
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

M
as

te
r’s

 th
es

is

Robin Honningsvåg Kleiven

Applying Reinforcement Learning for
Controller Scheduling

Master’s thesis in Department of Engineering Cybernetics

Supervisor: Ole Morten Aamo

June 2020

Robin Honningsvåg Kleiven

Applying Reinforcement Learning for
Controller Scheduling

Master’s thesis in Department of Engineering Cybernetics
Supervisor: Ole Morten Aamo
June 2020

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Abstract

In controller/gain scheduling the boundaries that need to be defined for the control switch-
ing/gain switching can be challenging. In this thesis, the possibilities of applying rein-
forcement learning (RL) for controller scheduling have been investigated. The algorithms
used were the tabular methods; Q learning and state-action-reward-state-action (SARSA).
The coupled tank system was used to investigate the research questions in this thesis. The
state-action space was big and that caused the RL agent to oscillate between the controllers.
The state-space was then reduced. This removed the oscillatory behavior and the agent was
able to pick the optimal controllers. The controllers used were the linear quadratic regula-
tor (LQR) together with a minimum and maximum controller. Additionally, it was studied
what would happen if a proportional-integral (PI) controller and a proportional derivative
(PD) controller were added. This did not give any new insight into the problem.

The coupled tank system was then made more complex by introducing more nonlinearities
such that the solution required more than only one controller for satisfactory control. An
emergency valve system was used that separated the system into 4 subsystems by adding
an additional valve in each tank that opened when a condition was met. This condition
varied from; water level too high and randomly switching on and off the valves. For
each of these subsystems, an LQR was made. The agent was able to define a set of rules
to switch between the correct LQR to control around a set point for each case with this
emergency valve system, but it seems to not switch optimally to get to this equilibrium as
fast as possible. The action choices of the agent have some oscillations and it was shown
that lack of training was a big component that caused this and by increasing the training
of the agent this was reduced. RL was successful in defining a set of rules for controller
scheduling for this complex system.

i

Abstract - Norwegian

Ved regulering / parameter tilordning kan grensene som må defineres for kontrollbytte / pa-
rameterbytte være utfordrende. I denne oppgaven er mulighetene for å anvende forsterkn-
ingslæring (RL) for kontrollplanlegging blitt undersøkt. Algoritmene som ble brukt var
tabellmetodene; Q-læring og tilstand-handling-belønning-tilstand-handling (SARSA). Det
koblede tanksystemet ble brukt til å undersøke hypotesene i denne oppgaven. Handlingsrom-
met var stort, og det fikk RL-agenten til å svinge mellom kontrollerne. Tilstandsrommet
ble deretter redusert. Dette fjernet den svingende atferden og agenten var i stand til å velge
de optimale kontrollerne. Kontrollerne som ble brukt var den lineære kvadratiske regula-
toren (LQR) sammen med en minimum -og maksimal -kontroller. I tillegg ble det studert
hva som ville skjedd hvis en proporsjonal-integrert (PI) -kontroller og en proporsjonal-
derivat (PD) -kontroller ble lagt til. Dette ga ingen ny innsikt i problemet.

Det koblede tanksystemet ble deretter gjort mer komplekst ved å innføre flere ikke-lineariteter
slik at løsningen krevde mer enn bare en kontroller for tilfredsstillende kontroll. Et nødventilsystem
ble brukt som skilte systemet inn i 4 delsystemer ved å legge til en tilleggsventil i hver
tank som åpnet når et kriteria ble oppfylt. Dette kriteriet varierte fra; for høy vannstand
og tilfeldig slå av og på ventilene. For hvert av disse delsystemene ble det laget en LQR.
Agenten var i stand til å definere et sett med regler for å veksle mellom riktig LQR for å
kontrollere rundt et settpunkt for hvert av tilfellene av dette nødventilsystemet, men det
ser ut til å ikke bytte optimalt for å komme til likevekts punktet så raskt som mulig. Agen-
tens handlingsvalg har noen svingninger, og det ble vist at mangel på trening var en stor
komponent som forårsaket dette, og ved å trene agenten mere ble dette redusert. RL lyktes
i å definere et sett av regler for kontroll planlegging for dette komplekse systemet.

ii

Table of Contents

Summary i

Table of Contents iv

List of Tables v

List of Figures viii

1 Introduction 1
1.1 Problem description . 2

1.1.1 Research Questions . 2
1.1.2 Motivation . 2

1.2 Report structure . 3

2 Literature Review 5

3 Background 9
3.1 Reinforcement learning . 9

3.1.1 General reinforcement learning 9
3.1.2 Learning . 10
3.1.3 Q-learning . 14
3.1.4 Deep Q learning . 17

3.2 Control theory . 19
3.2.1 LQR . 20
3.2.2 PID control . 21

4 Experimental Design 23
4.1 Base system . 23

4.1.1 System dynamics . 25
4.1.2 Additional complexity . 27

iii

5 Methods 29
5.1 RL agent . 30

5.1.1 Agent design . 30
5.1.2 Controller design . 35

5.2 Additional complexity . 35
5.2.1 Design of emergency valve system 36
5.2.2 General discussion . 37

5.3 Software and Hardware . 38

6 Results and discussion 39
6.1 Base system . 39

6.1.1 Results . 39
6.1.2 Additional discussion . 46

6.2 Base system + additional controllers . 46
6.3 Emergency valve system . 49

6.3.1 Additional discussion . 60

7 Conclusion and future work 65

iv

List of Tables

4.1 Parameters of the coupled tank system 25
4.2 Parameters of the coupled tank system with added emergency valves . . . 27

5.1 Hyper parameters for the RL agent . 34

6.1 Q table . 44

v

vi

List of Figures

3.1 Agent interacting with the environment in MDP. 11
3.2 Exploration vs exploitation. 12
3.3 Flow chart of the Q learning algorithm. 15
3.4 Double Q learning algorithm. 16
3.5 Deep Q learning. 17
3.6 A single percepton. 18
3.7 A simple neural network with 4 layers (1). 19
3.8 A block diagram of a simple control loop. 20

4.1 The coupled tank system used for the experiment (2). 24
4.2 The base system. 24

5.1 Overview of the process of designing and training. 30
5.2 One of the discretization chosen for the base system. 31

6.1 Simulation of the dynamics when the agent chooses what control action is
used for the 40 state system. 40

6.2 The control actions taken in the simulation. 0 is minimum, 1 is maximum
and 2 is LQR. 41

6.3 Zoomed in on fig 6.1. 41
6.4 Zoomed in on fig 6.2. 42
6.5 Simulation of the dynamics when the agent chooses what control action

that is used with only 3 states for both tanks. 43
6.6 The control actions taken in the simulation. 0 is minimum, 1 is maximum

and 2 is LQR. 43
6.7 The dynamics of the 5-3 discretized system. 45
6.8 Actions taken for the 5-3 discretized system. 45
6.9 Simulation with the two extra controllers; PD and PI. 47
6.10 Actions taken for the dynamics in figure 6.9. 47
6.11 Simulation of the dynamics with only the LQR, PI and PD controllers . . 48

vii

6.12 Actions taken for the dynamics in figure 6.11. 48
6.13 The dynamics of subsystem 1. 50
6.14 The actions taken for subsystem 1. 50
6.15 The dynamics of subsystem 2. 51
6.16 The actions taken for subsystem 2. 51
6.17 The dynamics of subsystem 3. 52
6.18 The actions taken for subsystem 3. 52
6.19 The dynamics of subsystem 4. 53
6.20 The actions taken for subsystem 4. 53
6.21 The dynamics with forced valve opening. The valve in tank 2 opens after

5000 timesteps. 54
6.22 The actions the agent takes from figure 6.21. 54
6.23 Which of the subsystem that the system is in. 55
6.24 The dynamics with forced valve opening. The valve in tank 1 opens after

2500 timesteps. 55
6.25 The actions the agent takes from figure 6.24. 56
6.26 Which of the subsystem that the system is in. 56
6.27 Both valves start opened and one and one closes. First tank 1 closes, then

tank 2, and at last tank 1 opens again. 57
6.28 Actions taken from the simulation in figure 6.27 58
6.29 Actions taken from the simulation in figure 6.27 58
6.30 The dynamics of the system that randomly switches on and off the valves

every 2500 timesteps. 59
6.31 Actions the agent does for the dynamics in figure 6.30 59
6.32 This shows which valve that is open from the dynamics in 6.30. 60
6.33 Same as in figure 6.15 with less training. 61
6.34 Same as in figure 6.16 with less training. 61
6.35 Valves open and closes randomly as in figure 6.30 but with less training. . 62
6.36 The actions taken for figure 6.35. 62
6.37 This shows which valves are open for 6.35. 63

viii

Chapter 1
Introduction

Machine learning has been around for decades, but in recent years, more and more people
are using it daily without even realizing it. It is a part of daily life for almost everyone.
This is due to technological advancement, especially the increased use of mobile phones
and social media. Mobile phones and other smart devices like smartwatches, smart fridges,
tablets, etc have made it possible to collect an enormous amount of data. Lack of data has
long been a problem with machine learning (3), but with the availability of smartphones,
big companies such as Apple and Google have access to all the data they need to make
search engines, spam filters, virtual assistants, etc with the help of machine learning algo-
rithms.

Machine learning is as the word says; a machine that is learning. And for a machine to
learn it needs something to learn from. It can learn how inputs affect output given exam-
ples (supervised learning), it can learn the underlying hidden structure of the data without
prior knowledge (unsupervised learning) or by exploring the environment - reinforcement
learning (RL). Both supervised and unsupervised learning need massive amounts of data,
and the most used way is through an artificial neural network. An artificial neural network
works by breaking down an example to simpler pieces and then build these pieces to form
the full picture. Take a picture of a square. It has 4 corners and 4 edges. The neural net-
work tries to find these and from that forms the entire image. To be able to do this with all
kinds of squares the network needs a lot of examples to learn from. These examples are
the data it will learn from, and by training the machine with the examples it will eventually
learn to copy the examples. As in the example above it will learn how a cat is supposed
to look like, what is spam and what is not spam. Unsupervised learning algorithms are
used to pre-process the data during exploratory analysis or to pre-train supervised learning
algorithms (4).

The increase of computational power and technological advancement has motivated more
complex systems. More attention to the last learning method (RL) has increased in recent
years due to that. Both (5) and (6) are examples of the increasing importance in a strategy

1

that can deal with such complex tasks. RL uses rewards/penalties to learn. The machine or
the agent is the entity that interacts with an environment and based on what the agent does
it receives rewards or penalties, depending on how good it performs. What is great about
this is that one does not need to know the exact model of the system. This means that RL
is flexible and can be used for many things such as; manufacturing (7), inventory man-
agement, optimize financial objectives (8), delivery management (9) and solving complex
nonlinear control problems which has been done by; (10), (11) and (12). This research
focuses on the latter, which is complex control tasks.

1.1 Problem description
The purpose of this research is to study a nonlinear dynamical system that uses more than
one controller to operate around a set point. The system chosen for this is a coupled tank
system. The idea is that there is an optimal switching strategy between the controllers
to reach the set point as fast as possible, efficiently switch controllers if the dynamics
change, and stay at this point for as long as needed. The main focus is the two latter
points. To learn this optimal switching strategy RL is applied to this system with 3-6
controllers to see if the agent can figure out what the optimal path is. These controllers are;
minimum controller, maximum controller, linear quadratic regulator (LQR), proportional-
integral (PI), and proportional derivative (PD). The algorithm used is the tabular method;
Q learning. This looks at each state and determines how good this state is given the action
taken.

The coupled tank system is then made more complex by introducing more nonlinearities
such that the solution requires more than only one controller for satisfactory control. Since
this requires more than one controller for good control, 4 LQRs, each tuned around their
linearization area, are used together with a maximum and minimum controller.

1.1.1 Research Questions
The research questions for this research are:

• Can an RL agent be efficiently used to define a set of rules for when to switch
between controllers, that is controller scheduling?

• If so, how trivial could this be made?

• Can this be combined to control a complex system that needs more than one con-
troller to achieve the control objective?

1.1.2 Motivation
With any given complicated problem it is normal to split the problem into smaller simpler
pieces and then try to form the full picture by solving each individual piece. In nonlinear
control it is common to linearize around an operating point, and use this linearized model
when designing the controller. This is usually enough for most applications, but as the
dynamics gets more and more complicated, a simple controller tuned to operate around

2

one set point is not enough. Control strategies such as gain scheduling and designing
multiple controllers to operate around it’s own set point have been used to solve these
complicated problems (10), (6) and (5). But designing a switching strategy between the
controllers and a rule for how the parameters should change depending on which state the
system is in, is in it’s own right a complex problem. If one could leave this problem to the
RL agent it might end up less complicated.

1.2 Report structure
This report follows the guidelines of (13) to structure the report. The next chapter gives a
brief review of similar work and discusses these. Chapter 3 gives a basic introduction to
the theory needed to do the experiments. It consists mostly of the theory around RL and the
different techniques used, as well as a brief segment about proportional integral derivative
(PID) and LQR control. Chapter 4 introduces the system and its dynamics. It gives an
overview of how the system works, what choices were made, why they were made, and
lastly the linearized system is presented. Chapter 5 talks about how it started as a simple
system to get everything to work and the extensions made at each new step. It briefly
walks through the methods used in this work. First the design of the agent and controllers
are presented, then an overview of how the communication between the system and agent
works and lastly the extensions which were made to the system. Chapter 6 presents the
results and discusses them in detail. The final section draws a conclusion with respect to
the project as a whole.

3

4

Chapter 2
Literature Review

This chapter delves into the literature of nonlinear control, or more specifically, intelligent
control strategies for nonlinear dynamical systems. We will look at different nonlinear
systems and control of these systems but mostly focus on the coupled two-tank system
and how RL can be used to control these systems with gain scheduling and switching of
multiple controllers.

Nonlinear systems have been of great interest to engineers, biologists, mathematicians, and
other scientists because most systems are nonlinear by nature. A common way to make
controllers for these systems is to linearize it around a set point, or more than one set point,
and operate it around these set points. For many industrial processes, a PID controller
is sufficient. Sometimes more than one PID is used when the system in question has
nonlinearities around certain areas, or when one controller simply can not fulfill the control
objective. There are several strategies to control the liquid flow to a single or multiple
coupled tank system as shown in (14), (15), (16), (17) and (18). These control-strategies
seem to be good enough for this system, and (14) seems to be robust for parameter change
as well. But would switching between multiple controllers/gain scheduling be just as
efficient and robust for the general nonlinear system? The rest of this chapter looks at how
one could switch between controllers or change the parameters in the controllers with the
use of RL.

Gain scheduling is a method to change the gain parameters for a linear controller based on
the state the system is in. The regular way to do this is defining areas for each gain pa-
rameter, and when the system transits to a new area the new parameters are chosen for the
controller. The same approach could be used for switching between multiple controllers,
this is called controller scheduling. This is done by designing multiple linear controllers
for several operating points and interpolate to find a global controller (19). This paper
will look at how this could be done intelligently, that is, with RL. In (20) they used a
method called handicapped learning together with an RL scheme to solve a control prob-
lem. They used a nonlinear state encoding of the system, a new associative reinforcement

5

learning algorithm, and a novel reinforcement scheme to explore the control space to meet
the scheduling constraints. They incorporated two learning heuristics; state recurrence and
the ”handicapped learning” heuristics that this paper introduced. These techniques were
used for basic set-point control in a continuously stirred tank reactor in which the temper-
ature must be held at the desired set point. The scheme was able to learn satisfactorily, but
this paper was written a long time ago, and since then, computational power has increased
significantly. They tried to encode the states to not get an explosion of states in the tradi-
tional RL schemes. This could be done by a simple neuronal network today, and they do
not need the handicapped learning scheme they developed to decrease the number of state
encoding.

This next paper tried to control a biped robot (10). They did this by switching between
multiple controllers. And the switching happens by the use of an RL agent. But this
requires a complex switching mechanism. Hence something called a ”melting pot” is used.
The melting pot is a central controller that uses the experiences of the other controllers
to learn an average control policy. The central controller controls the robot in nominal
conditions, and the other controllers, called peripheral controllers take over if the central
controller’s action deviates from each control policy. Both the peripheral controllers and
the central controller use an adaptive cerebellar model articulation controller (CMAC)
neural network. Instead of having one big network they use many with fewer inputs. This,
and splitting between the central controller and peripheral controllers seemed to solve the
problem with large inputs and they were able to accurately model the robot walking. But
to be able to do this they used a support walking cart that the robot was pushing as well as
adding extra weight to the biped robot to stabilize the movement. They also assumed a flat
walking surface and that there exists a nominal behavior controlled by a minimal number
of inputs. These assumptions limit the general usage of the whole system only to similar
scenarios.

Control switching has also been applied to simpler systems such as (21) and (22). In (22)
their goal is to make an RL scheme that combines traditional control theory to construct
a global controller for unstable nonlinear systems. To see if this scheme works they try
to control an acrobot. They construct several incomplete controllers that handle a sub-
space of the control problem and combine these to get a global controller. The incomplete
controllers are LQR, sigma 1, and 2 controllers, a brake controller, and a zero torque con-
troller. The sigma 1 and 2 controllers are to get the acrobot to a standing position, the LQR
to keep it at the standing position and the brake and zero torque controller speaks for itself.
State-action-reward-state-action (SARSA) is used as the RL scheme. SARSA is similar to
Q-learning but uses the state and action for the current state and next state. This paper also
discretized the state space instead of using a neural network which the previously men-
tioned papers did. They were able to show that this scheme achieved good stabilization
and control for the acrobot, but one can not say the same for the general nonlinear system.
This paper only simulated the movement of the acrobot and did not try it on a real system,
which was the initial goal of the paper. They assumed that there was no noise, the state
space was observable and that they knew the exact dynamics of the system.

Control switching by the use of RL was also done in (21). They used Q learning instead of
the SARSA method together with 3 unknown black-box controllers, that were pre-tuned.

6

The goal of the paper was to compare the performance of the controllers one by one and
the global controller defined by all three controllers. They used voltages to measure the
flow and height of each tank. Each tank had a pressure sensor at the bottom that could
read from 0-4 volts. This paper also used discrete states for the Q learning scheme but
they discretized the error voltages into buckets of 0.2 volts. The results showed better
responses with all three controllers combined. The overall strategy is explained in the
paper, but there are a lot of details missing to be able to replicate the said experiment. The
figures alone do not give enough details about the controllers for any reader to make the
same controllers. They wrote that the agent chose a controller that took advantage of its
best characteristics, but how should the reader know exactly what each controller’s best
characteristics are when they are not specified?

The use of local controllers combined with a global controller is a good strategy to con-
trol nonlinear and potentially unstable systems as shown in [(23), pages 12-14]. But the
boundaries that need to be defined for the control switching can be challenging. The same
applies to gain scheduling control strategies. With the use of RL one does not need to
know everything about a system to be able to efficiently switch between controllers (22),
and since general systems get more and more complex and more data is available than
ever, it might be clever to rely more on a computer to do the job for us than to try and
come with complex strategies to solve control problems. And using RL to define the rules
for switching between the controllers is more flexible and scalable than defining each rule
for each subspace individually.

7

8

Chapter 3
Background

In the last chapter, some of the previous work done on similar topics were discussed.
In this chapter, some theoretical concepts about RL and general control theory will be
introduced. The main focus will be about RL, where the basic concept will be explained.
How an RL agent learns and how rewards are given. Then some of the most common RL
techniques will be introduced like Q learning, deep Q-learning, SARSA, and double Q
learning. Then neural network will briefly be presented. The theory behind the controllers
used will be talked about in more detail; more specifically the PID and LQR equations
and concepts will be introduced. All of the theory presented in this chapter is taken from
the collection of these sources; (24), (25), (26), (27), (28), (29), (1), (30), (31), and (32).
These sources are repeated throughout the chapter and specific citation of which chapter
will also be specified if necessary.

3.1 Reinforcement learning

3.1.1 General reinforcement learning
The theory of RL is inspired by the psychology of behaviorism where we learn to behave
based on our experiences. Every action has its consequences. Most of us learn that being
close to the fireplace is good because it warms us. But to touch the fire is bad because
the fire hurt us. This is the basic concept of RL. Through actions, we either learn that
something is good; positive reinforcement, or bad; negative reinforcement.

Other than the agent and the environment, one can identify four main subelements of an
RL system: a policy, a reward signal, a value function, and sometimes a model of the
environment.

A policy is a description of how the agent should behave at any given time. It is a mapping
from the perceived states of the environment to action to be taken in those states. The

9

whole learning process behind RL is to learn the optimal policy. The policy could either
be a simple function, a lookup table, and in other cases, it might be a search process. In
the mentioned cases, learning the policy would consist of learning the function, update the
table to optimal values, and learn the best weights in the search process.

A reward signal defines the goal of the RL problem. On each timestep, a reward is cal-
culated based on how well the agent did. The goal of the agent is to maximize the total
reward over many timesteps. Like explained earlier, this can be tied to human and animal
behavior. Pain is negative while pleasure is positive. We make decisions based on this
feedback, and the same is used for RL. One can either use positive reinforcement, negative
reinforcement, or both together as a reward metric. An example of this could be a robot
walking through a terrain. Moving without colliding gives -1 reward. Hitting something
gives -100 reward, and getting to the finish line gives +100 reward. This way the robot
wants to get to the goal as fast as possible while avoiding collisions.

The value function serves a different purpose than the reward. The reward is an immediate
indication of how good an action is in this state, whereas the value function is a measure
of how good something is in the long run. In other words, the value of a state is the total
amount of reward the agent can expect to get in the future, starting from that state. Both
are important to find the optimal policy. One way to think of the value is exercise, you will
not feel the benefits of exercising immediately, but the benefits will show in the long run
[(24), pages 5-6].

3.1.2 Learning

MDP

An agent wanders around in an unknown environment to learn the best possible course of
action that gives the best rewards to reach the desired goal. The challenge is to understand
how these actions will affect future rewards. A good way to model these problems is with
an MDP. This has become the best approach to solving RL problems.

”MDPs are mathematically idealized form of the reinforcement learning problem for which
precise theoretical statement can be made.” [(24), page 53].

In all artificial intelligence, there is a tension between the wide range of application that
can be made with RL and the mathematical tractability. An MDP is defined by a process
of a 4-tuple (S,A, Pa, Ra)[(24), page 53]:

• S - finite states

• A - finite set of actions the agent makes in a state

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) is the probability action a in state s at t
will lead the agent to the state s’ in t+1

• Ra(s, s′) the immediate reward given to the agent when moving from s to s’

Figure 3.1 shows how the agent interacts with the environment

10

Figure 3.1: Agent interacting with the environment in MDP.

The agent and the environment continually interact with each other. The agent selects an
action and the environment responds to these actions and new situations are presented to
the agent. The RL algorithm must find an optimal policy by interacting with the MDP
directly, such that the behavior of the agent in the environment is optimal. And for this to
happen the algorithm needs to visit every action-state pair infinitely many times as stated
in [(24), pages 113-142] and (25).

Monte Carlo and TD learning

There are two types of learning in RL. One is Monte Carlo where the rewards are collected
at the end of each episode and then the maximum future reward is calculated. This means
that at the end of each episode the agent looks at the total cumulative reward to see how
well it did but the rewards are only given at the end of each episode.

V (St)← V (St) + α(Gt − V (St))

Where V on the left side is the expected future reward starting at that state. And the V
on the right side is the former estimation of maximum future reward starting at that state.
Alpha is the learning rate and G is the discounted cumulative reward [(24), chapter 5].
The other learning method is the TD method. This is also called a one-step method since
it updates the estimate of the expected future reward at every timestep. It will update its
value estimation V for every nonterminal state happening at that experience. The value at
the next time step is calculated using the formula:

V (St)← (1− α)V (St) + α(Rt+1 + γV (St+1)) (3.1)

Here the parameters mean the same as in the previous equation. γ is the discount value
and γV(St+1) is the discounted value in the next timestep. The γ parameter indicates how
far ahead the agent looks. If it is close to 1 it will prioritize rewards in the distant future.
If the value is close to 0 only rewards in the immediate future will be considered. R is the
reward for timestep t. And these together are called the TD target, which is the estimated
value for the next timestep. The formula for TD learning is almost the same as that for
Q-learning, which will be talked about later [(24), chapter 6].

11

Exploration vs Exploitation

When talking about learning one always talks about something called exploration and
exploitation. Should the agent explore new states in the environment to possibly find better
rewards or should the agent exploit known knowledge about the environment? This is the
exploration vs exploitation trade-off. The way this is done is by choosing a number, which
is usually called ε - epsilon, and let it decrease with time. At the start, this parameter is
set to 1 to fully explore the environment because the agent does not know anything about
it yet. When the epsilon parameter decreases the agent exploits current knowledge about
the environment. In figure 3.2 it shows how the parameter should be changed based on
the knowledge of the environment. The less the agent knows the more it should explore
and the more the agent learns about the environment the more it should exploit known
knowledge to achieve the best possible value.

Figure 3.2: Exploration vs exploitation.

Reward function

When choosing the reward function for an RL problem it should be noted that this is not
where you impart to the agent your knowledge about how to achieve what we want it to
do. The reward function is a way of communicating to the agent what the goal is, not how
we want it achieved [(24), pages 42-43]. The whole point of RL is gone if we hold the
agent’s hand and through the reward function, try to teach the agent how it should behave.
If the goal, for a robot walking through a maze is to get out as fast as possible, it is logical
to punish the robot for each step it is in the maze, and give a huge bonus reward once it is

12

out. The robot does not care about what we want it to do or how we want it to behave, it
simply tries to maximize the reward function. We should not tell the robot what to do, all
we should do is propose rewards for what is bad, and what is less bad or good. We can’t
directly tell the agent how to behave. If the goal is to clean the maze, one can reward the
robot every time it picks up trash, and if you want that done fast punish the robot for each
step it takes.

Designing a reward function for real-life applications is rarely a trivial task. The reward
function can vary from what was described above. Simple numbers that reflect if the
agent did something bad or something good. In this case, the agent needs to figure out
how it got the reward/punishment, this is known as the credit assignment problem. The
reward function can be an actual function as well. The distance from the goal can be used
as a negative reward to encourage the agent to decrease that distance as fast as possible.
One can use the states of a system as well, like velocity, position, and control effort. It
is important to consider the relative sizes of these values such that their contribution is
appropriately weighed. In general, it is important to define a reward function that is rich
in information for change in state and action (28).

Convergence of RL

For many easier problems such as the general grid world problem (33) it is enough to
put constant values for the parameters. When the problems become more complex, that
is many states and actions, one needs some mathematical ground to prove that the RL
algorithm converges to the optimal solution. Proofs of this will not be done in this paper.
The discount factor and epsilon have already been discussed above. If exploration is not
present in the algorithm, the agent might find the optimal path, but more often than not
it will exploit current knowledge and the algorithm converges to a local minimum. Each
state-action pair needs to be visited infinite times for the algorithm to converge [(24), pages
113-142] and (25).

The learning rate α needs to be something different than a constant. According to the
sources (25) to guarantee convergence, the learning rate needs to fulfill two requirements:

∞∑
n=1

α(t) =∞ (1)

∞∑
n=1

α(t)2 <∞ (2)

(3.2)

This means that alpha needs to decrease for each timestep. Requirement 1 tells us to not
decrease alpha too fast and 2 tells us that alpha decreases fast enough for it to converge.
This will guarantee convergence for the RL algorithm with a probability 1 (25).

Value based and Policy based learning

There are three approaches to RL and those are value-based, policy-based, and model-
based. As already discussed, the value-based approach tries to optimize the value function

13

V (s). This function tells how much the maximum expected future reward the agent will
receive at each state:

vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3...|St = s] (3.3)

In policy-based RL the policy function is directly optimized without the use of a value
function. As said before, the policy describes the agent behavior at a given time. A policy
function a = π(s) is learned that lets us map each state to the best action action =
policy(state). Policy-based RL can be both deterministic, where the agent will take the
same action for a given state, or stochastic, where the action can be random. Lastly, there
is a model-based RL, which will not be further explored in this paper (34).

3.1.3 Q-learning

Q-learning is a value based RL algorithm that uses something called an action-value func-
tion together with a look up table to solve a MDP. This function is almost the same as the
value function in 3.3 [(24), page 70], but the difference is that it gives the action-value for
the given state and action:

Qπ(st, at) = Eπ[Rt+1 + γRt+2 + γ2Rt+3...|st, at] (3.4)

The action-value function gives the quality of the action in that state given the state and the
action. What this means is that it is a measure of how good the expected future reward of
that action in that state is. The look-up table is just a table filled with state-action values; q
values. A simple example is a world with 2 states (a 2-D grid) where an agent could take
4 possible actions; up, down, left, and right. For each state, there are 4 q values, where
the best value gives the best action in that state. At the start, the Q table has initial values
which are 0 for the most, and as the agent explores, the Q table will give better and better
approximations by updating the table. The table is updated by using the Bellman equation
[(24), page 90] or (35):

Q(st, at) = Q(st, at) + α[Rt+1 + γmaxQ(st+1, at)−Q(st, at)] (3.5)

The general algorithm for Q learning is given in figure 3.3 below as well as a pseudo code:

14

Figure 3.3: Flow chart of the Q learning algorithm.

1. Initialize the Q table’s values Q(s,a).

2. For each episode in total episodes

3. For each step in each episode

4. Choose an action a in the current state s based on the current best estimate of Q(s,·)

5. Take the action and observe how the environment evolves (new state s’) and the
reward

6. Use the bellman equation 3.5 to update the Q value

The figure, as well as the pseudo-code, explains the main important parts of the algorithm,
but some things need further explanation.
The initial Q values are arbitrarily chosen, according to the literature these values are set
to 0, but there are other ways to initialize these (36). In step 4 what is meant by the best
estimate of Q(s, ·) is the action with the highest value for that state. For the 2-D grid
example that would mean choosing the best of the 4 possible actions that have the biggest
action value. But this alone means that the agent is greedy and will exploit current knowl-
edge all the time and might miss possible better action is each state. Randomness is added
to make the agent explore more. This is the ε parameter mentioned earlier. Whenever a
random number between 0 and 1 is bigger than epsilon, the best-estimated action for that
state is chosen, otherwise, a random action of the possible actions is chosen. At the start,
the parameter is chosen to be big because initially the Q table only has 0’s. And epsilon is

15

decreased when the agent has explored and updated the Q table to other values as depicted
in figure 3.2.

In the next step, the action is taken and the environment changes. Based on this the reward
is calculated and the maximum expected future reward, given the new state and all possible
actions are calculated. These values are used to update the Q table with the equation 3.4.
At the end of the training, the Q table can be seen as a complete, optimal description of
how the agent should move to get to the desired goal (35).

SARSA

Next, several other similar RL techniques will be briefly introduced and explained: SARSA
is an on policy algorithm that uses the current action performed by the current policy to
learn the Q value. It uses the current state, current action, reward obtained, next state, and
next action, hence the name SARSA [(24), pages 154-157].

Q(st, at) = Q(st, at) + α[Rt+1 + γQ(st+1, at+1)−Q(st, at)] (3.6)

As seen the equation is almost the same as the Q update function, but instead of taking the
maximum future expected value of all possible action given the new state, the Q value for
the next state and action is taken.

Double Q learning

Both the Q learning algorithm and SARSA is greedy in the sense that they choose the
optimal action in that state. In stochastic MDPs Q learning’s performance can be poor
because of the large overestimations of the action values. This leads to high positive bias
values. In other words, Q learning struggles with maximization bias. A way to see this is
to imagine an agent in a state. In this state, the agent has a number of actions to choose
from, and all these actions have a true q value of 0 but the estimated values are uncertain
and have distribution around 0. This means the average of the estimated values is above 0,
thus a positive bias (29).

Figure 3.4: Double Q learning algorithm.

16

One way to look at the problem is that the same samples are used to both determine the
maximizing action and to estimate its value. To avoid this two Q functions are used and
only one is updated at each step. This is chosen randomly. Then the action is chosen based
on the sum of both the Q functions. Details of the algorithm is shown in figure 3.4.

3.1.4 Deep Q learning
Q learning and the algorithms discussed are perfectly fine to use even with big state spaces.
But what about state spaces that are gigantic and seem to have infinitely many states?
Classical Q learning is not scalable when the state-action space becomes enormous. The
number of visits for each state-action pair in the Q learning algorithm has to approach
infinity for it to converge to the optimal policy. This means for big state spaces the classical
Q learning algorithm may never converge.

This issue is solved by deep Q learning. The deep refers to the use of a neural network to
approximate the Q values for each action in that state as shown in figure 3.5

Figure 3.5: Deep Q learning.

Instead of updating a lookup table with 3.4 and using this table to transition from state
to state, the weights in the neural network are updated. These weights function as paths
between nodes in the neural network, and by tweaking them they will form a decision that
picks the best action. The weights are updated with the following equation:

∆w = α[(R+ γmaxaQ̂(s′, a, w))− Q̂(s, a, w)]∇wQ̂(s, a, w) (3.7)

The expression inside the square brackets is the TD error and functions the same way as
the TD error as in previous learning techniques. Inside the parentheses is the target, that is
the maximum possible value for the next state. The last expression is the gradient of the
current predicted Q value. Most of the heavy lifting is done by the neural network. It is
common to use a convolutional neural network (CNN) in deep RL and deep Q learning.
How a basic neural network works will be explained in the next section.

The training in deep Q learning is more extensive than the traditional approach. It is smart
to preprocess the input state whenever possible to reduce the complexity of the states to
reduce training time. As said earlier the state space can be huge and the difference between

17

training time could be several hours. Another way to reduce the total amount of training
a deep agent needs is through experience replay. At each timestep, the network receives a
tuple (state, action, reward, next state) and then throw away the experience. The problem is
that sequential samples from environment interaction are given to the neural network. This
means that it can overwrite previous experiences with new ones. The solution to this is to
have a replay buffer that stores the experience tuple while interacting with the environment
and then use some of this buffer to train the neural network. And by sampling from the
replay buffer at random the problem of correlation between tuples is avoided as well (37).

Neural network

A neural network consists of layers upon layers of nodes 3.6 that outputs a number de-
pending on the node’s attribute. This output number depends on all the inputs to the node
and their corresponding weights. If the output is high, that is close to 1, the percepton is
said to be lit up. In other words, the output number will determine how the output numbers
of other nodes will be and how much they ”fire”.

Figure 3.6: A single percepton.

In the figure below 3.7 a network with 4 layers is shown. The first layer is always called
the input layer and the last is called the output layer. All the layers in between are called
hidden layers. The inputs cause some pattern in the next layer, which causes some pattern
in the next layer and this causes some pattern in the output layer. The one with the highest
value is the network’s best guess. The hidden layers work as collecting simple pieces from
the full picture and puzzling them together to give an output. What is meant by that is
that if one imagines that the network is trained to recognize shapes. The first hidden layer
might pick up on edges, and the second might pick up on corners. This is not what the
hidden layers do in actuality. But they do pick up on simple pieces and puzzle it together
to form the full picture.

18

Figure 3.7: A simple neural network with 4 layers (1).

The network learns through something called gradient descent with backpropagation. What
that means is that one starts at the output layer and calculates the gradient of the weights
to adjust them to better values. How mathematics is and how the algorithm is in details
will not be further explained in this paper.

This is the most basic of neural network. The one used in deep Q learning is a deep con-
volutional network. The basic idea of a convolutional network is to reduce the complexity
of a regular network and to keep spatial features. If the parameter space becomes too big,
the amount of data needed for training will increase significantly. In regular network the
data is flattened to a 1-D vector, spatial information is lost. This is avoided by using con-
volutional layers that use filters to convolve with for example an image. This results in
a new reduced grid of numbers. Using many of these filters will reduce the parameters
into the fully connected layers. The fully connected layers is a neural network that was
just introduced above. The whole purpose of the convolutional part of CNN is to reduce
the parameters that go into the fully connected layers while keeping the most valuable
information of the inputs.

3.2 Control theory

The basic problem with any closed-loop control tasks is to steer a system to the desired set
point. This is done with feedback. The output of the system is compared to the desired set
point and the error is used as an input to the controller. The output of the controller will
depend on the control structure and this will determine the new state of the system (31).
This is shown in figure 3.8

19

Figure 3.8: A block diagram of a simple control loop.

In this small section two approaches to this problem will be introduced; LQR and PID
control. The intuition behind them will be explained as well as their mathematical formu-
lation. This paper will however not focus on stabilizing proofs.

3.2.1 LQR
As explained above, the overall goal of a closed-loop control system is to make the process
go towards the desired set point through feedback. This error is often used in something
called a cost function, or loss function. As the name suggests, a cost function is how much
it ”costs” to be away from the set point. This could be a sum of deviation of different states
like altitude and speed. This cost function needs to be minimized to achieve the control
objective. The LQR algorithm reduces the amount of tuning work that needs to be done.
An LQR is full state feedback controller that seeks to minimize the following cost function
(30):

J =

∫ ∞
0

(xTQx+ uTRu)dt (3.8)

For the system
ẋ = Ax+Bu x ∈ Rn, u ∈ Rn, x0 given

This is the infinite horizon LQR. The solution that minimizes this cost function is the
feedback control law: u = −Kx, where K is:

K = R−1BTPx

And to find P the algebraic Riccati equation needs to be solved:

0 = PA+ATP − PBR−1BTP +Q

The Q and R matrices are the weight matrices. These are usually set to the identity matrix
and after testing one fixes the parameters to meet the control objective. By looking at Q in

20

3.8 (30) it can be seen that it has something to do with the states. How much does each state
determine how the controller should work, in other words, how much should the controller
be punished for deviating from each state? Higher Q values mean the corresponding state
matters more for the control objective. R in the equation is how much you want to penalize
the control signal. High value for R means trying to stabilize the system with less weighted
energy. This is called an expensive control strategy.

Integral action

State feedback controllers achieve desired steady response by tuning the parameters. But
by using feedback one expects good performance, even with the presence of noise. This
requires that the exact model is known, which can be demanding and is not wanted. By
using the integral of the error as feedback one removes steady-state error. This is done by
augmenting the description of the system with the state z:

d

dt

[
x
z

]
=

[
Ax+Bu
y − r

]
=

[
Ax+Bu
Cx− r

]
The new state z is the integral of the difference between the output state and the set point.
The control law with integral feedback is now:

u = −Kx− kiz

3.2.2 PID control
There is a lot of literature on PID and it is probably the most known control strategy in
modern times. PID uses three branches of correction of the error signal; proportional,
integral, and derivative. In the proportional branch, the error signal is simply multiplied
by a gain. In the integral branch, the error is first integrated and then multiplied by a gain.
And lastly, in the derivative branch, the error is differentiated and then multiplied by a
gain. The control law for a general PID is:

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(3.9)

Where the K’s are the gains for each respective branch. PI performance is good enough
in most practical applications and the addition of the D term will increase the cost of the
controller. This is why the derivative term is often dropped in the industry.

21

22

Chapter 4
Experimental Design

The coupled tank system is a typical system used in school to teach about flow, and mass
balance. Quanser even has a development kit to do live experiments on (38). This is even
supported by Matlab. This availability gives rise to a lot of literature and experiments.
This system is used to answer the research questions posed in chapter 1.1.1. This chapter
will describe the system in detail. The overall structure, the parameters, and why they were
chosen, as well as the addition of complexity. The differential equations of the dynamics of
the system are given; for the original system, the more advanced system, and the linearized
system.

4.1 Base system

The system chosen for this thesis is a coupled tank system. The dynamics of the system
are easy to understand and calculate and there is a lot of literature on the control and the
dynamics of similar systems. A schematic of the system is given in figure 4.1. Both tanks
have an outlet at the bottom. The first tank receives water from a pump, which can both
pump water into the tank and suck water out of the first tank. The second tank receives
water from the outlet of tank 1. At the bottom, there is a water reservoir where the water
ends up in. The pump takes water from this reservoir and pumps it back to tank 1. The
outflow of each tank depends on the height of each tank. The more water that is in tank 1,
the more will flow out of tank 1.

23

Figure 4.1: The coupled tank system used for the experiment (2).

This coupled tank system is the dynamical part of the system. There is another part of the
total system. The goal of this thesis, as explained in 1.1.1 is to use RL to find an optimal
switching strategy between multiple controllers. The starting system, or the base system,
is the dynamical part together with this RL part. This is shown in figure 4.2. This system is
easy to extend and make more complex by adding additional restrictions, adding another
tank, extending to more than one set point, dynamical valves, having more than three
controllers, etc. This is why it is presented as the base system. This is the simplest form of
the system with the possibility to extend it further. The extending part of the system will
be discussed later in the thesis.

Figure 4.2: The base system.

24

The controllers chosen for the base system were max, min, and LQR. Max and min are as
the name suggests, maximum, and minimum actuation voltage for the pump. The param-
eters and their values are listed below in table 6.1:

Table 4.1: Parameters of the coupled tank system

The parameters corresponds to the ones on figure 4.1.

Parameters Value Description
L1 0.5m Height of tank1
L2 0.5m Height of tank2
Dt1 0.1m Diameter of tank1
Dt2 0.1m Diameter of tank2
Do1 0.015m Diameter of outlet1
Do2 0.016m Diameter of outlet2
Kp 0.0002 Pump constant

MaxV 16V Maximum voltage supplied to the pump
MinV -10V Maximum voltage supplied to the pump

The aim of the dynamics of the coupled system was that it should represent a real system,
or close to a real system. How should the system act and what should the flow be in
a logical sense. If maximum actuation is applied to the pump, the flow into the tank
should be much bigger than the flow out at the bottom, even at maximum height. This
was the motivation for trial and error testing to get reasonable values for the tank system.
Additionally, there was an overflow condition added. Whenever the water level of each
tank in the next time step is over 0.5m the new height is set to 0.5m. This way the water
level in each tank will never exceed 0.5m.

4.1.1 System dynamics
As described earlier, the flow out of each tank depends on the water level. The way the
flow rate is calculated is through the use of mass balance or mass flow. What is meant with
that is: Change in mass = Massin −Massout or that the change in total water in a tank
is the difference between the water flow in and out. The volumetric change is given by:

V̇ = qin − qout

Where q is the flow rate. The goal is to keep the water level at a certain height. The change
in height is:

ḣ =
1

A
(qin − qout)

The flow out of each tank is:

qout = c ∗
√

2Gh

25

Where c is the cross-sectional area of the valve where the water flows out. G is the gravi-
tational constant and h is the height of that tank. The outflow of tank 1 is the inflow of tank
2. The inflow of tank 1 is what is pumped into the first tank from the pump. This pump is
a constant multiplied with a voltage to generate a flow rate.

The differential equations for the coupled tank system is given by the equations below:

ḣ1 =
1

A1
(Ku− C1

√
h1)

ḣ2 =
1

A2
(C1

√
h1 − C2

√
h2)

(4.1)

Where C1 and C2 are constants given in the equations below. The small c’s are the outlet
cross sectional area.

C1 = c1 ∗
√

2G

C2 = c2 ∗
√

2G

This system is a nonlinear system and it needs to be linearized to use an LQR. The linear
system is given by:

∆ḣ = A∆h+ B∆u

A =

− C1

2A1

√
h∗
1

0

C1

2A2

√
h∗
1

− C2

2A2

√
h∗
2

B =

[
K
A1

0

] (4.2)

The desired set point is inserted for h∗1 and h∗2 to get the LQR to stabilize around the set
point.

26

4.1.2 Additional complexity

This small section is here to present the extended differential equations and the parameters
used for the additional valves. Two additional valves open only when the water level
reaches a certain height. The parameters for this extended system are shown in table 4.2
below:

Table 4.2: Parameters of the coupled tank system with added emergency valves

The parameters corresponds to the ones on figure 4.1 but with two extra valves.

Parameters Value Description
L1 0.5m Height of tank1
L2 0.5m Height of tank2
Dt1 0.1m Diameter of tank1
Dt2 0.1m Diameter of tank2
Do1 0.012m Diameter of outlet1 in tank1
Do3 0.008m Diameter of outlet2 in tank1
Do2 0.01m Diameter of outlet1 in tank2
Do4 0.006m Diameter of outlet1 in tank2
Kp 0.0002 Pump constant

MaxV 16V Maximum voltage supplied to the pump
MinV -10V Maximum voltage supplied to the pump

The dynamics of the system changes to:

ḣ1 =
1

A1
(Ku− C1

√
h1 − C3

√
h1)

ḣ2 =
1

A2
(C1

√
h1 + C3

√
h1 − C2

√
h2 − C4

√
h2)

C3

√
h1 = 0 if h1 < 0.375

C4

√
h2 = 0 if h2 < 0.375

(4.3)

Where C3 and C4 are calculated the same way as C1 and C2. This gives rise to 4 different
linear systems each having their own LQR. These linear systems are numbered from 1-4:

• 1 - the original system

• 2 - where the extra valve in tank 1 is open

• 3 - where the extra valve in tank 2 is open

• 4 - where both extra valves are open

System 1: System 1 is the same as the basic system 4.2.

27

System 2:
∆ḣ = A∆h+ B∆u

A =

− C1+C3

2A1

√
h∗
1

0

C1+C3

2A2

√
h∗
1

− C2

2A2

√
h∗
2

B =

[
K
A1

0

] (4.4)

System3
∆ḣ = A∆h+ B∆u

A =

− C1

2A1

√
h∗
1

0

C1

2A2

√
h∗
1

− C2+C4

2A2

√
h∗
2

B =

[
K
A1

0

] (4.5)

System 4:
∆ḣ = A∆h+ B∆u

A =

− C1+C3

2A1

√
h∗
1

0

C1+C3

2A2

√
h∗
1

− C2+C4

2A2

√
h∗
2

B =

[
K
A1

0

] (4.6)

28

Chapter 5

Methods

As discussed in chapter 3 a full RL system consists of more components. One needs an
environment, which was discussed in the last chapter. As well as how this environment
will evolve from timestep to timestep. The last thing needed is the RL itself. This chapter
will describe the process of how the RL was designed to work with the system, how the
state-action space was chosen, how the parameters were chosen, how the reward function
was designed, and how the training + testing procedure was done. Then the values for the
controllers are presented. Towards the end of the chapter, the additional complexity that
was added to the system is shown. The last part of the chapter says what kind of libraries
that were used in python for the design of the whole system.

The overview of the process is shown in figure 5.1. This is the general process for testing
and experimenting with what works and does not work. Mostly the base system was
used for this. If the results were not satisfactory something was changed. Most often
the parameters were changed, but also big changes in the physical parameters of the tank
system could be made as well.

29

Figure 5.1: Overview of the process of designing and training.

5.1 RL agent

5.1.1 Agent design
The overall thought process, in the beginning, was to make a simple nonlinear system
work with the RL agent, and then add complexity as it progressed. The dynamics of this
system is simple and easy to make more complex. The real task is to design the RL agent.
In chapter 3 the definition of an RL problem was defined. For this first base system, both Q
learning and SARSA were chosen as the learning algorithms. To be able to use Q learning
one needs to define the state space, action space, immediate reward, how each action is
chosen, hyperparameters such as; ε, α, and γ and how the training/testing process was
executed.

State-action space

Q learning is a tabular method, which means it uses a lookup table as a policy. This table
could be viewed as a road map for the agent. The agent looks at its current situation, or
this state, and tries to see what the best possible course of action is. This lookup table is
updated by using the Bellman equation 3.1 and 3.6 in chapter 3. To define states in a system
with continuous dynamics one needs to discretize the continuous states into buckets. What
this means is that states could be defined as; far away, close, very close, and goal, as an
example. The paper (21) used voltages to measure the height of the tanks and discretized
each volt into 5 buckets. In this paper, however, the height of both tanks is directly used
as states. To avoid training the agent longer than necessary, the state space was kept as
small as possible while preserving good performance. The total number of buckets was
experimented with, ranging from 3-160. All of these buckets represented 0.5m in each
tank. This means that each state was ranging from 0.166m to 0.003125m. At the start, the

30

state space was chosen as 100, because 100 seemed like an easy number to start with. This,
together with the 3 actions added up to a total of 30000 state-action space. According to the
theory, each state-action pair should be visited infinite times before the policy converges
to the optimal policy as stated in [(24), pages 113-142] and (25). Thus the state space was
reduced to make the agent converge and to avoid unnecessary big state-action spaces. The
chosen states for each tank ended up at 40 for a big portion of the base system, but as the
project progressed the state space was reduced further to see how simple it could be done
with good performance. This means that the size of the state-action space at the start was:

Total = 40 ∗ 40 ∗ 3 = 4800

And it could go as low as:

Total = 3 ∗ 3 ∗ 3 = 27

The discretization was mostly kept uniform in both tanks to keep in scalable. However
other techniques were utilized. One of them was to have 3 areas in both tanks. Above
setpoint, below set point, and an area around the set point. This area was set to 0.0125m.
Figure 5.2 shows how this looks like.

Figure 5.2: One of the discretization chosen for the base system.

This does not work when extending the system. The equilibrium point in tank 1 will
move around and one can not use the same methodology. However, the tank that will be
regulated around a setpoint will always have the same setpoint. Keeping this discretization
in tank 2 and having a uniform one in tank 1 was done instead to keep it scalable. This
was used as the go-to discretization and will be referred to as the 5-3 discretization for the
remainder of this thesis.

31

Action selection

The way the actions were chosen was through a greedy strategy. It is a very common strat-
egy in RL to decrease the epsilon from episode to episode. This will let us take advantage
of both exploration and exploitation, and as stated in 3.1.2 it will help the agent converge
to the optimal policy. The action is chosen based on how high the epsilon parameter is. If
a random number between 0 and 1 is less than epsilon, a random action is taken. When
a random action is not taken the action with the highest Q value in the state the agent
currently resides is taken. This is simply done by looking at the current discrete state and
what action gives the highest value:

action = np.argmax([qstate1, qstate2, :]) = np.argmax([0.2, 0.22, 0.21]) = 1

This action is passed to the dynamics of the system. Note that python is 0 indexed and
index 1 is in position 2. The argmax function is from NumPy (39), a python library used
for scientific computing, and returns the index with the highest value in an array. This is
done for each step in an episode. The agent can switch between controllers freely at each
timestep.

Reward

As discussed in chapter 3 the reward function, or simply the immediate reward, should
not be a map for the agent on how you want it to reach the goal. Rather, it should be
a way of communicating with the agent what the goal is. Keeping in mind what was
written in chapter 3.1.2 there was still a lot of testing to get an appropriate reward function.
The reward function does exactly what it is defined to do. Sometimes it finds a ”better”
strategy, but all it has done is to find a loophole in the reward function. This is called
reward hacking. Another problem that was discussed in 3.1.2 was the tuning of all the
different terms in the reward function.

The thought process behind choosing a reward function for this system was that the agent
should make the height of tank 2 be on set point, and get there as fast as possible. Trying
many different rewards such as;

• Distance from the set point in the current step - this is simply set point minus the
current height.

• Distance from the set point in the next step - the action taken in the current step
affects the next step, this was more logical than taking the distance in current step.

• Distance for set point 2 steps ahead - it was observed that the second tank was not
affected by the action taken in the previous step, a prediction was made to see how
an action affected the state two steps ahead.

• An error gradient was formed based on the direction where the error moved. Moving
away from set point was negative while moving towards the set point was treated
better.

32

• Distance from the set point in the next step + the distance from the equilibrium point
in tank 1. Given a set point in tank 2, there is an equilibrium point in tank1. This is
used as a sort of set point in tank 1. The logic was that this is a coupled system, and
thus one needs to take both tanks into account when making a reward. The outflow
of tank1 can be seen as an input into tank 2.

• A combination of the above rewards. Especially the error gradient together with the
distance from set point in tank 2.

• Using the set point in tank 2 as a goal state and reward when inside the goal or
punish when outside the goal state.

• Adding the control input to the reward function and/or penalizing when the agent
switches controller.

The above rewards were treated more as penalties. As in the examples given in chapter
3.1.2 being in an undesired state was penalized and being in a good state was less penalized
to encourage the system to reach the goal faster. Moving away from the goal was penalized
more than moving towards the goal. In general, everything was treated as negative rewards.
Good actions and good states was less penalized, and whenever the agent did something
bad it was punished by a lot.

The overall way of reasoning lead to the reward function:

R = −((errort+2)2 + (errort+1)2) (5.1)

Here the error is referred to as the distance from the setpoint to the height of the water in
tank 2. This reward function is one of the simplest ways to punish the system and is the one
with the best performance. The whole point of making an RL agent is for it to understand
what the goal is with only the relevant information. The error terms are squared such that
the reward function is continuous.

Hyper parameters

Epsilon has already been discussed and why it has been set to that value. The discount
factor γ is set to 0.9-0.99, this indicates that future rewards are valued more than the
immediate rewards. This leaves the learning rate. As explained in section 3.1.2 in chapter
3 alpha needs to decrease. This is a simple system and absolute convergence is not that
important in this thesis so a constant alpha works as well. But for the purpose of following
state of the art methods the alpha was set to decrease, but not as fast as the literature
suggests (25).

α(n) =
1

1 + (0.005n)
(5.2)

The table below shows what each parameter was set to:

33

Table 5.1: Hyper parameters for the RL agent

Parameters Value Description
α See 5.2 Learning rate, or size step in learning
γ 0.9 Discount factor
ε 1− > 0 Exploration or exploitation

Epsilondecay 0.995 Reduction in epsilon

Training and testing

In fig 3.3 the general procedure on how to train the agent is shown. First, the system that
is going to be trained is chosen; base system, with added controllers or the emergency
system. Then the algorithm is chosen; either SARSA or the regular Q learning algorithm.
The training works by running episodes with a number of timesteps in each episode. At the
start of the training, the Q table is initialized to 0 and the agent will fully explore in the first
episodes since it currently knows nothing about the environment. The initial height of the
tank is randomly initialized between 0 - 0.5m in each episode such that the agent will learn
general scenarios. The epsilon parameter decreases each episode with the Epsilondecay
parameter until it is 0.1 where it stays constant until all the episodes are done. With an
epsilon of 0.1 means that the agent selects a random action 10% of the time, this is to
prevent the agent from converging to a nonoptimal policy. In each time step, an action is
selected by the agent, and this action is given to the dynamics of the system. Based on
what action was given to the system, the state changes, and a reward is given. The optimal
policy will be when the total accumulated reward is maximized. The final policy used to
test the 40 state system was trained for 20000 episodes with 5000 timesteps each.

The Q table is saved and analyzed to see if the agent has converged if not, more episodes
are run. The number of episodes needed varied, and could be as much as over 20000
episodes if the state space was big, or could be as little as 1000 when the state space was
smaller. To test how good the policy is the epsilon parameter is set to 0 such that the agent
only chooses the action with the highest q value, and in testing the Q table is not updated.
This means that the agent uses the Q table as a map and will only do what the map tells
it to do. The dynamics and the control actions chosen are plotted to study how good the
agent did.

Disturbance

A simulated system without disturbances is unrealistic and too perfect. Thus a disturbance
was added to simulate a more realistic system. The disturbance was a tiny leakage from
both the valves. This leakage was simulated by using a sinusoidal that depended on the
height of each tank. The higher the water level in each tank, the greater the pressure on
the valves, and thus more water will leak.

34

5.1.2 Controller design
As discussed in the previous chapter, there were only 3 controllers to begin with; max,
min, and LQR. The LQR controller was designed according to the theory in chapter 3 and
the linear system 4.2. The Q and R were chosen based on how much each state was valued.
They ended up at:

Q =

[
6000000 0

0 24000000

]
R = 1

To remove the steady-state error an integrator was added to the LQR controller as well.
The gain was chosen to be:

Klqri =

[
20
20

]
Additional controllers

After getting the base system to work, some additional controllers were added; PI and PD.
This was done to see how the agent operated when the action space increased. The gains
for the PI was:

KpPI =

[
500
500

]
KiPI =

[
20
20

]
And for the PD:

KpPD =

[
500
500

]
KdPD =

[
0.05
0.05

]
These controllers were added together with the 3 controllers mentioned in 4. This was done
to study if the best characteristic of each controller would be used, as they investigated in
(21). And lastly, only the PI, PD, and LQR controller were used together to see what the
RL thought was the best switching strategy.

5.2 Additional complexity
There were many ideas about how to make the system more complex:

• Adding a third tank

• Introducing more valves in each tank and let some valves flow to a tank below or
the reservoir

• Valves placed at the top of the tank to let water through to prevent overflow

• Valves that varied with the height

• A sudden drop in water level that simulated a crack in the tank

35

• Valves that varied with time.

All of these made the system more complex, but it didn’t help to answer the questions in
chapter 1.1.1. The last question demand that the system can not easily be controlled by
one controller. Three tanks make the system more complex, but one controller is enough
for set-point regulation. The dynamics need to change in such a way that more than one
controller is needed to keep the desired tank at the set point. Making more water flow out
of both tanks at some point will split the dynamics into more parts. That is, when there is
no extra flow, there is extra flow in one of the tanks, there is extra flow in the other, and
in both at the same time. To do that 2 extra valves that functioned as emergency valves
were added. These are state-dependent and open once, and never close once they are open.
When the water level in a tank reaches a certain height, the emergency valve opens to let
more water through to prevent overflow. The threshold height for this was set to 0.375m.
This could be tied to if the fluid is dangerous, and leakage can hurt a part of a bigger
system. Having these 2 extra valves introduce a change in the dynamics and makes the
system hard to control accurately with only one controller.

5.2.1 Design of emergency valve system

Adding to the RL agent

The agent in Q learning has states that describe where it is in the environment and actions
that describe what the best course of action is in this state. The agent needs to know about
the valves as well. This is done by adding 2 new states that can take the values 0 and 1;
1 for when the valve in either tank is open, and 0 for when they are closed. This means
that the agent splits the overall system into 4 subsystems. One for when the valve in tank
1 is open, one for when it is open in tank 2, one when both are open and one when both
are closed. The agent learns how to switch between the controllers in each subsystem and
what is the optimal control switching in each subsystem

Adding to the controllers

As discussed in chapter 4 and above, the system is now 4 subsystems that together make
the full system. For each of these subsystems, an LQR is made. Each of these has its
linearization shown in chapter 4.1.2 and with Q and R as:

Q =

[
1000000 0

0 2000000

]
R = 1

And the gain for the integrator is:

Klqri =

[
15
15

]
36

The system as a whole

Each of these LQRs had the same Q, R, and gain, but their dynamics are different and their
setpoint as well. With these extra controllers and the extra valve states the total state-valve-
action space would be very large and training would be slow. But as discussed above, the
state space was reduced to be both scalable and still have good performance. The 5-3
discretization was used, which means the full state-valve-action space was:

Total = 5 ∗ 3 ∗ 2 ∗ 2 ∗ 6 = 360

The whole procedure with training and testing, parameters, and the reward was the same
as it was in the base system. However, the training for the emergency system is a little
different. Since the whole system has the valve as states each of these subsystems was
trained by itself for 1000 episodes. And since this is a whole system, the full system was
trained for just as many episodes as all the subsystems combined (4000).

To test the system some variations of the dynamics were used. This emergency system
with the extra valves could have different dynamics. First, the system was run in the
normal way where each valve would open if the water level would reach 0.375m. Several
simulations were run to see if the agent chose the correct LQR. Another way of testing was
to allow the valves to close after they opened to see if the agent would select the correct
controller. And lastly, each valve was allowed to switch on and off randomly each 2500
timestep.

5.2.2 General discussion

The goal of designing the RL system talked about in this section was to make it scalable to
bigger/more complex systems. There was a lot of testing with the number of states used,
the number of controllers used, and nonlinearities that could be dependent on time. Most
of the testing was done on the base system. Once a general approach was found for the
base system, the only thing to do then was to change the dynamics, add controllers or add
a tank, without changing the structure of the system. That means the number of states, the
parameters used for training, or the set point for the desired tank to control. Making the
system scalable was a high priority while designing the system.

It is worth to mention that 2 other methods were also used to train the agent. Both the
double Q learning and deep Q learning were used as well. But it was noted that both of
these methods were not suited for this problem. Double Q learning is suited for stochastic
systems. This system has no randomness in it, thus the performance was not good. Deep
Q learning is used when the state-action space is enormous and it is not feasible to train
the agent with a tabular method. In this system the state-action space is not big enough for
the benefits of the deep Q learning method to show.

37

5.3 Software and Hardware
This work did not use any hardware outside of a computer. The dynamics and RL inter-
action with the dynamics are simulated using python. The libraries used is NumPy (39)
for matrix calculation and in general for the computing part. Pickle is used to save the Q
table in a pickle file (40) so that it could be read and used by the agent. The standard mat-
plotlib library from python is used to plot the results (41). And finally to solve the Riccati
equation for the LQR the linear algebra library from SciPy was used (42). The system
dynamics were implemented using the NumPy library, and the RL agent was implemented
with the help of (43), (44), and (35).

38

Chapter 6
Results and discussion

This chapter will present all the results from the simulation made in python with the RL
agent and the two tank system dynamics. The result from each sub step will be presented
and then discussed. There will be plots from how the dynamics evolve when the agent
is in charge of the controller scheduling, the switching of each controller and general
plots that show performance and to illustrate certain points, if being discussed. First the
base system will be presented. Then the additional controllers will be shown. At last the
emergency system with different dynamics will be presented followed by a discussion to
sum everything up.

6.1 Base system
The first part of this chapter will present the results from the base system. How the results
evolved and what changes where made to get to the final results. The control actions are;

• 0 - Minimum

• 1 - Maximum

• 2 - LQR

6.1.1 Results
These first figures 6.1, 6.2, 6.3 and 6.4, show the performance with 40 states in both tanks
and 3 actions; min, max and LQR. This adds up to 4800 total states that the agent needs
to learn. The first figure shows the simulation of the dynamics for 5000 timesteps (50
seconds), and one can see that it reaches the setpoint of 0.25 m fairly quickly. The second
figure shows the switching of the controllers done for each timestep. In general, the most
optimal thing to do is to keep the water level in tank 1 high when tank 2 is below set point,
and when tank 2 is over setpoint it is best to keep the water level in tank 1 low. In this

39

way, the water level in tank 2 would reach set point in the shortest amount of time. Once
tank 2 is close to set point, tank 1 needs to get to its equilibrium point and then switch over
to LQR. This is how one intuitively dwells on what is optimal or not. But this might not
be what the agent thinks is optimal. Depending on what parameters are used, especially
gamma, it is hard to say for sure that the agent’s behavior is optimal or not.

In this example, the water in tank 2 is under set point, and the water level in tank 1 is low.
The most optimal action would be 1 to get the water level in tank 2 up to the set point as
fast as possible, and in figure 6.4 there are some oscillations at the beginning between all
the controllers. At the very start it chooses 1 for some time, but mainly it switches between
all the controllers. Once the water level in tank 2 is getting close to the set point the most
optimal thing would be to pump water out of tank 1 until it is around the equilibrium point.
That means the optimal action would be 0, but the figure shows that the agent is switching
between 0, 1, and 2.

Figure 6.1: Simulation of the dynamics when the agent chooses what control action is used for the
40 state system.

40

Figure 6.2: The control actions taken in the simulation. 0 is minimum, 1 is maximum and 2 is LQR.

Figure 6.3: Zoomed in on fig 6.1.

41

Figure 6.4: Zoomed in on fig 6.2.

Taking a closer look at the zoomed-in versions 6.3 and 6.4 one can see that the water level
in tank 1 is kept high until tank 2 closes in on 0.25 m. It should keep a high level until tank
2 is close to set point, but it switches between 0 and 1, 1 and 2, and 0 and 2. This might be
due to a local minimum or that the agent looks far into the future (big gamma) and wants
to ”prepare” to get to equilibrium as fast as possible to avoid overshooting. On its way
down it switches between 0, 2 and sometimes 1. This is not optimal, but both the LQR
and the minimum controller have negative values, meaning both will contribute to pump
water out of the tank. Again, this switching is most likely due to a big gamma. In these
figures, a very big gamma was used (0.999) which means that future rewards matter more
than immediate rewards. This switching between 0 and 1 and 1 and 2 might be because the
agent tries to maximize the total accumulated reward and looks far ahead into the future.
In general though, the agent seems to understand that the water level in tank 1 should be
kept high when the water level in tank 2 is low, but it does not seem to behave optimally.

Reduction in states

The state-space was reduced to see if it was possible to further improve the performance of
the system and to see how simple the discretization could be done while still maintaining
good performance. The first discretization is the one discussed at the end of chapter 5.1.1
with 3 states, where there is a small bucket around setpoint in each tank and a state over
and under that area.

42

Figure 6.5: Simulation of the dynamics when the agent chooses what control action that is used
with only 3 states for both tanks.

Figure 6.6: The control actions taken in the simulation. 0 is minimum, 1 is maximum and 2 is LQR.

As seen in figure 6.5 the water level in tank 1 is rising to the maximum and staying there,
even though tank 2 seems to be very close to set point. This behavior is very different

43

from the one with 40 states in both tanks. Taking a look at the control actions in figure 6.6
one can see what was expected to be optimal. The water level in tank 1 is kept as high as
possible for as long as possible such that the water level in tank 2 reaches its set point in
the shortest amount of time. Once it closes into that point, it switches and pumps water
out of tank 1 until tank 1 is close to equilibrium, where it switches to LQR.

Comparing figure 6.3 and 6.5 it is easy to see that the switching is gone and with these
3 states the agent was able to get the water level to set point within 1000 timesteps, but
the one with 40 states did it in almost over 2000 timesteps. With only 3 states fixed the
way they are, there are a limited amount of actions that can be done in each state. The
separation between a good action and a bad action in each of these fixed states is more
apparent for the agent than with a finer discretization. Even taking future rewards into
account it would not make much of a difference with this setup. Future events will most
likely be the same as recent ones, and 10-20 timesteps ahead the agent will most likely be
in the same state as it was in at that point; either above or below the equilibrium. If the
level in tank 2 is below set point, the only thing to do then is to pump max water into tank
1 until tank 2 is inside the bucket that is around the set point. Below, the Q table for this
state-action space is shown.

Table 6.1: Q table

This is the q table for the simulation above.

States Action 0 Action 1 Action 2
0 0 -9.4 -8.58 -9.35
0 1 -4.74 -5.03 -4.60
0 2 -9.53 -9.32 -9.51
1 0 -7.07 -6.49 -6.52
1 1 -4.58 -4.57 -4.56
1 2 -8.42 -8.16 -8.47
2 0 -6.51 -6.28 -6.52
2 1 -4.58 -4.67 -4.62
2 2 -8.13 -8.14 -8.14

This Q table shows what the agent thinks is the optimal action in each state. The value
with the biggest value (smallest negative value) is the best action in that state. The states
are as in chapter 5.1.1, 0 is under, 1 is inside the bucket, and 2 above. Having 40 states as
figure 6.1 the agent can look at how an action in this state affects the states and rewards
in the future. An action in one timestep will directly affect how the next state will be, but
in this fixed 3 state discrete system, the next state following an action will most likely be
the same state. This works well for a simple system with fixed non-changing equilibrium
points such as this one, but not for a general system as the one later in this chapter.

44

Making it general

Figure 6.7: The dynamics of the 5-3 discretized system.

Figure 6.8: Actions taken for the 5-3 discretized system.

45

The above two figures show the same dynamics and controllers. This time tank 1 is dis-
cretized with 5 uniform states and tank 2 has the same discretization. As seen in figure 6.7
and 6.8 the agent seem to be utilizing the correct controller to achieve best performance.
The water is pumped into tank 1 and is kept high until tank 2 is close to setpoint, then
it pumps water out of tank 1 until tank 1 is close to equilibrium and then switches to the
LQR.

6.1.2 Additional discussion

It is seen here that with fewer states the agent behaves more optimally. Having more states
in the tanks leads to more training, and in this case the performance is better than with 40
states in both tanks. The plots from the 40 states were trained for 20 thousand episodes
with 5000 timesteps, and the one with 5 uniform states in tank 1 and fixed states in tank
2 was only trained for 1000 episodes with the same amount of timesteps. While the latter
only has 45 values to learn, the first has 4800 values to learn from, and according to the
literature, each state-action pair needs to be visited an infinite amount of times before the
learning converges [(24), pages 113-142] and (25). Even though the agent in the 40 states
scenario trained more, the relative ratio between states and training was less than the 5-3
discretization.

The main focus is not to make the learning converge to the optimal, but rather study how
RL could be used in real life to learn a switching strategy. Showing this is the most
important, and since the performance was much better in the smaller state-space case, the
state-space was kept small for the rest of the experiments.

The main algorithm used for learning was SARSA. Q learning was also used but the results
gave no new insights or understanding and the results from those simulations have been
omitted from this paper.

6.2 Base system + additional controllers

Here, the results with additional controllers are presented. First with all 5 controllers; max,
min, LQR, PI, and PD. Then only the LQR, PI, and PD will be shown. The control actions
are the same as in the previous section where 0 is min, 1 is max and 2 is LQR. Actions 3
and 4 are PI and PD respectively. But when only LQR, PI, and PD are used, 0 is LQR, 1
PI, and 2 PD. Only plots from the 5-3 discretization are shown.

46

Figure 6.9: Simulation with the two extra controllers; PD and PI.

Figure 6.10: Actions taken for the dynamics in figure 6.9.

47

Figure 6.11: Simulation of the dynamics with only the LQR, PI and PD controllers

Figure 6.12: Actions taken for the dynamics in figure 6.11.

These figures don’t add much to the understanding behind this thesis, neither do they help
to answer the research questions. They are here, in addition, to show how the process
was from the base system to the final system. As stated in chapter 5 the base system was

48

there to test and see if it would work with RL. These simulations helped to see if the agent
could handle more control actions. The plots clearly show that this is no problem. It is
interesting however that the agent chooses the LQR in figure 6.10 to regulate around set
point, but in figure 6.12 the agent chooses the PD controller. This could be explained by
the integrator and the derivative term in the controllers. Depending on where the water
level starts, these values will be different. And by using a min-max controller that pumps
in more/pumps out more water than each of these controllers, these terms will also vary
from each respective scenario. With the availability with the min-max controllers, the 5
control system will choose the LQR and not the PD as in the 3 control case.

6.3 Emergency valve system

Below, the results for the emergency valve system are presented. The first 8 figures are
plots of each subsystem and the actions taken. The chosen names for each of these systems
are:

• Subsystem 1 - when no valves are open.

• Subsystem 2 - when the valve in tank 1 is open and the valve in tank 2 closed.

• Subsystem 3 - when the valve in tank 2 is open and the valve in tank 1 closed.

• Subsystem 4 - when both the valves are open.

The controllers for this system are:

• 0 - min controller

• 1 - max controller

• 2 - LQR for subsystem 1

• 3 - LQR for subsystem 2

• 4 - LQR for subsystem 3

• 5 - LQR for subsystem 4

49

Figure 6.13: The dynamics of subsystem 1.

Figure 6.14: The actions taken for subsystem 1.

50

Figure 6.15: The dynamics of subsystem 2.

Figure 6.16: The actions taken for subsystem 2.

51

Figure 6.17: The dynamics of subsystem 3.

Figure 6.18: The actions taken for subsystem 3.

52

Figure 6.19: The dynamics of subsystem 4.

Figure 6.20: The actions taken for subsystem 4.

All of the plots above show how the agent chooses the actions based on the water level in
each tank. In figure 6.13 and 6.14 the water level is never above 0.375m, and thus none
of the valves are open. Figure 6.15 and 6.16 show when tank 1 starts above 0.375m and

53

the valve in that tank is open. Continuing, the same applies to figure 6.17, 6.18, 6.19 and
6.20. In each of these scenarios the agent chooses the correct controller to keep tank 2 at
set point.

Figure 6.21: The dynamics with forced valve opening. The valve in tank 2 opens after 5000
timesteps.

Figure 6.22: The actions the agent takes from figure 6.21.

54

Figure 6.23: Which of the subsystem that the system is in.

Figure 6.24: The dynamics with forced valve opening. The valve in tank 1 opens after 2500
timesteps.

55

Figure 6.25: The actions the agent takes from figure 6.24.

Figure 6.26: Which of the subsystem that the system is in.

Above in figure 6.21 and 6.22 a simulation where the valves are forcefully opened is
shown. First, no valves are open, but from 5000 timesteps and beyond the valve in tank 2
opens. The agent chooses the correct controller and when the switching happens the agent

56

chooses controller 1, which is the maximum controller, to get the level in tank 1 to the
new equilibrium point. One thing to note is that the agent chooses controller 3 at a small
interval about 700 timesteps into the episode. This might be the agent that tries to avoid
overshooting by looking into the future.

In figure 6.24 and 6.25 the valve in tank 1 opens from 2500 timesteps and beyond. Here
the same thing is seen, the agent switches to the min controller immediately, but switches
to the third controller before it settles for the LQR for subsystem 1. The agent chooses
the correct controller to get to the first set point. When the valve opens the agent jumps
directly to controller 3 which is the LQR controller for subsystem 2. One would think
that the optimal thing to do is to pump water out as fast as possible until it is at the new
equilibrium and then switch over to 3. But as stated earlier, when there is a lot of weight
on future rewards it is hard to tell by the eye what is the most optimal thing to do in that
exact instance. This behavior could be explained by what was said above, the agent tries
to avoid overshooting.

Below in figure 6.27 and 6.28 the system starts in subsystem 4 and switches to subsystem
3, 1 and then 2 again. The agent seems to be handling this kind of switching easily. At
the start, it chooses the LQR controller for subsystem 2 but quickly switches to the max
controller to get the water level in tank 2 to 0.25 m as fast as possible. When it is close
to the set point it overshoots a little and then pumps water out to get the level down to
set point. Then it switches to LQR 4 before it settles for the correct LQR. This unusual
switching can as stated earlier be due to high weights on future rewards. Another thing
could be that the agent needs more training to converge. Figure 6.23, 6.26 and 6.29 show
which subsystem the agent is in.

Figure 6.27: Both valves start opened and one and one closes. First tank 1 closes, then tank 2, and
at last tank 1 opens again.

57

Figure 6.28: Actions taken from the simulation in figure 6.27

Figure 6.29: Actions taken from the simulation in figure 6.27

58

Figure 6.30: The dynamics of the system that randomly switches on and off the valves every 2500
timesteps.

Figure 6.31: Actions the agent does for the dynamics in figure 6.30

59

Figure 6.32: This shows which valve that is open from the dynamics in 6.30.

In figure 6.30 the dynamics of the system that randomly opens and closes the valves every
2500 timesteps are plotted. One can see on the red line that it moves to the equilibrium
point for the current flow that goes through the tanks. In figure 6.31 the controller switch-
ing is shown. And the agent chooses the correct LQR based on which valve is open.
Whenever both valves are open the water level in tank 1 is on the black dotted line and the
controller chosen is 5, which is the correct controller for subsystem 4. This can be said for
each segment.

6.3.1 Additional discussion

In this section one could see that the actions the agent chose were more optimal in the
sense discussed earlier. The oscillatory behavior is almost gone and highly reduced in
comparison to the 40 states case in figure 6.1. It was argued that the reason for this behavior
was either weighting of future reward, local minimum or that the agent still has to converge
to the optimal policy. What happens when one reduces the state space is equivalent to
training the 40 state system more. This is in line with what is seen with the reduced state
space versions. The agent seems to be acting more optimally when the state space is
reduced. There is still some oscillatory behavior that can be seen in figure 6.31 and 6.16.

60

Figure 6.33: Same as in figure 6.15 with less training.

Figure 6.34: Same as in figure 6.16 with less training.

61

Figure 6.35: Valves open and closes randomly as in figure 6.30 but with less training.

Figure 6.36: The actions taken for figure 6.35.

62

Figure 6.37: This shows which valves are open for 6.35.

Taking it further figure 6.33 and 6.34 show the same dynamics for subsystem 2 as in figure
6.15 and 6.16. It is clear that the amount of training is important to get optimal behavior.
There is a lot more oscillation when training is reduced. And in figure 6.35 and figure
6.36 the dynamics + actions for the emergency system with random switching are shown.
Compared to figure 6.30 and figure 6.31 there is much more oscillation. But as stated
earlier, the goal is not to obtain optimal behavior, but to research the possibility for an RL
agent to define the rules to switch between the correct controllers for this system.

Another way to remove this unwanted switching is by penalizing the control input. When-
ever the agent switches controller it is punished, or add the controller value to the reward
function. Both these ways were experimented with, but if one looks back at chapter 3.1.2
it stated that the reward function should not be a complete description of how the agent
should behave. By trying to introduce the controller value into the reward function one
would ”help” the agent behave the proper way. The main purpose of this thesis was to
avoid an unnecessary amount of knowledge and build the system as simple as possible.
Adding the controller to the reward function the proper way would probably decrease
these oscillations, but would not follow the methods stated in the literature of how one
should design a reward function [(24), pages 42-43].

63

64

Chapter 7
Conclusion and future work

The rules for switching between multiple controllers in a nonlinear system were made
possible with the use of reinforcement learning. The agent was able to define areas for
when to use different controllers. This was first shown with a simple coupled tank system.
The agent was able to learn an optimal switching strategy to reach a set point and regulate
around this area. It was made easier with the reduction of the state space. This improved
the result for this system because the relative training to state ratio was much higher.

It was investigated further what the addition of 2 more controllers would do to the system.
The agent was able to choose the appropriate controller. However, in one of the cases there
was some oscillatory behavior most likely due to a local minimum, a policy that still has
to converge to the optimum, or the future rewards have big weights.

Making the system more complex in such a way that it could not meet the control objective
with only one controller was done by adding two more valves. These where emergency
valves. These were either opened when the water level rose above 0.375m to avoid over-
flow, forcefully opened or closed in the middle of the episode, or randomly opened in fixed
intervals. These additional valves separated the system into 4 subsystems, each with their
own LQR. The agent was able to switch to the correct LQR depending on which valve was
open. When switching between controllers there was some oscillatory behavior that could
again be explained with what was stated above.

When the valves were forcefully opened and closed the agent was able to switch to the cor-
rect LQR when the system transitioned to the next subsystem. Switching from subsystem
1 to 3 the agent switched to the max controller and then over to the correct LQR. Other
times it did not do this and switched directly to the next correct LQR. The agent looks far
ahead into the future and it might avoid overshooting the water level in tank 2.

The agent was able to define a set of rules to switch between the correct LQR to control
around a set point, but it seems to not switch optimally to get to this equilibrium as fast as
possible. It was shown that by training the system less the oscillation was worse, hence

65

by training the system more it would eventually converge to the optimal policy and the
oscillation would be gone, or at the least decrease.

The agent was able to efficiently switch between the correct controllers and define a set
of rules to do this. The state-action-space was reduced from 30000 to 45 where the per-
formance was even better in the latter case. This was combined to make the system more
complex such that more than one controller was needed for satisfactory control. And the
agent was still able to define rules for controller scheduling. The agent needed to be trained
more for perfect switching, but it was enough to answer all the research question in chapter
1.1.1 properly.

This is a very simple system and there have been done controller scheduling for different
systems (22) and gain scheduling + controller scheduling in (6). These two systems are
more complex than the system in this thesis. For future work, one should try to implement
this with a more complex system, maybe where gain scheduling is already utilized. Before
the topic of the thesis was chosen, it was considered to cut RL out of the control scheme,
which is to use artificial intelligence (AI) directly to control a system. This would be of
great interest because one of the main reasons for this thesis was to study if one could drop
a lot of the work and knowledge needed about the system to control it. Reflecting on this
thesis, one had to know a lot about the system, about the controls and the theory of RL
needed to be well known and well studied to make this system. Cutting out RL doesn’t
necessarily take less work, but it means that we would not need to know as much about
the system and the controllers to meet the control objective, and we would let the AI do a
lot of the work. This would make such tasks more scalable and adaptive.

66

Bibliography

[1] M. A. Nielsen, “Neural networks and deep learning,” 2015. [Online]. Available:
http://neuralnetworksanddeeplearning.com/

[2] A. A. e. a. Tijjani AS, Shehu MA, “Performance analysis for coupled - tank sys-
tem liquid level control using mpc, pi and pi-plus-feedforward control scheme.” J
Robotics Autom, vol. 1, no. 1, pp. 42–53, 2017.

[3] M. Stewart, “The limitations of machine learning,” 2019, [Online; ac-
cessed ¡18.04.2020¿]. [Online]. Available: https://towardsdatascience.com/
the-limitations-of-machine-learning-a00e0c3040c6

[4] EDUCBA, “Supervised learning vs unsupervised learning,” 2020, [On-
line; accessed ¡19.04.2020¿]. [Online]. Available: https://www.educba.com/
supervised-learning-vs-unsupervised-learning/

[5] M. Nagayoshi, H. Murao, and H. Tamaki, “A reinforcement learning with switching
controllers for a continuous action space,” Artificial Life and Robotics, vol. 15, pp.
97–100, 08 2010.

[6] P. Pierpaoli, T. Doan, J. Romberg, and M. Egerstedt, “A reinforcement learning
framework for sequencing multi-robot behaviors,” 09 2019.

[7] W. Knight, “This factory robot learns a new job overnight,” 2016, [Online; accessed
¡19.04.2020¿]. [Online]. Available: https://www.technologyreview.com/2016/03/18/
161519/this-factory-robot-learns-a-new-job-overnight/

[8] P. TECHNOLOGIES, “Solving intelligence for investment management,” 2018,
[Online; accessed ¡19.04.2020¿]. [Online]. Available: https://pit.ai/

[9] M. Nazari, A. Oroojlooy jadid, L. Snyder, and M. Takáč, “Deep reinforcement learn-
ing for solving the vehicle routing problem,” 02 2018.

[10] H. Benbrahim and J. A. Franklin, “Biped dynamic walking using reinforcement
learning,” Robotics and Autonomous Systems, vol. 22, no. 3, pp. 283 –

67

http://neuralnetworksanddeeplearning.com/
https://towardsdatascience.com/the-limitations-of-machine-learning-a00e0c3040c6
https://towardsdatascience.com/the-limitations-of-machine-learning-a00e0c3040c6
https://www.educba.com/supervised-learning-vs-unsupervised-learning/
https://www.educba.com/supervised-learning-vs-unsupervised-learning/
https://www.technologyreview.com/2016/03/18/161519/this-factory-robot-learns-a-new-job-overnight/
https://www.technologyreview.com/2016/03/18/161519/this-factory-robot-learns-a-new-job-overnight/
https://pit.ai/

302, 1997, robot Learning: The New Wave. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0921889097000432

[11] L. Yang, Z. Nagy, P. Goffin, and A. Schlueter, “Reinforcement learning for
optimal control of low exergy buildings,” Applied Energy, vol. 156, pp. 577 –
586, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S030626191500879X

[12] W. Ilg and K. Berns, “A learning architecture based on reinforcement learning for
adaptive control of the walking machine lauron,” Robotics and Autonomous Systems,
vol. 15, no. 4, pp. 321 – 334, 1995, reinforcement Learning and Robotics. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0921889095000095

[13] NTNU, “Structuring an assignment,” 2020, [Online; accessed ¡19.04.2020¿].
[Online]. Available: https://www.ntnu.edu/sekom/structuring-an-assignment

[14] N. B. Almutairi and M. Zribi, “Sliding mode control of coupled tanks,”
Mechatronics, vol. 16, no. 7, pp. 427 – 441, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S095741580600033X

[15] H. Pan, H. Wong, V. Kapila, and M. S. de Queiroz, “Experimental validation of a
nonlinear backstepping liquid level controller for a state coupled two tank system,”
Control Engineering Practice, vol. 13, no. 1, pp. 27 – 40, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066103002946

[16] K. Tan, S. Huang, and R. Ferdous, “Robust self-tuning pid controller for nonlinear
systems,” Journal of Process Control, vol. 12, no. 7, pp. 753 – 761, 2002. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0959152402000057

[17] K.-L. Wu, C.-C. Yu, and Y.-C. Cheng, “A two degree of freedom level control,”
Journal of Process Control, vol. 11, no. 3, pp. 311 – 319, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0959152400000056

[18] A. Visioli, “A new design for a pid plus feedforward controller,” Journal of
Process Control, vol. 14, no. 4, pp. 457 – 463, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0959152403000982

[19] F. Bianchi, R. Mantz, and C. Christiansen, “Gain scheduling control of
variable-speed wind energy conversion systems using quasi-lpv models,” Control
Engineering Practice, vol. 13, no. 2, pp. 247 – 255, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066104000541

[20] “A reinforcement learning variant for control scheduling,” Guha,
pp. 479–485, 1990. [Online]. Available: https://papers.nips.cc/paper/
337-a-reinforcement-learning-variant-for-control-scheduling.pdf

[21] J. D. d. M. A. D. D. N. A. J. J. L. F. A. A. R. Diniz, P. R. M. Pires and S. M.
Kanazava, “Reinforcement learning for controlling a coupled tank system based on
the scheduling of different controllers,” in 2010 Eleventh Brazilian Symposium on
Neural Networks, Sao Paulo, Brazil, 2010, pp. 212–216.

68

http://www.sciencedirect.com/science/article/pii/S0921889097000432
http://www.sciencedirect.com/science/article/pii/S0921889097000432
http://www.sciencedirect.com/science/article/pii/S030626191500879X
http://www.sciencedirect.com/science/article/pii/S030626191500879X
http://www.sciencedirect.com/science/article/pii/0921889095000095
https://www.ntnu.edu/sekom/structuring-an-assignment
http://www.sciencedirect.com/science/article/pii/S095741580600033X
http://www.sciencedirect.com/science/article/pii/S0967066103002946
http://www.sciencedirect.com/science/article/pii/S0959152402000057
http://www.sciencedirect.com/science/article/pii/S0959152400000056
http://www.sciencedirect.com/science/article/pii/S0959152403000982
http://www.sciencedirect.com/science/article/pii/S0967066104000541
https://papers.nips.cc/paper/337-a-reinforcement-learning-variant-for-control-scheduling.pdf
https://papers.nips.cc/paper/337-a-reinforcement-learning-variant-for-control-scheduling.pdf

[22] M. Nishimura, J. Yoshimoto, and S. Ishii, “Acrobot control by learning
the switching of multiple controllers,” pp. 67–71, 2004. [Online]. Available:
https://link.springer.com/content/pdf/10.1007%2Fs10015-004-0340-6.pdf

[23] A. R. T. Rafal Goebel, Ricardo G. Sanfelice, Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, 2012.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT
Press, 2014-2017.

[25] E. Even-Dar and Y. Mansour, “Learning rates for q-learning,” Journal of Machine
Learning Research, vol. 5, pp. 1–25, 2003.

[26] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,”
in Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 1, Dec
1995, pp. 560–564 vol.1.

[27] S. McLeod, “Behaviorist approach,” 2017, [Online; accessed ¡18.05.2020¿].
[Online]. Available: https://www.simplypsychology.org/behaviorism.html

[28] I. The MathWorks, “Define reward signals,” 1994-2020, [Online; ac-
cessed ¡18.05.2020¿]. [Online]. Available: https://www.mathworks.com/help/
reinforcement-learning/ug/define-reward-signals.html

[29] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 2613–2621. [Online].
Available: http://papers.nips.cc/paper/3964-double-q-learning.pdf

[30] R. M. Murray, “Lqr control,” 2016, accessed: 19.03.2020. [Online]. Available:
http://www.cds.caltech.edu/∼murray/courses/cds110/wi06/lqr.pdf

[31] K. J. Åström Richard M. Murray, Feedback Systems. Princeton University Press,
2008.

[32] K. Murphy, “A brief introduction to reinforcement learning,” 1998, [Online;
accessed ¡02.04.2020¿]. [Online]. Available: https://www.cs.ubc.ca/∼murphyk/
Bayes/pomdp.html

[33] J. Zhang, “Solving the gridworld problem with reinforcement learning,” 2019,
[Online; accessed ¡03.04.2020¿]. [Online]. Available: https://towardsdatascience.
com/reinforcement-learning-implement-grid-world-from-scratch-c5963765ebff

[34] T. S. freeCodeCamp, “An introduction to reinforcement learning,” 2018, [Online;
accessed ¡20.05.2020¿]. [Online]. Available: https://www.freecodecamp.org/news/
an-introduction-to-reinforcement-learning-4339519de419/

[35] T. Simonini, “Q learning theory and explantion,” 2018, [Online; ac-
cessed ¡28.04.2020¿]. [Online]. Available: https://www.freecodecamp.org/news/
diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe/

69

https://link.springer.com/content/pdf/10.1007%2Fs10015-004-0340-6.pdf
https://www.simplypsychology.org/behaviorism.html
https://www.mathworks.com/help/reinforcement-learning/ug/define-reward-signals.html
https://www.mathworks.com/help/reinforcement-learning/ug/define-reward-signals.html
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://www.cds.caltech.edu/~murray/courses/cds110/wi06/lqr.pdf
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://towardsdatascience.com/reinforcement-learning-implement-grid-world-from-scratch-c5963765ebff
https://towardsdatascience.com/reinforcement-learning-implement-grid-world-from-scratch-c5963765ebff
https://www.freecodecamp.org/news/an-introduction-to-reinforcement-learning-4339519de419/
https://www.freecodecamp.org/news/an-introduction-to-reinforcement-learning-4339519de419/
https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe/
https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe/

[36] L. Matignon, G. Laurent, and N. Fort-Piat, “Reward function and initial values: Bet-
ter choices for accelerated goal-directed reinforcement learning,” 09 2006.

[37] T. S. freeCodeCamp, “An introduction to deep q-learning: let’s play doom,” 2018,
[Online; accessed ¡20.05.2020¿]. [Online]. Available: https://www.freecodecamp.
org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

[38] Quanser, “Coupled tank educational kit,” 2020, accessed: 24.03.2020. [Online].
Available: https://www.quanser.com/products/coupled-tanks/

[39] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing, 2006–,
[Online; accessed ¡02.04.2020¿]. [Online]. Available: http://www.numpy.org/

[40] python.org, “Pickle library documentation,” 2020, [Online; accessed ¡28.04.2020¿].
[Online]. Available: https://docs.python.org/3/library/pickle.html

[41] E. F. M. D. John Hunter, Darren Dale and the Matplotlib development team,
“Matplotlib documentation,” 2012-2018, [Online; accessed ¡28.04.2020¿]. [Online].
Available: https://matplotlib.org/3.1.1/contents.html

[42] T. S. community, “Linear algebra toolbox for python,” 2019, [Online; accessed
¡28.04.2020¿]. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/linalg.
html

[43] P. Harrison, “A q learning code example,” 2020, [Online; ac-
cessed ¡28.04.2020¿]. [Online]. Available: https://pythonprogramming.net/
own-environment-q-learning-reinforcement-learning-python-tutorial/

[44] T. Simonini, “A q learning code example,” 2018, [Online; accessed
¡28.04.2020¿]. [Online]. Available: https://github.com/simoninithomas/
Deep reinforcement learning Course/blob/master/Q%20learning/FrozenLake/Q%
20Learning%20with%20FrozenLake.ipynb

70

https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/
https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/
https://www.quanser.com/products/coupled-tanks/
http://www.numpy.org/
https://docs.python.org/3/library/pickle.html
https://matplotlib.org/3.1.1/contents.html
https://docs.scipy.org/doc/scipy/reference/linalg.html
https://docs.scipy.org/doc/scipy/reference/linalg.html
https://pythonprogramming.net/own-environment-q-learning-reinforcement-learning-python-tutorial/
https://pythonprogramming.net/own-environment-q-learning-reinforcement-learning-python-tutorial/
https://github.com/simoninithomas/Deep_reinforcement_learning_Course/blob/master/Q%20learning/FrozenLake/Q%20Learning%20with%20FrozenLake.ipynb
https://github.com/simoninithomas/Deep_reinforcement_learning_Course/blob/master/Q%20learning/FrozenLake/Q%20Learning%20with%20FrozenLake.ipynb
https://github.com/simoninithomas/Deep_reinforcement_learning_Course/blob/master/Q%20learning/FrozenLake/Q%20Learning%20with%20FrozenLake.ipynb

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

M
as

te
r’s

 th
es

is

Robin Honningsvåg Kleiven

Applying Reinforcement Learning for
Controller Scheduling

Master’s thesis in Department of Engineering Cybernetics

Supervisor: Ole Morten Aamo

June 2020

	Summary
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem description
	Research Questions
	Motivation

	Report structure

	Literature Review
	Background
	Reinforcement learning
	General reinforcement learning
	Learning
	Q-learning
	Deep Q learning

	Control theory
	LQR
	PID control

	Experimental Design
	Base system
	System dynamics
	Additional complexity

	Methods
	RL agent
	Agent design
	Controller design

	Additional complexity
	Design of emergency valve system
	General discussion

	Software and Hardware

	Results and discussion
	Base system
	Results
	Additional discussion

	Base system + additional controllers
	Emergency valve system
	Additional discussion

	Conclusion and future work

