
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Marius Aleksander Kaasbøll
Erik Nystø Rahka

Exploring Exemplar Trajectory
Queries

Master’s thesis in Computer Science
Supervisor: Kjetil Nørvåg

June 2021

M
as

te
r’s

 th
es

is

Marius Aleksander Kaasbøll
Erik Nystø Rahka

Exploring Exemplar Trajectory Queries

Master’s thesis in Computer Science
Supervisor: Kjetil Nørvåg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The proliferation of mobile devices enables people to log their geographical positions and
to trace historical movements, which has spawned various novel applications. These ap-
plications have revealed new problems that require new solutions. One in particular is
that of efficiently finding the top-k trajectories according to spatial- and textual similarity.
An exemplar trajectory query is a query which specifies an ordered list of points in space,
wherein each point has a textual description. The goal is to find the top-k trajectories as
ranked by a given similarity function. In this thesis we explore and attempt to implement
two algorithms used two answer such queries. We will also attempt to extend one of these
algorithms to process large volumes of data using Apache Spark.

iii

Sammendrag

Utbredelsen av GPS-kompatible mobile enheter som lar brukere loggføre sine geografiske
posisjon samt spore bevegelser over tid, har gitt opphav til flere nye ulike applikasjoner.
Disse applikasjonene har belyst nye problemer og utfordringer som krever nye smarte løs-
ninger. Et eksempel på et slikt problem, er hvordan vi effektivt kan finne de k-likeste tra-
jectories til en gitt trajectory. Et exemplar trajectory query er enn slik type spørring. Denne
spørringen består av en samling med punkter i en gitt rekkefølge, hvor hvert punkt har en
tekstlig beskrivelse. Resultatet av en slik spørring vil være de k likeste trajectories gitt ved
en similaritetsfunksjon. I denne rapporten vil vi undersøke og implementere to algoritmer
som kan brukes for å svare på slike spørringer. Videre vil vi utvide en av algoritmene til å
håndtere store datamengder ved hjelp av Apache Spark.

iv

Contents

Abstract . iii
Sammendrag . iv
Contents . v
1 Introduction . 1

1.1 Research Questions . 2
2 Preliminaries . 3

2.1 Definitions . 3
2.2 Problem definition . 5

3 Background . 6
3.1 Querying spatio-textual data . 6

3.1.1 Processing Top-k spatial keyword queries 6
3.1.2 RCA: Rank-aware Combined Algorithm 7
3.1.3 k-BCT Queries . 7

3.2 Distributed Computing . 8
3.2.1 Apache Hadoop . 8
3.2.2 Apache Spark . 9

4 Exemplar Trajectory Query . 11
4.1 ILA . 11

4.1.1 Upper boundary of similarity for unseen trajectories 14
4.1.2 Lower bound of similarity for seen trajectories 15
4.1.3 Upper bound of similarity for seen trajectories 15
4.1.4 Maximum number of iterations . 16
4.1.5 Optimizations to ILA . 17

4.2 2TA . 19
4.2.1 Posting list . 20
4.2.2 Grid index . 21
4.2.3 Processing ETQ with 2TA . 21
4.2.4 Upper boundary of unseen trajectories . 23
4.2.5 Upper boundary of textual similarity . 23
4.2.6 Upper boundary of spatial similarity . 24
4.2.7 Upper boundary of similarity for any unprocessed points for qi 24
4.2.8 Upper boundary of similarity for seen trajectories 24
4.2.9 Optimizations to 2TA . 26

5 Parallel ETQ processing . 28
5.1 2TAP: Multithreaded 2TA . 28
5.2 Ellsworth: ETQ on Spark . 29

5.2.1 Partitioning scheme . 29
5.2.2 Query execution . 30

5.3 Naive ETQs on Spark . 32

v

vi M.A & E.N.R: ETQ Implementation

6 Experiments . 33
6.1 Setup . 33

6.1.1 Environments . 33
6.1.2 Datasets . 34

6.2 Comparing ETQs . 35
6.3 Scaling ETQ . 38
6.4 Distributed ETQ . 41

7 Discussion . 44
7.1 Re-implementing ILA and 2TA . 44
7.2 Parallelizing 2TA . 45
7.3 Developing Ellsworth . 45

8 Conclusion . 47
8.1 Further work . 47

Bibliography . 49
9 Appendix . 51
A Edge cases in ILA and 2TA . 52

1. Introduction

Large amounts of geographically-tagged data is being recorded every second all over the
globe. Whenever we use a GPS-enabled device, such as a smart-phone, we leave behind a
trail of geographical data points. Twitter for instance, creates large collections of spatio-
textual data, as tweets contain text and not uncommonly- a geotag. A study in 2013 found
that 0.85% of tweets are explicitly geotagged, which may seem like a small amount [1].
However, Sloan and Morgan estimated that in 2016 over 500 million tweets were pro-
duced per day, meaning 0.85% still amounts in over 4 million geo-tagged tweets every 24
hours [2]. Other social media, such as Facebook or Instagram also produce similar data.
If we string a series of these spatio-textual points together, we get a spatio-textual trajec-
tory. This sheer volume of spatio-textual trajectories accumulates to large amounts of data,
which introduces problems that requires new and efficient solutions.

There are several different types of queries that one can perform on such data. One
example is the top-k spatial keyword query, which aims to locate the top-k points based
on a similarity measure which considers both textual- and spatial components [3]. Yanag-
isawa et al. presents another form of spatio-textual query which locates a trajectory that
best matches the shape of an input query. Yet another form of spatio-textual query is the
exemplar trajectory query [5]. An exemplar trajectory query (ETQ) can be considered an
extension to the top-k spatial keyword query, but which operates on trajectory data, rather
than standalone points. Wang et al. presents a solution to this type of query in “Answering
Top-k Exemplar Trajectory Queries” [5]. In this thesis, we will focus on the exemplar tra-
jectory query.

An example use-case for exemplar trajectory queries is trip-planning. Consider the fol-
lowing; you’re on a trip to a foreign city, and you wish to visit a series of places, and perhaps
find something to eat or do around these points. You have a trip-planner application, which
is linked to a database containing check-in’s or routes through the city, as recorded by other
tourists or locals. You could then query this database using an exemplar trajectory query,
where you would input the points you wish to visit, along with the activities you wish to
do near said points. The ETQ processor would then find the existing paths (trajectories) in
its database which best match your query, both considering the points’ position and their
activities. An example is shown in Figure 1.1.

1

2 M.A & E.N.R: ETQ Implementation

T1
1 T1

2

T1
3

T1
4

T2
1

T2
2

T2
3

T2
4

q1

q2

q3

Q T1 T2

1 Coffee Coffee, Pastry Coffee, Cake
2 Snack, Tea Cake Pizza
3 Pizza Snack, Pizza BBQ
4 Kebab, Pizza Kebab

Figure 1.1: Spatio-textual trajectories T1, T2 and an exemplar query trajectory Q. Their
respective terms are shown in a table on the right.

1.1 Research Questions

In this thesis, we investigate how the methods for solving exemplar trajectory queries (ETQ)
by Wang et al. can be adapted for operating in a distributed environment to provide better
scaling when working with large volumes of data. In order to accomplish this we implement
two of these algorithms, adapt one of them to run on a cluster, and evaluate these against
one another using a collection of datasets of varying sizes.
Throughout this thesis, we attempt to answer the following research questions:

RQ1. Are the algorithms for answering exemplar trajectory queries by Wang et al. repro-
ducible?

RQ2. How do these algorithms scale with larger volumes of data?

RQ3. Can exemplar trajectory queries perform better at scale by utilizing distributed com-
puting?

The first part of this thesis explores the existing work within the field of spatio-textual
trajectory processing, and defines what a spatio-textual trajectory is. We also look into sys-
tems for performing distributed computations. In chapter 4 we investigate the algorithms
presented by Wang et al.; the Incremental Lookup Algorithm and the Two-level Threshold Al-
gorithm, as well as some of the considerations made while implementing these ourselves.
Chapter 5 details how we created Ellsworth, an adaption of the Two-level Threshold Al-
gorithm designed to run in a distributed cluster. Chapter 6 compares the performance of
our implementations of the Incremental Lookup Algorithm and the Two-level Threshold Algo-
rithm to the original results. We also perform scalability tests and evaluate the performance
of Ellsworth. Chapter 7 describes our experiences, challenges and further analyzes the re-
sults we found. Finally, in chapter 8 we summarize our findings.

2. Preliminaries

This chapter will briefly explain some preliminary information, such as definitions of sim-
ilarity, and a formal problem description. The chapter also includes a table of common
notations used throughout the thesis.

2.1 Definitions

We define a spatio-textual point, referred to as a point. A point p is made of two com-
ponents. A spatial component and a textual component. The spatial component p.loc is
a geographic position, represented by a latitude and longitude pair. The textual compo-
nent is a set of terms p.terms. p.terms is a set; meaning it is a collection of distinct terms
(t1, t2, . . . , tn).

We also define a spatio-textual trajectory, referred to as a trajectory. A trajectory T is
an ordered set of n spatio-textual points (p1, p2, . . . , pn). A query Q has the same definition
as a trajectory, but is denoted as Q. A query Q is a ordered set of m spatio-textual points
(q1, q2, . . . , qm)).

In order to be able to compare trajectories, we need a couple of definitions to formalize
what a similarity between two trajectories actually represent. Note that there are various
similarity-measures that can be used to compare trajectories, but since our work is based
on the work of Wang et al. [5] we’ve elected to use a similar set of similarity definitions.

Definition 1 (Spatial similarity). The Euclidean distance is used tomeasure spatial similarity:

ŜS(pi , p j) =
Dmax − Euclidean(pi , p j)

Dmax

The variable Dmax is the maximum distance between any two points in the dataset and is used
to normalize the spatial similarity between 0 and 1 [5, Definition 4].

Note that whilst Euclidean distance is used in the original work, one can use other dis-
tance metrics. The euclidean distance is not as accurate as a metric compared to great-circle
distance, particularly at high latitudes or when applied to trajectories that cover longer
stretches around the globe. Regardless of which distance-function is used, it is important
that the Dmax variable is calculated the same way. In our work we chose to use euclidean
distance.

3

4 M.A & E.N.R: ETQ Implementation

Definition 2 (Textual similarity). Textual similarity is defined as the sum of textual relevance
of each term t that is common between pi and p j [5, Definition 4].

ŜT (pi , p j) =
∑

t∈pi .terms∩p j .terms
tf(p j , t) · idf(t)

Here tf(p j , t) is the raw frequency of term t in p j .terms and idf(t) = log(N
nt
), where N is the

total number of points in D.P and nt it the number of points that contains the term t [6].

Wang et al. uses a simple TF·IDF model to calculate the weight of term t in p j, although
the exact TF·IDF model is not specified. We chose to use raw frequency as term frequency,
and inverse frequency as inverse document frequency [6]. The TF·IDF weight of term t in
point p is denoted as γ(p, t).

We also normalize the TF·IDF weights between 0 and 1 by using the respective point’s
euclidean norm (L2 norm) [7]. The normalization is done by first calculating a norm value
for point p, which is found by summing the squares of each TF·IDF weights in the given
point. The normalized score for term t in p is calculated by dividing the TF·IDF weight of
t in p by the norm value.

γnorm(p, t) =
γ(p, t)

√

√

√

|p.terms|
∑

i=1
γ(p, p.terms[i])2

Note that because a point p contains a set of terms, any term t cannot occur more than
once in p.terms. This causes the term frequency to always be equal to 1 (∀p ∈ D.P ∀t ∈
p.terms tf(p, t) = 1).

Definition 3 (Point-to-point similarity). The similarity between two points pi and p j is de-
fined as [5, Definition 4]:

Ŝ(pi , p j) =

¨

0, pi .terms∩ p j .terms= ;
α · ŜS + (1−α) · ŜT ,otherwise

Definition 4 (Point-to-trajectory similarity). The similarity between a query point qi and a
trajectory T is defined as [5, Definition 5]:

Ŝ(qi , T) =max
p j∈T

¦

Ŝ(qi , p j)
©

Definition 5 (Point-wise similarity). Point-wise similarity between T and Q is defined as
the sum of the point-to-trajectory similarities between T and each point in Q, normalized by
|Q| [5, Definition 6]:

Ŝ(Q, T) =
∑

qi∈Q

Ŝ(qi , T)/|Q|

The variable α= 〈0, 1〉 is a tuning parameter that decides the weight of the textual sim-
ilarity versus spatial similarity of a point. A higher α value emphasises the spatial aspect.
When α = 1 the similarity will ignore the textual aspect. The inverse applies to textual
similarity, when α= 0 the similarity will ignore the spatial aspect.

Chapter 2: Preliminaries 5

Notation Explaination
p A point, consisting of a lat-long location loc, and a set of terms

p.terms The set of terms (t1, t2, ..., tn) belonging to a point p.
T Trajectory, collection of points (p1, p2, ..., pn)
D Dataset, a collection of trajectories

D.P Refers to all points within a dataset
Q An exemplar trajectory query

ŜS(qi , pi) Spatial similarity between point qi and pi (Definition 1)
ŜT (qi , pi) Texual similarity between point qi and pi (Definition 2)
γ(p, t) TF·IDF weight of term t in point p
Ŝ(Q, T) Point-wise similarity between trajectory Q and trajectory T (Definition 5)

Dmax Maximum distance between any pair of points within a dataset
α Tuning parameter for textual- versus spatial similarity.

Table 2.1: A summary of notations used throughout this thesis

Lastly, we define form of spatio-textual query called a top-k spatial keyword query, re-
ferred to as a TkSK. This is a query that retrieves points based on both their textual- and
spatial relevance to a query point. Zhang et al. defines a TkSK as [8]:

Definition 6 (Top-k Spatial Keyword Search). Given a document corpus D.P, a top-k spatial
keyword query Q retrieves a set O ⊆ D.P with k documents such that ∀D ∈ O and D′ ∈
D.P −O, Ŝ(D,Q)≥ Ŝ(D′,Q) [8, defenition 1].

2.2 Problem definition

Finally, we define the exemplar trajectory query. An exemplar query trajectory Q is like
any other trajectory, a collection of points (q1, q2, . . . , qn). When answering a top-k exemplar
trajectory query, we aim to find the k most similar trajectories to a query-trajectory Q in D
according to a given point-wise similarity function Ŝ(Q, T) in a trajectory database D.

3. Background

The following chapter consists of two sections where we will investigate existing work
within the field of spatio-textual data processing. First we’ll look at some solutions for
querying spatio-textual data; both point data and trajectories. Next we’ll examine frame-
works for performing computations at a larger scale, by distributing the load of querying
across multiple nodes of a cluster.

3.1 Querying spatio-textual data

There are several different types of queries that are potentially interesting to perform on
a database of spatio-textual data. One might wish to query based on the shape of data,
the locality of data, or even textual matches. There are also several query-types which
consider the dual-nature of spatio-textual data; for instance a top-k spatial keyword query,
or an exemplar trajectory query. This section will elaborate on some methods used query
spatio-textual data collections.

3.1.1 Processing Top-k spatial keyword queries

One form of spatio-textual query is a top-k spatial keyword query, referred to as a TkSK. Rocha-
Junior et al. explores solutions to query spatio-textual data points based on a similarity
function that considers both the textual and spatial aspects of a point [3].

Rocha-Junior et al. introduces a novel index named spatial inverted index (S2I) along-
side two algorithms, SKA and MKA. A key trait of the S2I index is how it considers the
frequency of a term when storing it. Zipf ’s law states that there is a small number of terms
which occur very often, while most terms are infrequent [9]. S2I exploits this by having
different datastructures, depending on the frequency of a term. At its root, S2I is a form
of inverted index, where the key is a given term. However, depending on the frequency of
the term, its value can either be an unordered list of points (block), or a pointer to an aR
tree. A term which occurs infrequently is stored in simple blocks, which are unordered list.
A term with a higher number of occurrences on the other hand, maintains an aggregated
R (aR) tree which acts as a subindex for all the points which reference the term. An aR
tree is a specialized form of the well known R-Tree, described by Papadias et al. [10]. It
distinguishes itself form a traditional R-Tree by allowing nodes to store a non-spatial value
based on an aggregation of its sub-nodes [10]. In S2I, this value is used to store the maxi-
mum impact of a term on the point in a nodes sub-tree. This way, S2I can explore the tree
spatially, while still being mindful of the textual property.

6

Chapter 3: Background 7

Next, they propose two algorithms for querying the S2I index: SKA, Single Keyword
Algorithm; and MKA, Multiple Keyword Algorithm. SKA only needs to access a single term
within the index, which translates to a single block or tree. Should the term point to a block
of points, it maps each point to a heap based on a similarity function that compares it to
the query point. After, it simply returns the top-k results. If the key maps to an aR tree on
the other hand, it uses an incremental algorithm to iteratively return points in decreasing
order, according to a given similarity-function. MKA processes query points differently, by
splitting the processing into two parts. The first phase computes partial-scores: the score
of a point according to a single query term. The second phase aggregates the partial-score
results to retrieve the top-k matches.

Rocha-Junior et al. concludes that the MKA and SKA algorithms in conjunction with
the S2I index can perform TkSK queries at a rate that outperforms existing state-of-the-
art solutions. They are found to be efficient both in terms of query time, and the cost of
updating the index upon insertion of data.

3.1.2 RCA: Rank-aware Combined Algorithm

The RCA algorithm proposed by Zhang et al., is a rank-aware adaptation of the CA-algorithm [11].
This is another solution for top-k spatial keyword queries. Specifically, Zhang et al. exam-
ine the problem of retrieving a ranked set of entities, based on both textual similarity and
spatial proximity [8].

A core principle of RCA is the notion of score-bounded expansion. The algorithm should
explore its search-area in a manner which ensures elements with high similarity are dis-
covered before low-similarity elements. It does this by maintaining two separate indexes;
one where data is indexed by their spatial attributes, and another index that allows lookup
based on textual attributes.

The spatial index used by Zhang et al. is a Z-order curve grid-index. A Z-order curve
grid-index is a grid-index using the Morton order space filling curve to map n-dimensional
data to a single dimension. The Morton code is easily encoded by interleaving the bits for
each coordinate value [12]. The Z-order curve grid-index implementation should allow for
incremental expansion of a search-area around a given point. With this, the algorithm can
efficiently access points around the query point in an incremental manner, where nearby
points are discovered sooner than faraway points. Textual attributes are indexed using a
ranked inverted list for each term in the dataset, which they call posting-list. For every
term t, the points where t ∈ p.terms are sorted by TF·IDF weight in descending order. By
iterating block-wise over these posting-lists, textually relevant points can be accessed early
in the process.

3.1.3 k-BCT Queries

Chen et al. proposes a k-BCT query, or k best connected trajectories query. This query-type
operates on entire trajectories, rather than single points. However it only considers the
spatial aspect of the data. It is described as a form of trajectory query that attempts to find
the k nearest trajectories to a set of query points [13]. Zheng and Zhou[14] defines the
distance between a query location qi and a trajectory T = (p1, p2, . . . , pn) as follows:

Distq(qi , T) = min
p j∈T
{Disteuclidean(qi , p j)} Distq(Q, T) =

|Q|
∑

i=1

e−Distq(qi ,T)

8 M.A & E.N.R: ETQ Implementation

In other words, the trajectory-to-trajectory similarity is computed by first finding the
nearest query point for each point in the trajectory and calculating the spatial similarity
for said pair, then finally summing the best similarities for each query point.

Chen et al. proposed an incremental approach to finding top-k best connected trajecto-
ries for a given set of query points, an algorithm named Incremental KNN-based Algorithm
or IKNN [13]. The algorithms runs on top of a R-Tree spatial index. When performing a
query, it uses a series of k-nearest-neighbor queries to expand the search area around each
point of the query trajectory. This is done by traversing and pruning the R-Tree index. By
incrementing the k-value used for the KNN search, the algorithm incrementally increases
the search space around each query point until a set of boundary-conditions are satisfied.
At that point, one can be sure all the top-k trajectories have been located, and candidate set
is run through a final sort before the top-k best connected trajectories are returned [13].

3.2 Distributed Computing

Distributed computing is a common way to provide horizontal scaling for both storage, and
computationally intensive applications. By distributing the load across multiple machines,
one can use off-the-shelf components to perform computation at a large scale without nec-
essarily needing to resort to expensive hardware. However, distributing an application to
run across multiple nodes presents several challenges, such as data- and task-partitioning,
heterogenous nodes, and fault-tolerance[15]. In this section, we will present some frame-
works which make distributed computations more accessible.

3.2.1 Apache Hadoop

‘The Apache Hadoop software library is a framework that allows for the distributed process-
ing of large data sets across clusters of computers using simple programming models’. [16].
The Hadoop framework includes a series of main modules: HDFS, a distributed file system;
Yarn, a job scheduling- and cluster managing framework; and MapReduce, which is used
to process large datasets in parallel. There are also a number of other projects related to
the Hadoop project at Apache which support a larger variety of workflows and use-cases.
One example is Apache Spark, further detailed in section 3.2.2.

The primary computing framework in the Apache Hadoop project is an implementation
of MapReduce. MapReduce is a programming framework [17], which has since its inception
been used and implemented by multiple parties, such as by Google and as a part of the
Apache Hadoop platform [17]. The MapReduce programming model operates on a set of
key-value data, and two central functions:

map(k1, v1) → (k2, v2): The map function is a user-defined transformation, changing
a key-value pair into a new intermediate key-value pair. The MapReduce implementation
then groups all intermediate pairs with matching keys together, and passes them to the
reduce function.

reduce(k1, l ist(v...))→ (k1, v3): The reduce function is another user-defined transforma-
tion, which receives a key, and set of values associated with said key. The reduce functions
job is to perform a reduction: reducing the input values to a smaller set, or commonly a sin-
gle value. The resulting value is then persisted to disk or returned to the calling application.

Chapter 3: Background 9

Apache’s MapReduce implementation provides a task-scheduler, which assigns work
to each worker-node in the cluster. The task-scheduler partitions data, manages liveness
of each node, and manages fault-tolerance. By default, data is partitioned using a hash-
partitioner, which uses a hash-value based of the key in the key-value pair to compute a
partition key. This provides a fairly uniform distribution of the data and should lead to fairly
uniform distribution of work. The task-scheduler also provides a slew of functionality to
make distributed computing run smoothly. An example feature is its ability to run backup-
tasks: in the cases where a node falls behind, referred to as a "straggler", the task-scheduler
can issue a duplicate (backup) of the stragglers’ task to another node. A "straggler" can
occur for any number of reasons, such as a bad disk, or poor bandwidth to the particular
node. The task-scheduler also considers data-locality when run on a supported filesystem,
allowing the computation to be brought close to the data. An early implementation of a
MapReduce framework, described in [17] supports GFS [18], but later implementations
support a greater variety of distributed filesystems, such as the Apache Hadoop Filesystem
(HDFS).

3.2.2 Apache Spark

Zaharia et al. [19] introduces a framework for performing cluster-computing on large sets
of what they call working datasets. A working dataset refers to a dataset that is reused
within the same application- such as for repeated transforms in an iterative task, or during
interactive querying. Hadoop MapReduce struggles in these workflows, due to MapReduce
persisting and loading data from disk in between tasks. Loading the same dataset over and
over for an iterative task would cause high disk IO, and quickly becomes a major perfor-
mance bottleneck. Zaharia et al. lists two primary motivations behind Spark: interactive
querying and iterative jobs. Spark also aims to deliver the same scalability and fault toler-
ance as MapReduce, without incurring the same latency when querying a working dataset.

Several Spark abstractions, such as the DataFrame API[20], or Spark Streaming [21],
run on top of a central Spark concept: Resilient distributed datasets, or RDDs. RDDs are de-
scribed as a distributed memory abstraction that allows for cluster computations on large
sets of data in a fault-tolerant manner. Zaharia et al. defines an RDD as a read-only, par-
titioned collection of records, which can only be created through deterministic operations
on either (1) data in stable storage or (2)other RDDs [22]. An RDD is an immutable set
of data, and can therefore reliably be used in a number of parallel operations without the
risk of data-loss through write-conflicts. This property also gives RDDs a high-level of con-
sistency compared to other distributed shared-memory systems.

An RDD is composed of multiple partitions, where each partition is an atomic part of a
dataset. Each RDD also has a set of dependencies to one or more parent RDDs and a com-
pute() function that is used to derive the RDD’s data from the data of the parent RDDs. As
RDDs are immutable structures, they are not altered directly, but rather transformed though
a series of operations- such asmap, filter or reduce. When a transformation is applied, a new
RDD is created from the partitions of the previous RDD. For example, map creates a MapPar-
titionsRDDwhich carry over properties from its parent RDD, and applies a given map function
to each entry in its data. While the partitions are invisible to many transformations such as
the ones mentioned, transformations like the mapPartitions can discern that values belong
to distinct partitions and performs a "partition local" map. Instead of transforming each

10 M.A & E.N.R: ETQ Implementation

value one by one, it can operate on all values in a partition as a whole. Note that RDDs are
computed lazily, so generally an RDD is only materialized when an action is called (collect,
count, take) to retrieve results. If one needs to reuse the same working data for another
query, data can be persisted in memory (and optionally spilled to disk) using the .cache()

function. Each transformation is logged to provide a lineage for an RDD. Should a partition
or even an entire RDD be lost, its lineage can be used to recompute the lost data. MapRe-
duce on the other hand, needs to persist each intermediate step of transformed data to
disk, requiring additional disk-storage and causes latency through disk IO.

Operations likemap and filterwill result in RDDs with a single parent dependency, while
other operations such as join joins two RDDs into a single RDD which will be dependent
on both of the participating RDDs. We can classify dependencies as either narrow depen-
dencies or wide dependencies. In the case of a narrow dependencies, all partitions within a
parent RDD is used by at most one single child partition, whilst wide dependencies indicate
that parent partitions are used by multiple child partitions. Narrow dependencies result in
tidy lineages that can easily be computed as the parent partitions is present on the same
node. In wide dependency operations, child partitions require multiple parent partitions to
be present, all of which may not be present on the same node, which may require data to
be transferred amongst nodes. This is called a shuffle, and is significantly more expensive
than the narrow dependency counterpart [22].

Well-thought-out partitioning of data can reduce shuffling further down the line [23].
RDDs commonly inherit their parent-RDDs partitioner, but one can also explicitly repartition
the data as needed. When loading datasets from HDFS for instance, the data is partitioned
based on the HDFS blocks, making it easy to bring the computations to the data, rather than
needing to move the data across the network. Another partitioner is the HashPartitioner,
which distributes data based on computed hash-values for the data. Users can also imple-
ment their own partitioner, allowing the user to apply their domain-knowledge to tailor the
partitioning-scheme and distribute data in a manner optimized for a particular application.
Some operations can leverage such a partitioner, if two RDDs share the same partitioner
they are co-partitioned. Operations like join can take advantage of co-partitioned RDDs to
perform a co-partitioned join, an optimized join that creates a narrow dependency between
the resulting child RDD and the parent RDDs. This is possible as all values to be joined are
guaranteed to reside in the same partition. All of the values in a single partition on one of
the parent RDDs are guaranteed to be in a single partition in the other parent RDD. Such
a join reduces the number of shuffles required [24].

RDDs also lay the foundation for parallelism within Spark. Each RDD partition repre-
sents a unit of work, called a task. Tasks that can be executed in parallel are referred to as a
stage, and a job is a sequence of tasks. Whenever an action is called to materialize an RDD,
the driving application starts a job, which causes each worker node to perform the specified
transformation to their partitions, before finally collecting the result in the driver applica-
tion. The driver application is also responsible for requesting cluster-resources, such as the
number worker instances, or the heap size for each instance. Tuning these parameters are
important for the applications’ performance, as a single core can process one task at a time,
i.e. one partition. This makes the number of partitions another important consideration- if
the number of partitions is smaller than the number of executing cores, leftover cores will
remain idle, and reduce the overall performance of the application.

4. Exemplar Trajectory Query

Given a database of trajectories and a query trajectory, an exemplar trajectory query
(ETQ) finds the top-k most similar trajectories in a trajectory-database according to a point-
wise spatio-textual similarity function, as defined in definition 5. An ETQ accepts a query
trajectory Q and number k which specifies how many trajectories should be retrieved. The
output is a list of the k best matching trajectories, in no particular order.

Wang et al. presents three algorithms for performing ETQs: the Incremental Lookup Al-
gorithm (ILA), the GAP-bounded Incremental Lookup Algorithm (GAP-ILA), and the Two-level
Threshold Algorithm (2TA). For the purpose of this thesis we will focus solely on 2TA and
ILA, which will be described in detail in this chapter. It is worth mentioning that they have
demonstrated that both of these algorithms can be extended in order to perform order-
sensitive queries, but this is not examined in this thesis. The algorithms, definitions, and
methods described in this chapter are based of the work of Wang et al. [5]

4.1 ILA

The incremental lookup algorithm (referred to as ILA) expands upon the IKNN (Incremen-
tal nearest neighbor algorithm) proposed by Chen et al. in [13], taking it from a spatial-
only algorithm to a spatio-textual algorithm. It uses a top-k spatial keyword search (TkSK)
to search for and retrieve points that are similar to each query point qi ∈ Q. We can then
derive a candidate set of trajectories from the retrieved points by mapping the points to
their parent trajectory. An important property of a TkSK is that all retrieved points must
have a better similarity to their respective query point than any point that was not retrieved
(all remaining points). This property of a TkSK enables us to calculate a set of boundaries
of similarity between each seen trajectory and the query points. (1) Seen lower bound: The
minimum possible similarity a seen trajectory can have. (2) An upper bound of similarity
between each seen trajectory and the query, representing the maximum possible similarity
a seen trajectory can have. (3) An upper bound of similarity for any unseen trajectory, which
is the maximum possible similarity between the query and any trajectory not contained in
the candidate set.

11

12 M.A & E.N.R: ETQ Implementation

By using these boundaries we can limit the search space by incrementally expanding
it until we know that the similarity of any seen trajectory cannot beat the similarity of
any unseen trajectory; if at least k candidate trajectories has a lower bound of similarity
higher than the upper bound of similarity for any unseen trajectory then we know that
the top-k trajectories is guaranteed to be contained in candidate set. If there are less than
k candidates with high enough lower bound then we must expand our search space in
order fetch more points which leads to more candidates. This is repeated until at least k
candidates have high enough lower bound. Afterwards the actual similarity between the
query and every trajectory in the candidate set can be calculated and sorted to retrieve the
top-k trajectories.

1 function ila(query, k)
2 result = []
3 λ = k
4 c = 0
5 λmax = calculateMaxLambda() //Definition 11
6 R = []
7 λqueried = []
8 while λ≤ λmax

9 R[c] = []
10 foreach qi ∈ quer y
11 λmax

i = calculateMaxLambda(qi) //Definition 10
12 if λ≤ λmax

i or c = 0 or λqueried[qi]< λmax
i

13 R[c][qi] = TKSK(qi, λ)
14 λqueried[qi] = λ
15 else
16 R[c][qi] = R[c][qi−1]
17
18 //Extracts a set the parent trajectory of every point in R[c], ignoring duplicates
19 Ctra← pointsToTrajectories(R[c])
20 if |Ctra| ≥ k
21 unseen_ub = calculateUnseenUpperBound() //Definition 7
22
23 //Calculates the lower bound of every trajectory in Ctra
24 seen_lb[] = calculateLowerBounds(Ctra) //Definition 8
25 descendingSort(seen_lb[]) //Sort lower bounds in descending order
26 if seen_lb[k] ≥ unseen_ub
27 //Sort Ctra in descending order by the upper bound of every trajectory
28 seen_ub[] = descendingSortByUpperBound(Ctra) //Definition 9
29 foreach Ti ∈ seen_ub[]
30 T.similarity = similarity(query, T) //Definition 5
31 if |resul t|< k
32 result.add(T)
33 else {
34 //result.min is the trajectory in result with the lowest similarity
35 if similarity > result.min.similarity
36 result.replace(result.min, T)
37 if result.min.similarity > seen_ub[i + 1]
38 return result
39 break
40 λ= λ+∆
41 c = c + 1
42 return result

Algorithm 1: ILA

In the original work they used the RCA algorithm by Zhang et al. [8] for their TkSK.
We chose to implement RCA in order to emulate the original work as closely as possible.
Additionally, ILA is dependent on having effective TkSK in order to perform well, as our

Chapter 4: Exemplar Trajectory Query 13

experiments ran on the dif machine described in section 6.1.1 showed that over 90% of
ILA’s runtime consisted of TkSK queries.

Algorithm 1 shows a pseudo-code version of ILA, the majority of which is wrapped in a
while loop- this is the incremental part of the algorithm. For every iteration of the while loop
(referred to as an iteration) the variable c is increased by 1, indicating which iteration we
are currently at, such that at the first iteration c = 0. This variable is only used for tracking
which iteration the algorithm is currently at. The λ variable is initialized to k, this is the
minimum value that λ can be in order to answer the query given a worst case scenario
where none of the query points share any terms. Note that the iteration is only continued
as long as λ is less than or equal to λmax (see definition 11). The reason for this is that when
λ= λmax the TkSK will have found every point that shares at least one term with any point
qi ∈ Q. Iterating any further after this point will not generate any additional candidates.
We can break the rest of the algorithm down into three parts.

It should be noted that Algorithm 1 presents a slightly modified version of the original
pseudo-code in [5]. During our implementation we found a number of edge cases where
ILA fails to return the expected results. Algorithm 1 contains fixes for these edge cases,
Appendix A describes these edge cases in detail.

Explore-and-expand: The first step is to run the TkSK to find the top-λ similar points
for all query points qi in our query Q. All retrieved points for query point qi are added to a
ranked list R[c][qi] that is sorted in descending order by their similarity to qi. These points
are then mapped to their corresponding trajectories and are collected in the set Ctra. Du-
plicate trajectories are ignored so that Ctra only contains one instance of every candidate
trajectory. If |Ctra| ≥ k then we have enough candidates to potentially answer the query
and we move on to the next step. Otherwise we increase λ by some value ∆ and perform
step 1 anew, starting a new iteration with an bigger λ so that we may find more candidates.

Tuning the value of ∆ is an important parameter for the performance of ILA. If it is too
small ILA will perform too many iterations which results in re-scanning the same points
many times. On the other hand, if it is too large we risk scanning unnecessary many points.
This is the problem the original authors set out to solve with GAP-ILA by using a dynamic
∆ [5].

Boundary evaluation: The second step is to check if there are any unseen trajectories
that might have high enough similarity to be placed in the top-k trajectories. This is done
by calculating an upper boundary of similarity for all trajectories not in Ctra (unseen tra-
jectories), this boundary is referred to as unseen_ub. Next, a lower boundary of similarity
seen_l b[] is computed for each trajectory in Ctra so that we get a list of lower boundaries
and sort it in descending order. If the value of the k-th seen lower bound (seen_l b[k]) is
higher or equal to the unseen_ub, we know that any unseen trajectories cannot have a sim-
ilarity high enough to be placed in the top-k trajectories.
Otherwise we increaseλ by some value∆ and perform step 1 again, starting a new iteration.

Aggregate results: The third and final step is to compute the upper bound of similarity
for each trajectory in the candidate set Ctra (see section 4.1.3) and sort the set in descend-
ing order based on these bounds. Now we may iterate over each trajectory Ti ∈ Ctra in order
of their upper bound so that trajectories with higher upper bounds are iterated over first.

14 M.A & E.N.R: ETQ Implementation

Then we compute the actual similarity Ŝ(Q, Ti) between the trajectory Ti and our query
Q. If there are less than k elements in our result set, result, we may insert Ti into result.
Otherwise, we check whether the similarity of Ti is higher than the trajectory with the
lowest similarity (result.min) in result, in which case we replace result.min with Ti. Finally
we check whether the similarity of resul t.min is higher than the upper bound of similarity
for the next trajectory to be scanned, Ti+1. If this is the case then we know that none of the
future candidates to be iterated over can make it into the top-k trajectories, allowing us to
stop the algorithm and return the result.

4.1.1 Upper boundary of similarity for unseen trajectories

At every iteration we can calculate the best possible similarity any unseen trajectory can
have. This is used to check whether the algorithm must do another iteration by comparing
it to the k-th highest lower bound; that is, the k-th candidate when the candidate set is
sorted in descending order by the candidate’s lower bound.

Definition 7 (Upper boundary of similarity for unseen trajectories).

UBunseen(D− Ctra) =

|Q|
∑

i=1
Ŝ(qi , Rc[qi][λ])

|Q|

For each unseen trajectory, no point can occur in any intermediate ranked list. So for
each query point qi, the spatial-textual similarity between qi and a matching point (if any) in
one of the unseen trajectories must be less than Ŝ(qi , R[c][qi][λ]). As a result, for any unseen
trajectory, the trajectory similarity between the query Q and the trajectory is less than the sum
of the minimum similarity Ŝ(qi , R[c][qi][λ])) [5, equation 8].

Recall definition 5 that defines point-wise similarity between two trajectories T1 and T2.
For every point pi ∈ T1 we calculate the similarity between pi and every point p j ∈ T2 then
select the highest of these similarities as shown in definition 4. Since the ranked lists for
every query point R[c][qi] are sorted by similarity, we know that ∀p j ∈ R[c][qi], Ŝ(qi , p j) ≥
Ŝ(qi , p j+1). We also know that any trajectory that is not in the candidate set has not been
found by the TkSK yet. Therefore the best possible similarity for an unseen trajectory
cannot be better than the sum of Ŝ(qi , R[c][qi][λ]) for every query point qi ∈ Q, divided
by |Q|. Here R[c][qi][λ] is the λ-th point in the ranked list of similar points for query
point qi in the c-th iteration. Since the TkSK retrieves the top-λ points we know that any
point not in the top-λ points must have a lower or equal similarity to qi than R[c][qi][λ],
∀p j /∈ R[c][qi], Ŝ(qi , p j) ≤ Ŝ(qi , R[c][qi][λ]).

There are cases where |R[c][qi]| < λ, i.e in cases where the TkSK could not find λ
points. This can happen when there are less than λ points that share terms with the query
point. In this case we treat the λ-th point of R[c][qi] as 0. We treat it as 0 because if the
TkSK could not find enough points, we know that the query point qi will have a point-to-
trajectory similarity with of 0 with any unseen trajectory T (Ŝ(qi , T) = 0), as point-to-point
similarity is set to 0 when two points do not share any terms. In other words, no points in
an unseen trajectory will share any terms with a query point qi when |R[c][qi]|< λ.

Chapter 4: Exemplar Trajectory Query 15

4.1.2 Lower bound of similarity for seen trajectories

The lower bound of similarity for a seen trajectory is the lowest possible similarity a tra-
jectory can have based on the points explored so far. If this value is higher then the upper
bound for all unseen trajectories (UBunseen) then we know that the similarity cannot be beat
by any unseen trajectory.

Definition 8 (Lower bound of similarity for seen trajectories).

LBseen(T) =

|Q|
∑

i=1
max

j∈[1,λ]∧R[c][qi][j]∈T
Ŝ(qi , R[c][qi][j])

|Q|

For each trajectory T which has been checked, the existing maximum similarities in all R[c][qi]
can be summed and used as the lower bound of T ’s similarity, which is less than or equal to
the real similarity because points may exist which are not in R[c][qi] [5, Equation 9].

The idea behind the lower bound is that if at least one of the ranked lists R[c][qi] con-
tains at least one point p that belongs to some trajectory T then we know that the similarity
between T and the query Q must be greater than 0. Only trajectories whose points have
no common terms with any of the query points will have a similarity of 0. We also know
that all of the points in the ranked list R[c][qi] have a better similarity to qi than any point
that is not a part of R[c][qi]. We can therefore guarantee that the similarity between qi and
the trajectory T (point-to-trajectory similarity) cannot be less than the best point-to-point
similarity between qi and any of the points in T . Therefore the lower bound of similarity
for a seen trajectory T is equal to the sum of the most similar point p j ∈ T ∩ R[c][qi] for
each query point qi divided by the query length |Q|.

Just as when computing the upper boundary for unseen trajectories (section 4.1.3),
there are cases where |R[c][qi]|< λ. In such cases we also treat R[c][qi][j] as 0.

4.1.3 Upper bound of similarity for seen trajectories

The upper bound of similarity for a seen trajectory is the highest possible similarity a tra-
jectory can have based on the points explored so far. This value is used to sort the final
candidate set in descending order; from a high upper bound to low upper bound. When
iterating over the final sorted candidate set we can check if the least similar trajectory in
the result set is higher than the upper bound of the next trajectory in the iteration. If it
is then there is no need iterating any further, none of the subsequent trajectories will be
similar enough to make it into the top-k trajectories.

Definition 9 (Upper bound of similarity for seen trajectories).

UBseen(T) = LBseen(T) +

|Q|
∑

i=1∧T∩R[c][qi]=;
Ŝ(qi , R[c][qi][λ])

|Q|

For points in T , but not appearing in R[c][qi], their respective similarities can not be greater
than the similarity of the λ-th point, Ŝ(qi , R[c][qi][λ]). Thus the upper bound for T ’s similarity
w.r.t. Q is a summation of LBseen and the λ-th point’s similarity [5, Equation 10].

16 M.A & E.N.R: ETQ Implementation

Whilst the lower bound of similarity only considers the similarity of query points whose
ranked lists R[c][qi] contains at least one point that belongs to the seen trajectory T , the
upper bound only considers query points whose ranked lists do not contain any point that
belongs to the seen trajectory T . For each ranked list R[c][qi] that does not contain any
point that belongs to T we know that all of the points in T will have a lower similarity to qi
than any of the points in R[c][qi]. We know this because if such a point existed, then it would
already have been retrieved by the TkSK. Thus the similarity between qi and any unseen
points that belongs to T cannot be greater than the λ-th point of R[c][qi] (R[c][qi][λ]). The
lower bound covers all query points whose ranked list contain at least one point that be-
longs to T , and the rest of the expression covers the remaining query points whose ranked
lists does not contain any points belong to T , thus covering all query points.

If |R[c][qi]| < λ, we know that all points sharing terms with qi have been retrieved.
This means that the trajectory T cannot have any points with similarity with qi over 0, and
therefore we may treat R[c][qi][λ] as 0.

4.1.4 Maximum number of iterations

Recall from Definition 3 that points that do not share any terms have a similarity of 0.
Therefore we can calculate the maximum number of points the TkSK will be able to retrieve
for every query point. Increasing λ beyond this point will have no effect.

Definition 10 (Maximum iterations λmax
i for point qi). Only a point containing at least one

query term can be a candidate point in R[c][qi]. Hence the maximum length λmax
i of the ranked

list R[c][qi] can be computed as follows:

λmax
i =

qi .terms
∑

j=1

df(qi .terms[j])

where df() (Document frequency) checks the total number of points that contains the term
qi .terms[j].

λmax
i is used to check whether the TkSK will be able to retrieve λ points. If not, the

ranked list R[c][qi] for the query point qi is set to R[c−1][qi], thus reusing the results from
the previous iteration.

Definition 11 (Maximum iterations λmax). A global λmax is also set to support early termi-
nation. Early termination is defined as:

λmax =max
qi∈Q

λmax
i

There is no need to iterate further than λmax because after this threshold the TkSK will
not retrieve any additional points, thus we will not discover any further candidates.

Chapter 4: Exemplar Trajectory Query 17

Point

+id: int

+parent: Trajectory

+lat: double

+lng: double

+terms: int[]

Trajectory

+id: int

+points: Point[]

ScoredTrajectory

+Trajectory: Trajectory

+upperBound: double

+lowerBound: double

+similarity: double

+bestSimilarities: double[]

Figure 4.1: Point and ScoredTrajectory class dia-
grams

0 1 2 3 4

After

Before

0.03

2.63

Average query time (s)

Figure 4.2: Comparison of ILA
performance before and after
optimizations

4.1.5 Optimizations to ILA

The original algorithm features a R variable that holds the points retrieved by the TkSK for
every iteration. However, if we study the bounds, we find that there is no need to save the
points of each iteration. To calculate all the the bounds, we only need to know three things:
the number of points retrieved by the TKsK for each query point, the worst seen similarity
between each query point and any point in the query point’s ranked list, and the best seen
similarity between each query point and every seen trajectory.

In order to track how many points have been retrieved by the TKsK for each query point
we simply maintain an array with the same length as the query called pointCounts[] that hold
the number of points retrieved. This array is indexed by the index that each query point
has in the query and every time the TkSK retrieves points for a query point qi, we update
pointCounts[i].

Although we do not need to save and maintain a ranked list of points for each iteration,
we still need to iterate over the retrieved points and calculate the similarity between the
points and their respective query point in order to know the worst seen similarity for each
query point, and the best seen similarity for each candidate trajectory. In order to keep
track of the worst similarity seen for each query point we maintain an array in the same
vein as the pointCounts[] array, called worstSimilarities[] that saves the the worst seen simi-
larity between each retrieved point and their respective query point.

In order to save the best seen similarity between each query point and every candidate
trajectory we maintain an array called bestSimilarities[] for each seen trajectory, this is in-
dexed in the same way as the previous arrays. As seen in Figure 4.1 each point p has a refer-
ence to its parent trajectory T that is used to derive candidate trajectories from the retrieved
points. For each candidate trajectory we create a wrapper class called ScoredTrajectory that
holds a reference back to the trajectory it wraps, the bestSimilarities[] array of the trajec-
tory, the upper and lower bound of the trajectory, and the similarity of the trajectory. For
each retrieved point p we update the bestSimilarities[] array contained in the parent tra-
jectory’s ScoredTrajectory instance, or create a ScoredTrajectory instance if one does not exist.

Note that the lower bound, upper bound, and similarity are only calculated once they
are needed, we simply store them in the ScoredTrajectory class for convenience instead of
maintaining three separate lists.

18 M.A & E.N.R: ETQ Implementation

These optimizations significantly improve the performance of ILA since there is no need
to loop through the points of each ranked list in order to find the worst and best similari-
ties. Figure 4.2 shows the result of an experiment where we ran 100 queries on a dataset
with 10000 trajectories with ILA before and after applying the optimizations described in
this section. The data shows that the optimizations improve the average query times by a
factor of 80.

The rest of this section describes how bounds are computed after applying the opti-
mizations.

Optimized unseen upper bound

Algorithm 2 shows how we implemented the function for computing the upper bound of
similarity for unseen trajectories with the help of the pointCounts[] array and the worstSimiliarities[]

array.
1 function calculateUnseenUpperBound() {
2 sum = 0
3 foreach qi ∈Q
4 if pointCounts[qi] ≤ λ
5 sum += worstSimilarities[qi]
6 return sum / |Q|;

Algorithm 2: Unseen upper bound

Recall Definition 7 where we sum the similarities between each query point qi and the
λ-th point of the ranked list (R[c][qi][λ]). Since the last point of the ranked list is the point
with the lowest similarity to qi we can instead simply use the value we have stored in our
worstSimilarities[] array instead. Also, recall that if the ranked list does not contain λ points,
then we treat the λ-th point of R[c][qi] as 0. Therefore we must check how many points
the TkSK fetched using the pointCounts[] array. By adding the if statement we achieve the
same result, as nothing is added to the sum if less than λ points are fetched.

Optimized seen lower bound

The function for computing the lower bound of similarity for a seen trajectory is very simple
as shown in Algorithm 3.

1 function calculateSeenLowerBound(trajectory)
2 sum = 0;
3 foreach qi ∈Q
4 sum += trajectory.bestSimilarities[qi]
5 return sum / |Q|

Algorithm 3: Seen lower bound

To calculate the lower bound of similarity between a trajectory T and the query, Defini-
tion 8 tells us to find the maximum similarity between each query point qi and any point in
its ranked list R[c][qi] that also belongs to the trajectory T . Instead of looping through the
ranked lists every time we compute a lower bound we can use the bestSimilarities[] array
of the ScoredTrajectory instance to find the best similarity between each query point and the
trajectory. If the TkSK did not find any point belonging to the trajectory in the ranked list of
qi then the value of trajectory.bestSimilarities[i] is equal to 0, thus if no point that belongs
to the trajectory has been retrieved by the TkSK then the lower bound will be equal to 0.

Chapter 4: Exemplar Trajectory Query 19

Optimized seen upper bound

To calculate the upper bound we utilize all of the arrays we have introduced in this section,
as shown in Algorithm 4.

1 function calculateSeenUpperBound(trajectory)
2 sum = 0
3 foreach qi ∈Q
4 if trajectory.bestSimilarities[qi] = 0
5 if pointCounts[qi] ≥ λ
6 sum += worstSimilarities[qi]
7 return calculateSeenLowerBound(trajectory) + sum / |Q|

Algorithm 4: Seen upper bound

To compute the upper bound of similarity for seen trajectories we sum the worst simi-
larity seen for each query point qi if the TkSK has not fetched any point for qi that belong
to the trajectory. Therefore we check if trajectory.bestSimilarities[(qi)] is equal to zero. We
must also check whether or not there potentially are unseen points for qi, so we check if
pointCounts[qi] is greater than or equal to λ, if it is, then we know that there may be unseen
points that belong to the trajectory and that these unseen points cannot have a similarity
to qi greater than the worst seen similarity for qi. Lastly we must divide the sum by the
query length and add the lower bound as described in Definition 9.

4.2 2TA

Wang et al. [5] notes that ILA suffers from repetitive lookups– points explored in any given
iteration will be re-scanned by the TkSK in all subsequent iterations. The Two-level thresh-
old algorithm, referred to as 2TA, was created to solve this problem. It adopts a block-wise
expansion of the search-space, much like the methods used in the RCA algorithm by Zhang
et al. [8]. It utilizes two indexes, a grid index and an inverted index, to search for points ac-
cording to spatial and textual relevance respectively. The indexes are partitioned into itmax
blocks so that they can be incrementally searched block-by-block. The partitioning of these
indexes allows for a score-bounded expansion, where the points explored by early iterations
will have a higher similarity than those discovered later. As in ILA, we can then calculate an
upper bound of similarity for any unexplored points and stop expanding the search space
when it becomes apparent that no unseen trajectories can be a part of the top-k trajectories.

The textual index, referred to as the posting list, is a rank-ordered inverted index map-
ping terms to their respective points. The spatial index a grid-index labeled using a Z-order
curve that supports range queries. These indexes are further elaborated in section 4.2.1
and section 4.2.2

20 M.A & E.N.R: ETQ Implementation

1 function 2ta(Q, k)
2 result = []
3 it = 0
4 R = []
5 while i t < i tmax
6 R[it] = []
7 foreach qi ∈Q
8 // Initialize a ranked list for each query point per iteration
9 R[it][qi] = []

10 R[it][qi] ← exploreTextual(q, it)
11 R[it][qi] ← exploreSpatial(q, it)
12 //Extracts a set of the parent trajectory of every point in R[it], ignoring duplicates
13
14 Ctra← pointsToTrajectories(R[it])
15 if |Ctra| ≥ k
16 unseen_ub = calculateUnseenUpperBound() //Definition 12
17 //Calculates the lower bound of every trajectory in Ctra
18 seen_lb[] = calculateLowerBounds(Ctra) //Definition 8
19 //Sort lower bounds in decending order
20 decendingSort(seen_lb[])
21 if seen_lb[k] ≥ unseen_ub
22 Ctra.clear() // Clear candidate set
23 foreach qi ∈Q
24 for p j ∈ R[i t][qi]
25 if Ŝ(qi , p j)≥ UBi t(qi)
26 Ctra← p j.parent*)
27 Same as line 28-39 in algorithm 1
28 it++;
29 return RS;

Algorithm 5: 2TA

Algorithm 5 shows pseudo-code of the 2TA algorithm, like the pseudo-code for ILA,
this is a slightly modified version of the original pseudo-code in [5]. It is modified to solve
some edge cases that were found during our implementation, these are described in detail
in Appendix A.

qi t0

loc

tn

...

it0 it1 it2

Posting lists

Grid-index

Figure 4.3: 2TA index-structure: posting list and grid-index

4.2.1 Posting list

The posting list is essentially an inverted index that maps terms to points that contain the
term. A normal inverted index would simply map a term to an unordered list of points.
The posting list on the other hand, maps a term to a sorted list of points ordered by the
term’s TF·IDF weight within each point. This list is further divided into itmax blocks, each
of which cover an equal portion of the total TF·IDF weight-range of the term. The block-

Chapter 4: Exemplar Trajectory Query 21

divided sorted list for a given term t, is referred to as the posting list of term t. The total
weight-range of a term t is the difference between the maximum weight γmax(t) and the
minimum weight γmin(t). The weight-range of a block is defined as γrange(t) =

γmax(t)−γmin(t)
itmax

.
All points p that share a term t are distributed throughout the blocks of the posting list of
term t based on the TF·IDF weight γ(p, t). The block index that a point p with a term t
should be placed in, is given by the function γblock(p, t).

γblock(p, t) =











0, γmax(t) = γmin(t)
itmax − 1, γ(p, t) = γmin(t)
j

γmax(t)−γ(p,t)
γrange(t)

k

, otherwise

Table 4.1 demonstrates how a posting list is partitioned into a series of blocks for dif-
ferent terms.

Term P1 P2 P3 P4 P5 P6 P7

Cake 0.1 - - 0.8 - 0.6 0.4
Sushi 0.9 - 0.3 0.4 - 0.6 0.5
Beer - 0.8 0.2 - 0.1 - -

Term Block 1 Block 2 Block 3
Cake P4 P6 P7 P1

Sushi P1 P6 P7 P4 P3

Beer P2 - P3 P5

Table 4.1: Matrix of terms and the TF·IDF weight of the terms in each point (left) and a
posting list with itmax = 3 constructed with the points (right).

4.2.2 Grid index

The grid index is labeled using a z-curve. It operates on similar principles to the spatial
exploration performed by the RCA algorithm [8]; points are labeled and grouped using
a z-curve, and stored in an array that is sorted based on the z-order label. As with RCA,
exploration happens both forward and backwards in this array, and points are stored in a
buffer until their proper iteration. There are however a couple of differences between this
Grid Index and RCAs backing indexes, and how they are queried.

The points list of the GridIndex contains a set of sublists, each sublist being the spatial-
index of a given term. The sublists are a collection of Cell objects, which each contain a
z-label, and a list of every point that belongs to said cell (see Figure 4.4). 2TA’s grid index
is partitioned by keywords, much like RCA’s spatial index. The difference lies in that the
exploration only expands spatially, as opposed to RCA, which expands both spatially and
textually. Additionally, one of the main optimizations of 2TA over ILA is that it avoids re-
exploring the same points. To accomplish this, the grid index query only returns points
from the exact cells required for the given iteration. RCA on the other hand, retrieves all
cells up to- and including the specified iteration. This is illustrated in Figure 4.5. 2TAs grid
index does this by having the grid-index maintain a state, allowing it to resume expansion
when 2TA reaches its next iteration, thus never returning a point more than once.

4.2.3 Processing ETQ with 2TA

2TA begins by initializing the necessary variables before we enter the main loop. itmax is a
parameter that defines the maximum number of iterations that are needed to explore the
entire dataset. This determines the partitioning of the blocks used in the incremental ex-
pansion and is a key parameter that affects the performance of queries. It determines how

22 M.A & E.N.R: ETQ Implementation

GridIndex

-points: Cell[][]

+query(point, iteration, state): Point[]

Cell

+int: z-order

+points: Point[]

Figure 4.4: Class diagrams

RCA 2TA grid index

Figure 4.5: Result cells of spatial query on
RCA versus 2TA’s GridIndex, on i t = 3

many blocks the posting list is split into, and the dimensions of the grid-index. In the origi-
nal experiments performed in [5], this is found through a parameter sweep as it is dataset
specific. They found that itmax is a parameter with a high impact on the performance of the
algorithm.

Explore-and-expand: After entering its main loop, 2TA iterates over each query point
qi ∈ query and uses the exploreSpatial and exploreTextual scanning operations to retrieve
points in a spatial- and textual similarity bounded block. These indexes are visualized in
figure 4.3. exploreTextual returns the i t-th block of the posting list for each term, while
exploreSpatial retrieves a set of cells with a radius of i t grid-cells from the query point using
the grid index. Like the ILA algorithm, these points are stored in individual ranked lists
for each query point. After iterating over all query points, the ranked-lists are unified and
mapped to their respective trajectories in a list Ctra. If the number of discovered trajectories
satisfy |Ctra| ≥ k, the algorithm moves to the next phase. Otherwise the iteration-counter is
incremented and we restart the explore-and-expand phase.

Boundary evaluation: During its next phase, 2TA computes the unseen upper bound
unseen_ub and the seen lower bound seen_lb for each trajectory in Ctra before sorting the
candidates based on their seen_lb. If the k-th seen_lb in the sorted list is not greater than
unseen_ub, we might not have found all the best candidates, and we have to increment the
iteration-counter before restarting the loop. Otherwise we move on to the next phase.

Second-round-filtering: Since the candidate set may contain trajectories whose simi-
larities are lower than the upper bound of unseen similarities we perform a second round of
filtering. Definition 15 defines the upper bound of similarity for all unexplored points for a
query point qi in iteration it. There may be points in the ranked list of qi whose similarity is
less than the upper bound. These points are pruned by emptying the candidate set, before
iterating through the ranked list of every query point to test if their similarity is greater
than or equal to the unseen upper bound UBit(qi). If so, it is added back to the candidate set.

Aggregate results: Finally, the candidate set is run through the same pruning- and
aggregation routines used in the final step of the ILA algorithm, before returning the final
top-k result trajectories.

Chapter 4: Exemplar Trajectory Query 23

4.2.4 Upper boundary of unseen trajectories

Similarly to ILA we can we can calculate the best possible similarity any unseen trajectory
can have. It serves the same purpose as in ILA; checking if any unseen trajectories can have
a better similarity than the k-th highest lower bound.

Definition 12 (Upper boundary of unseen trajectories).

UBunseen(D− Ctra) = α ·
∑

qi∈Q

UBs(i t)/|Q|+ (1−α) ·
∑

t∈Q

UBt(t, i t)/|Q|

The upper bound of similarity for any unseen trajectories is calculated by summing the max-
imum TF·IDF weights in the relevant posting lists, and the highest possible spatial-similarity
for each query point in the given iteration [5, equation 15].

For every query point qi, any unexplored points cannot have a spatial similarity higher
than the upper bound for spatial similarity as defined in Definition 14. Likewise, the tex-
tual similarity of any unexplored point cannot be higher than the upper bound for textual
similarity as defined in Definition 13. Therefore we can mimic the point-wise similarity
function (Definition 5) by using the same alpha and summing the spatial upper bound for
every query point and summing the textual upper bound for every query point to get a
upper bound of similarity for unseen trajectories.

4.2.5 Upper boundary of textual similarity

Upper boundary of textual similarity is the maximum textual relevance any unseen point
can have in regards to a specific term.

Definition 13 (Upper boundary of textual similarity). For the it-th block of term t the upper
bound for textual similarity can be computed as:

UBt(t, i t) =
γmax(t)− γmin(t)

i tmax
· (i tmax − i t − 1) + γmin(t)

Where γmax(t) is the maximum TF·IDF of any point that shares the term t, and γmin(t) is the
minimum TF·IDF of any point that shares the term t. i tmax determines the total amount of
blocks that the posting contains [5, equation 16].

Recall that the posting lists for each term is divided into i tmax blocks where the first
block contains points with high TF·IDF weight and the last block holds points with low
TF·IDF weight. At the it-th iteration, we will have explored every block from block 0, up to
and including the it-th block. This means that any unexplored point cannot have a TD·IDF
weight that is better than the worst point in the it-th block. γmax(t)−γmin(t)

i tmax
is the weight range

of every block such that 〈γmax(t)−γmin(t)
i tmax

+ γmin(t) , γmin(t)〉 is the weight interval for the last
block.

By multiplying γmax(t)−γmin(t)
i tmax

with (i tmax − i t − 1) and adding γmin(t), we get the lowest
part of the interval of the i t-th block. In the first iteration when it= 0 we will have explored
the points in the first block, thus any unexplored points cannot have a TF·IDF weight that
is better then the lowest part of the weight interval of the first block.

24 M.A & E.N.R: ETQ Implementation

4.2.6 Upper boundary of spatial similarity

Upper boundary of textual similarity is the maximum spatial relevance any unseen point
can have.

Definition 14 (Upper boundary of spatial similarity). The upper bound for spatial similarity
in the it-th iteration can be computed as [5, equation 17]:

UBs(i t) =
Dmax − i t · Dmax

i tmax

Dmax

The variable i tmax determines the dimensions of the z-order index, and it is normalized
by Dmax so that the width and height of each cell is equal to Dmax

i tmax
. When we scan the block

that a query point qi maps to, the first iteration when it = 0 will only scan the single cell:
the origin cell. Note that we have no guarantee about where in the origin cell the query
point is. In a worst case scenario the query point can be in the very corner of the origin
cell, then there can be points in its very close proximity that are not scanned, whilst there
may be far away points in the opposite corner that are scanned. In this scenario the spatial
upper bound must and will be equal to 1 since i t = 0. When it = 1 however, all the cells
around the origin cell are scanned, and even if the query point is in any corner of the origin
cell we know that any point within a distance of less than Dmax

i tmax
is scanned. Further when

i t = 2 we know that any point with a distance less than 2 · Dmax
i tmax

is scanned.

4.2.7 Upper boundary of similarity for any unprocessed points for qi

Whilst the unseen upper bound computes the maximum possible similarity for any unseen
trajectory, the upper boundary of similarity for any unprocessed points for qi computes the
maximum possible similarity any unseen point can have to a specific query point qi

Definition 15 (Upper boundary of similarity for all unprocessed points for qi). The upper
bound of similarity for any unexplored point for a query point qi in the it-th iteration can be
computed as [5, equation 18]:

UBit(qi) = UBs(i t) + (1− a) ·
∑

t∈qi

UBt(t, i t)

The upper bound of point-to-point similarity between a query point qi and any unseen
point p is very similar to to Definition 12. The difference is that we are calculating upper
bound of point-to-point similarity for a specific query point.

4.2.8 Upper boundary of similarity for seen trajectories

Whilst the definition of seen lower bound used in ILA can be used in 2TA, the definition
for seen upper bound used in ILA is not correct when applied to 2TA. Therefore we had to
devise a new definition for seen upper bound.

Definition 16 (Upper boundary of similarity for seen trajectories). The upper bound of
similarity for any seen trajectory T in the it-th iteration can be computed as:

UBseen(T) =

|Q|
∑

i=1
max(UBit(qi), Ŝmax(T, R[c][qi]))

|Q|

Chapter 4: Exemplar Trajectory Query 25

Dmax = 1.73

q1

p2
2

p3
1

p1
3

t p3
1 p1

3 p2
2

0.9 0.63 0.36 0.1
P3

1 P1
3 P2

2
Ŝt 0.9 0.5 0.1
Ŝs 0.6 0.3 0.83
Ŝ 0.87 0.48 0.173

Figure 4.6: Example where ILA’s upper-bound condition fail. Displays a Grid index (left)
and a posting-list (middle) for term t. The Tf-idf boundaries are shown above the posting-
list. The table on the right shows textual similarity (Definition 13), spatial similarity (Defi-
nition 14) and point-to-point similarity (Definition 3) of the points.

Where Ŝmax(T, R[c][qi]) is the maximum similarity between qi and any point contained in
R[c][qi] that also belongs to the trajectory T . If R[c][qi] contains no points that belongs to the
trajectory T then Ŝmax(T, R[c][qi]) = 0.

No definition for a seen upper bound of similarity was defined for 2TA in the original
work [5]. Therefore, we assume that they use the same seen upper bound in 2TA as was
specified for ILA. The seen upper bound used in ILA however, does not work when ap-
plied in 2TA. This is because Definition 9 utilizes the fact that all points in the ranked list
R[c][qi] in ILA has a higher similarity to qi, than any point not in the ranked list. This is
not the case in 2TA. Unlike a TkSK, the textual and spatial indexes in 2TA do not take α
into account. In cases where α is low (low spatial relevance and high textual relevance)
we may find points that reside in the same grid cell as the query point, and whose similari-
ties are worse than points which are located further away, but have better textual similarity.

Figure 4.6 demonstrates a situation where Definition 9 fails to compute a correct seen
upper bound when applied in 2TA. Consider a case where α = 0.1 and we have a query
with a single point q1 that has a single term t. In the first iteration of 2TA, two points are
discovered. p2

2 (the second point of T2) is discovered spatially since it resides in the same
grid cell as the query point, and p3

1 (the third point of T3) is discovered textually through
the posting list of the term t. The ranked list for q1 after the first iteration contains the two
discovered points, ordered by their similarity to q1, meaning R[0][q1] = [P3

1 , P2
2]. If we were

to use Definition 9 to calculate the seen upper bound for the trajectory T1 then we would
first calculate the lower bound of T1, which would be 0 as no points belonging to T1 have
yet been found. The rest of the expression then tells us to add the score of the λ-th point of
R[0][q1], but since 2TA does not have a λ parameter we instead add the score of the lowest
ranked point of the ranked list. Since Ŝ(q1, p2

2) = 0.173, this would give us an upper bound
of UBseen(T1) = 0.173. This is clearly incorrect since the point p1

3 has a similarity of 0.48
which makes the actual similarity Ŝ(Q, T) = 0.48. Therefore we have to devise a different
and more appropriate definition.

Definition 9 makes use of the seen lower bound (Definition 8) to incorporate the query
points whose ranked lists contain a point belonging to the trajectory T , whilst the rest of
the expression incorporates the query points whose ranked lists do not contain any point
that belongs to T . In 2TA however, a point that belongs to the trajectory T and has been

26 M.A & E.N.R: ETQ Implementation

explored and inserted into the ranked list of a query point R[c][qi], can have a worse sim-
ilarity than a unexplored point. We must therefore find the most similar of the points con-
tained R[c][qi] that also belongs to the trajectory T , Ŝmax(T, R[c][qi]), and check if its
similarity is worse than the maximum similarity any unseen point can have, UBit(qi). If
Ŝmax(T, R[c][qi]) < UBit(qi) then there may be unexplored points that belong to T that
can have a better similarity, and we know that these points cannot have a similarity better
than UBit(qi). If R[c][qi] does not contain any point that belongs to the trajectory T then
Ŝmax(T, R[c][qi]) is equal to 0. The upper bound of similarity for seen trajecotories in 2TA
is therfore the sum of the maximum value of UBit(qi) and Ŝmax(T, R[c][qi]) divided by the
query length.

If we use this method with the numbers in the example shown in Figure 4.6, then the
seen upper bound for the trajectory T1 after the first iteration will be UBseen(T1) = 0.667.
The seen upper bound is required to never underestimate the actual similarity. This method
will never underestimate the actual similarity of trajectories.

4.2.9 Optimizations to 2TA

We utilize the same optimization method in 2TA as in ILA using the ScoredTrajectory class
to track the best seen similarities for each candidate trajectory. We do not have use for
the pointCounts[] array or the worstSimilarities array that is used in the ILA. Like in ILA this
alleviates the need to keep ranked lists for each query point and makes seen lower- and
upper bound computations significantly faster since we don’t need to loop through all of
the ranked lists.

The second round of filtering in 2TA calls for us to loop through the ranked list of each
query point qi and compare every point with the upper bound of similarity for all unpro-
cessed points for qi (Definition 15). Note however, that if any point in the ranked list of qi
passes the second round filtering, then the parent trajectory is not pruned. Only trajecto-
ries whose points all fail the second round filtering are pruned. The bestSimilarities[] array
in a trajectory’s ScoredTrajectory instance holds the best similarity of the most similar point
seen for every query point. Instead of looping through the ranked list of each query point,
we can simply loop through all the candidates and check if any of the similarities stored
in the trajectory’s bestSimilarities[] array is higher than the upper bound of similarity for
all unprocessed points for the corresponding query point qi. This accomplishes the same
as if we looped through the actual points, but requiring significantly fewer iterations and
calculations.

For 2TA we did an optimization that we did not do for ILA, an optimized k-th lower
bound computation. On line 20, Algorithm 5 calls for a complete sort of the computed
set of seen lower bound values for all candidates in Ctra. However, the lower bound of a
trajectory T only changes if a seen point has a better similarity to qi than any previously
explored point. In order to optimize the computation of the k-th highest lower bound we
keep a persistant min-heap of k size throughout all iterations of a query. In the first iteration
the min-heap is empty, so we will have to calculate the seen lower bound of all trajectories
discovered in the first iteration. In subsequent iterations however we only need to compute
the seen lower bound of trajectories whose bestSimilarities[] array were updated. For every
candidate trajectory whose seen lower bound was updated, we only need to check if the
head of the min-heap is lower than the newly computed lower bound for each trajectory.

Chapter 4: Exemplar Trajectory Query 27

If it is, we have to insert it into the min-heap, otherwise we can ignore it. In some cases a
trajectory with an updated seen lower bound can already be present in the min-heap. In
those cases we simply update the existing seen lower bound. This reduces the cost of calcu-
lating the k-th highest seen lower bound in two ways; we don’t need to compute the seen
lower bound for trajectories whose seen lower bound has not changed, and we don’t need
to sort the entire candidate set by their seen lower bound in every iteration. This reduces
the complexity of the k-th highest lower bound computation from O(n log k), where n is
the total number of candidates in each iteration and k is the number of requested results
(the size of the min-heap), to O(m log k) where m is the number of trajectories whose seen
lower bound was updated in each iteration.

The computation of Definition 12, Definition 13, Definition 14, and Definition 15 are
trivial and have not been optimized in any way and they are therefore not explicitly de-
scribed.

Optimized seen lower bound

Algorithm 6 show how the seen upper bound for 2TAwas implemented using the bestSimilarities[]

array of a candidate trajectory.
1 function calculateSeenLowerBound(trajectory)
2 sum = 0;
3 foreach qi ∈Q
4 sum += max(trajectory.bestSimilarities[qi], calculateUnseenUpperBoundForQueryPoint(qi))
5 return sum / |Q|

Algorithm 6: Seen lower bound

The calculateUnseenUpperBoundForQueryPoint(qi) function computes the upper boundary of
similarity for all unprocessed points for qi. As in the optimization for seen_lb of ILA, we use
the bestSimilarities[] array in order to avoid iterating over the entire ranked list.

5. Parallel ETQ processing

This chapter will introduce a parallel implementation of the 2TA algorithm, referred to
as 2TAP, and our 2TA-inspired algorithm for applying distributed computing to processing
ETQs: Ellsworth. Both of these are intended to be able to process exemplar trajectory queries
at larger scale than demonstrated byWang et al. [5], though in the case of Ellsworth, a much
larger scale.

5.1 2TAP: Multithreaded 2TA

There are two primary motivations behind 2TAP. One motivation is to push the perfor-
mance of 2TA on a single machine, by utilizing more of its available CPU resources without
making any major changes to the overall algorithm. Another motivation is to provide a
more fair baseline in order to compare single-machine ETQ processors, versus the cluster-
based Ellsworth. In order to adapt the Two-Threshold algorithm to utilize the capacity of a
multi-core system, we’ve parallelized the most computationally demanding phase of 2TA.
Through profiling the code, this was found to be the explore-and-expand (lines 7 - 14) phase.
The goal of this optimization is then to allow exploration to happen in a parallel fashion,
while still maintaining thread-safety when compiling the results for the next phase of the
algorithm.

In our original 2TA implementation, as soon as a point is explored by either spatial-
expansion or textual-expansion, both the point’s bestSimilarities are updated and its parent
ScoredTrajectory is updated. In the parallelized 2TA, the exploration is split into a series of
subtasks that are executed in parallel. Normally 2TA would iterate over each query point q
every iteration, and run exploreSpatial and exploreTextual sequentially. These are instead run
in parallel, as |Q|∗2 subtasks, as shown in Algorithm 7. However, to maintain thread safety,
points are explored but not expanded immediately. The discovered points are placed into a
bucketed buffer, and not expanded until all the exploration tasks are complete. The number
of buckets is set to equal the number of threads available to the system, and the bucket-index
for each point is determined based on the point’s trajectory id. When the exploration tasks
are finished, a thread is spawned for each bucket, and the buffer is processed in parallel.
As the points are bucketed based on their parent trajectory id, each ScoredTrajectory will
never be processed bymultiple threads simultaneously, thus preventing the use of expensive
locking mechanisms to avoid race-conditions.

28

Chapter 5: Parallel ETQ processing 29

1 parallel for qi in Query:
2 for point in exploreTextual(qi, it)
3 bucket = point.parent.id % numThreads
4 buckets[bucket].add(point)
5 parallel for qi in Query:
6 for point in exploreSpatial(qi, it)
7 bucket = point.parent.id % numThreads
8 buckets[bucket].add(point)
9 await //wait for all parallel tasks to complete

10 for thread in range(0, numThreads):
11 start_thread(expand_points(bucket[thread]))

Algorithm 7: Point processing in 2TAP

5.2 Ellsworth: ETQ on Spark

We adapted the 2TA algorithm from section 4.2 to use Apache Spark in order to create
an ETQ processor named Ellsworth, which can run on a cluster. It utilizes the same score-
bounded exploration of the dataset and the same second-round filtering process, but does
not use a grid index or a posting list index. Spark does not easily permit the use of local
persistent indexes, as it targeted at for batch-processing. Therefore RDDs do not provide
random access to individual values. In order to explore the dataset, Ellsworth must there-
fore iterate over all the points in the dataset to select the desired points. The points of
the dataset are partitioned throughout all of the cluster. For each partition of the dataset,
Ellsworth performs a partition local top-k search which is aggregated in the end to find the
true top-k trajectories.

A key consideration when designing a distributed query system is partitioning data into
subsets which are processed on the different nodes. Failing to distribute the data in line
with the computations will lead to increased need for data shuffling later, which is typi-
cally one of the most expensive operations on such a system, and can lead to performance
bottlenecks [23]. It is therefore important to partition the data efficiently to reduce the
amount of data the nodes have to shuffle between themselves during queries. Hence, a
fundamental part of Ellsworth is how the points and trajectories are partitioned. Recall the
ScoredTrajectory class that hold the best score that has been seen between any point in the
trajectory and each query point. These similarities are required to calculate the lower and
upper bounds. In order to find the best similarities we need to maintain a single instance
of ScoredTrajectory for each trajectory that is discovered during point exploration. This is a
problem if points are randomly distributed across the nodes, as it would require the data
to be shuffled across the nodes in every iteration. Avoiding this was a key consideration
when adapting 2TA to run on Spark and it is the primary concern behind the partitioning
scheme of Ellsworth.

5.2.1 Partitioning scheme

Ellsworth uses twoworking datasets to perform queries, an RDD of points called the pointRDD,
and an RDD of trajectories, called the trajectoryRDD. Both RDDs use the same partitioner;
the trajectories are partititioned by the id of the trajectory, and the points are partitioned
according to the id of their parent trajectory. This ensures that all points with the same
parent trajectory are placed in the same partition and that all parent trajectories of one
partition of the pointRDD reside in exactly one partition of the trajectoryRDD. For example,

30 M.A & E.N.R: ETQ Implementation

if a partition of the pointRDD contains two points, then the parent trajectories of these two
points will reside in the same partition of the trajectoryRDD. In other words, the two RDDs
are co-partitioned.

The points are initially loaded from HDFS into an RDD which is partitioned according
to the HDFS blocks. Next we execute a map transformation on the RDD to map it from a
RDD of points, to a key-value RDD. Here the parent trajectory id acts as a key pointing to
a single point (RDD<Point>→ RDD<ParentId, Point>). The parent id is an integer, so in order to
partition the points we simply calculate a partition key pk from the parent id p.parent and
the desired number of partitions n by performing a modulus operation pt id ≡ pk (mod n).
We create a partitioner using this method and use the repartition operation to re-partition
the points and trajectories according to their new partition keys to create the pointRDD and
trajectoryRDD.

5.2.2 Query execution

During initialization of Ellsworth, the points and trajectories are read from HDFS and
re-partitioned to create the pointRDD and trajectoryRDD. These RDDs are re-used across
queries. Unlike 2TA, Ellsworth does not use a true posting list or a grid index, as it must
iterate over the pointRDD to select points that are relevant to the current iteration. There-
fore, we still need to be able to determine which grid cell a point belongs in and which
posting list block the terms of each point belongs in. In order to calculate this we compute
both the maximum and minimum TF·IDF weights for each term, and the minimum longi-
tude and latitude of any point. Figure 5.1 shows an overview of how queries are executed
in Ellsworth. We can break down the query execution into six different steps.

Dataset exploration: The first step is exploration. Not every point is relevant in every
iteration, and many points are explored multiple times by different query points. In each
iteration we iterate over the pointRDD and perform amapValues transformation. This trans-
forms the value in each key-value pair to a new key-value pair with the same key but with
a new value. Each value is mapped to a tuple consisting of the point and a set of query
points that the point is relevant to, or null if the point is not relevant at all. Then a filter
transformation is performed to filter away all of the key-value pairs where the value is null,
thus filtering away points that are not relevant to the current iteration. We call the result-
ing RDD of explored points for the exploredRDD. Both the map and filter transformations
preserves partitioning and thus have the same partitioning as the pointRDD.

Candidate expansion: The next step is to get a candidate set from the explored points.
Due to the partitioning scheme we know that points that belong to the same trajectory are
located in the same partition. We can therefore perform a mapPartitions transformation on
the exploredRDD in order to create a ScoredTrajectory instance for every candidate in every
partition. For each partition we create a set of ScoredTrajectory instances for each discovered
candidate and update its bestSimilarities[] array as we process the points in the partition.
This gives us a new key-value RDD where the id of the candidate trajectory is the key
and the candidate’s ScoredTrajectory instance is the value. This RDD is called the newCandi-
datesRDD and has the same partitioning as the exploredRDD. If we are in the first iteration
then we persist this RDD throughout the entire query and name it the candidatesRDD. If
we are in any subsequent iteration, we now have two RDDs, the candidatesRDD from the
previous iteration and the newCandidatesRDD. These candidates are from two completely

Chapter 5: Parallel ETQ processing 31

pointRDD

exploredRDD

candidatesRDD1

Number of candidates
with sufficient

seen lower bound

Iteration 1

mapPartitions

mapValues

filter,
count

pointRDD

exploredRDD

newCandidatesRDD

candidatesRDDi

Number of candidates
with sufficient

seen lower bound

Iteration i from 2. . . n

mapPartitions

mapValues

fullOuterJoin
candidatesRDDi-1

filter,
count

candidateRDDn

filteredCandidatesRDD

jointedTrajectoryRDD

topKTrajectoriesRDD

Results

Final stage

filter

join trajectoryRDD

mapPartitions

top

Figure 5.1: Overview of query execution in Ellsworth

disjointed sets of points, but can still contain the same candidate trajectories. In order to
make sure we only ever keep a single instance of ScoredTrajectory for each candidate we
have to join and merge the candidatesRDD and the newCandidatesRDD. We do this using
a fullOuterJoin operation. This operation performs a full outer join of two RDD based on
their keys. In cases where both the RDDs contain the same key, we must merge the two
ScoredTrajectory instances to form a single instance. This is done by simply iterating over
the bestSimilarities[] array of each instance and selecting the best value for each element.
Normally, a join like this would require Spark to perform a data shuffle. However, since the
RDDs are co-partitioned, Spark can perform a co-partitioned join, which is significantly less
expensive.

Candidate counting: In the third step the candidateRDD contains every candidate seen
so far. In order to determine if another round of exploration is necessary, we calculate the
seen_lb[] of each trajectory and count how many of these are higher than the unseen_ub for
the current iteration. This is done by simply performing a filter transformation to filter away
any candidates with insufficient seen_lb and finally executing a count action to determine
whether we have with at least k candidates.

32 M.A & E.N.R: ETQ Implementation

Second-round filtering: At the fourth step we know we have enough candidates to
answer the query. Like in 2TA we perform a second round of filtering to further reduce the
amount of candidates. This is done the same way as described in section 4.2.9, by iterating
over the bestSimilarities[] array of each ScoredTrajecory and checking if bestSimilarities[qi]

is better than UBi t(qi) (Definition 15). This is done by performing a filter transformation
and creates an RDD called the filteredCanidatesRDD.

Partition local top-k: In order to be able to calculate the similarity between the query
and every candidate, we need to join the trajectoryRDD with the filteredCandidatesRDD.
Both RDDs are key-value RDDs with the trajectory id as key. As both use the same parti-
tioner, Spark will perform a co-partitioned inner join. The resulting RDD will be another
key-value RDD with the trajectory id as a key and the value being a tuple consisting of the
trajectory itself, and its seen_ub. Next, we perform a mapPartitions transformation to do a
partition local top-k search. This is done the same way as in 2TA where we iterate over the
candidates in descending order based in the candidate’s seen upper bound. If the upper
bound of the next candidate to be iterated over has a seen upper bound less than the sim-
ilarity of the worst candidate in the top-k set, we know that any subsequent trajectories
cannot make it into the top-k.

Top-k: At this point each partition consists of k trajectories. The next step is to collect
the top-k trajectories from all partitions into a single top-k set. This is easily done by using
the top action.

In short, Ellsworth aims to answer top-k exemplar trajectory queries using a Spark
cluster. This is done by emulating the 2TA algorithm; parallel incremental exploration of
both spatial- and textual space and pruning away points as early as possible. In order to
do this in an efficient and distributed manner, the partitioning of data is essential to avoid
unnecessary shuffle.

5.3 Naive ETQs on Spark

We also created a naive ETQ processor on top of the Apache Spark framework in order
to test if Ellsworth performs better than a simple naive method. It only uses a RDD of
trajectories. It calculates the point-wise similarity between all trajectories and the query by
running a map transformation to transform each trajectory to a key-value pair where the
key is the trajectory, and the value is the similarity. Then we use the top action to collect
the top-k trajectories based on the value of the key-value RDD.

6. Experiments

This chapter will deal with the experiments we conducted to evaluate the different ETQ
implementations. Here we will also detail the environment used to run the experiments,
as well as which datasets were used. Our experiments are split into three phases:

• Phase 1: Comparing our implementations of the algorithms by Wang et al.: 2TA and
ILA. We also include a very naive ETQ solver in order to establish a baseline. The
purpose of this phase of experiments is to verify the performance of these algorithms,
and to compare these findings to the results from [5].

• Phase 2: Testing how the algorithms can perform on larger sets of data. We will
also apply some multithreading to 2TA, in order to better utilize the capabilities of a
multicore system, while the general algorithm remains the same. These tests will be
run on a single computer, and will serve as a point of comparison for the distributed
implementation of ETQ.

• Phase 3: Testing the viability of our own distributed ETQ processor, Ellsworth. For
these tests we will use the dascosa cluster, which is detailed in the next section. These
experiments will be used to answer RQ3.

6.1 Setup

The experiments are all run with a series of synthetic datasets based on a real Foursquare
dataset from the New York metropolitan area. Using this source-dataset of about 1000
trajectories and a total of 200 000 points, we generated a series of datasets of varying
sizes, ranging from 10k trajectories to 200 million trajectories, in order to test how the
different algorithms performed at different dataset sizes. The experiments are run in two
different environments: a single machine named dif, and a Spark cluster named dascosa.
The first two phases of experimentation are run on the dif machine, while the third and
final phase experiments run on the dascosa cluster. All experiment results are averaged by
running either 100 or 1000 queries, this is specified below the graph of each experiment.
Note that when measuring average run time, we only measure the time from a query is
submitted, until the query result is ready. Time spent building indexes, or materializing
RDDs in the case of Ellsworth, are not taken into account.

6.1.1 Environments

dascosa: This is a set of computes consisting of 25 nodes that collectively form a cluster,
which runs various services. The cluster provides data storage through Apache HDFS, and
Yarn backed by Zookeeper for resource management and task scheduling. The cluster also
runs Spark, which is our primary interest. Not all nodes have the same specifications or

33

34 M.A & E.N.R: ETQ Implementation

dascosa03 - 16 dascosa17 - 25
CPU: Intel(R) Xeon(R) CPU E5-2640 v3 CPU: Intel(R) Xeon(R) Silver 4210
Cores: 16 (32 virtual) Cores: 20 (40 virtual)
CPU Frequency: 2.60GHz CPU Frequency: 2.20GHz
Memory: 128GB Memory: 192GB

OS: Ubuntu 18.04
JVM: java-11-openjdk-amd64
Cloudera 6.3.1, Spark 2.4.0

Table 6.1: Specifications of the dascosa-cluster nodes

dif
CPU: Intel(R) Xeon(R) Gold 5118
Cores: 24 (48 virtual)
CPU Frequency: 2.3GHz
Memory: 384GB
OS: Ubuntu 18.04
JVM: java-11-openjdk-amd64

Table 6.2: Specifications of the dif machine

perform the same tasks: the first two nodes (dascosa01 and dascosa02) perform some ad-
ministrative tasks within the cluster, such as load balancing and act the Yarn master. The
remaining 23 nodes act as workers. The worker-nodes’ specifications are listed in Table 6.1.

dif: This is a single-machine with a fair bit of memory and computing power. dif runs
Ubuntu, powered by two Intel Xenon Gold 5118 Processors, and a total of 384GB memory.

6.1.2 Datasets

As mentioned, all the datasets used for our experiments are synthesized from a Foursquare
set, referred to as the NYC set. We created our own dataset generator in order to be able
to create datasets of varying sizes, but also to be able to examine the impact of different
parameters, such as trajectory length, or the number of terms per point. When generating
the datasets used for the experiments, we set the generator parameters to echo the prop-
erties of the NYC dataset used by Wang et al., making our results more comparable to the
original results.

By repeating a cycle of sampling various data, such as point locations, term distribu-
tions and trajectory lengths whilst adding some noise, we can generate several millions of
trajectories. Query sets are created in the same manner. A heatmap of such a dataset is
shown below in figure 6.1

Chapter 6: Experiments 35

Figure 6.1: Source NYC dataset on the left, synthetic 200 000 trajectory dataset on the right

6.2 Comparing ETQs

As shown in chapter 4, we’ve created our own implementations of the algorithms 2TA and
ILA. In order to answer RQ1, we also need to reproduce similar experiments to investigate
how our implementations hold up against the originals. We will be testing how the algo-
rithms perform using (1) different values of max iterations itmax, (2) various α weights, (3)
size of the query trajectory |Q|, (4) varying number of terms per point of the query |q.term|
and (5) desired number of results k. When running these experiments, we will be using the
dif machine and a synthetic dataset NYC-49k which mimics the properties of the dataset
used in the original paper. As mentioned in section 6.1.2, this is a set from the New York
metropolitan area, and it consists of about 50k trajectories. Table 6.3 details more of the
properties of this dataset. Note that the dataset only mimics the properties listed in [5], so
it is by no means an exact match. Therefore, properties such as spatial distribution of points
and distances between points in trajectories are likely to mismatch, and impact the perfor-
mance of the algorithms in various ways. The query-set is generated in the same manner
as the NYC-49k dataset, although using different parameters. These are shown in Table 6.4.

Before running tests on ILA, we performed a parameter-sweep in order to find a suitable
∆ value. In the original work, a ∆ value of 1000 was used, but our tests revealed that a ∆
of 10000 yields a 3x performance increase on the NYC-49k dataset. Therefore, ∆= 10000
is used for all the following experiments.

itmax: First, we run the algorithms on different values for itmax. Preliminary testing has
shown that the choice of this value has a high impact on the performance of the algorithms.
Initially, we ran these tests with the same itmax range (10–190), as in the source paper as
shown in 6.2b. We observed that the graph suggested that itmax values below 10 may give
us better performance, so we ran an additional test on the range itmax 1–10 as shown in
Figure 6.2a. We found that an itmax value of around 3 yields the best performance on both
ILA and 2TA. This is a drastically different result compared to the results in the original
work. Wang et al. found that a itmax value near 150 iterations was optimal for both ILA and
2TA, whereas our tests suggested that lower itmax performs far better. In Figure 6.2b we
can see that the average query duration on ILA increased linearly as itmax increased, while

36 M.A & E.N.R: ETQ Implementation

NYC-49K
Number of trajectories 49 027
Number of points 204 960
Mean Trajectory length 4.18
Mean trajectory distance 4 858m
Mean term count 9.96
Dmax 49 794m
Terms in corpus 19 146

Table 6.3: NYC-49k synthetic
dataset

Queries
Number of trajectories 1000
Number of points 10 000
Query length 10
Terms per query point 5

Table 6.4: Set of query trajectories
used for tests

2 4 6 8 10
0

0.05

0.1

0.15

0.2

#iterations

ru
nt
im

e
(s
)

2TA
ILA

(a)

10 50 100 150
0

0.2

0.4

0.6

0.8

1

#iterations

ru
nt
im

e
(s
)

2TA
ILA

(b)

Figure 6.2: Results of itmax tests on two ranges of itmax, 1 - 10 (left), and 10 - 190 (right).
N = 1000.

the optimal value being around 3 iterations as seen in Figure 6.2a. Note that there were
some very minor fluctuations in different test-runs, but the optimal still remained around
3. Running queries on ILA at itmax = 10 is approximately 3x faster than on itmax = 150. The
difference in performance for 2TA is not nearly as dramatic, but still shows a monotonically
increasing querying time as itmax increases. This is likely due to our system being a purely
in-memory implementation, and so we are not as heavily penalized when performing ran-
dom access on a point. Seeing that we do not incur any additional disk IO when accessing
a point, it seems to be cheaper to access- and expand more points, rather than performing
several boundary-computations in every iteration. An itmax of 3 will be used for the remain-
ing experiments of this section, both for ILA and 2TA.

alpha: Next, we examine alpha values, using the best-performing itmax values discov-
ered in the previous test. The tests are run using α values from 0.1 to 0.9, at increments of
0.1. We can observe a trend where ILA performs better on higher α values where textual
similarity is emphasized, whereas 2TA is fairly even across all values.
k: Here we vary the number of results requested for each query. We expect to see a rela-
tively flat graph for both 2TA and ILA, as was observed by Wang et al. This is confirmed, as
shown in figure 6.3b.

|Q|: For this test, we’ve generated several new sets of queries, with a set number of

Chapter 6: Experiments 37

0.2 0.4 0.6 0.8
0

5 · 10−2

0.1

0.15

0.2

α

ru
nt
im

e
(s
)

2TA
ILA

(a)

20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

k-value

ru
nt
im

e
(s
)

2TA
ILA

(b)

4 6 8 10
0

0.05

0.1

0.15

0.2

|Q|

ru
nt
im

e
(s
)

2TA
ILA

(c)

4 6 8 10
0

0.1

0.2

0.3

0.4

|q.terms|

ru
nt
im

e
(s
)

2TA
ILA

(d)

Figure 6.3: Average query time on ILA versus 2TA using various parameters tests on NYC-
49k. N = 1000.

points per query. Otherwise the query sets are similar to the ones used for the previous
experiments. The graph shows a trend for both 2TA and ILA where higher values of |Q| (i.e.
longer query trajectories) requires more time to process.

|q.terms|: Like the previous test, we’ve generated a new series of queries for this ex-
periment. In this case, we have set the number of terms per query point q in the query
trajectory Q. The number of terms range from 3 - 10. Again, we observe a trend where a
higher number of terms increase the time required to solve a query. This echoes the trends
observed by Wang et al.

Finally, we implemented a naive ETQ solver, which simply loops over all trajectories in
the dataset and computes their similarity to the query trajectory, Ŝ(Q, T), before sorting the
list and returning the top k results. The purpose of this is to establish a baseline, in order
to determine what the actual performance gains of using an algorithm like ILA or 2TA are.
This experiment uses the same setup as previous tests; NYC-49k dataset, 1000 queries,
α = 0.5, and an itmax of 3 for both ILA and 2TA. The result of this test are presented in
Figure 6.4 and confirms that both ILA and 2TA are much better than a naive approach.

38 M.A & E.N.R: ETQ Implementation

0 1 2 3 4 5 6

2TA

ILA

Naive

0.21

0.12

5.61

Average query time (s)

Figure 6.4: Comparison of 2TA and ILA with a Naive baseline. N = 1000.

6.3 Scaling ETQ

The results of Wang et al. as well as our results from the previous section has already
demonstrated that these algorithms are capable or processing exemplar trajectory queries
within a reasonable time. But if we consider the volumes of data that are available today, a
dataset of 50 000 trajectories consisting of about 200 000 points, is not particularly large.
RQ2 poses the question of how these algorithms scale with larger set of data. In this part
of the experimentation we will investigate how ILA and 2TA perform when the size of the
datasets grow, and attempt to push the performance of 2TA by applying multithreading.
For the following tests, we have synthesised datasets consisting of 10 000 trajectories, all
the way up to 1 900 000 trajectories. All datasets are shown in table 6.9, while the query
set remains the same as in Table 6.4. All the synthesised datasets still use the Foursquare
New York metropolitan area as source dataset.

Figure 6.5 show the result of the scalability test on 2TA and ILA. It clearly shows that
2TA is better suited for processing larger volumes of data than ILA. We can observe some
oddities where a larger dataset leads to a improved performance, such as at NYC-1000k
and NYC-1800k for ILA and NYC-1500k for 2TA. These are likely artifacts due to the ran-
domness of the generated datasets, and possibly other processes competing for resources
on the host machine, however the general trends remain. On the NYC-10k dataset, ILA
spent an average of 60ms on each query, while 2TA used 20ms. When the dataset size in-
creased to 1 000 000 (NYC-1000k), 2TA still only needed 3.9 seconds per query which is
150 times more than on the 10k dataset. ILA on the other hand required 26.9 seconds,
which is nearly 450 times slower than its performance on NYC-10k.

Extrapolating off of this, if we were to process a larger dataset of 100 million trajecto-
ries, 2TA would process a query in about 3 minutes, while ILA would require (assuming a
linear scaling) a whole hour to complete a query. If we were to expand this even further to
a dataset of 1 billion trajectories, still assuming a linear scaling of performance, 2TA would
need about 32 minutes and ILA nearly 10 hours. Note that at these sizes our implemen-
tation would require vastly more memory, and therefore require either a larger bank of
memory or rely on disk access, which would further increase querying-time.

In order to attempt to improve on the performance of 2TA, and better utilize the avail-
able resources on the dif machine, we implemented 2TAP. This is a somewhat modified
2TA, with multithreading abilities, as detailed in section 5.1. To test the achieved speedup
of using 2TAP, we ran two query-sets through 2TAP, using a different number of threads.

Chapter 6: Experiments 39

200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

20

40

60

80

100

Trajectories in dataset (thousands)

ru
nt
im

e
(s
)

2TA
ILA

Figure 6.5: Results of the scalability test, comparing ILA to 2TA on a range of large datasets.
N = 1000.

1 8 16 24 32 40 44 48
0

2

4

6

Threads

ru
nt
im

e
(s
)

2TAP
2TA

(a) Standard of queries where |Q|= 5

1 8 16 24 32 40 44 48
0

2

4

6

8

Threads

ru
nt
im

e
(s
)

2TAP
2TA

(b) Set of queries where |Q|= 20

Figure 6.6: Results of parallelism experiment. N = 100.

The first query-set is the same as used previously (Table 6.4), while the other has longer
trajectories, as we set |Q|= 20. Otherwise they are identical. The graphs also include a run
of 2TA, as a baseline.

The results indicate only a 2x speedup, despite using 48 threads rather than a single
thread. There are several shortcomings of 2TAP which may be the cause of this. We discuss
these further in Chapter 7. For the next experiment, we ran 2TAP through the same tests
as we subjected ILA and 2TA to, as described above. We used the same datasets ranging
from 10k - 1.9m trajectories as well as the same queries, and compared its performance to
the normal 2TA. Results are shown in figure 6.7.

In figure 6.7 we can observe that 2TAP runs faster than 2TA, as expected. Compared
to 2TA, which had an average query-time increase of 150 from NYC-10k to NYC-100k,
2TAP only suffered a 50 times query-time increase. This demonstrates that the 2TA can be
extended to support parallel processing with relatively few modifications, and achieve a
significant performance boost. However, regardless of faster querying-times, 2TAP will still

40 M.A & E.N.R: ETQ Implementation

200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

2

4

6

8

Trajectories in dataset(thousands)

ru
nt
im

e
(s
)

2TA
2TAP

Figure 6.7: Results of the scalability test, comparing 2TA to the parallel 2TAP on a range of
large datasets. N = 1000.

1 20 40 60 80 100
0

100

200

300

Trajectories in dataset (millions)

ru
nt
im

e
(s
)

2TAP

Dataset Trajectories Size(GB)
NYC-1000k 1 000 000 0.23GB
NYC-20m 20 000 000 4.7GB
NYC-40m 40 000 000 7GB
NYC-60m 60 000 000 14GB
NYC-80m 80 000 000 19GB
NYC-100m 100 000 000 24GB
NYC-110m 110 000 000 26GB

Figure 6.8: Limitation experiment for 2TAP. N = 100.

be limited by the memory capacity of its host-machine.

Finally, we ran a series of tests on 2TAPwhere we increased the dataset size even further,
attempting to push the dif machine to its limit. The datasets used are shown alongside the
results in figure 6.8. We found that 2TAP on the dif machine was capable of processing up
to 100 million trajectories. When run on a set of 110 million, all available memory was
expended and the application terminated. Despite only occupying 26GB of disk space, the
in-memory representation of objects, alongside indexes and the candidate sets amounted
to more than the available memory of 384GB.

Chapter 6: Experiments 41

Dataset Trajectories Size(MB)
NYC-10k 10 000 2.7MB
NYC-100k 100 000 24MB
NYC-200k 200 000 48MB
NYC-300k 300 000 72MB
NYC-400k 400 000 95MB
NYC-500k 500 000 119MB
NYC-600k 600 000 143MB
NYC-700k 700 000 167MB
NYC-800k 800 000 190MB
NYC-900k 900 000 214MB

Dataset Trajectories Size(MB)
NYC-1000k 1 000 000 238MB
NYC-1100k 1 100 000 261MB
NYC-1200k 1 200 000 286MB
NYC-1300k 1 300 000 309MB
NYC-1400k 1 400 000 333MB
NYC-1500k 1 500 000 357MB
NYC-1600k 1 600 000 380MB
NYC-1700k 1 700 000 405MB
NYC-1800k 1 800 000 428MB
NYC-1900k 1 900 000 452MB

Figure 6.9: NYC synthetic datasets used for scalability testing

6.4 Distributed ETQ

Ellsworth is a result of our endeavor to adapt 2TA to run on clusters. As described in sec-
tion 5.2, Ellsworth uses the Apache Spark framework and utilizes many of the same princi-
ples as 2TA. This set of experiments examines how it scales with data-volume. The exper-
iments run on the dascosa cluster, which is detailed in section 6.1.1. Ellsworth is designed
with the intention of being able to process datasets orders of magnitude larger than what
was tested in the first phase of experimentation. As mentioned in 3.2.2, the number of
partitions is an important consideration when tuning Spark in order to maximise resource
utilization. Because of this, we run a parameter sweep to find an appropriate number of
partitions for each dataset. On the NYC-100m dataset for example, we find that 1337 is
appropriate. This is examined further in section 7.3. On the smaller datasets, the number
of partitions does not affect the performance of Ellsworth as significantly. Therefore, for
the datasets of 1 million trajectories and below, we set the number of partitions to equal
the number of HDFS blocks each dataset occupies. NYC-100k only occupies 1 HDFS block
whilst NYC-1m occupies 6 blocks, thus the number of partitions is 1 for NYC-100k, and 6
for NYC-1m. We observed in the previous experiments that itmax had a large impact on the
performance of both 2TA and ILA. Additionally, the optimal itmax we found differed greatly
from the itmax used by Wang et al. [5]. Therefore we decided to run a parameter sweep on
multiple datasets of different sizes to determine the optimal itmax.

In Figure 6.10 we can observe that 1 is by far the best value for itmax on the NYC-100m
dataset, the same trend is evident for the other datasets as well. We also ran an additional
100 queries at itmax = 100, which ended up with an average runtime of 188.6 seconds per
query. This further reinforces that a low itmax is better suited for this environment. This is
because Ellsworth, due to the nature of Spark, needs to iterate over every single point to
determine if the point is relevant to the current iteration. Additionally, there is a certain
overhead to starting new Spark task, by running fewer iterations we reduce this overhead.
With the amount of computational power available, the cost of creating and joining the
ScoredTrajectory instances for each candidate does not outweigh the cost of multiple itera-
tions.

Figure 6.11 shows the average query runtime of Ellsworth compared with 2TAP. The
2TAP results shown in the graph are the same as the ones shown in Figure 6.7. For Ellsworth,

42 M.A & E.N.R: ETQ Implementation

2 4 6 8 10
0

10

20

#iterations

ru
nt
im

e
(s
)

Ellsworth

Figure 6.10: Results of itmax tests on
Ellsworth using the NYC-100m dataset.
N = 100.

0 200 400 600 800 1,000
0

1

2

Trajectories in dataset (thousands)

ru
nt
im

e
(s
)

Ellsworth
2TAP

Figure 6.11: Comparing Ellsworth at
different to 2TAP on small datasets. N
= 100.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Trajectories in dataset (millions)

ru
nt
im

e
(s
)

Ellsworth
Naive Spark

Figure 6.12: Average query runtime of Ellsworth compared to the naive Spark processor

we set the number of partitions to the amount of HDFS blocks each dataset occupies. As
we can see, 2TAP is all-around better than Ellsworth on these datasets, which is not un-
expected. These datasets are relatively small in the context of HDFS, Apache Spark, and
distributed computing as the dataset of 1 million trajectories is only 238MB. The overhead
incurred of starting a multitude of new Spark tasks, and the additional network opera-
tions required to perform the distributed query, is likely too high to compensate for the
additional parallelism gained by using Spark. Additionally, when the runtimes are low, it
is hard to discern what time is spent computing- versus runtime caused by other factors,
such as variable latency in the network. Therefore, these querying times for Ellsworth at
small datasets should be taken with a grain of salt.

Figure 6.12 shows the average query runtime Ellsworth and the naive Spark processor
from section 5.3 on significantly larger datasets. The naive ETQ processor and Ellsworth
are configured to use the same number of partitions. Here we can see how the increased
parallelism and computational power makes the Spark implementation perform orders of

Chapter 6: Experiments 43

3 4 5 6 7 8 9

Ellsworth

Naive Spark

6.42

7.76

Average query time (s)

Figure 6.13: Average query runtime of the naive Spark processor and Ellsworth when ran
on a dataset of 200 million trajectories. N = 100.

magnitudes better than the results 2TAP shown in Figure 6.8. Both the naive Spark pro-
cessor and Ellsworth have quite similar performance, although the naive Spark processor
has an average query time of 4.16 seconds on the NYC-100m dataset compared to 3.56
seconds for Ellsworth. This suggests that Ellsworth scales a bit better than its naive coun-
terpart. This is somewhat unexpected, as Ellsworth uses a itmax of 1, which means that it
explores the entire dataset for every query. Since Ellsworth also needs to explore the entire
dataset, we expected Ellsworth to be slower than the naive Spark processor, due to the
extra steps Ellsworth performs before computing the actual point-wise similarity. However,
when itmax is equal to 1, the seen upper bound is always equal to the point-wise similar-
ity, so during the partition local top-k, Ellsworth only computes the point-wise similarity of
k · partitionCount number of trajectories, whilst the naive Spark processor must calculate
point-wise similarities for all trajectories. This is discussed further in section 7.3. In order
to verify that Ellsworth scales better than the naive Spark processor we ran another exper-
iment, with a dataset of 200 million trajectories. The results are shown in Figure 6.13.

7. Discussion

In this chapter we will discuss the results we observed during the experimentation phase.
We will also discuss our other experiences, such as challenges faced while implementing
the ILA, 2TA, 2TAP, and Ellsworth algorithms.

7.1 Re-implementing ILA and 2TA

The first phase of experimentation dealt with reproducing the original algorithms by Wang
et al.[5]. We were able to implement our own Incremental lookup algorithm and Two-Level
Threshold Algorithm that out-perform a naive implementation by a wide margin. However,
we encountered a couple of challenges:

• TkSK: ILA is very dependent on having an efficient TkSK solution. Our experiments
show that a majority (93%) of ILA runtime consists of TkSK queries. A lot of time and
effort therefore had to be invested into implementing the RCA algorithm by Zhang
et al. [8]. The original work did not elaborate on how they implemented RCA, which
forced us to make our implementation of RCA based on our understanding of the
work.

• Boundaries and edge-cases: As mentioned in Chapter 4, an upper-boundary condi-
tion for 2TA was either not specified, or incorrectly listed in the original paper. As a
result of this, we had to devise a new boundary for use with 2TA.

• Edge cases: We also encountered a couple of edge-cases, which were a cause for
headache during development.

• Dataset: Though several properties of the datasets used are documented, the perfor-
mance of the algorithms are still dependent on properties that were not. For instance,
we do not know what sort of spatial extent the trajectories covered. This is likely to
have a high impact on the performance of spatial exploration. Nor do we have any
knowledge of the distribution of terms. Without having this sort of data, or even the
complete dataset, it is not possible to completely reconstruct the experiments.

We can conclude that both algorithms are indeed far better than a performing ETQ
naively, with 2TA outperforming ILA in all cases. We note that the iteration-test results
were quite different from the results produced by Wang et al., but this is most likely due
to our in-memory approach. As all points are always available through random-access in
memory, over-expanding the search are is relatively cheap compared to the time needed
for a whole new iteration with several boundary computations.

44

Chapter 7: Discussion 45

7.2 Parallelizing 2TA

When performing scalability testing we found that 2TA can definitely handle far larger
datasets than a naive approach. ILA performs significantly worse than 2TA. We also found
that 2TA can be extended to support basic multi-threading without too much effort. In our
experiments we observed that a 2TAP performed about twice as well as 2TA.

We had expected to see more than the 2x improvement over 2TA we observed in the
2TAP tests shown in Figure 6.6, as we ran the experiments on a total of 48 threads, as
opposed to a single thread. There are a number of reasons for this, but they all boil down
to breaking down task in an efficient manner which can utilize all available resources, and
preventing expensive locking when aggregating the subtask-results. We have made note of
5 points which can be improved: (1) The explore-phase uses a maximum of |Q| ∗2 threads,
despite the system having more threads available. This leads to unused resources and a
loss of potential speedup. (2) Despite launching |Q| exploreSpatial calls, each exploreSpatial

only runs on a single thread. Profiling the code has shown that spatial exploration is far
more time-consuming than textual exploration. The exploreSpatial iterates over each query
points, so breaking this down to several parallelizable sub-tasks task would likely improve
performance of this step further, and use more of the available resources. (3) Although
we’ve optimized some locks through using a bucketed system, this only applies to the ex-
pand stage, not explore. Every time a new point is discovered, either spatially or textually,
the working thread must aquire and release the lock of the specified bucket. (4) Finally, the
whole explore-and-expand process itself could be parallelized. If we were to start expand
while explore is still running, we would achieve a higher degree of parallelism and heavily
reduce time waiting for straggler threads in between the two phases.

The goal of 2TAP was to apply relatively simple extensions to 2TA, without reworking
too much of the original algorithm. If we were to attempt to improve the degree of speedup,
the algorithm would have to go through several changes, which was not within the orig-
inal scope of the task. However, regardless of speedup, we are still ultimately limited by
the memory capacity of the host-machine. In our final scalability test we found that 2TAP
could handle 100 million trajectories, but crashed when exposed to a dataset of 110 million
trajectories due to OutOfMemory exceptions.

7.3 Developing Ellsworth

Finally, we investigated if and how distributed computing could improve answering ETQs
on large datasets. Our experiments show that Ellsworth scales far better than ILA and 2TA
as expected. However it also scales better than the naive Spark processor, which we did
not expect at an itmax of 1. We expected the naive Spark processor to perform better than
Ellsworth, as Ellsworth is forced to explore the entire dataset at this point. When itmax is
equal to 1 then the grid index only consist of a single cell, and the posting list only consists
of one block, which means that every point in the data set is relevant to the first iteration.
That means that during the candidate expansion step of Ellsworth, every candidate trajec-
tory in every partition will see all the points that belongs to the trajectory. Since there are
no unseen points for any trajectory, both the seen upper bound and the seen lower bound
of every trajectory is equal to the actual point-wise similarity of the trajectory. The unseen

46 M.A & E.N.R: ETQ Implementation

upper bound of similarity is equal to 0 at maximum iterations, meaning that every single
trajectory has a seen lower bound that is higher than the unseen upper bound. This makes
the candidate counting step of Ellsworth unnecessary; a redundant count action that reduces
query performance. The unseen upper bound for unprocessed points (Definition 15) is also
0 for all query points, which causes all candidate trajectories to pass the second-round fil-
tering step, making it another redundant step. While we iterate over the candidates (sorted
by upper bound) in the partition local top-k step, only k candidates are iterated over before
the actual point-wise similarities of the partition-local top-k trajectories are calculated. In
conclusion: when itmax = 1, Ellsworth is basically the naive ETQ processor with extra steps,
which is the reason we expected the naive Spark processor to out-perform Ellsworth. The
most likely reason that the naive Spark processor is slower than Ellsworth is that it must
compute the point-wise similarity of every single trajectory in the dataset, whilst Ellsworth
only has to compute k · partitionCount point-wise similarities. The added overhead of the
redundant steps Ellsworth runs through, does not seem to outweigh the cost of computing
the point-wise similarities of every trajectory in the dataset. On the NYC-100m dataset,
Ellsworth uses 1337 partitions and k was equal to 20 for every query in the experiment.
Ellsworth only need to compute 1337 · 20 = 26740 point-wise similarities while the naive
Spark processor has to compute 100 million point-wise similarities. Therefore, we attribute
Ellsworth more efficient scaling to the fact that it has to compute orders of magnitude fewer
point-wise similarities than the naive Spark processor. In the case of NYC-100m, the naive
Spark processor has to calculate 3739 times as many point-wise similarities as Ellsworth.

Choosing the right partition count for each dataset was a big challenge, as there is no
clear-cut method to determine the right partition count. We saw huge differences in how
fast queries were executed with different amount of partitions, at times up to two or three
times slower. The smaller datasets (1 million trajectories and less) were not very sensitive
to different partition counts, we therefore settled on used the HDFS block count for these
datasets. Running paramter sweeps the bigger datasets (10 million trajectories and more),
required a significant amount of time, and would be impractical in real-life scenarios. The
results of the parameter sweeps were ambiguous and showed no clear trend compared to
the dataset sizes. Therefore we chose partition counts within ranges where the difference
in performance was not too large. This means that the number of partitions may not have
been strictly optimal, but they should not be drastically worse. Comparing the performance
of different Spark implementations is tricky due to the fact that the implementations might
have different optimal partition count, and it is difficult to determine how much time is
spent on Spark overhead versus actual computation time.

8. Conclusion

In this thesis we have explored the field of spatio-textual trajectory processing, and in-
vestigated the work of Wang et al. First we reviewed two of their algorithms for perform-
ing exemplar trajectory queries, before implementing two of these ourselves: The 2-Level
Threshold Algorithm (2TA) and the Incremental Lookup Algorithm (ILA).

Our first research question dealt with whether or not these algorithms were repro-
ducible. During the implementation process we discovered flaws and edge cases, and had
to fill in for information that was missing or unclear from the original paper by Wang et al.
The results we found mostly corresponded to the findings in their source paper, with the
exception of itmax, where our results diverged due to ours being an in-memory implemen-
tation. In order to answer our second research question, regarding the scaling abilities of
these algorithms, we made a few extensions to 2TA to enable rudimentary multithreading,
referred to as 2TAP. In our experiments we found that the 2TAP algorithm scales well, but
is ultimately limited by memory capacity of its host-machine.

Finally, we investigated whether one could achieve better scaling on large sets of data
using distributed computing. To accomplish this, we devised a new algorithm based off of
the 2TA, named Ellsworth. Ellsworth runs on top of Apache Spark framework for cluster-
computing. Ellsworth however, proved to be suitable for processing volumes of spatio-
textual data which are orders of magnitude larger than 2TA, let alone ILA. Our final exper-
iments demonstrated that the Ellsworth algorithm was capable of performing ETQs dataset
of 100 million trajectories, totaling to over 1 billion points, in about 3.56 seconds.

8.1 Further work

There are many avenues we believe to be worth exploring beyond this thesis. The datasets
used for the experiments are all synthesised from the same source dataset, in order to keep
a series of properties constant when testing different variables. For example, the Dmax value
never changes, despite the number of points increasing, leading to a very high point-density.
Similarly, the corpus is never expanded regardless of the number of points, meaning the
number of total keywords all the synthetic datasets remains the same. If one were to run
the experiments on a entire different dataset, which likely exhibits different properties, one
may get entirely different results.

Another important note is the fact that our ILA, 2TA, and 2TAP implementations all
use data stored in memory. If data were to be stored on disk rather than in memory, we
believe the optimal itmax-values would look quite different, as this changes the dynamic of
exploration time versus computation time drastically. This also severely reduces the prob-

47

48 M.A & E.N.R: ETQ Implementation

lem where available memory is exhausted when operating on large datasets, at the expense
of incurring disk IO.

There is a large variety of indexes that could likely lead to better performance for mul-
tiple of the aforementioned algorithms. For instance, we’ve not experimented using tree-
based spatial indexes, such as an R-Tree, or even combined spatio-textual indexes, such as
the S2I [3]. On the other hand, we’ve not put a lot of effort into exploiting the fact that all
information is available in-memory. We believe by optimizing based on this fact, one can
achieve far better performance on all three of ILA, 2TA and 2TAP.

The issue of indexing and disk-access also applies to Ellsworth. If data were to be loaded
iteratively in chunks on-demand using some index, rather than processing all points each
iteration, one may see more benefit from its iterative aspect on large datasets.

Finally, the process of solving exemplary trajectory queries can be made far more acces-
sible if it were integrated in a larger existing data-processing framework, such as Apache
Sedona [25]. Additionally, by having a tighter integration with Spark, one could implement
partition-local indexes, which are documented to have a significant performance impact in
other spatio-textual spark operations [25].

Bibliography

[1] L. Sloan, J. Morgan, W. Housley, M. Williams, A. Edwards, P. Burnap, and O. Rana,
“Knowing the tweeters: Deriving sociologically relevant demographics from Twit-
ter,” Sociological Research Online, vol. 18, pp. 74–84, Aug. 2013.

[2] L. Sloan and J. Morgan, “Who tweets with their location? understanding the rela-
tionship between demographic characteristics and the use of geoservices and geo-
tagging on twitter,” PloS one, vol. 10, Nov. 2015.

[3] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg, “Efficient processing
of top-k spatial preference queries,” Proc. VLDB Endow., vol. 4, no. 2, pp. 93–104,
Nov. 2010.

[4] Y. Yanagisawa, J.-i. Akahani, and T. Satoh, “Shape-based similarity query for trajec-
tory of mobile objects,” in Proceedings of the 4th International Conference on Mobile
Data Management, MDM ’03, 2003, pp. 63–77.

[5] S. Wang, Z. Bao, J. Culpepper, T. Sellis, M. Sanderson, and X. Qin, “Answering top-k
exemplar trajectory queries,” in 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), Apr. 2017, pp. 597–608.

[6] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and
Technology behind Search, 2nd. Addison-Wesley Publishing Company, 2011.

[7] A. Gaydhani, V. Doma, S. Kendre, and L. Bhagwat, “Detecting hate speech and of-
fensive language on twitter using machine learning: An N-gram and TFIDF based
approach,” ArXiv, vol. abs/1809.08651, 2018.

[8] D. Zhang, C.-Y. Chan, and K.-L. Tan, “Processing spatial keyword query as a top-k
aggregation query,” in Proceedings of the 37th International ACM SIGIR Conference on
Research amp; Development in Information Retrieval, SIGIR ’14, 2014, pp. 355–364.

[9] T. Joachims, “A statistical learning learning model of text classification for support
vector machines,” in Proceedings of the 24th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’01, 2001, pp. 128–
136.

[10] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient OLAP operations in spatial
data warehouses,” in Proceedings of the 7th International Symposium on Advances in
Spatial and Temporal Databases, SSTD ’01, 2001, pp. 443–459.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for middleware,”
in Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS ’01, pp. 102–113.

[12] H. Samet, Foundations of Multidimensional and Metric Data Structures (The Morgan
Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann
Publishers Inc., 2005.

49

50 M.A & E.N.R: ETQ Implementation

[13] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching trajectories by lo-
cations: An efficiency study,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, 2010, pp. 255–266.

[14] Y. Zheng and X. Zhou, Computing with Spatial Trajectories. Springer Publishing Com-
pany, Incorporated, 2011.

[15] M. Kleppmann, Designing data-intensive applications : the big ideas behind reliable,
scalable, and maintainable systems. O’Reilly Media, 2017.

[16] A. Hadoop. “ApacheHadoop.” (2020), [Online]. Available: https://hadoop.apache.
org (visited on 05/10/2021).

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clus-
ters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 29–43, Oct. 2003.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets,” in Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’10, 2010, p. 10.

[20] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark SQL: Relational data processing
in Spark,” in Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, 2015, pp. 1383–1394.

[21] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams:
Fault-tolerant streaming computation at scale,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, 2013, pp. 423–438.

[22] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.
Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, 2012, pp. 15–28.

[23] J. Zhou, N. Bruno, and W. Lin, “Advanced partitioning techniques for massively dis-
tributed computation,” in Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’12, 2012, pp. 13–24.

[24] H. Karau and R. Warren, High Performance Spark: Best Practices for Scaling and Op-
timizing Apache Spark, 1st. O’Reilly Media, Inc., 2017.

[25] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in Apache Spark: The
geospark perspective and beyond,” GeoInformatica, vol. 23, pp. 37–78, Jan. 2019.

https://hadoop.apache.org
https://hadoop.apache.org

A. Edge cases in ILA and 2TA

The pseudo-algorithm for ILA described in Algorithm 1 in section 4.1 and the psuedo-
algorithm for 2TA in Algorithm 5 in section 4.2 are slightly modified versions of the original
counterparts described in by Wang et al. [5]. We made modifications to resolve a number
of these edge cases that were not handled, as listed below. All of the edge cases apply to
ILA, whilst only edge case 4, 5, and 6 apply to 2TA.

1. On line 8 in ILA Wang et al. used the less-than operator instead of the less-than-or-
equal operator. The problem with using the less-than operator is that the algorithm
will terminate too early, before the TkSK has fetched absolutely all λmax points.

2. Since λ is initialized to k on line 3 in ILA, there may be cases when λmax
i < k. In these

cases the TkSK will never be run for query point qi, we therefore added a second
clause to the if-statement on line 11 that checks if c = 0.

3. On line 12 in ILA Wang et al. also used the less-than operator instead of the less-than-
or-equal operator. The problem here is similar to the one in the first edge case, it will
set R[c][qi] to R[c − 1][qi] too early, before all λmax

i points have been fetched.

4. On line 20 in ILA and on line 15 in 2TA Wang et al. used a greater-than operator in-
stead of greater-than-or-equals operator. The reason it needs to be the latter operator
is twofold. Firstly, if |Ctra|= k then we still may have enough candidates to satisfy the
query. Secondly, there are cases where there only exists exactly k trajectories whose
points share at least one keyword with any of the query points, in this case |Ctra| will
never be greater than k.

5. We changed the greater-than operator that Wang et al. had on line 26 in ILA and
on line 21 in 2TA to a greater-than operator. If the k-th best lower bound is equal
to the unseen upper bound then we can satisfy the query. There may still be unseen
trajectories with the exact same similarity, but no trajectories with better similarity.
The algorithm should therefore not do another iteration but instead perform the final
step and return the result. More importantly, there are cases where we have exactly k
candidates and where the k-th candidate’s lower bound is exactly equal to the unseen
upper bound, if we don’t use a greater-than-or-equal operator then the algorithm fails
in such cases.

6. We added a break on line 39 that Wang et al. did not have. The reason for this is that
after the for-loop at line 29 is finished, the algorithm should return the result, because
we know that no trajectories can beat the ones in the result. Normally this happens
on line 38 when it is discovered that the worst trajectory in the result is better than

51

52 M.A & E.N.R: ETQ Implementation

the upper bound of the next trajectory. However, in cases where the candidate set
contains exactly k candidates the algorithm will never enter the else-statement on
line 33. Therefore we added a break so that a new iteration is not started and the
algorithm returns its results. This edge case also applied to 2TA since it includes the
lines 28 to 39 from ILA.

7. We also have to maintain an array of |q| length for ILA that holds how many points
the TkSK has retrieved for each query point qi. It is initialized to zero and is updated
whenever the TkSK retrieves any points. This is necessary because when ∆ > 1 then
there are cases where λmax

i mod (k +∆ · c) 6= 0. In these cases λ may jump past the
threshold of λmax

i without actually fetching all λmax
i points for query point qi, which

makes the algorithm erroneously re-use the TkSK results from the last iteration whilst
there still may up to ∆−1 points that have not been fetched yet. We therefore added
a third condition on line 12 that checks whether all λmax

i have in fact been fetched.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Marius Aleksander Kaasbøll
Erik Nystø Rahka

Exploring Exemplar Trajectory
Queries

Master’s thesis in Computer Science
Supervisor: Kjetil Nørvåg

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Contents
	Introduction
	Research Questions

	Preliminaries
	Definitions
	Problem definition

	Background
	Querying spatio-textual data
	Processing Top-k spatial keyword queries
	RCA: Rank-aware Combined Algorithm
	k-BCT Queries

	Distributed Computing
	Apache Hadoop
	Apache Spark

	Exemplar Trajectory Query
	ILA
	Upper boundary of similarity for unseen trajectories
	Lower bound of similarity for seen trajectories
	Upper bound of similarity for seen trajectories
	Maximum number of iterations
	Optimizations to ILA

	2TA
	Posting list
	Grid index
	Processing ETQ with 2TA
	Upper boundary of unseen trajectories
	Upper boundary of textual similarity
	Upper boundary of spatial similarity
	Upper boundary of similarity for any unprocessed points for qi
	Upper boundary of similarity for seen trajectories
	Optimizations to 2TA

	Parallel ETQ processing
	2TAP: Multithreaded 2TA
	Ellsworth: ETQ on Spark
	Partitioning scheme
	Query execution

	Naive ETQs on Spark

	Experiments
	Setup
	Environments
	Datasets

	Comparing ETQs
	Scaling ETQ
	Distributed ETQ

	Discussion
	Re-implementing ILA and 2TA
	Parallelizing 2TA
	Developing Ellsworth

	Conclusion
	Further work

	Bibliography
	Appendix
	Edge cases in ILA and 2TA

