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Abstract

This work investigates the use of brain activity signals as a suitable parameter
for a biometric system. Brain activity captured in electroencephalography (EEG)
data can be analyzed using feature extraction and classification to identify a sub-
ject.

This work presents signal analysis methods and features for analyzing EEG
signals on two different neuro-paradigms; resting-state and event-related poten-
tial. The EEG signals are decomposed using the Empirical Mode Decomposition
(EMD) and frequency bands. Features (energy, fractal, statistical and HHT-based)
are then extracted from the decomposed signals and are used as input on five differ-
ent for machine learning algorithms (DT, RF, SVM, k-NN, and NB) for obtaining
trained models. Machine learning is utilized to identify the unique patterns in
EEG-signals. The model with the highest accuracy is utilized for validation with
unseen data.

Using frequency bands and EMD as the basis for feature extraction on resting-
state data, the highest validation accuracy obtained was 0.98 and 0.92, respectively,
and 0.95 and 0.89 for the event-related potential. The findings in this project
reveal important information for continuing the exploration of feature extraction
for Subject Identification.





Table of Contents

Abstract i

Table of Contents iv

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and theory 5
2.1 Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Biometric system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Frequency bands of the brain . . . . . . . . . . . . . . . . . . 7
2.3.2 Event-related potential . . . . . . . . . . . . . . . . . . . . . 8

2.4 Signal Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . 9
2.4.3 Hilbert-Huang Transform . . . . . . . . . . . . . . . . . . . . 10

2.5 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Energy features . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Fractal features . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Statistical features . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4 HHT-based features . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



3 Literature Review 17
3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Materials and methods 21
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Resting-state . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Event related potential . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Preprocessing of resting-state . . . . . . . . . . . . . . . . . . 23
4.2.2 Preprocessing of ERP . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Decomposing with Empirical Mode Decomposition . . . . . . 24
4.3.2 Decomposition with frequency bands . . . . . . . . . . . . . . 25

4.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Classification using feature sets . . . . . . . . . . . . . . . . . . . . . 26

5 Results and discussion 29
5.1 Pre-processed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Classification with feature extraction . . . . . . . . . . . . . . . . . . 30

5.2.1 Recreating literature review . . . . . . . . . . . . . . . . . . . 30
5.2.2 Classification using feature sets . . . . . . . . . . . . . . . . . 32

6 Discussion 35
6.1 Recreating literature review . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Classification using feature sets . . . . . . . . . . . . . . . . . . . . . 36
6.3 Overall discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusion 39
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 40



List of Tables

2.1 Brain frequency bands and their respective frequency range. . . . . 8
2.2 Statistical features used in this project. . . . . . . . . . . . . . . . . 13

3.1 Summary of literature review . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Summary of the datasets used in this project. . . . . . . . . . . . . . 22
4.2 Features extracted from ERP and resting-state data. . . . . . . . . . 25
4.3 Features sets used on ERP and resting-state data after decomposition. 25

5.1 Accuracy of ERP data using energy and fractal features . . . . . . . 31
5.2 Accuracy of resting-state data using energy and fractal features with

EMD and frequency bands as basis for feature extraction. . . . . . 31
5.3 Validation of ERP data using energy and fractal features. . . . . . . 31
5.4 Validation of resting-state dataset using energy and fractal features. 31
5.5 Validation of resting-state data using frequency bands as basis for

feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Validation of resting-state data using EMD as basis for feature ex-

traction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Validation of ERP dataset using frequency bands as basis for feature

extractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Validation of ERP dataset using EMD as basis for feature extractions. 34

v





List of Figures

2.1 Main modules of a biometric system . . . . . . . . . . . . . . . . . . 6
2.2 Electrode placement (EEG) . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Protocol design using P300-speller . . . . . . . . . . . . . . . . . . . 22
4.2 FFT plot of ERP dataset . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Signal decomposition using EMD . . . . . . . . . . . . . . . . . . . . 24
4.4 Signal decomposition using frequency bands . . . . . . . . . . . . . . 25
4.5 Illustration of computing feature vector for each channel . . . . . . . 26
4.6 Classification process executed on each data set . . . . . . . . . . . . 27

5.1 ERP data after pre-processing . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Evolution of accuracies obtained using 20 instances with EMD as

basis on ERP data, with Linear SVM, random forest, decision tree,
k-NN, and Gaussion naive Bayes. . . . . . . . . . . . . . . . . . . . . 32

vii





Chapter 1
Introduction

The ability to identify individuals is of the highest importance in both government
and civilian applications. Traditionally, a combination of knowledge-based meth-
ods (e.g., PINs and passwords) and token-based methods (e.g., keys and ID-cards)
has been used to validate the identity of an individual. In a broad-scale applica-
tion, like border control, where thousands of people are inspected, the traditional
methods are vulnerable for imposters and spoofing. Replacing conventional au-
thentication methods with biometrics is therefore introduced [1, 2, 3].

Biometrics refers to identification based on certain physical or behavioral traits
of an individual. By using biometrics, it is possible to authenticate the individual’s
identity based on ”who you are” rather than ”what you possess” (e.g., ID card)
or ”what you remember” (e.g., password) [4]. Currently, biometrics traits such as
fingerprints, facial features, voice, and DNA, are adopted in real-life scenarios [5].
However, even biometrics are prone to spoofing and can easily be stolen, similar
to traditional methods. Once these biometrics are stolen, they can not be replaced
like conventional tokens; an ID-card can be replaced in contrast to growing a new
fingerprint pattern.

Any physical or behavioral traits can be used as a biometric as long as some
criteria are met: it is challenging to steal, and it is cancelable. A biometric trait
fulfilling these criteria are brain signals, which can be measured from the scalp
using a technique known as Electroencephalography (EEG).

Brain signals obtained using EEG appears from brain activities created from
unique patterns of neural pathways. The resulting brain activities are unique for
every person and are related to the subjects’ genetic information. Because of
its uniqueness, brain signals makes a good base as a biological feature for subject
identification [6]. There are several advantages for using brain activity as biometric
measurement compared to biometrics used today:
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1. A person has to be alive to be able to produce EEG signals; lack of EEG
is an indication of brain death. This protects the user from being dead and
unconscious to provide valid EEG data.

2. The brain activity is measured as a voltage. Increasing the distance from
the scalp will decrease the measurable voltage. The EEG needs contact for
collecting data.

3. Brain signals can be elicited by numerous separate brain systems, which
makes brain signals cancelable.

4. EEG signals are sensitive to stress, which protects the user from being forced.

A biometric system consists of two parts: the data acquisition part and the
decision part. Data acquisition consists of recording brain activity while a subject
engages with a protocol, such as resting-state, motor imagery, or visual stimula-
tion. The decision part is where the acquired data is pre-processed for increasing
the Signal-to-Noise ratio (SNR), as recorded EEG signals are prone to noise. The
decision part also consists of feature extraction to obtain characteristics of the
unique EEG signals. The different sets of features are then categorized by a model
created using machine-learning techniques. The trained model is used to identify
a subject by entering new input data.

The utilization of brain activity as biometrics with different neuro-paradigms
(e.g., resting-state, imagined speech, color exposure) is of significant interest. In
the time being, the utilization of brain biometrics is still not possible in real life.
Brain biometrics is still placed in the research field as it has multiple factors to im-
prove. Prior research has been able to demonstrate uniqueness, permanence, and
universality of using brain signals. For the possibility to apply brain biometrics in
real life, the collectability, performance, and acceptability of brain signals have to
be improved through research.

1.1 Problem description
The purpose of this project is to investigate feature extraction methods and clas-
sification algorithms on different neuro-paradigms using EEG signals.

The aim of this project is subject identification using EEG signals from different
neuro-paradigms. The problem is approached by using signal analysis methods for
getting meaningful physical signals from EEG signals and then extract features for
classification. A variety of features and classification algorithms are explored on two
datasets containing two types of neuro-paradigms: resting-state and cognitive task.

The evolution of classification accuracy when the number of EEG recordings
channels are reduced is also investigated.



1.1.1 Motivation
The methods proposed in section 1.1 is an approach for real-time subject identi-
fication using EEG signals with a reduced number of EEG recordings channels.
For real-time identification, the device used for recording EEG signals should be
portable with few channels, and the response time from the system classification
should short. Using relevant features is one way for reducing computation time
and obtaining a better representation of the EEG signals. A better representation
of EEG signals can provide higher identification accuracy.

1.1.2 Report structure
This report starts with relevant background and theory about biometric systems,
EEG signals, as well as signal analysis methods and machine learning algorithms in
Chapter 2. Relevant work in subject identification using EEG signals are presented
in Chapter 3. In Chapter 4, the materials and methods used in this project are
described. The obtained results are presented in Chapter 5, with a discussion of the
results in Chapter 6. Chapter 7 concludes this project and presents future work.





Chapter 2
Background and theory

2.1 Biometrics
Biometrics is the technical term for the identification of individuals based on their
physiological or behavioral characteristic. [4]. Any human physiological or behav-
ioral characteristic can be used as a biological measurement as long as the following
requirements, as mentioned in [4] and [1] are satisfied:

• Universality: the characteristic should exist in every individual.

• Uniqueness: no other individuals can be equal in terms of the characteristic.

• Permanence: the characteristic should be invariant (to the matching crite-
rion) over some time.

• Collectability: the characteristic can be measured quantitatively.

In terms of a practical biometric system, other essential requirements should be
considered as well, such as:

• Performance: the achievable identification accuracy and speed, the require-
ment for recourses to achieve an acceptable accuracy and speed, and working
or environmental factors that affect the identification accuracy and speed.

• Acceptability: to what extent are people willing to accept the use of particular
biometric characteristic.

• Circumvention: how easily the system can be fooled by spoofing.
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2.2 Biometric system
A biometric system employs biometrics for subject identification. This system
may be referred to as a pattern recognition system whose function is to classify a
biometric signal into several identities [1]. A biometric system is designed consisting
of four central modules which are presented in Figure 2.1:

1. A sensor module capturing the raw biometric data from a subject.

2. A feature extraction module that extracts a set of features representing the
acquired biometric signal. The extracted features are labeled with the identity
of the subject and stored in the biometric system as a template.

3. A matching module generating matching scores by comparing the extracted
features from authentication with the stored templates.

4. A decision module processing the calculated matching scores in order to verify
or determine the identity of the subject.

The system can operate as verification or identification depending on the context
of the application:

• Validation mode: the individuals’ identity (e.g., ID-card or Personal Iden-
tification Number (PIN)) is validated by comparing the captured biometric
data with the individuals’ biometric templates stored in the database.

• Identification mode: the system will search through all the stored templates
in the database to find a match for recognizing an individual.

In this project, a biometric system based on identification mode is chosen. With-
out the subject having to claim an identity, the system carries out a one-to-many
comparison to establish the subject’s identity. Individuals not enrolled in the sys-
tem will then fail. Identification is known as negative recognition to prevent a
single individual from using multiple identities [7]. Negative recognition can only
be performed with biometrics.

Sensor Feature extraction Matching

Template	storing

Pre-processing

Database

Decision

Figure 2.1: Main modules of a biometric system



2.3 Electroencephalography
An electroencephalogram is a technique for measuring the electrical activity gener-
ated by the brain. This method is non-invasive by placing electrodes on the scalp
for recording the EEG signals [8]. The electrode placement on the scalp follows the
international 10-20 system standardized by the American Electroencephalographic
Society [9], as shown in Figure 2.2.

It is challenging to gain useful information from EEG-signals directly in the
time domain just by observation. Raw EEG signals are both nonlinear and non-
stationary by nature with a small amplitude since the signals have to cross scalp,
skull, in addition to many other layers. EEG signals are, therefore, prone to back-
ground noise and artifacts occurring both internally and externally [10]. Artifacts
contaminating the EEG signals could be muscle movement, blinking, and face
movements and external noise could be the electrical noise from powerline at 50
Hz or 60 Hz [11].

The acquired EEG signals are different for different brain activities. One way
to study the brain is by triggering different simulations by presenting a paradigm,
such as motor imagery, event-related response, and visual evoked potentials.

Figure 2.2: Electrode placement on the scalp according to the international 10-20 sys-
tem. Left image lateral view, right image top view [12]

2.3.1 Frequency bands of the brain
Raw and unprocessed EEG signals from the brain can reveal neural oscillations,
which is always a mixture of underlying base frequencies. These frequency bases
reflect the different states of our brain that varies depending on individual factors,
stimulus properties, and internal states. Brain waves are, therefore, characterized
into the following frequency bands sorted from lower to higher frequencies: delta,
theta, alpha, beta, and gamma bands. These are referred to as the frequency bands



Brain rhythms Frequency [Hz] Description
Delta 0.5 - 4.0 Deep sleep
Theta 4.0 - 8.0 Memory demands
Alpha 8.0 - 12.0 Awake, relaxed
Beta 12.0 - 30.0 Alertness and focused attention

Gamma >30.0 Deep focus

Table 2.1: Brain frequency bands and their respective frequency range.

of the brain. Depending on what brain activity is induced, different frequency
bands to the specific cognitive process will be active [13]. Each frequency band is
correlated with their associated mental state presented in Table 2.1 [5].

2.3.2 Event-related potential
An event-related potential (ERP) is a time-locked EEG signal which captures neu-
ral activity related to specific events or stimuli. They are of small voltages and
are utilized for the evaluation of brain functions and response to stimuli. The
presented stimuli generate detectable but time-delayed waves in EEG signals and
indicate how the stimulus is processed. A well known ERP wave pattern is the
P300 peak. The P300 component occurs approximately 300 ms after a stimulus is
delivered, and appears as a series of positive and negative voltage fluctuations in
the EEG signal [14].

2.4 Signal Analysis Methods
As mentioned in section 2.3, EEG signals do not provide any useful information
in their original form because of their natural shape and added noise. To be able
to classify subjects using EEG signals, features extraction with advanced signal
processing techniques as a basis are required [11]. The results obtained from signal
analyzing depends on the applied signal analysis method, the experiment, and the
signal characteristics. When analyzing EEG signals, both high-frequency resolution
and high time resolution is of interest.

2.4.1 Fast Fourier Transform
The Fourier transform (FT) transforms a function of time from the time domain
into the frequency domain. The hidden information in the frequency domain can
then be extracted and analyzed. The Discrete Fourier Transform (DFT) is used
when dealing with a finite sequence of equally-spaced samples signals with the
formula given in Equation 2.1:

Xk =
N−1∑
n=0

xn · e− i2π
N kn (2.1)



where N is the number of complex number xn := x0, x1...xN−1 transformed into an
another sequence of complex number Xn := X0, X1...XN−1. The computational
cost of DFT is O(N2), where N is the data size. The Fast Fourier Transform (FFT)
algorithm is therefore used for computing the DFT, where it computes all DFT
coefficient as a ”block” with a computational cost proportional to O(Nlog2N) [15].

The FFT only provides information limited to the frequency domain. For an-
alyzing EEG signals, both time and frequency domain is needed to extract useful
information about the signal. FFT is a useful method for examining the content
of different frequency components in EEG signal.

2.4.2 Empirical Mode Decomposition
The Empirical Mode Decomposition is an adaptive method for decomposing non-
linear and non-stationary time-series data, such as EEG signals. The data is de-
composed into several Intrinsic Mode Functions (IMFs) without leaving the time
domain, and must satisfy two conditions [16]:

• Condition 1: The number of local minima and maxima differs at most by
one.

• Condition 2: At any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is zero

Decomposing signals into IMFs makes EMD a data-driven method that does not
depend on any a priori defined basis system. The IMFs are extracted through
a process called Sifting, which removes riding waves and make the wave-profile
more symmetric [17] [16]. The sifting process outputs IMFs through an iterative
procedure and works as follows:

1. Identify all the local extrema in the signal

2. Compute lower and upper envelopes from interpolations between extrema;
elower(t), eupper(t)

3. Calculate the local mean value with the lower and upper envelope;
m1,1(t) = 0.5(elower(t) + eupper(t))

4. Subtract the mean value from the signal; h1,1(t) = x(t)−m1,1(t)

5. Determine if the extracted signal is an IMF with the given conditions of an
IMF (Condition 1 and condition 2)

6. Repeat step 1 - 4 until an IMF is obtained; c1(t) = h1,k(t)

7. Subtract the obtained IMF from the original signal; x2(t) = x(t)− c1(t)

8. Repeat steps 1- 6 until there are no more IMFs to extract. The last component
extracted as an IMF is called residual.



When decomposition of n IMFs are finished, the original signal can be recon-
structed as

x(t) =
n∑
i=1

ci(t) + rn(t) (2.2)

Limitations with EMD

The spline interpolation in the sifting process is an approximation, which leads to
some minor deviation from the real mean envelope. End effects are a difficulty with
EMD that occurs near the ends of the signal, which can make the spline interpo-
lation produce large swings. A solution for end effects is presented in [16].

Another difficulty with EMD is the mode mixing problem during the sifting
process. The mode mixing problem occurs when the data contains intermittency
and can make the IMF lose physical meaning. Data affected by noise can also cause
mode mixing, as it can be thought of as another kind of intermittency. A method
for removing mode mixing is proposed in [18].

A more robust method, which is a further development of EMD is the ensemble
mode decomposition (EEMD). The EEMD is utilized for removing noise and mode
mixing and defines true IMFs components as a mean of an ensemble of trials [19].
A random white noise of finite-amplitude is added to the signal in each trial, and
EMD is then applied to this signal. When all the trials are finished, an overall
mean is then calculated for obtaining the true result. However, the computation of
EEMD is more complex than EMD because of the ensemble number of trials and
therefore not suitable for real-time application [20]

2.4.3 Hilbert-Huang Transform
Instantaneous frequency

A proper definition of instantaneous frequency is of interest when analyzing nonlin-
ear dynamical systems like brain activity. The recorded EEG signals contain mul-
tiple frequencies that could exist at the same time, and instantaneous frequency is
therefore necessary. One method for obtaining this is using the Hilbert Transform.

Hilbert Transform

Hilbert Transform (HT) can be applied to a signal for generating an analytic signal
[17]. The analytic signal z(t) is obtained by adding the original signal x(t) with
the imaginary part of the transformed signal y(t) = H{x(t)} as shown in Equation.
2.3:

z(t) = x(t) + i · y(t) = a(t)eiφ(t) (2.3)



where

a(t) =
√
x2(t) + y2(t) (2.4)

φ(t) = arctan
(
y(t)
x(t)

)
(2.5)

ω(t) = dφ(t)
dt

(2.6)

represents the instantaneous amplitude, the instantaneous phase, and the in-
stantaneous frequency of the signal, respectively. The aim is to obtain meaningful
instantaneous frequencies that are local [16].

Hilbert-Huang transform

IMF obtained from EMD, represents one of the oscillatory modes in a nonlinear
and non-stationary signal. These can be both amplitude and frequency modulated.
The IMFs do not provide any good physical interpretation of the data on their own
and need to be further analyzed.

Taking the HT of a real-valued signal like IMF, the obtained analytic signal can
then be used to extract the instantaneous frequency as a function of time. Since the
extracted IMFs are obtained from local properties, the instantaneous frequency of
the signal will provide meaningful information about the complicated signal. Any
event can be localized in time, as well as the frequency axis. This combination
of using IMFs from EMD and the HT is known as the Hilbert-Huang Transform
(HHT) [16].

2.5 Features extraction
EEG signals are further analyzed using feature extraction. A feature represents an
individual measurable property of a process being observed [21]. Recorded EEG
signals contain several different features which can be used for representing the
signals. Machine learning algorithms can perform classification on EEG signals by
using a set of features. Searching for a limited amount of features representing
the signal with certainty is necessary for reducing computations. The process
for selecting relevant features are called feature selection and helps to understand
the data, reduces the computational requirement, removes irrelevant or redundant
variables, and improves the predictor performance [21].



2.5.1 Energy features
Energy features are used for extracting the amplitude and frequency information
from EEG signals. The instantaneous energy gives information about the signal
amplitude and is computed as shown in Equations 2.7

f = log10

(
1
N

N∑
i=1

(vec(i))2

)
(2.7)

where N is the length of a vector and vec is the coefficient of a vector at position i
[22]. The Teager energy describes variations in signal frequency and is defined as

f = log10

(
1
N

N−1∑
i=1

∣∣(vector(i))2 − vector(i− 1) · vector(i+ 1)
∣∣) (2.8)

2.5.2 Fractal features
The fractal dimension describes how a measure of a time series, such as EEG sig-
nals, changes depending on a scale used as a unit of measure, described in the form
of a complex index [23]. The Petrosian fractal dimensions (PFD) and Higuchi
fractal dimensions (HFD) are two types of fractal dimensions used in this project.

The PFD provides a fast computation of the fractal dimension of a signal by
translating the signal into a binary sequence. The binary sequence is created by
assigning ’1’ when the difference between sequential samples in the signal exceeds
a standard deviation magnitude, and a ’0’ otherwise [24]. The PFD is computed
as shown in Equation 2.9

FDPetrosian = log10n

log10n+ log10

(
n

n+0.4N∆

) (2.9)

where n is the length of the sequence and N∆ is the number of sign changes in the
binary sequence.

The HFD approximates the mean length of a signal using segments of k sam-
ples and estimates the dimension of a time-varying signal directly in the time
domain, which reduces the running time [25] [26]. The N-sampled data sequence
X(1), X(2), ..., X(N) is divided into new time series that are subsets of k samples
and are constructed as follows:

Xm
k : X(m), X(m+ k), X(m+ 2k), ...,

(
X

(
m+ N −m

k

)
k

)
(2.10)

where m = 1, 2, ..., k is the initial time and k = 1, ..., kmax is the interval time with
kmax being a constant parameter. In this project kmax = 10 was used. The length



Lm(k) is then calculated for each subset Xm
k as:

Lm(k) = 1
k

N−m
k∑
i=1
|x(m+ ik)− x(m+ (i− 1)k)|

(N − 1
N−m
k

)
(2.11)

The mean value array for the overall signal is then calculated:

Lk = 1
k

1∑
m=1

Lm(k) (2.12)

The HFD is estimated using the array of mean values Lk by calculating the least
square slope of the trajectory:

FDHiguchi = ln(Lk)
ln( 1

k )
(2.13)

2.5.3 Statistical features
Statistical measurement can be used to extract different features from EEG signals.
The statistical features used in this work are presented in Table 2.2.

Features Description
Maximum,
minimum Highest and lowest potential in a time series.

Mean,
median

Central tendency, middle score for a set of a data
arranged in order of magnitude.

Variance,
standard deviation Dispersion around the mean.

Kurtosis Measure of whether the data is light-tailed
or heavy-tailed relative to a normal distribution.

Skewness Measure of lack of symmetry.

Table 2.2: Statistical features used in this project.

2.5.4 HHT-based features
Two features are computed based on HHT. The marginal frequency is obtained
by computing the sum of the instantaneous frequencies from each IMF. The mean
instantaneous amplitude is computed for each IMF. These features are recreated
from [27].

2.6 Machine learning
According to [28], machine learning is a computers’ ability to adapt to new circum-
stances and to detect and extrapolate patterns. By exposing a subject to different



paradigms, EEG signals can be recorded containing different patterns and use
machine learning to reveal these patterns. Machine learning gives computers the
ability to learn from experience by using one of two types of learning techniques:

• Supervised learning: known input and output data are used for training a
model for predicting future outputs.

• Unsupervised learning: hidden patterns are detected from input data.

Extracted feature vectors with corresponding target label are used as train-
ing parameters for a model. The models are trained for generating reasonable
predictions as a response to now feature vector when a subject is going through
identification. This project is therefore based on supervised learning.

Models are trained to predict when new inputs are given with classification
algorithms. The target functions y = f(x) is unknown and represents the correct
predictions. A hypothesis function h(x) approximates the unknown target func-
tion. The goal of the learning process is to find the hypothesis function that best
approximates the unknown target function [28].

Obtaining a hypothesis that fits the future data best is desirable. To test the
approximation of a hypothesis function, the function must be tested with unseen
data. One way to estimate the accuracy of a classifier is by using a method called
k-fold cross-validation. This method splits the dataset into training data and test
data. The data is first split into k equal subsets. Then k rounds of learning rounds
are performed. For each round, 1

k of the data is held and used for testing with the
remaining for training. The average test score from k round gives a better estimate,
then a single score of the classifier accuracy. Most used values for cross-validation
are k = 5 and k = 10, enough for obtaining estimates statistically likely to be
accurate.

In this work, five different classification algorithms are utilized for finding the
best training model. The description of the classifications algorithms used in this
work are described below.

Support Vector Machine

The support vector machine (SVM) is a popular choice as classification algorithms
in supervised learning. The data is classified by finding the hyperplane that maxi-
mizes the margin between the classes. The hyperplane is defined by vectors called
support vectors. The advantage with SVM is its capability to transform to higher-
dimensional space for easier separation of nonlinear data using kernel trick. SVM
is, therefore flexible to represent complex function [28].

Decision Tree

Decision Tree (DT) is a tree structure resembling a flow-chart where each node
indicates a test on a feature, each branch representing the result of the test and



leaf nodes representing classes or class distribution[29]. The navigation to the
different nodes is based on the test. The output is predicted once the leaf node is
reached.

Random forest

The random forest (RF) is an ensemble learning algorithm, which means that it
generates many classifiers and aggregates their results [30]. This algorithm consists
of several DT, where each gives a prediction, and the class with the most votes
become the models’ prediction. This concept protects each of the classifiers from
their own individual errors.

k-nearest neighbors

The k-nearest neighbors (k-NN) algorithm classifies the input with the most com-
mon class among its k-neighbors. The prediction is obtained by majority voting
applied over the k nearest data points. The k-NN do not train during testing;
the k-neighbours with minimum distance will take part in the classification. For
determining the best k-value for the given data, the algorithm is run several times
with different k-values [31].

Naive Bayes

The Naive-Bayes (NB) is a probabilistic classifier based on Bayes’ Theorem with
the assumption that there are no dependencies amongst the features. The reason
for this is to simplify the computation [29].





Chapter 3
Literature Review

3.1 Feature extraction
The research field for using EEG signals for Subject Identification is growing with
many different methods. As feature selection are essential for improving both accu-
racy and computational efficiency, this has to be prioritized for building an effective
biometric system.

A study of feature extraction and classification method were executed in [32].
The authors were studying three different classification algorithms, SVM, k-NN,
and NB, employed with two different feature extraction methods, EMD and Dis-
crete Wavelet Transform (DWT). The aim of the study was Subject identification
using low-density EEG signals of resting-states data. The dataset contained record-
ings from 27 subjects (5 sessions with 30 instances each) using one set with 14 chan-
nels and four subsets (8, 4, 2, and 1 channel). A greedy algorithm was utilized for
reducing the number of channels with a minimum loss of accuracy. EMD showed to
be more robust as a technique for feature extraction of EEG during resting state,
especially when the number of channels was reduced. The study also showed that
linear SVM gives a higher accuracy rate for when high-density EEG-recordings are
used, while Gaussian naive Bayes is better for low-density EEG-recordings.

Subject Identification based on imagined speech using EMD is presented in [33].
The EMD was used to decompose the EEG signals with the Minkowski distance
for deciding the most relevant IMF for each EEG channel. Four energy features
for each IMF have been computed: Instantaneous and Teager energy distribution
and Higuchi and Petrosian Fractal Dimension. The dataset contained 20 subjects
imagining 30 repetitions of five words in Spanish in resting state. The result from
four different classifiers (random forest, SVM, naive Bayes, and k-NN) was used
to compare performance. The 10-folds cross-validation gave accuracy up to 0.92
using Linear SVM.
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In [34], a general methodology to determine the most effective brain rhythm
for human identification is presented. Features from both the time (maximum
value, standard deviation, skewness, and kurtosis) and frequency domain (FFT
and Power Spectral Density (PSD) mean and maximum) were extracted from dif-
ferent brain rhythms and used for classification on four different neural networks.
The features from the time and frequency domain were used to build the networks,
with a feed-forward backpropagation algorithm for building the neural network. By
comparison, beta rhythm gave the best performance with a deficient mean square
error while delta rhythm gave the worst performance with a relatively higher mean
square error for identifying a subject. The paper concludes with beta terms as
the most efficient frequency band for human identification when using EEG signals
from resting-state and problem-solving conditions.

Feature extraction based on the HHT for biometric identification with EEG
signals was performed in [27]. Features were computed from the instantaneous
frequency and instantaneous amplitude after taking HHT of IMFs extracted using
EMD. The purposed system was tested on two datasets with different protocols
with only one recording channel. One dataset with 122 subjects was acquired by
users viewing a series of pictures, while the other dataset with 109 subjects was
based on performing motor and imagery tasks. The Linear Discriminant Analysis
(LDA) -based classifier was used for classifying instantaneous amplitude-based fea-
tures. In contrast, the k-NN (3-NN) was adopted for the instantaneous frequency-
based features, as this gave the best results. The average accuracies for the two
datasets using only a single electrode were 0.96 and 0.99, respectively. It was
also shown that lower frequency bands yield better biometric performance for both
datasets. The methods must be tested on other paradigms for validation. The
first dataset had only one session, while the second dataset had three sessions but
separated by only a few minutes. An ideal dataset to test this method on is with
multiple sessions with intervals of several days to establish stability.

In [35], a method for subject identification based on visual evoked potential
(VEP) signals and neural network (NN) was proposed. A backpropagation NN
was trained to identify subjects using the gamma frequency band (30-35 Hz) with
the spectral power ratio of VEP signals. The dataset included 20 individuals, each
recorded with 61 electrodes. Utilizing a zero-phase Butterworth digital filter and
Parseval’s time-frequency equivalence theorem, the gamma-band spectral-power
ratio was computed. The NN classification gave an average accuracy of 0.99 across
400 test VEP patterns using a 10-fold cross-validation scheme.

In [36], event-related potentials (ERPs) as a base for an identity authentication
system was tested. The dataset consisted of 26 subjects giving a feedback-related
response of a P300-speller. The EMD was utilized as a feature extraction method
where two IMFs where extracted from each channel. The selection of IMFs was
based on the Minkowski distance. The SVM was used for classification with the ac-



curacy index computed using the 10-fold cross-validation. Greedy algorithms were
used for reducing or increasing the number of channels. The accuracy of using nine
channels was 0.97 for classifying 24 subjects; the accuracy decreased to 0.91 when
only five channels were used.

3.2 Noise Reduction
All raw EEG-signals must go through pre-possessing before feature extraction. The
reason for this is that raw EEG-signals are contaminated with electrical artifacts
while recording. Artifacts occur from 50Hz or 60 Hz noises from electronics nearby
the subject or from the subject itself (muscle movements, blinking, or movement
of the face). Increasing the signal-to-noise ratio of EEG-signals before feature ex-
traction by removing or filtering artifacts will improve the signal quality.

The removal of powerline noise caused by AC power supply is feasible by adding
a notch filter with a narrow stop-band at 50/60 Hz as done in several experiments
[37].

The known brain activities are divided into frequency bands. In [34], by remov-
ing brain rhythms not related to the given task improved signal quality by adding
various filters to keep the most relevant information. The different frequency bands
were extracted by first adding a low pass filter for removing line frequencies (50
Hz) and a bandpass finite impulse response (FIR) filter for filtering between 0.5 -
44 Hz. After filtering the EEG-signals, they were separated in different frequency
range with AcqKnowledge software.

Butterworth filter is also a method for noise reduction of raw EEG-signals. In
[35], visual evoked potential (VEP) signals were filtered to obtain the gamma-band
spectral range of 30-50 Hz by using a zero-phase Butterworth digital filter. Using
the zero-phase cancels the effect of the phase nonlinearity of Butter worth filtering.

In [38], Independent Component Analysis (ICA) was used for removing artifacts
in EEG signals. An summery of literature review is presented in table 3.1.



Source [32] [33] [34] [27] [35] [36]
No. Chs. 14, 8, 4, 2, 1 14 4 - 1 61 14, 9
No. Subj. 27 20 3 122/109 20 26

Paradigm Resting Resting
Solve problem
mental with
eyes closed

VEP and
imaginary
task

VEP ERP

Pre-proc. On DWT No yes no yes no
Artifacts
removing - - yes no yes no

Feature
extraction
method

EMD, DWT EMD Frequency
bands EEMD Butterworth

digital filter EMD

Features energy,
fractal

energy,
fractal

statistics,
frequency HHT-based spectral power

rations
energy,
fractal

Classification
SVM,
k-NN,
NB

RF,
NB,
SVM,
k-NN

Artificial -NN LDA,
k-NN NN EMD

Accuracy 0.91 0.92 1.0 0.96 0.99 0.97

Table 3.1: Summary of literature review



Chapter 4
Materials and methods

4.1 Datasets
Two datasets containing different neuro-paradigms are utilized for comparing fea-
ture extraction methods — one dataset containing subjects in resting-state and the
other with subjects executing a cognitive task.

4.1.1 Resting-state

The dataset was acquired from an experiment where the participants were relaxed
with eye-closed [39]. The dataset consists of EEG signals from eight subjects (five
males and three females, range: 24-28). The signals were collected using the Em-
potiv Epoc+ headset with 14 channels with a sampling rate of 128 Hz [40]. The
dataset contains three sessions for each subject, with each session containing one
instance of 7000 samples. Each instance is then divided into a total of 20 sub-
instances, each containing 256 samples. The specs of the headset are presented in
Table 4.1.

4.1.2 Event related potential

The dataset is from a Brain Computer Interface Challenge, proposed by the IEE
Neural Engineering Conference [41]. The dataset contains EEG signals from people
trying to spell a word by paying attention to visual stimuli; this is known as the
”P300-Speller” paradigm used in Brain Computer Interface. The P300-Speller
paradigm uses EEG and P300 responses to select items displayed on a screen.

The dataset was collected from an experiment where each subject was presented
letters and numbers to spell words. Items in a group were flashed on the screen
in random order for selecting a letter of a word. The selected letter by an online
algorithm could either be correct or wrong. The feedback response given by the
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observing subject will be a P300 response of the selected item lasting for 1.3 s. See
Figure 4.1 for the protocol design using a P300-speller.

This experiment was conducted on 26 subjects (13 male, range 10-37, mean age
28.8 ±5.4 (SD)). The EEG signals were recorded using 56 passive Ag/AgCl EEG
sensors that followed the extended 10-20 system. Each subject went through five
sessions, where each session containing 60 instances with 260 samples each.

Figure 4.1: Protocol design using P300-speller [42]

Dataset Subjects Session Instances Channels Other

Resting-state 8 3 1
Subinstances: 10, 20 14

Bandwidth 0.16 Hz - 43 Hz
Digital notch filter (50 Hz / 60 Hz)
Digital 5th order Sinc filter

ERP 26 5 10, 20, 40, 60 56 -

Table 4.1: Summary of the datasets used in this project.

4.2 Pre-processing
Raw EEG signals typically consist of electrical artifacts, as mentioned earlier. It
is, therefore, necessary to pre-process EEG signals to remove or reduce artifacts
and noise for improving the SNR.

One method for improving the SNR is by filtering the signal. Powerline noise
caused by AC power supply can be suppressed by applying a notch filter (band-stop
filter) with a narrow stopband at 50 Hz or 60 Hz depending on the AC frequency
[5]. This can also be done using high or low pass filtering depending on what fre-
quencies are of interest for the experiment.

Another method for removing high-frequency noise is by utilizing EMD. Ex-
tracting the first IMF from the original signal can increase the SNR as the first
IMF contains the high-frequency mode of the signal. However, depending on the
experiment, the first IMF can hold on useful information that should not be re-
moved. There is no defined solution for this process. Therefore, a combination
of pre-processing methods, as well as no pre-processing, are explored. Regardless,



pre-processing is a crucial step for obtaining high-quality data. An advanced review
is out of the scope for this work.

4.2.1 Preprocessing of resting-state
EEG collection headsets regularly introduce constant noise in the recorded signals
[39]. The headset used for obtaining the resting-state data introduced a DC offset of
4200 muV. The signals are therefore pre-processed by subtracting the constant DC
offset from the raw EEG signals. No other pre-processing methods are applied to
this dataset since the Empotiv Epoc+ headset used has built-in bandwidth filters.

4.2.2 Preprocessing of ERP
By taking the FFT of the raw signals from the ERP signals, the signals affected by
the powerline noise is visible as all the subjects produce a high-frequency response
at 50 Hz shown in Figure 4.2. A notch filter with stopband at 50 Hz is therefore
applied to the signals before any further work. According to [43], the frequency
band of a P300 response range from 0.5 Hz - 70 Hz. A band-pass filter from 0.5 Hz
-70 Hz is therefore applied to the signals for removing frequencies over and under
this range. The Infinite impulse response (IIR) Butterworth band-pass filter used
has a maximally flat magnitude in the passband [5].

Figure 4.2: FFT plot of raw EEG signals from ERP data. The powerline noise is visible
at 50 Hz with high amplitude value for each subject.



4.3 Decomposition

Two signal decomposition methods are utilized before feature extractions. One
method is the EMD, and the other is the IIR Butterworth bandpass and highpass
filter for extracting the brain frequency bands. How the signal decomposition
methods work as a basis for feature extraction will be examined on both neuro-
paradigms.

4.3.1 Decomposing with Empirical Mode Decomposition

This method is based on [42]. The EMD is used for extracting IMFs using cubic
spline for interpolation on each channel in a dataset. Depending on the signal size,
a different number of IMFs are obtained. The most relevant IMFs are therefore
chosen using the Minkowski distance as proposed [44]. For feature extractions, it
is important to use the same number of IMFs for all instances. Therefore, the first
two IMFs are used from all channels, as this was the minimum number of relevant
IMFs in all channels. This was the case for both datasets. See Figure 4.3 for
illustration of signal decomposition using EMD.

EMDChannel	1

Channel	2

Channel	n

EMD

EMD

IMF	1

IMF	2

IMF	1

IMF	2

IMF	1

IMF	2

.

.

.
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Figure 4.3: EMD applied as signal decomposition method on each EEG channel

EMD is a data-driven method, which means that IMFs are extracted if the
two conditions mentioned in section 2.4.2 are fulfilled. For some specific instances,
these conditions do not fulfill when using EMD on the dataset based on ERP. For
these instances, IMFs are not extracted from the signals, and no feature extractions
are executed. The number of feature extractions must be equal in all sessions for
all subjects to be able to compare the extracted features. Therefore, instances 15,
21, 23, and 45 are removed from the dataset containing ERP as these do not fulfill
the conditions for IMF when EMD is utilized. The number of instances used for
training and testing are 10, 19, 37, and 56.



4.3.2 Decomposition with frequency bands
Four Butterworth bandpass filters and one highpass filter are applied on each chan-
nel to extract the brain frequency bands. Each band contains EEG signals with
frequency range mentioned in table2.1. See Figure for illustration of signal decom-
position with frequency bands. 4.4.

Channel	n

Bandpass	filter:	0.5	Hz	-	4.0	Hz

Bandpass	filter:	4.0	Hz	-	8.0	Hz

Bandpass	filter:	0.8	Hz	-	12.0	Hz

Bandpass	filter:	12.0	Hz	-	30.0	Hz

Highpass	filter:	30.0	Hz

Delta

Theta

Alpha

Beta

Gamma

Figure 4.4: Decomposing signals into frequency bands applied on each EEG channel

4.4 Feature extraction
After signal decomposition is applied to EEG signals, features are then extracted.
The following features presented in Table 4.2 are extracted from each dataset:

Features Extracted features
Energy instantaneous energy and Teager energy
Fractal Petrosian and Higuchi fractal dimension

HHT-based Marginal frequency and mean instantaneous amplitude
Statistical min, max, mean, median, variance, standard deviation, kurtosis, skew

Table 4.2: Features extracted from ERP and resting-state data.

The method proposed in [42] shows that feature set containing energy and
fractal features gives high accuracy for classification. The behavior of other feature
combinations are examined by testing three different features sets on both datasets,
as presented in Table 4.3.

Features sets Features
Set 1 Energy, fractal, HHT-based
Set 2 Energy, marginal frequency (from HHT-based features)
Set 3 Statistical

Table 4.3: Features sets used on ERP and resting-state data after decomposition.



4.5 Classification using feature sets
An overview of the signal decomposition methods and classification used for ob-
taining accuracy from subject identification is described in four steps:

1. Decompose the individual EEG signals

From each dataset, signals are decomposed using EMD (two IMFs) and frequency
bands (five brain frequency bands) separately. The EMD algorithm utilized in
this project is from the PyEMD package [45]. The IIR Butterworth bandpass and
highpass filters are created using the open-source Python Scipy Signal processing
package.

The dataset containing ERP data has been used in different papers [42], [36],
for examining the accuracy when the number of channels are reduced. Based on
these papers, both signal decomposition methods are applied to three different sets
of channels when using ERP data. This is done for examine the evolution of ac-
curacy when reducing the number of channels and instances. The dataset is used
with 56 channels (all the channels), 32 channels (used in [42]), and seven channels
(used in [36]).

2. Create a feature vector for each instance

For each instance, the three feature sets presented in table 4.3 are computed on each
channel and combined to form in a feature vector. An illustration for obtaining
feature vector using EMD as a basis for feature extraction is presented in Figure
4.5.
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Feature	set	1,	2	or	3

Feature	set	1,	2	or	3

Feature	set	1,	2	or	3

Feacture	vector

.

.

.

.

.

.

Figure 4.5: Illustration of feature extraction using EMD as basis. Feature vector are
created for each instance by combining the the results obtained from each channel.



3. Classify the features vectors and obtain accuracy for each classifier

The feature vectors obtained from each instance are combined to one single feature
vector per session. The complete feature vector is then used as input for the clas-
sifiers. Depending on what feature sets are used, the size of the feature vector will
vary. An instance containing seven channels, two IMFs, and statistical features (8
features), gives a feature vector with size 112 (7× 2× 8 = 112).

4. Select classifier with highest accuracy

Machine-learning models in the supervised form are created using 10-fold cross-
validation for obtaining model accuracy. The classification algorithm DT, RF,
k-NN, SVM, and NB are utilized for creating models. The classification mod-
els are obtained using different parameters for each classifier for finding the best
parameters. The parameters used are:

1. RF, DEPTHS = [2, 3, 4, 5, 6]

2. k-NN, NEIGHBORS = [2, 3, 4, 5, 6, 7, 8, 9, 10]

3. SVM, kernels = [linear, radial basis function, sigmoid polynomial]
For the NB classifier, the GaussionNB from the sckit-learn library with its de-
fault parameters utilized in this project. Scikit-Learn is an open-source machine
learning library in Python containing several built-in classification algorithms. An
illustration of the whole from pre-processing to classification is illustrated in Figure
4.6.

Dataset
(Raw	EEG	signals)

Pre-processing

Decompositoin

Feature	extraction 
Set	1

Feature	extraction 
Set	2

Feature	extraction 
Set	2

Classification Classification Classification

Accuracy Accuracy Accuracy

Figure 4.6: Classification process executed on each data set





Chapter 5
Results and discussion

5.1 Pre-processed data

The ERP data after pre-processing is depicted in Figure 5.1. The powerline noise
at 50 Hz is suppressed, and the high-frequency value at 0 Hz is also suppressed
after the bandpass filtering from 0.5 Hz - 70.0 Hz. The high-frequency value at
0 Hz before pre-processing is from the offset in the signals. The high amplitude
values at 50 Hz are still visible for two of the subjects. These subjects had the
highest amplitude value at 50 Hz before pre-processing and need a more narrow
stopband for suppressing the 50 Hz noise.

Figure 5.1: FFT of ERP data after pre-processing shows the 50 Hz noise from powerline
and offset at 0 Hz are suppressed.
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5.2 Classification with feature extraction
The combination of signal decomposition method and feature extraction providing
highest validation value is of interest, and the following experiments are proposed:

1. Recreating methods used in [32] from the literature review.

2. Classification using all three feature sets separately on each decomposition
method on both datasets.

All the experiments follow the procedure described in section 4.5. The accuracy
and validation are used for investigating the performances. For the resting-state
data, the models are trained using the first two sessions, and for the ERP data,
the first four sessions are used for training the models. The validation for both
datasets is obtained by testing the last session from each dataset on the trained
model with the highest accuracy (session three for resting-state data and session
five for ERP-data).

The first experiment aims to investigate which classification algorithm gives
the highest accuracy value for low- and high-density EEG-recordings on different
neuro-paradigms. The second experiment aims to investigate which signal decom-
position method used as a basis for feature extraction gives the highest validation
with different feature sets.

5.2.1 Recreating literature review
According to [32], SVM gives a higher accuracy rate when high-density EEG-
recordings are used, while Gaussian naive Bayes is better for low-density EEG-
recordings on resting-state. The method executed in [32] is recreated to investigate
if the same results can be obtained using ERP data. The method is replicated
by feature extraction with energy and fractal features. Both signal decomposition
methods are utilized as basis for feautre extraction for comparison.

Table 5.1 and 5.2 presents the accuracy results obtained for ERP data and
resting-state data, respectively. The highest overall accuracy is obtained with both
datasets. In the case of ERP data, the highest accuracy obtained was 1.0, using
EMD as the basis for feature extraction with all channels and the first ten in-
stances. For the resting-state dataset, the highest accuracy of 1.0 was obtained
using frequency bands with 20 instances.

The validation values for ERP and resting-state data are presented in table 5.3
and 5.4, respectively. The highest validation value obtained for ERP data using
energy and fractal features was 0.92 using frequency bands as the basis. For the
resting-state data, highest validation value obtained was 0.98 also using frequency
bands as the basis for energy and fractal features.



Methods Pre-processing Channels Instances
10 19/20 37/40 56/60

EMD

Yes
7 0.75 0.76 0.77 0.77
32 0.91 0.91 0.92 0.93
56 0.91 0.94 0.94 0.95

No
7 0.93 0.94 0.93 0.94
32 0.99 0.99 0.98 0.98
56 1.0 0.99 0.99 0.99

Frequency
bands

Yes
7 0.76 0.83 0.85 0.87
32 0.88 0.92 0.94 0.95
56 0.89 0.93 0.96 0.96

No
7 0.92 0.94 0.95 0.96
32 0.98 0.98 0.98 0.98
56 0.99 0.98 0.99 0.99

Table 5.1: Accuracy of ERP data using energy and fractal features with EMD and
frequency bands as basis for feature extraction. 10, 19, 37 and 56 are number of instances
used when EMD is utilized.

Methods Channels Pre-processing Instances
10 20

EMD 14 Yes 0.97 0.99
No 0.97 0.99

Frequency bands 14 Yes 0.97 1.0
No 0.97 1.0

Table 5.2: Accuracy of resting-state data using energy and fractal features with EMD
and frequency bands as basis for feature extraction.

Methods Pre-processing Channels Instances
10 19/20 37/40 56/60

EMD

Yes
7 0.52 0.54 0.62 0.64
32 0.74 0.73 0.76 0.79
56 0.76 0.80 0.82 0.82

No
7 0.75 0.77 0.79 0.79
32 0.89 0.92 0.90 0.94
56 0.89 0.86 0.88 0.89

Frequency
bands

Yes
7 0.58 0.66 0.70 0.74
32 0.71 0.75 0.81 0.89
56 0.75 0.79 0.86 0.88

No
7 0.78 0.81 0.84 0.85
32 0.83 0.90 0.89 0.92
56 0.89 0.91 0.90 0.91

Table 5.3: Validation of ERP data using energy and fractal features.

Methods Channels Pre-processing Instances
10 20

EMD 14 Yes 0.88 0.95
No 0.88 0.95

Frequency bands 14 Yes 0.96 0.98
No 0.96 0.98

Table 5.4: Validation of resting-state dataset using energy and fractal features.



The evolution of accuracy using different classification algorithms with EMD as
the basis using 20 instances is presented in Figure fig. 5.2. The classification algo-
rithm giving the highest accuracy for both low-density and high-density records on
ERP data is the linear SVM. This result also yields for other numbers of instances.

Figure 5.2: Evolution of accuracies obtained using 20 instances with EMD as basis on
ERP data, with Linear SVM, random forest, decision tree, k-NN, and Gaussion naive
Bayes.

5.2.2 Classification using feature sets

After all training models were obtained for each dataset, the model with the highest
accuracy was validated by testing the model with unseen data. This setup of
only testing the models with the last session does not resemble the real-world
application. In a real-life scenario, the trained model will most likely contain only
one session of training and should be taken into consideration when evaluating.

Results resting-state dataset

The results with validation values obtained using frequency bands and EMD as
basis for feature extractions are presented in table 5.5 and table 5.6, respectively.
The highest overall validation value 0.96 was obtained using frequency bands as
the basis for feature extraction, with the feature set containing energy, fractal,
and HHT-based features. The maximum number of 20 instances were used with
no pre-processing. The highest validation value obtained using EMD as the basis
for feature extracting was 0.86, using feature set containing energy, fractal, and
marginal frequency from HHT-based features using 20 instances.



Features set Pre-processing 10 instances 20 instances

Set 1 Yes 0.86 0.96
No 0.86 0.96

Set 2 Yes 0.86 0.91
No 0.86 0.91

Set 3 Yes 0.81 0.92
No 0.81 0.92

Table 5.5: Validation of resting-state data using frequency bands as basis for feature
extraction

Features sets Pre-processing 10 instances 20 instances

Set 1 Yes 0.70 0.82
No 0.70 0.82

Set 2 Yes 0.74 0.86
No 0.74 0.86

Set 3 Yes 0.66 0.83
No 0.74 0.86

Table 5.6: Validation of resting-state data using EMD as basis for feature extraction

Results of ERP dataset

The validation value obtained using frequency bands and EMD as the basis for
feature extractions on ERP data are presented in 5.7 and 5.8, respectively. The
validation table for the ERP data is not complete when using EMD as a basis. The
overall highest validation value from the available results obtained was 0.86 using
frequency bands as the basis for feature extraction with the feature set containing
energy, fractal, and marginal frequency from HHT-based features with 56 instances.
The highest validation value obtained using EMD as the basis was 0.78, with
statistical features using 56 instances.



Features Channels Pre-
processing

Instances
10 20 40 60

Set 1

7 Yes 0.43 0.45 0.44 0.48
No 0.55 0.54 0.62 0.56

32 Yes 0.43 0.48 0.49 0.53
No 0.56 0.61 0.69 0.58

56 Yes 0.42 0.60 0.51 0.58
No 0.53 0.54 0.64 0.69

Set 2

7 Yes 0.40 0.41 0.47 0.48
No 0.52 0.53 0.65 0.58

32 Yes 0.62 0.49 0.53 0.54
No 0.60 0.67 0.71 0.66

56 Yes 0.44 0.50 0.47 0.55
No 0.55 0.64 0.64 0.70

Set 3

7 Yes 0.50 0.63 0.70 0.74
No 0.64 0.68 0.75 0.74

32 Yes 0.58 0.70 0.78 0.81
No 0.77 0.82 0.86 0.85

56 Yes 0.59 0.70 0.80 0.82
No 0.75 0.67 0.80 0.83

Table 5.7: Validation of ERP dataset using frequency bands as basis for feature extrac-
tions.

Features Channels Pre-
processing

Instances
10 19 37 56

Set 1

7 Yes 0.4 0.37 0.38 0.45
No 0.5 0.55 0.60 0.57

32 Yes 0.46 0.46
No 0.67 0.57

56 Yes 0.47 0.44 0.49
No 0.59 0.56 0.62

Set 2

7 Yes 0.36 0.37 0.44
No 0.48 0.56 0.58

32 Yes 0.41 0.51
No 0.60 0.57 0.64 0.64

56 Yes 0.48 0.47 0.50
No 0.52 0.56 0.59

Set 3

7 Yes 0.42 0.48 0.49 0.52
No 0.59 0.59 0.69 0.71

32 Yes 0.55 0.61 0.68 0.69
No 0.70 0.77

56 Yes 0.58 0.65 0.70 0.75
No 0.70 0.62 0.77 0.78

Table 5.8: Validation of ERP dataset using EMD as basis for feature extractions.



Chapter 6
Discussion

6.1 Recreating literature review
The first experiment with energy and fractal features for feature extraction shows
promising results for both ERP and resting-state data. This combination of fea-
tures gave high accuracy for both resting-state data and ERP data. For both cases,
using only the first ten instances was enough for obtaining high accuracies. The
number of instances used for classification can influence accuracy. A higher number
of instances can contain redundant features and reduce accuracy. By observing the
evolution of validation value with the increasing number of instances, is it shown
that higher validation values can be obtained with a lower number of instances.
Further analysis is needed to determine the importance of instances. The resting-
state data gave the highest overall accuracy. The reason for this could be the few
numbers of subjects in the dataset. In [32], the same paradigm was used with more
subjects (27 subjects in comparison to 8).

From recreating the method used in [32], it is shown that the best classification
algorithms used for low-density and high-density EEG-recording on resting-state
data do not match for ERP data. The linear-SVM algorithm gives highest accu-
racy for both low-density and high-density data when ERP data is analyzed. It is
important to mention that the majority of the high accuracy values using differ-
ent classifiers were obtained using the frequency bands as a signal decomposition
method.
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6.2 Classification using feature sets
For the second experiment with both datasets, the highest overall validation value
was obtained using the frequency bands as the basis for feature extraction. The
validation table using EMD as the basis for feature extraction was incomplete, pri-
marily where energy, fractal, and HHT-based features were extracted. The reason
for this was extremely long response time from the SVM. The 10-cross-validation
was employed to calculate the model accuracy, which increases the calculation time
compared to 5-cross validation since the trained model will be tested on more sets
of test groups. Another reason for the long computation time could be the use of
selected features. Adding HHT-based features to energy and fractal features could
make it more challenging for classification. A combination of feature selection and
testing with different classification algorithms should be considered in further work.

6.3 Overall discussion
For all the experiments, higher accuracies were obtained on both signal decompo-
sition methods when no pre-processing was applied to the signals. Pre-processing
used in this work may have removed the unique characteristics from the different
EEG signals, making it difficult to classify the data. For instance, high-amplitude
peaks at 50 Hz caused by the powerline were different for most of the subjects.
This could be an important feature for differentiating EEG signals from different
subjects. Using other pre-processing methods such as ICA mentioned in the litera-
ture review could improve the SNR without removing important information from
the signals and give higher accuracy and validation.

When examining the accuracy with different sets of channels used on ERP data,
the highest value is obtained when all channels are used. Lowering the number of
channels is of interest when subject identification using EEG signals are applied in
real-time application. The highest validation value obtained using seven channels
was 0.85, with frequency bands as the basis for feature extraction with the feature
set containing energy and fractal features. The highest validation value obtained
using 32 channels was 0.92 using frequency bands as a feature extraction base with
statistical features; this was also the overall highest validation value using EMD as
the basis on ERP data. This shows the possibility of obtaining high accuracy using
reduced data. In this work, the channel selection was based on different papers
using the same dataset. For future work, methods for channel selection before clas-
sification should be applied for finding the best channel for given neuro-paradigms.
The use of greedy algorithms for channel selection purposed in [32] is on method
for this.

The difference in the number of subjects in the datasets makes it difficult to
compare which neuro-paradigm suits best for subject identification. Validations
values are higher with resting-state, but increasing the number of subjects could



make the validation value decrease. Further work should contain datasets with a
higher number of subjects for providing more secure results.

Feature selection was not applied in this work. By adding feature selection
before classification, redundant features can be removed, which could increase the
accuracy and validation. Due to limited time, feature selection was not prioritized
and will be part of future work.

Using frequency bands appears to be more secure then EMD in this project. In
the case of EMD as a signal decomposition method, not all instances were utilized
as they did not meet the conditions for extracting IMFs. The reduced number of
instances could be a reason for the lower validation values using EMD. Therefore,
frequency bands seem to be a better option as a feature extraction basis because it is
not data-driven, nor does it need any predefined parameters. This method can also
be used by only extracting relevant frequency bands. Resting-state usually works
the lower frequency area; the brain frequency bands delta, alpha, and maybe beta
may be of interest. By including feature selection to this method, this could be a
suitable method for extracting relevant features from EEG-signals.





Chapter 7
Conclusion

In this project, a comparison of EMD and frequency bands for subject identification
using EEG-signals from resting-state and ERP data has been presented. The use
of a reduced number of recording channels and fewer instances were also examined.

Pre-processing by using a bandpass filter and notch filter removed necessary in-
formation from recorded EEG-signals, which leed to lower accuracy and validation
values. The signal decomposition methods alone gave high accuracy and validation
values for the classification.

The purposed method from [32] were recreated to examine if linear SVM and
Gaussian naive Bayes gives higher accuracies for lower- and higher-density EEG-
recordings on other neuro-paradigms than resting-state. The results from utilizing
the purposed method on ERP data showed that linear SVM gives highest accuracy
value for both lower- and higher-density EEG-recording.

EMD and frequency bands were used to decompose the EEG-signals. Various
types of features such as energy, fractal, and HHT-based were then calculated from
the decomposed signals to obtain feature vectors. The vectors were then used as
input for several classification algorithms to train models. The model with highest
accuracy was used for validation with unseen data. The validations of models using
EMD as a basis for feature extraction were incomplete, as some signals from the
ERP data did not meet the conditions for extracting IMFs.

The overall highest validation accuracy obtained in this project was 0.98. This
was obtained using frequency bands as a basis for feature extraction with energy
and fractal features on resting-state data.
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7.1 Future work
A more broad study of the currently used signal decomposition methods is required
for high classification accuracy and validation for using a reduced number of fea-
tures. Future work will, therefore, include feature selection for removing redundant
features. This will reduce the computation time in classification and represent the
EEG signals with more relevant features for more accurate identification.

Channels selection and feature selection will also be an essential part of feature
work as is also can reduce the computation and make it more appropriate for real-
time application.

A practical implementation of a subject identification system based on EEG
signals will be the final part of future work.
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