
Nonlinear Autonomous Docking
and Path-Following
Control Systems for the Otter USV

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Per Gunnar Berg Torvund

2020
Per Gunnar Berg Torvund

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Nonlinear Autonomous Docking and
Path-Following
Control Systems for the Otter USV

Per Gunnar Berg Torvund

Cybernetics and Robotics
Submission date: June 2020
Supervisor: Thor I. Fossen
Co-supervisor: Johann A. Dirdal

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Nonlinear Autonomous Docking and Path-Following
Control Systems for the Otter USV

Per Gunnar Berg Torvund

Master of Science in Cybernetics and Robotics
Submission date: June 2020
Supervisor: Thor I. Fossen, Department of Engineering Cybernetics
Co-supervisor: Johann A. Dirdal, Department of Engineering Cybernetics

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem description
The main purpose of the project is to develop nonlinear control algorithms for
docking and path following for small USVs. This project is going to investi-
gate these topics for a small research vessel with an underactuated actuator
configuration. The algorithms should be simulated on a model of the Otter USV.

The following topics and challenges should be considered in more detail:

1. Literature study on methods for docking, path following, obstacle avoidance
and how to simulate these topics in a realistic manner. Appropriate research
questions and requirement specifications should be formulated in order to
solve the problem. Differences and shortcomings between simulation studies
and real experiments should be identified and explained.

2. Develop a simulator in Matlab for testing of different control algorithms.
The simulator should include the USV dynamics, actuator dynamics, sensory
systems with realistic measurement noise and stochastic time-varying ocean
currents.

3. Develop control algorithms for autonomous docking (including control al-
location), LOS path following and path re-planning. The path following
should utilize a predefined path that is recalculated based on proximity to
obstacles. Derive and include stability properties if appropriate.

4. Develop algorithms/methods for generating realistic sensor noise. This
includes stochastic time-varying ocean currents and sensor noise.

5. Conduct a large Monte-Carlo simulation study where the methods and
algorithms are evaluated in detail. The Monte-Carlo simulations should be
based on varying ocean current and obstacle locations. The results should
be discussed and related to a real-life scenario.

6. Conclude the findings in a report.

i

Abstract
This thesis aimed to use nonlinear control algorithms for autonomous docking,
path following and obstacle avoidance for Maritime Robotics smallest Unmanned
Surface Vessel (USV), the Otter USV. The field of autonomous docking is currently
a popular topic where multiple solutions have been presented for fully actuated
vessels. However, the Otter USV is only controlled by two fixed rear thrusters,
making the vessel underactuated. The fact that the thrusters are fixed means
that they are unable to directly affect the sideways motion of the vessel, which
complicates the control problem. In order to address this problem, a simulator
was developed in Matlab where the nonlinear dynamics of the Otter USV were
based on data from previous experiments. The simulator was developed in order
to test various control schemes on the Otter USV.

In this thesis, a PID controller and two higher order Sliding Mode Controllers
(SMCs) were implemented as course controllers and a PI controller as a surge
controller. The SMCs that were implemented was a PID-SMC and a Super-
Twisting Controller (STC). These controllers were chosen since they are robust to
parameter uncertainties. The PID controller was implemented to compare the
SMCs with a “Simple” controller. These controllers were used together with a
Line of Sight (LOS) guidance law and a obstacle avoidance algorithm in order
to calculate the desired course for path following while avoiding obstacles. The
vessel entered a docking phase when it was within a given distance from the dock.
This phase consisted of reducing the surge speed from 1 to 0.2 m/s.

In order to compare the controllers to each other, a Monte-Carlo simulation of
10000 iterations was conducted. The current velocity, crab angle and obstacles
was stochastically generated for each iteration. The results also consists of two
constructed cases: one with weak ocean currents and one with strong ocean
currents. These cases were included in order to show how the USV handled both
“mild” and “extreme” conditions. The Monte-Carlo simulation showed that the
STC tracked the course and had the lowest cross-track error out of all controllers,
while the PID controller had the worst performance. The total median course
and cross-track error for the PID-SMC was 114% and 66% larger than for the
STC, respectively. Furthermore, the energy consumption of the STC was slightly
lower than the other controllers. However, since there was very little difference in
energy consumption between the controllers, this was seen as trivial.

It’s suggested that the surge controller can be improved by using more a advance
controller such as the STC. For even more realistic simulations, it’s recommended
that other external disturbances such as wind and waves are included. Lastly, it’s
recommended to test the controllers by implementing them on the actual Otter
USV.

iii

Sammendrag
Denne oppgaven gikk ut på å bruke ulineære kontrollalgoritmer for autonom
dokking, banefølging og hinderunngåelse for Maritime Robotics sin minste over-
flatefarkost, “oteren”. Autonom dokking er for tiden et hett tema der flere løsninger
har blitt presentert for fullaktuerte skip. “oteren” blir bare kontrollert av to faste
propeller/thrustere plassert akter, noe som gjør fartøyet underaktuert. Dette
gjør kontrollproblemet mer utfordrende siden fartøyet ikke kan direkte beveges
sidelengs (ved bruk av thrusterene). For å adressere dette ble det utviklet en
simulator i Matlab der forskjellige kontrollordninger kunne testes der den ulineære
dynamikken var modellert basert på data funnet i tidligere eksperimenter.

Oppgaven fokuserte på å implementere to høyere ordens Sliding Mode kontrollere
(SMC) som kurskontrollere og å bruke en PI-kontroller som en fartskontroller.
SMC-ene som ble implementert var en PID-SMC og en Super-Twisting kontroller
(STC). Disse kontrollerne ble valgt ettersom de er robuste for parameterusikker-
heter. I tillegg til disse ble en enkel PID-kurskontroller implementert og sammen-
lignet med SMC-ene. Disse kontrollerne ble brukt sammen med en Line of Sight
(LOS) veiledningslov og en algoritme for hinderunngåelse til å beregne ønsket kurs
for banefølging uten å kollidere med hinder. Fartøyet gikk inn i en dokkingsfase da
det var innenfor en gitt avstand fra kaien der hastigheten til fartøyed ble redusert
fra 1 m/s til 0.2 m/s.

For å sammenligne kontrollene med hverandre ble det utført en Monte-Carlo-
simulering med 10000 iterasjoner. Strømhastigheten, strømvinkelen og hindringene
ble generert stokastisk for hver iterasjon. Resultatet inneholder også to konstruerte
tilfeller: en med svake havstrømmer og en med sterke havstrømmer. Disse tilfellene
ble inkludert for å vise hvordan USVen hånderte både “milde” og “ekstreme” forhold.
Monte-Carlo-simuleringen viste at STCen hadde lavest kurs- og kryssporingsfeil,
og at PID-kontrolleren hadde dårligst ytelse. Den totale medianen av kryssporings-
og kursfeilen for PID-SMCen var henholdsvis 114% og 66% større enn for STCen.
Videre var energiforbruket til STCen litt lavere enn de andre kontrollerne, men
siden det var veldig lite forskjell i energiforbrukmellom kontrollerne ble dette sett
på som trivielt.

Det foreslås at hastighetskontrolleren kan forbedres ved å bruke en mer avansert
kontroller som for eksempel STC. For enda mer realistiske simuleringer, anbefales
det at andre ytre forstyrrelser som vind og bølger inkluderes. Til slutt anbefales
det å teste kontrollerne på den faktiske “oteren”.

v

Preface
This thesis is carried out at the Department of Engineering Cybernetics, at NTNU
in Trondheim the spring of 2020. It is submitted as a requirement for the master’s
thesis TTK4900. Parts of chapters 1 to 4 are based on specialization project
TTK4551, which was submitted the fall of 2019. Parts of these chapters were
developed in joint work with Henrik B. Strand.

I would like to thank my supervisor, Thor Inge Fossen and my co-supervisor,
Johann Alexander Dirdal for guidance and feedback. I would also like to thank
my partner and family for their continuous support.

In the winter of 2020, my father, Kjell Tore, sadly passed away from cancer. As
a supportive father and electrical engineer, he was always genuinely interested
in my studies. I would like to dedicate this thesis to him as he inspired me to
choose this field of study.

Per Gunnar Berg Torvund
Trondheim, June 2020

vii

Contents

Problem description i

Abstract iii

Sammendrag v

Preface vii

List of figures xiii

List of tables xv

Acronyms xvii

Symbols xix

1 Introduction 1
1.1 Motivation . 1
1.2 The Otter USV . 1
1.3 System overview . 2
1.4 Research questions . 4
1.5 Objectives . 4
1.6 Assumptions . 4
1.7 Requirement specifications . 5
1.8 Contributions . 5
1.9 Outline . 6

2 Literature study 7
2.1 Autonomous Systems . 7
2.2 Autonomous applications for USVs 7
2.3 Obstacle avoidance . 8
2.4 Nonlinear controllers . 9
2.5 Summary . 11

3 Theory 13
3.1 Kinematics of the Otter USV . 13
3.2 The Otter USV model . 14

3.2.1 Inertia matrices . 14

ix

Contents x

3.2.2 Restoring forces . 16
3.2.3 Damping forces . 18
3.2.4 Cross-flow drag for sway and yaw 18
3.2.5 Control allocation . 19

3.3 Path following . 20
3.4 Set-Based Guidance . 21

3.4.1 Switching mechanism . 22
3.5 A* path re-planning . 23

3.5.1 Locating waypoints . 24
3.6 PI surge and PID course controllers 26
3.7 First-order Sliding Mode Control 27

3.7.1 Chattering . 28
3.8 PID-Sliding Mode Controller . 31
3.9 Super-Twisting Controller . 33

3.9.1 Adaptive Gain STC . 34
3.10 Reference Models . 34

4 Implementation 37
4.1 Overview . 37
4.2 Measurement noise . 37
4.3 External disturbances . 39
4.4 Discretization . 40
4.5 Controller implementation . 41

4.5.1 PI and PID controllers . 41
4.5.2 PID-SMC . 42
4.5.3 STC . 43

4.6 Reference models . 43
4.7 Obstacle implementation . 44

4.7.1 Obstacle avoidance . 44
4.7.2 Obstacle generation . 45

5 Results and discussion 47
5.1 Case 1: Weak currents . 47

5.1.1 PID course controller . 48
5.1.2 PID-SMC . 49
5.1.3 STC . 50
5.1.4 Summary of the results . 51

5.2 Case 2: Strong currents . 52
5.2.1 PID course controller . 53
5.2.2 PID-SMC . 53
5.2.3 STC . 54
5.2.4 Summary of the results . 55

5.3 Monte-Carlo simulation . 56
5.3.1 Summary of the results . 58

5.4 Discussion . 59
5.4.1 Median instead of Mean values 59
5.4.2 Cross-track error Case 1 . 60

xi Contents

5.4.3 Waypoint generation . 60
5.4.4 Real-world application . 61

6 Conclusions and future work 63
6.1 Conclusion . 63
6.2 Future work . 63

6.2.1 Include wind and waves . 64
6.2.2 Improve tuning . 64
6.2.3 Collision avoidance . 64
6.2.4 Include thruster dynamics 64
6.2.5 Real-world application . 64

References 67

Appendices 73
A Physical parameters . 75
B Monte-Carlo results . 76
C Matlab Code . 77

Contents xii

List of Figures

1.1 Image of the Otter USV . 2
1.2 Control system for the Otter USV 3
1.3 System overview . 3

2.1 Level of autonomy . 7

3.1 The 6 degrees of freedom for the Otter USV 13
3.2 Illustration of LOS guidance law 21
3.3 Figure illustrating parameters used for obstacle avoidance 22
3.4 Illustration of the A* algorithm . 24
3.5 Simplified illustration of the A* algorithm 25
3.6 Path from A* with waypoints illustrated in red 26
3.7 An example showing how the controller input suffers from chattering 29
3.8 Reason for chattering . 30
3.9 Example of chattering reduction 31

4.1 Illustrated block diagram of the Matlab simulator 37
4.2 Noise affecting the surge velocity 38
4.3 Filtered and unfiltered surge velocity signal 39
4.4 Figure showing 60◦ current crab angle 40
4.5 Figure showing the generated ocean current velocity and crab angle 40
4.6 Tuning of surge and course reference models 44

5.1 The generated current velocity and crab angle for Case 1 48
5.2 Tracking of desired surge with weak currents 48
5.3 PID tracking of course with weak currents 49
5.4 PID-SMC tracking of course with weak currents 50
5.5 STC tracking of course with weak currents 51
5.6 The generated current velocity and crab angle for Case 2 52
5.7 Tracking of desired surge with strong currents 52
5.8 PID tracking of course with strong currents 53
5.9 PID-SMC tracking of course with strong currents 54
5.10 STC tracking of course with strong currents 55
5.11 Figure showing the controller input for the STC in Case 2 zoomed in 56
5.12 Results form Monte-Carlo simulation at given iterations 57
5.13 Results from Monte-Carlo simulation with bar-chart representation 58
5.14 Results from Monte-Carlo simulation with box plot representation 59
5.15 Resulting mean cross-track error from the Monte-Carlo simulation 60

xiii

List of Figures xiv

List of Tables

3.1 Notation from SNAME . 13

4.1 Table of measurement accuracy for the Ellipse RTK GNSS 37
4.2 The parameters chosen for PI and PID controllers. 42
4.3 Parameter values for the PID-SMC 43
4.4 Parameter values for the STC . 43
4.5 The parameters chosen for course and surge reference models . . . 44
4.6 Parameter values for the obstacle generation 45

5.1 Results from the simulation with weak currents 51
5.2 Results from the simulation with strong currents 55

A.1 Physical parameters of the Otter 75
B.1 Results from the Monte-Carlo simulation 76

xv

List of Tables xvi

Acronyms
CF Center of force. 17

CG Center of gravity. 14, 15

CO Center of origin. 15, 17

DOF Degree of freedom. 13, 14, 16

FSMC First-order Sliding Mode Controller. 27, 31–33

PID-SMC Sliding Mode Controller based on a PID controller. 31, 42, 50, 51,
54, 55, 58, 60, 63

SMC Sliding Mode Controller. 6, 9–11, 27, 28, 31, 33

STC Super-Twisting Controller. 10, 11, 33, 34, 43, 50, 51, 54, 55, 57, 58, 60, 63

USV Unmanned Surface Vehicle. 1–5, 8–10, 22, 23, 25, 37, 39, 44, 45, 47, 63

xvii

Acronyms xviii

Symbols
Vc Current velocity [m/s]
βc Crab angle of current [rad]
β Crab angle of craft [rad]
χ Course [rad]
ωb Bandwidth frequency [rad/s]
ωn Natural frequency [rad/s]
φ Roll angle [rad]
ψ Yaw angle [rad]
τ Control force [N]
θ Pitch angle [rad]
e Cross-track error [m]
m Mass of Otter [kg]
ni Propeller shaft speed (input) [rad/s]
p Roll velocity [rad/s]
q Pitch velocity [rad/s]
r Yaw velocity [rad/s]
s Sliding surface [-]
u Surge velocity [m/s]
v Sway velocity [m/s]
w Heave velocity [m/s]
x Position in x direction [m]
y Position in y direction [m]
z Position in z direction [m]

xix

Symbols xx

Chapter 1

Introduction

1.1 Motivation

Unmanned Surface Vehicles (USV) are vehicles that operates on the surface of
the water without a crew. These vehicles have the advantages of being fast, small,
inexpensive and have the ability of autonomous navigation. These advantages
have made USVs popular for several applications such as ocean surveillance,
search, rescue and military operations [1, 2]. The performance of the system is,
however, affected by external disturbances and uncertainties in system dynamics.
Because of this, it’s important that the implemented controllers are robust to the
aforementioned factors. This is the main motivation for using nonlinear controllers
in this thesis, as these controllers do not remove system dynamics and many of
them are robust to parametric uncertainties.

When developing control systems for the Otter USV, one interesting problem
emerges. This USV is designed to only operate in the horizontal plane, which
gives it three generalized coordinates: surge, sway and heading. By design, the
Otter USV is only powered by two fixed thrusters in the aft, giving it only two
control inputs. This results in the USV being underactuated, meaning that the
surge and course controllers are coupled by an actuator model.

One challenging part of the thesis is the implementation of a docking maneuver
for the USV. There has not been done a great deal of research on autonomous
docking of USVs when compared to path following [3]. Moreover, the research
mostly concerns fully actuated USVs, unlike the Otter USV.

1.2 The Otter USV

Maritime robotics is a company founded in 2005 that focuses on delivering vehicles,
tools and systems that operates unmanned both in the air and on the surface.
One of their products is the Otter USV, which is the smallest USV that Maritime
Robotics produces. It can be used for several applications including seabed
mapping and monitoring of sheltered waters [4]. It consists of a frame mounted
on 2 pontoons, with the control box, batteries and sensors mounted on top of the
frame (see Figure 1.1). It has a fixed electrical motor (thruster) integrated to
each of the pontoons, meaning that difference in thrust between the two motors
are necessary in order to turn the vessel. The length of the Otter USV is 2 meters

1

Chapter 1. Introduction 2

and its width is 1.08 meters [4].

Figure 1.1: Image of the Otter USV, illustration from Geo-matching [5]

1.3 System overview

The control system of the Otter USV is divided into two parts: the path-following
control system and the docking control system, as illustrated in Figure 1.2. The
transition from path following to docking happens when the USV is within range
of the on-board camera system. The input to the path following controller is
given by the on-board Real Time Kinematic Global Navigation Satellite System
(RTK GNSS), which outputs the position and course of the vessel. The RTK
GNSS is part of a high performance inertial sensor called Ellipse2-D which is
able to deliver centimeter accuracy in position with a 200 Hz output rate [6]. The
path following controller uses a waypoint generator as input reference. These
waypoints are predefined by the user based on the location of the dock, obstacles
in the path and wanted behavior of the USV towards the dock.

3 1.3. System overview

Figure 1.2: The Otter USV will use the path following algorithm until it’s within
range of the camera system.

When the docking algorithm is activated, the USV uses the stereo-camera vision
on board the vessel. This control system calculates the position of the USV based
on the position of multiple markers placed on the dock. Each marker contains
information about its own position which the camera system extracts through
a convolutional neural network. In addition, the camera module calculates the
relative distance between the markers and the vessel. This relative position to
the dock is used to decide the desired surge velocity. Figure 1.3 shows the system
overview of the two control systems.

Figure 1.3: System diagram showing the two different control systems on board
of the Otter USV. The path-following control system uses GNSS to determine the
position of the USV, while the docking algorithm utilizes the on-board cameras
mounted in the front.

Chapter 1. Introduction 4

1.4 Research questions

The following research questions will be answered in this thesis

Q1 What is the lowest speed at which the USV still is controllable with the
presence of slow stochastic time-varying currents?

Q2 Is it possible for an underactuated USV to follow a path and dock with the
presence of slow stochastic time-varying currents?

Q3 Does a controller that is robust to parameter uncertainty exist for an
underactuated USV?

Q4 Is it possible for an underactuated USV to avoid obstacles in real-time while
following a path?

1.5 Objectives

The objectives of this thesis are summarized as follows

• Description of the Otter USV mathematical model

• Implementation of surge and nonlinear course controllers

• Implementation of a path following guidance law

• Implementation of real-time obstacle avoidance algorithm

• Monte-Carlo simulation study for testing of different course controllers with
slow stochastic time-varying ocean currents and obstacle locations

• Comparison of the performances for the different course controllers

• Suggestions for future work based on the results and research

1.6 Assumptions

The following assumptions was made in the thesis

• Surge speed ud ∈ [0.2, 1] m/s, with desired cruising speed of 1 m/s while
following a path

• Current speed Vc ∈ [0, 0.5] m/s

5 1.7. Requirement specifications

• Crab angle βc ∈ [−180◦, 180◦]

• Vc and βc vary slowly and can be considered constant

• Obstacle radius Ro ∈ [2, 3] m

• Distance from obstacles are found using radar technology

• Obstacles are stationary

• Max 1 obstacle between two waypoints

• Same sampling rate for all sensors

• Course is measured

• No wind or waves present

• Measurement noise is filtered by low-pass filter or Kalman filter (i.e. not
raw noise, but filtered)

1.7 Requirement specifications

The following requirement specifications was set for the system

• Controller bandwidth lower than system natural frequency ωb < ωn

• Median cross-track error e < 0.5 m

• Median course error χ̃ < 6.2◦

• Convergence of states in the presence of ocean currents with amplitude 0.5
m/s

• The USV must always be outside the obstacle radius

• The energy consumption must not vary with more than 1.5% between the
controllers

1.8 Contributions

The following constitutes the main contributions of the thesis

• Robust nonlinear course controllers designed for the Otter USV for path
following and docking with a PI controller for surge

Chapter 1. Introduction 6

• Performance analysis of different course controllers, including comparisons
between SMCs and a PID course controller

• Path re-planning algorithm for avoiding generated obstacles of varying
location and size

• Simulator in Matlab for testing the control algorithms, including the USV
dynamics, sensory systems with realistic measurement noise and ocean
currents

1.9 Outline

The report is organized as follows

Chapter 1 Introduction including system overview, research questions, objec-
tives, assumptions, requirement specifications and contributions

Chapter 2 Brief introduction to autonomy, different nonlinear controllers, path
following, docking and obstacle avoidance with references to related work

Chapter 3 Mathematical model for the vessel, theory for LOS guidance laws,
obstacle avoidance and the controllers used in the project

Chapter 4 Description of how the simulator was implemented in Matlab. This
includes the measurement noise, external disturbance, controllers and dis-
cretization

Chapter 5 Presentation and discussion of the results from the simulations for
two constructed cases and a large Monte-Carlo simulation of 10000 iterations

Chapter 6 Summarizing the findings in the report with suggestions for future
work

Chapter 2

Literature study

2.1 Autonomous Systems

The Society of Automotive Engineers (SAE) have defined 6 levels of driving
automation for on-road motor vehicles, ranging from no driving automation to full
driving automation [7]. Even though these levels refer to on-road vehicles, it can
also be used for water- and aircrafts given the general description of the different
levels. Figure 2.1 gives a brief description to each of the levels as described by
the SAE [7].

Figure 2.1: Description of all 6 levels of autonomy, obtained from Automotive
Electronics [8]

Figure 2.1 states that autonomy level 2 means that the vehicle has combined
automated function such as acceleration and steering. Given that the focus of the
thesis is to design controllers for the same functions as mentioned in the figure, it
can be stated that the automation referred to in this thesis is autonomy of level 2.

2.2 Autonomous applications for USVs

This thesis will focus on two main autonomous applications, namely: autonomous
docking and path following. It should be noted that there exist several other
autonomous applications such as situational awareness and risk assessment, though
these will not be considered in the report.

7

Chapter 2. Literature study 8

Autonomous docking

The field of autonomous docking has been presented with various solutions for
USVs under different conditions. An article by Breivik and Loberg presents a
solution for docking a small USV with a larger mother ship traversing the sea
[9]. The USV utilized constant-bearing guidance to track a virtual-target point
on the mother ship. When the USV has matched both position and velocity of
the mother ship, the docking is achieved by aligning the USV with the desired
docking point. The work by Woo and Kim resulted in a solution for docking
underactuated USVs by using a vector-field guidance method to avoid dangerous
areas around the desired docking position [10]. A solution using numerical optimal
control was presented by Martinsen, Lekkas, and Gros, for fully actuated marine
vessels [3].

Path following

In order to safely guide a marine vessel along a desired path, a stable controller is
needed to minimize the distance between the path and the vessel. Fossen, Breivik,
and Skjetne presents a nonlinear guidance system for an underactuated marine
vessel, where the cross-track error is minimized using a backstepping control law
for surge and yaw [11]. The same problem of minimizing the cross-track error was
solved by using a Lyaponov-based control law where the vessel was set to track a
virtual-target vessel defined by a Serret-Frenet frame which moves along the path
[12].

2.3 Obstacle avoidance

For vehicles to navigate unknown environments in real-time, it’s crucial that
the vehicle is able to avoid obstacles located along the path. There have been
presented several methods for avoiding obstacles for marine vehicles, such as

• Potential fields [13]

• Dynamic window [14]

• A* path re-planning [15, 16]

• Set-based guidance [17]

The potential fields method have been shown to consist of several drawbacks and
limitations, such as oscillating behaviour [18]. The dynamic window approach
assumes that there is only forward velocities. When USVs move through water
they tend to glide on the surface, which contradicts the assumption of only forward

9 2.4. Nonlinear controllers

velocity. Furthermore, the dynamic window approach can be computationally
expensive [17]. The paragraphs below will give a brief introduction of the A* path
re-planning and set-based guidance methods.

A* path re-planning

The A* algorithm, published in 1968 by Hart, Nilsson, and Raphael [19], is one of
the most effective direct search method for static networks shortest path problem
[20]. It operates similar to the Dijkstra algorithm, published in 1959 [21], with
the main difference being that the A* algorithm guides its search towards the
most promising path by using heuristic cost estimations [22]. The algorithm will
ensure that the obstacles are avoided by defining a high cost-value for the obstacle
locations, as it will choose the path of lowest cost. A* has been shown to be a
viable option for path re-planning for USVs as long as the obstacles are static [15,
16].

Set-based guidance

Recent results in set-based guidance theory has lead to a switching guidance
system for underactuated USVs [17]. This method ensures path following and
guarantees collision avoidance for both static and moving obstacles by switching
between two different modes: path following and collision avoidance [23]. The
goal for the collision avoidance mode is to track a given safe radius around the
obstacle centre. Collisions will never occur as long as this radius is maintained [17].
Furhtermore, the set-based guidance presented by Moe and Pettersen has been
shown to assure collision avoidance while abiding by the International Regulations
for Preventing Collisions at Sea (COLREGs) [17].

2.4 Nonlinear controllers

Most real processes are inherently nonlinear in nature. This is due to the fact
that the relationships in physics are nonlinear [24]. Nonlinear control methods are
more complex than the control methods used in linear models, but they include
more of the system dynamics than the linear control methods [25]. A common way
to solve nonlinear problems is by linearizing it such that linear control methods
can be used, simplifying the problem. However, the problem with linearization is
that the model properties are “destroyed” and that the design process can be more
complicated with a limited physical insight [26]. As research question Q2 states,
this thesis will focus on implementing a controller that is robust to uncertainties,
for which the following control methods are relevant.

• Sliding Mode Control (SMC)

Chapter 2. Literature study 10

• Super-Twisting Mode Control (STC)

• Model Predictive Control (MPC)

The paragraphs below will give a brief introduction of the different methods.

Sliding Mode Control

The first English publications of Sliding Mode Control (SMC) was in 1977 by
Vadim Utkin [27]. SMC is considered to be one of the most promising robust
control techniques [28]. SMCs have been used on multiple vehicles such as USVs,
Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV)
[29, 30, 31, 32, 33, 34]. The concept of SMC is to define asymptotically stable
sliding surfaces which all system trajectories converge to in finite time and then
slide along until reaching the origin [27, 33]. One important assumption for SMC
is that the uncertainties are bounded and that these bounds are known [29]. The
main disadvantage of SMC is the chattering effect (see Section 3.7.1).

Super-Twisting Control

One of the problems that causes the chattering effect is that the First order SMC
only ensures that the sliding variable (s) tends to zero. Several second order SMCs
have been designed in order to ensure that ṡ also tends to zero such that chattering
is reduced [35]. Most second order SMCs are dependent on measurements of ṡ
or its sign, whereas the Super-Twisting controller (STC) can be implemented as
long as the control appears in the first derivative of the sliding variable (relative
degree of 1) [36]. One of the first publications about STC was by Arie Levant in
1993 [37], it has since been considered as one of the most popular second order
SMCs [35].

Model Predictive Control

The first published formulation of Model Predictive Control (MPC) was in 1963 by
Propoi [38]. A MPC functions in the following way: It starts by finding the current
control action by solving a finite horizon open-loop optimal control problem, using
the current and initial state of the plant [39]. This results in an optimal control
sequence that is predicted to drive the output to the reference. The first control in
this sequence is applied to the plant, and then the cycle repeats for each sampling
instant [40]. MPC are widely used in industrial plants [41], but has also been
used for path following as heading controllers [42, 43].

11 2.5. Summary

2.5 Summary

The performance of MPCs depend on the quality of the system model, they also
usually have a high computational cost [44]. For these reasons, MPC was not
considered as a viable option in the thesis. The thesis will therefore focus on
designing different SMCs (including the STC) as course controllers, given that
it’s a robust and effective control approach for underactuated nonlinear systems
[45]. The different SMCs will then be compared to each other and a standard
PID controller.

The set-based guidance method has been shown to be a good choice when it comes
to collision avoidance for static and moving obstacles [23]. This can make the
method unnecessary complicated since this thesis only consider static obstacles.
However, the switching mechanism can be used together with the A* path re-
planning method, which is less computationally expensive. The obstacle avoidance
method in this thesis will therefore be a hybrid of both methods.

Chapter 2. Literature study 12

Chapter 3

Theory

3.1 Kinematics of the Otter USV

In order to describe the position and orientation of a marine craft moving freely
in 3 dimensions it’s necessary to use 6 degrees of freedom (DOFs), 3 translational
and 3 rotational components [26]. The 3 translational components are surge,
sway and heave, while the 3 rotational components are roll, pitch and yaw.
See Figure 3.1 for a visual representation of the 6 DOFs of the Otter USV.

Figure 3.1: The 6 degrees of freedom for the Otter USV

The notation in Figure 3.1 is adopted from the Society of Naval Architects and
Marine Engineers (SNAME) [46]. Table 3.1 gives a description for each of the
components.

DOF Forces and moments Linear and angular velocities Positions and Euler angles
1 motions in the x-direction (surge) X u x
2 motions in the y-direction (sway) Y v y
3 motions in the z-direction (heave) Z w z
4 rotation about the x-axis (roll) K p φ
5 rotation about the y-axis (pitch) M q θ
6 rotation about the z-axis (yaw) N r ψ

Table 3.1: Notation from SNAME [46]

13

Chapter 3. Theory 14

3.2 The Otter USV model

The Otter USV model used in this thesis had the following representation [26,
p. 13]:

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (3.1)

with ν and η defined as

ν = [u, v, w, p, q, r]> (3.2a)

η = [x, y, z, φ, θ, ψ]> (3.2b)
(3.2c)

where ν and η are generalized velocities and positions used to describe motions in
6 DOF. τ are the generalized forces acting on the craft. In this model M, C(ν)
and D(ν) denotes the inertia, Coriolis and damping matrices respectively, g(η) is
the generalized gravitational and buoyancy force-matrix and g0 consists of static
restoring forces and moments due to ballast systems and water tanks [26, p. 13].
A table containing the value of the physical parameters of the Otter USV can be
found in Appendix A.

3.2.1 Inertia matrices

In order to find M and C(ν) the rigid-body inertia matrix MRB and the rigid-
body Coriolis and centripetal forces-matrix CRB(ν) in CG are calculated [26,
p. 49]:

MCG
RB =

[
(m + mp)I3×3 03×3

03×3 Ig

]
(3.3a)

CCG
RB =

[
(m + mp)S(ωb

b/n) 03×3

03×3 −S(Igω
b
b/n)

]
(3.3b)

(3.3c)

where

ωb
b/n =[p, q, r]> (3.4)

15 3.2. The Otter USV model

and mp is the payload mass for the Otter USV, S(x) is the skew-symmetric matrix
of x and Ig is the inertia matrix. Ig was defined as

Ig :=

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Iyz −Izy Iz

 = m

R2
44 0 0
0 R2

55 0
0 0 R2

66

 (3.5)

where R44, R55 and R66 are the radii of gyration. MCG
RB and CCG

RB was transformed
from CG to CO as follows

MCO
RB = H>(rbg)MCG

RBH(rbg) (3.6a)

CCO
RB(ν) = H>(rbg)CCG

RBH(rbg) (3.6b)

where H(rbg) is the transformation matrix defined as

H(rbg) :=

[
I3×3 S>(rbg)
03×3 I3×3

]
, H>(rbg) =

[
I3×3 03×3
S(rbg) I3×3

]
(3.7)

A marine vessel has to take the resistance of the fluid into account when finding
the M and C(ν) matrices. This is done by including hydrodynamic added mass
MA and CA(ν). These matrices were found using the following equations [26,
p. 118-121]

MA = −


Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 Kṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ

 (3.8)

CA(ν) = −


0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0

 (3.9)

Chapter 3. Theory 16

Where the following assumptions were made

Xu̇= −0.1 ·m (3.10a)
Yv̇= −1.5 ·m (3.10b)
Zẇ= −1.0 ·m (3.10c)
Kṗ= −0.2 ·R44 (3.10d)
Mq̇= −0.8 ·R55 (3.10e)
Nṙ= −1.7 ·R66 (3.10f)

(3.10g)

M and C(ν) are then found by summing the rigid-body and added mass matrices

M = MCO
RB + MA (3.11a)

C(ν) = CCO
RB(ν) + CA(ν) (3.11b)

3.2.2 Restoring forces

Since the Otter USV is modeled in 6 DOF, the motions in heave, roll and pitch
can’t be represented by a zero-frequency model. The natural frequencies in these
second-order mass-damper-spring systems are dominating and needs to be modeled
by the following equations

ωheave =

√
G33

M33
(3.12a)

ωroll =

√
G44

M44
(3.12b)

ωpitch =

√
G55

M55
(3.12c)

with G33, G44 and G55 calculated as follows

G33 = 2ρgAw,pont (3.13a)

G44 = ρg∇GMT (3.13b)

G55 = ρg∇GML (3.13c)

17 3.2. The Otter USV model

where GMT and GML are the traverse and longitudinal metacentric height, and
∇ and Aw,pont are given by

∇ =
m + mp

ρ
(3.14a)

Aw,pont = Cw,pont ·L ·Bpont (3.14b)

This can then be used to find the restoring matrix GCF in Center of Force (CF)
[26, p. 181]

GCF =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 G33 0 0 0
0 0 0 G44 0 0
0 0 0 0 G55 0
0 0 0 0 0 0

 (3.15)

Which has to be transformed to CO by using the transformation matrix H(rbf)

G = H>(rbf)GCFH(rbf) (3.16)

where rbf =
[
−0.2 0 0

]
is the distance from CF to CO. This can then be used

to find g(η) in (3.1).

g(η) ≈ Gη (3.17)

Lastly, the forces and moments g0 due to the ballast tanks is given by the following
equation [26, p. 75]

g0 =


0
0

−Zballast

−Kballast

−Mballast

0

 (3.18)

where Zballast, Kballast and Mballast are the moments in heave, roll and pitch due
to ballast. The value of these were found by manual pre-trimming as shown in
the following equation [26, p. 76]

Gη + g0 = 0 (3.19)

Chapter 3. Theory 18

3.2.3 Damping forces

The linear viscous damping matrix D(ν) is given by

D(ν) = −


Xu 0 0 0 0 0
0 Yv 0 0 0 0
0 0 Zw 0 0 0
0 0 0 Kp 0 0
0 0 0 0 Mq 0
0 0 0 0 0 Nr

 (3.20)

where the linear damping terms on the diagonal of the damping matrix D(ν) are
described by the following equations [26, p. 125]

−Xu = B11v =
M11

Tsurge
(3.21a)

−Yv = B22v = 0 (3.21b)
−Zw = B33v = 2ζheave ωheaveM33 (3.21c)
−Kp = B44v = 2ζroll ωrollM44 (3.21d)
−Mq = B55v = 2ζpitch ωpitchM55 (3.21e)

−Nr = B66v =
M66

Tyaw
(3.21f)

3.2.4 Cross-flow drag for sway and yaw

The nonlinear damping force in sway and the yaw moment are found by [26]

Y = −1

2
ρ

∫ L
2

−L
2

T (x)C2D
d (x)|vr + xr|(vr + xr)dx (3.22a)

N = −1

2
ρ

∫ L
2

−L
2

T (x)C2D
d (x)x|vr + xr|(vr + xr)dx (3.22b)

where vr = v − vc is the relative sway velocity and C2D
d (x) is calculated using the

Hoerner function from the Matlab MSS toolbox [47].

19 3.2. The Otter USV model

3.2.5 Control allocation

As stated under assumptions in Section 1.6, wind and waves were neglected,
meaning τwind = τwave = 0. The control forces were calculated using the following
equation [26, p. 413]

τ = TKu (3.23)

where T is the actuator configuration matrix, K is a diagonal matrix of thrust
coefficients and u is the control variable given by

u =

[
u1

u1

]
=

[
n1|n1|
n2|n2|

]>
(3.24)

where ni is the propeller revolutions per minute (rpm). Since the thrusters only
act on the surge and heading of the vessel, τ can be described as

τ = [τ1 0 0 0 0 τ6]> (3.25)

where τ1 and τ6 are the control inputs for surge and yaw respectively. Furthermore,
the thrust coefficients are equal for both of the thrusters, only depending on
positive or negative rotation of the propellers. Using this in (3.23) gives

[
τ1
τ6

]
=

[
1 1
−l1 −l2

] [
k1 0
0 k2

] [
u1

u2

]
(3.26)

where

l1 = −l2 = −Ypont (3.27a)

ki =

{
kpos if ni > 0

kneg otherwise
(3.27b)

Solving (3.26) for u yields the following

[
u1

u2

]
=

[
k1 0
0 k2

]−1 [
1 1
−l1 −l2

]−1 [
τ1
τ6

]
(3.28)

which can be rewritten using (3.24) such that the controller input for both of the
controllers can be modeled as

Chapter 3. Theory 20

[
n1

n2

]
=

[
sign(u1)

√
|u1|

sign(u2)
√
|u2|

]
(3.29)

where n is bounded as follows

nmax =

√
0.5 · 24.4 · g

kpos
(3.30a)

nmin =

√
0.5 · 13.6 · g

kneg
(3.30b)

3.3 Path following

A Line of Sight (LOS) guidance law is commonly used for following paths [17].
By using a list of waypoints, the desired path can be generated as straight lines
between waypoints pn

k = [xk, yk] and pn
k+1 = [xk+1, yk+1], respectively. The

desired course χ
LOS

can then be calculated using the vessels path-tangential angle
αk, cross-track error e(t) and lookahead distance ∆ [26]:

χ
LOS

= αk + arctan

(
−e(t)

∆

)
, ∆ > 0 (3.31a)

αk = atan2(yk+1 − yk, xk+1 − xk) (3.31b)
e(t) = −[x(t)− xk] sin(αk) + [y(t)−yk] cos(αk) (3.31c)

where atan2(y, x) is the 4-quadrant inverse tangent confining the result to (−π, π]
[26]. The lookahead distance ∆ is a design parameter, often chosen to be two
times the length of the vessel. The waypoint pn

k is updated when the vessel is in
within a given radius of the desired waypoint. An illustration of the LOS guidance
law is shown in Figure 3.2.

21 3.4. Set-Based Guidance

Figure 3.2: LOS guidance law with lookahead-based steering. Illustration byFossen
[26]

3.4 Set-Based Guidance

First part of designing the guidance law for obstacle avoidance is to define a safe
radius Ro around the obstacle center po given by

po(t) = [xc(t) yc(t)]
> (3.32)

As long as Ro is tracked, no collisions will ever occur. Given that the obstacles
are static, the obstacle velocity can be neglected. Furthermore, the following is
denoted [17]

φ = arctan

(
y − yc
x− xc

)
(3.33)

The cross-track error of the circular path is given by

e = Ro − ρ = Ro −
√

(x− xc)2 + (y − yc)2 (3.34)

This is used to calculate the desired heading for obstacle avoidance by using the
following guidance law [17]

Chapter 3. Theory 22

ψoa = φ+ λ

(
π

2
− arctan

(
e + k

∆

))
− arctan

(
v

uoa

)
(3.35)

where λ = −1 corresponds to counter-clockwise motion and λ = 1 to clock-wise
motion, and uoa is the desired surge velocity for obstacle avoidance. Furthermore,
the parameter k due to the obstacles being static. The parameters used in the
obstacle avoidance guidance law are illustrated in Figure 3.3.

Figure 3.3: Figure illustrating parameters used for obstacle avoidance [17]

When the USV switches from path following to obstacle avoidance, it should
choose λ based on the current heading in order to avoid sharp turns. This can be
done by choosing λ as follows [17]

λ =

{
−1 if |ψ − ψoa,cc| ≤ |ψ − ψoa,c|

1 if |ψ − ψoa,cc| > |ψ − ψoa,c|
(3.36)

where ψoa,c and ψoa,cc denotes ψoa from (3.35) calculated in clock-wise and
counter-clockwise motion respectively.

3.4.1 Switching mechanism

In order to switch between obstacle avoidance and path following, a set-based
control method was used [17]. The distance between an obstacle center and the

23 3.5. A* path re-planning

USV is given by ρ in (3.34):

σ = ρ =
√

(x− xc)2 + (y − yc)2 (3.37)

Furthermore, its derivative is given by

σ̇ =
2(x− xc)(ẋ− ẋc) + 2(y − yc)(ẏ − ẏc)

2
√

(x− xc)2 + (y − yc)2
=

(x− xc)ẋ+ (y − yc)ẏ
ρ

(3.38)

Next, a mode change radius around the obstacle is introduced as Rm > Ro. As
long as the USV is outside this radius, it will actively follow the path. Path
following will also be active if the USV is inside Rm, as long as this either increases
or maintains the distance from the obstacle, i.e. if σ̇ ≥ 0. The mode change
radius should be chosen large enough such that the USV can converge to Ro when
switching to obstacle avoidance without overshooting. This can be done by using
a tangent cone TD to the set D = [σmin, σmax] at the point σ ∈ D [17]:

TD(σ) =


[0,∞) if σ = σmin

R if σ ∈ (σmin, σmax)

(−∞, 0] if σ = σmax

(3.39)

From this, it follows that σ̇(t) ∈ TD(σ(t)), which implies that σ(t) ∈ D for t ≥ t0.
This means that a valid set D can be defined such that the USV will keep following
the path as long as σ and σ̇ is in the tangent cone of D. Moe and Pettersen suggests
defining D as [17]

D = [min(Rm,max(σ,Ro)),∞) (3.40)

The distance between an obstacle and the USV will always be greater than or
equal to Ro as long as σ ∈ D.

3.5 A* path re-planning

Since the obstacles are assumed to be static, it’s possible to use a shortest path
algorithm such as A* in order to avoid them. The first part of the A* algorithm
is to define the obstacles, start pixel and end pixel. The algorithm operates using
two lists; an open list and an closed list. All of the reachable pixels are inserted
to the open list, excluding obstacle pixels and pixels that has been “visited”. The

Chapter 3. Theory 24

path that results in the lowest cost is then added to the closed list. The cost for
each step is found by calculating F in the following equation [48]

F = G + H (3.41)

where G is the cost to move from the start pixel to a given pixel and H is the
estimated movement cost from the given pixel to the end pixel [15]. The pixel
from the open list that leads to the lowest F cost is moved to the closed list. The
path is generated by continuously moving towards the goal pixel and selecting
the pixel with the lowest F cost.

3.5.1 Locating waypoints

Using A* will result in a path consisting of each pixel of the optimal movement,
an example of this can be seen in Figure 3.4 where the open list is illustrated in
blue, the open list in green, the final path in red and the obstacle in white.

5 10 15 20 25 30 35 40 45 50

10

15

20

25

30

35

Figure 3.4: Illustration of the A* algorithm with the open list, closed list and
final path illustrated, algorithm from [49]

However, for path following, only the final path is of interest. A simplified plot
with the open and closed list excluded is shown in Figure 3.5.

25 3.5. A* path re-planning

5 10 15 20 25 30 35 40 45 50

10

15

20

25

30

35

Figure 3.5: Simplified illustration of the A* algorithm showing the obstacle and
the final path

Waypoints can then be generated by locating the extrema/turning points of the
path as illustrated in Figure 3.6. These waypoints can be used in a guidance law
such that the USV is able to avoid obstacles.

Chapter 3. Theory 26

5 10 15 20 25 30 35 40 45 50

10

15

20

25

30

35

Figure 3.6: Figure showing the path from A* with the waypoints illustrated in red

3.6 PI surge and PID course controllers

When designing the PI surge and PID course controllers for the Otter USV, the
motions in surge, sway and yaw were considered decoupled. The forward speed is
considered slowly varying and the sideways motion v is assumed small such that
U =

√
u2 + v2 ≈ u. The two motions can therefore be linearly modeled as

(m + mp −Xu̇)u̇+ Xuu = τ1 (3.42a)

(Iz −Nṙ)ψ̈ + Nrψ̇ = τ6 (3.42b)

where (3.42b) describes the motion as a function of the heading, this equation
can be rewritten to describe the motion as a function of the course under the
assumption that βc is constant since the vessel is mostly travelling in straight
lines:

(Iz −Nṙ)χ̈+ Nrχ̇ = τ6 (3.43)

From where the following surge and course controllers can be designed as PI and
PID controllers, respectively, both with reference feedforward [26, p. 372]:

27 3.7. First-order Sliding Mode Control

τ1 = (m + mp −Xu̇)u̇d + Xuud −Kp,uũ−Ki,u

∫ t

0

ũ(τ)dτ (3.44a)

τ6 = (Iz −Nṙ)χ̈d + Nrχ̇d −Kp,χχ̃−Kd,χ
˙̃χ−Ki,χ

∫ t

0

χ̃(τ)dτ (3.44b)

where ũ = u− ud and χ̃ = χ− χd are the error in surge and course respectively.
This gives the following when inserted in (3.42)

(m + mp−Xu̇) ˙̃u+ (Xu + Kp,u)ũ+ Ki,u

∫ t

0

ũ(τ)dτ = 0 (3.45a)

(Iz −Nṙ) ¨̃χ+ (Nr + Kd,χ) ˙̃χ+ Kp,χχ̃+ Ki,χ

∫ t

0

χ̃(τ)dτ = 0 (3.45b)

3.7 First-order Sliding Mode Control

The first part of designing a first-order SMC (FSMC) is to define the sliding
surface variable s, which is dependent on the system error dynamics:

˙̃χ = r̃ (3.46a)

(Iz −Nṙ) ˙̃r + Nr r̃ = τ6 (3.46b)

from which s can be chosen as [25]

s = r̃ + λχ̃ = 0, λ > 0 (3.47)

In order to achieve convergence of the state variables χ̃ and r̃ towards zero, it’s
necessary to drive s to zero, within finite time, by using the control τ6 [35]. To
find values for τ6 at which this is achieved, it’s necessary to analyze the stability
of the s-dynamics. Consider the following candidate Lyapunov function

V(s) =
1

2
s2 (3.48)

where the derivative of s is given by

ṡ = λ ˙̃χ+ ˙̃r = λr̃ − (Iz −Nṙ)
−1Nr r̃ + (Iz −Nṙ)

−1τ6 (3.49)

Chapter 3. Theory 28

where the following holds true

∣∣∣∣λr̃ − (Iz −Nṙ)
−1Nr r̃

(Iz −Nṙ)−1

∣∣∣∣ = |(λ(Iz −Nṙ)−Nr)r̃| ≤ %(χ), ∀ χ ∈ R2 (3.50)

with %(χ) as a known function [25]. This yields the following when differentiating
V along the trajectories of s

V̇(s) = sṡ = s(λr̃ − (Iz −Nṙ)
−1Nr r̃) + (Iz −Nṙ)

−1sτ6 ≤ |s|%(χ) + sτ6 (3.51)

From which the control law can be chosen as

τ6 = −β(χ)sign(s) (3.52)

with β(χ) ≥ %(χ) + β0, β0 > 0, and sign(s) given by

sign(s) =


1 if s > 0

0 if s = 0

−1 if s < 0

(3.53)

Inserting this control law for τ6 in (3.51) yields the following

V̇(s) ≤ |s|%(χ)− s(%(χ) + β0)sign(s) = −β0|s| ≤ 0 (3.54)

From which it can be concluded that the trajectory reaches s=0 within finite time,
and that it does not leave once reached [25]. From (3.54) it can be concluded that
the origin is asymptotically stable, which in turn means that the origin of the
error dynamics of the course is asymptotically stable. Since this control-law is
designed as a course controller, it’s not possible to guarantee global results. This
is due to the fact that errors in the roll, pitch and yaw are in SO(3), which means
that the angles are defined from 0 to 2π and not the whole space in R [50]. This
holds true for all course controllers designed in this thesis.

3.7.1 Chattering

The main problem of the SMC control-law is that it leads to a effect known as
chattering, which is shown in Figure 3.7.

29 3.7. First-order Sliding Mode Control

0 50 100 150 200 250

time (s)

-150

-100

-50

0

50

100

150
input

left thruster

right thruster

Figure 3.7: An example showing how the controller input suffers from chattering

Chattering comes from the fact that there is a delay between when the sign of s
changes and when the control switches. The trajectory can then cross the sliding
surface during this delay, such that it is in the region s < 0 or s > 0 and not
s = 0. This causes a “zig-zag” motion for the trajectory where the trajectory
keeps crossing the sliding surface when the control switches [25]. This effect is
illustrated in Figure 3.8 (sliding manifold=sliding surface).

Chapter 3. Theory 30

Figure 3.8: Chattering due to delay in control switching, illustration from Khalil
[25]

One way to reduce chattering is by replacing sign(s) with a continuous function.
One such function the a sigmoid function [35]

sign(s) ≈ s

|s|+ ε
(3.55)

where ε is a positive constant. Another way to reduce chattering is by replacing
the signum function with a high-slope saturation function given by

sat
(s

ε

)
=

{
s
ε if

∣∣ s
ε

∣∣ ≤ 1

sign(s) if
∣∣ s
ε

∣∣ > 1
(3.56)

where ε > 0 can be described as the boundary layer thickness [26]. Figure 3.9
shows how the chattering from Figure 3.7 was reduced using these methods.

31 3.8. PID-Sliding Mode Controller

0 50 100 150 200 250

time (s)

-150

-100

-50

0

50

100

150
input

left thruster

right thruster

Figure 3.9: Same example as in Figure 3.7 with chattering reduced

3.8 PID-Sliding Mode Controller

The FSMC in Section 3.7 only consists of a single gain as a control law, which
limits the performance of the controller. The aforementioned controller can be
improved by including more of the system dynamics in addition to derivative
and integral parts to the control-law, which results in a higher order SMC. This
controller will be referred to as a PID-SMC, since it’s a SMC based on a PID
controller. The following sliding surface will be considered for the PID-SMC [26]

s = r̃ + 2λχ̃+ λ2
∫ t

0

χ̃(τ)dτ (3.57)

where λ is a design parameter that reflects the controller bandwidth. Next, the
state space equation for course can be written as

χ̇ = r (3.58a)
Tṙ + r = Kτ6 (3.58b)

Chapter 3. Theory 32

where K and T are given by

K =
1

Nr
, T =

Iz −Nṙ

Nr
(3.59)

The next step is then to define a virtual reference variable v and to calculate its
derivative [26]:

v := r − s = r − r̃ − 2λχ̃− λ2
∫ t

0

χ̃(τ)dτ =rd − 2λχ̃− λ2
∫ t

0

χ̃(τ)dτ (3.60a)

v̇ = ṙd − 2λr̃ − λ2χ̃ (3.60b)

By using (3.60), the following equation for Tṡ can be found

Tṡ = Tṙ − Tv̇ = Kτ6 − r − Tv̇ (3.61a)
= Kτ6 − (v + s)− Tv̇ (3.61b)

Similar to the FSMC, the control τ6 has to be found such that the state variables
converges towards zero. Considering the following candidate Lyapunov function
[26]

V(s) =
1

2
Ts2 (3.62)

which yields the following when differentiating along the trajectories of s

V̇(s) = sTṡ = s(Kτ6 − (v + s)− Tv̇) (3.63)

From which the following control law can be chosen

τ6 =
T

K
v̇ +

1

K
v −Kds− η sat(s) (3.64)

where Kd > 0 and η are design parameters with η bounded by [26]

η ≥ r1
T

K
|v̇|+ r2

1

K
|v| (3.65)

where ri represents the percentage of uncertainty for each element (i.e. 1.1
represents 10% uncertainty). Inserting this control-law for τ6 in (3.63) yields

33 3.9. Super-Twisting Controller

V̇(s) = s(−Kds− η sat(s)) = −Kds2 − η|s| < 0, ∀ s 6= 0 (3.66)

which is locally exponentially stable in s=0 due to the non-positive term −Kds2.
Furthermore, since η > 0, it can be concluded that the trajectory converges to
the sliding surface s −→ 0 within finite time [26].

3.9 Super-Twisting Controller

In order to get a SMC that reduces the chattering effect without using sat(s),
one can use a Super-Twisting Controller (STC). The STC is a second order SMC
which ensures that both s and ṡ tends to zero within finite time, resulting in a
reduced chattering effect. The STC does this by generating a continuous control
function. Though it does not eliminate the chattering effect completely since it
contains an integral part (vstc) with a discontinuous function (sign(s)). Similarly
to the FSMC, the first part of designing a STC is to define the sliding surface,
but it is important that the sliding surface has a relative degree of 1. In order to
find the relative degree of the sliding surface it has to be differentiated until the
controller appears in the equation:

s = r̃ + λχ̃ (3.67a)

ṡ = ˙̃r + λr̃ (3.67b)

It can be seen that the controller appears in the equation for ˙̃r after one differenti-
ation, meaning that the sliding surface has a relative degree of 1 and can therefore
be used. The STC control-law is given by [35]

τ6 = −k1|s|
1
2 sign(s) + vstc (3.68)

with

v̇stc = −k2sign(s) (3.69)

where k1 > 0 and k2 > 0 are design parameters. One way to design k1 and k2 in
order to achieve convergence of s = ṡ = 0 is given by Levant [37]

k2 > C, k2
1 ≥ 4C

k2 + C

k2 − C
(3.70)

with C > 0.

Chapter 3. Theory 34

3.9.1 Adaptive Gain STC

Although choosing gains as shown in the previous section can yield acceptable
results, the controller can be improved by using adaptive gains for the STC. For
the sliding surface

s = r̃ + λ1χ̃ (3.71)

with λ1 > 0, the following adaptive gain STC control-law have been proposed [51]

τ6= −α|s|1/2sign(s) + vstc (3.72a)
v̇stc = −βsign(s) (3.72b)

(3.72c)

where α and β are the adaptive gains chosen by the following equations

α̇ =

{
ω
√

γ
2 , if s 6= 0

0, if s = 0
(3.73a)

β = 2εα+ λ2 + 4ε2 (3.73b)

where ε, λ2, γ and ω are positive constants to be tuned. In order to reduce
chattering, a boundary layer can be applied to the sliding surface [52]

α̇ =

{
ω
√

γ
2 , if |s| > αm

0, if |s| ≤ αm

(3.74a)

β = 2εα+ λ2 + 4ε2 (3.74b)

where αm is a design parameter, chosen as a small positive constant. It has been
shown that this control-law makes the sliding surface and its derivative converge
to zero asymptotically [53]. As mentioned in Section 3.7, since the control-law is
designed for the course, it’s not possible to guarantee global results.

3.10 Reference Models

In order to guarantee a smooth reference signal to the surge and course controllers,
a reference model was implemented. The reference models were of third order

35 3.10. Reference Models

and consisted of a low-pass filter and mass-damper-spring system in a cascade.
These cascades can be represented as transfer functions on the following forms:

ud

ur
(s) =

ω3
n

(s + ωn)(s2 + 2ζωns + ω2
n)

(3.75a)

χd

χr
(s) =

ω3
n

(s + ωn)(s2 + 2ζωns + ω2
n)

(3.75b)

where ud and χd are the desired surge and course passed on to the controller,
ur and χr are the reference signals from the guidance system, ζ is the relative
damping ratio and ωn is the natural frequency. In order to limit the surge rate
rd and acceleration ad of the desired surge signal, saturation was added to the
model. The transfer function in (3.75a) can then be represented on the following
state-space form [26, p. 378]

u̇d = sat(rd) (3.76a)
üd = sat(ad) (3.76b)

ȧd = −(2ζ + 1)ωnsat(ad)− (2ζ + 1)ω2
nsat(rd) + ω3

n(ur − ud) (3.76c)

Similarly, for the transfer function in (3.75b):

χ̇d = sat(rd) (3.77a)
ṙd = sat(ad) (3.77b)

ȧd = −(2ζ + 1)ωnsat(ad)− (2ζ + 1)ω2
nsat(rd) + ω3

n(χr − χd) (3.77c)

with the saturation function

sat(x) =

{
sign(x)xmax if |x| ≥ xmax

x otherwise
(3.78)

Chapter 3. Theory 36

Chapter 4

Implementation

4.1 Overview

A block diagram of the system can be seen in Figure 4.1. The Otter block is the
Otter USV model described in Section 3.2, which outputs its states to the LOS
guidance law (Section 3.3), and the surge and course controllers (Section 3.6).
The output of the LOS block is fed to two reference models (Section 3.10) which
outputs the desired value and its derivatives. The controller output is fed to a
control-allocation block which translates the input to thruster inputs for the USV,
as described in Section 3.2.5.

Figure 4.1: Illustrated block diagram of the Matlab simulator

4.2 Measurement noise

In order to make the simulation as realistic as possible, white Gaussian noise was
added to the measurements using the Matlab function wgn(m,n,power). This
function generates a m× n matrix of white Gaussian noise samples, where power
is associated to the amplitude of the noise [54]. The power-value was tuned for
each variable until the amplitude of the generated noises corresponded to the
values in Table 4.1.

Measurement Accuracy
Heading < 0.2◦

Roll/Pitch 0.1◦

Velocity 0.03 m/s
Position 2 cm

Table 4.1: Table of measurement accuracy for the Ellipse RTK GNSS [6]

37

Chapter 4. Implementation 38

After the noise was calculated, it was added to the corresponding states. Figure 4.2
shows the simulated noise that affected the surge velocity.

0 50 100 150 200 250

time (s)

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

v
e
lo

c
it
y
 (

m
/s

)

Noise on surge velocity measurement

Figure 4.2: Noise affecting the surge velocity, max amplitude at around ±0.03
m/s

The noise was filtered in the simulations as it’s assumed that it will be filtered on
the real process using a Kalman or low-pass filter. For simplicity, a low-pass filter
of the following form was implemented [26, p. 547]

yf =
h

T
· (y − yf) + yf (4.1)

where yf is the filtered signal, y is the measured signal, h is the sampling time
and T is the time constant. T was chosen to be as quick as the noise frequency
(T = 1

Noise frequency = 1
1 Hz = 1 s). The unfiltered and the filtered signal of the

surge velocity can be seen in Figure 4.3.

39 4.3. External disturbances

0 50 100 150 200 250

time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

v
e

lo
c
it
y
 (

m
/s

)

Surge velocity

Unfiltered u

Filtered u

Figure 4.3: Filtered and unfiltered surge velocity signal

4.3 External disturbances

Ocean currents were implemented as external disturbances in the simulator,
meaning that the velocity vector in (3.1) had to be replaced by the relative
velocities:

νr = ν − νc (4.2)

where νc ∈ R6 is the velocity of the ocean currents expressed in body frame of
the USV. Using this, the equations of motion can be rewritten as

Mν̇r + C(νr)νr + D(νr)νr + Gη + g0 = τ (4.3)

Realistic time varying ocean currents was generated using a first-order Gauss-
Markov process described by

V̇c + µVc = w (4.4)

where w is Gaussian white noise and µ is a non-negative constant [26, p. 281]. The
value of the corresponding Vc was saturated in the integration process, limiting it
to

Chapter 4. Implementation 40

Vc,min ≤ Vc(t) ≤ Vc,max (4.5)

Furthermore, the current velocity was modeled such that it decreases closer to the
shore. The crab angle of the current (illustrated in Figure 4.4) was implemented
using the same method, replacing Vc with βc.

Figure 4.4: Figure showing 60◦ current crab angle

Both Vc and βc was then low-pass filtered, using the filter shown in (4.1), in order
to make it slow time varying. Figure 4.5 shows an example of the resulting ocean
current velocity and crab angle. From this figure it can also be seen that Vc starts
decreasing as the vessel approaches the shore at around t = 150 s.

0 50 100 150 200 250

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v
e
lo

c
it
y
 [
m

/s
]

Current V
c

Current velocity [m/s]

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

a
n
g
le

 [
d
e
g
]

Crab angle beta
c

Crab angle [deg]

Figure 4.5: Figure showing the generated ocean current velocity and crab angle

4.4 Discretization

As discrete systems are not able to directly calculate derivatives and integrals in
continuous time, a different approach is necessary. Derivatives was simply found

41 4.5. Controller implementation

by using the reference model presented in Section 3.10. In order to integrate the
state derivatives in discrete time, the forward Euler’s method was used:

xn+1 = xn + h · ẋn (4.6)

where h is the sampling time, xn is the current value in discrete time and ẋn is
the derivative of xn in continuous time. In the Matlab implementation, all of
the Euler integrals were done at the end of the main-loop for each time step to
ensure correct state values. The complete code used in the project can be found
in Appendix C.

4.5 Controller implementation

The controllers were tuned such that they fulfilled the requirements in Section 1.7.
The energy consumption of the controllers was found by calculating the following
equation

Energy consumption =

∫ tend

0

(τ21 + τ26) dt (4.7)

which gives a rough indicator of the energy consumption, but it should be noted
that this value is dimensionless.

4.5.1 PI and PID controllers

The gains for the controllers presented in (3.44) was tuned with the pole-placement
algorithm [26, p. 374]. This ensured that the poles were placed in the left-hand
plane, making the system locally asymptotically stable. First, the gain K and
time constant T for the two linear models (3.42a) and (3.43) were found based on
the mass and damping terms. The control bandwidth ωb can then be determined
by the time constant T. The terms for the surge controller was found as follows

mu =
Tu
Ku

= (m + mp −Xu̇) = 60.5 (4.8a)

du =
1

Ku
= Xu = 77.55 (4.8b)

ωb,u =
1

Tu
= 1.28 (4.8c)

Chapter 4. Implementation 42

Equally, the terms for the course controller was found by

mχ =
Tχ
Kχ

= (Iz −Nṙ) = 72.24 (4.9a)

dχ =
1

Kχ
= −Nr = 90.53 (4.9b)

ωb,χ =
1

Tχ
= 1.25 (4.9c)

The P, I and D gains can then be found based on the pole-placement algorithm
[26, p. 374]:

ωn =
1√

1− 2ζ2 +
√

4ζ4 − 4ζ2 + 2
ωb (4.10a)

Kp = mω2
n (4.10b)

Kd = 2ζωnm− d (4.10c)

Ki =
ωn

10
Kp (4.10d)

The pole-placement algorithm guarantees that the controller bandwidth is lower
than the natural frequency of the system. Critical damping is wanted for both
controllers, making the relative damping ratio ζ = 1. The resulting controller
gains are summarized in Table 4.2.

Controller Parameter Value

Surge Kp,u 239.30
Ki,u 47.59

Course
Kp,χ 272.5
Ki,χ 52.93
Kd,χ 190.08

Table 4.2: The parameters chosen for PI and PID controllers.

4.5.2 PID-SMC

The PID-SMC was tuned by choosing λ to reflect the bandwidth of the controller,
ωb. Kd was chosen such that

Kd

Iz −Nṙ
(4.11)

43 4.6. Reference models

was close to 1. The parameter ε was chosen as a low value such that there was
no chattering present in the controller input. Lastly, the uncertainty was set to
be 10% for all of the variables. The resulting parameter values are shown in
Table 4.3.

Parameter Value
λ 1.25
ε 0.1
r1 1.1
r2 1.1
Kd 72

Table 4.3: Parameter values for the PID-SMC

4.5.3 STC

The tuning of the STC was done mostly by testing the performance of different
parameter values. As a baseline for the tuning, the value of λ1 was set to be
close to the bandwidth of the controller. αm was then chosen as a small value
in order to reduce chattering. To further reduce chattering, the signum function
was replaced with the sigmoid function shown in (3.55), using the variable εsat. γ
was chosen as 1 for the entire tuning. ω, λ, ε and εsat was then tuned in order
to reduce chattering and to minimize the course error. The resulting parameter
values are shown in Table 4.4.

Parameter Value
ω 17
γ 1
ε 0.08
αm 0.005
λ1 1.6
λ2 8
εsat 0.005

Table 4.4: Parameter values for the STC

4.6 Reference models

The surge and course reference models, described in Section 3.10, was tuned
in Matlab. The relative damping ration ζn and natural frequency ωn, found in
(4.10a), was set to match the natural frequency of the systems. The following
values was then chosen

Chapter 4. Implementation 44

Ref. model Parameter Value

Course

ζn 0.9
ωn 1.94

rd,max 1 [deg/s]
ad,max 0.9 [deg/s2]

Surge

ζn 1.0
ωn 1.8

rd,max 1 [m/s]
ad,max 0.5 [m/s2]

Table 4.5: The parameters chosen for course and surge reference models

This resulted in a reference model for course where the USV used 5 seconds to
change the desired course from 0 to 90◦. The surge reference model also used 5
seconds to change the surge speed from 1 to 2 m/s, this is illustrated in Figure 4.6.

0 5 10 15 20 25 30 35 40

Time (s)

0

10

20

30

40

50

60

70

80

90

100

A
n
g
le

 (
d
e
g
)

Course reference model, step response

r

d

0 5 10 15 20 25 30 35 40

Time (s)

1

1.2

1.4

1.6

1.8

2

A
n
g
le

 (
d
e
g
)

Surge reference model, step response

u
r

u
d

Figure 4.6: Tuning of surge and course reference models

4.7 Obstacle implementation

This section will explain in detail how the obstacle generation and avoidance
algorithms were implemented. The generation and avoidance of the obstacles was
done such that the requirements in Section 1.7 were fulfilled.

4.7.1 Obstacle avoidance

The obstacle avoidance algorithm used in the project consisted of a hybrid of
the guidance law described in Section 3.4 and the A* algorithm described in
Section 3.5. The first part of the algorithm consisted of calculating if σ and σ̇
is outside the tangent cone D defined in (3.40). If this holds true, the USV will
enter obstacle avoidance mode. In this mode, a new path will be calculated from

45 4.7. Obstacle implementation

the current position of the USV using the A* algorithm. The results from the
A* algorithm depends on the value of the heuristic weight. Larger values for the
heuristic weight will make the algorithm greedier and more likely to take a longer
path, but with less computations [49]. The weight was chosen as

HeuristicWeight = 2 (4.12)

The safety distance for the obstacle avoidance was calculated to be 4 times greater
than the safe radius Ro.

4.7.2 Obstacle generation

The obstacles were generated in the original path of the USV in order to ensure
that it would enter obstacle avoidance mode. A random number of obstacles were
generated based on a given maximum number of obstacles (nmax) and a given
minimum and maximum safe radius Ro. The parameters used in the obstacle
generation are shown in Table 4.6.

Parameter Value
nmax 3

Ro,min 2
Ro,max 3

Table 4.6: Parameter values for the obstacle generation

Chapter 4. Implementation 46

Chapter 5

Results and discussion
This chapter will present and discuss the results from the simulations of the
different controllers. The simulations consisted of a path following phase where
ud was set to 1 m/s and a docking phase where ud was reduced to 0.2 m/s. The
docking phase started when the vessel was less than 25 meters away from the
docking area.

The results will first consider two constructed cases: one with weak ocean currents
and one with strong ocean currents (relative to the requirement specifications
in Section 1.7). Both cases had the same number of obstacles of the same sizes.
Furthermore, all of the iterations had the same seed for the random number
generator (rng) so that the foundation was equal for all course controllers. These
two cases were chosen in order to show how the USV handled both “mild” and
“extreme” conditions. The “extreme” condition was chosen as the highest current
velocity presented in the requirement specifications.

In addition to these two cases, a Monte-Carlo simulation was conducted in order
to test the robustness of the controllers. The simulation study consisted of 10000
iterations where the current velocity, crab angle and obstacles were generated
as presented in Section 4.3 and 4.7 respectively. The initial current velocity and
crab angle were chosen as a random value within the assumptions stated in 1.6.
Similarly to the two cases described above, the seed for the rng was equal for all
controllers.

5.1 Case 1: Weak currents

Figure 5.1 shows the current velocity and crab angle generated in the case of
weak currents. The initial current velocity was set to be around 0.1 m/s while the
initial crab angle was chosen as a random integer between −180◦ and 180◦. The
current velocity drop presented in Section 4.3 can be seen to occur at t ≈ 170 s,
as the vessel approached the shore.

47

Chapter 5. Results and discussion 48

0 50 100 150 200 250

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v
e
lo

c
it
y
 [
m

/s
]

Current V
c

Current velocity [m/s]

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

a
n
g
le

 [
d
e
g

]

Crab angle
c

Crab angle [deg]

Figure 5.1: The generated current velocity and crab angle for Case 1

Figure 5.2 shows how the PI surge controller tracked the desired surge with weak
currents. From this figure it can be seen that there were minuscule tracking errors.
This is not unexpected, given that the external disturbances affecting the surge
velocity of the vessel were small.

0 50 100 150 200 250

time [s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

v
e
lo

c
it
y
 [
m

/s
]

Surge u

u

u
desired

Figure 5.2: Tracking of desired surge with weak currents

5.1.1 PID course controller

As seen in Figure 5.3, the vessel tracked the path well while avoiding the obstacles.
It can, however, be seen that the controller had some problems tracking the
desired course. The controller input is smooth, and the controller handled the
drop in surge (at t ≈ 170 s) without any complications.

49 5.1. Case 1: Weak currents

5 10 15 20 25 30

y [m]

0

20

40

60

80

100

120

140

160

180

x
 [
m

]

XY plot

Original path

Re-planned path

Waypoint

Otter path

Obstacle centre

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

0 50 100 150 200 250

time [s]

-60

-50

-40

-30

-20

-10

0

10

20

30

a
n
g
le

 [
d
e
g
]

Course

desired

error

0 50 100 150 200 250

time [s]

0

2

4

6

8

10

12
10

5 Controller Energy Consumption

X 250

Y 1198000

Figure 5.3: Tracking of desired course for the PID controller with corresponding
thruster input and energy consumption

5.1.2 PID-SMC

The results in Figure 5.4 show that the vessel tracked the path well, with very
small errors in the course. The controller input is smooth up until the end of
the sequence, where some very small oscillations can be seen. Furthermore, the
results show that the controller had no problems handling the docking phase.

Chapter 5. Results and discussion 50

5 10 15 20 25 30

y [m]

0

20

40

60

80

100

120

140

160

180

x
 [
m

]

XY plot

Original path

Re-planned path

Waypoint

Otter path

Obstacle centre

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

0 50 100 150 200 250

time [s]

-60

-50

-40

-30

-20

-10

0

10

20

30

a
n
g
le

 [
d
e
g
]

Course

desired

error

0 50 100 150 200 250

time [s]

0

2

4

6

8

10

12
10

5 Controller Energy Consumption

X 250

Y 1189000

Figure 5.4: Tracking of desired course for the PID-SMC with corresponding
thruster input and energy consumption

5.1.3 STC

The results in Figure 5.5 show that the STC performed just as good as the
PID-SMC. The STC can also be seen to have smooth controller input up until the
end of the sequence, where some small oscillations are visible. These oscillations,
while larger than for the PID-SMC, are still quite small.

51 5.1. Case 1: Weak currents

5 10 15 20 25 30

y [m]

0

20

40

60

80

100

120

140

160

180

x
 [
m

]

XY plot

Original path

Re-planned path

Waypoint

Otter path

Obstacle centre

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

0 50 100 150 200 250

time [s]

-60

-50

-40

-30

-20

-10

0

10

20

30

a
n
g
le

 [
d
e
g
]

Course

desired

error

0 50 100 150 200 250

time [s]

0

2

4

6

8

10

12
10

5 Controller Energy Consumption

X 250

Y 1190000

Figure 5.5: Tracking of desired course for the STC with corresponding thruster
input and energy consumption

5.1.4 Summary of the results

The resulting median cross-track error (e), course error (χ̃) and energy consump-
tion for the three controllers can be seen in Table 5.1. The median was used due
to the mean cross-track error not being symmetrical (see Section 5.4.1). Table 5.1
shows that the STC had the lowest median course error, but that the PID-SMC
had the lowest median cross-track error. Furthermore, it can be seen that the
PID-SMC consumed around the same amount of energy as the STC. The PID
controller had the worst performance, in addition to consuming the most energy.

Controller Median e Median χ̃ Energy consumption
PID 0.067 m 0.91◦ 1 198 466
PID-SMC 0.024 m 0.28◦ 1 188 604
STC 0.025 m 0.23◦ 1 189 946

Table 5.1: Results from the simulation with weak currents

Chapter 5. Results and discussion 52

5.2 Case 2: Strong currents

Figure 5.6 shows the current velocity and crab angle generated in the case of
strong currents. The initial current velocity was set to be 0.5 m/s while the initial
crab angle was equal to Case 1.

0 50 100 150 200 250

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v
e
lo

c
it
y
 [
m

/s
]

Current V
c

Current velocity [m/s]

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

a
n
g
le

 [
d
e
g
]

Crab angle
c

Crab angle [deg]

Figure 5.6: The generated current velocity and crab angle for Case 2

When simulating with 0.5 m/s initial current velocity, the surge controller experi-
enced drops and overshoots in surge while the vessel was turning. However, the
controller was able to recover within 8 seconds. The controller had no problems
tracking the desired surge at the speed drop (at t ≈ 160 s). This is due to the fact
that the current velocity also starts decreasing at this point, as seen in Figure 5.6.
A overshoot of ũ ≈ 0.1 m/s can be seen right before the speed drop. This is
because of an obstacle located between the last two waypoints.

0 50 100 150 200 250

time [s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

v
e
lo

c
it
y
 [
m

/s
]

Surge u

u

u
desired

Figure 5.7: Tracking of desired surge with strong currents

53 5.2. Case 2: Strong currents

5.2.1 PID course controller

The path following seen in the XY-plot in Figure 5.8 shows that the vessel had
problems tracking the path, but that it was still able to avoid the obstacles. The
controller input can be seen to suffer from oscillations during the whole sequence,
except from the docking phase. Furthermore, it can be seen that the controller
had problems tracking the desired course. The nominal course error can be seen
to be smaller when the vessel entered the docking phase, this is due to the fact
that the current velocity decreased at this point, as seen in Figure 5.6.

5 10 15 20 25 30

y [m]

0

20

40

60

80

100

120

140

160

180

x
 [
m

]

XY plot

Original path

Re-planned path

Waypoint

Otter path

Obstacle centre

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

0 50 100 150 200 250

time [s]

-80

-60

-40

-20

0

20

40

a
n
g
le

 [
d
e
g
]

Course

desired

error

0 50 100 150 200 250

time [s]

0

0.5

1

1.5

2

2.5
10

6 Controller Energy Consumption

X 250

Y 2144000

Figure 5.8: Tracking of desired course for the PID controller with corresponding
thruster input and energy consumption

5.2.2 PID-SMC

The results in Figure 5.9 show that the vessel had problems tracking the path.
The XY-plot shows that the vessel had a small, but noticeable, cross-track error.
The controller input can be seen to slowly oscillate during the path following
phase. From the figure, it can be seen that the vessel only achieved nominal
course error of 0 when entering the docking phase.

Chapter 5. Results and discussion 54

5 10 15 20 25 30

y [m]

0

20

40

60

80

100

120

140

160

180

x
 [
m

]

XY plot

Original path

Re-planned path

Waypoint

Otter path

Obstacle centre

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

0 50 100 150 200 250

time [s]

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

a
n
g
le

 [
d
e
g
]

Course

desired

error

0 50 100 150 200 250

time [s]

0

0.5

1

1.5

2

2.5
10

6 Controller Energy Consumption

X 250

Y 2149000

Figure 5.9: Tracking of desired course for the PID-SMC with corresponding
thruster input and energy consumption

5.2.3 STC

From Figure 5.10 it can be seen that the vessel tracked the path almost as well as
it did in Case 1, with the exception of the beginning of the maneuver and the
docking phase. The STC was able to track the desired course with small errors
during the whole maneuver. The controller input oscillated less than the two
other controllers during the path following phase, but can be seen to experience a
small amount of chattering at the docking phase.

55 5.2. Case 2: Strong currents

5 10 15 20 25 30

y [m]

0

20

40

60

80

100

120

140

160

180

x
 [
m

]

XY plot

Original path

Re-planned path

Waypoint

Otter path

Obstacle centre

0 50 100 150 200 250

time [s]

-150

-100

-50

0

50

100

150

p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

0 50 100 150 200 250

time [s]

-60

-50

-40

-30

-20

-10

0

10

20

30

a
n
g
le

 [
d
e
g
]

Course

desired

error

0 50 100 150 200 250

time [s]

0

0.5

1

1.5

2

2.5
10

6 Controller Energy Consumption

X 250

Y 2135000

Figure 5.10: Tracking of desired course for the STC with corresponding thruster
input and energy consumption

5.2.4 Summary of the results

The results from Case 2 can be seen in Table 5.2. From this table it can be seen
that the PID controller still had the worst performance, with a median course
error almost 10 times larger than for the STC. Furthermore, it can be seen that
the STC had the lowest median course and cross-track error, in addition to having
the lowest energy consumption.

Controller Median e Median χ̃ Energy consumption
PID 0.461 m 5.44◦ 2 144 215
PID-SMC 0.164 m 1.78◦ 2 149 471
STC 0.047 m 0.49◦ 2 134 574

Table 5.2: Results from the simulation with strong currents

Both the PID-SMC and STC seemingly suffered from small amounts of chattering
at the docking phase. However, from Figure 5.11 it can be seen that the chattering
effect is non-existent when zooming in on the controller input at the docking
phase. Small adjustments in the controller input looks like chattering in this

Chapter 5. Results and discussion 56

phase due to the scaling of the figures.

195 200 205 210 215 220 225 230 235 240 245 250

time [s]

-40

-20

0

20

40

60
p
ro

p
e
lle

r
s
h
a
ft
 s

p
e
e
d
 [
ra

d
/s

]

Controller input

Left thruster

Right thruster

Thruster saturation

Figure 5.11: Figure showing the controller input for the STC in Case 2 zoomed in

5.3 Monte-Carlo simulation

Median cross-track error, median course error, energy consumption and time used
from start to end was tracked for each iteration. The resulting data from the
Monte-Carlo simulation is shown in Figure 5.12.

57 5.3. Monte-Carlo simulation

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

c
ro

s
s
-t

ra
c
k
 e

rr
o
r

[m
]

Median cross-track error

PID

PID-SMC

STC

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

1

2

3

4

5

6

c
o
u
rs

e
 e

rr
o
r

[d
e
g
]

Median course error

PID

PID-SMC

STC

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10
6 Energy consumption

PID

PID-SMC

STC

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

175

180

185

190

195

200

205

210

ti
m

e
 [
s
]

Time used

PID

PID-SMC

STC

Figure 5.12: Results from Monte-Carlo simulation for all controllers at given
iterations

Due to the chaotic nature of the results in Figure 5.12, it can be challenging to
visually compare the controllers. The results were therefore interpreted using
bar-chart representation as shown in Figure 5.13. From the figures it can be see
that all the controllers have peaks at low median cross-track and course errors,
but that the STC has the largest peaks. Furthermore, the STC has its peaks at
lower values than the other controllers. The PID controller can be seen to have
the smallest peaks and the largest errors for both median cross-track and course
errors. Lastly, it can be seen that the time and energy consumption is similar for
all of the controllers.

Chapter 5. Results and discussion 58

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

cross-track error [m]

0

100

200

300

400

500

600

700

F
re

q
u
e
n
c
y

Monte-Carlo median cross-track error

PID

PID-SMC

STC

1 2 3 4 5 6

course error [deg]

0

100

200

300

400

500

600

700

800

900

1000

F
re

q
u
e
n
c
y

Monte-Carlo median course error

PID

PID-SMC

STC

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

10
6

0

20

40

60

80

100

120

140

160

180

200

F
re

q
u
e
n
c
y

Monte-Carlo energy consumption

PID

PID-SMC

STC

175 180 185 190 195 200 205 210

time [s]

0

20

40

60

80

100

120

140

160

180

F
re

q
u
e
n
c
y

Monte-Carlo time usage

PID

PID-SMC

STC

Figure 5.13: Results from Monte-Carlo simulation with bar-chart representation

5.3.1 Summary of the results

The resulting median errors from the Monte-Carlo simulation is represented as
box plots in Figure 5.14. Time usage and energy consumption were not taken into
account since differences between the controllers were considered trivial. From
the figures, it can be seen that the STC had the smallest box size, median and
max value for both cross-track and course errors. Furthermore, the median of
the PID controller was higher than the max value of the STC for both errors.
The total median course and cross-track error for the PID-SMC was 114% and
66% larger than for the STC, respectively. Exact values for the total median
cross-track error, total median course error and median energy consumption can
be found in Table B.1 in Appendix B.

59 5.4. Discussion

STC PID-SMC PID

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
e
d
ia

n
 c

ro
s
s
-t

ra
c
k
 e

rr
o
r

[m
]

Monte-Carlo cross-track error

STC PID-SMC PID

0

1

2

3

4

5

6

M
e
d
ia

n
 c

o
u
rs

e
 e

rr
o
r

[d
e
g
]

Monte-Carlo median course error

Figure 5.14: Box plots of the median cross-track and course errors from the
Monte-Carlo simulation

5.4 Discussion

This section will address choices made throughout the project, possible system
weaknesses and sources of error, as this may affect the results.

5.4.1 Median instead of Mean values

When the mean error values were calculated, it was found that the cross-track error
did not have a symmetrical, but a multimodal distribution as seen in Figure 5.15.
The median does not depend on all of the values in the dataset, unlike the mean.
Consequently making the median value less affected by “extreme” values [55]. For
this reason, it was chosen to use median instead of mean values in the results.

Chapter 5. Results and discussion 60

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

cross-track error [m]

0

50

100

150

200

250

F
re

q
u
e
n
c
y

Monte-Carlo mean cross-track error

PID

PID-SMC

STC

Figure 5.15: Resulting mean cross-track error from the Monte-Carlo simulation

5.4.2 Cross-track error Case 1

The STC had the lowest median course error for all of the cases, but the median
cross-track error was 4.2% lower for the PID-SMC in Case 1. The fact that
the STC had a lower course error, but larger cross-track error means that the
inaccuracy most likely lied in the output from the guidance law for this specific
case. It should, however, be noted that the difference of 4.2% in case 1 corresponds
to 0.001 meters. Furthermore, the total median cross-track error for the STC
was 63% lower than the PID-SMC, which is 15 times larger than the difference
observed in Case 1.

5.4.3 Waypoint generation

The vessel was able to avoid obstacles with the A* algorithm generating new
waypoints. However, one weakness with the A* algorithm is that it generated
many waypoints with a short distance from each other. This can cause problems
due to the fact that the vessel iterates to the next waypoint when it’s within
4 meters of the current waypoint, causing the vessel to cut corners. This was
somewhat avoided by using the mode change radius Rm, such that the path was
generated well in advance of the obstacle.

Another weakness of the A* algorithm is that it usually generated paths that
consisted of sharp turns. This affected the tracking of desired surge velocity due
to the sway that occurs while turning. One way of smoothing the sharp turns
could be to use Dubins path when generating the desired path. This is a method
that represents the desired path by using circular arcs to connect the waypoints

61 5.4. Discussion

[56].

5.4.4 Real-world application

One main difference between this simulation study and real life testing is that
neither waves nor wind was included as external disturbances. These forces would
cause the results from the controllers to deviate from wanted behaviour, and most
likely the vessel to drift. Furthermore, if the vessel were to be tested at current
velocities above 0.5 m/s (directly towards the Otter USV) would likely lead to
the controllers not operating properly. This is, however, mostly due to the fact
that the thruster input caps at around that point.

Chapter 5. Results and discussion 62

Chapter 6

Conclusions and future work

6.1 Conclusion

Given that the STC tracked the course and cross-track error best out of all of
the controllers, it can be concluded that the STC is the best choice out of the
three course controllers. While the PID-SMC performed significantly better than
the PID controller, it’s clear from the box plots in Figure 5.14 that the errors for
the STC was even lower. Furthermore, it can be seen from Case 2 that the STC
tracks the path considerably better than the other controllers with the presence
of strong currents.

Lastly, it can be concluded that all of the three research questions were answered
by the project

Q1: The lowest speed at which the USV was still controllable with the presence of
slow time-varying currents was found to be 0.2 m/s. The problem with choosing
ud lower than this is the fact that the course and surge controllers are coupled.
When the surge controller reduces the surge speed, the course controller loses the
ability to quickly recover from tracking errors.

Q2: As shown in the results, all of the three controllers were capable of following
the path and to perform the docking procedure with the presence of slow time-
varying currents.

Q3: Both of the nonlinear controllers shown in the project have been proven to
be robust to parameter uncertainties, which is shown in the theory by stability
analysis. Furthermore, the PID-SMC has the possibility to adjust the parameter
uncertainty with r1 and r2.

Q4: By using a hybrid of Set-Based Guidance and the A* algorithm, the USV
was able to avoid all obstacles in real-time while following the path.

6.2 Future work

This part will describe possible future work that could improve the results shown
in this report. Different factors that could affect a future implementation will also
be mentioned.

63

Chapter 6. Conclusions and future work 64

6.2.1 Include wind and waves

This project did not include waves or wind as external disturbances, which means
that the results are not as realistic as they could be. This could be added to the
simulation, but was excluded due to time limitations.

6.2.2 Improve tuning

As is the case for most implementations that includes controllers, the results could
be improved with further tuning. The controllers were tuned to have around the
same amount of energy consumption, other tuning methods could be used. While
testing, it was found that the PID controller could be tuned to give better results,
but it was chosen to use the method shown in the report as this is a defined
method of tuning a PID controller.

6.2.3 Collision avoidance

As the main focus on the thesis was to test the robustness of the controllers,
it was considered sufficient only including static obstacles. However, Set-Based
Guidance can be used to avoid moving obstacles in real time while abiding the
COLREGS [17].

6.2.4 Include thruster dynamics

The model used in this thesis did not include a delay between controller input
and thruster output. This means that as soon as the controller gave input to
the thruster, it could instantly reach the given revolution. During the thesis, a
first order low-pass filter was tested as a method for including thruster dynamics.
However, this lead to highly unstable behaviour where the controller input suffered
from large oscillations and chattering. Another method of including thruster
dynamics could be to include a saturation of the rate of change for the controller
input. This was not tested both due to thruster data not being available for the
Otter USV and time constraints.

6.2.5 Real-world application

As this thesis only focused on a model of the Otter USV, it could be beneficial to
actually test the controller on it. One of the assumptions made in the thesis was
that all of the sensors had the same sampling rate, which is most likely not the
case for real-world applications. Another assumption in this thesis was that the
course of the Otter USV was measured. If this is not the case for a real-world

65 6.2. Future work

application, the course controller would make the vessel drift due to the ocean
currents. This could somewhat be fixed by implementing an integrated LOS as
the guidance law [57].

Chapter 6. Conclusions and future work 66

References
[1] F. Fahimi. “Sliding-Mode Formation Control for Underactuated Surface

Vessels.” In: IEEE Transactions on Robotics 23.3 (June 2007), pp. 617–622.

[2] Morten Breivik. “Topics in Guided Motion Control of Marine Vehicles.”
PhD thesis. June 2010.

[3] Andreas B Martinsen, Anastasios M Lekkas, and Sebastien Gros. “Au-
tonomous docking using direct optimal control.” In: arXiv preprint arXiv:
1910.11625 (October 2019).

[4] Maritime Robotics. THE OTTER. url: https://www.maritimerobotics.
com/otter (visited on 08/29/2019).

[5] Geo-matching. Maritime Robotics Otter USV. url: https://geo-matc
hing.com/usvs-unmanned-surface-vehicles/otter-usv (visited on
08/27/2019).

[6] SBG Systems. RMS Inertial Sensors. 2018. url: http://www.cnsens.com/
PDF/Ellipse.pdf (visited on 11/19/2019).

[7] SAE International. Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles. June 2018. url: https:
//doi.org/10.4271/J3016_201806.

[8] Automotive Electronics. Society of Automotive Engineers (SAE) Automation
Levels for cars. July 2018. url: https://www.automotivelectronics.com/
sae-levels-cars/ (visited on 10/17/2019).

[9] Morten Breivik and Jon-Erik Loberg. “A virtual target-based underway
docking procedure for unmanned surface vehicles.” In: IFAC Proceedings
Volumes 44.1 (2011), pp. 13630–13635.

[10] Joohyun Woo, Nakwan Kim, et al. “Vector Field based Guidance Method
for Docking of an Unmanned Surface Vehicle.” In: The Twelfth ISOPE Paci-
fic/Asia Offshore Mechanics Symposium. International Society of Offshore
and Polar Engineers. 2016.

[11] Thor Fossen, Morten Breivik, and Roger Skjetne. “Line-of-Sight Path Fol-
lowing of Underactuated Marine Craft.” In: (September 2003).

[12] Marco Bibuli et al. “Path-Following Algorithms and Experiments for an
Unmanned Surface Vehicle.” In: J. Field Robotics 26 (August 2009), pp. 669–
688.

67

https://www.maritimerobotics.com/otter
https://www.maritimerobotics.com/otter
https://geo-matching.com/usvs-unmanned-surface-vehicles/otter-usv
https://geo-matching.com/usvs-unmanned-surface-vehicles/otter-usv
http://www.cnsens.com/PDF/Ellipse.pdf
http://www.cnsens.com/PDF/Ellipse.pdf
https://doi.org/10.4271/J3016_201806
https://doi.org/10.4271/J3016_201806
https://www.automotivelectronics.com/sae-levels-cars/
https://www.automotivelectronics.com/sae-levels-cars/

References 68

[13] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots.” In: Proceedings. 1985 IEEE International Conference on Robotics
and Automation. Vol. 2. March 1985, pp. 500–505.

[14] D. Fox, W. Burgard, and S. Thrun. “The dynamic window approach to
collision avoidance.” In: IEEE Robotics Automation Magazine 4.1 (March
1997), pp. 23–33.

[15] Thanapong Phanthong et al. “Application of A* algorithm for real-time path
re-planning of an unmanned surface vehicle avoiding underwater obstacles.”
In: Journal of Marine Science and Application 13 (February 2014).

[16] Jacoby Larson, Michael Bruch, and John Ebken. “Autonomous navigation
and obstacle avoidance for unmanned surface vehicles.” In: Unmanned
Systems Technology VIII. Ed. by Grant R. Gerhart, Charles M. Shoemaker,
and Douglas W. Gage. Vol. 6230. International Society for Optics and
Photonics. SPIE, 2006, pp. 53–64. url: https://doi.org/10.1117/12.
663798.

[17] S. Moe and K. Y. Pettersen. “Set-based Line-of-Sight (LOS) path following
with collision avoidance for underactuated unmanned surface vessel.” In:
2016 24th Mediterranean Conference on Control and Automation (MED).
June 2016, pp. 402–409.

[18] Y. Koren and J. Borenstein. “Potential field methods and their inherent
limitations for mobile robot navigation.” In: Proceedings. 1991 IEEE Inter-
national Conference on Robotics and Automation. April 1991, 1398–1404
vol.2.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths.” In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100–107.

[20] Y. Li et al. “IBAS: Index Based A-Star.” In: IEEE Access 6 (2018), pp. 11707–
11715.

[21] Edsger W Dijkstra et al. “A note on two problems in connexion with graphs.”
In: Numerische mathematik 1.1 (1959), pp. 269–271.

[22] Dave Ferguson, Maxim Likhachev, and Anthony Stentz. “A guide to heuristic-
based path planning.” In: Proceedings of the international workshop on plan-
ning under uncertainty for autonomous systems, international conference
on automated planning and scheduling (ICAPS). 2005, pp. 9–18.

[23] Y. Wang et al. “Real-time Obstacle Avoidance of Hovercraft Based on Follow
the Gap with Dynamic Window Approach.” In: OCEANS 2018 MTS/IEEE
Charleston. 2018, pp. 1–8.

https://doi.org/10.1117/12.663798
https://doi.org/10.1117/12.663798

69 References

[24] Javier Fernandez De Canete, Cipriano Galindo, and Inmaculada Garcia-
Moral. System Engineering and Automation: An Interactive Educational
Approach. Springer Science & Business Media, 2011.

[25] Hassan K Khalil. Nonlinear systems. eng. Third Edition. Harlow, England:
Pearson, 2015.

[26] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion
Control. eng. Chichester, UK: John Wiley & Sons, Ltd, 2011.

[27] V. Utkin. “Variable structure systems with sliding modes.” In: IEEE Trans-
actions on Automatic Control 22.2 (April 1977).

[28] Asif Chalanga et al. “Implementation of Super-Twisting Control: Super-
Twisting and Higher Order Sliding-Mode Observer-Based Approaches.” eng.
In: IEEE Transactions on Industrial Electronics 63.6 (2016), pp. 3677–3685.

[29] Nguyen Quang Hoang and E Kreuzer. “A robust adaptive sliding mode
controller for remotely operated vehicles.” In: Technische Mechanik 28.3
(2008), pp. 185–193.

[30] Roberto Cristi, Fotis A Papoulias, and Anthony J Healey. “Adaptive sliding
mode control of autonomous underwater vehicles in the dive plane.” In:
IEEE journal of Oceanic Engineering 15.3 (1990), pp. 152–160.

[31] D. Yoerger and J. Slotine. “Robust trajectory control of underwater vehicles.”
In: IEEE Journal of Oceanic Engineering 10.4 (October 1985), pp. 462–470.

[32] R. Yu et al. “Sliding mode tracking control of an underactuated surface
vessel.” In: IET Control Theory and Applications 6.3 (2012), pp. 461–466.

[33] H Ashrafiuon et al. “Sliding-Mode Tracking Control of Surface Vessels.” eng.
In: IEEE Transactions on Industrial Electronics 55.11 (2008), pp. 4004–
4012.

[34] F. Fahimi. “Sliding-Mode Formation Control for Underactuated Surface
Vessels.” In: IEEE Transactions on Robotics 23.3 (June 2007), pp. 617–622.

[35] Yuri Shtessel et al. Sliding Mode Control and Observation. eng. Control
Engineering. New York, NY: Springer New York, 2014.

[36] A. Chalanga et al. “Implementation of Super-Twisting Control: Super-
Twisting and Higher Order Sliding-Mode Observer-Based Approaches.” In:
IEEE Transactions on Industrial Electronics 63.6 (June 2016), pp. 3677–
3685.

References 70

[37] Arie Levant. “Sliding order and sliding accuracy in sliding mode control.”
In: International Journal of Control 58.6 (1993), pp. 1247–1263. eprint:
https://doi.org/10.1080/00207179308923053. url: https://doi.
org/10.1080/0020717930892305.

[38] A.I. Propoi. “Application of linear programming methods for the synthesis
of automatic sampled-data systems.” In: Avtomat. i Telemekh. 24.7 (1963),
pp. 912–920.

[39] Bjarne Foss and Tor Aksel N Heirung. “Merging optimization and control.”
In: Lecture Notes (2013).

[40] Huarong Zheng, Rudy R Negenborn, and Gabriel Lodewijks. “Trajectory
tracking of autonomous vessels using model predictive control.” In: IFAC
Proceedings Volumes 47.3 (2014), pp. 8812–8818.

[41] Eduardo Fernandez-Camacho and Carlos Bordons-Alba. “Introduction to
Model Based Predictive Control.” In: Model Predictive Control in the Process
Industry. Springer, 1995, pp. 1–8.

[42] Zhen Li and Jing Sun. “Disturbance compensating model predictive control
with application to ship heading control.” In: IEEE transactions on control
systems technology 20.1 (2011), pp. 257–265.

[43] Zhen Li, Jing Sun, and Soryeok Oh. “Path following for marine surface
vessels with rudder and roll constraints: An MPC approach.” In: 2009
American Control Conference. IEEE. 2009, pp. 3611–3616.

[44] Carlos Bordons Alba. Model Predictive Control. eng. London, 1999.

[45] L.C Mcninch, H Ashrafiuon, and K.R Muske. “Optimal specification of
sliding mode control parameters for unmanned surface vessel systems.” eng.
In: 2009 American Control Conference. IEEE, 2009, pp. 2350–2355.

[46] SNAME. Nomenclature for treating the motion of a submerged body through
a fluid. Vol. 1-5. Technical and research bulletin. 1950.

[47] MSS Toolbox. url: https://github.com/cybergalactic/MSS (visited on
12/10/2019).

[48] Patrick Lester. A* Pathfinding for Beginners. July 18, 2005. url: http:
//csis.pace.edu/~benjamin/teaching/cs627/webfiles/Astar.pdf.

[49] Anthony Chrabieh. A star search algorithm. November 6, 2017. url: https:
//www.mathworks.com/matlabcentral/fileexchange/64978-a-star-
search-algorithm.

https://doi.org/10.1080/00207179308923053
https://doi.org/10.1080/0020717930892305
https://doi.org/10.1080/0020717930892305
https://github.com/cybergalactic/MSS
http://csis.pace.edu/~benjamin/teaching/cs627/webfiles/Astar.pdf
http://csis.pace.edu/~benjamin/teaching/cs627/webfiles/Astar.pdf
https://www.mathworks.com/matlabcentral/fileexchange/64978-a-star-search-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/64978-a-star-search-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/64978-a-star-search-algorithm

71 References

[50] S. P. Bhat and D. S. Bernstein. “A topological obstruction to global asymp-
totic stabilization of rotational motion and the unwinding phenomenon.”
In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat.
No.98CH36207). Vol. 5. June 1998, 2785–2789 vol.5.

[51] Yuri B Shtessel et al. “Super-twisting adaptive sliding mode control: A
Lyapunov design.” In: 49th IEEE conference on decision and control (CDC).
IEEE. 2010, pp. 5109–5113.

[52] Ida Louise G Borlaug et al. “Trajectory tracking for underwater swimming
manipulators using a super twisting algorithm.” In: Asian Journal of Control
21.1 (2019), pp. 208–223.

[53] Zhilin Feng and Juntao Fei. “Design and analysis of adaptive Super-Twisting
sliding mode control for a microgyroscope.” In: PLOS ONE 13.1 (January
2018), pp. 1–18. url: https://doi.org/10.1371/journal.pone.0189457.

[54] MathWorks. wgn. url: https://se.mathworks.com/help/comm/ref/wgn.
html (visited on 11/22/2019).

[55] Jim Frost.Measures of Central Tendency: Mean, Median, and Mode. October
2019. url: https://statisticsbyjim.com/basics/measures-central-
tendency-mean-median-mode/ (visited on 05/18/2020).

[56] L. E. Dubins. “On Curves of Minimal Length with a Constraint on Average
Curvature, and with Prescribed Initial and Terminal Positions and Tan-
gents.” In: American Journal of Mathematics 79.3 (1957), pp. 497–516. url:
http://www.jstor.org/stable/2372560.

[57] E Borhaug, A Pavlov, and K.Y Pettersen. “Integral LOS control for path
following of underactuated marine surface vessels in the presence of constant
ocean currents.” eng. In: 2008 47th IEEE Conference on Decision and
Control. IEEE, 2008, pp. 4984–4991.

https://doi.org/10.1371/journal.pone.0189457
https://se.mathworks.com/help/comm/ref/wgn.html
https://se.mathworks.com/help/comm/ref/wgn.html
https://statisticsbyjim.com/basics/measures-central-tendency-mean-median-mode/
https://statisticsbyjim.com/basics/measures-central-tendency-mean-median-mode/
http://www.jstor.org/stable/2372560

References 72

Appendices

73

75 A. Physical parameters

A Physical parameters

Parameter Description Value Unit
m Mass 55.0 [kg]
mp Payload mass 0 [kg]
L Length 2.0 [m]
B Beam 1.08 [m]
rg Center of gravity for the hull [0.2 0 − 0.2]> [m]
R44 Radii of gyration 0.4 ·B [m]
R55 Radii of gyration 0.25 ·L [m]
R66 Radii of gyration 0.25 ·L [m]
Bpont Beam of one pontoon 0.25 [m]
Ypont Distance from centerline to waterline

area center
0.395 [m]

GMT Traverse metacentric height 1.9967 [m]
GML Longitudinal metacentric height 4.7295 [m]
ωheave Natural frequency in heave 8.28 [rad/s]
ωroll Natural frequency in roll 7.9241 [rad/s]
ωpitch Natural frequency in pitch 8.2968 [rad/s]
Cw,pont Waterline area coefficient 0.75 [–]
Cb,pont Block coefficient 0.4 [–]
kpos Positive bollard constant 0.0111 [–]
kneg Negative bollard constant 0.0064 [–]
Xu Linear damping term -77.5544 [–]
Yv Linear damping term 0 [–]
Zw Linear damping term -546.4805 [–]
Kp Linear damping term -54.3823 [–]
Mq Linear damping term -246.0496 [–]
Nr Linear damping term -90.53 [–]
Zballast Linear damping due to ballast 0 [–]
Kballast Linear damping due to ballast -320 [–]
Mballast Linear damping due to ballast 0 [–]

Table A.1: Physical parameters of the Otter

76

B Monte-Carlo results

Total median e Total median χ̃ Median energy consumption
PID 0.111 m 1.36◦ 1 270 548
PID-SMC 0.044 m 0.46◦ 1 260 208
STC 0.027 m 0.21◦ 1 256 567

Table B.1: Results from the Monte-Carlo simulation

77 C. Matlab Code

C Matlab Code

Monte-Carlo simulation

clearvars;
clear global variables;
clf

5 N = 12500;

num_sim = 10000;
num_obstacles =3;

10 %Mean error values
track_e = zeros(3,num_sim);
course_e = zeros(3,num_sim);
energy = zeros(3,num_sim);
finish_time = zeros(3,num_sim);

15

%Median error values
median_track_e = zeros(3,num_sim);
median_course_e = zeros(3,num_sim);

20 %Grand mean error values
m_track_e = zeros (3,1);
m_course_e = zeros (3,1);
m_energy = zeros (3,1);

25 %% Main loop
for i=1:3
Controller_choise=i-1;

Current_iteration=i
30

[track_e(i,:),m_track_e(i),course_e(i,:),m_course_e(i),...
energy(i,:),m_energy(i),finish_time(i,:),...
median_track_e(i,:), median_course_e(i,:)] =

RunSimulations(N,num_sim ,Controller_choise ,
num_obstacles);

35 end

%% Plots
t = 1: num_sim;
controller =[" STC","PID -SMC","PID "];

40

figure (1)
plot(t,track_e)
title(" Cross track error")
xlabel (" Iteration ")

78

45 ylabel (" Distance [m]")
legend(controller ,’Location ’,’northwest ’)
axis tight
grid

50 figure (2)
plot(t ,(180/ pi)*course_e)
title(" Course error")
xlabel (" Iteration ")
ylabel ("angle [deg]")

55 legend(controller ,’Location ’,’northwest ’)
axis tight
grid

figure (3)
60 plot(t,energy)

title(" Energy consumption ")
xlabel (" Iteration ")
legend(controller ,’Location ’,’northwest ’)
axis tight

65 grid

figure (4)
plot(t,finish_time)
title("Time used")

70 xlabel (" Iteration ")
ylabel ("time [s]")
legend(controller ,’Location ’,’northwest ’)
axis tight
grid

75

figure (5)
plot(t,sort(track_e ,2))
title(" Cross track error sorted ")
xlabel (" Iteration ")

80 ylabel (" Distance [m]")
legend(controller ,’Location ’,’northwest ’)
axis tight
grid

85 figure (6)
plot(t,sort ((180/ pi)*course_e ,2))
title(" Course error sorted ")
xlabel (" Iteration ")
ylabel ("angle [deg]")

90 legend(controller ,’Location ’,’northwest ’)
axis tight
grid

figure (7)
95 plot(t,sort(energy ,2))

79 C. Matlab Code

title(" Energy consumption sorted ")
xlabel (" Iteration ")
legend(controller ,’Location ’,’northwest ’)
axis tight

100 grid

figure (8)
plot(t,sort(finish_time ,2))
title("Time used sorted ")

105 xlabel (" Iteration ")
ylabel ("time [s]")
legend(controller ,’Location ’,’northwest ’)
axis tight
grid

Controller simulations

function [mean_e ,cross_track ,mean_chi_e ,course_error ,
energy_consumption , mean_energy ,finish_time , median_e ,
median_chi_e] = RunSimulations(N,num_sim ,Controller_choise
,num_obstacles)

%Select seed for RNG
rng(’default ’)

5 % rng(3)

mean_e = zeros(num_sim ,1);
mean_chi_e = zeros(num_sim ,1);

10 energy_consumption = zeros(num_sim ,1);
finish_time = zeros(num_sim ,1);

median_e = zeros(num_sim ,1);
median_chi_e = zeros(num_sim ,1);

15

for i=1: num_sim
[buffer ,finish_time(i)]= MonteCarlo(N,num_obstacles ,

Controller_choise);
buffer=buffer ’;

20 mean_e(i) = mean(abs(buffer (21,:)));
mean_chi_e(i) = mean(abs(buffer (20,:)));
energy_consumption(i) = buffer (22,end)+buffer (23,end);

median_e(i) = median(abs(buffer (21 ,:)));
25 median_chi_e(i)=median(abs(buffer (20,:)));

end

cross_track=mean(mean_e);

80

course_error=mean(mean_chi_e);
30 mean_energy=mean(energy_consumption);

end

Iteration simulations

function [simdata ,finish_time] = MonteCarlo(N,num_obstacles ,
Controller_choise)

%% Init
h = 0.02; % sampling time [s]
global Xudot Nrdot Iz Xu m mp alpha v_stw ...

5 tau_1_int tau_6_int wpt obstacle_list ;

% x = [u v w p q r x y z phi theta psi u_int psi_int]’
x = zeros (14,1);
x_dot=zeros (14 ,1);

10

% Surge speed
u_d =1;
u_r =1;

15 %docking speed
u_r_min =0.2;

%Course
chi_d = 0;

20 chi_d_ddot = h*chi_d;

chi_r =0;

%Course of otter
25 chi_otter =0;

chi_e = chi_d -x(12);

x(1)=u_d; %Set initial velocity to the desired velocity

30 cross_track_error = 0;
n=[0 0];

n_out =[0 0];
Thrust_calculated = n_out;

35

% Boat mass
m = 55;

% Load condition
40 mp = 0; % payload mass (kg), max value 45 kg

rp = [0 0 -0.35]’; % location of payload (m)

81 C. Matlab Code

rg = [0.2 0 -0.2]’; % CG for hull only (m)

T_yaw = 0.5; % time constant in
yaw (s)

45 k_pos = 0.02216/2; % Positive Bollard,
one propeller

k_neg = 0.01289/2; % Negative Bollard,
one propeller

% Init (finding Xudot, Nrdot)
init(rg,rp,mp ,T_yaw ,k_pos ,k_neg)

50

%Gain for PID controller
K = T_yaw/Iz;

% Current
55 V_c_min =0.;

V_c_max = 0.5;
V_c = randi (100*(V_c_max))/100;

beta_c_min = -180 * pi /180; % current direction (rad)
60 beta_c_max = 180 * pi /180; % current direction (rad)

beta_c = randi(round (2* beta_c_max))+beta_c_min;

%Time constants for time varying currents
T_v =1;

65 T_beta =1;

ZOH_current =100;

%% WAYPOINTS
70 wpt.pos.y=[30,30,20,20, 10, 10];

wpt.pos.x=[0,20,70,110, 130, 180];

obstacle_list =[0;0];

75 wp_LOSindex =1;

R_min =2;
R_max =3;

80 num_obstacles = randi(num_obstacles);

[RO , obstacle] = obstacle_generator(R_min ,R_max ,num_obstacles
);

%Set position for the obstacle center
85 y_obstacle= obstacle (1,:);

x_obstacle=obstacle (2,:);

Rm=RO*4;

82

90 weight =2;

%Set initial position at the first waypoint
x(7)=wpt.pos.x(wp_LOSindex);
x(8)=wpt.pos.y(wp_LOSindex);

95

%% LOS
R=4; %Radius for path

−finding
Delta =4; %Delta for

lookahead path−finding

100 add_noise =1; %0=no noise, 1=add noise
%% Reference model parameters

%Reference model course
r_d =0;

105 r_dmax =1;
a_d =0;
a_dmax= 0.5;
omega_n =1.3;
damp =0.9;

110

%Reference model surge
u_r_d =0;
u_r_dmax =1;
u_a_d =0;

115 u_a_dmax= 0.5;
u_omega_n =1.8;
u_damp =1;

%% Time varying current
120 alpha_c1 =0.005;

alpha_c2 =0.01;

%% Course STC constants
omega =17;

125 gamma =1;
epsilon =0.08;
alpha_m =0.005;

lambda_stc_1= 1.6;
130 lambda_stc_2= 8;

e_chi_stc =0.005;

%% Course PID SMC contstants
lambda_smc =1.2493;

135 e_smc =0.1;
k_s =72.241;

83 C. Matlab Code

%% Surge PI constants
Kp_u = 239.3;

140 Ki_u =47.594;

%% Course PID constants
Kp_chi = 272.5044;
Kd_chi = 190.0829;

145 Ki_chi = 52.9263;

%% MAIN LOOP
simdata = zeros(N,31); % table for

simulation data

150 for i=1:N+1
t = (i-1) * h; % time (s)

%Store simulation data in a table
simdata(i,:) = [t x’ n u_d chi_r chi_e cross_track_error

tau_1_int tau_6_int ...
155 chi_otter chi_d n_out Thrust_calculated V_c beta_c];

%% LOS Guidance law

%Calculation of desired course using LOS
160

[~, obstacle_index] = min((sqrt (((x_obstacle -x(7)).^2 + (
y_obstacle -x(8)).^2))));

sigma = sqrt((x(8) - y_obstacle(obstacle_index))^2+(x(7)
- x_obstacle(obstacle_index))^2);

sigma_dot = ((2*(x(7)-x_obstacle(obstacle_index))*x_dot
(7)) +(2*(x(8)-y_obstacle(obstacle_index))*x_dot (8)))
/(2* sigma);

165

T_c = in_T_C(sigma ,sigma_dot ,min(Rm(obstacle_index),max(
sigma ,RO(obstacle_index))),inf);

%Obstacle avoidance
if T_c~=true

170 if (~any(all(obstacle_list ==[x_obstacle(
obstacle_index);y_obstacle(obstacle_index)])))
path_replanning(RO(obstacle_index),x_obstacle(

obstacle_index), y_obstacle(obstacle_index),
weight ,wp_LOSindex ,x(7:8));

end
end

175 [chi_r ,cross_track_error ,wp_LOSindex]= lookahead_LOS(
wp_LOSindex ,x(7:8),wpt.pos.x,wpt.pos.y,R,Delta);

%% Reference models

84

[u_d_dot , u_r_d_dot , u_a_d_dot] = referencemodel(u_r ,
u_r_d ,u_r_dmax ,u_a_d ,u_a_dmax ,u_omega_n ,u_damp ,u_d);

180 [chi_d_dot , r_d_dot , a_d_dot] = referencemodel(chi_r ,r_d ,
r_dmax ,a_d ,a_dmax ,omega_n ,damp ,chi_d);

%% Calculate error
chi_e=chi_otter - chi_d;
chi_e_dot= x(6) - chi_d_dot;

185

%% Control−laws
%PI surge controller
tau_1 = (m+mp - Xudot)*u_d_dot + Xu*u_d - Kp_u*(x(1)-u_d)

- Ki_u*x(13);

190 %Super−Twist controller
if Controller_choise ==0

[tau_6 ,v_stw_dot ,alpha_dot]=STC(lambda_stc_2 ,alpha_m ,
omega ,gamma ,epsilon ,lambda_stc_1 ,chi_e ,chi_e_dot ,
e_chi_stc);

end

195 %PID Sliding Mode Controller
if Controller_choise ==1

tau_6 =PID_SMC(k_s ,lambda_smc ,e_smc ,chi_e ,chi_e_dot ,
chi_d_dot ,chi_d_ddot ,x(14));

end

200 %PID course controller
if Controller_choise == 2

tau_6 = (Iz - Nrdot)*r_d_dot + 1/K*chi_d_dot - Kp_chi
*(chi_e) - Kd_chi *(chi_e_dot) - Ki_chi * x(14);

end

205 %% Control allocation
[n, Thrust_calculated]= calc_thrust(tau_1 ,tau_6 ,k_pos ,

k_neg);

%% Calculate states
[x_dot (1:12) ,n_out]= otter(x(1:12) ,n,mp, rp , V_c ,beta_c);

210

%Time varying current
if mod(i,ZOH_current)==0

V_c_dot= -alpha_c1 * V_c + (rand (1) -0.5)/2;
beta_c_dot= -alpha_c2 * beta_c + (rand (1) -0.5) /0.5;

215 else
V_c_dot =0;
beta_c_dot =0;

end

220 %% Euler integration (k+1)

85 C. Matlab Code

x(1:12)=x(1:12)+h*x_dot (1:12);

% Calculate u_e_int x(13)
x(13) = x(13)+ h*(x(1)-u_d);

225

% Calculate saturated chi_e_int x(14)
x(14) = sat(x(14)+ h*(x(12)-chi_d) ,0.01);

% Calculate integral from STC
230 if Controller_choise ==0

v_stw=v_stw + h* v_stw_dot;
alpha = alpha + h*alpha_dot;

end

235 %Calculate energy consumption
tau_1_int=tau_1_int + h*(tau_1 ^2);
tau_6_int=tau_6_int + h*(tau_6 ^2);

% Calculate integral from reference models
240 chi_d = chi_d + h* chi_d_dot;

r_d = r_d + h*r_d_dot;
a_d = a_d + h* a_d_dot;

u_d=u_d + h* u_d_dot;
245 u_r_d=u_r_d + h * u_r_d_dot;

u_a_d=u_a_d + h * u_a_d_dot;

%Calculate stochastic time varying current values
V_c = sat2(V_c + (h/T_v) * V_c_dot ,V_c_min ,V_c_max);

250

beta_c =sat2(beta_c + (h/T_beta)*beta_c_dot ,beta_c_min ,
beta_c_max);

%% Calculate course and add noise
chi_otter=atan2(x_dot (8),x_dot (7));

255

if add_noise ==1
[x(7:8),x(1),x(10:11) ,chi_otter]= noiseGenerator(i,x

(7:8),x(1),x(10:11) ,chi_otter);
end

260 %% Docking phase

total_distance = sqrt((x(7)-wpt.pos.x(end))^2 + (x(8)-wpt
.pos.y(end))^2);

%Reduction of desired surge speed and current
265 if total_distance <= 15

xd =0.0001;
u_r=sat2(u_r - xd*total_distance ,u_r_min ,inf);

86

V_c = sat2(V_c - (xd*0.3)*total_distance ,V_c_min ,
V_c_max);

alpha_c1 =0.2;
270 end

end

eta = simdata (: ,8:13);
275 [~, time_index] = min(sqrt((wpt.pos.y(end)-eta(:,2)).^2 + (wpt

.pos.x(end)-eta(:,1)).^2));
finish_time = (time_index -1)*h;

end

Init

function init(rg,rp,mp ,T_yaw ,k_pos ,k_neg)

global Xudot Nrdot Iz Xu Nr n_max n_min v_stw alpha ...
tau_1_int tau_6_int pos_noise vel_noise pitchroll_noise

heading_noise;
5

m=55;
g = 9.81;

L = 2.0; % length (m)
10 B = 1.08; % beam (m)

rg = (m*rg + mp*rp)/(m+mp);

R44 = 0.4 * B; % radii of gyration (m)
R55 = 0.25 * L;

15 R66 = 0.25 * L;

Ig_CG = m * diag([R44^2, R55^2, R66 ^2]); % only hull in CG
Ig = Ig_CG - m * Smtrx(rg)^2 - mp * Smtrx(rp)^2; % hull +

payload in CO

20 Iz = 45.126;
Xu = 24.4*(9.81/(6*0.5144));

Nr = Iz/T_yaw;
Xudot = -0.1 * m;

25 Nrdot = -1.7 * Ig(3,3);

n_max = sqrt ((0.5*24.4 * g)/k_pos); % maximum propeller
rev. (rad/s)

n_min = -sqrt ((0.5*13.6 * g)/k_neg); % minimum propeller
rev. (rad/s)

87 C. Matlab Code

30 v_stw =0;
alpha =0;

tau_1_int =0;
tau_6_int =0;

35

pos_noise=zeros (2,1);
vel_noise =0;
pitchroll_noise=zeros (2,1);
heading_noise =0;

40 end

Reference model

function [chi_d_dot , r_d_dot , a_d_dot] = referencemodel(chi_r
,r_d ,r_dmax ,a_d ,a_dmax ,omega_n ,damp ,chi_d)

chi_d_dot = sat(r_d ,r_dmax);
r_d_dot = sat(a_d ,a_dmax);

5 a_d_dot = -(2*damp + 1)*omega_n * sat(a_d ,a_dmax) -(2*damp
+1)*omega_n ^2 * sat(r_d ,r_dmax) + omega_n ^3 * (chi_r -chi_d
);

end

function [y] = sat(x,xmax)
10

if abs(x)>= xmax
y = sign(x)*xmax;

else
y = x;

15 end

end

Noise generation

function [pos ,vel ,pitchroll ,heading]= noiseGenerator(i,pos ,
vel ,pitchroll ,heading)

global pos_noise vel_noise pitchroll_noise heading_noise;

5 h=0.02;
T=1;

%Sample frequency of 1Hz
if mod(i,50) ==0

88

10

%Position
pos_noise = wgn (1 ,2 ,0.00003 ,’linear ’)’;

%Velocity
15 vel_noise = wgn (1 ,1 ,0.00006 ,’linear ’) ’;

%Angle
pitchroll_noise = deg2rad(wgn (1 ,2,0.0007 ,’linear ’))’ ;
heading_noise = deg2rad(wgn(1,1,0.001,’linear ’)) ;

20 end

%Position with raw noise
pos_in = pos + pos_noise;

25 %Velocity with raw noise
vel_in = vel + vel_noise;

%Angle with raw noise
pitchroll_in = pitchroll + pitchroll_noise;

30 heading_in = heading + heading_noise;

% Low−pass filtering
pos = (h/T).*(pos_in -pos)+pos;
vel = (h/T).*(vel_in -vel)+vel;

35 pitchroll = (h/T).*(pitchroll_in -pitchroll)+pitchroll;
heading = (h/T).*(heading_in -heading)+heading;

end

Obstacle generation

function[RO ,obstacle] = obstacle_generator(R_min ,R_max ,
num_obstacles)

global wpt

num_wpt= length(wpt.pos.x);
5

obstacle=zeros(2, num_obstacles);
RO = zeros(1, num_obstacles);
index= sort(randperm(num_wpt -2, num_obstacles)+1);

10 for i=1: num_obstacles
space_y =(wpt.pos.y(index(i)+1)-wpt.pos.y(index(i)))/2;
space_x =(wpt.pos.x(index(i)+1)-wpt.pos.x(index(i)))/2;

obstacle_y=randi(sort([wpt.pos.y(index(i))+round(space_y
/1) wpt.pos.y(index(i)+1)-space_y]));

89 C. Matlab Code

15 obstacle_x=randi(sort([wpt.pos.x(index(i))+round(space_x
/1) wpt.pos.x(index(i)+1)-space_x]));

RO(i)=randi([R_min ,R_max]);
obstacle(:,i)= [obstacle_y; obstacle_x];

end
20

end

Control allocation

function [n,Thrust] = calc_thrust(tau_1 ,tau_6 ,k_pos ,k_neg)
global n_min n_max
l1 = -0.395;
l2 = 0.395;

5

Thrust (2)=(tau_6 + l1*tau_1)/(l1 - l2);
Thrust (1)=tau_1 - Thrust (2);

%Preallocating array for k
10 k= [0 0];

%Multiplying with correct coefficient depending on rotational
direction of thrusters

for j=1:2
if Thrust(j) >0

15 k(j)=k_pos;
else

k(j)=k_neg;
end

end
20

B=[1 1; -l1 -l2]*[k(1) 0; 0 k(2)];
input = B\ [tau_1; tau_6];

n(1)=sat2(sign(input (1))*sqrt(abs(input (1))),n_min ,n_max);
25 n(2)=sat2(sign(input (2))*sqrt(abs(input (2))),n_min ,n_max);

end

function [y] = sat2(x,xmin ,xmax)
30

if x< xmin
y = xmin;

elseif x> xmax
y= xmax;

35 else
y = x;

end

90

end

STC

function [u_st ,v_stw_dot , alpha_dot]=STC(lambda2 ,alpha_m ,
omega ,gamma , epsilon ,lambda ,chi_e ,chi_e_dot ,e_stc)

global alpha v_stw;

5 %Sliding surface
s = lambda*chi_e + chi_e_dot;

%Boundary layer
if abs(s) > alpha_m

10 alpha_dot = omega * sqrt (gamma /2);
else

alpha_dot =0;
end

15 beta = (2 * epsilon*alpha) + lambda2 + (2*(epsilon ^2));

%Saturate s
sign_s=s/(abs(s) + e_stc);

20 v_stw_dot= -beta * sign_s;

%Control−law
u_st= - alpha * sqrt(abs(s)) * sign_s + v_stw;

25 end

PID-SMC

function [u_smc ,s,s_dot]= PID_SMC(k_s ,lambda ,e_smc ,chi_e ,
chi_e_dot ,chi_d_dot ,chi_d_ddot ,chi_e_int)

global Nrdot Iz Nr;

5 T= (Iz - Nrdot)/Nr;
K=1/Nr;

v = chi_d_dot - 2* lambda*chi_e - lambda ^2 * chi_e_int;
v_dot = chi_d_ddot - 2* lambda*chi_e_dot - lambda ^2 * chi_e;

10

%Defining sliding surface
s = chi_e_dot + 2* lambda*chi_e + lambda ^2 * chi_e_int;

91 C. Matlab Code

s_dot = 2* lambda*chi_e_dot+ lambda ^2 * chi_e;

15 rho= (abs((v_dot) *T/K) + 1/K * abs(v));

%10% uncertainty for all measurements
eta=rho *1.1;

20 %Saturation
sign_s=s/(abs(s) + e_smc);

%Control−law
u_smc = (T/K)*v_dot + v/K - (k_s+Nr*0)*s - eta*sign_s;

25

end

LOS

function [chi_desired ,e,wp_LOSindex] = lookahead_LOS(
wp_LOSindex ,p, WPx ,WPy , R, delta)

wp_dx = WPx(wp_LOSindex +1)-WPx(wp_LOSindex);
wp_dy = WPy(wp_LOSindex +1)-WPy(wp_LOSindex);

5

alfa_k = atan2(wp_dy , wp_dx);

%Cross−track error
e = -(p(1)-WPx(wp_LOSindex))*sin(alfa_k) + (p(2)-WPy(

wp_LOSindex))*cos(alfa_k);
10

chi_r = atan(-e/abs(delta));

x_error = -WPx(wp_LOSindex +1) + p(1);
y_error = -WPy(wp_LOSindex +1) + p(2);

15

%Waypoint switching
if (x_error ^2 + y_error ^2 <= R^2) && wp_LOSindex <(length(WPx)

-1)
wp_LOSindex = wp_LOSindex + 1;

end
20

%Desired course
chi_desired = alfa_k + chi_r;

end

Obstacle avoidance

92

function [a] = in_T_C(sigma ,sigma_dot ,sigma_min ,sigma_max)

if sigma_min <sigma && sigma <sigma_max
a=true;

5 elseif sigma <= sigma_min && sigma_dot >=0
a=true;

elseif sigma <= sigma_min && sigma_dot <0
a=false;

elseif sigma >= sigma_max && sigma_dot <=0
10 a=true;

else
a=false;

end

15 end

function [chi_desired ,e,wp_LOSindex] = LOS_avoidance(
wp_LOSindex ,p, WPx ,WPy , R, delta ,Rm ,x_c_obstacle ,
y_c_obstacle ,weight)

global wpt obstacle_list orig_wpt;
wp_dx = WPx(wp_LOSindex +1)-WPx(wp_LOSindex);

20 wp_dy = WPy(wp_LOSindex +1)-WPy(wp_LOSindex);

alfa_k = atan2(wp_dy , wp_dx);

%Cross−track error
25 e = -(p(1)-WPx(wp_LOSindex))*sin(alfa_k) + (p(2)-WPy(

wp_LOSindex))*cos(alfa_k);

chi_r = atan(-e/abs(delta));

x_error = -WPx(wp_LOSindex +1) + p(1);
30 y_error = -WPy(wp_LOSindex +1) + p(2);

x_oa_error=p(1)-x_c_obstacle;
y_oa_error=p(2)-y_c_obstacle;

35 %Waypoint switching
if (x_error ^2 + y_error ^2 <= R^2) && wp_LOSindex <(length(wpt.

pos.x) -1)
wp_LOSindex = wp_LOSindex + 1;

end

40 %Generate waypoints when closer to obstacle than the next
waypoint

if ((x_oa_error ^2 + y_oa_error ^2 <= x_error ^2 + y_error ^2) &&
~any(all(obstacle_list ==[x_c_obstacle;y_c_obstacle])))
path_replanning(Rm,x_c_obstacle , y_c_obstacle ,weight ,

wp_LOSindex ,p);
end

93 C. Matlab Code

45 %Desired course
chi_desired = alfa_k + chi_r;
end

Path re-planning

function [] = path_replanning(Rm,x_c_obstacle , y_c_obstacle ,
weight ,wp_index ,p)

global wpt obstacle_list path;

5 y_obstacle= (y_c_obstacle -Rm):(y_c_obstacle+Rm);
x_obstacle =(x_c_obstacle -Rm):(x_c_obstacle + Rm);

x_start = round(p(1));
y_start= round(p(2));

10

x_max=max(wpt.pos.x);
y_max=max(wpt.pos.y);

space_x=round((wpt.pos.x(wp_index +1)-x_c_obstacle)/2);
15 space_y=round((wpt.pos.y(wp_index +1)-y_c_obstacle)/2);

x_end=wpt.pos.x(wp_index +1)- space_x;
y_end=wpt.pos.y(wp_index +1)-space_y;

20 obstacle = [x_obstacle;y_obstacle];

path= Astar(x_max ,y_max ,[x_start y_start],[x_end y_end],
obstacle ,weight);

if ~isempty(path)
25

x= path (:,2);
y=path (:,1);
dangle=diff(diff(y)./diff(x));

30 %Find vertices in the path found
index = find(abs(dangle) >0.1)+1;

%Include the start point as a waypoint
if length(index)>2

35 if sqrt((x_start -path(index (1) ,1))^2 - (y_start -path(
index (1) ,2))^2) >0
index = [1; index];

end
end

40 %Update waypoints and obstacle list

94

if ~isempty(index)
if ~all([wpt.pos.x;wpt.pos.y]==[path(index (1) ,1) ’;

path(index (1) ,2) ’])
wpt.pos.y=[wpt.pos.y(1: wp_index) path(index ,2)’

wpt.pos.y((wp_index +1):end)];
wpt.pos.x=[wpt.pos.x(1: wp_index) path(index ,1)’

wpt.pos.x((wp_index +1):end)];
45

obstacle_list = [obstacle_list , [x_c_obstacle;
y_c_obstacle]];

end
end

end
50 end

A* algorithm

function [path]= Astar(xmax ,ymax ,start ,goal ,obstacle ,w)

% Author: Anthony Chrabieh
% Date: 2017−11−06

5 % Revisions: 2020−03−13

MAP = zeros(xmax ,ymax);

%Place obstacles in the map
10 for i=1:2: size(obstacle ,1)

MAP(obstacle(i,:),obstacle(i+1,:))=inf;
end

%Heuristic Weight
15 weight = sqrt(w);

%Heuristic Map of all nodes
for x = 1:size(MAP ,1)

for y = 1:size(MAP ,2)
20 if(MAP(x,y)~=inf)

H(x,y) = weight*norm(goal -[x,y]);
G(x,y) = inf;

end
end

25 end

%% initial conditions
G(start (1),start (2)) = 0;
F(start (1),start (2)) = H(start (1),start (2));

30

closedNodes = [];

95 C. Matlab Code

openNodes = [start G(start (1),start (2)) F(start (1),start (2))
0]; %[x y G F cameFrom]

%% Solve
35 solved = false;

while(~ isempty(openNodes))

%Find node from open set with smallest F value
40 [~,I] = min(openNodes (:,4));

%Set current node
current = openNodes(I,:);

45 %If goal is reached, break the loop
if(current (1:2)==goal)

closedNodes = [closedNodes;current];
solved = true;
break;

50 end

%remove current node from open set and add it to closed
set

openNodes(I,:) = [];
closedNodes = [closedNodes;current];

55

%For all neighbors of current node
for x = current (1) -1:current (1)+1

for y = current (2) -1:current (2)+1

60 %If out of range skip
if (x<1||x>xmax||y<1||y>ymax)

continue
end

65 %If object skip
if (isinf(MAP(x,y)))

continue
end

70 %If current node skip
if (x== current (1)&&y== current (2))

continue
end

75 %If already in closed set skip
skip = 0;
for j = 1:size(closedNodes ,1)

if(x == closedNodes(j,1) && y== closedNodes(j
,2))
skip = 1;

96

80 break;
end

end
if(skip == 1)

continue
85 end

A = [];
%Check if already in open set
if(~ isempty(openNodes))

90 for j = 1:size(openNodes ,1)
if(x == openNodes(j,1) && y== openNodes(j

,2))
A = j;
break;

end
95 end

end

newG = G(current (1),current (2)) + round(norm([
current (1)-x,current (2)-y]) ,1);

100 %If not in open set, add to open set
if(isempty(A))

G(x,y) = newG;
newF = G(x,y) + H(x,y);

105 newNode = [x y G(x,y) newF size(closedNodes
,1)];

openNodes = [openNodes; newNode];
continue

end

110 %If no better path, skip
if (newG >= G(x,y))

continue
end

115 G(x,y) = newG;

newF = newG + H(x,y);
openNodes(A,3:5) = [newG newF size(closedNodes ,1)

];
end

120 end
end

if (solved)

125 j = size(closedNodes ,1);
path = [];

97 C. Matlab Code

while(j > 0)
x = closedNodes(j,1);
y = closedNodes(j,2);

130 j = closedNodes(j,5);
path = [x,y;path];

end
else

path= [];
135 end

end

Otter model

function [xdot ,output] = otter(x,n,mp,rp ,V_c ,beta_c)
% [xdot,U] = otter(x,n,mp,rp,V_c,beta_c) returns the speed U

in m/s (optionally)
% and the time derivative of the state vector:
% x = [u v w p q r x y z phi theta psi]’

5 % for the Maritime Robotics Otter USV, see www.
maritimerobotics.com.

% The length of the USV is L = 2.0 m, while the state vector
is defined as:

%
% u = surge velocity (m/s)
% v = sway velocity (m/s)

10 % w = heave velocity (m/s)
% p = roll velocity (rad/s)
% q = pitch velocity (rad/s)
% r = yaw velocity (rad/s)
% x = position in x direction (m)

15 % y = position in y direction (m)
% z = position in z direction (m)
% phi = roll angle (rad)
% theta = pitch angle (rad)
% psi = yaw angle (rad)

20 %
% The other inputs are:
%
% n = [n(1) n(2)]’ where
% n(1) = propeller shaft speed, left (rad/s)

25 % n(2) = propeller shaft speed, right (rad/s)
%
% mp = payload mass (kg), maximum 45 kg
% rp = [xp, yp, zp]’ (m) is the location of the payload
% V_c = current speed (m/s)

30 % beta_c = current direction (rad)
%
% Author: Thor I. Fossen
% Date: 2019−07−17

98

% Revisions: 2019−10−14
35

% Check of input and state dimensions
if (length(x) ~= 12),error(’x vector must have dimension 12 !

’); end
if (length(n) ~= 2),error(’n vector must have dimension 2 !’)

; end

40 % Main data
g = 9.81; % acceleration of gravity (m/s^2)
rho = 1025; % density of water
L = 2.0; % length (m)
B = 1.08; % beam (m)

45 m = 55.0; % mass (kg)
rg = [0.2 0 -0.2]’; % CG for hull only (m)
R44 = 0.4 * B; % radii of gyration (m)
R55 = 0.25 * L;
R66 = 0.25 * L;

50 T_yaw = 0.5; % time constant in yaw (s)
Umax = 6 * 0.5144; % max forward speed (m/s)

% Data for one pontoon
B_pont = 0.25; % beam of one pontoon (m)

55 y_pont = 0.395; % distance from centerline to waterline
area center (m)

Cw_pont = 0.75; % waterline area coefficient (−)
Cb_pont = 0.4; % block coefficient, computed from m = 55

kg

60

% State and current variables
nu = x(1:6); nu1 = x(1:3); nu2 = x(4:6); % velocities
eta = x(7:12); % positions
U = sqrt(nu(1)^2 + nu(2) ^2); % speed

65 u_c = V_c * cos(beta_c - eta(6)); % current surge
velocity

v_c = V_c * sin(beta_c - eta(6)); % current sway
velocity

% Inertia dyadic, volume displacement and draft
nabla = (m+mp)/rho; % volume

70 T = nabla / (2 * Cb_pont * B_pont*L); % draft
Ig_CG = m * diag([R44^2, R55^2, R66 ^2]); % only hull in CG
rg = (m*rg + mp*rp)/(m+mp); % CG location corrected

for payload
Ig = Ig_CG - m * Smtrx(rg)^2 - mp * Smtrx(rp)^2; % hull +

payload in CO

75 % Experimental propeller data including lever arms

99 C. Matlab Code

l1 = -y_pont; % lever arm, left
propeller (m)

l2 = y_pont; % lever arm, right
propeller (m)

k_pos = 0.02216/2; % Positive Bollard,
one propeller

k_neg = 0.01289/2; % Negative Bollard,
one propeller

80 n_max = sqrt ((0.5*24.4 * g)/k_pos); % maximum propeller
rev. (rad/s)

n_min = -sqrt ((0.5*13.6 * g)/k_neg); % minimum propeller
rev. (rad/s)

% MRB and CRB (Fossen 2011)
I3 = eye(3);

85 O3 = zeros (3,3);

MRB_CG = [(m+mp) * I3 O3
O3 Ig];

CRB_CG = [(m+mp) * Smtrx(nu2) O3
90 O3 -Smtrx(Ig*nu2)];

H = Hmtrx(rg); % Transform MRB and CRB from CG
to CO

MRB = H’ * MRB_CG * H;
CRB = H’ * CRB_CG * H;

95

% Hydrodynamic added mass (best practise)
Xudot = -0.1 * m;
Yvdot = -1.5 * m;
Zwdot = -1.0 * m;

100 Kpdot = -0.2 * Ig(1,1);
Mqdot = -0.8 * Ig(2,2);
Nrdot = -1.7 * Ig(3,3);

MA = -diag([Xudot , Yvdot , Zwdot , Kpdot , Mqdot , Nrdot]);
105 CA = m2c(MA , nu);

% System mass and Coriolis−centripetal matrices
M = MRB + MA;
C = CRB + CA;

110

% Hydrostatic quantities (Fossen 2011)
Aw_pont = Cw_pont * L * B_pont; % waterline area, one

pontoon
I_T = 2 * (1/12)*L*B_pont ^3 * (6* Cw_pont ^3/((1+ Cw_pont)*(1+2*

Cw_pont)))...
+ 2 * Aw_pont * y_pont ^2;

115 I_L = 0.8 * 2 * (1/12) * B_pont * L^3;
KB = (1/3) *(5*T/2 - 0.5* nabla/(L*B_pont));
BM_T = I_T/nabla; % BN values

100

BM_L = I_L/nabla;
KM_T = KB + BM_T; % KM values

120 KM_L = KB + BM_L;
KG = T - rg(3);
GM_T = KM_T - KG; % GM values
GM_L = KM_L - KG;

125 G33 = rho * g * (2 * Aw_pont); % spring stiffness
G44 = rho * g *nabla * GM_T;
G55 = rho * g *nabla * GM_L;

G_CF = diag ([0 0 G33 G44 G55 0]); % spring stiffness matrix
in CF

130 LCF = -0.2;
H = Hmtrx ([LCF 0 0]); % transform G_CF from CF

to CO
G = H’ * G_CF * H;

% Natural frequencies
135 w3 = sqrt(G33/M(3,3)) ;

w4 = sqrt(G44/M(4,4));
w5 = sqrt(G55/M(5,5));

% Linear damping terms (hydrodynamic derivaties)
140 Xu = -24.4 * g / Umax; % specified using max

speed
Yv = 0;
Zw = -2 * 0.3 *w3 * M(3,3); % specified using rel

damp factors
Kp = -2 * 0.2 *w4 * M(4,4);
Mq = -2 * 0.4 *w5 * M(5,5);

145 Nr = -M(6,6)/T_yaw; % specified using time
const T_yaw

% Control forces and moments − with propeller revolution
saturation

Thrust = zeros (2,1);
for i = 1:1:2

150 if n(i) > n_max % saturation,
physical limits
n(i) = n_max;

elseif n(i) < n_min
n(i) = n_min;

end
155

if n(i) > 0
Thrust(i) = k_pos * n(i)*abs(n(i)); % forward

force (N)
else

Thrust(i) = k_neg * n(i)*abs(n(i)); % aft force (N
)

101 C. Matlab Code

160 end
end

output= [Thrust (1),Thrust (2)];
% Control forces and moments

165 tau = [Thrust (1) + Thrust (2) 0 0 0 0 -l1 * Thrust (1) - l2 *
Thrust (2)]’;

% Linear damping using relative velcoities
Xh = Xu * (nu(1) - u_c);
Yh = Yv * (nu(2) - v_c);

170 Zh = Zw * nu(3);
Kh = Kp * nu(4);
Mh = Mq * nu(5);
Nh = Nr * nu(6);

175 % Strip theory: cross−flow drag integrals for Yh and Nh
dx = L/10; % 10 strips
Cd_2D = Hoerner(B_pont ,T); % 2D drag coefficeint for one

pontoon
for xL = -L/2:dx:L/2

v_r = nu(2) - v_c; % relative sway velocity
180 r = nu(6); % yaw rate

Ucf = abs(v_r + xL * r) * (v_r + xL * r);
Yh = Yh - 0.5 * rho * T * Cd_2D * Ucf * dx; %

sway force
Nh = Nh - 0.5 * rho * T * Cd_2D * xL * Ucf * dx; % yaw

moment
end

185

% kinematics
[Rzyx , Tzyx] = body2ned(eta);

nu_r=nu -[u_c v_c 0 0 0 0]’;
190 % trim: theta = −7.5 deg correponds to 13.5 cm less height

aft maximum load
g_0 = [0 0 0 0 320 0]’;

% time derivative of states − numerical integration; see
ExOtter.m

xdot = [...
195 M \ (tau + [Xh Yh Zh Kh Mh Nh]’ - C * nu_r - G * eta -

g_0)
Rzyx * nu1
Tzyx * nu2];

end

200 %% Function [Rzyx, Tzyx] = body2ned(eta)
function [Rzyx , Tzyx] = body2ned(eta)
% computes the rotation and angular velocity transformation

matrices

102

% between BODY and NED
cphi = cos(eta (4));

205 sphi = sin(eta (4));
cth = cos(eta(5));
sth = sin(eta(5));
cpsi = cos(eta (6));
spsi = sin(eta (6));

210

Rzyx = [...
cpsi*cth -spsi*cphi+cpsi*sth*sphi spsi*sphi+cpsi*cphi*

sth
spsi*cth cpsi*cphi+sphi*sth*spsi -cpsi*sphi+sth*spsi*

cphi
-sth cth*sphi cth*cphi];

215

Tzyx = [...
1 sphi*sth/cth cphi*sth/cth;
0 cphi -sphi;
0 sphi/cth cphi/cth];

220 end

%% Function S = Smtrx(a
function S = Smtrx(a)
% S = Smtrx(a) computes the 3x3 vector skew−symmetric matrix

S(a) = −S(a)’.
225 % The corss product satisfies: a x b = S(a)b.

S = [0 -a(3) a(2)
a(3) 0 -a(1)
-a(2) a(1) 0];

end
230

%% Function H = Hmtrx(r)
function H = Hmtrx(r)
% H = Hmtrx(r) computes the 6x6 system transformation matrix
%

235 % H = [eye(3) Smtrx(r)’
% zeros(3,3) eye(3)]; Property: inv(H(r)) = H(−

r)
%
% If r = r_g is the vector from CO to CG, the model matrices

in CO and CG
% are related by: M_CO = H(r_g)’ ∗ M_CG ∗ H(r_g). Generalized

position and
240 % force satisfy: eta_CO = H(r_g)’ ∗ eta_CG and tau_CO = H(r_g

)’ ∗ tau_CG
H = [eye (3) Smtrx(r)’

zeros (3,3) eye(3)];
end

