

l(p,v) ≜ {p+ vt | t ≥ 0 }. (5.4)

We are now ready to present what is commonly known as the collision cone [5]:



38 CHAPTER 5. THE VO ALGORITHM

Definition 5.2 (Collision cone). The set of relative velocities vnnbo ≜ vnnb − vnno re-
sulting in a collision between the obstacle and the vehicle, assuming the velocity vectors
vnnb and v

n
no are constant over time, is defined as

CC ≜ {vnnbo | l(pnnb,vnnbo) ∩ Do|ϵ ̸= ∅ }. (5.5)

Definition 5.2 corresponds to any relative velocity of the vehicle with respect to the
obstacle, whose ray intersects the extended obstacle domain, seen in Figure 5.2a.

The condition can equivalently be described in terms of absolute velocities by
adding the obstacle velocity, vnno, to each velocity in the collision cone, as illustrated
in Figure 5.2b. This is known as the velocity obstacle [5]:

Definition 5.3 (Velocity obstacle). The set of absolute velocities vnnb resulting in a
collision between the obstacle and the vehicle, assuming the velocity vectors vnnb and v

n
no

are constant over time, is defined as

VO ≜ CC ⊕ vnno, (5.6)

where the operator ⊕ denotes the Minkowski sum.

5.2.2 Geometrical representation

The purpose of this section is to describe the previously introduced concepts geometri-
cally. This allows us to formulate the conditions for a collision in terms of the vehicle’s
direction.

The geometry of the collision cone is illustrated in Figure 5.3. The edges of the
collision cone can be described by the angles

ψ±
t ≜ α± β (5.7)

with respect to the positive xn axis, where

β ≜ sin−1

(
Ro|ϵ

db,o

)
∈
(
0,
π

2

]
. (5.8)
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xn
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Figure 5.3: Geometry of the collision cone, CC.

We employ the superscript ± to distinguish between the two edges of the cone. Notice
that the angular area within the cone increases as the vehicle moves closer to the
obstacle, or as the obstacle radius increases, yielding a larger area to be avoided. Define
the relative heading of the vehicle with respect to the obstacle as

ψnbo ≜ ∠vnnbo. (5.9)

Then, by Definition 5.2, the condition for a collision to occur at some future time may
be written as

ψnbo ∈
(
ψ−
t , ψ

+
t
)
. (5.10)

Substituting (5.7) in (5.10) and solving the inequality leads to the following condition:

Definition 5.4 (Conflict). The vehicle is in a conflict with the obstacle if they are
not currently in a collision, but with zero control input, the vehicle will collide with the
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Figure 5.4: Geometric representation of the angles γ+cmp and γ+o .

obstacle at some point in the future, assuming the obstacle maintains its current velocity:

|ψnbo − α| < β. (5.11)

It can be convenient to describe the edges of the collision cone in terms absolute
velocities. The absolute collision cone can be obtained by compensating for the obstacle
velocity. Let the vectors v±t denote the edges of the collision cone, with orientation
∠v±t ≜ ψ±

t . Furthermore, let the vectors v±abs ≜ v
±
t + vnno lie along the edges of the

absolute collision cone, with length ∥v±abs∥ ≜ Ub, where Ub ≜
√
u2b + v2b is the speed

of the vehicle. The direction of these vectors are found geometrically by considering
Figure 5.4, as

ψ±
abs ≜ γ±cmp + ψ±

t . (5.12)

The compensation angle γ±cmp is computed by using the sine rule on the triangle
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consisting of v±abs, v
±
t and vnno, as

γ±cmp = sin−1

(
uo sin(γ

±
o )

Ub

)
, (5.13)

where uo ≜ ∥vnno∥ by (5.1). Furthermore, the angle γ±o is found geometrically as

γ±o = π + ψ±
t − ψno . (5.14)

A measure of the angular distances to a conflict can be formulated as, [17]:

γ±ad ≜ ±ψnb ∓ ψ±
abs, (5.15)

where the angles γ±ad are wrapped into the domain (−2π, 2π] such that the distance is
negative when the vehicle is in a conflict, and positive otherwise. An illustration of
the angles can be seen in Figure 5.5, corresponding to the angular distances the vehicle
must turn in both directions in order to enter (or exit) a conflict. The shortest angular
distance to a conflict, denoted γad, can be computed from the definition (5.11), as

γad ≜

γ
+
ad, if ψnbo − α ≥ 0,

γ−ad, if ψnbo − α < 0,
(5.16)

where the angular difference is mapped to the domain
(
ψnbo − α

)
∈ (−π, π].

5.2.3 Switching conditions

The velocity obstacle is the basis for deciding if the vehicle is headed for a collision
with the obstacle. In the previous section we formulated the conditions of the velocity
obstacle in terms of direction. The presented theory can be used to construct an
avoidance maneuver for the vehicle so that it avoids a collision. However, we have not
yet addressed when the vehicle should perform such a maneuver.

To not constrain the vehicle needlessly, the obstacle should pose a significant
threat before it is necessary for the vehicle to change its course. The original VO
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Figure 5.5: Angular distances to a conflict, γ±ad. The shortest distance, γad = γ+ad, is
marked in red.

method [5] employs a time-horizon to distinguish between obstacles with imminent
collision and long time to collision. If the obstacle will cause a collision within a
suitable time-horizon then it is handled immediately, otherwise it is ignored. Although
the time-horizon is intuitive, we will instead decide if the vehicle’s control system
should switch to collision avoidance mode based on the distance between the obstacle
and vehicle, motivated by Wiig et al. [27].

Recall that the vehicle nominally is in guidance mode, traveling towards a target or
a path. The control system is switched to collision avoidance mode at the time t1 ≥ t0

if the obstacle is within a chosen threshold distance of the vehicle, simultaneously as
the guidance velocity, denoted vnndg , is unsafe:

db,o(t1) ≤ dthreshold, v
n
ndg(t1) ∈ VO(t1). (5.17)
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The control system exits CA mode at t2 > t1 when the guidance velocity is safe:

vnndg(t2) /∈ VO(t2). (5.18)

It can be noticed that the vehicle may enter collision avoidance mode several times
before it escapes the obstacle completely.

5.2.4 Turning rules

Recall that the edges of the absolute collision cone can be described by the angles ψ±
abs

defined in (5.12). In collision avoidance mode, the vehicle’s velocity vector should lie
along, or outside these boundaries, to ensure that a collision is avoided. When the
vehicle enters CA mode, the vehicle’s turning direction towards safety will be chosen
based on the distance to the obstacle at this moment in time, and the angular distances
to each of these edges.

In particular, if the distance satisfies db,o = dthreshold when collision avoidance
mode is entered, the turning direction is chosen to make the vehicle seek to pass
behind the obstacle. This is obtained by maximizing the angular differences between
the obstacle’s heading, ψno , and the edges of the absolute collision cone, as presented
in Wiig et al. [27]:

db,o = dthreshold, j = arg max
j∈{±}

∣∣∣ψno − ψ
(j)
abs

∣∣∣ , (5.19)

where the angular difference is mapped to the interval (−π, π]. This can be interpreted
as turning in the direction that is farthest away from the direction the obstacle is
traveling in.

Remark 5.1. The threshold distance should be chosen large enough to ensure that the
vehicle can safely turn in the desired direction, without being in danger of a collision
during the maneuver.

If the obstacle turns, the vehicle may enter collision avoidance mode as the distance
satisfies db,o < dthreshold. To ensure safety, the turning direction will make the vehicle
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turn away from the nearest edge of the absolute collision cone, so that it avoid entering
the conflict. The correct turning direction is obtained by minimizing the angular
distances to a conflict defined in (5.15), as

db,o < dthreshold, j = arg min
j∈{±}

∣∣∣ψnb − ψ
(j)
abs

∣∣∣ . (5.20)

Notice that one of the distances will be zero in this case. The vehicle may then pass on
either side of the obstacle, whichever is safest.

5.3 Preliminary analysis

We will here provide a preliminary analysis of the collision avoidance algorithm,
proving that the vehicle, following heading references along or outside the edges of
the absolute collision cone, will maintain at least a distance Ro|ϵ from the obstacle. To
prove this, we consider the condition of a conflict, defined in (5.11).

Lemma 5.1. Consider a static obstacle, and let the vehicle and the obstacle initially be
separated by a distance db,o(t0) > Ro|ϵ. If the vehicle maintains a heading angle, ψnb ,
satisfying

|ψnb (t)− α(t)| = β(t), ∀t ≥ t0, (5.21)

where β is defined in (5.8), then the vehicle will converge to a circle with radiusRo|ϵ and
center in the obstacle center, pnno. Moreover, if the vehicle maintains a heading angle
satisfying

|ψnb (t)− α(t)| ≥ β(t), ∀t ≥ t0, (5.22)

then
db,o(t) ≥ Ro|ϵ, ∀t ≥ t0. (5.23)

Proof. Consider the line segment going from the origin of the vehicle, pnnb, to the
origin of the obstacle, pnno, with length db,o and orientation α. The time-derivative of
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db,o is found geometrically as

ḋb,o = −Ub cos(ψnb − α). (5.24)

Let the vehicle satisfy (5.21) where β is defined in (5.8). We can then write (5.24) as

ḋb,o = −Ub

√
1−

(
Ro|ϵ

db,o

)2

. (5.25)

Solving (5.25) for db,o, it can be seen that db,o has a minimum value equal to Ro|ϵ,
when ḋb,o = 0. Hence, we have established that db,o is lower bounded by Ro|ϵ. Since
the vehicle initially satisfies db,o(t0) > Ro|ϵ, then by (5.25) ḋb,o(t0) < 0. Moreover,
ḋb,o < 0 ∀db,o > Ro|ϵ, and ḋb,o = 0 if and only if db,o = Ro|ϵ. Thus, ḋb,o ≤ 0 ∀t ≥ t0.
Since ḋb,o ≤ 0 and db,o is lower bounded, then db,o → Ro|ϵ as t → ∞. Hence, the
position of the vehicle, pnnb, converges to a circle with radius Ro|ϵ and center in pnno.

Now, let the vehicle satisfy (5.22). The time-derivative of db,o from (5.24) then
satisfies

ḋb,o ≥ −Ub

√
1−

(
Ro|ϵ

db,o

)2

. (5.26)

Hence,
db,o ≥ Ro|ϵ, ∀t ≥ t0, (5.27)

which concludes the proof.

Lemma 5.2. Consider an obstacle moving with a time-varying velocity vnno(t), and let
the vehicle and the obstacle initially be separated by a distance db,o(t0) > Ro|ϵ. If the
vehicle maintains a heading angle satisfying

|ψnbo(t)− α(t)| ≥ β(t), ∀t ≥ t0, (5.28)

then
db,o(t) ≥ Ro|ϵ, ∀t ≥ t0. (5.29)

Proof. Consider a coordinate frame no attached to the obstacle and aligned with the
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inertial frame n, moving with the obstacle velocity vnno. In this frame, the obstacle is
static and the vehicle has the velocity vnnbo ≜ vnnb − vnno. Hence, Lemma 5.1 can be
applied for the vehicle with the relative velocity vnnbo and heading ψnbo ≜ ∠vnnbo.



Chapter 6

The Velocity Obstacle
Algorithm for Unicycles

In this chapter, we will apply the velocity obstacle algorithm to a kinematic unicycle
subject to nonholonomic constraints, for reactive collision avoidance of a moving
obstacle. The unicycle model describes the kinematics of a large class of vehicles,
including the underactuated surface vehicle modeled in Chapter 3.

The vehicle is restricted to maintain a constant forward speed, and has limited
turning rate. To ensure that the vehicle is able to turn away from a nearby obstacle,
we derive a lower bound on the required turning rate of the vehicle. With this bound
satisfied, the vehicle is always able to turn away from a conflict without entering it,
even in cases where the obstacle accelerates or turns towards the vehicle. Furthermore,
we derive a minimum distance ensuring that the vehicle is able to turn out of a conflict
if one is entered, before a collision can occur. The lower bound is used to choose the
threshold distance introduced in the previous chapter.

Collision avoidance will achieved while also guaranteeing that the vehicle will
reach its separate goals. It can be recalled that the vehicle’s control system switches
between guidance and collision avoidance. The nominal goal of the vehicle is thus

47
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to reach a target or converge to a path, dependent on the current guidance mode the
vehicle is in, by the use of guidance laws. Guarantees of collision avoidance combined
with target reaching and path following will be provided through a mathematical
analysis. The theoretical proofs are supported by numerical simulations in the last
section.

6.1 System description

In this section, we present the vehicle model with associated control objective, and
state the model used to describe a moving obstacle in the vehicle’s presence.

6.1.1 Vehicle model

The vehicle is modeled as a kinematic unicycle-type vehicle, representing the kinematic
model (3.10) with zero sway speed:

ẋnb = ub cos(ψ
n
b ),

ẏnb = ub sin(ψ
n
b ),

ψ̇nb = rb,

(6.1)

where pnnb ≜ [xnb , y
n
b ]

⊤ are the Cartesian coordinates of the vehicle center, ub is the
forward speed, and ψnb and rb are the heading and heading rate, respectively. The
vehicle’s velocity vector is denoted vnnb ≜ [ẋnb , ẏ

n
b ]

⊤.
For convenience, we assume that the vehicle maintains a constant forward speed

given by an arbitrary outer-loop controller, but directly controls the turning rate, rb,
in order to follow the heading reference generated by the control system:

Assumption 6.1. The vehicle’s forward speed ub > 0 is constant.

Assumption 6.2. The vehicle’s heading rate, rb, is directly controlled and bounded
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by

rb ∈ [−rb,max, rb,max] , (6.2)

where rb,max > 0 is a constant parameter.

6.1.2 Control objective

The vehicle’s control objective varies, depending on the nominal guidance mode of
the vehicle. We distinguish between two guidance modes; target reaching and path
following.

In target reaching mode, the control objective of the vehicle is to come within an
acceptable distance of a target position pnt ≜ [xnt , y

n
t ]

⊤, at an unspecified point in
time tf ∈ [t0,∞). The control objective may be written

∥pnt − pnnb(tf)∥ ≤ da, (6.3)

where da > 0 is the acceptance distance.
In path following mode, the control objective of the vehicle is to converge to, and

follow a straight line path parallel to the positive xn axis, defined as

P ≜ {(x, y) ∈ R2 | y = ynt }, (6.4)

where ynt is the desired vehicle position along the yn axis. Furthermore, both goals
should be achieved while keeping at least a minimum safety distance dϵ to the obstacle:

db,o(t)−Ro ≥ dϵ > 0, ∀t ≥ t0, (6.5)

where db,o ≜ ∥pnnb − pnno∥ is the distance between the vehicle and obstacle centers.
Note that dϵ both compensates for the vehicle’s own area, and an unspecified separation
distance between the vehicle and the obstacle.
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6.1.3 Obstacle model

The obstacle model is described in Chapter 5, but is summarized here for convenience.
The obstacle is modeled as the nonholonomic vehicle:

ẋno = uo cos(ψ
n
o ), (6.6a)

ẏno = uo sin(ψ
n
o ), (6.6b)

ψ̇no = ro, (6.6c)

u̇o = ao. (6.6d)

The position of the obstacle center is denotedpnno ≜ [xno , y
n
o ]

⊤, with associated velocity
vector vnno ≜ [ẋno , ẏ

n
o ]

⊤. The obstacle is modeled as a moving, circular domain Do,
with radius Ro, subject to the kinematic constraints:

Assumption 6.3. The obstacle’s heading rate, ro, and forward acceleration, ao, are
bounded by

ro ∈ [−ro,max, ro,max] ,

ao ∈ [−ao,max, ao,max] ,
(6.7)

where ro,max ≥ 0 and ao,max ≥ 0 are constant parameters.

Assumption 6.4. The obstacle’s forward speed uo ≥ 0 is bounded by

uo ≤ uo,max, (6.8)

where uo,max < ub is a constant parameter.

Remark 6.1. By Assumption 6.4 we assume that the vehicle is able to maintain a
higher forward speed than the the obstacle. This is a general assumption that needs
to met in order to prove safety of the vehicle when the obstacle is not cooperating. If
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the obstacle is restricted in other ways, then safety could be investigated without this
assumption. Such scenarios will not be analyzed in this thesis.

6.2 Guidance and control

The vehicle’s control system switches between two modes: nominal guidance mode,
and collision avoidance mode. In this section, we will present the former of these two
modes.

In guidance mode, the vehicle’s heading references will be generated by one of the
guidance laws presented in Chapter 4. We will employ the pure pursuit guidance law
for target reaching, and the line of sight guidance law for path following. Both of the
guidance schemes are summarized below. In order to follow the references generated
by the guidance system, the vehicle will employ a kinematic heading controller, stated
in the last section.

6.2.1 Pure pursuit guidance

When the control system is in target reaching mode, the vehicle’s nominal heading
references will be generated by the pure pursuit guidance law described in Section 4.3.
The guidance law generates a velocity vector along the line of sight vector between
the vehicle and the target, given by

vnpp ≜ −ub
p̃n

∥p̃n∥
, (6.9)

where p̃n ≜ pnnb − pnt , and ub > 0 is the forward speed of the vehicle. The desired
heading is given by

ψnpp ≜ ∠vnpp. (6.10)

The pure pursuit guidance law ensures that the vehicle reaches a static target. However,
it can result in a tail chase of moving targets.
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6.2.2 Line of sight guidance

In path following mode, the vehicle’s heading references will be generated by the line
of sight (LOS) guidance law described in Section 4.2. LOS guidance is a three point
guidance scheme, based on guiding the vehicle towards a straight line path constructed
from two points, denoted as pnk−1 =

[
xnk−1 , y

n
k−1

]⊤ and pnk = [xnk , y
n
k ]

⊤. The points
are chosen to comply with the desired path defined in (6.4).

The line of sight vector points towards a point on the path, located a constant
lookahead distance ∆ > 0 from the direct projection of the vehicle position onto the
path. The desired heading is computed as

ψnlos(ye) ≜ χp + arctan

(
−ye
∆

)
, (6.11)

where the path-tangential angle χp, and the cross-track error ye, are defined as

χp = atan2
(
ynk − ynk−1, x

n
k − xnk−1

)
, (6.12)

ye = − (xnb − xnk ) sin(χp) + (ynb − ynk ) cos(χp). (6.13)

The guidance velocity during LOS guidance is computed from (6.11), as

vnlos ≜ ub [cos(ψ
n
los), sin(ψ

n
los)]

⊤
. (6.14)

6.2.3 Heading controller

In order to follow the heading references generated by the guidance system, the vehicle
employs a kinematic heading controller:

rb =


0, if ψ̃ = 0,

−rb,max, if ψ̃ = (0, π] ,

rb,max, if ψ̃ = (−π, 0) .

(6.15)
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Figure 6.1: Geometric representation of the VO algorithm.

The error variable ψ̃ ≜ ψnb − ψndg is chosen to belong in the interval (−π, π] to ensure
that the vehicle always takes the shortest turn to the desired heading.

6.3 Collision avoidance

The collision avoidance algorithm presented in Chapter 5 will be used to generate
heading references for the vehicle when the control system is in collision avoidance
mode. We will summarize the algorithm in this section, and furthermore define the
control input for the nonholonomic vehicle to avoid collision with an obstacle.

The vehicle is headed for a collision with a nearby obstacle if it satisfies the
condition:

vnnbo ∈ CC ⇐⇒ vnnb ∈ VO, (6.16)

where CC is the collision cone, VO is the velocity obstacle, and vnnbo ≜ vnnb − vnno
is the relative velocity of the vehicle with respect to the obstacle. The edges of the
collision cone, represented by the solid, tangent lines in Figure 6.1, can be described
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geometrically as
ψ±
t ≜ α± β, (6.17)

where
β ≜ sin−1

(
Ro|ϵ

db,o

)
∈
(
0,
π

2

]
. (6.18)

The vehicle is said to be in a conflict with the obstacle if ψnbo ≜ ∠vnnbo lies within the
angular boundaries of the collision cone:

|ψnbo − α| < β. (6.19)

The edges of the absolute collision cone is defined geometrically as

ψ±
abs ≜ γ±abs + ψ±

t , (6.20)

where the compensation angle γ±cmp is computed by the following relation:

γ±cmp = sin−1

(
uo sin(γ

±
o )

ub

)
. (6.21)

Remark 6.2. Assumption 6.4 ensures that (6.21) is well-defined.

The angle γ±o is found geometrically as

γ±o = π + ψ±
t − ψno . (6.22)

A measure of the angular distances to a conflict can be formulated as follows:

γ±ad ≜ ±ψnb ∓ ψ±
abs, (6.23)

corresponding to the angular distances the vehicle must turn in both directions in
order to enter (or exit) a conflict. The shortest distance to a conflict, denoted γad, is
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defined as

γad ≜

γ
+
ad, if ψnbo − α ≥ 0,

γ−ad, if ψnbo − α < 0,
(6.24)

where the angular difference is mapped to the interval
(
ψnbo − α

)
∈ (−π, π].

The control system is switched to collision avoidance mode if the vehicle is too
close to the obstacle, simultaneously as the guidance velocity, denoted vnndg , is unsafe:

db,o(t1) ≤ dthreshold, v
n
ndg(t1) ∈ VO(t1). (6.25)

Nominal guidance will resume when the guidance velocity is safe:

vnndg(t2) /∈ VO(t2). (6.26)

If the distance equals db,o = dthreshold at the time in which the vehicle enters CA
mode, the vehicle will seek to pass behind the obstacle:

db,o = dthreshold, j = arg max
j∈{±}

∣∣∣ψno − ψ
(j)
abs

∣∣∣ , (6.27)

where j is the turning parameter. If the distance is less than dthreshold, the vehicle will
instead turn away from the nearest conflict:

db,o < dthreshold, j = arg min
j∈{±}

∣∣∣ψnb − ψ
(j)
abs

∣∣∣ . (6.28)

The collision avoidance law is stated as

rb =

rb,max, if j = + | γ+ad ≤ σ,

−rb,max, if j = − | γ−ad ≤ σ,
(6.29)

where j is chosen by the turning rules presented above. The vehicle will then turn
with maximum turning power, until it acquires a heading that is an angular safety
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distance σ > 0 away from a conflict, where σ is a constant design parameter.

6.4 Analysis

This section presents a mathematical analysis of the collision avoidance algorithm
presented in Section 6.3 applied to the kinematic vehicle (6.1), for avoiding a moving
obstacle described by (6.6), while the vehicle drives towards a goal, or follows a path.

6.4.1 Staying out of conflict

The first theorem will provide the conditions ensuring that the vehicle avoids entering
a conflict with the obstacle, if it starts outside of conflict. If the vehicle stays out of
conflict, we can recall from Lemma 5.2 that the vehicle then avoids a collision with the
obstacle as well. This requires, as we will show, that the vehicle is able to turn faster
than the obstacle can turn or accelerate towards it.

Theorem 6.1. Consider an obstacle described by (6.6) and a vehicle described by (6.1).
Let Assumption 6.1-6.4 hold, and suppose the vehicle starts outside a conflict, i.e.:

|ψnbo(t0)− α(t0)| ≥ β(t0). (6.30)

If the vehicle maintains a continuous control input satisfying

γ+ad = 0 =⇒ rb = rb,max,

γ−ad = 0 =⇒ rb = −rb,max,
(6.31)

where

rb,max ≥ ro,max
uo,max

ub
+

ao,max√
u2b − u2o,max

. (6.32)

Then, the vehicle will remain outside the conflict, and furthermore maintain a distance
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to the obstacle satisfying

db,o(t)−Ro ≥ dϵ, ∀t ≥ t0. (6.33)

Proof. The proof of the theorem follows along the lines of the proof presented in Lalish
et al. [17], which argues that if the vehicle starts conflict-free, and continuously turns
away from the nearest conflict or exerts no control input rb = 0, then the vehicle avoids
a collision with another vehicle following the same collision avoidance algorithm. We
extend the analysis to the case where the vehicle avoids a non-cooperating obstacle,
and show that safety can be guaranteed as long as the vehicle’s turning rate is lower
bounded by a sufficient minimum value.

We compute the angular distances to a conflict, γ±ad, by substituting (6.17) and (6.20)
into (6.23), as

γ±ad = ±ψnb ∓ (α± β + γ±cmp), (6.34)

which has the time-derivative:

γ̇±ad = ±rb ∓
(
α̇± β̇

)
∓ γ̇±cmp. (6.35)

The time-derivative of α is found geometrically as

α̇ = −Ubo
db,o

sin(ψnbo − α), (6.36)

where Ubo ≜ ∥vnnb−vnno∥, while the time-derivative of β can be computed from (6.18)
as

β̇ =
d

dt

(
sin−1

(
Ro|ϵ

db,o

))
(6.37)

= −ḋb,o
Ro|ϵ

db,o
√
d2b,o −R2

o|ϵ

(6.38)

=
Ubo
db,o

cos(ψnbo − α) tan(β), (6.39)
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where ḋb,o is found geometrically. The time-derivative of γ±cmp can be computed from
(6.21) as

γ̇±cmp =
∂
(
γ±cmp

)
∂γ±o

γ̇±o +
∂
(
γ±cmp

)
∂uo

u̇o, (6.40)

where γ±o is defined in (6.22). We compute the terms as

∂
(
γ±cmp

)
∂γ±o

γ̇±o = (6.41)

=
∂

∂γ±o

(
sin−1

(
uo sin(γ

±
o )

ub

))
γ̇±o (6.42)

= (−ro + α̇± β̇)
(uo/ub) cos(γ

±
o )√

1− (uo/ub)
2
sin2(γ±o )

, (6.43)

and

∂
(
γ±cmp

)
∂uo

u̇o = (6.44)

=
∂

∂uo

(
sin−1

(
uo sin(γ

±
o )

ub

))
u̇o (6.45)

= ao
sin(γ±o )

ub

√
1− (uo/ub)

2
sin2(γ±o )

. (6.46)

For convenience, we define

P (γo) ≜
(uo/ub) cos(γo)√

1− (uo/ub)
2
sin2(γo)

, (6.47a)

Q(γo) ≜
sin(γo)

ub

√
1− (uo/ub)

2
sin2(γo)

. (6.47b)
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Finally, we find the derivative of γ±ad as

γ̇±ad = ±r ± roP (γ
±
o )∓ aoQ(γ±o ) +

Ubo
db,o

(1 + P (γ±o )) . . .

(± sin(ψnbo − α)− cos(ψnbo − α) tan(β)) .

(6.48)

The shortest distance to a conflict, γad, satisfies (6.24). Hence,

± sin(ψnbo − α) = | sin(ψnbo − α)|. (6.49)

The vehicle starts outside a conflict, i.e. satisfies (6.30). Hence, | tan(ψnbo − α)| ≥
tan(β), implying that

| sin(ψnbo − α)| − cos(ψnbo − α) tan(β) ≥ 0. (6.50)

Furthermore, (6.47a) and (6.47b) are bounded by Assumption 6.4:

P (γo) ∈
[
−uo
ub
,
uo
ub

]
, (6.51a)

Q(γo) ∈

[
− 1√

u2b − u2o
,

1√
u2b − u2o

]
. (6.51b)

Since ub > uo, then P (γ±o ) ∈ (−1, 1). By the previous observations, (6.48) can be
reduced to

γ̇±ad ≥ ±rb ± roP (γ
±
o )∓ aoQ(γ±o ). (6.52)

From (6.52) we can formulate a lower bound on the vehicle’s required turning rate,
based on Assumption 6.3 bounding the obstacle’s turning rate and acceleration, As-
sumption 6.4 bounding the obstacle’s speed, and the bounds (6.51). Thus, if vehicle
satisfies

rb,max ≥ ro,max
uo,max

ub
+

ao,max√
u2b − u2o,max

, (6.53)



60 CHAPTER 6. THE VO ALGORITHM FOR UNICYCLES

then a continuous control input satisfying (6.31) also ensures that

γ̇ad(t) ≥ 0, ∀t ≥ t0, (6.54)

meaning that the shortest angular distance to a conflict is either constant or increasing
with time. Hence,

|ψnbo(t)− α(t)| ≥ β(t), ∀t ≥ t0, (6.55)

which ensures that
db,o(t)−Ro ≥ dϵ, ∀t ≥ t0, (6.56)

by Lemma 5.2.

Theorem 6.1 agrees with intuition. As long as the vehicle turns in the opposite
direction of the nearest conflict, it will stay out of the conflict regardless of the obstacle’s
motion, on the condition that the vehicle’s turning rate is large enough to compensate
for any change in the obstacle’s direction and/or speed. Intuitively, as the obstacle’s
maximum turning rate, forward acceleration or speed increases, the vehicle’s required
turning rate increases as well. We state the following assumption in order to ensure
that the conditions of Theorem 6.1 are satisfied for the remainder of the analysis:

Assumption 6.5. The vehicle’s maximum turning rate, rb,max, satisfies

rb,max ≥ ro,max
uo,max

ub
+

ao,max√
u2b − u2o,max

. (6.57)

6.4.2 Turning out of conflict

Notice that the control input (6.29) satisfies the conditions of Theorem 6.1. The result
is useful, because it proves that the vehicle, satisfying Assumption 6.5, will avoid a
collision with the obstacle if the vehicle is able to turn out of a conflict before a collision
occurs. In order to ensure this, we must choose the threshold distance of the switching
condition (6.25) above a lower bound, derived in the following lemma.
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ub /rbmax

uomax tπ

   dsep

dthreshold

Figure 6.2: Representation of the minimum threshold distance.

Lemma 6.1. Consider an obstacle described by (6.6), and a vehicle described by (6.1).
Let the vehicle enter collision avoidance mode according to the switching rule (6.25), and
suppose the distance satisfies db,o = dthreshold at this point in time. Let the control input
be given by the collision avoidance algorithm (6.29), and the turning direction be chosen
by the turning rules (6.27)-(6.28). Finally, let Assumption 6.1-6.5 hold. If the threshold
distance satisfies

dthreshold ≥ uo,maxtπ + dsep + dturn, (6.58)

where
tπ :=

π

rb,max
, dturn :=

ub
rb,max

. (6.59)

Then, the vehicle will successfully turn out of the conflict and reach a safe heading, before
the obstacle is within the distance dsep of the vehicle.

Proof. To prove this lemma, we will formulate an upper bound of the distance traveled
by the vehicle and the obstacle during the vehicle’s avoidance maneuver.
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Figure 6.2 illustrates the worst case collision avoidance scenario in consideration.
Let the obstacle move with maximum forward speed uo = uo,max towards the vehicle,
and let the radius of the obstacle be infinitely large, such that β → π/2. The angular
distance to a safe heading can then at most be π. The vehicle will turn with maximum
turning rate towards safety, by (6.29). Hence, the vehicle’s trajectory lies on a circle
with radius

dturn =
ub

rb,max
, (6.60)

and time it takes for the vehicle obtain a safe heading is upper bounded by

tπ =
π

rb,max
. (6.61)

It follows that if dthreshold satisfies (6.58), then the vehicle will have successfully
turned out of the conflict before the distance between the vehicle and the obstacle is
reduced to less than dsep.

6.4.3 Safe target reaching

In this section, we will provide the conditions ensuring that the kinematic vehicle (6.1),
following the collision avoidance algorithm presented in Section 6.3, will navigate
safely in the presence of a moving obstacle, while being guided towards a static target
by the guidance law (6.9). Before presenting the main theorem, we state the following,
well-known result:

Lemma 6.2. Consider a static target pnt . The origin of the pure pursuit guidance law

vnpp = −κ p̃n

∥p̃n∥
, (6.62)

where p̃n = pnnb − pnt and κ > 0, is then UGAS.

Proof. Consider the Lyapunov function candidate

V =
1

2
(p̃n)

⊤
p̃n. (6.63)
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The time-derivative of V along the trajectories of p̃n is

V̇ = (p̃n)
⊤
ṽn. (6.64)

The target is static, hence ṽn = vnpp − vnt = vnpp, which yields

V̇ = −κ (p̃
n)

⊤
p̃n

∥p̃n∥
< 0 ∀p̃n ̸= 0. (6.65)

The Lyapunov function candidate (6.63) is positive definite and radially unbounded,
and its derivative with respect to time, V̇ , is negative definite. Hence, the origin p̃ = 0

is UGAS.

Theorem 6.2. Consider an obstacle described by (6.6), and a vehicle described by (6.1).
Let the acceptance distance satisfy

da ≥ ub
rb,max

. (6.66)

If Assumption 6.1-6.5 hold, the vehicle follows the pure pursuit guidance law (4.13) with
the heading controller (6.15), the switching rules (6.25)-(6.26), and the turning rules
(6.27)-(6.29). Then, the vehicle will come within an acceptable distance, da, of the target
position pnt , while maintaining a distance to the obstacle satisfying

db,o(t)−Ro ≥ dϵ, ∀t ∈ [t0, tf] , (6.67)

where tf < ∞ is the time of arrival at pnt , provided the vehicle and the obstacle are
initially separated by the distance:

db,o(t0) ≥ dthreshold, (6.68)

satisfying
dthreshold ≥ Ro + dϵ +

ub + πuo,max

rb,max
. (6.69)

Proof. Let the vehicle enter collision avoidance mode at the time t1 ≥ t0 as the distance
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satisfies db,o(t1) = dthreshold. Lemma 6.1 and condition (6.69) then ensures that the
vehicle will reach a safe heading, satisfying

|ψnbo − α| ≥ β, (6.70)

before the obstacle is within the safety distance of the vehicle. Since the vehicle
maintains a continuous control input satisfying (6.29) until the control system exits
collision avoidance mode at the time t2 > t1, it is ensured that db,o(t)−Ro ≥ dϵ, ∀t ∈
[t0, t2], by Theorem 6.1.

The obstacle may turn, causing the vehicle to enter collision avoidance mode as
the distance satisfies db,o < dthreshold. It follows from the turning rule (6.28) and the
control input (6.29) that the vehicle will then immediately turn away from the conflict
at maximum turning rate, thus ensuring that the vehicle cannot enter the conflict, i.e.
satisfies (6.70) at all times. Hence, by Theorem 6.1 the vehicle satisfies

db,o(t)−Ro ≥ dϵ, ∀t ∈ [t0, tf], (6.71)

where tf is the time of arrival at pnt .

Finally, since ub > uo,max the vehicle will escape the obstacle at some point in time
and proceed to the target pnt . An upper bound of the required turning rate when the
vehicle follows the pure pursuit guidance law can be found geometrically as

|rb| ≤
ub
da
. (6.72)

Hence, the acceptance distance must satisfy

ub
da

≤ rb,max, (6.73)

by Assumption 6.2. Since the origin of the pure pursuit guidance law is globally
uniformly asymptotically stable for a static target by Lemma 6.2, and the acceptance
distance satisfies (6.66), it is ensured that the vehicle position pnnb converges to within
da of the target position pnt , in finite time.
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6.4.4 Safe path following

In this section, wewill provide the conditions to ensure that the vehicle safely converges
to, and follows a predefined path in the presence of a moving obstacle, when the vehicle
follows the line of sight guidance law (6.11), and the collision avoidance algorithm
described in Section 6.3. Before presenting the final theorem of the chapter, we state
the following, well-known result:

Lemma 6.3. Let the path-tangential angle χp be defined as (6.12), the cross-track error
ye be defined as (6.13), and the lookahead distance satisfy∆ > 0. Then, the LOS guidance
law

ψnlos(ye) = χp + arctan

(
−ye
∆

)
(6.74)

ensures that the cross-track error ye of the system (6.1) converges globally uniformly
asymptotically to the origin.

Proof. Consider the Lyapunov function candidate

1

2
y2e . (6.75)

The time-derivative of V along the trajectories of ye is

V̇ = yeẏe. (6.76)

The time-derivative of the cross-track error ye is computed from (6.13) and (6.1) as

ẏe = −ẋnb sin(χp) + ẏnb cos(χp) (6.77)

= −ub cos(ψnlos) sin(χp) + ub sin(ψ
n
los) cos(χp). (6.78)
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Inserting the LOS guidance law (6.74) we obtain:

ẏe = ub sin

(
arctan

(
−ye
∆

))
(6.79)

= −ub
ye

∆

√(
ye
∆

)2
+ 1

. (6.80)

Hence,
V̇ = −ub

y2e

∆

√(
ye
∆

)2
+ 1

< 0, ∀ye ̸= 0. (6.81)

The Lyapunov function candidate (6.75) is radially unbounded and positive definite,
and its derivative with respect to time, V̇ , is negative definite. Hence, the cross-track
error ye converges globally uniformly asymptotically to the origin, i.e. lim

t→∞
ye = 0.

Theorem 6.3. Consider an obstacle described by (6.6), and a vehicle described by (6.1).
Let the lookahead distance satisfy

∆ ≥ ub
rb,max

. (6.82)

If Assumption 6.1-6.5 hold, the vehicle follows the line of sight guidance law (6.11) with
the heading controller (6.15), the switching rules (6.25)-(6.26), and the turning rules
(6.27)-(6.29). Then, the vehicle will converge to, and follow the pathP , while maintaining
a distance to the obstacle satisfying

db,o(t)−Ro ≥ dϵ, ∀t ≥ t0, (6.83)

provided the vehicle and the obstacle initially are separated by a distance:

db,o(t0) ≥ dthreshold, (6.84)

satisfying
dthreshold ≥ Ro + dϵ +

ub + πuo,max

rb,max
. (6.85)



6.5. SIMULATIONS 67

Proof. The proof of Theorem 6.2 ensures that (6.83) is satisfied when the stated condi-
tions hold. Since ub > uo,max, the vehicle will at some point in time escape the obstacle,
and proceed towards the path. The required turning rate when the vehicle follows the
LOS guidance law is computed from (6.11) as

ψ̇nlos = − ∆ẏe
∆2 + y2e

, (6.86)

where ye is the cross-track error defined in (6.13), and∆ > 0 is the lookahead distance.
An upper bound of the required turning rate is found from (6.86), as

|rb| ≤
ub
∆
. (6.87)

Hence, the lookahead distance must satisfy

ub
∆

≤ rb,max, (6.88)

by Assumption 6.2. Since the line of sight guidance law ensures global uniform
asymptotic convergence of the vehicle onto a given path by Lemma 6.3, and the
lookahead distance satisfies (6.82), the vehicle is ensured to converge to the path P in
finite time, and for the remainder of the time, follow along it.

6.5 Simulations

This section presents two numerical simulations of the kinematic vehicle (6.1), follow-
ing the collision avoidance algorithm presented in Section 6.3, for avoiding a moving
obstacle described by (6.6). In the first scenario, the vehicle’s control objective is to
reach a target position. In the second scenario, the objective is to converge to, and
follow a straight line path in this frame. Both objectives are given with respect to the
NED frame.

In both simulations the vehicle’s forward speed is constant and equal to ub = 2

m/s, and the maximum turning rate is equal to rb,max = 0.5 rad/s. The initial position
of the vehicle was chosen as [0, 0] m. The obstacle’s radius was chosen as Ro = 10 m,
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the safety distance as dϵ = 5 m, and the angular safety distance as σ = 0.09 rad, or
approximately 5 degrees. The speed, acceleration and turning rate of the obstacle will
be specified for each simulation example.

6.5.1 Target reaching

This section presents a numerical simulation of the vehicle traveling towards a target
position, chosen as pnt = [140, 0] m, by following the pure pursuit guidance law (6.9),
while avoiding a collision with a moving obstacle by following the VO algorithm.
The obstacle both turns and accelerates as the vehicle approaches it, with constant
acceleration ao = ao,max = 0.05 m/s2, and constant turning rate ro = ro,max = 0.1

rad/s. The initial speed of the obstacle was chosen as uo(t0) = 0m/s, and the maximum
speed as uo,max = 1.8 m/s, satisfying Assumption 6.4. With these parameters, the
threshold distance was computed as dthreshold = 30.3 m, in accordance with Theorem
6.2. Assumption 6.5 holds as well, verified by direct calculation. The acceptance
distance was chosen as da = 4 m, satisfying the condition of Theorem 6.2.

Trajectories of the vehicle and the obstacle are shown in Figure 6.3. The relative
guidance velocity, denoted vnndgo ≜ vnndg−vnno, is shown as the blue arrow, in order to
demonstrate when the vehicle enters and exits collision avoidance mode. The obstacle
can be seen to move in a clockwise circle as it increases its forward speed. The vehicle
enters collision avoidance mode as the distance satisfies db,o < dthreshold, and turns
right according to the turning rule (6.28), seen in Figure 6.3a and 6.3b. Even though
the obstacle turns directly towards the vehicle for some time, while increasing its
forward speed, the vehicle avoids a collision by continuously turning away from the
conflict. The vehicle safely exits collision avoidance mode at t = 54 s, seen in Figure
6.3c. Finally, at t = 80 s, the vehicle reaches the target without collision.

The distance between the obstacle and the vehicle, db,o(t), is plotted against the
threshold distance dthreshold, and the minimum safety distance Ro|ϵ ≜ Ro + dϵ, in
Figure 6.4a. The obstacle’s forward speed, uo(t), is plotted as well. It can be seen that
the vehicle is able to maintain at least the minimum safety distance from the obstacle
at all times during the collision avoidance scenario. Hence, the simulation result agrees
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with the theoretical result of Theorem 6.2.

6.5.2 Path following

In this section, we present a numerical simulation of the vehicle following the LOS
guidance law (6.11), while also avoiding a collision with a moving obstacle by following
the VO algorithm. The path P was chosen parallel to the xn axis, with target position
along the yn axis equal to ynt = 10 m. The lookahead distance was chosen as ∆ = 10,
satisfying the condition of Theorem 6.3.

In this scenario, the obstacle approaches the vehicle head on and increases its
forward speed, with constant acceleration ao = ao,max = 0.05 m/s2. The initial speed
of the obstacle was chosen as uo(t0) = 0m/s, and the maximum speed as uo,max = 1.9

m/s, satisfying Assumption 6.4. The obstacle does not turn, i.e. ro = ro,max = 0 rad/s.
The required threshold distance is then computed as dthreshold = 30.9 m, in accordance
with Theorem 6.3. Assumption 6.5 holds with the current parameters.

Trajectories of the vehicle and the obstacle are shown in Figure 6.5. The vehicle
converges to the path, but is forced to leave it once the obstacle comes within the
threshold distance of the vehicle. The vehicle enters collision avoidance mode as
the distance satisfies db,o = dthreshold, and turns right according to the turning rule
(6.27), as seen in Figure 6.5a and 6.5b. During this time, the obstacle accelerates in the
direction of the vehicle. Despite this, the vehicle safely maneuvers around the obstacle
by maintaining a continuous control input satisfying (6.29), and finally exits collision
avoidance mode at t = 35 s, seen in Figure 6.5c. The vehicle then escapes the obstacle
completely, and converges to the path once again, as seen in Figure 6.5d.

The distance between the obstacle and the vehicle, db,o(t), is plotted against the
threshold distance dthreshold, and the minimum safety distance Ro|ϵ, in Figure 6.4b. The
obstacle’s forward speed, uo(t), is plotted as well. It can be seen that the distance
remains above the minimum safety distance at all times during the collision avoidance
scenario. Hence, the simulation result supports the theoretical result of Theorem 6.3.
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Figure 6.3: First simulation scenario of a nonholonomic vehicle reactively avoiding
collision, guided by the pure pursuit guidance law. The obstacle is the red circle, the
vehicle is the blue polygon, and the safety distance is the magenta line encircling the
obstacle. The trajectories of the vehicle and the obstacle are the blue and red, dashed
lines, respectively. The collision cone, CC, is the red cone, and the relative guidance
velocity, vnndgo, is the blue arrow. The target position is marked as an ’X’.
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(a) Distance, db,o, and forward speed of the obstacle, uo, during the
first simulation.

0 10 20 30 40 50 60 70

Time [s]

0

50

100

D
is

ta
nc

e 
[m

]

0 10 20 30 40 50 60 70

Time [s]

0

0.5

1

1.5

2

Fo
rw

ar
d 

sp
ee

d 
[m

/s
]

(b) Distance, db,o, and forward speed of the obstacle, uo, during the
second simulation.

Figure 6.4: Distance between the vehicle and the obstacle, and forward speed of the
obstacle, during both simulations.
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Figure 6.5: Second simulation scenario of a nonholonomic vehicle reactively avoiding
collision, guided by the LOS guidance law. The path P is represented by the dotted
line.



Chapter 7

The Velocity Obstacle
Algorithm for Vehicles with
Underactuated Dynamics

In this chapter, we extend the unicycle model to include the underactuated sway
dynamics of the marine vehicle modeled in Chapter 3. Even though the vehicle cannot
produce control forces in the sway direction, swayingmotions will naturally be induced
by the vehicle’s turning motion. Recall from Chapter 4 that the vehicle’s heading will
deviate from its course for nonzero sway speeds. Since the course cannot be controlled
directly, the control system needs to continuously compensate for the crab angle
induced by the sway speed in order to track the desired course.

In order to derive a minimum threshold distance, deciding when to start the
avoidance maneuver, the size of the sway speed needs to be bounded. Since the vehicle
is required to turn during both guidance and collision avoidance, measures must be
taken to ensure that this is achieved. This means, among other things, that we need
to limit the vehicle’s turning motion during collision avoidance, and also during the
vehicle’s nominal behaviour. Such limitations will be dealt with in this chapter, in

73
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order to guarantee safety of the vehicle in the underactuated case.

7.1 System description

In this section, we will present the model used to describe a vehicle with underactuated
dynamics, the vehicle’s control objective, and the model used to describe a moving
obstacle.

7.1.1 Vehicle model

The vehicle is modeled as an underactuated, marine vehicle moving in 3 DOF, modeled
in Chapter 3. In this part of the thesis, we will assume that the surge speed and yaw
rate can be perfectly controlled, thus acting as virtual control inputs:

Assumption 7.1. The surge speed, ub, and yaw rate, rb, can be perfectly controlled.
Moreover, the surge speed ub > 0 is constant.

The model becomes:

ẋnb = ub cos(ψ
n
b )− vb sin(ψ

n
b ), (7.1a)

ẏnb = ub sin(ψ
n
b ) + vb cos(ψ

n
b ), (7.1b)

ψ̇nb = rb, (7.1c)

v̇b = fv(ub, vb, rb), (7.1d)

where the expression of fv(·) is given in Appendix 7.A. The surge and yaw dynamics
will be included later on, in Chapter 8. The term fv(ub, vb, rb) can be expressed as

fv(ub, vb, rb) ≜ X(ub)rb + Y (ub)vb, (7.2)

where X(ub) and Y (ub) are given in Appendix 7.A. It can be noticed that the terms
are constant by Assumption 7.1.
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Assumption 7.2. The term Y (ub) satisfies

Y (ub) < 0. (7.3)

Assumption 7.2 ensures that the vehicle is nominally stable in sway, which is the case
for most commercial vessels by design.

7.1.2 Control objective

In this chapter we only consider target reaching, as the results can easily be extended
to yield safe path-following, as is done in the subsequent chapter. Hence, the control
objective of the vehicle is to come within an acceptable distance da > 0 of a target
position pnt ≜ [xnt , y

n
t ]

⊤, at an unspecified point in time tf ∈ [t0,∞), while keeping
at least a minimum safety distance, dϵ, from the obstacle at all times:

db,o(t)−Ro ≥ dϵ > 0, ∀t ∈ [t0, tf] . (7.4)

Furthermore, in order to prevent the vehicle from colliding side-ways into the obstacle,
the vehicle is required to maintain a limited sway speed, satisfying

|vb(t)| ≤ vb,max, ∀t ∈ [t0, tf] , (7.5)

where vb,max > 0 is a constant design parameter. To ensure this, the following assump-
tion must hold:

Assumption 7.3. The vehicle’s initial sway speed, vb(t0), satisfies

|vb(t0)| ≤ vb,max. (7.6)
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7.1.3 Obstacle model

As in Chapter 6, the obstacle is modeled as a moving, circular domain Do, with radius
Ro, described by the kinematic equations:

ẋno = uo cos(ψ
n
o ), (7.7a)

ẏno = uo sin(ψ
n
o ), (7.7b)

ψ̇no = ro, (7.7c)

u̇o = ao. (7.7d)

The obstacle is subject to the kinematic constraints:

Assumption 7.4. The obstacle’s heading rate, ro, and forward acceleration, ao, are
bounded by

ro ∈ [−ro,max, ro,max] ,

ao ∈ [−ao,max, ao,max] ,
(7.8)

where ro,max ≥ 0 and ao,max ≥ 0 are constant parameters.

In order to ensure the vehicle is able to avoid a collision with the obstacle, the following
assumption must be met:

Assumption 7.5. The obstacle’s forward speed 0 ≤ uo ≤ uo,max satisfies

uo,max <

ub, if X(ub) > − 1
2ub,

− u2
b

X(ub)
− ub, if − 1

2ub ≥ X(ub) > −ub.
(7.9)

Remark 7.1. Assumption 7.5 ensures that the vehicle’s required turning rate during
collision avoidance is well-defined, derived in the analysis given in Section 7.4.
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7.2 Guidance and control

In guidance mode, the pure pursuit guidance law will be employed for guiding the
vehicle towards a static position in the world frame. In order to follow the course
references generated by the guidance system and the collision avoidance algorithm,
the vehicle employs a proportional heading controller, while compensating for the
crab angle induced by the sway speed.

7.2.1 Guidance law

In nominal guidance mode, the vehicle’s course references will be given by the pure
pursuit guidance law, generating a velocity vector along the line of sight vector between
the vehicle and the target:

vnpp ≜ −Ub
p̃n

∥p̃n∥
, (7.10)

where p̃n ≜ pnnb − pnt , and Ub ≜
√
u2b + v2b > 0 is the speed of vehicle. The desired

course is given by
χnpp ≜ ∠vnpp. (7.11)

7.2.2 Heading controller

The heading controller is stated as in [25]:

rb = ψ̇ndb − λψψ̃, (7.12)

where λψ > 0 is the heading control gain, and the heading error ψ̃ ≜ ψnb − ψndb is
mapped to the interval (−π, π] to ensure that the vehicle always takes the shortest
turn. It is straight-forward to verify that the heading controller ensures exponential
stabilization of the heading error dynamics by (7.1c), for a positive gain λψ > 0. We
will derive the expressions of the desired heading, ψndb, and its derivative, ψ̇ndb, below.

The vehicle’s course is defined as the angle from the positive xn axis to the velocity
vector of the vehicle:

χnb ≜ ∠vnnb. (7.13)
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As presented in Chapter 4, the course may be written

χnb = ψnb + βc. (7.14)

To obtain the desired heading angle, the crab angle must thus be subtracted from the
desired course, defined as

βc ≜ tan−1

(
vb
ub

)
. (7.15)

Hence,
ψndb ≜ χndb − βc, (7.16)

where χndb is desired course.

The time-derivative of the course is computed from (7.14) and (7.15), as

χ̇nb = ψ̇nb
U2
b +X(ub)ub

U2
b

+
Y (ub)vbub

U2
b

. (7.17)

Solving (7.17) for ψ̇nb yields

ψ̇nb =
U2
b χ̇

n
b − Y (ub)vbub

U2
b +X(ub)ub

. (7.18)

The control law (7.12) is well-defined if the denominator of (7.18) is nonzero. This is
ensured by the assumption:

Assumption 7.6. The term X(ub) satisfies

ub +X(ub) > 0. (7.19)

Remark 7.2. Assumption 7.6 ensures that a change in the vehicle’s heading results
in a change in the vehicle’s course. This is the case for most commercial vessels by
design.
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It can be verified that Assumption 7.6 yields the following lower bound:

U2
b +X(ub)ub ≥ aub, a > 0, (7.20)

thus ensuring that ψ̇ndb is well-defined. Furthermore, substituting the control law
ψ̇nb = ψ̇ndb − λψψ̃ into (7.17) where

ψ̇ndb ≜
U2
b χ̇

n
db − Y (ub)vbub

U2
b +X(ub)ub

, (7.21)

and ψ̃ ≜ χ̃, yields the course error dynamics given by

˙̃χ = −λχχ̃, (7.22)

where
λχ ≜ λψ

U2
b +X(ub)ub

U2
b

. (7.23)

Remark 7.3. Assumption 7.6 ensures that λχ > 0.

Thus, the heading controller (7.12) ensures exponential stabilization of the course error
dynamics, when Assumption 7.6 holds.

7.3 Collision avoidance

The collision avoidance algorithm described in Chapter 5will be used to generate course
references for the vehicle in collision avoidance mode. The algorithm is summarized
in this section. Note that the implementation of the algorithm is slightly different from
what was presented in previous chapters, and that we operate with course rather than
heading, as the sway speed can be nonzero.

The geometry of the velocity obstacle algorithm is shown in Figure 7.1. The edges
of the collision cone can be described geometrically as

ψ±
t ≜ α± β, (7.24)
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Figure 7.1: Geometric representation of the VO algorithm.

where
β ≜ sin−1

(
Ro|ϵ

db,o

)
∈
(
0,
π

2

]
. (7.25)

The vehicle is said to be in a conflict with the obstacle if χnbo ≜ ∠vnnbo lies within the
angular boundaries of collision cone:

|χnbo − α| < β. (7.26)

The edges of the absolute collision cone are defined geometrically as

ψ±
abs ≜ γ±cmp + ψ±

t , (7.27)

where the angle γ±cmp compensates for the obstacle velocity, and is given by

γ±cmp = sin−1

(
uo sin(γ

±
o )

Ub

)
. (7.28)



7.3. COLLISION AVOIDANCE 81

The angle γ±o is found geometrically as

γ±o = π + ψ±
t − ψno . (7.29)

Recall in Chapter 6 that we made the vehicle maintain a constant, angular safety
distance away from a conflict in collision avoidance mode. We now extend the collision
cone (and equivalently the velocity obstacle), by a constant angle σ > 0 on each side.
We denote the extended cones as CCσ and VOσ , respectively.

Remark 7.4. The angle σ is an additional safety measure, ensuring that the vehicle
cannot come too close to the obstacle. The choice of this angle will become apparent
in the analysis given in Section 7.4.

The control system is switched to collision avoidance mode if the obstacle is too close
the vehicle, simultaneously as the guidance velocity is unsafe:

db,o(t1) ≤ dthreshold, v
n
ndg(t1) ∈ VOσ(t1), (7.30)

where VOσ is the extended velocity obstacle. Nominal guidance towards the target
will resume when the guidance velocity is safe:

vnndg(t2) /∈ VOσ(t2). (7.31)

If the distance equals db,o = dthreshold when CA mode is entered, the turning
direction makes the vehicle seek to pass behind the obstacle:

db,o = dthreshold, j = arg max
j∈{±}

∣∣∣ψno − ψ
(j)
abs

∣∣∣ , (7.32)

where j is the turning parameter. If the distance is less than dthreshold, the vehicle will
instead turn away from the nearest conflict to ensure safety:

db,o < dthreshold, j = arg min
j∈{±}

∣∣∣χnb − ψ
(j)
abs

∣∣∣ . (7.33)
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The course references in collision avoidance mode will make the vehicle avoid a
collision with a nearby obstacle, given by

χndcaj ≜ ψ
(j)
abs ± σ, j ∈ {±}, (7.34)

where the turning direction j is chosen by the rules presented above. It can noticed
that the course candidates (7.34) correspond to the edges of the extended, absolute
collision cone, as illustrated in Figure 7.1.

7.4 Analysis

In this section, we present a mathematical analysis of the velocity obstacle algorithm
described in Section 7.3, applied to a vehicle with underactuated dynamics, modeled by
(7.1), for collision avoidance of a single, circular obstacle, described by the kinematic
model (7.7).

In the first lemma, we will prove that the safety angle, σ, introduced in Section 7.3
makes the vehicle maintain a constant distance from the obstacle, providing an upper
bound of the angle β.

Lemma 7.1. Consider an obstacle moving with a time-varying velocity vnno(t), and let
the vehicle and the obstacle initially be separated by a distance db,o(t0) >

Ro|ϵ
cos(σ) , for a

constant angle σ ∈ (0, π/2]. If the vehicle maintains a course angle satisfying

|χnbo(t)− α(t)| = β(t) + σ, ∀t ≥ t0, (7.35)

where β is defined in (7.25), then the vehicle will converge to a circle with radius

Ro|ϵ

cos(σ)
, (7.36)

and center in the obstacle center, pnno. Moreover, if the vehicle maintains a course angle
satisfying

|χnbo(t)− α(t)| ≥ β(t) + σ, ∀t ≥ t0, (7.37)
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then
db,o(t) ≥

Ro|ϵ

cos(σ)
, ∀t ≥ t0, (7.38)

and
β(t) ∈ [0,

π

2
− σ], ∀t ≥ t0. (7.39)

Proof. Consider the line segment going from the vehicle center, pnnb, to the obstacle
center, pnno, with length db,o and orientation α. The time-derivative of db,o is found
geometrically as

ḋb,o = −Ubo cos(χnbo − α), (7.40)

where Ubo ≜ ∥vnnb − vnno∥. Let (7.35) hold, we can then write (7.40) as

ḋb,o = −Ubo cos(β + σ). (7.41)

Notice that (β + σ) ∈ (0, π]. Hence, from (7.41), if β < π/2 − σ then ḋb,o < 0. If
β > π/2 − σ then ḋb,o > 0, and if and only if β = π/2 − σ then ḋb,o = 0. Thus,
ḋb,o → 0 and β → π/2− σ as t → ∞. Since β is defined as (7.25), we can solve for
the distance db,o:

sin−1

(
Ro|ϵ

db,o

)
=
π

2
− σ =⇒ db,o =

Ro|ϵ

cos(σ)
. (7.42)

Now, let (7.37) hold. By (7.40) the angle β then satisfies

β ≤

∣∣∣∣∣cos−1

(
− ḋb,o
Ubo

)∣∣∣∣∣− σ. (7.43)

Since the initial distance satisfies db,o(t0) >
Ro|ϵ
cos(σ) , then β(t0) < π/2− σ. Thus, we

only need to consider when ḋb,o ≤ 0, since β is decreasing for ḋb,o > 0 by (7.25). The
maximum of (7.43) is then found at ḋb,o = 0. Hence,

π

2
− σ ≥ β ≥ 0, (7.44)
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and
db,o ≥

Ro|ϵ

cos(σ)
, (7.45)

which concludes the proof.

When the vehicle turns, a swaying motion will be induced, seen by (7.1d). Since
the sway dynamics are underactuated, we cannot control this speed directly. Thus,
in order to satisfy the control objective (7.5), the control input rb cannot be chosen
arbitrarily large. The next lemma provides the necessary conditions ensuring that the
magnitude of the sway speed is upper bounded, adopted from Wiig et al. [25].

Lemma 7.2. Consider a vehicle described by (7.1), and let Assumption 7.2 hold. Suppose
the heading rate, rb, is dependent on the sway speed, vb, in a way that the following holds:

|rb(vb,max)| <
|Y (ub)|
|X(ub)|

vb,max. (7.46)

Then, if |vb(t0)| ≤ vb,max,

|vb(t)| ≤ vb,max, ∀t ≥ t0. (7.47)

Proof. Consider the Lyapunov function candidate given by

V =
1

2
v2b . (7.48)

The time derivative of V along the trajectories of (7.1d) is

V̇ = X(ub)rbvb + Y (ub)v
2
b . (7.49)

By Assumption 7.2, Equation (7.49) is bounded by

V̇ ≤ |X(ub)| |rb| |vb| − |Y (ub)| v2b . (7.50)



7.4. ANALYSIS 85

It follows from (7.50) values of rb satisfying

|rb| <
|Y (ub)|
|X(ub)|

|vb| (7.51)

ensures
V̇ < 0 ∀vb ∈ R/{0}. (7.52)

Define the level set
Ωc = { vb ∈ R | V ≤ 1

2
v2b,max }. (7.53)

The condition (7.52) ensures that any trajectory starting inside the set Ωc can never
come out again. Hence, if (7.46) holds, then any initial value of vb satisfying |vb(t0)| ≤
vb,max ensures |vb(t)| ≤ vb,max, ∀t ≥ t0.

We have established that the angle σ can be used to bound β and the distance
db,o, and the choice of rb can be used to bound the sway speed. To ensure that the
control objective is satisfied, we must design the control law (7.12) with the conditions
of Lemma 7.1 and 7.2 in mind. The maximum sway velocity, vb,max, and the safety
angle, σ, act as design parameters in this regard. Before stating the next lemma, we
define the following term for conciseness:

fψ(ub, σ) ≜ vb,max |Y (ub)|

 1

|X(ub)|
− 2

U2
b,max

 uo,maxvb,max√
U2
b,max − u2o,max

+ ub


− ro,max

uo,max

ub
− ao,max√

u2b − u2o,max

−
(
1 +

uo,max

Ub,max

)
Ubo,max

(Ro + dϵ) tan(σ)
,

(7.54)

where we define Ub,max ≜
√
v2b,max + u2b , and

Ubo,max ≜
√
u2b + v2b,max + u2o,max + 2uo,max(vb,max + ub).

Lemma 7.3. Consider an obstacle described by (7.7), and a vehicle described by (7.1).



86 CHAPTER 7. THE VO ALGORITHM FOR UNDERACTUATED VEHICLES

Let the vehicle’s course references be given by the collision avoidance algorithm, defined
in (7.34). Suppose the vehicle maintains a distance to the obstacle satisfying

db,o(t) ≥
Ro|ϵ

cos(σ)
, ∀t ≥ t0, (7.55)

where σ ∈ (0, π/2] is a constant angle. If Assumption 7.1-7.5 hold, and the vehicle is
controlled by the heading controller (7.12) where λψ > 0 satisfies

λψ ≤ fψ(ub, σ)

π
. (7.56)

Then, if |vb(t0)| ≤ vb,max,

|vb(t)| ≤ vb,max, ∀t ≥ t0. (7.57)

Proof. The desired heading is computed from the desired course by subtracting the
crab angle, as

ψndb = χndcaj − βc, (7.58)

where j ∈ {±} is the turning parameter. The time-derivative of ψndb is computed by
substituting (7.24) and (7.27) into (7.34) as

ψ̇ndb = α̇± β̇ + γ̇
(j)
abs − β̇c. (7.59)

The terms can be computed in the same manner as in Chapter 6. The time-derivatives
of α and β are found geometrically and by (7.25), as

α̇ = −Ubo
db,o

sin(χnbo − α), (7.60)

β̇ =
Ubo
db,o

cos(χnbo − α) tan(β). (7.61)
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The time-derivative of γ(j)cmp can be computed from (7.28) as

γ̇(j)cmp = (−ro + α̇± β̇)P (γ(j)o ) + aoQ(γ(j)o ) + v̇b
∂γ

(j)
cmp

∂vb
, (7.62)

where the expressions of P (γo) and Q(γo) are given in Appendix 7.A. The last term
can be computed from (7.28) as

∂γ
(j)
cmp

∂vb
=

∂

∂vb

(
sin−1

(
uo
Ub

sin(γ(j)o )

))
(7.63)

= −vb
uo sin(γ

(j)
o )

U3
b

√
1− (uo/Ub)2 sin

2(γ
(j)
o )

. (7.64)

For convenience, we define

R(γo) ≜
uo sin(γo)

U3
b

√
1− (uo/Ub)2 sin

2(γo)

∈

[
− uo

U2
b

√
U2
b − u2o

,
uo

U2
b

√
U2
b − u2o

]
.

(7.65)

The time-derivative of the crab angle βc is computed from (7.15) as

β̇c =
d

dt

(
tan−1

(
vb
ub

))
= v̇b

ub
U2
b

. (7.66)

Finally, we find ψ̇ndb as

ψ̇ndb =
(
1 + P (γ(j)o )

)
ψ̇
(j)
αβ − roP (γ

(j)
o ) + aoQ(γ(j)o )− v̇b

(
vbR(γ

(j)
o ) +

ub
U2
b

)
,

(7.67)

where ψ̇(j)
αβ ≜ α̇± β̇. Inserting the control law (7.12) and the dynamics of vb given by
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(7.1d) yields

rb =
(
1 + P (γ(j)o )

)
ψ̇
(j)
αβ − roP (γ

(j)
o ) + aoQ(γ(j)o )− λψψ̃ . . .

− (X(ub)rb + Y (ub)vb)

(
vbR(γ

(j)
o ) +

ub
U2
b

)
.

(7.68)

Solving (7.68) for rb gives the expression:

rb =
Gnum

Gden
, (7.69)

where

Gden = 1 +X(ub)

(
vbR(γ

(j)
o ) +

ub
U2
b

)
, (7.70)

Gnum =
(
1 + P (γ(j)o )

)
ψ̇
(j)
αβ − roP (γ

(j)
o ) + aoQ(γ(j)o )− λψψ̃ . . .

− Y (ub)vb

(
vbR(γ

(j)
o ) +

ub
U2
b

)
.

(7.71)

To ensure that (7.69) is well-defined, Gden must be nonzero. If X(ub) ≥ 0, we can
write (7.70) as

Gden > 1 +
X(ub)

U2
b

 vbuo,max√
U2
b + u2o,max

+ ub

 , (7.72)

by (7.65) which bounds R(γo), and Assumption 7.5 which bounds the obstacle speed.
Since ub > uo,max, it is then ensured that Gden > 0, ∀X(ub) ≥ 0. If X(ub) < 0, a
lower bound of (7.70) can similarly be found by (7.65) and Assumption 7.5, as

Gden > 1− |X(ub)|
U2
b

 |vb|uo,max√
U2
b − u2o,max

+ ub

 := Gd,min. (7.73)
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If uo,max = 0, then (7.73) satisfies

Gden > 1− |X(ub)|
U2
b

ub. (7.74)

The minimum is found at vb = 0, thus we require X(ub) > −ub which is satisfied
by Assumption 7.6. For uo,max ̸= 0, we find a lower bound by minimizing (7.73) with
respect to vb, as

Gden > 1− |X(ub)|
u2b

(uo,max + ub) . (7.75)

Hence, we require the obstacle speed to satisfy

uo,max <

ub, if X(ub) > − 1
2ub,

− u2
b

X(ub)
− ub, if − 1

2ub ≥ X(ub) > −ub.
(7.76)

Remark 7.5. Assumption 7.5 ensures that (7.76) always holds.

An upper bound of Gnum can be found by maximizing P (γo), Q(γo) and R(γo),
Assumption 7.4 bounding the obstacle’s turning rate and forward acceleration, Assump-
tion 7.5 bounding the obstacle’s speed, and Assumption 7.2 stating that Y (ub) < 0,
as

Gnum < (1 +
uo,max

Ub
)ψ̇αβ,max + ro,max

uo,max

ub
+

ao,max√
u2b − u2o,max

. . .

+ λψπ +
|Y (ub)||vb|

U2
b

 |vb|uo,max√
U2
b − u2o,max

+ ub

 := Gn,max.

(7.77)

To bound ψ̇(j)
αβ we make use the trigonometric identity given by

tan(x)± tan(y) =
sin(x)± sin(y)

cos(x) cos(y)
, (7.78)
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which, by (7.60) and (7.61), yields

α̇± β̇ =
Ubo
db,o

(− sin(χnbo − α)± cos(χnbo − α) tan(β)) (7.79)

= −Ubo
db,o

cos(χnbo − α) (tan(χnbo − α)∓ tan(β)) (7.80)

= −Ubo
db,o

sin(χnbo − α∓ β)

cos(β)
. (7.81)

The distance db,o is lower bounded by (7.55), which ensures that β ∈ [0, π/2− σ) by
(7.25). Hence,

ψ̇
(j)
αβ <

Ubo,max

(Ro + dϵ) tan(σ)
:= ψ̇αβ,max. (7.82)

The angle σ can be used as a design parameter to bound this term, as a larger angle
yields a lower value of ψ̇αβ,max. However, this requires the vehicle to maintain a larger
distance from the obstacle.

By evaluating Gd,min and Gn,max at vb,max we obtain:

|rb(vb,max)| <
Gn,max

Gd,min
. (7.83)

It is then straight-forward to verify that

λψ ≤ fψ(ub, σ)

π
(7.84)

ensures that if |vb(t0)| ≤ vb,max, then

|vb(t)| ≤ vb,max, ∀t ≥ t0, (7.85)

by Lemma 7.2.

We need to ensure that the vehicle is able to turn out of a conflict before a collision
occurs. By the same reasoning as presented in Chapter 6, we must then choose the
threshold distance of the switching condition (7.30) above a lower bound. The lower
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dthreshold

dturn

uomaxtε

dsep

Figure 7.2: Illustration of the collision avoidance scenario of Lemma 7.4.

bound should be based on the amount of time it takes for the vehicle to turn to the
desired course, and the maximum distance the vehicle and the obstacle hypothetically
can travel towards each other during the maneuver. For this we need to define the
Sine integral function, given by

Si(τ) =
∫ τ

0

sin(t)

t
dt. (7.86a)

The following lemma provides an explicit lower bound of the threshold distance, based
on the analysis presented in Wiig et al. [25].

Lemma 7.4. Consider an obstacle described by (7.7), and a vehicle described by (7.1).
Let the vehicle enter collision avoidance mode according to the switching rule (7.30), as
the distance satisfies db,o = dthreshold. Let the vehicle, controlled by the heading controller
(7.12), follow the course references defined in (7.34), with the turning direction chosen by
the turning rules (7.32)-(7.33). Let Assumption 7.1-7.6 hold, and suppose the vehicle speed
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satisfies Ub ≤ Ub,max, ∀t ≥ t0. If the threshold distance satisfies

dthreshold ≥ uo,maxtε + dsep + dturn, (7.87)

where
tε := − ln(ε/π)

λχ
(7.88)

is an upper bound of the time it takes for the vehicle to converge to within ε rad of the
desired course, and

dturn :=
Ub,max

λχ
Si
(π
2

)
, (7.89)

is an upper bound of the distance traveled by the vehicle towards the obstacle when
making a π rad turn, where λχ is defined in (7.23). Then, the vehicle will converge to
within ε rad of the desired course before the obstacle is within the distance dsep of the
vehicle.

Proof. The proof of this lemma follows along the lines of the proof presented in [25],
where a minimum switching distance is derived by evaluating the worst case collision
avoidance scenario between the vehicle and the obstacle. The scenario is illustrated in
Figure 7.2, describing a situation where the vehicle must turn π rad while the obstacle
moves directly towards the turning circle of the vehicle.

Let the vehicle and the obstacle move with maximum speeds, i.e. Ub = Ub,max and
uo = uo,max, and let Ro|ϵ → ∞ such that β → π/2. The course error is then upper
bounded by |χ̃| = π. To find a lower bound of the required threshold distance, we will
analyse the course error dynamics given by (7.22), with the solution:

χ̃ = χ̃(t0)e
−λχ(t−t0). (7.90)

The course error χ̃ is bounded by definition, thus |χ̃(t0)| ≤ π. Since λχ > 0, then
(7.90) is bounded. It follows that the convergence time of the course error to |χ̃| ≤ ε is
given by

t− t0 ≤ − ln(ε/π)

λχ
:= tε, ε ∈ (0, π] . (7.91)
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The distance covered by the obstacle is upper bounded by uo,maxtε. The distance
covered by the vehicle is less straight-forward to compute, since the course rate is
time-varying. From Figure 7.2 it can be seen that the distance the vehicle travels
over the time tε is upper bounded by the distance the vehicle travels when making a
π/2 turn. Without loss of generality, let the initial vehicle course be χnb (t0) = 0, the
obstacle heading be ψno = π, and let xnb < xno . From Chapter 4 we can recall that the
time-derivative of xnb can be found from the course, as

ẋnb = Ub,max cos(χ
n
b ). (7.92)

The maximum distance the vehicle travels towards the obstacle is found by solving
(7.92) for χ̃ = −π

2 e
−λχ(t−t0), as∫ ∞

0

Ub,max cos (χ̃+ χndb) dt (7.93)

=

∫ ∞

0

Ub,max cos
(π
2
− π

2
e−λχ(t−t0)

)
dt =

Ub,max

λχ
Si
(π
2

)
. (7.94)

It follows that if the threshold distance satisfies (7.87), then the vehicle will converge
to within ε rad of the desired course, before the distance between the vehicle and the
obstacle, db,o, is less than the distance dsep.

The main theorem of the chapter is now ready to be stated. First, we state the
general assumption:

Assumption 7.7. The vehicle and the obstacle are initially separated by a distance
satisfying

db,o(t0) ≥ dthreshold. (7.95)

The final theorem will provide the conditions under which a vehicle modeled by (7.1)
will navigate safely in the presence of a moving obstacle described by (7.7), combined
with guidance towards a target by the pure pursuit guidance law (7.10), while also
maintaining a limited sway speed satisfying the required bound defined in (7.5).
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Theorem 7.1. Consider an obstacle described by (7.7) and a vehicle described by (7.1).
Let Assumption 7.1-7.7 hold, the threshold distance satisfy

dthreshold ≥ uo,maxtε +
Ro|ϵ

cos(σ)
+ dturn, (7.96)

where tε and dturn are defined in Lemma 7.4, and the safety angle σ ∈ (0, π/2] satisfy

σ = σ̄ + ε, σ̄ > 0, ε > 0. (7.97)

Furthermore, let the heading control gain λψ satisfy

λψ ≤ fψ(ub, σ̄)

π
, (7.98)

and the acceptance distance satisfy

da >
|X(ub)|Ub,max

|Y (ub)|vb,max − |X(ub)|λχπ
, (7.99)

where λχ is defined in (7.23). Then, the vehicle controlled by the heading controller
(7.12), following the guidance law (7.10), the switching rules (7.30)-(7.31), the turning
rules (7.32)-(7.33), and the collision avoidance law (7.34), will converge to within da of
the target position pnt at an unspecified point in time tf <∞, and furthermore satisfy

db,o(t)−Ro ≥ dϵ, ∀t ∈ [t0, tf] , (7.100)

while ensuring that
|vb(t)| ≤ vb,max, ∀t ∈ [t0, tf] . (7.101)

Proof. The required course rate when the vehicle follows the pure pursuit guidance
law is computed from (7.11) as

χ̇npp =
(xnb − xnt )ẏ

n
b − (ynb − ynt )ẋ

n
b

(xnb − xnt )
2 + (ynb − ynt )

2
, (7.102)
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which yields the upper bound:

|χ̇npp| ≤
Ub√

(xnb − xnt )
2 + (ynb − ynt )

2
. (7.103)

An upper bound of the required course rate during pure pursuit guidance is then found
as

|χ̇ndb| ≤
Ub,max

da
. (7.104)

The required heading rate is found from the course rate by the relation (7.18), yielding

|ψ̇ndb| ≤

(
Ub,max

da
− |Y (ub)|vb,maxub

U2
b,max

)
U2
b,max

U2
b,max − |X(ub)|ub

(7.105)

Inserting the control law (7.12) yields

|rb| ≤

(
Ub,max

da
− |Y (ub)|vb,maxub

U2
b,max

)
U2
b,max

U2
b,max − |X(ub)|ub

+ λψπ (7.106)

Hence, by Lemma 7.2 the acceptance distance da must satisfy

da >
|X(ub)|Ub,max

|Y (ub)|vb,max − |X(ub)|λχπ
, (7.107)

where λχ is defined in (7.23), in order to ensure that the sway speed satisfies |vb(t)| ≤
vb,max, ∀t ≥ t0 in the presence of zero obstacles.

Let the vehicle enter collision avoidance mode at the time t1 ≥ t0, as the distance
satisfies db,o(t1) = dthreshold. Lemma 7.4 and condition (7.96) ensures that there exists
a time t2 > t1, in which the vehicle satisfies

db,o(t2) ≥
Ro|ϵ

cos(σ)
, (7.108)

and |χ̃(t2)| =
∣∣χnb (t2)− χndcaj(t2)

∣∣ ≤ ε. Since χ̃ = 0 is an exponentially stable
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equilibrium, it is then ensured that

∣∣χnb (t)− χndcaj(t)
∣∣ ≤ ε, ∀t ∈ [t2, t3 ] , (7.109)

where t3 ≥ t2 is the time inwhich the vehicle exits collision avoidancemode. Condition
(7.109) furthermore ensures that

|χnbo(t)− α(t)| ≥ β(t) + σ̄, ∀t ∈ [t2, t3 ] . (7.110)

Hence,
db,o(t) ≥

Ro|ϵ

cos(σ̄)
, ∀t ∈ [t1, t3 ] , (7.111)

by Lemma 7.1. Finally, Lemma 7.3 along with condition (7.98) then ensures that

|vb(t)| ≤ vb,max, ∀t ∈ [t1, t3 ] . (7.112)

The obstacle may turn, causing the vehicle to enter collision avoidance mode as the
distance satisfies db,o < dthreshold. Since χndcaj is first-time differentiable, and the desired
course is chosen as the nearest of the two course candidates, the vehicle will then
immediately be able to follow the desired course, ensuring that the vehicle satisfies
(7.110) at all times, which furthermore ensures that condition (7.100) is satisfied, by
Lemma 7.1.

Finally, since ub > uo,max, the vehicle will escape the obstacle at some point in
time, and proceed to the target pnt . By Lemma 6.2 and Assumption 7.1 the vehicle will
converge to within da of the target position at some point in time tf <∞. By the above
analysis, we can conclude that the conditions (7.100) and (7.101) are satisfied.

7.5 Simulations

This section presents two numerical simulations of a vehicle with underactuated dy-
namics, modeled as (7.1), controlled by the heading controller (7.12) and following the
VO algorithm presented in Section 7.3, for collision avoidance of a moving obstacle
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modeled by (7.7). The vehicle drives towards a static target chosen as pnt = [140, 0]

m, by following the pure pursuit guidance law (7.10). In both scenarios, the vehi-
cle maintains a constant forward speed ub = 2 m/s, with initial heading equal to
ψnb (t0) = 0 rad, and position pnnb(t0) = [0, 0]

⊤ m. To model the underactuated sway
dynamics, we use the model parameters of an LAUV (light AUV) [4]. We can verify
that Assumption 7.2 and 7.6 holds with Y (ub) = −2.8161 andX(ub) = −1.0242. The
maximum allowed sway speed was set to vb,max = 3 m/s. The radius of the obstacle
was chosen equal to Ro = 10 m, and the safety distance equal to dϵ = 5 m. The
convergence parameter was chosen as ε = 0.09 rad.

In the first scenario, the obstacle maintains a constant forward speed equal to
uo = uo,max = 1.5 m/s, satisfying Assumption 7.5. The angular safety distance was
chosen as σ = 0.7 rad. With these parameters (ao,max = 0, ro,max = 0), the heading
control gain was computed as λψ = 0.489 s−1, and the threshold distance chosen as
dthreshold = 45 m, satisfying the conditions of Theorem 7.1. The acceptance distance
was set to da = 1 m, also complying with the conditions of Theorem 7.1.

The obstacle approaches the vehicle from the port side as seen in Figure 7.4,
where the obstacle and vehicle trajectories have been plotted at four moments in
time. The extended collision cone, CCσ , is shown as the red, transparent cone, and has
length equal to dthreshold. The vehicle enters CA mode as the distance is reduced to
db,o = dthreshold, and turns left in order to pass on the rear side of the obstacle, seen in
Figure 7.4a and 7.4b. The vehicle exits collision avoidance mode at t = 29 s according
to the switching rule (7.31), and reaches the target without collision at t = 80 s, seen
in Figure 7.4c and 7.4d.

The distance between the vehicle and obstacle centers, db,o(t), is plotted in Figure
7.6a along with the threshold distance, dthreshold, and the minimum required separation
distance, Ro|ϵ. We have also included the distance Ro|ϵ

cos(σ̄) , where σ̄ ≜ σ − ε, in order
to demonstrate that the conditions of Lemma 7.3 are satisfied, which is a requirement
for Theorem 7.1 to hold. It can be seen that the distance remains above the minimum
safety distance Ro|ϵ, and also above Ro|ϵ

cos(σ̄) , thus verifying the theoretical result of
Theorem 7.1.

In the second scenario, the obstacle both turns and increases its forward speed,



98 CHAPTER 7. THE VO ALGORITHM FOR UNDERACTUATED VEHICLES

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

Sw
ay

 s
pe

ed
 [

m
/s

]

First sim
Second sim

Figure 7.3: Vehicle sway speed, vb, during both simulations.

with constant turning rate ro = ro,max = 0.1 rad/s, and forward acceleration ao =

ao,max = 0.05 m/s2. The initial speed of the obstacles was set to uo(t0) = 0 m/s, and
the maximum speed to uo,max = 1 m/s, satisfying Assumption 7.5. The angular safety
distance was chosen as σ = 0.53 rad. With these parameters, the heading control
gain was chosen as λψ = 0.46 s−1, the threshold distance as dthreshold = 40 m, and the
acceptance distance as da = 1 m, satisfying the conditions of Theorem 7.1.

The trajectories of the vehicle and the obstacle can be seen in Figure 7.5. The
obstacle turns in a clockwise circle as it increases its forward speed. The vehicle enters
collision avoidance mode as the distance is reduced to db,o = dthreshold, and turns right
according to the turning rule (7.32), seen in Figure 7.5a and 7.5b. The vehicle follows
the desired course along the edges of the extended, absolute collision cone until it exits
CA mode at t = 39 s, seen in Figure 7.5c. The target is reached safely at t = 78 s, in
Figure 7.5d. The distance between the vehicle and the obstacle during the collision
avoidance scenario is plotted in Figure 7.6b. From the figure it is verified that the
conditions of Lemma 7.3 are satisfied, and the result of Theorem 7.1 holds.

Finally, the sway speed of the vehicle during both simulation scenarios are given
in Figure 7.3. The sway speed becomes nonzero during the vehicle’s turning motion,
and converges to zero once the turning ends. It can be noticed that magnitude of the
sway speed remains far below the maximum vb,max = 3 m/s, which indicates that the
theoretical upper bound of the heading control gain is conservative. However, it does
verify the result of Theorem 7.1.
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Figure 7.4: First simulation scenario of a vehicle with underactuated dynamics, reac-
tively avoiding collision with a moving obstacle. The obstacle is the red circle, the
vehicle is the blue polygon, and the safety distance is the magenta line encircling the
obstacle. The trajectories of the vehicle and the obstacle are the blue and red, dashed
lines, respectively. The extended collision cone, CCσ , is the red cone, and the relative
guidance velocity, vnndgo, is the blue arrow. The target position is marked as an ’X’.
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Figure 7.5: Second simulation scenario of a vehicle with underactuated dynamics,
reactively avoiding collision with an obstacle that both turns and increases its forward
speed.
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(a) Distance, db,o, during the first simulation.
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(b) Distance, db,o, during the second simulation.

Figure 7.6: Distance between the vehicle and the obstacle during both simulations.

7.A Functional expressions

The expression derived in Chapter 3 is restated here for convenience:

fv(ub, vb, rb) ≜ Y (ub)vb +X(ub)rb, (7.113)

where

X(ub) ≜
d32m23 − d33m22 + ubm23 (m11 −m22)

m22m33 −m2
23

, (7.114)
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Y (ub) ≜
d22m23 − d32m22 − ubm22 (m22 +m11)

m22m33 −m2
23

. (7.115)

In Chapter 6 we defined the following expressions:

P (γo) ≜
(uo/Ub) cos(γo)√

1− (uo/Ub)
2
sin2(γo)

∈
[
−uo
Ub
,
uo
Ub

]
, (7.116)

Q(γo) ≜
sin(γo)

Ub

√
1− (uo/Ub)

2
sin2(γo)

∈

[
− 1√

U2
b − u2o

,
1√

U2
b − u2o

]
. (7.117)



Chapter 8

The Velocity Obstacle
Algorithm for Underactuated
Surface Vehicles

This chapter presents the velocity obstacle algorithm applied to the full model of an
underactuated marine vehicle. In contrast to the previous chapter, we will now include
the yaw and surge dynamics of the surface vehicle, and consider path following in
addition to target reaching, as sub-goals for the vehicle.

As in the previous chapter, we need to take precautions regarding the underactuated
sway dynamics. Since we formulated the conditions ensuring that the vehicle’s sway
speed is bounded in the previous chapter, we can apply these results with only minor
alterations.

To ensure that the vehicle follows the desired surge speed and yaw rate, considering
they are no longer perfectly controlled, we apply two feedback stabilizing controllers,
ensuring exponential stabilization of the surge and yaw error dynamics. To ensure that
the yaw rate input signal is given as a continuous function, we introduce a smoothing
function which makes the yaw rate signal continuous in the case of a jump. However,

103
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this leads an additional smoothing time to reach the desired yaw rate, which must be
accounted for when deriving a minimum threshold distance for initiating the avoidance
maneuver.

8.1 System description

In this section, we will present the model of an underactuated marine vehicle, moving
in the horizontal plane, its associated control objective, and the model used to describe
a moving obstacle.

8.1.1 Vehicle model

The vehicle is modeled as an underactuated, marine vehicle moving in 3 DOF, modeled
in Chapter 3. The full model is stated as

ẋnb = ub cos(ψ
n
b )− vb sin(ψ

n
b ), (8.1a)

ẏnb = ub sin(ψ
n
b ) + vb cos(ψ

n
b ), (8.1b)

ψ̇nb = rb, (8.1c)

u̇b = fu(vb, rb) + gu, (8.1d)

v̇b = fv(ub, vb, rb), (8.1e)

ṙb = fr(ub, vb, rb) + gr, (8.1f)

where the expressions of fu(·), fv(·), and fr(·) are given in Appendix 8.A, and gu and
gr are the control forces in surge and yaw, respectively. The term fv(ub, vb, rb) can be
expressed as

fv(ub, vb, rb) ≜ X(ub)rb + Y (ub)vb, (8.2)

where the terms X(ub) and Y (ub) are given in Appendix 8.A.

Assumption 8.1. The vehicle’s surge speed ub satisfies

ub ≥ ub,min, ∀t ≥ t0, (8.3)
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where ub,min > 0 is a constant parameter.

Assumption 8.2. The term Y (ub) satisfies

Y (ub) < 0 ∀ub ≥ ub,min. (8.4)

Assumption 8.2 ensures that the vehicle is nominally stable in sway for surge speeds
above a certain minimum speed, ub,min. This is the case for most commercial vessels
by design.

8.1.2 Control objective

The vehicle’s control objective varies, depending on the nominal guidance mode of
the vehicle. We distinguish between two guidance modes; target reaching and path
following.

In target reaching mode, the control objective of the vehicle is to come within an
acceptable distance da > 0 of a target position pnt ≜ [xnt , y

n
t ]

⊤, at an unspecified
point in time tf ∈ [t0,∞). In path following mode, the control objective of the vehicle
is to converge to, and follow a straight line path parallel to the positive xn axis, defined
as

P ≜ {(x, y) ∈ R2 | y = ynt }, (8.5)

where ynt is the desired vehicle position along the yn axis. Both goals should be
achieved while keeping at least a minimum safety distance to the obstacle:

db,o(t)−Ro ≥ dϵ > 0, ∀t ≥ t0. (8.6)

Finally, to prevent the vehicle from colliding side-ways into the obstacle, the vehicle’s
sway velocity should satisfy

|vb(t)| ≤ vb,max ∀t ≥ t0, (8.7)

where vb,max > 0 is a constant design parameter.
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Assumption 8.3. The initial sway speed, vb(t0), satisfies

|vb(t0)| ≤ vb,max. (8.8)

8.1.3 Obstacle model

As in Chapter 6 and 7, the obstacle is modeled as a moving, circular domain Do, with
radius Ro, described by the kinematic equations:

ẋno = uo cos(ψ
n
o ), (8.9a)

ẏno = uo sin(ψ
n
o ), (8.9b)

ψ̇no = ro, (8.9c)

u̇o = ao. (8.9d)

The obstacle is subject to the kinematic constraints:

Assumption 8.4. The obstacle’s heading rate, ro, and forward acceleration, ao, are
bounded by

ro ∈ [−ro,max, ro,max] ,

ao ∈ [−ao,max, ao,max] ,
(8.10)

where ro,max ≥ 0 and ao,max ≥ 0 are constant parameters.

As introduced in Chapter 7, the following assumption needs to be met in order to
ensure that the vehicle’s desired yaw rate during collision avoidance is well-defined:

Assumption 8.5. The obstacle’s forward speed 0 ≤ uo ≤ uo,max satisfies

uo,max <

udb, if X(udb) > − 1
2udb,

− u2
db

X(udb)
− udb, if − 1

2udb ≥ X(udb) > −udb.
(8.11)
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8.2 Guidance

In nominal guidance mode, the vehicle’s course references will be generated by the
pure pursuit guidance law during target reaching, and the line of sight guidance law
during path following. Both of the guidance schemes are summarized below.

8.2.1 Pure pursuit guidance

When the control system is in target reaching mode, the vehicle’s nominal course
references will be generated by the pure pursuit guidance law. The guidance law
generates a velocity vector along the line of sight vector between the vehicle and the
target, given by

vnpp ≜ −Ub
p̃n

∥p̃n∥
, (8.12)

where p̃n ≜ pnnb − pnt , and Ub > 0 is the speed of the vehicle. The course reference is
given by

χnpp = ∠vnpp. (8.13)

The pure pursuit guidance law ensures that the vehicle reaches a static target. However,
it results in a tail chase of faster moving targets.

8.2.2 Line of sight guidance

In path following mode, the vehicle’s course references will be generated by the
line of sight guidance law. The straight line path is constructed from two points,
pnk−1 =

[
xnk−1 , y

n
k−1

]⊤ and pnk = [xnk , y
n
k ]

⊤, chosen to comply with the desired path,
defined in (8.5).

The line of sight vector points towards a point along the path, located a constant
lookahead distance ∆ > 0 from the direct projection of the vehicle position onto the
path. The desired course is given by

χnlos(ye) ≜ χp + arctan

(
−ye
∆

)
, (8.14)
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where the path-tangential angle χp, and the cross-track error ye, are defined as

χp = atan2
(
ynk − ynk−1, x

n
k − xnk−1

)
, (8.15)

ye = − (xnb − xnk ) sin(χp) + (ynb − ynk ) cos(χp). (8.16)

The guidance velocity during LOS guidance is computed as

vnlos ≜ Ub [cos(χ
n
los), sin(χ

n
los)]

⊤
. (8.17)

8.3 Control

For the vehicle to follow the course references generated by the guidance system and the
collision avoidance algorithm, the vehicle employs a saturated heading controller while
directly compensating for the crab angle induced by the sway speed. Furthermore, in
order to track the desired surge speed and yaw rate, the vehicle employs two feedback
linearizing controllers, which ensures exponential stabilization of the surge and yaw
error dynamics.

8.3.1 Heading controller

The heading controller is given by, [26]:

rd = ψ̇ndb − sat
(
λψψ̃, kψ

)
, (8.18)

where λψ > 0 is the heading control gain, and rd is the desired yaw rate. The heading
error ψ̃ ≜ ψnb −ψndb is mapped to the interval (−π, π] to ensure that the vehicle always
takes the shortest turn. Furthermore, the saturation function sat(a, b) is defined as

sat(a, b) ≜


b if a ≥ b,

a if a ∈ (−b, b) ,

−b if a ≤ −b,

(8.19)
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and kψ ∈ (0, λψπ) is the heading saturation gain, representing a constant design
parameter. The saturation term will allow us to relax the constraint we imposed on
the heading control gain in the previous chapter, motivated by Wiig et al. [26].

The desired heading is found from the desired course as

ψndb ≜ χndb − βc, (8.20)

where
βc ≜ tan−1

(
vb
ub

)
(8.21)

is the crab angle.

The relationship between the course rate and the heading rate is found by comput-
ing the time-derivative of the course, given by

χ̇nb = ψ̇nb
U2
b +X(ub)ub

U2
b

+
Y (ub)vbub + u̇bvb

U2
b

. (8.22)

To ensure that the control law (8.18) is well-defined, the following assumption must
be met:

Assumption 8.6. The term X(ub) satisfies

ub +X(ub) > 0 ∀ub ≥ ub,min. (8.23)

Remark 8.1. Assumption 8.6 ensures that a change in the vehicle’s heading results
in a change in the vehicle’s course in the nominal case when u̇b = 0. This is the case
for most commercial vessels by design.

Furthermore, the relation (8.22) together with the heading controller (8.18) yields the
course error dynamics:

rχ = χ̇ndb − sat
(
λχχ̃, kχ

)
, (8.24)
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where rχ is the course rate, χ̃ ≜ χnb − χndb is the course error, and

λχ ≜ λψ
U2
b +X(ub)ub

U2
b

, (8.25)

kχ ≜ kψ
U2
b +X(ub)ub

U2
b

. (8.26)

Remark 8.2. Assumption 8.6 ensures that λχ > 0.

Hence, the heading controller (8.18) ensures local, exponential stabilization of the
course error dynamics.

8.3.2 Yaw rate smoother

For the vehicle to be able to track the desired yaw rate, the input signal must be
given as a continuous function, which is usually satisfied. However, when the vehicle
switches from guidance mode to collision avoidance mode, the vehicle may experience
a jump in the desired yaw rate if the course reference signal is discontinuous during
the switch.

To prevent discontinuities in the yaw rate, we introduce the yaw rate smoothing
function, defined as

rjump(rk−1, rk) ≜


r̃max, if rk − rk−1 > r̃max | sgn(rk) ≥ sgn(rk−1),

−r̃max, if rk − rk−1 < −r̃max | sgn(rk) ≤ sgn(rk−1),

rk − rk−1, otherwise,
(8.27)

where the sgn(x) function is defined as

sgn(x) ≜


1 if x > 0,

0 if x = 0,

−1 if x < 0,

(8.28)

and r̃max > 0 is the maximum allowed change in the yaw rate over the time interval



8.3. CONTROL 111

from tk−1 to tk , chosen to complywith the vehicle’s actuation constraints. Furthermore,
the desired yaw rate is chosen as

rdb = rb(tk−1) + rjump(rb(tk−1), rd(tk)). (8.29)

The desired yaw rate remains equal to the input signal generated by the heading
controller, i.e. rd defined in (8.18), if the change is within the feasible area. Otherwise,
the change in the yaw rate is taken as r̃max.

8.3.3 Surge controller

The surge dynamics are controlled using a feedback linearizing controller. The control
force in surge is given by

gu = u̇db − fu(vb, rb)− λuũ, (8.30)

where ũ ≜ ub−udb, and udb is the desired surge speed. The surge control gain satisfies
λu > 0.

The control law (8.30) yields the surge error dynamics by (8.1d):

˙̃u = −λuũ. (8.31)

The surge error dynamics (8.31) are linear and globally exponentially stable at the
origin. Thus, as long as the following assumption holds, the vehicle will be able to
follow the desired speed:

Assumption 8.7. At the time t0, the system has operated long enough for the surge
speed to converge, i.e. ũ(t0) = 0.
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8.3.4 Yaw rate controller

The yaw dynamics are controlled using a feedback linearizing controller. The control
force in yaw is given by

gr = ṙdb − fr(ub, vb, rb)− λr r̃, (8.32)

where r̃ ≜ rb − rdb, and rdb is the desired yaw rate defined in (8.29). The yaw control
gain satisfies λr > 0.

The control law (8.32) yields the yaw rate error dynamics by (8.1f):

˙̃r = −λr r̃. (8.33)

The error dynamics (8.33) are linear, and globally exponentially stable at the origin.
Thus, the vehicle will track the desired yaw rate when rdb is given as a continuous
control input, which is ensured by the yaw rate smoother, and the following assumption
holds:

Assumption 8.8. At the time t0, the system has operated long enough for the yaw
rate to converge, i.e. r̃(t0) = 0.

Remark 8.3. Assumption 8.7 and 8.8 requires that the vehicle is properly initialized
before any operations requiring collision avoidance is initiated, which is a reasonable
assumption.

8.4 Collision avoidance

The velocity obstacles algorithm described in Chapter 5 will be used to generate
course references for the vehicle in collision avoidance mode. The algorithm is briefly
summarized in this section.

The geometry of the algorithm is shown in Figure 8.1. The edges of the collision
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Figure 8.1: Geometric representation of the VO algorithm.

cone can be described geometrically as

ψ±
t ≜ α± β, (8.34)

where
β ≜ sin−1

(
Ro|ϵ

db,o

)
∈
(
0,
π

2

]
. (8.35)

The vehicle is said to be in a conflict with the obstacle if χnbo lies within the angular
boundaries of the collision cone:

|χnbo − α| < β. (8.36)

The edges of the absolute collision cone are defined geometrically as

ψ±
abs ≜ γ±cmp + ψ±

t , (8.37)

where the angle γ±cmp compensates for the obstacle velocity.

The control system is switched to collision avoidance mode if the obstacle is too
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close the vehicle, simultaneously as the guidance velocity is unsafe:

db,o(t1) ≤ dthreshold, v
n
ndg(t1) ∈ VOσ(t1). (8.38)

Nominal guidance will resume when the guidance velocity is safe:

vnndg(t2) /∈ VOσ(t2). (8.39)

If the distance equals db,o = dthreshold when CA mode is entered, the turning
direction makes the vehicle seek to pass behind the obstacle:

db,o = dthreshold, j = arg max
j∈{±}

∣∣∣ψno − ψ
(j)
abs

∣∣∣ , (8.40)

where j is the turning parameter. If the distance is less than dthreshold, the vehicle will
instead turn away from the nearest conflict to ensure safety:

db,o < dthreshold, j = arg min
j∈{±}

∣∣∣χnb − ψ
(j)
abs

∣∣∣ . (8.41)

The course references in collision avoidance mode will make the vehicle avoid a
collision with a nearby obstacle, given by

χndcaj ≜ ψ
(j)
abs ± σ, j ∈ {±}, (8.42)

where σ > 0 is a constant design angle, and j is chosen by the turning rules presented
before.

8.5 Analysis

In this section, we present the final analysis of the velocity obstacle algorithm de-
scribed in Chapter 5, applied to an underactuated surface vehicle modeled by (8.1), for
avoiding a moving obstacle described by (8.9), capable of both turning and accelerating
towards the vehicle. We will prove that the vehicle can safely switch between nominal
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guidance, in which the vehicle moves towards a target or follows along a path, and
collision avoidance, in which the vehicle reactively avoids a moving obstacle in its
presence. Furthermore, we will prove that the course references in collision avoidance
mode makes the vehicle avoid a collision with the obstacle, provided that all stated as-
sumptions hold. This will be achieved while simultaneously ensuring that the vehicle’s
sway speed is limited.

8.5.1 Bound on the sway speed

When the vehicle turns, a swaying motion will be induced, seen by the sway dynamics
in (8.1e). The vehicle is underactuated in sway, meaning that the vehicle cannot
produce control forces in the side-ways direction to stabilize the swaying motion. The
purpose of the first lemma is to formulate the conditions ensuring that the vehicle’s
sway speed is bounded. By choosing the yaw rate based on this condition, we ensure
that the magnitude of the sway speed cannot exceed the upper bound vb,max.

Lemma 8.1. Consider a vehicle described by (8.1), and let Assumption 8.2 and 8.7 hold.
Suppose the yaw rate, rb, is dependent on the sway speed, vb, in a way that the following
holds:

|rb(vb,max)| <
|Y (udb)|
|X(udb)|

vb,max. (8.43)

Then, if |vb(t0)| ≤ vb,max,

|vb(t)| ≤ vb,max, ∀t ≥ t0. (8.44)

Proof. Assumption 8.7 ensures that ub = udb, ∀t ≥ t0. Hence, the proof of Lemma
7.2 applies.

8.5.2 Upper bound on the heading saturation gain

In order to bound the sway speed, we must design the heading control law (8.18)
to comply with the result of Lemma 8.1, which is achieved as long as the heading
saturation gain satisfies an upper bound. Before presenting the next lemma, we define
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the following expression for conciseness:

fψ(udb, σ) ≜ vb,max |Y (udb)|

 1

|X(udb)|
− 2

U2
b,max

 uo,maxvb,max√
U2
b,max − u2o,max

+ udb


− ro,max

uo,max

udb
− ao,max√

u2db − u2o,max

−
(
1 +

uo,max

Ub,max

)
Ubo,max

(Ro + dϵ) tan(σ)
,

(8.45)

where we define Ub,max ≜
√
v2b,max + u2db, and

Ubo,max ≜
√
u2db + v2b,max + u2o,max + 2uo,max(vb,max + udb).

Lemma 8.2. Consider an obstacle described by (8.9), and a vehicle described by (8.1).
Let the vehicle’s course references be given by the collision avoidance algorithm, defined
in (8.42). Furthermore, let the vehicle be controlled by the the heading controller (8.18),
the surge controller (8.30), and the yaw rate controller (8.32). Suppose that the vehicle
maintains a distance to the obstacle satisfying

db,o(t) ≥
Ro|ϵ

cos(σ)
, ∀t ≥ t0, (8.46)

where σ ∈ (0, π/2] is a constant angle. If Assumption 8.1-8.8 hold, and the heading
saturation gain kψ > 0 satisfies

kψ ≤ fψ(udb, σ). (8.47)

Then, if |vb(t0)| ≤ vb,max,

|vb(t)| ≤ vb,max, ∀t ≥ t0. (8.48)

Proof. When Assumption 8.7 and 8.8 hold, we can apply the proof of Lemma 7.3 to
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show that
|rb| <

|Y (udb)|
|X(udb)|

vb,max, ∀ kψ ≤ fψ(udb, σ), (8.49)

provided condition (8.46) holds. Thus, condition (8.47) ensures that if |vb(t0)| ≤ vb,max,
then

|vb(t)| ≤ vb,max, ∀t ≥ t0, (8.50)

by Lemma 8.1.

The main difference from Lemma 7.3 is that we relax the upper bound on the
heading control gain λψ , by imposing the constraint on the heading saturation gain
instead. Clearly, since λψ|ψ̃| ≤ kψ, ∀ψ̃ by the saturation term, we still satisfy the
conditions of Lemma 8.1, while gaining more flexibility in the choice of λψ .

8.5.3 Lower bound on the threshold distance

In order to ensure that the vehicle is able to turn out of a conflict before a collision
occurs, we must derive a lower bound on the threshold distance for the switching
condition (8.38), which is the purpose of the next lemma.

Lemma 8.3. Consider an obstacle described by (8.9), and a vehicle described by (8.1).
Let the vehicle enter collision avoidance mode according to the switching rule (8.38),
as the distance satisfies db,o = dthreshold. Let the vehicle, controlled by the heading
controller (8.18), the surge controller (8.30), and the yaw rate controller (8.32), follow
the course references defined in (8.42), with the turning direction chosen by the turning
rules (8.40)-(8.41). Let Assumption 8.1-8.8 hold, and suppose the vehicle speed satisfies
Ub ≤ Ub,max, ∀t ≥ t0, and the yaw rate satisfies rb ≤ rb,max. If the threshold distance
satisfies

dthreshold ≥ uo,maxtturn + dsep + dturn, (8.51)

where

tturn := tsmooth +

(
π

kχ
− 1

λχ

)
−

ln
(
λψ
kψ
ε
)

λχ
(8.52)
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dthreshold

dturn

uo,maxtturn

dsep

dsmooth

Figure 8.2: Illustration of the worst case collision avoidance scenario, including the
smoothing distance.

is an upper bound of the time it takes for the vehicle to converge to within ε rad of the
desired course, and

dturn := Ubmax

(
tsmooth +

1

min
(
kχ, λχ

π
2

)) (8.53)

is an upper bound of the distance traveled by the vehicle towards the obstacle when
making a π rad turn. Then, the vehicle is able to converge to within ε rad of the desired
course before the obstacle is within the distance dsep of the vehicle.

Proof. The proof of this lemma follows along the lines of the proof presented in Wiig
et al. [26], which derives a minimum threshold distance by evaluating the worst case
collision avoidance scenario between the vehicle and the obstacle. Let the radius of the
obstacle be infinitely large, such that β → π/2. The initial course error is then upper
bounded by |χ̃| = π. Moreover, the vehicle and obstacle speeds are upper bounded by
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Ub,max and uo,max, respectively.

When the vehicle enters collision avoidance mode it will start turning towards
the desired course by changing its heading. Suppose that the vehicle’s initial yaw
rate is zero. A jump in the yaw rate input signal will then be present, which is made
continuous by the yaw rate smoothing function defined in (8.27). Recall that the largest
feasible jump is defined as r̃max, over a time interval from tk−1 to tk . For convenience,
we assume the interval is 1 s. The largest jump is then found when rb(tk−1) = 0 and
rd(tk) = rb,max. The time it takes for the vehicle to arrive at the desired turning rate
is thus upper bounded by

tsmooth :=
rb,max

r̃max
. (8.54)

Remark 8.4. An upper bound of rb can always be found by Lemma 8.1 when the
conditions of Lemma 8.2 holds.

Furthermore, the distance the vehicle travels towards the obstacle during the smoothing
time is upper bounded by

dsmooth := Ub,maxtsmooth. (8.55)

After the smoothing time, themagnitude of the course error remains upper bounded
by π. Since χ̃ ≜ ψ̃, the heading controller (8.18) will saturate when |χ̃| > kψ

λψ
. The

time from |χ̃| = π to |χ̃| = kψ
λψ

can be found by considering the course error dynamics
given by (8.24). Without loss of generality, let χ̃ > kψ

λψ
. The solution of (8.24) is then

χ̃(t)− χ̃(t0) = −kχ(t− t0), (8.56)

where kχ is defined in (8.26). Solving (8.56) for χ̃(t) = kψ
λψ

and χ̃(t0) = π, yields

t− t0 =
π

kχ
− 1

λχ
:= tsat, (8.57)

where λχ is defined in (8.25). Note that since kχ < λχπ, it is ensured that tsat > 0.
From this point on, the course will converge exponentially. The solution of (8.24) is
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then
χ̃(t) = χ̃(t0)e

−λχ(t−t0). (8.58)

The time it takes for the vehicle to converge to within ε rad of the desired course is
thus given by

tε := −
ln
(
ε
λψ
kψ

)
λχ

, ∀ε ∈
(
0,
kψ
λψ

]
. (8.59)

The complete maneuver will be finished at tturn := tsmooth + tsat + tε. The distance
the obstacle travels during the maneuver is upper bounded by uo,maxtturn.

The distance the vehicle travels towards the obstacle after the smoothing time is
upper bounded by the distance the vehicle travels when making a π/2 rad turn, as
illustrated in Figure 8.2. A lower bound of the course rate when the controller saturates
is found from (8.24) as |rχ| = kχ. This can be seen as the vehicle moves towards the
obstacle during the π/2 turn. This causes the angle β to increase by (8.35), which
causes χndb = χndcaj to increase as well. Hence, χ̇ndb ≥ 0, and the minimum course
rate is found when χ̇ndb = 0. If the course converges exponentially, the course error
will be at least π/2 during the turn by the same argument, i.e. the desired course is
either constant or increasing as the vehicle moves closer to the obstacle. The minimum
course rate is thus |rχ| = λχ

π
2 by (8.24). An upper bound of the distance the vehicle

travels when making a π/2 rad turn is then found as

dπ/2 :=
Ub,max

min
(
kχ, λχ

π
2

) . (8.60)

The distance the vehicle travels towards the obstacle when making a π rad turn is
upper bounded by the distance the vehicle travels during the smoothing interval, and
the distance the vehicle travels when making a π/2 rad turn:

dturn := dsmooth + dπ/2. (8.61)

Finally, it follows that if the threshold distance satisfies (8.51), then the vehicle will
converge to within ε rad of the desired course, before the distance between the vehicle
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and the obstacle, db,o, is less than the distance dsep.

We are now ready to present the main theorems of the chapter. The following
assumption must hold:

Assumption 8.9. The vehicle and the obstacle are initially separated by a distance
satisfying

db,o(t0) ≥ dthreshold. (8.62)

Finally, to ensure that the smoothing time presented in Lemma 8.3, i.e. the time it takes
for the vehicle to reach the desired yaw rate, is not large enough to cause a collision,
the following assumption needs to be met:

Assumption 8.10. The smoothing time tsmooth is small enough to be neglected:

(uo,max + Ub,max)tsmooth ≪ Ro|ϵ. (8.63)

Remark 8.5. If Assumption 8.10 does not hold, which for instance is the case for
exceptionally heavy vessels, then the obstacle’s motion must be restricted at a close
range, otherwise a collision will likely occur. In such cases, it is necessary to assume
that the obstacle’s decisions are not ill-advised, e.g. by assuming the obstacle obeys
the International Regulations for Preventing Ship Collision at Sea (COLREGS). In this
thesis, we consider the case where Assumption 8.10 holds.

8.5.4 Safe target reaching

In this section, we will provide the conditions ensuring that an underactuated surface
vehicle modeled by (8.1), can travel safely towards a static position in the world frame,
in the presence of a moving obstacle modeled by (8.9), while also maintaining a limited
sway speed in accordance with (8.43).
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Theorem 8.1. Consider an obstacle described by (8.9) and a vehicle described by (8.1).
Let Assumption 8.1-8.10 hold, the threshold distance satisfy

dthreshold ≥ uo,maxtturn +
Ro + dϵ
cos(σ)

+ dturn, (8.64)

where tturn and dturn are defined in Lemma 8.3, and the safety angle σ ∈ (0, π/2] satisfy

σ = σ̄ + ε, σ̄ > 0, ε > 0. (8.65)

Furthermore, let the heading saturation gain kψ satisfy

kψ ≤ fψ(udb, σ̄), (8.66)

where fψ(·) is defined in (8.45), and the acceptance distance satisfy

da >
|X(udb)|Ub,max

|Y (udb)|vb,max − |X(udb)|kχ
, (8.67)

where kχ is defined in (8.26). Then, the vehicle controlled by the heading controller (8.18),
the surge controller (8.30), and the yaw rate controller (8.32), following the pure pursuit
guidance law (8.12), the switching rules (8.38)-(8.39), the turning rules (8.40)-(8.41), and
the collision avoidance law (8.42), will converge to within da of the target position pnt at
an unspecified point in time tf <∞, and furthermore satisfy

db,o(t)−Ro ≥ dϵ, ∀t ∈ [t0, tf] , (8.68)

while ensuring that
|vb(t)| ≤ vb,max, ∀t ∈ [t0, tf] . (8.69)

Proof. An upper bound of the required course rate when the vehicle follows the pure
pursuit guidance law is given by

|χ̇npp| ≤
Ub,max

da
. (8.70)
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Inserting (8.70) and the upper bound of the control law (8.18) into the relation (8.22),
with u̇b = 0 ensured by Assumption 8.7, yields the following upper bound:

|rb| ≤

(
Ub,max

da
− |Y (udb)|vb,maxudb

U2
b,max

)
U2
b,max

U2
b,max − |X(udb)|udb

+ kψ (8.71)

Hence, by Lemma 8.1 the acceptance distance da must satisfy

da >
|X(udb)|Ub,max

|Y (udb)|vb,max − |X(udb)|kχ
, (8.72)

where kχ is defined in (8.26), in order to ensure that the sway speed satisfies |vb(t)| ≤
vb,max, ∀t ≥ t0 in the presence of zero obstacles.

Let the vehicle enter collision avoidance mode at t1 ≥ t0, as the distance satisfies
db,o(t1) = dthreshold. Lemma 8.3 and condition (8.64) ensures that there exists a time
t2 > t1, in which the vehicle satisfies

db,o(t2) ≥
Ro + dϵ
cos(σ)

, (8.73)

and
∣∣χnb (t2)− χndcaj(t2)

∣∣ ≤ ε. Since the desired yaw rate is given as a continuous
input signal, and χ̃ = 0 is a locally stable equilibrium when the heading controller
(8.18) is employed, it is ensured that

∣∣χnb (t)− χndcaj(t)
∣∣ ≤ ε, ∀t ∈ [t2, t3] , (8.74)

where t3 ≥ t2 is the time the vehicle exits CA mode. Condition (8.74) furthermore
ensures that |χnbo(t)− α(t)| ≥ β(t) + σ̄, ∀t ∈ [t2, t3]. Hence,

db,o(t) ≥
Ro + dϵ
cos(σ̄)

, ∀t ∈ [t1, t3 ] , (8.75)

by Lemma 7.1. Finally, Lemma 8.2 along with condition (8.66) then ensures that

|vb(t)| ≤ vb,max, ∀t ∈ [t1, t3 ] . (8.76)
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If collision avoidance mode is entered as db,o < dthreshold, Assumption 8.10 ensures
that the smoothing time is small enough to be neglected. Since χndcaj is first-time
differentiable, the vehicle will immediately be able to follow desired course, and satisfy
(8.74) until it exits collision avoidance mode.

Finally, since udb > uo,max, the vehicle will escape the obstacle at some point in
time, and proceed to the target pnt . By Lemma 6.2 and Assumption 8.8 the vehicle
will converge to within da of the target at some point in time tf <∞. By the above
analysis, we can conclude that the conditions (8.68) and (8.69) are satisfied.

8.5.5 Safe path following

In this section, we will formulate the conditions ensuring that an underactuated surface
vehicle modeled by (8.1), will converge to and stay on the path defined in (8.5), by
following the LOS guidance law (8.14), while also avoiding a collision with an obstacle
modeled by (8.9), and maintaining a limited sway speed complying with (8.43). Before
presenting the main theorem, we must restate Lemma 6.3 to comply with the system
(8.1).

Lemma 8.4. Let the path-tangential angle χp be defined as (8.15), the cross-track error
ye be defined as (8.16), and the lookahead distance satisfy∆ > 0. Then, the LOS guidance
law

χnlos(ye) = χp + arctan

(
−ye
∆

)
(8.77)

ensures that the cross-track error ye of the system (8.1) converges globally uniformly
asymptotically to the origin.

Proof. The proof is equivalent to the proof of Lemma 6.3 if wewrite the time-derivatives
of xnb and ynb in terms of the vehicle’s course, as

ẋnb = Ub cos(χ
n
b ), (8.78)

ẏnb = Ub sin(χ
n
b ). (8.79)

Following themethod presented in Lemma 6.3, we use the Lyapunov function candidate
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given by
V =

1

2
y2e , (8.80)

and the guidance law stated in (8.77), to show that the time-derivative of (8.80) satisfies

V̇ = −Ub
y2e

∆

√(
ye
∆

)2
+ 1

< 0, ∀ye ̸= 0. (8.81)

Hence, the origin of ẏe is UGAS.

Theorem 8.2. Consider an obstacle described by (8.9) and a vehicle described by (8.1).
Let Assumption 8.1-8.10 hold, the threshold distance satisfy

dthreshold ≥ uo,maxtturn +
Ro + dϵ
cos(σ)

+ dturn, (8.82)

where tturn and dturn are defined in Lemma 8.3, and the safety angle σ ∈ (0, π/2] satisfy

σ = σ̄ + ε, σ̄ > 0, ε > 0. (8.83)

Furthermore, let the heading saturation gain kψ satisfy

kψ ≤ fψ(udb, σ̄), (8.84)

where fψ(·) is defined in (8.45), and the lookahead distance satisfy

∆ >
|X(udb)|Ub,max

|Y (udb)|vb,max − |X(udb)|kχ
, (8.85)

where kχ is defined in (8.26). Then, the vehicle controlled by the heading controller
(8.18), the surge controller (8.30), and the yaw rate controller (8.32), following the LOS
guidance law (8.14), the switching rules (8.38)-(8.39), the turning rules (8.40)-(8.41), and
the collision avoidance law (8.42), will converge to, and follow along the path P , and
furthermore satisfy

db,o(t)−Ro ≥ dϵ, ∀t ≥ t0, (8.86)
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while ensuring that
|vb(t)| ≤ vb,max, ∀t ≥ t0. (8.87)

Proof. The required course rate when the vehicle follows the LOS guidance law is
computed from (8.14) as

χ̇nlos = − ∆ẏe
∆2 + y2e

, (8.88)

where ye is the cross-track error defined in (8.16), and∆ > 0 is the lookahead distance.
The time-derivative of the cross-track error is bounded by |ẏe| ≤ Ub, and

∆

∆2 + y2e
≤ ∆

∆2
=

1

∆
. (8.89)

Hence, the required course rate during LOS guidance is upper bounded by

|χ̇ndb| ≤
Ub,max

∆
. (8.90)

Inserting (8.90) and the upper bound of the control law (8.18) into the relation (8.22),
with u̇b = 0 ensured by Assumption 8.7, yields the following upper bound:

|rb| ≤

(
Ub,max

∆
− |Y (udb)|vb,maxudb

U2
b,max

)
U2
b,max

U2
b,max − |X(udb)|udb

+ kψ (8.91)

Hence, by Lemma 8.1 the lookahead distance ∆ must satisfy

∆ >
|X(udb)|Ub,max

|Y (udb)|vb,max − |X(udb)|kχ
, (8.92)

where kχ is defined in (8.26), in order to ensure that the sway speed satisfies |vb(t)| ≤
vb,max, ∀t ≥ t0 in the presence of zero obstacles.

The rest of the proof is equivalent to the proof of Theorem 8.1. Moreover, the
vehicle will escape from the obstacle at some point in time, since udb > uo,max. By
Lemma 8.4 and Assumption 8.8 the vehicle will converge to the path in finite time, and
for the remainder of the time, follow along it.
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8.6 Simulations

This section presents two numerical simulations of an underactuated surface vehicle,
whose model is stated in (8.1), following the velocity obstacle algorithm for reactive
collision avoidance of a moving obstacle modeled as (8.9). Specific parts of the implan-
tation of the algorithm can be found in Section 8.4. The vehicle’s model parameters
belong to an LAUV (light AUV) [4], operating in 3 DOF, i.e. the horizontal plane.

In all simulations, the vehicle’s initial and desired surge speed was chosen as
ub(t0) = udb = 2 m/s. We can verify that Assumption 8.2 holds with Y (udb) =

−2.8161, and Assumption 8.6 is satisfied with X(udb) = −1.0242. The sway speed
should not exceed the surge speed, i.e. vb,max = 2m/s. The initial heading of the vehicle
was chosen as ψnb (t0) = 0 rad, and the initial NED position as pnnb(t0) = [0, 0]

⊤ m.
The obstacle radius was chosen as Ro = 10 m and the safety distance as dϵ = 5 m.
Finally, the convergence parameter was set to ε = 0.09 rad and the angular safety
distance was chosen equal to σ = 0.7 rad.

8.6.1 Target reaching

This section presents a simulation of the vehicle following the pure pursuit guidance
law (8.12) in combination with collision avoidance of an obstacle. The target position
was chosen aspnt = [140, 0]

⊤ m. The obstacle turns in a clockwise circle, with constant
turning rate ro = ro,max = 0.1 rad/s, and constant forward speed uo = uo,max = 1.3

m/s, satisfying Assumption 8.5. The heading saturation gain was chosen according to
Theorem 8.1 as kψ = 0.538 rad/s, satisfying the required bound which was verified by
direct computation. The heading control gain was chosen as λψ = 0.8 s−1. Finally, the
threshold distance was set to dthreshold = 51 m and the acceptance distance to da = 1

m, satisfying the conditions of Theorem 8.1.
Trajectories of the vehicle and the obstacle are shown in Figure 8.5. In Figure 8.5a

the obstacle can be seen to turn in a uniform circle as the vehicle enters CA mode
according to the switching rule (8.38), with db,o = dthreshold. The vehicle turns right
according to the turning rule (8.40), and converges to within ε rad of the desired course
before the obstacle is within the safety distance of it. The vehicle safely exits CA mode
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at t = 51 s, seen in Figure 8.5c, and reaches the target at t = 74 s, in Figure 8.5d.
Figure 8.3a shows the distance between the vehicle and the obstacle, db,o(t), plotted

against the threshold distance, dthreshold, and the minimum required separation distance,
Ro|ϵ. Additionally, the distance

Ro|ϵ
cos(σ̄) , where σ̄ ≜ σ − ε, is included to verify that

the conditions of Lemma 8.2 hold. The distance between the vehicle and the obstacle
remains above Ro|ϵ

cos(σ̄) at all times, thus verifying the theoretical result of Theorem 8.1.

8.6.2 Path following

This section presents a simulation of the vehicle following the LOS guidance law (8.14)
in combination with collision avoidance of an obstacle. The path was chosen parallel
to the xn axis, with ynt = −20 m. The obstacle approaches the vehicle head on with
constant acceleration ao = ao,max = 0.05 m/s2, initial speed uo(t0) = 0 m/s and
maximum speed uo,max = 1.4 m/s, satisfying Assumption 8.5. The heading saturation
gain was then computed as kψ = 0.38 rad/s, satisfying the condition of Theorem 8.2.
The heading control gain was set to λψ = 0.6 s−1. The threshold distance was chosen
as dthreshold = 60m, and the lookahead distance as∆ = 10m, satisfying the conditions
of Theorem 8.2.

The trajectories of the vehicle and the obstacle are shown in Figure 8.6. The vehicle
enters CA mode close to path, as seen in Figure 8.6a, but is forced to move aside in
order to avoid the incoming obstacle. By turning to the left, the vehicle is able to
maintain a safe course as obstacle passes, seen in Figure 8.6b. The vehicle leaves
collision avoidance mode at t = 41 s as the guidance velocity becomes safe, in Figure
8.6c. From this point on, the vehicle converges to the path and follows along it, as seen
in Figure 8.6d. The distance between the vehicle and the obstacle is shown in Figure
8.3b. We can then verify that the distance remains above the requirement, and thus
supports the theoretical result of Theorem 8.2.

The sway speed of the vehicle during both simulations is shown in Figure 8.4. As
we saw in Chapter 7, the size of sway speed is small during both collision avoidance
scenarios, and remains far below the maximum vb,max. Hence, the simulation results
support the theoretical results of Theorem 8.1 and 8.2, although it also indicates that
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the theoretical upper bound on the heading saturation gain is conservative.
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(a) Distance, db,o, during the first simulation.
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Figure 8.3: Distance between the vehicle and the obstacle during both simulations.
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Figure 8.4: Vehicle sway speed, vb, during both simulations.
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Figure 8.5: First simulation of an underactuated surface vehicle following the velocity
obstacle algorithm in combination with pure pursuit guidance, in the presence of a
turning obstacle. The obstacle is the red circle, the vehicle is the blue polygon, and
the safety distance is the magenta line encircling the obstacle. The trajectories of the
vehicle and the obstacle are the blue and red, dashed lines, respectively. The extended
collision cone, CCσ , is the red cone, and the relative guidance velocity, vnndgo, is the
blue arrow. The target position is marked as an ’X’.
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Figure 8.6: Second simulation of an underactuated surface vehicle following the ve-
locity obstacle algorithm in combination with LOS guidance, in the presence of an
accelerating obstacle. The path P is represented by the dotted line.



132 CHAPTER 8. THE VO ALGORITHM FOR UNDERACTUATED SURFACE VEHICLES

8.A Functional expressions

The expressions derived in Chapter 3 are restated here for convenience:

fu(vb, rb) ≜ rb
rbm23 + vbm22

m11
− vb

d11
m11

, (8.93)

fv(ub, vb, rb) ≜ Y (ub)vb +X(ub)rb, (8.94)

fr(ub, vb, rb) ≜ vb
d32m23 − d22m33 + ubm23 (m11 +m22)

m22m33 −m2
23

+ rb
d33m23 − d23m33 + ub

(
m2

23 −m11m33

)
m22m33 −m2

23

,

(8.95)

where

X(ub) ≜
d32m23 − d33m22 + ubm23 (m11 −m22)

m22m33 −m2
23

, (8.96)

Y (ub) ≜
d22m23 − d32m22 − ubm22 (m22 +m11)

m22m33 −m2
23

. (8.97)



Chapter 9

Conclusions and future work

In this thesis, we have implemented, applied, and analyzed the velocity obstacle
algorithm for collision avoidance of a single, moving obstacle. The algorithmmakes the
vehicle avoid a collision with a nearby obstacle by generating safe velocity references
for it to follow. Any velocities outside of the set of unsafe velocities, called the velocity
obstacle, are considered safe. The vehicle followed these references when an obstacle
came within a chosen threshold distance of it, until the vehicle’s nominal behaviour
was considered safe again.

In Chapter 5 we introduced the algorithm and the obstacle model, and presented a
preliminary analysis of the fundamental concept of this method, proving that collision
avoidance of a circular obstacle, moving with time-varying velocity, was achieved. In
Chapter 6 we investigated the collision avoidance algorithm applied to a kinematic
model, the unicycle, subject to nonholonomic constraints. In Chapter 7 we extended
this model to include the underactuated sway dynamics of a surface vehicle, while in
Chapter 8 we analyzed the full dynamical model of this vehicle. In all chapters, we
investigated collision avoidance in combination with other vehicle goals, specifically in
the form of target reaching and/or path following. We provided numerical simulations
of the kinematic and the dynamical models, following the collision avoidance algorithm
in combination with guidance laws for path following and target reaching, to support

133
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the theoretical results.

Chapter 6 - The VO algorithm for unicycles

In this chapter, we investigated the safety of a kinematic vehicle that was subject to
kinematic constraints, when following the VO algorithm in the presence of a moving
obstacle. The vehicle was restricted to maintain a constant forward speed, and had
limited turning rate, showing that the algorithm suitable for vehicles with heavy linear
acceleration constraints and/or limited turning capabilities.

With these constraints, we derived a minimum threshold distance which ensured
that the vehicle was able to turn out of an entered conflict before a collision could
occur with the obstacle. To avoid collision, we made the vehicle turn with maximum
turning power towards a safe heading as it entered collision avoidance mode. The
vehicle maintained this behaviour until nominal guidance could safely resume.

Through a mathematical analysis of the algorithm we derived a lower bound on the
required turning rate of the vehicle. The lower bound ensured that collision avoidance
was achieved in any scenario with a non-cooperative obstacle, dependent on the
obstacle’s speed and turning capabilities. Hence, the bound has intuitive meaning
in that the vehicle’s required turning rate increases/decreases with the obstacle’s
maximum turning rate, speed and forward acceleration. Furthermore, we combined
the proofs with target reaching and path following, ensuring that the vehicle not only
avoided collision, but also reached its other goals.

The theoretical bounds were supported by numerical simulations, which showed
that the vehicle, satisfying the necessary conditions and following the collision avoid-
ance algorithm, was able to circumvent an obstacle and maintaining a minimum
distance from it at all times, even in scenarios where the obstacle accelerated and
turned directly towards the vehicle for some time. We also verified that the vehicle
achieved its separate goals in the presence of an obstacle.
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Chapter 7 - The VO algorithm for vehicles with underactuated
dynamics

In this chapter, we extended the kinematic model to include underactuated dynamics.
In particular, we included the underactuated sway dynamics of the marine vehicle
modeled in Chapter 3.

Although the vehicle cannot produce forces in the side-ways (sway) direction,
swaying motions are induced by the vehicle’s turning motion. At times, this can
cause the vehicle to glide side-ways rather than moving forward, which in effect may
bring the vehicle closer to the obstacle than intended. We addressed this issue by
compensating for the crab angle induced by the nonzero sway speed when controlling
the vehicle’s heading, and by letting the guidance- and collision avoidance algorithm
generate course references instead of heading references.

As in the previous chapter, we restricted the vehicle to maintain a constant forward
speed, while directly controlling the heading rate, showing that the algorithm is
applicable to vehicle’s with heavy acceleration constraints and limited speed envelopes.
To deal with the added velocity component, we derived conditions under which the
sway speed was bounded, by the assumption that the vehicle was nominally stable in
sway. This allowed us to derive a minimum threshold distance deciding when to start
the vehicle’s maneuver to safety. The conditions were derived by allowing the sway
speed to be within a chosen interval. Furthermore, we introduced a constant safety
angle ensuring that the vehicle remained a constant safety distance from the obstacle.
These design parameters were used to derive an upper bound of the heading control
gain. Increasing the safety angle and the maximum sway speed allowed us to increase
this gain. In return, the vehicle needed to maintain a larger distance from the obstacle,
and we allowed for a larger sway speed.

We showed that as long as the control gain was chosen positive, the vehicle’s
course dynamics were exponentially stable. Thus, the vehicle was ensured to track the
desired course once the course had converged. Since the desired course in collision
avoidance mode was chosen to lie outside the edges of the absolute collision cone,
and the threshold distance was chosen large enough to ensure that the vehicle had
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converged to the desired course before a collision, this proved that a collision with
the obstacle was avoided. Finally, target reaching of a static target was considered
along side collision avoidance. It was then necessary to derive a lower bound of the
acceptance distance which ensured that the vehicle’s sway speed remained bounded
during nominal guidance as well.

We presented simulation results in order to verity the theoretical results. These
showed that collision avoidance was achieved in combination with target reaching
of a static target, under the presented assumptions and conditions. Furthermore, the
vehicle’s sway speed remained far below the maximum allowed value, which indicates
that the theoretical upper bound on the yaw rate is somewhat conservative. Due to
the complexity of the problem, and the shear number of parameters that had to be
considered, it is difficult to derive a tighter bound without loss of generality. However,
the importance was that the size of the sway speed remained below an upper limit,
which was clearly achieved.

Chapter 8 - TheVO algorithm for underactuated surface vehicles

We analyzed the full 3 DOF model of an underactuated surface vehicle in this chapter,
by including the actuated surge and yaw dynamics of the vehicle we modeled in
Chapter 3.

We applied two feedback linearizing controllers to stabilize the yaw and surge
dynamics, thus ensuring that the vehicle tracked the desired surge speed and yaw rate,
on the condition that the references were given as continuous signals. As in the two
previous chapters, the vehicle was restricted to maintain a constant forward speed,
ensuring that this condition was satisfied for the surge controller.

A saturated heading controller was employed in order to generate yaw rate ref-
erences. By compensating for the crab angle, we showed that the controller ensured
local, exponential stabilization of the course error dynamics. The input to the heading
controller was furthermore generated by the collision avoidance algorithm in colli-
sion avoidance mode, and the guidance law in guidance mode. During the transition
between these two modes, the course reference may be discontinuous, which in turn
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causes a jump in the yaw rate input signal. To deal with issue, we introduced a yaw
rate smoothing function, which made the yaw rate signal continuous in the case of a
jump. However, this introduced an additional smoothing time that had to be accounted
for.

We derived a minimum threshold distance which accounted for the smoothing time,
and extended the results of the previous chapter to apply for the full dynamical model.
This required only minor alterations. The results were furthermore combined with
both target reaching and path following in this chapter, where we derived sufficient
lower bounds on the acceptance distance and the lookahead distance, ensuring that
the sway speed remained bounded during nominal guidance as well as during collision
avoidance. Simulations were provided in order to support the presented theoretical
results.

Future work

In this thesis, we have examined scenarios with a circular obstacle. This is not a
requirement of the algorithm; if the obstacle shape is non-circular, the collision cone
may be computed to fit the exact shape of the obstacle by substituting the circular
domain Do with any shaped domain D. However, the performance of the algorithm
in such cases remains to be analysed and is a topic of future research. Other topics
concern the issue of avoiding multiple moving obstacles, and avoidance of other agents
in multi-agent scenarios. In such cases, the vehicle must avoid the velocities inside
the combined set of velocity obstacles. Analysis of such scenarios is inherently more
complex and remains a subject for future work. Finally, extending the analysis to
guarantee collision avoidance for underwater vehicles, capable of movement in more
than 3 degrees of freedom, is an interesting topic to consider, left to future research.
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