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Samandrag

I denne masteroppgåva vart det demonstrert at djup forsterkande læring (engelsk: Deep
Reinforcement Learning / DRL) kan nyttast for å trena eit reaktivt, autonomt fartøy utstyrt
med påmonterte avstandssensorar til å navigera ukjent farvatn, kva omfattar ikkje berre ei
utfordring om å unngå stranding medan ein går framover i samsvar med den ønskte ruta,
men også dynamisk kollisjonsunngåelse, altså styringsstrategiar som minimerer risikoen
for sammentreff i situasjonar der fartøyet er på kollisjonskurs med andre imøtekommande
eller kryssande skip.

For dette formålet vart læringsalgoritmen PPO (engelsk Proximal Policy Optimication /
PPO) nytta, som er sett på som ein leiande DRL-metode for anvendelser innan regulering-
steknikk av kontinuerleg natur. Den lærande agenten, som gjennom treningsprosessen vart
rettleidd av ein belønningsfunksjon konstuert for å, på numerisk vis, gjenspegla prefer-
ansane våre for styringsåtferda til fartøyet, vart så evaluert basert på prestasjonen sin i
eit virtuelt simuleringsmiljø som vart rekonstruert frå terreng- og maritime trafikkdata frå
Trondheimsfjorden.
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Summary

In this project, we show that Deep Reinforcement Learning (DRL) is applicable to the
problem of training a reactive, autonomous vessel to navigate unknown waters, which en-
tails not only the challenge of avoiding running ashore while efficiently making progress
along the desired path, but also dynamic obstacle avoidance, i.e. control that mitigates col-
lision risk upon ship encounters. A rangefinder sensor suite attached to the vessel, whose
output is fed to the agent’s control policy network, is designed, implemented in software
and efficiently pre-processed to reduce the dimensionality of the perception vector while
maintaining sensing integrity.

The contribution of this work is two-fold: First, we outline the design, implementation
and training of the perception-based guidance agent, with the goal of making it capable
of following priori known trajectories while avoiding collisions with other vessels. The
reinforcement learning agent is trained to control the vessel’s actuators, which include
both thrusters as well as rudder control surfaces. A carefully constructed reward func-
tion, which balances the prioritization of path adherence versus that of collision avoidance
(which can be considered competing objectives), is used to guide the agent’s learning pro-
cess. Then, the state-of-the-art Proximal Policy Optimization (PPO) DRL algorithm is
utilized for training the agent’s policy such that it, in the end, yields optimal actions with
regards to maximizing the reward that the agent receives by the environment over time.
Finally, we evaluate the trained agent’s performance in challenging, dynamic test scenar-
ios, including ones that are reconstructed from real-world terrain and maritime traffic data
from the Trondheim Fjord, an inlet of the Norwegian sea.

Furthermore, The Python simulation framework gym-auv, which was developed to facil-
itate this research, has a vast potential to enable further research in the field, and is thus
covered extensively in this thesis. It provides not only a software foundation that can be
easily expanded by new environments, reward function designs and vessel models, but
also access to high-quality plotting and reporting functionality as well as access to real-
time (and recorded) video rendering in both 2D and 3D.
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Abstract

In this study, we explore the feasibility of applying Proximal Policy Optimization (PPO),
a state-of-the-art Deep Reinforcement Learning (DRL) algorithm for continuous control
tasks, on the dual-objective problem of controlling an underactuated Autonomous Surface
Vehicle (ASV) to follow an a priori known path while avoiding collisions with dynamic
obstacles, particularly other vessels, along the way. With no a priori knowledge of the
environment except for the waypoints of its desired path, the agent makes reactive control
decisions based on rangefinder sensors measuring the distance to nearby obstacles, be it
static obstacles such as the shoreline or dynamic obstacles such as other vessels.

Furthermore, a software framework based on the OpenAI gym Python toolkit, in which
AI-based ASVs can be simulated, trained and evaluated in a challenging, stochastically
generated virtual environment, is developed. For the sake of demonstrating the potential
of deploying the algorithm on a real-world vessel, the Trondheim Fjord area in Norway
is reconstructed virtually based on high-fidelity terrain data. Furthermore, a sample of
marine tracking data in the area is used to simulate realistic vessel encounters, so that the
agent can be evaluated on its performance in real-world-like scenarios.

The excellent (i.e. collision-free) results that were obtained through software simulations
clearly show that, without any prior knowledge about the dynamics governing the motion
of a marine surface vehicle, a DRL-based agent is capable of learning how to navigate
unknown waters, facing not only the danger of running ashore or stranding, but also chal-
lenging encounters with other moving vessels. By rewarding the agent for its performance
in two separate, competing problem domains, namely those of path following and collision
avoidance, we achieve an excellent level of guidance performance from the trained agent.
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Chapter 1
Introduction

Autonomy, i.e. the capacity of self-governance, offers an opportunity to improve
the efficiency of transportation while reducing the frequency of maritime casualties.
In order to realize safe and reliable autonomous surface vehicles (ASVs), however,
effective path planning is a critical prerequisite. This is a highly complex challenge, as
it requires not only the ability to follow an a prior known path, but also to make dynamic
adjustments to the projected vessel path when encountering unforeseen obstacles, such
as other vessels.

Deep Reinforcement Learning (DRL), a machine learning paradigm concerned with us-
ing deep learning for iteratively approximating optimal behavior policies in unknown
environments, has gained a lot of traction in recent years following highly successful
applications on similar problems, but is a yet largely unexplored approach to the task.

Autonomous vehicles is one of the most interesting prospects associated with the rise
of artificial intelligence and machine learning in recent years. In particular, the success
of DRL-based applications, in an ever-increasing number of domains, has contributed to
putting the former pie-in-the-sky proposal of self-driving vehicles on the horizon of tech-
nological development.

While automated path following, at least in the maritime domain, has been a relatively
trivial endeavor in the light of classical control theory and is a well-established field of
research (4; 7; 46; 19; 23; 1; 52; 50), considerably more advanced capabilities are required
to navigate unknown, dynamic environments; characteristics that, generally speaking, ap-
ply to the real world. Reactive collision avoidance, i.e. the ability to perform evasive
maneuvers that mitigate collision risk based on a sensor-based perception of the local en-
vironment, remains a challenging undertaking.

This is not to say that the topic is not well-researched; a wide variety of approaches have

1



Chapter 1. Introduction

been proposed, including especially (but not exhaustively) artificial potential field methods
(29; 3; 51), dynamic window methods (20; 5; 11), velocity obstacle methods (16; 31) and
optimal control-based methods (8; 43; 12; 25; 2). Yet, it appears from a literature review
that, when applied to autonomous vehicles with non-holonomic and real-time constraints,
the approaches suggested so far suffer from one or more of the following drawbacks (69;
30; 47; 48):

• Unrealistic assumptions or neglect of the vessel dynamics.

• Inability to scale to environments of non-trivial complexity (e.g. multi-obstacle sce-
narios).

• Excessive computation time requirements.

• Disregard for desirable output trajectory properties, including smoothness, continu-
ity, feasibility and safety.

• Incompatibility with external environmental forces such as wind, currents and waves.

• Stability issues caused by singularities.

• Sub-optimal outputs due to local minima.

• Requirement of a precise mathematical model of the controlled vessel.

Focusing on the maritime domain, this project will explore how a DRL-based approach
can be used for training an end-to-end autopilot mechanism capable of avoiding collisions
at sea. Given the potential of deep neural networks to generalize over the observation
space, this is a particularly promising approach to vessel control.

In the simpler problem where path following and collision avoidance are treated as separate
challenges, DRL-based methods have already demonstrated remarkable potential, yielding
promising results in a multitude of studies, including especially (39; 38; 70; 68; 40) for the
former problem domain and (24; 34; 71; 35) for the latter.

1.1 Motivation
Arguably, the most promising aspect of autonomous vessels is not the obvious economic
impact resulting from increased efficiency and the replacement of costly human labor, but
rather the potential to eliminate injuries and material damage caused by collisions. Ac-
cording to the European Maritime Safety Agency, which annually publishes statistics on
maritime accidents related to the EU member states, maritime collisions account for hun-
dreds of injuries each year in the EU alone, as shown in Figure 1.1. Furthermore, almost
half of all casualties at sea are “navigational in nature, including contact, collision and
grounding or stranding” (14), and 65.8% of the accidents can be attributed to human error
(13), highlighting the value that autonomy can bring in this domain.

2



1.2 Report outline

DRL-based methods, whose potential as a guidance system for ASVs is explored in this
work, are fundamentally distinct from classical, model-based guidance approaches to au-
tonomy. While providing highly desirable theoretical guarantees in terms of stability and
robustness, existing methods typically require full knowledge of the non-linear dynamics
governing the motion of the controlled vessel. As this often relies on costly system identi-
fication procedures for estimating the vessel parameters, a demonstration of the potential
DRL-based guidance offers as an alternative will be valuable to the field of autonomous
vessel guidance.

Validating a DRL-based approach to vessel guidance in a simulated, real-world-like en-
vironment can pave the way for applying the technology on a real, physical vessel. A
positive result could be a preliminary step on the important path towards the adoption of
AI systems for autonomous vessel guidance. Due to the limitations of existing methods,
this has yet to take place on a larger scale.

800
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1100

1200

1300

2014 2015 2016 2017 2018 2019

Figure 1.1: Human injuries per year according to maritime accident statistics published by the
European Maritime Safety Agency. (13)

1.2 Report outline
In Chapter 2, we introduce the relevant background topics for this project. This will
not only cover the vessel dynamics and existing approaches to collision avoidance, but
also give a comprehensive introduction to DRL, starting with the fundamentals and, in a
piece by piece fashion, describing the defining premises and concepts for the Proximal
Policy Optimization (PPO) algorithm which is utilized in this work. Next, Chapter 3 will
outline the specifics of our methodology, i.e. describe and justify the design choices of
our solution for a RL-based path following and collision avoidance agent, as well as the
training and evaluation methodology. In Chapter 4, the Python software framework which
facilitated the research will be presented in a detailed fashion, such that it can function as
a reference for future research. The empirical test results obtained in this project will then

3



Chapter 1. Introduction

be presented and discussed in Chapter 5 together with the project’s conclusion, which
also outlines interesting directions that future work based on this project might take.

4



Chapter 2
Background

In this chapter, relevant background topics for this project are introduced, most notably
the theoretical foundation underlying the dynamics of a marine vessel, as well as deep
reinforcement learning, which is the solution approach to our research problem.

2.1 Dynamics of a marine vessel
In this section, a brief description of the dynamics governing the motion of a marine vessel
will be provided. For a more comprehensive overview of topic, the reader is referred to
(18).

2.1.1 Coordinate frames
In order to model the dynamics of marine vessels, one must first define the coordinate
frames. Two coordinate frames typically used in vehicle control applications are of par-
ticular interest: The geographical North-East-Down (NED) and body frames. The NED
reference frame {n} = (xn, yn, zn) forms a tangent plane to the Earth’s surface, making it
useful for terrestrial navigation. Here, the xn-axis is directed north, the yn-axis is directed
east and the zn-axis is directed towards the center of the earth.

The origin of the body-fixed reference frame {b} = (xb, yb, zb) is fixed to the current
position of the vessel in the NED-frame, and its axes are aligned with the heading of the
vessel such that xb is the longitudinal axis, yb is the transversal axis and zb is the normal
axis pointing downwards. However, as the vessel is restricted to surface level motion in
our application, only the North and East components are of interest.

5



Chapter 2. Background

Figure 2.1: Illustration of the NED and body coordinate frames.

2.1.2 State variables

Assumption 1 (State space restriction). The vessel is always located on the surface, with
no fluctuations in pitch and roll angle.

Following Assumption 1, the state vector consists of the generalized coordinates η =
[xn, yn, ψ]

T , where xn and yn are the North and East positions, respectively, in the ref-
erence frame {n}, and ψ is the yaw angle, i.e. the current angle between the vessel’s
longitudinal axis xb and the North axis xn (59). Correspondingly, the translational and
angular velocity vector ν = [u, v, r]

T consists of the surge (i.e. forward) velocity u, the
sway (i.e. sideways) velocity v as well as yaw rate r.

Symbol Variable
xn North position in reference frame {n}
yn East position in reference frame {n}
ψ Yaw corresponding to a Euler angle zyx convention from {n} to {b}

Table 2.1: Generalized vessel coordinates (SNAME notation)

6



2.1 Dynamics of a marine vessel

Symbol Variable
u Surge (i.e. speed along the xb-axis)
v Sway (i.e. speed along the yb-axis
r Yaw rate measured along the zb-axis

Table 2.2: Body-frame velocities (SNAME notation)

2.1.3 Vessel model
We base the vessel dynamics on CyberShip II, a 1:70 scale replica of a supply ship which
has a length of 1.255 m and mass of 23.8 kg (57). Training the DRL agent on a small
vessel, such as CyberShip II, would allow for a relatively straight-forward deployment on
a real-world model ship for further testing of the algorithm. However, the symbolic rep-
resentation of the dynamics of a surface vessel, which is obtained from well-researched
ship maneuvering theory, is the same regardless of the vessel - the distinctions lie solely
in the numerical model parameters. Thus, if it can be demonstrated that an DRL agent can
control a small-sized model ship in an intelligent manner, there is reason to believe that
controlling a full-sized ship would be within its reach.

As it is equipped with rudders and propellers aft, as well as one bow thruster fore, Cyber-
ship II is a fully actuated ship. This means that it could, in principle, be commanded to
follow an arbitrary trajectory in the state space, as it is able to accelerate independently in
every relevant degree of freedom simultaneously. However, for the purpose of simplifying
the DRL agent’s action space, we disregard the bow thruster in this study and allow only
the aft thrusters and control surfaces to be applied by the DRL agent as control signals.
This omission is further motivated by the fact that bow thrusters have limited effectiveness
at higher speeds (63). Thus, the control vector can be modelled as f = [Tu, Tr]

T , where
Tu represents the force input in surge and Tr represents the moment input in yaw.

Assumption 2 (Calm sea). There are no external disturbances to the vessel such as wind,
ocean currents or waves.

Given Assumption 2, the 3-DOF vessel dynamics can be expressed in a compact matrix-
vector form as

η̇ = Rz,ψ(η)ν

Mν̇ + C(ν)ν + D(ν)ν = Bf
(2.1)

where Rz,ψ represents a rotation of ψ radians around the zn-axis as defined by

Rz,ψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


Furthermore, M ∈ R3×3 is the mass matrix and includes the effects of both rigid-body and
added mass, C(ν) ∈ R3×3 incorporates centripetal and Coriolis effects and D(ν) ∈ R3×3

is the damping matrix. Finally, B ∈ R3×2 is the actuator configuration matrix. The
numerical values of the matrices are taken from (58), where the model parameters were
estimated experimentally for CyberShip II in a marine control laboratory.
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Chapter 2. Background

2.2 Deep reinforcement learning
In this section, we introduce the machine learning paradigm of Deep Reinforcement Learn-
ing, and outline the specific technique that our method builds on. For a more comprehen-
sive coverage of the topic, the reader is advised to consult the book by Sutton and Barto
(61), as well as the (55), where the PPO algorithm was first suggested.

On a very basic level, reinforcement learning (RL) establishes a framework for letting
autonomous (i.e. self-governing) agents figure out how to ideally behave in their sur-
roundings. Here, ”let learn”, as opposed to ”teach” is not an incidental word choice;
a characterizing feature of reinforcement learning is that the learning is not instructive,
as opposed to the related field of supervised learning. Instead, learning is accomplished
through a combination of exploration and evaluative feedback, which, to some extent, re-
sembles the manner by which people and other mammals learn (61) as they grow up; they
become progressively more intelligent through experimentation with their surroundings,
or stated otherwise, by virtue of trial-and-error.

Applications of RL on high-dimensional, continuous control tasks heavily rely on func-
tion approximators to generalize over the state space. Even if classical, tabular solution
methods such as Q-learning can be made to work (provided a discretizing of the continu-
ous action space), this is not considered an efficient approach for control applications (33).
In recent years, given their remarkable generalization ability over high-dimensional input
spaces, the dominant approach has been the application of deep neural networks which are
optimized by means of gradient methods. There are, however, different approaches to how
the networks are utilized, and thus their semantic interpretation in the context of the learn-
ing agent differs. In Q-Learning-based methods such as Deep Q-Learning (DQN) (45),
a deep neural network is used to predict the expected value (i.e. long-term, cumulative
reward) of state-action pairs, which reduces the policy to an optimization problem over
the set of available actions given the current state. In gradient-based policy methods, on
the other hand, the policy itself is implemented as a deep neural network whose weights
are optimized by means of gradient ascent (or approximations thereof). Lately, several
algorithms built on this principle have gained a large traction in the RL research com-
munity, most notably Deep Deterministic Policy Gradient (DDPG) (33), Asynchronous
Advantage Actor Critic (A3C) (44) and Proximal Policy Optimization (PPO) (55). For
continuous control tasks, this family of DRL methods is commonly considered to be the
more efficient approach (64). Based on previous work, where the PPO algorithm signif-
icantly outperformed other methods on a learning problem similar to the one covered in
this study (42), we focus our efforts on this method. PPO strikes a balance between data
efficiency and ease of implementation, and is likely to be applicable in a wide range of
continuous, high-dimensional control scenarios with relatively minor needs for hyperpa-
rameter tuning (55).

2.2.1 RL Preliminaries
First, we model the interplay between the agent and the environment as an infinite-horizon
discounted Markov Decision Process (MDP), formally defined by the 6-tuple (S,A, p, p0, r,Ω, o, γ)

8



2.2 Deep reinforcement learning

where

• S is the state space,

• A is the action space,

• p : S × A × S → [0, 1] defines the conditional transition probabilities for the next
state s′ such that p(s′|s, a) = Pr(St+1 = s′|St = s,At = a),

• p0 : S → [0, 1] is initial state distribution, i.e. po(s) = Pr(S0 = s),

• r : S × A → R returns the numeric reward at each time-step as function of the
current state and applied action,

• γ ∈ [0, 1] is the discount factor for future rewards.

The agent draws its actions from its policy π. The policy may be a deterministic func-
tion (as in DDPG), but in the context of PPO, it is modelled as a stochastic function. The
conditional action distribution given the current state s is given by π(a|s) : S × A →→
[0, 1] = Pr(At = a|St = s). Specifically, we assume that the agent is drawing actions
from a non-uniform multivariate Gaussian distribution whose mean is outputted by a neu-
ral network parametrized by the weights θ. Formally, this translates to at ∼ π(st), where
t is the current time-step.

Next, we introduce the state-value function V π(s) and the action-value function Qπ(s, a).
V π(s) is the expected return from time t onwards given an initial state s, whereasQπ(s, a)
is the expected return from time t onwards, but conditioned on the current action at. For-
mally, we have that

V π(st) = Esi≥t,ai≥t∼π [Rt|st] (2.2a)

Qπ(st, at) = Esi≥t,ai≥t∼π [Rt|st, at] (2.2b)

where the random variable Rt represents the reward at time-step t.

2.2.2 Policy gradients
The stochasticity of the policy enables us to translate the RL problem, i.e. the search for
the optimal policy, into the problem of optimizing the expectation

J(θ) = Esi,ai∼π(θ) [R0] (2.3)

The family of policy gradient methods, to which PPO belongs, approach gradient ascent
by updating the parameter vector θ according to the approximation θt+1 ← αθt+∇̂θJ(θ),
where ∇̂θJ(θ) is a stochastic estimate of∇θJ(θ) satisfying E

[
∇̂θJ(θ)

]
= ∇θJ(θ). From

the policy gradient theorem (60) we have that the policy gradient∇θJ(θ) satisfies

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

∇θπ(a|s)Qπ(s, a) (2.4)

9



Chapter 2. Background

where µ is the steady state distribution under π such that µ(s) = limt→∞ Pr{St = s|A0:t−1 ∼ π}.
Following the steps outlined in (62), this can be algebraically transformed to

∇θJ(θ) ∝ Eπ[∇θlnπ(At|St)Qπ(St, At)] (2.5)

Also, it can be shown that one can greatly reduce the variance of this expression by replac-
ing the state-action value function Qπ(s, a) in Equation 2.4 by Qπ(s, a)− b(s), where the
baseline function b(s) can be an arbitrary function not depending on the action a, without
introducing a bias in the estimate. Commonly, b(s) is set to be the state value function V π ,
which yields the advantage function

Aπ(s, a) = Qπ(s, a)− V π(s) (2.6)

which represents the expected improvement obtained by an action compared to the default
behavior. This leads to

∇θJ(θ) ∝ Eπ[∇θlog π(At|St)Aπ(s, a)] (2.7)

Thus, an unbiased empirical estimate based on N episodic policy rollouts of the policy
gradient ∇θJ(θ) is

∇̂θJ(θ) =
1

N

N∑
n=1

∞∑
t=0

Ânt∇θ log π(ant |snt ) (2.8)

Aπ(s, a) is, likeQπ(s, a) and V π(s), unknown, and must thus be estimated by the function
approximator Â(s). Generalized Advantage Estimation (GAE), as proposed in (54), is the
most notable approach. GAE makes use of a function approximator (commonly a neural
network) V̂ (s) to approximate the actual value function V (s). A common approach is to
use an artificial neural network, which is trained on the discounted empirical returns.

2.2.3 Proximal policy optimization
PPO, as well as its predecessor (Trust Region Policy Optimization (53)) do not, even
though it is feasible, optimize the policy directly via the expression in Equation 2.8. TRPO
instead optimizes the surrogate objective function

JCPI(θ′) = Êt
[
πθ′(at|st)
πθ(at|st)

Âπθt

]
(2.9)

which provides theoretical guarantees for policy improvement. However, as this relies on
an approximation that is valid only in the local neighborhood, carefully choosing the step
size is critical to avoid instabilities. Unlike in TRPO, where this is achieved by imposing a
hard constraint on the relative entropy between the current and next policy, PPO elegantly
incorporates the preference for a modest step-size in the optimization target, yielding a
more efficient algorithm (55). Specifically, it instead focuses on maximizing

JCLIP (θ′) = Êt
[
min

(
rt(θ)Â

πθ
t , clipε (rt(θ))Â

πθ
t

)]
clipε(x) = clip (x, 1− ε, 1 + ε)

(2.10)
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where rt(θ) is a shorthand for the probability ratio πθ′ (at|st)
πθ(at|st) .

The training process, which is written in pseudocode format in Algorithm 1, can then be
summarized as follows: At each iteration, PPO first collects batches of Markov trajectories
from concurrent rollouts of the current policy. Next, the policy is updated according to a
stochastic gradient descent update scheme.

Algorithm 1 Proximal Policy Optimisation
for iteration = 1, 2, ... do

for actor = 1, 2, ...N do
For T time-steps, execute policy πθ.
Compute advantage estimates Â1, . . . ÂT

for epoch = 1, 2, ...NE do
Obtain mini batch of NMB samples from the NAT simulated time-steps.
Perform gradient descent update from minibatch (XMB ,YMB).
θ ← θ′

2.3 Tools and libraries
The code implementation of our solution make use of the RL framework provided by the
Python library OpenAI Gym (6), which was created for the purpose of standardizing the
benchmarks used in RL research. It provides a easy-to-use framework for creating RL
environments in which custom RL agents can be deployed and trained with minimal over-
head.

Stable Baselines (27), another Python package, provides a large set of state-of-the-art par-
allelizable RL algorithms compatible with the OpenAI gym framework, including PPO.
The algorithms are based on the original versions found in OpenAI Baselines (10), but
Stable Baselines provides several improvements, including algorithm standardization and
exhaustive documentation.

The most challenging aspect of the simulation, which is the calculation of the intersection
points between the sensor rays and the boundaries of the nearby obstacles, is handled effi-
ciently by the shapely Python library (56), which offers an easy-to-use interface to a wide
range of geometric analysis-related operations.

The generation of continuous, smooth parameterized path is done using 1D Piecewise
Cubic Hermite Interpolator (PCHIP), which is provided by the Python library SciPy (67),
which offers a wide range of scientific computing methods.

2.3.1 Terrain data
Our maritime simulation environment is made from a digital reconstruction of the Trond-
heim Fjord (Figure 2.2), an inlet of the Norwegian sea. Specifically, it is based on a digital
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Figure 2.2: Map of the Norwegian mainland highlighting the area of interest.1

terrain model (DTM) provided by the Norwegian Mapping Authority (Kartverket). The
data set, which is called DTM10, is generated from airborne laser scanning, and has a
horizontal resolution of 10x10 meters with coverage of the entire Norwegian mainland
(49). The coordinates are given according to the Universal Transverse Mercator (UTM)
rectangular projection system, which partitions the Earth into 60 north-south zones, each
of which has a 6 degree longitudinal span. Within each zone, which is indexed consec-
utively from zone 1 (180°W to 174°W) to zone 60 (174°E to 180°E), a mapping from
latitude/longitude coordinates to a Cartesian x-y coordinate system is performed based on
a local flat earth-assumption. Given the vast number of zones used in the UTM projection
system, the approximated coordinates, which of course have inherent distortions because
of the spherical shape of the Earth, are of relatively high accuracy. The DTM10 data set is
given with respect to zone 33.

2.3.2 Tracking data
We obtain a sample of historical vessel tracking data in the Trondheim Fjord area from a
query of the Norwegian Coastal Administration’s AIS Norway data service. The automatic
identification system (AIS) is an automatic tracking system which provides both static (e.g.

1Original image source: NordNordWest (https://commons.wikimedia.org/wiki/File:
Norway_location_map.svg), ”Norway location map”
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2.3 Tools and libraries

Figure 2.3: Digital terrain reconstructed from DTM10 (Norwegian Mapping Authority) rendered in
3D for debugging and showcasing purposes. Specifically, this shows a view of the Bymarka area, a
nature reserve on the west side of Trondheim.

vessel dimensions) and dynamic (e.g. vessel position, heading and speed) information
based on vessel transmissions. Within the field of autonomous surface vehicle guidance,
AIS information is often used as a supplementary data source that is, by method of sensor
fusion, combined with marine radar in collision avoidance algorithms. Additionally, given
a large enough sample time within the area of interest, it provides a historical model of
the marine traffic in the area. In our case, our historical data results from a 10 day data
query ranging from January 26, 2020 to February 6, 2020 of all recorded traffic (Figure
2.4) within a rectangular area around the Trondheim Fjord.

Depending on the transmitter characteristics for each individual vessel, the resulting track-
ing data resolution varies from 2-20 seconds, facilitating a high-accuracy reconstruction of
each vessel’s trajectory in our simulation. As the AIS tracking data represents vessel po-
sition by latitude/longitude coordinates, a conversion to the zone 33 UTM x-y coordinate
system is called for. To do the conversion, we utilize the from latlon method provided by
the Python package utm (65).

13



Chapter 2. Background

20.0 40.0 60.0 80.0 100.0 120.0
East (km)

20.0

40.0

60.0

80.0

100.0

120.0

N
or

th
 (k

m
)

Figure 2.4: Snapshot of the marine traffic from January 26, 2020 to February 6, 2020 in the Trond-
heim Fjord area based on AIS tracking data. Each red line represents one recorded travel.
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Chapter 3
Methodology

In this chapter, the design and implementation of our DRL controller will be covered. First,
we outline the procedure for generating the training environment in which the DRL agent
optimises its policy - a randomly created obstacle environment whose purpose is to prepare
the agent for real-world-like testing. Second, we, outline in detail how the observation
vector, which is the agent’s perception of the environment, is engineered. Notably, this
entails both path information as well as sensor-based distance measurements of the local
obstacle neighborhood. Also, we justify and present our reward function design. As for
all RL applications, engineering the reward function is critical to achieving the desired
behavior from the trained agent.
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Policy
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Figure 3.1: Flowchart outlining the structure of the guidance system explored in this study. At each
time-step, the agent receives an observation vector, and then, according to its policy, which is im-
plemented as a neural network, outputs an action (i.e. control vector), influencing the state of the
simulated environment. During training, the agent’s policy is continuously improved by means of
gradient ascent based on the reward signal that it receives at each time-step. This constant feedback
enables the agent, whose policy is initially nothing more than a clean slate with no intelligent char-
acteristics, to improve its capabilities through a trial-and-error based approach. Its learning objective
is simple: Find the policy that yields the highest expectation of the agent’s long-term future reward.

3.1 Training environment
DRL extends the utility-maximizing self-improvement concept of reinforcement learning
by the generalization potential of deep neural networks. For that reason, DRL-based au-
tonomous agents have a remarkable ability to generalize their policy over the observation
space, including the domain of unseen observations. And given the complexity and hetero-
geneity of the Trondheim Fjord environment, with archipelagos, shorelines and skerries (as
seen in Figure 2.4), this ability will be fundamental to the agent’s performance. However,
the training environment, in which the agent is supposed to evolve from a blank slate to an
intelligent vessel controller, must be both representative, challenging and unpredictable to
facilitate the generalization.

Of course, the most representative choice for a training scenario would be the Trondheim
Fjord itself, which would, if it was not for the generalization issues associated with this
approach (9), also allow for training the agent via behavior cloning based on the available
vessel tracking data. However, given the resolution of our terrain data, the resulting obsta-
cle geometry is typically very complex, leading to overly high computational demands for
simulating the functioning of the agent’s visual perception system.

Thus, the better choice is to carefully craft an artificial training scenario with simple obsta-
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cle geometries. To reflect the dynamics of a real marine environment, we let the stochastic
initialization method of the training scenario spawn other target vessels with determin-
istic, linear trajectories. Additionally, circular obstacles, which are scattered around the
environment, are used as a substitute for real-world terrain. Specifically, we generate new
environments according to Algorithm 3 (found in the Appendix), a random output sample
of which is shown in Figure 3.2. The parameters used for generating the scenario are listed
in Table 3.1.

Parameter Description Initialization
No,stat Number of static obstacles 20
No,dyn Number of dynamic obstacles 35
Nw Number of path waypoints ∼ Uniform(2, 5)
Lp Path length 8000 m
µr.stat Mean static obstacle radius 300 m
µr.dyn Mean moving obstacle radius 100 m
σd Obstacle displacement distance standard deviation 3000 m

Table 3.1: Parameters used for generating training environment with moving obstacles.
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Figure 3.2: Random sample of the stochastically generated path following training scenario with
moving obstacles. The circles are static obstacles, whereas the vessel-shaped objects are moving
according to the trajectory lines.
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3.2 Observation vector

Here, the goal is to engineer an observation vector s containing sufficient information
about the vessel’s state relative to the path, as well as information from the sensors. To
achieve this, the full observation vector is constructed by concatenating navigation-based
and perception-based features, which formally translates to s = [sn, sp]

T . In the context of
this paper, we consider the term navigation as the characterization of the vessel’s state, i.e.
its position, orientation and velocity, with respect to the desired path. On the other hand,
perception refers to the observations made via the rangefinder sensor measurements. In
the following, the path navigation feature vector sn and the elements culminating in the
perception-based feature vector sp are covered in detail.

3.2.1 Path navigation

A sufficiently information-rich path navigation feature vector would be such that it, on its
own, could facilitate a satisfactory path-following controller (without any consideration
for obstacle avoidance). A few concepts often used in the field of vessel guidance and
control are useful in order to formalize this.

Figure 3.3: Illustration of key concepts for navigation with respect to path following. The path
reference point pd(ω), i.e. point yielding the closest Euclidean distance to the vessel, is here located
right of the vessel, while the look-ahead reference point pd(ω̄ + ∆LA) is located a distance ∆LA

further along the path.

First, we introduce the mathematical representation of the parameterized path, which is
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expressed as

pd(ω) = [xd(ω), yd(ω)]
T (3.1)

where xd(ω) and yd(ω) are given in the NED-frame. Navigation with respect to the path
necessitates a reference point on the path which is continuously updated based on the
current vessel position. Even though other approaches exist, this reference point is best
thought of as the point on the path that has the closest Euclidean distance to the vessel,
given its current position, as visualised in the example illustration shown in Figure 3.3. To
find this, we calculate the corresponding value of the path variable ω̄ at each time-step.
This is an equivalent problem formulation because the path is defined implicitly by the
value of ω. Formally, this translates to the optimization problem

ω̄ =ω (xn − xd(ω))
2

+ (yn − yd(ω))
2 (3.2)

Which, using the Newton–Raphson method, can be calculated accurately and efficiently
at each time-step. Here, the fact that the Newton–Raphson method only guarantees a local
optimum is a useful feature, as it prevents sudden path variable jumps given that the pre-
vious path variable value is used as the initial guess (37).

Accordingly, we define the corresponding Euclidean distance to the path, i.e. the deviation
between the desired path and the current track, as the cross-track error (CTE) ε. Formally,
we thus have that

ε =
∥∥∥[xn, yn]

T − pd(ω̄)
∥∥∥ (3.3)

Next, we consider the look-ahead point pd(ω̄+ ∆LA) to be the point which lies a constant
distance further along the path from the reference point pd(ω̄). The parameter ∆LA, the
look-ahead distance, is set by the user and controls how aggressively the vessel should re-
duce the distance to the path. Look-ahead based steering, i.e. setting the look-ahead point
direction as the desired course angle, is a commonly used guidance principle (18).

We then define the heading error ψ̃ as the change in heading needed for the vessel to
navigate straight towards the look-ahead point from its current position, as illustrated in
Figure 3.3. This is calculated from

ψ̃ = atan2

(
yd(ω̄ + ∆LA)− yn

xd(ω̄ + ∆LA)− xn

)
− ψ (3.4)

where ψ is the vessel’s current heading and xn, yn are the current NED-frame vessel co-
ordinates as defined earlier.

However, even if minimizing the heading error will yield good path adherence, taking into
account the path direction at the look-ahead point might improve the smoothness of the
resulting vessel trajectory. Referring to the first order path derivatives as x′p(ω̄) and y′p(ω̄),
we have that the path angle γp, in general, can be expressed as a function of arc-length ω
such that

γp(ω̄) = atan2 (y′p(ω̄), x′d(ω̄)) (3.5)
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As visualized in Figure 3.3, the path direction at the look-ahead point is then given by
γp(ω̄ + ∆LA). Accordingly, we can then define the look-ahead heading error, which is
zero in the case when the vessel is heading in a direction that is parallel to the path direction
at the look-ahead point, as

ψ̃LA = γp(ω̄ + ∆LA)− ψ (3.6)

Our assumption is then that the navigation feature vector sn, defined as outlined in Table
3.2, should provide a sufficient basis for the agent to intelligently adhere to the desired
path.

Feature Definition
Surge velocity u(t)

Sway velocity v(t)

Yaw rate r(t)

Cross-track error ε(t)

Heading error ψ̃(t)

Look-ahead heading error ψ̃
(t)
LA

Table 3.2: Path-following feature vector sn at timestep t.

Formally, we thus have that

s(t)n =
[
u(t), v(t), r(t), ε(t), ψ̃(t), ψ̃

(t)
LA

]T
(3.7)

3.2.2 Sensing
Using a set of rangefinder sensors (i.e. a distance-measuring sensors) as the basis for ob-
stacle avoidance is a natural choice, as it yields a comprehensive, easily interpretable rep-
resentation of the neighbouring obstacle environment. This should also enable a relatively
straightforward transition from the simulated environment to a real-world one, given the
availability of common rangefinder sensors, be it lidars, radars, sonars or depth cameras.
The set of distance sensors, commonly referred to as the sensor suite, has one particularly
desirable characteristic: At close distances, where high perception precision is needed for
making swift and safe guidance decisions, the spot resolution, i.e. the distance between
the sensor beams, is less than for higher distances. The spot resolution σres : R 7→ R
increases as a linear function of distance according to

σres(d) =
2πd

N
(3.8)

which is plotted from d = 0 to d = Sr in Figure 3.4. Practically speaking, this allows for
high-fidelity optic sensing of the nearby obstacle environment, while the observations at
larger distances are more scattered.

In our setup, the vessel is equipped with N distance sensors with a maximum detection
range of Sr, which are distributed uniformly with 360 degree coverage, as illustrated in
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Figure 3.4: Spot separation resolution of rangefinder sensor suite.

Figure 3.5. While the area behind the vessel is obviously of lesser importance, and not
necessary to consider for navigating purely static terrain, the possibility of overtaking
situations where the agent must react to another vessel approaching from behind makes
full sensor coverage a necessity.

3.2.3 Sensor partitioning
The most natural approach to constructing the final observation vector would then be to
concatenate the path information feature vector with the array of sensor outputs. However,
initial experiments with this approach were aborted as it became apparent that the training
process had stagnated - at a very dissatisfactory agent performance level. A likely expla-
nation for this failure is the size of the observation vector which was fed to the agent’s
policy and value networks; as it becomes overly large, the agent suffers from the well-
known curse of dimensionality. Due to the resulting network complexity, as well as the
exponential relationship between the dimensionality and volume of the observation space,
the agent fails to generalize new, unseen observations in an intelligent manner (21). This
calls for a significant dimensionality reduction. This can, of course, be achieved simply
by reducing the number of sensors, something which would also have the fortunate side
effect of reducing the simulation’s computational needs. Unfortunately, this approach also
turned out unsuccessful, even after testing a wide range of smaller sensor setups. Clearly,
when the sensor count becomes too low, the agent’s perception of the neighboring obstacle
environment is simply too scattered to facilitate satisfactory obstacle-avoiding behavior in
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Figure 3.5: Rangefinder sensor suite attached to autonomous surface vessel.

challenging scenarios such as the ones used for training the agent. As balancing the trade-
off between sensor resolution and observation dimensionality appears intractable, this calls
for a more involved approach.

A natural approach is to partition the sensor suite intoD sectors, each of which produces a
scalar measurement which is included in the final observation vector, effectively summa-
rizing the local sensor readings within the sector. However, given our desire to minimize
its dimensionality, dividing the sensors into sectors of uniform size is likely sub-optimal,
as obstacles located in front of the vessel are significantly more critical and thus require a
higher degree of perception accuracy than those that are located at its rear. In order to re-
alize such a non-uniform partitioning, we use a logistic function - a choice that also fulfills
our general preference for symmetry. Assuming a counter-clockwise ordering of sensors
and sectors starting at the rear of the vessel, we map a given sensor index i ∈ N to sector
index k ∈ D according to

κ : i 7→ κ(i) =

Dσ
(
γCi

N
− γC

2

)
︸ ︷︷ ︸

Non-linear mapping

−Dσ
(
−γC

2

)
︸ ︷︷ ︸

Constant offset

 (3.9)

where σ is the logistic sigmoid function and γC is a scaling parameter controlling the den-
sity of the sector distribution such that decreasing it will yield a more evenly distributed
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partitioning. In Figure 3.6, the practical output of this sensor mapping procedure is vi-
sualised, with the sectors being the narrowest near the front of the vessel. We can then
formally define the distance measurement vector for the kth sector, which we denote by
wk, according to

wk,i = xi for i ∈ N such that κ(i) = k

Figure 3.6: Rangefinder sensor suite partitioned into D = 9 sectors according to the the mapping
function κ with the scale parameter γC = 0.13.

Next, we seek a mapping f : Rn 7→ R, which takes the vector of distance measurements
wk, for an arbitrary sector index k, as input, and outputs a scalar value based on the cur-
rent sensor readings within the sector. Always returning the smallest measured obstacle
distance within the sector, i.e. f = min (in the following referred to as min pooling), is
a natural approach which yields a conservative and thereby safe observation vector. As
can be seen in Figure 3.7a, however, this approach might be overly restrictive in certain
obstacle scenarios, where feasible openings in between obstacles are inappropriately over-
looked. However, even if the opposite approach (max pooling, i.e. f = max) solves this
problem, it is straight-forward to see, e.g. in Figure 3.7b by considering the fact that the
presence of the small obstacle near the vessel is ignored, that it might lead to dangerous
navigation strategies.
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Chapter 3. Methodology

(a) Min pooling (b) Max pooling

(c) Feasibility pooling

Figure 3.7: Pooling techniques for sensor dimensionality reduction. For the sectors colored green,
the maximum distance Sr was outputted, implying that the sector is clear of any obstacles. It is
obvious that min-pooling yields an overly restrictive observation vector, effectively telling the agent
that a majority of the travel directions are blocked. On the other hand, max pooling yields overly
optimistic estimates, potentially leading to dangerous situations. The feasibility pooling algorithm,
however, mirrors an intuitive reasoning about the reachability within each sector, producing a more
intelligent estimate.

In order to alleviate the problems associated with min and max pooling mentioned above,
a new approach is required. The feasibility pooling procedure calculates the the maximum
reachable distance within each sector, taking into account the location of the obstacle sen-
sor readings as well as the width of the vessel. This method requires us to iterate over the
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3.2 Observation vector

(a) Full distance is reachable. (b) Less than half the distance is reachable.

Figure 3.8: Illustration of the feasibility algorithm for two different scenarios. After sorting the
sensor indices according to the corresponding distance measurements, the algorithm iterates over
them in ascending order, and, at each step, decides if the vessel can feasibly continue past this point.
In the scenario displayed in the figure on the right, the opening is deemed too narrow for the full
distance to be reachable.

sensor reading in ascending order corresponding to the distance measurements, and for
each resulting distance level check whether it is feasible for the vessel to advance beyond
this level. As soon as the widest opening available within a distance level is deemed too
narrow given the width of the vessel, the maximum reachable distance has been reached.
Formally, we define f to be the algorithm outlined in Algorithm 2.

Having a quadratic runtime complexity, the feasibility pooling algorithm is slower than
simple max or min pooling, which both can be executed in a linear fashion. In Figure
3.9, empirical runtime estimates are reported for n = 9. Given our modest sensor setup,
however, this is not a major concern, as the increased computation requirements are far
from rivaling those of simulating the functioning of the rangefinder sensors.
Another interesting aspect to consider when comparing the pooling methods, is the sen-
sitivity to sensor noise. A compelling metric for this is the degree to which the pooling
output differs from the original noise-free output when normally distributed noise with
standard deviation σw is applied to the sensors. Specifically, we report the root mean
square of the differences between the original pooling outputs and the outputs obtained
from the noise-affected measurements. The results for σw ∈ {1, . . . , 30} are presented in
Figure 3.10. Evidently, the proposed feasibility method for pooling is slightly more robust
than the other variants.
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Algorithm 2 Feasibility pooling for rangefinder sensors.
Require:

Vessel width W ∈ R+

Angle between neighboring sensors θ
Sensor rangefinder measurements for current sector x = {x1, . . . , xn}
procedure FEASIBILITYPOOLING(x)

Initialize I to be the indices of x sorted in ascending order according to the mea-
surements xi

for i ∈ I do
Arc-length di ← θxi
Opening-width y ← di/2
Opening was found si ← false
for j ← 0 to n do

if xj > xi then
y ← y + di
if y > W then

si ← true
break

else
y ← y + di/2
if y > W then

si ← true
break

y ← 0

if si is false then return xi
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Figure 3.9: Avg. computation time for feasibility pooling compared to max and min pooling for
n = 9, calculated based on sensor measurements that were extracted from vessel simulations.
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Figure 3.10: Robustness metric for pooling methods for σw ∈ {1, . . . , 30} estimated based on
measurements extracted from repeated simulations. The noise-affected measurements are clipped at
zero to avoid negative values.
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3.2.4 Motion detection

Simply feeding the pooled current rangefinder sensor readings to the agent’s policy net-
work, will, without any doubt, be insufficient for the agent to learn a policy for intelligently
avoiding moving obstacles. A continuous snapshot of the environment can facilitate a
purely reactive (but still intelligent (42)) agent in a static environment, but without explicit
or implicit knowledge of the nearby obstacles’ velocities, such an agent will invariantly
fail when placed in a dynamic environment, as it will be unable to distinguish between
stationary and moving obstacles.

An implicit approach worth mentioning is to process the sensor readings sequentially us-
ing a Recurrent Neural Network (RNN). In recent years, RNN architectures, such as Long
Short-Term Memory LSTM, have gained a lot of traction in the ML research community
(36) and been successfully applied to sequential RL problems. An example of this is the
LSTM-based AlphaStar agent, which reached grandmaster level in the popular real-time
strategy game StarCraft II (66). It is therefore possible that a high-performing collision
avoidance policy could be found by feeding a recurrent agent with sensor readings. If such
an implementation was shown to be successful, it would facilitate a very straight-forward
transition to an implementation on a physical vessel, as no specialized sensor equipment
for measuring object velocities would be needed.

However, even if sequentially feeding sensor readings to a recurrent network might sound
relatively trivial, the motion of the vessel would induce rotations of the observed environ-
ment, complicating the situation. Initial experimentation with an off-the-shelf recurrent
policy compatible with our simulation environment confirmed the difficulties with this
approach. Even with a purely static environment, the recurrent agent was incapable of
learning how to avoid collisions.

Thus, this preliminary study will focus on the explicit approach, i.e. providing the obsta-
cles’ velocities as features in the agent’s observation vector. Admittedly, while the imple-
mentation of this is trivial in a simulated environment, as obstacle velocities can simply
be accessed as object attributes, a real-world implementation will necessitate a reliable
way of estimating obstacle velocities based on sensor data. However, even if this can be
challenging due to uncertainty in the sensor readings, object tracking is a well-researched
computer vision discipline. We reserve the implementation of such a method to future
research, but refer the reader to (22) for a comprehensive overview of the current state of
the field.

For each sector, we provide the decomposed velocity of the closest moving obstacle within
the sector as features for the agent’s observation vector. Specifically, the decomposition,
which yields the x and y component of the obstacle velocity, is done with respect to the
coordinate frame in which the y-axis is parallel to the center line of the sensor sector in
which the obstacle is detected. This is illustrated in Figure 3.11. For each sector k, we
denote the corresponding decomposed x and y velocities as vx,k and vy,k, respectively.
Naturally, if there are no moving obstacles present within the sector, both components are
zero.
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3.2 Observation vector

Figure 3.11: Velocity decomposition for two moving obstacles, α and β. For each obstacle, its
velocity vector is decomposed into x and y components relative to the obstacle sector, such that the
decomposed y-component is parallel to the center line of the corresponding sector, and has a positive
value if it is moving towards the vessel.

3.2.5 Perception state vector

As having access to both obstacle distances and obstacles velocities is critical to achieve
satisfactory obstacle-avoiding agent behavior, we include both in the perception state vec-
tor. To avoid discontinuities in the obstacle distance features caused by the sudden transi-
tion from 0 to Sr at the point of detection, we introduce the concept of obstacle closeness.
The closeness to an obstacle is such that it is 0 if the obstacle is undetected, i.e. fur-
ther away from the vessel than the maximum range of the distance sensors, and 1 if the
vessel has collided with the obstacle. Furthermore, within this range, is it reasonable to
map distance to closeness in a logarithmic fashion, such that, in accordance with human
intuition, the difference between 1m and 10m is more significant than the difference be-
tween, for instance, 51m and 60m. Formally, we have that a distance d maps to closeness
c(d) : R 7→ [0, 1] according to

c(d) = clip

(
1− log (d+ 1)

log (Sr + 1)
, 0, 1

)
(3.10)
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By concatenating the reachable distance and the decomposed obstacle velocity from every
sector, we then define the perception state vector sp as

s(t)p =

c((w(t)
1

))
, v

(t)
x,1, v

(t)
y,1︸ ︷︷ ︸

First sector

, . . .


T

(3.11)

3.3 Reward function

Any RL agent is motivated by the pursuit of maximizing its reward. and consequently,
engineering the reward function is a crucial part of to achieving satisfactory performance
from the trained agent. The simplest, and thus highly sought-after approach to rewarding
RL agents is to reward it at the end of each episodes - at that point, one already knows if
the agent succeeded or failed. However, given the length of a full episode, such a reward
function turns out extremely sparse, leaving the agent with a near impossible learning task.
This calls for a continuous reward signal, rewarding the agent based on its current adher-
ence to its objectives, i.e. how well it is currently doing with respect to both path following
and obstacle avoidance. Given the complexity of the dual-objective learning problem fo-
cused on in this study, as well as the general tendency of RL agents’ to exploit the reward
function in any way possible (e.g. standing still, going in circles), designing an appropri-
ate rewards function r(t) is paramount to the agent exhibiting the desired behavior after
training.

For instance, consider the case where the agent receives a significant penalty whenever it
collides with an obstacle. As the easiest way to avoid collisions is to move in an endless
loop or to move in the opposite direction of the path, where there are no obstacles, it is
likely that the agent will learn such behavior unless sufficiently penalized. As was demon-
strated in (26), scaling the reward function by a constant scalar can have a large effect on
the agent’s performance, even in the vanilla single-objective Open-AI gym environments
commonly used as benchmarks for new RL algorithms. In a dual objective scenario, such
as the one tackled in this paper, it is obvious that the reward trade-off between avoiding
collisions and following the path can be critical: If the relative penalty for collisions is too
low, the agent will frequently collide. If the relative penalty is too high, however, we risk
that the agent will learn a policy that avoids making progress along the desired path at all
costs.

It is natural to reward the agent separately for its performance in the two relevant do-
mains: path following and collision avoidance. Thus, we introduce the independent reward
terms r(t)path and r(t)colav, representing the path-following and the obstacle-avoiding reward
components, respectively, at time t. Furthermore, we introduce the weighting coefficient
λ ∈ [0, 1] to regulate the trade-off between the two competing objectives. In addition, as
it is crucial to penalize the agent whenever it collides with an obstacle, we represent this
by the negative reward term rcollision, which is activated upon collision. This leads to the
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preliminary reward function

r(t) =

{
rcollision, if collision
λr

(t)
path + (1− λ) r

(t)
colav, otherwise

(3.12)

3.3.1 Path following performance

A natural approach to incentivize path adherence is to reward the agent for minimizing
the current absolute cross-track error

∣∣ε(t)∣∣. In (37), a Gaussian reward function centered
at ε = 0 with standard deviation σe was suggested. However we argue that the absolute
exponential reward function exp

(
−γε

∣∣ε(t)∣∣) has more desirable characteristics due to its
fatter tails, as seen in Figure 3.12. By avoiding the vanishing improvement gradient of the
Gaussian reward occurring at large absolute cross-track errors, the absolute exponential
reward function ensures that the agent is rewarded even for a slight improvement to a very
unsatisfactory state.
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Figure 3.12: Cross-section of the path-following reward landscape for γε = 0.05 assuming path-
tangential full-speed motion visualized for both Gaussian and absolute exponential kernels for cross-
track error rewarding.

However, this alone does not reflect our desire for the agent to actually make progress
along the path - and thus, the RL agent, greedy as it is, will eventually develop a policy of
standing still indefinitely after closing the gap to the path. Thus, the reward signal must be
expanded upon so that it incorporates the incentivisation of motion - and not just arbitrary
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Figure 3.13: Path-following reward function assuming full-speed motion for γε = 0.05. The level
curves represent constant reward. Zero cross-track error together with zero heading error yields
maximum reward, as expected.

motion, but movement in the right direction.

The already defined look-ahead heading error term ψ̃ is a natural basis for formalizing this.
Specifically, we consider the term u(t)

Umax
cos ψ̃(t), with Umax being the maximum vessel

speed, which effectively yields zero reward if the vessel is heading in a direction perpen-
dicular to the path, and a negative reward if the agent is tracking backwards. Multiplying
this with the cross-track error reward component defined earlier is a natural choice, and
yields the provisional reward function

r
(t)
path =

u(t)

Umax
cos ψ̃(t)︸ ︷︷ ︸

Velocity-based reward

exp
(
−γε|ε(t)|

)
︸ ︷︷ ︸

CTE-based reward

Given this reward function, however, we note that, if the vessel is standing still (i.e. u(t) =
0), or if it is heading in a direction perpendicular to the path (i.e. ψ̃(t) = ±π2 ), the agent
will receive zero reward regardless of the cross-track error, which is undesired. Similarly,
if the cross-track error grows very large, i.e. exp

(
−γε

∣∣ε(t)∣∣) → 0, the reward signal will
be zero regardless of the vessel velocity and heading. Thus, we add constant multiplier
terms γr to both reward components, yielding the following expression for the final path-
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following reward function

r
(t)
path =

(
u(t)

Umax
cos ψ̃(t) + γr

)
︸ ︷︷ ︸

Velocity-based reward

(
exp

(
−γε|ε(t)|

)
+ γr

)
︸ ︷︷ ︸

CTE-based reward

−γ2r (3.13)

where the −γ2r term is added to remove the constant reward bias implied by the function
choice.

3.3.2 Obstacle avoidance performance
Collision avoidance involves both collisions with other vessels as well as avoiding running
ashore (or colliding with some other static obstacle). However, the two aspects should be
treated separately, as would any human sailor. In the following, we refer to the former as
dynamic, and the latter as static obstacle avoidance.

In order to encourage obstacle-avoiding guidance behavior, penalizing the agent for the
closeness of nearby terrain in a strictly increasing manner seems reasonable. However,
we note that the severity of closeness intuitively does not increase linearly with distance,
but instead increases in some quasi-exponential fashion. Furthermore, given the presence
of a nearby obstacle, it seems clear that the penalty given to the agent must depend on
the orientation of the vessel with regards to the obstacle in such a manner that obstacles
located near the stern of the vessel are of significantly lower importance than obstacles
that are currently right in front of the it. Thus, disregarding moving obstacle, we propose
the following penalty function for a the presence of a static obstacle located at distance x
from the vessel at the angle θ (measured with respect to the centerline of the vessel):

robst,stat(θ, x) = − 1

1 + γθ|θ|︸ ︷︷ ︸
Weighting term

exp (−γxx)︸ ︷︷ ︸
Raw closeness penalty

(3.14)

which is visualised on a logarithmic scale in Figure 3.14.

It is critical that the vessel stays out of collision course with other ships - even more so
than with terrain, as other vessels are, by virtue of begin dynamic objects outside of the
agent’s control, unpredictable. To achieve this, a penalty term proportional to the target
vessel’s velocity towards the own-ship is added in the penalty exponential. As movement
towards the vessel is equivalent with vy > 0, we clip values below zero, since ships moving
away from the vessel should be considered as a collision threat for the agent. For a single
dynamic obstacle, the penalty thus becomes

robst,dyn(θ, vy, x) = − 1

1 + γθ|θ|︸ ︷︷ ︸
Weighting term

exp (γvmax(0, vy)− γxx)︸ ︷︷ ︸
Raw penalty

(3.15)

where x is the distance to the obstacle, θ is the vessel-relative angle and vy is the velocity
component in the direction towards the vessel. This penalty landscape is visualised in
Figure 3.15, where θ is held constant at 0.
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Figure 3.14: Static obstacle closeness penalty landscape as a function of obstacle distance and
angle relative to the vessel with the scale parameters γθ = 10.0, γx = 0.1. The maximum penalty
is imposed for obstacles located right in front of the vessel.
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Figure 3.15: Dynamic obstacle closeness penalty landscape as a function of obstacle distance and
obstacle velocity with scale parameters γvy = 1.0, γx = 0.1. As should be expected, the maximum
penalty is imposed for obstacles located 0m from the vessel, with full speed towards it.
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For practical reasons, we use the measurements from the rangefinder sensor suite as surro-
gates for obstacle closeness, and penalize each sensor reading according to robst,dyn(xi, vyi, θi),
where xi is the ith distance sensor measurement, vyi is the y component of ith velocity
measurement and θi is the vessel-relative angle of the corresponding sensor ray. In order
to to cancel the dependency on the specific sensor suite configuration, i.e. the number of
sensors and their vessel-relative angles, that arises when this penalty term is summed over
all sensors, we compute the overall obstacle-avoidance reward according to the weighted
average

r
(t)
colav = −

N∑
i=1

ζ(θi)

1 + γθ|θi|
exp (γvmax(0, viy)− γxxi)

N∑
i=1

ζ(θi)

1 + γθ|θi|

(3.16)

3.3.3 Total reward
Furthermore, in order to discourage the agent from simply standing still at a safe loca-
tion, which would yield a reward of zero given the preliminary reward function defined
in Equation 3.12, we impose a constant living penalty rexists < 0 to the overall reward
function. A simple way of setting this parameter is to assume that, given a total absence
of nearby obstacles and perfect vessel alignment with the path, the agent should receive a
zero reward when moving at a certain slow speed αrUmax, where αr ∈ (0, 1) is a constant
parameter. This gives us

rexists + λ
((

αrUmax
Umax

+ 1
)

(1 + 1)− 1
)

= 0

rexists = −λ(2αr + 1)
(3.17)

The expression for the final overall reward function then becomes

r(t) =

{
rcollision, if collision
λr

(t)
path + (1− λ) r

(t)
colav + rexists, otherwise

(3.18)

3.4 Simulation parameters
In our solution, both the policy network as well as the value network used in the PPO
algorithm’s advantage estimation have two hidden layers with 64 units each, and use the
tanh activation function across the networks. Furthermore, the following hyperparameter
values were used for the PPO algorithm:
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Parameter Interpretation Value
γ Discount factor 0.999
T Timesteps per training iteration 1024
NA Number of parallel actors 8
K Training epochs 106

η Learning rate 0.0002
NMB Number of minibatches 32
λPPO Bias vs. variance parameter 0.95
c1 Value function coefficient 0.5
c2 Entropy coefficient 0.01
ε Clipping parameter 0.2

Table 3.3: Hyperparameters for PPO algorithm.

In terms of the vessel setup, the following values were chosen:

Parameter Interpretation Value
Umax Maximum vessel speed 2 m/s
N Number of sensors 180
Sr Sensor distance 1.5 km
d Number of sensor sectors 9
∆LA Look-ahead distance 3 km

Table 3.4: Vessel configuration.

Finally, the parameters in Table 4.1 were used for customizing the reward function. This
choice of reward function parameters stems from intuitive reasoning about the desired
characteristics of the agent’s guidance behavior and how it relates to the parameters, but
experimentation with other values have suggested that the sensitivity to these parameters
is rather low; for any reasonable parameter choice, the agent seems to develop intelligent
guidance behavior. However, it should be noted that λ should be chosen such that nei-
ther the path-following nor the collision avoidance objectives are neglected (here, 0.5 is a
reasonable compromise).

Parameter Interpretation Value
γe Cross-track error scaling 0.05
γθ Sensor angle scaling 4.0
γx Obstacle distance scaling 0.005
αr Zero-reward relative speed 0.1
rcoll Collision reward -2000
λ Objective trade-off coefficient 0.5

Table 3.5: Reward configuration.
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3.5 Evaluation
To provide a comprehensive basis for evaluating the agent’s performance, i.e. the degree
to which the agent is avoiding collisions, as well as the degree to which it adheres to its
path following objective, we test the trained agent in various test environments. First,
we simulate its behavior in new (i.e. unseen) permutations of the training scenario. As
described, the training environment is challenging, with a dense scattering of both static
and dynamic obstacles (as shown in Figure 3.2). Furthermore, based on combining high-
fidelity terrain data with AIS tracking data from the Trondheim Fjord area, we construct
three digital real-world environments in which the vessel’s performance can be evaluated
in a realistic manner. Here, even if the terrain (i.e. static obstacles) is pre-determined by
the elevation data, and thus, unlike in the training scenarios, always identical, the scenario
traffic (i.e. other vessels) is sampled as a random subset of the total recorded AIS data in
the area. This allows for quantitative statistical testing by means of repeated trials.

3.5.1 Ørland-Agdenes

This scenario takes place in the heavily trafficked entrance region of the fjord: The region
between the municipalities Ørland and Agdenes. After spawning near the coastline, the
vessel must blend into two-way traffic and follow the path until it reaches the opening
of the fjord. In particular, the agent will be tested on its ability to handle head-on and
overtaking situations.
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Figure 3.16: Map of the Ørland-Agdenes test scenario. The dashed black line represents the desired
vessel trajectory. Each other vessel is drawn at its initial position. Also, each other vessel’s trajectory
is drawn as a transparent and dotted red line.
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3.5.2 Trondheim
Spawning next to the Trondheim city center, the agent is expected to cross the fjord end
and up at the village Vanvikan. In order to succeed in this scenario, the agent must avoid
collisions with the crossing traffic, which is dominated by larger ships.
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Figure 3.17: Map of the Trondheim test scenario.

3.5.3 Froan
Froan, which is located off the Trøndelag coast, is an archipelago encompassing hundreds
of small, rocky islands. For this reason, it offers uniquely challenging terrain. In this sce-
nario, the agent must carefully navigate through a cluster of small islands, before merging
into traffic going to and from Sørburøy, the most populated island in the area. The chal-
lenging terrain will test the agent’s ability to navigate static obstacles, whereas the traffic,
comprised of smaller, fast-moving vessels, will lead to challenging head-on situations, es-
pecially in the narrow strait in which the goal is located.
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Figure 3.18: Map of the Froan test scenario.

For the purpose of evaluating the agent’s vessel guidance ability is a statistically significant
manner, we simulate the agent in 100 independently sampled scenarios for each of the the
three real-world based training environments, as well as the artificial training scenario.
Here, the main quantitative test metric is the percentage of episodes in which the agent
reached the goal successfully (i.e. without collisions), which in the following is referred
to as the success rate. Also, we report the episodic average for cross-track error, i.e. the
average deviation from path in meters, to quantify the degree of path following adherence
in the various scenarios.
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Software Framework

In this chapter, we outline the design and implementation of a Python-based software
framework allowing researchers to train and evaluate RL-based Autonomous Surface Ves-
sels. It serves as an interface to a simulated marine environment, facilitating not only
artificially generated collision avoidance scenarios, but also reconstructions of real-world
scenarios based on local terrain and marine tracking data. The framework is provided
as a Python package named gym-auv, available at the GitHub repository found at (41).
gym-auv heavily relies on the OpenAI gym API (6), a popular toolkit for developing and
comparing RL algorithms. gym is widely used in research, and has emerged as the de
facto standard programming interface for deep RL applications. As our framework, gym-
auv, is an extension of gym, it inherits gym’s plug-and-play compatibility with numerous
powerful Python libraries for training RL agents, including OpenAI Baselines (10), Ray
RLlib (32) and Stable Baselines (27).

4.1 Structure
The core component of gym is the environment abstraction Env, which represents the
generalized RL environment . Notably, gym does not include a built-in Agent class
of any kind. Instead, all the fundamental functionality required for an RL application,
i.e. agent perception, reward calculation and action execution / environment updates are
handled by the Env instance. Fundamentally, extensions of gym, including our gym-auv
package, implement a subclass of gym.Env which overrides the core abstract methods:
__init__, which defines the environment’s action and observation space; step, which
simulates the environment for one timestep after an action has been performed and returns
the observation vector and reward; reset, which resets the environment state to the initial
state; and render, which renders the environment to the screen. In our case, this class is
named BaseEnvironment.

Furthermore, our framework uses three other classes, namely Vessel, Path,
BaseObstacle and BaseRewarder. This provides a clear modular structure for the
software and allows us to abstract away tedious function implementations. Also, it facili-
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tates further extensions, such as adding a new vessel type with other dynamics, adding new
obstacle shapes or introducing a new reward function to achieve different vessel behaviors.
In the following, we will outline the details of these classes and how they are related.

4.1.1 Path
The Path class represents an a priori available trajectory which is intended to be fol-
lowed by a Vessel instance. It provides not only a lookup method mapping from a
specified arc-length value to the corresponding coordinate point, but also helper methods
that facilitate a vessel’s navigation with the respect to the path. In the default behavior,
a smooth trajectory parameterized by arc length is generated using 1D Piecewise Cubic
Hermite Interpolator (PCHIP) provided by SciPy (67) based on the waypoints argu-
ment required by the constructor method. Optionally, by calling the constructor with the
keyword smooth=False, the user can also create a path made of linear line segments
connecting the specified way-points.

class Path():
def __init__(self, waypoints:list, smooth:bool=True) -> None:

"""Initializes path based on specified waypoints."""

@property
def length(self) -> float:

"""Length of path."""

@property
def start(self) -> np.ndarray:

"""Coordinates of the path's starting point."""

@property
def end(self) -> np.ndarray:

"""Coordinates of the path's end point."""

def __call__(self, arclength:float) -> np.ndarray:
"""Returns the (x,y) point corresponding to the
specified arclength."""

def get_direction(self, arclength:float) -> float:
"""Returns the direction in radians with respect to the
positive x-axis."""

def get_closest_arclength(self, position:np.ndarray) -> float:
"""Calculates the arc length value corresponding to the point
on the path which is closest to the specified position."""

4.1.2 BaseObstacle
The BaseObstacle class is an abstract class that represents physical obstacles that a
Vessel instance can collide with and should avoid. Due to the vast variety of obstacles
the user might be interested in using in a scenario, both in terms of shape and dynamic
properties, it is designed as an abstract class which is intended to be implemented by its
sub-classes. As will be discussed later in this chapter, the gym-auv package relies upon the
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Python package Shapely for the geometric operations required to simulate a rangefinder
sensor suite. Thus, the BaseObstacle class’ public boundary attribute, which has
the type of a shapely.geometry.Polygon, is a critical feature of the class as it
is required for simulating the rangefinder sensors’ detection of the obstacle. Also, the
BaseObstacle class includes an update wrapper method for updating the obstacle’s
position given its dynamic properties - for instance given its speed and heading if the
obstacle represents another vessel. The specific update behavior must be implemented in
extensions of BaseObstacle, and can be left blank in the case of static obstacles.

class BaseObstacle(ABC):
def __init__(self, *args, **kwargs) -> None:

"""Initializes obstacle instance by calling private setup method
implemented by subclasses of BaseObstacle and calculating
obstacle boundary."""

↪→

↪→

self._setup(*args, **kwargs)
self._boundary = self._calculate_boundary()

@property
def boundary(self) -> shapely.geometry.Polygon:

"""The obstacle boundary represented as a
shapely.geometry.Polygon object. Used by the 'Vessel' class
for simulating the sensors' detection of the obstacle
instance."""

↪→

↪→

↪→

return self._boundary

def update(self, dt:float) -> None:
"""Updates the obstacle according to its dynamic behavior, e.g.
a ship model and recalculates the boundary."""
has_changed = self._update(dt)
if has_changed:

self._boundary = self._calculate_boundary()

@abstractmethod
def _calculate_boundary(self) -> shapely.geometry.Polygon:

"""Returns a shapely.geometry.Polygon instance representing the
obstacle↪→

given its current state."""

@abstractmethod
def _setup(self, *args, **kwargs) -> None:

"""Initializes the obstacle given the constructor parameters
provided to↪→

the specific BaseObstacle extension."""

def _update(self, dt:float) -> bool:
"""Performs the specific update routine associated with the

obstacle class and returns a boolean flag representing
whether something changed or not.

↪→

↪→

Returns
-------
has_changed : bool
"""
return False
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4.1.3 Vessel
The Vessel class represents a physical vessel placed in an environment. This should not
be confused with the agent as thought of in an RL-context - an autonomous entity directing
its actions towards achieving its goals within its environment. In our gym-auv framework,
the Vessel class is simply responsible for updating the vessel state according to the ship
dynamics as well as simulating the sensor suite attached to the vessel. This functionality
logically belongs to the environment module, but is implemented as a separate module to
facilitate a possible multi-agent use-case with several vessels interacting within the same
environment.

class Vessel():
def __init__(self, config:dict, init_state:np.ndarray, width:float)

-> None:↪→

"""Initializes and resets the vessel."""

@property
def width(self) -> float:

"""Returns the width of vessel."""

@property
def position(self) -> np.ndarray:

"""Returns an array holding the position of the AUV in cartesian
coordinates."""

@property
def path_taken(self) -> np.ndarray:

"""Returns an array holding the path of the AUV in cartesian
coordinates."""

@property
def heading(self) -> float:

"""Returns the heading of the AUV with respect to true north."""

@property
def velocity(self) -> np.ndarray:

"""Returns the surge and sway velocity of the AUV."""

@property
def speed(self) -> float:

"""Returns the speed of the AUV."""

@property
def yaw_rate(self) -> float:

"""Returns the rate of rotation about the z-axis."""

@property
def max_speed(self) -> float:

"""Returns the maximum speed of the AUV."""

@property
def course(self) -> float:

"""Returns the course angle of the AUV with respect to true
north."""↪→

crab_angle = np.arctan2(self.velocity[1], self.velocity[0])
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@property
def sensor_angles(self) -> np.ndarray:

"""Returns numpy array containg the angles each sensor ray
relative to the vessel heading."""↪→

@property
def sector_angles(self) -> np.ndarray:

"""Returns numpy array containg the angles of the center line of
each sensor sector relative to the vessel heading."""↪→

def reset(self, init_state:np.ndarray) -> None:
"""Resets the vessel to the specified initial state."""

def step(self, action:list) -> None:
"""Simulates the vessel one step forward after applying the

given action."""↪→

def perceive(self, obstacles:list) -> (np.ndarray, np.ndarray):
"""Simulates the sensor suite and returns observation arrays of

the environment.↪→

Returns
-------
sector_closenesses : np.ndarray
sector_velocities : np.ndarray
"""

def navigate(self, path:Path) -> np.ndarray:
"""Calculates and returns navigation states representing the

vessel's attitude with respect to the desired path.↪→

Returns
-------
navigation_states : np.ndarray
"""

def req_latest_data(self) -> dict:
"""Returns dictionary containing the most recent perception and

navigation states."""↪→

4.1.4 BaseRewarder

The BaseRewarder class is responsible for calculating the reward received by an agent
at each time step. It is designed as an abstract class which is intended to be implemented
by its sub-classes. As the reward, in the general case, depends on a vessel’s adherence to
its desired path as well as its distance from obstacles in its proximity, a BaseRewarder
instance gets a Vessel instance assigned to it in the constructor which it accesses upon
calculating the reward. As was the case for the Vessel class, the motivation for detach-
ing this functionality from the BaseEnvironment is to facilitate multi-agent extensions
with possible nonuniform agent objectives, necessitating a one-to-many relationship be-
tween environment and rewarder.
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class BaseRewarder(ABC):

@property
def vessel(self) -> Vessel:

"""Vessel instance that the reward is calculated with respect
to."""↪→

@abstractmethod
def calculate(self) -> float:

"""
Calculates the step reward and decides whether the episode
should be ended.

Returns
-------
reward : float

The reward for performing action at this timestep.
"""

def insight(self) -> np.ndarray:
"""
Returns a numpy array with reward parameters for the agent to

have an insight into its reward function.↪→

Returns
-------
insight : np.array

The reward insight array at this timestep.
"""
return np.array([])

4.1.5 BaseEnvironment
Extending the gym.Env base environment class, BaseEnvironment is the access
point for using third-party RL algorithms to train agents in our environment. It imple-
ments the core abstract gym.Env methods __init__, reset, step and render.
Notably, it also specifies its own abstract method to be implemented by specific scenario
implementations, namely that of _generate, which, as the name suggests, (randomly)
creates a new obstacle environment and is called each time the environment resets.

class BaseEnvironment(gym.Env, ABC):
@property
def action_space(self) -> gym.spaces.Box:

"""Array defining the shape and bounds of the agent's action."""

@property
def observation_space(self) -> gym.spaces.Box:

"""Array defining the shape and bounds of the agent's
observations."""↪→

def reset(self) -> np.ndarray:
"""Resets the environment."""
...
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self._generate()
self.rewarder = ColavRewarder(self.vessel)
obs = self.observe()
return obs

def observe(self) -> np.ndarray:
"""Returns the array of observations at the current

time-step."""↪→

reward_insight = self.rewarder.insight()
navigation_states = self.vessel.navigate(self.path)
sector_closenesses, sector_velocities =

self.vessel.perceive(self.obstacles)↪→

obs = np.concatenate([reward_insight, navigation_states,
sector_closenesses, sector_velocities])↪→

return obs

def step(self, action:list) -> (np.ndarray, float, bool, dict):
"""Steps the environment by one timestep. Returns observation,

reward, done, info."""↪→

self._update()
self.vessel.step(action)
obs = self.observe()
reward = self.rewarder.calculate()
done = self._isdone()
info = ...
return (obs, reward, done, info)

def _update(self) -> None:
"""Updates the environment at each time-step. Can be customized

in sub-classes."""↪→

[obst.update(dt=self.config["t_step_size"]) for obst in
self.obstacles if not obst.static]↪→

@abstractmethod
def _generate(self) -> None:

"""Create new, stochastically genereated scenario.
To be implemented in extensions of BaseEnvironment. Must set the
'vessel', 'path' and 'obstacles' attributes.
"""

def render(self, mode='human'):
"""Render one frame of the environment.
The default mode will do something human friendly, such as pop

up a window."""↪→
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Vessel

+position : float[2]
+heading : float
+course : float
+velocity :  float[2]
+yaw_rate : float
-_state : float[2]

+step(dt:float) : void
+reset(): void
+teleport_back(dt:float): 
void
-_sim_(dt:float): void
-_state_dot() : float[2]

Environment

+vessel : Vessel
+config : dict
+path : Path
+obstacles : BaseObstacle[0..* ]
+target_arclength : float
+t_step : int
+episode : int
+n_observations : int
+action_space : gym.spaces.Box
+observation_space : gym.spaces.Box

+step(action:float[2]) : (obs:float[n_observations],  reward:float, done:bool)
+reset() : float[n_observations]
+observe() : float[n_observations]
+render() : void
- get_reward(collision : bool) :  float

Path

+points : float[2][0..* ]
+length : float

+get_direction(arclength:float) : float
+get_closest_arclength(pos:float[2]) : float
+get_closest_point(pos:float[2]) : float[2]
+get_closest_point_distance(pos:float[2]) : float

BaseObstacle

+last_obs_distance : float
+last_obs_linestring : shapely.geometry.LineString
+boundary : shapely.geometry.Polygon
+static : bool

Figure 4.1: UML class diagram illustrating the interplay between the modules.

4.2 Rendering
Visualizing the agent’s behavior is helpful for identifying the weaknesses of a trained
agent. Even if plotting the vessel’s trajectory in the environment can give valuable qual-
itative insight into whether the algorithm is behaving as intended, being able to see how
the scenario unfolded, either in real-time or in the format of a video replay, is paramount
to debugging the agent in a dynamic environment where not only the agent’s vessel, but
also the obstacles, are moving. For this purpose, as well as the purpose of showcasing
the agent’s performance, gym-auv includes built-in 2D and 3D rendering capabilities. 2D
rendering, as seen in Figure 4.2, gives a clear visual overview of the current state of the
environment and vessel, and is the preferred rendering mode for debugging and validation
purposes. The 3D rendering module, which is showcased in Figure 4.3, is compatible with
real-world elevation data, a provides a game-like real-time visualisation of the environ-
ment with a third person point of view. Both rendering modules are built using the Pyglet
Python library, which provides an object-oriented application programming interface for
the rendering of 2D and 3D vector graphics.
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Figure 4.2: Screenshot of an environment rendered with the 2D rendering module.

Figure 4.3: Screenshot of an environment rendered with the 3D rendering module.
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4.3 Usage
A Python run script run.py is included along with the gym-auv package. This script pro-
vides a command-line interface to the relevant run modes when executing the simulation
for research purposes. The first positional argument, mode, dictates the run mode of the
executed program, and is of particular importance. In the following, the purpose and uti-
lization of the most relevant run modes are covered, as well as the keyword arguments
and flags associated with the respective run modes. The second positional argument, env,
specifies the RL environment, and must be provided at execution. Most notably, the avail-
able environments include MovingObstacles-v0, i.e. the training environment for
dynamic obstacle avoidance, but also test environments such as Trondheim-v0 and
Agdenes-v0. For a more comprehensive overview, the reader is advised to execute the
run script with the -h flag.

4.3.1 Run mode play

The play run mode allows the user to control the vessel actuators by use of the arrow
keys. As it provides real-time rendering with debug information on-screen, this mode is
a great option for brief, manual testing of new reward function designs or other software
innovations.

Example: python run.py play Trondheim-v0 --render 3d

4.3.2 Run mode train

The train run mode trains an RL agent on the chosen environment (i.e env). The user can
override the default choice of RL algorithm (i.e. PPO) by specifying the --algo param-
eter. The training process will, at a regular interval, save the latest iteration of the agent
(as pkl files) in the /logs/agents folder. Furthermore, each random training scenario gener-
ation, as well as the agent’s trajectory in the environment, will be saved in the /logs/plots.
Here, here will also be numerous plots showing the progress of the training. Additionally,
videos of the agent will be recorded to the /logs/videos folder from new, parallel environ-
ment processes that spawn at fixed intervals using the enjoy run mode. The training will
run in parallel over multiple CPU cores unless the --nomp flag is given. Also, using the
named argument --agent 'path/to/agent.pkl' will initialize the training with
the network weights of the specified agent, allowing the user to restart training from an
earlier iteration.

Example: python run.py train MovingObstacles-v0

4.3.3 Run mode enjoy

The enjoy run mode is meant for visualizing and recording the agent specified by the
--agent parameter. Depending on the value of the --render argument, whose avail-
able options are '2d' and '3d', this run mode will spawn a real-time recording process
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that will output a video to the /logs/videos folder.

Example: python run.py enjoy TestScenario1-v0 --agent ./agent.pkl

4.3.4 Run mode test

The test run mode is intended for qualitative and quantitative testing. It will simulate the
agent given as --agent the number of times specified by the --episodes parameter.
The testing will, by default, take place in the background (i.e. without rendering). Quanti-
tative test metrics (e.g. avg. cross-track error), as well as trajectory plots, will be outputted
to /logs/tests at the end of each episode. Statistics that are aggregated over all the test
episodes will also be found in the same folder.

Example: python run.py test TestScenario2-v0 --agent ./agent.pkl --episodes 100

4.4 Configuration
The software offers a wide range of customizable parameters found in the __init__.py
file, the most important of which are listed below:

Parameter Description Default value
min cumulative reward Minimum cumulative reward received before episode ends -2000
max timesteps Maximum amount of timesteps before episode ends 10000
min goal distance Minimum aboslute distance to the goal position before episode ends 5
min path progress Minimum path progress before scenario is considered successful 0.99
t step size Length of simulation timestep [s] 1.0
sensor frequency Sensor execution frequency 1.0
observe frequency Frequency of using actual obstacles instead of virtual 1.0
look ahead distance Path look-ahead distance for vessel [m] 300
n sensors per sector Number of rangefinder sensors within each sector 20
n sectors Number of sensor sectors 9
sensor range Range of rangefinder sensors [m] 150

Table 4.1: Reward configuration

4.5 Optimization
Depending on the number of rangefinder sensors attached to the vessel, simulating the
sensor suite can be slow. Although the shapely library offers efficient procedures for geo-
metric calculations, most relevantly the intersects method for computing intersection
points between geometric shapes, these computations are the major bottleneck of the com-
putation. Given the resolution of the elevation data used in this research, the complexity of
the polygons representing real-world terrain leads to a further worsening of computational
efficiency. Thus, concrete approaches to speed up computation without sacrificing the in-
tegrity of the simulation are of large value. In the following, we present a few selected
approaches to mitigating this problem.
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4.5.1 Reduced sensor activation
Depending on the time-step size, one can lower the activation frequency of the sensors
while maintaining a perception capability sufficient of navigating in an intelligent manner.
This relies on the assumption

x
(t)
i ≈ x

(t−1)
i ∀i, t (4.1)

which can be controlled in the software through varying the configuration parameter
sensor_frequency, the value of which decides the percentage of time-steps where
the sensors should be executed.

4.5.2 Obstacle virtualization
Especially in test scenarios derived from real-world elevation data, the geometric com-
plexity of the obstacles, as well as the sheer number of them, simulating the vessel is
computationally expensive, and, depending on the computer, quite slow. However, a sig-
nificant speed-up can be achieved by replacing the actual obstacle environment with a
virtual one - one that is generated based on the last available sensor readings. Here, the
procedure is simply to create artificial obstacle polygons based on the intersection points
computed upon the actual execution of the sensor. On a regular interval, defined by the
value of the configuration parameter observe_frequency, the sensor suite will be ex-
ecuted on the actual obstacle environment, and thus update the virtual one. Until the next
update, the vessel will use the virtual obstacles as an approximation of the nearby obstacle
environment, yielding a huge gain in performance. In Figure 4.4b, the virtual obstacle
environment derived from the sensor measurements in Figure 4.4a is displayed.
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(a) Sensor scan of actual obstacle environment

(b) Corresponding virtual obstacle environment

Figure 4.4: Illustration of the procedure yielding a virtual obstacle environment intended for speed-
ing up computation time. When simulating the vessel in environments reconstructed from real
terrain-data, the simplification of the obstacle geometry resulting from this approach leads to sig-
nificant reduction in computation time for calculating the intersection points between sensor rays
and obstacles.
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4.5.3 Higher-order ODE solver
Using a more complex Runga-Kutta method than the forward Euler method increases the
stability margin of the simulation for larger time-steps, which allows for faster simulation.
In the software framework, the default numerical solver for simulating the vessel dynamics
is the fifth order Runge-Kutta-Fahlberg method with the Butcher tableau shown in Table
4.2.

0
1/4 1/4
3/8 3/32 9/32
12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104
1/2 -8/27 2 -3544/2565 1859/4104 -11/40
25/216 0 1408/2565 2197/4104 -1/5 0
16/135 0 6656/12825 28561/56430 -9/50 2/55

Table 4.2: Butcher tableau for embedded Runge-Kutta-Fahlberg method (15).

Remark. The default distance unit used in this package is 10 m (decameters). Return
values, such as those returned by length and position attributes, must be multiplied
by 10 to obtain the values in meters. This choice was made out of convenience, given that
the terrain data has a 10x10 metric resolution.
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Chapter 5
Results and Conclusion

In this chapter, we present and discuss the results obtained during the training and evalu-
ating phase. Furthermore, we conclude the study and outline the most notable directions
for future work based on this project.

5.1 Training process
The agent’s training process consisted of a total number of 1000 simulated episodes, which
corresponds to more than 4 million simulated time-steps. Using a Intel Core i7-8550U
CPU with 8 parallel simulation environments, this amounted to a total training time of
more than 50 hours. Training was stopped when the agent’s policy had converged to a
desirable performance level. This was backed up by the observed training metrics used
for monitoring the progress, whose plots can be seen in the Appendix. At the end of the
training process, we observed that the agent converged to an almost 100% success rate.

5.2 Evaluation results
As outlined in Section 3.5, our strategy for evaluating the agent’s guidance performance
was based on repeated trials in multiple test scenarios. Specifically, we simulated the
agent’s trajectory in new, random iterations of the training environment, as well as three
real-world based scenarios from the Trondheim Fjord: Ørland-Agdenes, Trondheim and
Froan, where the scenario traffic was randomly sampled as a subset of the total recorded
AIS data in the area. For each of the four test domains, 100 episodes were simulated. A
larger sample size for evaluation would, of course, yield stronger statistical significance,
but due to the lack of time and computational resources, 100 episodes was a reasonable
compromise. The results obtained from quantitative evaluation are presented in in Table
5.1. A 100 % success rate, i.e. the agent reaching the goal position without colliding in
every episode, is observed in all test environments. This excellent set of results testifies
to the agent’s capability to navigate unknown waters in a safe manner. As can also be
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seen from the test results, the average cross-track error is highly scenario-dependant. This
is expected, as the vessel traffic and obstacle density dictates how closely the agent can
follow the desired path in a safe manner.

Scenario Success rate Avg. cross-track error
Training scenario 100% 450 m
Ørland-Agdenes 100% 300 m
Trondheim 100% 90 m
Froan 100% 300 m

Table 5.1: Quantitative test results obtained from 100 episode simulations in each scenarios.

In Figure 5.1, the vessel trajectory from selected test episodes is plotted for each of the
four test environments.
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(b) Ørland-Agdenes test scenario trajectory.
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(c) Trondheim test scenario trajectory.
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(d) Froan test scenario trajectory.

Figure 5.1: Selected example trajectories from the test scenarios. The vessel trajectories are drawn
as red dashed lines.

In addition to the statistical evaluation, snapshots of some selected situations which are
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deemed representative for the agent are presented. This should provide some insight into
the vessel’s guidance behavior in commonly occurring situations. First, the pure path-
following ability of the agent is showcased in Figure 5.2, where it is evident that the agent
converges to the desired trajectory in a satisfactory manner after having deviated from it.
Then, the agent’s ability to go around static obstacles to avoid stranding is showcased in
Figure 5.3. Here, the agent performs an evasive maneuver to avoid stranding (i.e. colliding
with the circular obstacle). Finally, selected examples of the agent’s behavior when faced
with vessel encounters are shown in Figure 5.4.
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Figure 5.2: Showcase of the path-following ability demonstrated by the agent in one of the training
scenarios. After the turn, the agent converges perfectly to the desired trajectory.
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Figure 5.3: Showcase of the agent’s ability to perform an evasive maneuver to avoid stranding.
Here, the agent makes a correct decision to sacrifice path adherence in order to avoid colliding with
the static obstacle.
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(a) Head-on situation (Ørland-Agdenes)
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Figure 5.4: Agent performing common naval collision avoidance maneuvers upon encountering
other vessels.

5.3 Conclusion

Our results suggest that DRL agents, if trained in a stochastic, generic obstacle environ-
ment, are capable of performing complex guidance tasks. Specifically, we have shown that
our trained agent to a very satisfactory degree avoids collisions with other vessels while,
at the same time, adheres to a desired trajectory without getting stranded.

Furthermore, the successful experiments in simulated real-world-based environments show
great promise for the viability of implementing it on a real vessel. As the approach requires
no knowledge of the internal dynamics, and allows us to easily adapt the agent behavior
by customizing the performance measure, our paper lays the groundwork for further re-
search which may, given equally positive results, bring significant value to the field of
autonomous guidance.
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Still, it should be noted that DRL algorithms heavily rely on deep neural networks, which
entail an enormous amount trained parameters. Interpreting and explaining such networks
are very challenging, if not humanly impossible at the current moment. Thus, this is gen-
erally considered a drawback for using these algorithms in safety critical applications.
However, the results obtained in this study, despite the lack of formal stability and robust-
ness guarantees associated with the approach, do demonstrate the feasibility of achieving
reliable and high-performing guidance intelligence - even in a safety critical domain.

Finally, it is important to stress that the disturbance-free environment in which the agent
was trained and evaluated does not accurately reflect a real-world marine environment,
even if it perhaps could be reproduced for a pool operation. This encompasses not only
disturbances to the vessel dynamics, but also measurement noise. The lack of such distur-
bances in our software simulation have undoubtedly simplified the guidance task consid-
ered in this work.

5.4 Suggestions for future work

5.4.1 Implicit handling of dynamic COLAV
In this work, we have, in a feed-forward manner, engineered the agent’s observation vector
using velocity attributes of the simulated obstacles. Of course, this approach is not fully
realistic, as velocity measurements may not in general be obtainable given a standard
rangefinder sensor suite. Luckily, methods for estimating such velocities based on recent
sensor reading can be found in literature; object tracking is a well-researched computer
vision discipline (22), and should be considered as an approach to make the DRL guidance
system more easily transferable to a real-world application. Also, further research should
be directed at investigating whether recurrent approaches, i.e. using a recurrent neural
network as policy network, can be applied successfully for this purpose. Here, the idea
would be that, based on sequential data processing, where historic (i.e. recent) sensor
values are fed into the network, the agent could make deliberate guidance decisions where
the dynamic properties of the obstacle environments are taken into account in an implicit
manner.

5.4.2 COLREGs compliance
Adherence to the International Regulations for Preventing Collisions at Sea (COLREGs)
(28) is a central part of maritime navigation. These rules mandate how vessels should
behave upon ship encounters. In this work, we have not considered adherence to these
as a part of the DRL agent’s mission statement; instead, the agent was rewarded simply
for obstacle avoidance, without concern for whether its evasive maneuvers are in line with
COLREG regulation. However, by incorporating the central COLREG rules in the reward
function, it is likely that the agent’s behavior policy could be altered in such a manner that
it would become COLREG-compliant. In particular, implementing the two rules listed
below in the reward function design would be a huge step towards COLREG-compliance:
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Chapter 5. Results and Conclusion

Rule 14: Head-on situation

(a) When two power-driven vessels are meeting on reciprocal or nearly recip-
rocal courses so as to involve risk of collision each shall alter her course to
starboard so that each shall pass on the port side of the other.

Rule 15: Crossing situation

When two power-driven vessels are crossing so as to involve risk of collision,
the vessel which has the other on her own starboard side shall keep out of the
way and shall, if the circumstances of the case admit, avoid crossing ahead of
the other vessel.

(a) Head-on situation, target-vessel free to move. (b) Head-on situation, target-vessel restricted in
movement.

(c) Crossing situation, target-vessel free to move. (d) Crossing situation, target-vessel restricted in
movement.

Figure 5.5: Expected behavior from the own-ship (colored in blue) in head-on and crossing encoun-
ters according to COLREGs.

5.4.3 Multi-agent environments
In this study, we have considered the collision avoidance problem from the perspective of
a single agent. Even during testing, the other vessels were interpreted simply as moving
obstacle with pre-determined trajectories. This does not allow for any form of collabora-
tion between the vessels, something which, if facilitated, could present opportunities for
co-operative guidance missions which could have useful applications in the real world.

5.4.4 Increased realism
In this work, we have neglected environmental forces such as wind, waves and current,
which can pose a serious challenge to a marine vessel. As can be read in (17), such effects
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5.4 Suggestions for future work

can be accurately represented in the mathematical vessel dynamics, and thus incorporated
in the simulation. If a static disturbance, such as an ocean current, was applied to the
vessel, there is reason to believe that it would be within the agent’s reach to learn a control
policy that counters the effect of the disturbance. This is backed by the results in (37),
where a path following DRL agent was successfully trained even under the influence of
ocean currents. The more challenging case of dynamic disturbances, such as winds with
varying direction and speed, would likely require us to extend the vessel’s sensor suite to
access or estimate the current disturbance characteristics.

5.4.5 Other application domains
Even though autonomous marine vessels has been the the focus of this project, the technol-
ogy explored is likely to be applicable to other domains as well, including especially (but
not exhaustively) unmanned aerial vehicles (UAVs) and autonomous underwater vehicles
(AUVs). Here, a major challenge will be the introduction of a third movement direction.
Given the increased computational challenges associated with sensor scanning in 3D, it is
clear that intelligent sensor data pre-processing and dimensionalty reduction would be of
even higher importance. Unfortunately, extending the feasibility pooling algorithm 2 to
three dimensions is a highly non-trivial endeavor. Thus, research should be done in this
direction to investigate how this or similar approaches can be made feasible.
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Appendix

Training plots
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Figure A.1: Episode timesteps (i.e. duration of episode) during training process.
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Figure A.2: Achieved progress (i.e. percentage of full path distance travelled at the end of the
episode).

Training scenario algorithm
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Algorithm 3 Generate and simulate random training scenario with moving obstacles.
Require:

Number of static obstacles No,stat ∈ N0

Number of dynamic obstacles No,dyn ∈ N0

Number of path waypoints Nw ∈ N0

Path length Lp ∈ N0

Mean static obstacle radius µr,stat ∈ R+

Mean dynamic obstacle radius µr,dyn ∈ R+

Obstacle displacement distance standard deviation σd ∈ R+

procedure SIMULATETRAININGENVIRONMENT(No,stat, No,dyn, Nw, Lp, µr,stat,
µr,dynm σd)

Draw θstart from Uniform(0, 2π)
Set of static obstacles Ostat ← {}
Set of moving obstacles Odyn ← {}
Path origin pstart ← 0.5Lp [cos (θstart), sin (θstart)]

T

Goal position pend ← −pstart
Generate Nw random waypoints between pstart and pend.
Create smooth arc length parameterized path pp(ω̄) = [xp(ω̄), yp(ω̄)]T from 1D

Piecewise Cubic Hermite Interpolation (PCHIP).
repeat

Draw arclength ω̄obst from Uniform(0.1Lp, 0.9Lp).
Draw obstacle displacement distance dobst from N (0, σ2

d)
Path angle γobst ← atan2 (pp

′(ω̄obst)2,pp
′(ω̄obst)1)

pobst ← pp(ω̄obst) + dobst[cos (γobst − π
2 ), sin (γobst − π

2 )]T

Draw obstacle radius robst from Poisson(µr,stat).
Add static obstacle (pobst, robst) to Ostat.

until No,stat static obstacles are created
repeat

Draw arclength ω̄obst from Uniform(0.1Lp, 0.9Lp).
Draw obstacle displacement distance dobst from N (0, σ2

d)
Path angle γobst ← atan2 (pp

′(ω̄obst)2,pp
′(ω̄obst)1)

pobst ← pp(ω̄obst) + dobst[cos (γobst − π
2 ), sin (γobst − π

2 )]T

Draw obstacle radius robst from Poisson(µr,dyn).
Draw movement direction ψobst from Uniform(0, 2π).
Draw phase shift φobst from Uniform(0, 2π).
Add moving obstacle (pobst, robst, ψobst, φobst) to Odyn.

until No,dyn moving obstacles are created
Time-step t← 0
repeat

for pobst, robst, ψobst, φobst ∈ Odyn do
dx← 1

r sin (S0t+ φobst) cosψobst
dy ← 1

r sin (S0t+ φobst) sinψobst
pobst ← pobst + [dx, dy]T

t← t+ 1
until End of episode
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