@NTNU

Norwegian University of
Science and Technology

A

0,0,0,0,0,

HPC-Lab

TDT4501 - Computer Science, Specialization Project

Investigating New GPU Features for
Performance

Knut Kirkhorn & Ingunn Sund

Advisor
Dr. Anne C. Elster

January 6, 2020

Abstract

This report compares different GPUs and multi-GPU systems to evaluate performance for new
hardware features. Some of these features are Tensor Cores, NVLink and NVSwitch. Multi-GPU
systems with special interconnect configurations are benchmarked and compared. The purpose of
this evaluation is to which systems or GPUs could be good for which tasks.

The systems and GPUs that are benchmarked is NVIDIA DGX-2 and two versions of the IBM
Power System AC922, GeForce GTX 980 and Titan RTX. The benchmarking is done with the
benchmark suites SHOC, DeepBench, Tartan and Scope.

During the benchmarking process, some challenges occurred, especially with running the bench-
marks inside GPU accelerated Docker containers.

The results from the benchmarking are among other things that DGX-2 is better at GPU-GPU
communication than the Power AC922 systems, but the Power AC922 systems are better for CPU-
GPU communication. Which system is advisable to use will therefore depend on what kind of
application should run on it.

The Power AC922 systems seemed to have worse performance on the second NUMA node than
the first. Choosing the right GPUs on this system can be essential for best possible performance,
depending on the application.

An interesting result for the DGX-2 is that there were no significant difference in the performance
for the GPU-GPU communication over NVSwitches for any GPU combination.

In conclusion, there are a lot of results that can be analyzed further, and there are many
possibilities for work that can continue expanding on these results.

Table of Contents

G Fabl ations iv
1__Introductionl 1
[T Motivationl e 1
.2 Contributionl e 1
M3 Outlind o 2

2 Background| 3
2.1 Concepts and technologies| 3
RIT _GPU. . . .o 3

212 UMA and NUMAI 000 3

RI3 Dockerl. . . o o 3

2.1.4 MPILand NCCLI e 3

2.1.5 PCI Express| e 4

2.1.6 NVIink 2.0 and NVSwitchl oo oL 4

2.2 Project relevant GPUs| o o 4

4

2.2.2 NVIDIA Tesla V100 5

i\ 5

2.3 Computing systems|. 5
[2.3.1 IBM Power System AC922(., 5

2.32 NVIDIA DGX-2l 6

2.4 Benchmark suites e 7
.41 SHQOC e 7

4.1 NVIDIA DGX-2

4.2 IBM Power System AC922|. 28
4.3 NVIDIA DGX-2 and IBM Power System AC922 comparison|. 32
4.4 GeForce GTX 980, Tesla V100 and Titan RTX comparison| 38
4.5 Result summary| 43
4.6 Benchmark suite evaluation| 47
[b__Conclusion and Future Work] 48

ii

[References]

[Appendix A Annotated Bibliography|

[Appendix B System Information|

[Appendix C Setup|

[Appendix D Benchmark Results|

iii

50

55

59

65

71

List of abbreviations

Abbreviation Explanation

Al Artificial Intelligence

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

FLOPS Floating Point Operations Per Second

GCC GNU Compiler Collection

GEMM GEnaral Matrix Multiply

GPU Graphics Processing Unit

GT/s Giga Transfers per second

HPC High Performance Computing

MPI Message Passing Interface

NCCL NVIDIA Collective Communication Li-
brary

PCle Peripheral Component Interconnect Ex-
press

QPI Intel QuickPath Interconnect

SSL Secure Sockets Layer

TC Tensor Cores

Table 1: Table of abbreviations and explanations

v

1 Introduction

Every year computer technology advances and contributes to new concepts and more processing
power. New GPUs with new exiting cores are launched, such as the NVIDIA Tensor Cores and
the NVIDIA Ray Tracing Cores. The interconnects have also improved, NVSwitch is a new and
effective way to connect GPUs.

Multi-GPU systems are launching with different interconnect configurations, where DGX-2 and
IBM Power System AC922 are two examples.

There is a lot of new technology waiting to be fully utilized by HPC and Al applications. There
are many new hardware and software optimization techniques for the computing technology. With
the high interest for Al the last years, a lot of new technology are targeting Al It can be challenging
to figure out how this can be used for HPC applications.

This report focuses on benchmarking GPUs and multi-GPU systems, and it will mostly focus
on the hardware optimizations. Even though CPUs are important for performance, the bench-
marking will target the GPU performance and the interconnects between GPUs and between CPU
and GPU. The results will show benchmarks from evaluating how the systems are connected to
microbenchmarks for GPUs. There is also benchmarks for some real application kernels and Tensor
Cores for both Volta and Turing architecture.

In this report, we present the systems we benchmarked: NVIDIA DGX-2, two versions of IBM
Power System AC922, a computer with a GeForce GTX 980 GPU, and a computer with a Titan
RTX GPU. The GTX 980 GPU is included to see the differences in performance with a GPU that
is more common to have for an ordinary computer user.

The benchmarking process has a main focus on HPC benchmarks, but there are still some deep
learning results for easier evaluating Tensor Core performance. The benchmarking comes from four
different benchmark suites: SHOC, a relatively old benchmark suite, which makes it interesting to
finding out if it is still relevant for new systems. DeepBench is a deep learning benchmark suite,
but it still has some benchmarks relevant to HPC. The benchmark suites Tartan and Scope are
two that has most focus on benchmarking interconnects.

1.1 Motivation

The motivation for this project comes from the need for investigating new GPU features for perfor-
mance with NVIDIA DGX-2 and IBM Power System AC922, and exploring the possible improve-
ments using NVIDIA Tensor Cores leads to for HPC applications.

We also wanted to explore new hardware technologies on GPUs and how effective they are.

1.2 Contribution

This project contributes by providing sort of a guide for which systems should be used for which
task. Though work has already been done comparing the Power AC922 and DGX-2, we wanted to
include comparison with GPUs as the GeForce GTX 980 and the Titan RTX.

The earlier work that has compared the systems, has had more specified tests and not as large
scope as this report has. We focus on the single GPUs, the systems and the interconnects.

The report is comparing the systems that the students at NTNU have access to, and finding
out what kind of applications or operations to do on which systems. This could be helpful to other
users of the systems.

1.3 Outline

This report consists of these chapters with this structure:

Background describes the basic concepts and technologies needed for using the benchmark
suites, relevant GPUs with their architectures for the tested systems. It also contains details about
the systems that are benchmarked, the different benchmark suites that were used in this report
and related work.

Setup, Approach and Benchmark Suites has a system setup for each benchmarked
system, reasons for choosing the benchmark suites, how the benchmarking is conducted, challenges
that occurred during this project and the different characteristics and what is wanted to be bench-
marked for the systems.

Results and Discussion contains the most interesting results from the benchmarking and
discusses and analyses these results.

Bl Conclusion and Future Work summarizes the results and makes conclusions based on
the results. Also, a part with future work is provided to know what could be investigated more.

The report also consists of multiple appendices containing additional information and data for
interested readers:

[Al Annotated Bibliography has a list of citations and why they are relevant to this project.

System Information contains information about how the GPUs are connected to each
other and the CPU in a topology, information about the different GPUs in the system and the
NVLink status.

[Cl Setup has information and guides for how to build and run the benchmarks on the different
machines with and without Docker.

Benchmark Results includes more detailed results than the ones included in 4l Results
and Discussion.

2 Background

2.1 Concepts and technologies
2.1.1 GPU

A graphics processing unit (GPU) is a processor specialized in graphic processing and parallel
computations. GPUs were originally developed for just graphic processing, but more recently
developed GPUs includes extra support for general purpose computing, which is called general-
purpose GPU (GPGPU). Operations that traditionally would be done on a CPU are done on the
GPU for GPGPU. This can be more efficient because of the GPU architecture which is more suited
for parallel computing. GPUs are good at handling specific tasks at a high speed and CPUs can
handle multiple different types of operations better and are more versatile. The bus between a
CPU and GPU can often be a bottleneck to the performance. [I] [2]

2.1.2 UMA and NUMA

UMA (Uniform Memory Access) and NUMA (Non-uniform Memory Access) are two types of shared
memory models for multiprocessor systems. The models describe how memory and hardware are
shared between the processors. For the UMA architecture there is one memory for the processors
to share. This leads to the same access speed for every processor. It can work fine when there are
few processors, but does not scale very well. In a multiprocessor system with NUMA architecture,
each processor has its own local memory. The memory access speed will depend on which memory
the processor needs, and it is a good architecture for when it mostly needs its own local memory.
A NUMA node is a CPU-memory couple and can include hardware like GPUs. [3]

2.1.3 Docker

Docker is an application that makes it possible to run applications with their dependencies inside an
isolated container. It is made to be portable such that running the same Docker image on different
host platforms will use the same environment settings. It is isolated from the host operating system
such that it does not interfere with the files and environment variables or other Docker containers
running on the same host machine. [4]

NVIDIA Docker is an extension to Docker and enables the use of GPUs to accelerate applications
inside containers. [5]

2.1.4 MPI and NCCL

MPI (Message Passing Interface) is a standardized interface of protocols and functions for passing
messages and communicating in a parallel environment with multiple computers. MPI provides a
set of functions that are used in the implementations to communicate between the nodes. [6] There
exist many different implementations, such as Open MPI [7], Spectrum MPI [8] and MPICH [9].

NCCL (NVIDIA Collective Communication Library) is a library providing MPI similar functions
such as AllReduce, AllGather and Broadcast, to the available GPUs within and across multiple
nodes. [I0] It is however minor differences from normal MPI implementations, for example such
that it can have many ranks related to the same process. It can also be used together with an
MPI program. This can for example be that the MPI implementation provides the CPU to GPU
communication and NCCL provides the GPU to GPU communication. [11]

2.1.5 PCI Express

PCI (Peripheral Component Interconnect) Express, or PCle for short, is a bus standard that
provides communication between connected components in a computer, such as hard drives and
graphics cards. The normal connection between the GPU and CPU is done over PCle. However,
this can be a bottleneck due to its maximum transfer rate of 8 GT /s per lane for version 3 and 16
GT/s per lane for version 4. [12] [13]

2.1.6 NVLink 2.0 and NVSwitch

NVIDIA NVLink is a GPU interconnect which offers much faster data transfer and is more scalable
than using the PCle. [I4] NVLink can be used for both GPU to GPU and CPU to GPU connection.
For each lane in the NVLink it has a transfer rate of 25 GT/s. [I5, p. 115] This can reduce the
bottleneck caused by transferring over the PCle bus.

NVSwitch is a switch for connecting NVLinks together. It has 18 ports for connecting NVLinks
and each NVLink connected can achieve simultaneously 25 GB/s bandwidth speed in both ways.
In total the NVSwitch can therefore achieve a total bandwidth speed of 900 GB/s. [16] p. 3]

In Figure [1] below it is shown the connections consisting of NVLinks between the GPUs and
NVSwitches. This is for the NVIDIA DGX-2 system.

GPU GPU GPU GPU GPU GPU GPU GPU
8 9 10 11 12 13 14 15

NVSwitch ”/ NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch
NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch
w— T
GPU I GPU GPU GPU GPU I I GPU I GPU GPU I
0 1 2 3 4 5 6 7

Figure 1: NVSwitch topology on DGX-2 [17), p. §].

2.2 Project relevant GPUs

2.2.1 NVIDIA GeForce GTX 980

The NVIDIA GeForce GTX 980 is a graphics card from 2014 with the Maxwell 2.0 architecture. It
has 4 GB of GDDR5 memory with a bandwidth speed of 224 GB/s. It can achieve performances
of 4.9 teraFLOPS for single precision and 155.6 gigaFLOPS for double precision. The GPU is
equipped with 2048 CUDA cores. [18]

The Maxwell architecture introduced improved Streaming Multiprocessor (SM) architecture
design. The architecture included more power efficient processors in numerous ways, for example
by increasing the number of instructions per clock cycle. [19]

2.2.2 NVIDIA Tesla V100

The NVIDIA Tesla V100 is a GPU based on the Volta architecture and there exists versions with
16 GB or 32 GB of the memory type HBM2 (High Bandwidth Memory) with a bandwidth speed
of 900 GB/s. It can achieve performances of 125 teraFLOPS for deep learning (mixed precision),
15.7 teraFLOPS for single precision and 7.8 teraFLOPS for double precision. The GPU is equipped
with 640 Tensor cores and 5120 CUDA cores. [20], p. 27]

Volta is the first architecture with specialized mixed-precision cores called NVIDIA Tensor
Cores.

The Tensor Cores can perform one matrix multiply and accumulate operation in one clock
cycle on a 4x4 matrix. Tensor Cores performs operations in mixed precision. The input data is
half precision, multiplication is in half precision and accumulation is in single precision. This will
lead to some precision loss, which deep neural networks can be tolerant to. HPC applications, on
the other hand, cannot always handle the precision loss. [2]]

2.2.3 NVIDIA Titan RTX

The NVIDIA Titan RTX is a graphics card based on the Turing architecture. The GPU has 24 GB
of GDDR6 GPU memory and with a bandwidth of 672 GB/s. The card can achieve performance
of 130 teraFLOPS with its 576 tensor cores made for mixed precision. The GPU also has 4608
CUDA cores. [22]

The Turing architecture provided new and improved Tensor cores. A part of the new design is
the added INT8 and INT4 precision modes for inference operations. [23, p. 4]

Another new feature on this graphics card is Ray Tracing cores. These cores came with the
Turing architecture.

2.3 Computing systems

2.3.1 IBM Power System AC922

The IBM Power System AC922 is a system designed for giving great performance to data analytics,
HPC applications and especially Al training. IBM Power System AC922 will be referred to as Power
AC922 from now on. The system has two IBM POWERS9 processors, the first chip with PCle Gen4
which has twice the bandwidth of the previous PCle generation. [24] [25]

The Power AC922 supports up to 4 or 6 NVIDIA TeslaV100 GPUs depending on the model,
where the GPUs can have 16GB or 32GB memory. [20} p. 4-8] The GPUs are split evenly between
two POWER9 CPUs. If there are a total of four GPUs, two will be directly connected to the first
CPU and the other two will be connected to the second CPU, as can be seen in Figure |2l The
GPUs are connected to their CPU and to any siblings with NVLink 2.0. The NVLink 2.0 channels
are called NVLink Bricks, and each GPUs and CPUs has six of them. The NVLink Bricks are
combined to achieve the highest bandwidth attainable. This means that if the Power AC922 has
a total of four GPUs, there will be NVLink Brick groups of three (Figure , and with six GPUs
there will be groups of two to ensure connection between a CPU and its connected GPUs and the
connection between the GPUs connected to the same CPU. [20} p. 12-15]

— =

NVIDIA NVIDIA NVIDIA NVIDIA
Volta Volta Volta Volta
GPU GPU GPU GPU
| v/50 GBps per channel (Brick) |
NVLink 2.0 150 GBps aggregated
™ bandwidth
4H (3 Bricks)
| | '/17.5 GBps per channel
— 1o — | ¥ DORDEM——]
m—1 v — | —oomeDmM]
— v —— | —C——ooreomM)
— 1751 —— POWERS X Bus POWERS T e 17311 —
[E—1 51 ——— CRU0 64 GBps RO [y S— 15—
— v 7317 — I e 27511 —
— 117371 — [L oomomm
E— 11317 — L S > .1 —
—J "4-7“ s —— t— roecemxecen |

PCle Gen2 x4 PCle Gen2 x4 PEX PCle Gen2 x4

Internal Storage
MG uss Controller

T

Internal Rear Front
USB UsB UsB

PCle Gen2 x2 PCle Gen2 x1

2 x 1Gbps Ethernet
Broadcom

=

—

EInES

2x
RJ-45

Figure 2: Logical system diagram for IBM Power System AC922 with four GPUs [20, p. 14].

2.3.2 NVIDIA DGX-2

NVIDIA DGX is a series of systems created by NVIDIA for deep learning and complex Al appli-
cations. DGX-2 is version two of this system line and is approximately twice as fast as version one
(DGX-1). It consists of 16 Tesla V100 GPUs with 32 GB of memory each, which is 512 GB in total.
The system has in total 81 920 CUDA cores and 10 240 Tensor cores. [26] The system consists
of two baseboards, with each having 8 GPUs. To increase the communication speed between the
GPUs, they are connected with 12 NVSwitches, as can be seen in Figure[I] Six NVSwitches belongs
to each baseboard, which means that the connection must traverse one NVSwitch if both GPUs
are on the same baseboard, and through two NVSwitches if the GPUs are on different baseboards.
All GPUs in this system have a bonded set of six NVLinks between each other as shown in Listing
[13]in Appendix

The system has two Intel Xeon Platinum 8168 CPUs with 24 cores and a base clock frequency
of 2.7 GHz. Between the two CPUs there is a QPI connection and each CPU has a PCle connection
with two PCle switches to each GPU on their baseboard as can be seen in Figure[3} It can achieve
the maximum performance for deep learning applications of 2 petaFLOPS which means that this
system may be well suited for large workloads.

11V100 V100H
100G pCiE] || | [peiE 100G
NIC SW SW NIC
1_ V100 V100 J
PCIE CIE
SW SW
H\v100 V100H
100G PCIE j —L PCIE 100G
NIC SW] il SW NIC
[“vioo z T E—v100] [
86 | QP! [PCIE E [PCIE| QP17 o
X — SW X6 % % X6 SW -— X
| = = V100H
100G pee) [[0 = = | [peE 100G
NIC SW SW NIC
i V100 V100 I
PCIE CIE
SW SW
HV100 (V100 ‘L ’—
100G PCIE] | | PCIE 100G
NIC SW | Lsw NIC

'|[V100

Figure 3: Interconnect diagram for DGX-2 [27, p. 19].

2.4 Benchmark suites
2.4.1 SHOC

The Scalable HeterOgeneous Computing (SHOC) benchmark suite includes a series of benchmark
programs for measuring performance and stability on systems. SHOC was made to effectively test
systems with multiple GPUs and CPUs. It is almost a decade since this suite was published and
since this was before even Tensor Cores was invented, it does not use tensor cores for accelerating the
computations of the benchmark applications. The suite provides a set of benchmark applications for
measuring the performance of different high performance computing for both clusters and individual
computer systems. [2§]

As described in "The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite” by An-
thony Danalis et al.[29], the benchmarking suite is divided into three different levels of benchmark
applications. These are named level 0, 1 and 2 respectively. The first level is for measuring hardware
interconnect speeds and device characteristics, such as transfer speed on the bus and maximum
FLOPS. The second is for measuring performance for basic algorithms such as GEMM and FFT.
The third level is for measuring the performance of real world applications.

This benchmarking suite is also categorized into three different types of running the applica-
tions. These are EP (embarrassingly parallel), Serial and TP (true parallel). Table |2/ has a list of
benchmark applications from SHOC that are relevant for this report. All of these benchmarks are
related to HPC.

Benchmark

Description

BusSpeedDownload Measures the bandwidth transfer speed over the PCle-bus from
the host to the device.
BusSpeedReadback Measures the bandwidth transfer speed of reading back data over

the PCle-bus from the device.

MaxFlops (maxspflops
and maxdpflops)

Measures the maximum floating-point performance for different
floating point operations. This does not include PCle transfer.

Stencil2D (stencil and
stencil_dp)

Measures the performance of single and double precision for 2D
9-point stencil computations.

and

QTC (atc
qtc_kernel)

Measures the performance of the Quality Threshold Clustering
algorithm. qtc includes the PCle transfer time and qtc_kernel
does not.

Table 2: Table of SHOC benchmarks analysed in this report

2.4.2 DeepBench

DeepBench is a benchmarking suite containing deep learning operations made by Baidu Research,
which is a company that focuses on Al research. [30] It consists of microbenchmarks for a set of
architectures e.g. Intel, ARM and NVIDIA. The benchmarks are for measuring the performance of
operations that are used in deep learning frameworks such as Tensorflow [31] and Torch [32]. The

benchmarks can only be run on one GPU at the time.

In this report, the focus will be on the NVIDIA benchmarks. The different benchmark appli-
cations for the NVIDIA benchmarks are GEMM, convolutional neural network, recurrent neural

network, sparse matrix operations multiplication and AllReduce using MPI and NCCL.

Table [3| contains the benchmarks from DeepBench relevant to this report. These are relevant
to HPC because they benchmark operations that are common for computation as well as deep

learning.

Benchmark

Description

GEMM train (float)

Measures the performance of training with float operations used
for GEneral Matrix Multiplication.

GEMM
int8)

infer (float,

Measures the performance of inference with float or int8 precision
operations used for GEneral Matrix Multiplication.

CONYV infer (int8)

Measures the performance of inference with integer 8 precision op-
erations used for Convolutional Neural Network. CNNs are mostly
used for image and video classification.

MPI NCCL AllReduce

Measure the performance of the MPI communication operation
AllReduce. AllReduce is about combining the values of all ranks,
performing an operation such as sum or min and reducing it to all
the ranks.

Table 3: DeepBench benchmarks analysed in this report

2.4.3 Tartan

Tartan is a benchmark suite with focus on evaluating interconnects created by Ang Li et al. [33]
The creators of Tartan wrote the ” Evaluating Modern GPU Interconnect: PCle, NVLink, NV-SLI,
NVSwitch and GPUDirect” [34] paper.

Inside the Tartan benchmark suite it contains microbenchmarks for measuring latency and
bandwidth for P2P and Collective Communication (CL), for both intra-node (scale-up) and inter-
node (scale-out) systems. [33]

Tartan’s benchmark applications are modified version of the ”CUDA SDK Code Samples” [35].

When the tests use PCle mode it means that the communication will go via the host. When the
mode is NVLink, the function cudaDeviceEnablePeerAccess is enabled, and the communication
will go directly from one GPU to another GPU in addition to the possibility of accessing the other
device’s memory. [30] [37]

Table [] contains two benchmark applications from Tartan that are relevant for this report and
related to HPC.

Benchmark Description

scale_up_p2p_test These benchmarks measure the unidirectional and bidirectional
and bandwidth and latency for intra-node systems. These benchmarks
scale_up_p2p_packet | give results for both NVLink mode and PCle mode.

Table 4: Tartan benchmarks analysed in this report

2.4.4 Scope

Scope is a benchmark framework for both POWER and x86_64 processor architectures. It is
created by people at the Center of Cognitive Computing System Research (C3SR) in collaboration
with the IMPACT group at the University of Illinois[38]. It provides a framework that can be
used for making different benchmark applications that can be ran with this framework. Scope
includes multiple benchmark suites that uses the framework, two examples are Comm|Scope [39)
and NCCL|Scope [40]. Comm|Scope measures GPU data transfer performance from latency and
memory transfer speeds. NCCL|Scope, that measures GPU collective communication performance
using NVIDIA’s NCCL library.

Table [5] and Table [6] shows the benchmarks relevant to this project from both the Comm
and NCCL benchmark suites. These are both relevant to HPC because they both measure the
performance of communication, which is important when for example transferring large amount
and/or fast data between nodes in systems.

Benchmark Description
Comm_Memcpy_GPUToWC GPU to write-combining host
Comm_Memcpy_WCToGPU Write-combining host to GPU
Comm_Memcpy_GPUToHost GPU to pageable host
Comm_Memcpy_HostToGPU Pageable host to GPU

Table 5: Comm|Scope benchmarks analysed in this report

Benchmark Description

NCCL/ops/broadcast NCCL Broadcast. Broadcast is an MPI operation that copies a
buffer from the root node to all the ranks.

Table 6: NCCL|Scope benchmark analysed in this report

2.5 Related work

Ren et al. wrote a paper called ”Performance Analysis of Deep Learning Workloads on Leading-
edge Systems” [41] where they also benchmarked the DGX-2 and the IBM Power System AC922.
?Evaluating Modern GPU Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect” by
Li et al. [34] is the paper that presents Tartan. In this paper the authors describe evaluation DGX-
2 and Summit, which contains IBM Power Systems AC922. W. Feng has a presentation about
”OpenCL and the 13 Dwarfs” [42] where he writes about the 13 Dwarfs and a benchmarks suite
called OpenDwarfs. C. Pearson et al. wrote a paper called ” Evaluating Characteristics of CUDA
Communication Primitives on High-Bandwidth Interconnects” [43]. This paper writes about the
Scope| COMM benchmark suite.

Markidis et al. wrote a paper called "NVIDIA Tensor Core Programmability, Performance &
Precision” [21] and it addresses some challenges with using the NVIDIA Tensor Cores for HPC
when it comes to precision and performance.

NVIDIA Tensor Cores are hardware units used in GPUs from NVIDIA with Volta architecture or
newer architecture. They are specially designed for Al applications and provide better performance
for deep learning than when using CUDA cores. Since the Tensor Cores are designed for Al it is
very interesting to see how they perform for HPC applications.

The paper also goes in depth on how to program the Tensor Cores and how to decrease precision
loss. The authors used a technique they called precision refinement and noted that optimized
versions of this techniques are possible. The version they used were only for an estimation of
computational cost. It would be interesting to see how it would have performed with a fully
optimized version of refinement. How would the computational cost for ensuring precision be then?

The results show that by using the Tensor Cores there can be achieved a great performance
boost, at the cost of less precision. By using the precision refinement technique, there is still a
greater improvement in performance compared to not using Tensor Cores, but with only a small
amount of error.

Another perspective that could be interesting is exploring the power consumption with and
without Tensor Cores, and with and precision refinement for Tensor Cores.

The paper has a thorough evaluation of strength and weaknesses for Tensor Cores and how to
best use them for HPC applications. The results show that Tensor Cores will most likely be very
helpful in HPC applications in the future and that AT is not the only area who benefits from this
new hardware feature.

Another thing that could be interesting when using Tensor Cores is comparing the performance
increase for a typical HPC application with the performance increase for an Al application. This
will show how much more beneficial they possibly would be to Al than to HPC.

Another paper that discusses the usage of NVIDIA Tensor Cores is ”Harnessing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers” by
Haidar et al. [44] This paper discusses using the NVIDIA Tensor Cores for a well known HPC
problem Ax = b. A is a large dense matrix. Tensor Cores provides mixed precision mode, and a
double precision result is needed for the problem.

10

To accelerate solvers for the problem, mixed precision iterative refinement technique is used.
The authors made changes to an existing technique to adjust it for the usage of Tensor Cores. For
the mixed precision iterative refinement technique, low precision is used for LU factorization, then
the factorization is used in a refinement loop, and higher precision can be used for the residual.

This is highly related to the topic in the sense that NVIDIA Tensor Cores in a GPU is used to
perform iterative refinement, which is a technique often used in HPC applications.

The results show that by using the framework of algorithms the authors created, there is a
great performance increase when using Tensor Cores. It would have been interesting to see a more
in-depth error analysis for the technique included in the paper.

The authors used real world matrices in addition to the constructed matrices to illustrate how
the results could look like if this was used in practice. This is a great way to show how this
technique, used on Tensor cores, can be applied to real cases.

The authors mentioned that they would like to measure the energy efficiency of using the
technique on Tensor Cores. They assume that a four times speedup would at least lead to four
times energy improvement. This would be interesting to test.

From these two papers on NVIDIA Tensor Cores, it is safe to say that these cores can be used
for multiple types of HPC applications, even when precision is important. Another new hardware
feature that is interesting is the Ray Tracing (RT) Cores that is included in the new NVIDIA
Turing architecture and how these cores can be used in HPC applications.

Salmon et al. found a way to use RT Cores for a HPC purpose in a paper called ” Exploiting
Hardware-Accelerated Ray Tracing for Monte Carlo Particle Transport with OpenMC” [45]. RT
Cores are cores to improve ray tracing algorithms. These algorithms are used for improving graph-
ical rendering, which is great for video games. The paper describes using OpenMC to run on the
RT Cores. OpenMC is a particle transport simulation code for running on the CPU.

The authors used techniques to run the particle transport simulation on the RT Cores instead
of just the CPU. The simulations are represented as a problem that could be run on the RT Cores.

This paper showed significant performance increase on multiple OpenMC models when using
the RT Cores compared to just using CPU.

This research could lead to other HPC applications being tested and used on RT Cores in the
future. Utilizing the TR Cores for particle transport simulation is a great way to show that a
hardware feature made for graphics can be used for a scientific HPC problem.

So far it is shown how two types of new cores, Tensor Cores and RT Cores, in NVIDIA GPUs
can be used for different HPC applications, even though they were not originally designed for this
purpose. Another type of hardware that can be used to accelerate HPC performance are new GPU
interconnects.

Li et al. writes about different GPU interconnects in the paper ”Evaluating Modern GPU
Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect” [46]. NVLink and NVSwitch
interconnects are relatively new GPU interconnects from NVIDIA, they can be seen as new GPU
features for applications for HPC and other areas.

In the last years there have been an increase in the number of GPUs in machines for HPC and
AT This escalation has led to the need for better and better interconnects between the GPUs and
between CPU and GPU. This is the authors’ reason for wanting to evaluate modern interconnects.

The evaluation consisted of Collective and Peer-To-Peer (P2P) communication patterns. Col-
lective communications are characterized by having multiple senders and receivers. Examples are
broadcast, where one GPU sends something to all other GPUs, and allreduce, where reduction is
performed, and all GPUs gets the result. The Collective communication were tested using different
number of GPUs. P2P communication measures the performance of the interconnects on one GPU
to another GPU. There is one sender and one receiver, and the test results shows the performance of

11

each GPU-GPU combination. The evaluation of Collective and P2P communications in the paper
is comprehensive and detailed.

The results of the evaluation show that the specific GPU combination when using a system with
multiple GPUs is important and can be essential when trying to achieve best possible performance
and GPU communication. These results are therefore useful information for HPC applications. The
results also show that new interconnect solutions improve communication speed between GPUs.
Better interconnects between GPUs leads to better performance for HPC applications.

This paper only focuses on the performance of interconnects between GPUs, not CPU-GPU
communication. Great performance of CPU-GPU interconnects is also important to ensure that
HPC and other applications run as fast as possible. Summit, one of the supercomputers evaluated
in this paper, uses NVLink 2.0 as interconnect between CPU and GPU. This interconnect could be
interesting to compare to another CPU-GPU interconnect, like PCle.

These new hardware features from NVIDIA have been useful for the performance of HPC
applications. Next, two papers which focuses on GPU memory will be discussed.

Sullivan et al. have written a paper called ”Buddy Compression: Enabling Larger Memory for
Deep Learning and HPC Workloads on GPUs” [47] about memory compression. An issue with
GPU memory, is that it is quite small compared to CPU memory. On the other hand, GPU has
very high memory bandwidth. When applications have high memory usage, the memory capacity
issue is usually solved with more GPUs or extra algorithmic complexity. To increase effective GPU
memory and bandwidth, the authors of this paper presented the Buddy Compression scheme.

Buddy Compression involves compressing data and putting the compressed data on the GPU
device memory. If this data does not fit in the memory, the remaining part will be placed on a
larger and slower buddy-memory connected to the GPU with a high bandwidth interconnect. When
changes in compressibility happens, there is no requirement for moving data in the GPU memory.

The paper shows that by utilizing this technique, a 1.5x-1.9x memory compression ratio can
be accomplished for HPC workloads. Using the technique compared to GPUs that has larger
memory, Buddy Compression has 1-2 % worse performance. This is not a lot of percent worse, and
it is probably worth adding a buddy-memory instead of buying a GPU with the highest memory
available. Specially if the buyer is a GPU user that needs a lot of memory and want to save money.
To know exactly how much can be saved, a cost analysis needs to be done, and this was not included
in the paper.

Buddy Compression is a technique that could make HPC applications perform better without
increasing GPU memory, but by increasing the buddy-memory. One disadvantage with this scheme
is that another memory and interconnect is needed. But since the other memory can be a slower
memory, it would not necessary be a big sacrifice to acquire a such buddy-memory.

This technique adds hardware to improve memory capacity for GPU. The next paper will also
include discussions about memory for GPUs and is a software feature to improve GPU memory
performance for HPC applications.

The last paper that will be introduced in this section is ” Performance Evaluation of Advanced
Features in CUDA Unified Memory” by Chien et al. [48] The paper discusses the advanced features
"prefetch” and "memory advises” from CUDA Unified Memory (UM). CUDA UM is a memory
address space that can be accessed by every CPU and GPU in a system. This paper evaluates the
performance effects when using these features with applications.

The "memory advises” feature makes it possible for the programmer to advise CUDA UM
about data access patterns. The ”prefetch” feature makes it possible to prefetch pageable memory
with a function, which can reduce page faults. The authors of this paper made a benchmark
suite to evaluate performance when using the features. There were not many benchmarking suits
for this purpose since these features are relatively new. They compared using CUDA UM alone,

12

CUDA UM with "memory advises”, CUDA UM with ”prefetch”, CUDA UM with both ”memory
advises” and ”prefetch” and not using CUDA UM. This led to this being a comprehensive analysis
of performance when using and not using the advanced features.

The authors concluded with that "memory advises” and ”prefetch” were effective and easy to
use. The features gave a performance boost for some systems in some conditions. These CUDA
UM features can be seen as features to use on the GPU, and since they often improve effectiveness
related to memory, they can definitely be used to help HPC applications achieve better performance.

It is challenging for HPC applications that GPUs has significantly less memory than CPUs.
This is one of the reasons for the creation of CUDA UM (with the advanced features) and Buddy
Compression. These techniques handle the issue of small memory in different ways and it would be
interesting to see in-depth comparisons of them with other techniques that improves performance
through improving memory handling.

In conclusion, there are many different new ways HPC applications can be boosted in per-
formance. Some of them is using hardware designed for other applications, as for Tensor Cores
and RT Cores. When the interconnects improve, it leads to better performance for not only HPC
applications, but everything that is run on the GPU. Another way to improve HPC applications
that is discussed is improving GPU memory, either by expanding it to fit more data or by using
advanced features from CUDA.

13

3 Setup, Approach and Benchmark Suites

This section starts with describing the systems that were benchmarked and their characteristics.
Next, the reasoning for choosing the benchmark suites is described. After this, the benchmarking
process is described, and a section of the issues that occurred during the project timeline. Lastly,
the different areas that we wanted to benchmark are described.

3.1 System setup

The systems we benchmarked were a computer with a NVIDIA GeForce GTX 980 GPU, a computer
with a NVIDIA Titan RTX GPU, two of the IBM Power System AC922 and the NVIDIA DGX-2

system.

NVIDIA GeForce GTX 980 based system

This system has a NVIDIA GeForce GTX 980 GPU with 4 GB memory and an Intel Core i7-
6700K CPU. There is a PCle interconnect between the GPU and the CPU. Additional hardware
specifications are shown in Table Appendix [B] has additional information about the GPU in
some listings. Listing [1| shows the topology, Listing [2| shows that the system can not use NVLinks,
and Listing [3| shows extra GPU information.

GeForce GTX 980 system
CPU Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz with 4

cores.

Maximum clock frequency: 4.2 GHz.
2 threads per core, total 8 threads.

RAM 16 GB main memory
4 GB GPU memory
GPU NVIDIA GeForce GTX 980, 4 GB.
CPU-GPU Interconnect | PCle
OS Ubuntu 18.04.3

Table 7: Hardware specification for NVIDIA GeForce GTX 980 based computer

NVIDIA Titan RTX based system

This computer has a NVIDIA Titan RTX graphics card with 24 GB GPU memory. PCle connects
the GPU to the CPU, which is an Intel Core i9-9900K processor. The Titan RTX GPU has 576
Tensor Cores, and more specifications can be seen in Table [§] More information about the GPU
can be found in listings in Appendix [B] Listing] shows the topology, Listing [5] shows that the
graphics card can have two NVLinks and Listing [6] displays extra GPU information.

14

Titan RTX system

CPU

cores.

Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz with 8

Maximum clock frequency: 5 GHz.
2 threads per core, total 16 threads.

RAM

16 GB main memory
24 GB GPU memory

GPU

NVIDIA Titan RTX, 24 GB. 576 Tensor Cores.

CPU-

GPU Interconnect | PCle

OS

Ubuntu 18.04.3

Table 8: Hardware specification for NVIDIA Titan RTX based computer

IBM Power System AC922

The two Power AC922 systems are of the model 8335-GTH, which among other things means that
they have air cooling instead of water cooling [20]. The systems have two POWERY9 processors
each. One of the systems has four NVIDIA Tesla V100-SXM2 GPUs with 32 GB memory each, and
the other one has two NVIDIA Tesla V100-SXM2 GPUs with 16 GB memory each, named Yme
and Mini Summit respectively. The hardware specifications are shown in Table the difference
between them is the number of GPUs and their GPU memory. See Listing [9] and Listing in
Appendix |B| for GPU information about the systems. The listings show that the SXM2 model has
a power limit of 300W. Another difference between the GPUs on the two systems is that the Tesla
V100-SXM2 with 16 GB memory (on Mini Summit) has a minimum power limit of 100W whereas
the Tesla V100-SXM2 with 32 GB memory (on Yme) has a minimum limit of 150W. This can be
seen when running the command nvidia-smi -q -i O.

Yme (Power AC922) Mini Summit (Power AC922)
CPU 2x POWER9 CPUs with 16 cores each. 2x POWERY9 CPUs with 16 cores each.
Maximal clock frequency: 3.8 GHz. Maximal clock frequency: 3.8 GHz.
4 SMT threads per core, total 128 threads. | 4 SMT threads per core, total 128 threads.
RAM 512 GB main memory 512 GB main memory
128 GB GPU memory 32 GB GPU memory
GPU 4x NVIDIA Tesla V100-SXM2, 32 GB. 2x NVIDIA Tesla V100-SXM2, 16 GB.
640 Tensor Cores. 640 Tensor Cores.
GPU-GPU | NVLink 2.0 NVLink 2.0
Interconnect
CPU-GPU NVLink 2.0 NVLink 2.0
Interconnect
0S Red Hat Enterprise Linux 7.6 Red Hat Enterprise Linux 7.6

Table 9: IMB Power System AC922 hardware specification

15

Yme, the system with four GPUs, has two GPUs connected to each processor with three NVLink
2.0 bricks between. There are also three NVLink 2.0 bricks between the two GPUs connected to
each CPU. Figure [4] shows the architecture of Yme. For the outprinted topology of Yme see Listing

[7in Appendix [B] All four GPUs in this system has all six NVLinks 2.0 bricks active. This can be
seen in Listing [§

Tesla V100 Tesla V100 Tesla V100 Tesla V100

[oi—|[sd [Loi—|Le

3 bricks 3 bricks
l | I | I | l |
- _— -— 7
-— — L —
- Power9 o - Power9 o
- o X bus - o
R il

Figure 4: Nlustration of how the GPUs and CPUs are connected on Yme (Power AC922 with four
GPUs). The illustration is made in draw.iol

Mini Summit, the system with two GPUs, has one GPU connected to each processor. This
system also has three bricks of NVLink 2.0 connecting the GPUs to their CPUs. Mini Summit’s
architecture can be seen in Figure See Listing [10] in Appendix [B| for the outprinted topology.
Both the POWER9 CPUs and the Tesla V100 GPUs have possibility for six NVLink 2.0 bricks to
another device, but this system does not use the other three bricks. See Listing [L1]in the same
appendix for the NVLink active status for the GPUs.

Both systems is divided into two NUMA nodes, where in Yme each node has one CPU and two
GPUs and in Mini Summit each node has one CPU and one GPU.

16

https://www.draw.io/

Tesla V100 Tesla V100

| ©: | ©:

NVLink 2.0 NVLink 2.0
3 bricks 3 bricks
11hd [N
-—
e Power9 ko e Power9 R
- o X bus - o
LA LA

Figure 5: Illustration of how the GPUs are connected to the CPUs on Mini Summit (Power AC922
with two GPUs). The illustration is made in draw.io.

NVIDIA DGX-2

The NVIDIA DGX-2 has two Intel Xeon Platinum 8186 processors and 16 NVIDIA Tesla V100-
SXM3 GPUs, each with 32 GB memory. These Tesla V100 graphic cards differs from the SXM2
version in that they have different power consumption limits and there are some architectural
differences [49]. In Listing from Appendix there is shown that Tesla V100-SXMS3 has a power
limit of 350W, 50W more than the SXM2 models. This extra power is dedicated to increasing
the clock rate [50] which is about 60-80 MHz higher than for the SXM2 models, depending on the
usage. The clock rates can be seen by running the nvidia-smi -q -i 0 command. This command
also shows that the GPUs in the DGX-2 have a minimum power limit of 100W.

This system has NVSwithes between the GPUs and PCle connection between CPU and GPU.
The connection between the GPUs traverses through a bounded set of six NVLinks, the NVLink
status can be seen in [I4 The system is divided into two NUMA nodes with 8 GPUs per node.
This topology can be seen in Listing [13] in Appendix [Bl The graphic cards has 640 Tensor Cores
and more specifications can be seen in Table

17

https://www.draw.io/

Heid (DGX-2)

CPU 2x Intel(R) Xeon(R) Platinum 8168 CPUs @ 2.70GHz
with 24 cores each.
Maximum clock frequency: 3.7 GHz.
2 threads per core, total 96 threads.
RAM 1510 GB main memory
512 GB GPU memory
GPU 16x NVIDIA Tesla V100-SXM3, 32GB.
640 Tensor Cores.
GPU-GPU Interconnect | NVSwitch
CPU-GPU Interconnect | PCle

OS

Ubuntu 18.04.3

Table 10:

Nvidia DGX-2 hardware specification

18

3.2 The benchmark suites

The benchmark suites were chosen for different reasons. There were some challenges finding new
and popular benchmark suites that targets purely HPC applications, which lead us to including a
benchmark suite with Al focus called DeepBench.

All of the chosen benchmark suites were made by people or organizations that are known in the
field or have published papers with multiple citations. Another common trait for the benchmark
suites is that they all are tailored for heterogeneous systems.

SHOC

SHOC were chosen because it is a known benchmark suite by well acknowledged people in the HPC
field and the creators of SHOC has published a paper describing the benchmark suite that has
achieved hundreds of citations [29]. Another reason that we chose this suite is that it claims to be
very scalable and could therefore be used to measure performance for systems such as the DGX-2
which has 16 GPUs.

However, the fact that SHOC has not had many updates in the last years might result in the
benchmark suite not being optimized for the latest hardware and their features. This lead us to
being interested to test if it still worked and showed interesting results on newer architectures, and
if it still is relevant.

DeepBench

The DeepBench benchmark suite were chosen to evaluate the different GPUs that supports Tensor
Cores and see how the performance differs with and without this GPU feature. The fact that it is
possible to choose to run the benchmarks with or without Tensor Cores is great for this purpose. It
was also chosen to compare devices that does not have Tensor Cores at all (GTX980) with devices
that has the cores. We also wanted to see how the new Turing Tensor Cores (from the Titan RTX)
compared to the older Volta Tensor Cores.

Even though DeepBench is a benchmark suite with Al focus, there are still benchmarks that
provides results that can be useful to evaluate HPC performance. The GEMM operation is used
in multiple benchmarks from the suite, and is very relevant to HPC applications. As mentioned
earlier, there is shown that Tensor Cores can be useful for applications in HPC as well as for Al

This benchmark suite was also chosen because it is relatively widely used, judging by the stars
on their GitHub repository, and it has recently been updated. It is also interesting to see how the
GPUs preforms with Al operations to see some variations in the results.

Tartan

The paper about evaluating modern GPU interconnects [34] intrigued us and made us look into
the benchmark suite they created, Tartan. The benchmark suite is specialized in measuring the
performance of interconnects.

Even though they already benchmarked the DGX-2 and Summit supercomputer, which includes
multiple IBM Power System AC922, we wanted to test the systems we had access to. They did not
do any intra-node benchmarks on Summit, which we wanted to do on the Power AC922 systems.

Judging by the Tartan GitHub repository [33], the benchmark suite is less known than SHOC
and DeepBench, but it is created by Ang Li, a scientist from Pacific Northwest National Laboratory
(PPNL), which lead us to believe that this was a dependable benchmark suite.

19

Scope

We found the Scope benchmark suite when researching Tartan. We found a paper called ” Evaluating
Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects” by Pearson
et al. [43] that were referencing a paper about Tartan. They wrote about how Scope|COMM is
different from Tartan especially in how they focuses more on GPU-CPU communication. We found
this interesting and chose to use this suite for this purpose.

Since we were going to use the Scope| COMM benchmark suite, we decided to also use the
Scope|NCCL benchmark suite for convenience. Scope|NCCL focuses on collective communication.

Scope is a relatively new and because of this not as known as the other benchmarks suites. The
papers about Scope seems good, which gives confidence in that the suite is well made.

In the GitHub description the benchmark suite specifies that it is a framework for both POWER
and x86_64 processor architectures. This fits our project as they are including all the systems we
tested.

20

3.3 Benchmarking process

The initial plan was to create Dockerfiles for every benchmark suite and alter the Dockerfile to
match each separately system that were benchmarked. Then build the Docker images and run
them without any clashes with other environment settings. These containers use the NVIDIA
Container Toolkit extension with regular Docker to run GPU accelerated Docker containers. To
use Docker was not as problem free for all the systems, as described in the next section about
challenges during the benchmarking process, which lead to two system not using Docker.

These issues lead to possible differences in the benchmark results with the potential overhead
for the systems that ran the benchmarks inside Docker containers compared to those that did not
use containers. NVIDIA claims this overhead to possibly be negligible depending on the workload
[51].

The benchmark suites that used Docker containers, would use the NVIDIA Container Toolkit
to build and run GPU accelerated Docker containers. These containers included their respectively
source codes for the benchmark suites and during the building process of the containers they down-
loaded and installed the needed dependencies. After building a container it can be run many times
with the same isolated environment settings without reinstalling software or adjusting anything.
For more specific information about building and running Docker containers see Listing and
Listing [17]in Appendix [C] The software and other prerequisites for building the benchmark suites,
with and without Docker, are listed in their respective sub section in Appendix [C]

To make sure our results from the benchmarks were correct and could be trusted, we ran the
benchmark suites multiple times for different settings and ensured that specific criteria between
each run was fulfilled.

We made sure that there were no other significant processes running on the CPUs and no
processes running on the GPUs at all. As other processes using the interconnects, CPUs, memory
and GPUs can lead to wrong measurements. We used the nvidia-smi command line tool to verify
that there were no other processes running on the GPUs, and that there were no other major
processes on the CPU by using the built in Linux command top.

To make the benchmarks consistent for all of the systems, we made sure that the temperature
of the GPUs was no more than 40 C°. We are unsure how much this could affect performance,
but D. C. Price et al. wrote a paper called ”Optimizing performance-per-watt on GPUs in High
Performance Computing” [52] that shows differences in performance when the temperature varies.

The benchmarks from SHOC and DeepBench, the benchmark suites that could potentially use
Tensor Cores, were profiled to check if Tensor Cores were utilized. For verifying that Tensor cores
were used, we used the nvprof profiling command and looked for kernels that contained the number
884 [53, p. 12]. SHOC did not use Tensor Cores and DeepBench used them when enabled in the
building.

The main software dependencies other than the NVIDIA Docker that was needed to run the
benchmark suites were CUDA, MPI, NCCL, CMake/Make, cuDNN, cuBLAS. Before performing
the building process of a benchmark suite, the needed dependencies would have to be installed. See
the complete list of software dependencies for each benchmark suite in Appendix [C]

21

3.4 Challenges that occurred during the benchmarking

During the benchmarking process we stumbled upon numerous challenges. These occurred in the
setup, building and running phase of the benchmark suites and lead to the benchmarking process
being more difficult and time consuming than we initially thought.

The benchmark suites

The SHOC benchmarking suite required some work to be able to build and run. One of the issues
was that during the project timespan, the CUDA version was updated to 10.2 and was then updated
for our systems. In that version the compiler linking options changed order, which lead a script in
this benchmark suite to not being able to compile the CUDA-code. A fix for this compilation issue,
making the benchmark suite compatible with CUDA version 10.2, is provided in our Git fork with
link in Appendix [C]

Another issue was that the source code had fairly outdated configuration scripts for detecting
the system the benchmarks was running on. This was an issue for the POWERY9 architecture and
the RHEL 7.6 operating system. This was not that difficult to fix, and the script just needed to be
updated from its origin source, which was luckily updated very recently.

Inside the Docker container and when running the benchmark suite, the mpirun command was
needed to run as root, which lead to another change in the Git fork providing the --allow-run-as-root
flag.

DeepBench did not lead to any issues when running inside a Docker container.

The running of the Tartan benchmark suite did not result in any major issues either, but there
were required some minor changes before building to make it work for the tested systems. This is
more explained under the subsection for Tartan in Appendix [C|

The benchmark suite Scope, did not require much work for the compiling part of the benchmarks
used. This was mostly due to the source code included already provided Docker-files for building
it. But for finding the correct commands to use and parameters for them, did result into trial and
error on command options.

In the process of choosing and testing benchmark suites, we had the intention of trying out
other suites than were used in this report. This led to much time used troubleshooting them.
Two of the suites we tried to make work is the HP DLBS and OpenDwarfs benchmark suites. HP
DLBS was very problematic to get to work inside Docker container due to it needed to start the
benchmark applications in Docker containers. OpenDwarfs was unfortunately unable to compile
for our systems, both inside and outside of Docker. We were unable to fix both these suites during
the project timespan.

Not using NVIDIA Docker on the Power AC922 systems

The first issue that occurred was with the NVIDIA Docker installation on both Power AC922
systems. The installation did not work with the runtime CUDA and would therefore not recognize
the GPU devices connected, making it almost useless for the benchmarking suites, which relies on
running the code on the GPUs. This was an issue that occurred early in the project, and there
were a lot of back and forth communication with the system administrators of the systems. The
conclusion became that in order to fix the NVIDIA Docker, it had to update to a newer version,
since the one installed was fairly outdated (version 1.13.1 vs. the current being 19.03 at that time).
The newer version of Docker required a newer version of the operating system as well, which in the
timeline of this project was not possible to do. This indicated that this would became a harder

22

problem to solve. After the multiple unsuccessful attempts of updating the Docker version, the
solution to this problem was to abandon the running of the benchmarks inside Docker containers
and run each of the benchmark suites ”bare metal” on both the Power AC922 systems. This
made them much more likely to cause trouble during the building and running of the benchmark
applications due to the non-isolated environments.

Several of the benchmark suites required an implementation of MPI for building and running.
This was very time consuming to fix and were fixed very late in the project timeline. Inside Docker
containers this was fairly simple, but without Docker this was more problematic. Since there
was installed multiple MPI implementations on the systems already, we tried to make it work with
them. At first the system environment variables were misconfigured and did not match the installed
MPI installation. This was due to the MPI implementation in the environment variables, named
Spectrum MPI needed extra linker options to work. After this was fixed the implementation worked
for compilation, but showed error when trying to run it. The error was related to an evaluation
period. However, there was installed another MPI implementation, Open MPI, on the Power AC922
systems. After changing the environment variables to match this MPI, both the compilation and
the running of the benchmarks worked.

Another time consuming issue in the project was with the installed CUDA on the Power AC922
machines. This was something a system administrator needed to fix.

Other than the challenges with MPI, CUDA and the general challenges not related to running
without Docker for SHOC and Tartan, these benchmark suites did not cause any more problems.

DeepBench required additional dependencies such as NCCL, cuDNN and cuBLAS to compile
and run. This was also something that the system administrator needed to install.

Scope was more complicated to fix. It needed NCCL as well as a newer version of CMake than
was already installed on the systems. After some troubleshooting, we chose to install a new version
locally from source for our own user. After installing the newer version and trying to make the
benchmark suite, it did not complete compiling the code. It relied on Hunter, a package manager
used for downloading and installing dependencies [54]. Hunter was required to retrieve files with
cURL [55] with SSL enabled, which it was not for our locally compiled CMake. This was a known
issue for the benchmark suite and the package manager, but was still difficult to solve.

After trying to compile cURL from source with SSL enabled, it led to having to compile
OpenSSL from source as well. At that point we had compiled OpenSSL, cURL and CMake and was
ready to compile and download the dependencies using Hunter for the benchmark suite. However,
after another attempt of compiling the code it still did not complete. This time due to the fact
that some of the source code in one of the benchmark applications relied on newer code syntax
and therefore needed a newer version of GCC. At first, we tried installing the latest version of
GCC at that point (9.2) and compiled from source for our user. However, the current version of
NVIDIA CUDA compiler (NVCC) did not support newer version than 8. After installing the same
version (7.4.0) that was used in the Docker containers for the non Power AC922 systems, setting
this version in the environment variables paths and specifying to use this version in the compiling,
the compilation was successful.

23

3.5 Benchmark areas

The characteristics of the GPUs and the architecture of the systems affected what we wanted to
benchmark and compare.

Benchmarking DGX-2

For the DGX-2 system we wanted to collect benchmark results to see if there were any significant
performance differences when the GPUs that are communicating are on one baseboard compared
to them being on separate baseboards. If the GPUs are on separate baseboards, the connection
would have to traverse two NVSwitches.We also wanted to see if the distance between the GPUs
could be relevant, and if there were any differences in which GPU to use when communicating with
host.

Benchmarking the Power AC922 systems

When benchmarking the Power AC922 systems we wanted to look into how the systems are different.
We wanted to see if it would matter for our tests that Mini Summit (2 GPUs) has 16 GB memory
on its GPUs and Yme (4 GPUs) has 32 GB memory per GPU.
We also wanted to see if there were any significant difference when choosing which GPUs to use
on the systems, and if some pairs of GPUs would be better for some types of communications.
The main comparisons between the systems were done in this part, but some tests when the
number of GPUs were significant were done in the next part.

Comparing DGX-2 and the AC922 Power Systems

This part focuses on the differences of the interconnects of the systems. We also wanted to see how
the performance would change when using different amounts of GPUs for the systems.

Comparing single GPUs

This part focuses on comparing the NVIDIA GeForce GTX 980, the NVIDIA Tesla V100 and the
NVIDIA Titan RTX graphic cards. We had three different versions of the Tesla V100 cards, where
two of them has 32GB GPU memory but are different models (SXM2 and SXM3) and the third is
an SXM2 with 16 GB GPU memory.

This comparison consists of testing general performance with different benchmarks, and testing
how much the Tensor Cores improves performance on Tesla V100 with Volta architecture and Titan
RTX with Turing architecture.

24

4 Results and Discussion

This section will present and discuss the most interesting results from the areas we wanted to
benchmark. There will also be introduced causes or theories for why the results are how they are.
Appendix [D] contains most of the results used for the graphs, and all of the results are found in a
GitHub repository referred to in the appendix. In this repository, Python scripts to produce the
charts in this chapter are included.

At the end of the section, a summary with the results can be found in a table, and lastly there
is an evaluation of the benchmark suites that were used.

4.1 NVIDIA DGX-2

When analyzing and benchmarking the DGX-2 system we performed tests within the system to
find out if there were any significant differences between the GPU-CPU communication for different
NUMA nodes. We also wanted to investigate if there were any differences in performance for GPU-
GPU communication when the GPUs are on the same baseboard compared to them being on
different baseboards and needing to traverse two NVSwithes.

GPU-GPU communication with Tartan

The GPU-GPU communication were tested by using the Tartan benchmark suite and its
scale_up_p2p-packet benchmark. This benchmark provided the results for different data sizes in
matrices, as can be seen in Listing in Appendix For this section we analyzed the latency
and both unidirectional and bidirectional bandwidth for data size 33554432. The latency were
measured in microseconds and the bandwidth in GB/s.

The benchmarking was done for two types of transfer types, for the one called PCle the con-
nection will go via the host, and for the one called NVLink the connection will go directly from
GPU to GPU if possible. When the latency or bandwidth is measured for a GPU to itself, the
connection will not go to host and back to GPU.

Figure [6] shows a heat map of the latency between GPU devices when using PCle connection.
The dark purple color represent the worst latency, with a maximum value of around 4000 us, and
the lowest latency is represented by the dark green color. The absolute lowest latency is the latency
when a GPU is communicating with itself at around 80 us and does not traverse interconnects.

The results from the PCle latency test shows that the latency from a GPU on one baseboard
(half of the GPUs) to a GPU on the other baseboard is around the same for all combinations. This
makes sense since the transfer data from the sender needs to pass through the senders CPU over
the QPI to the receivers CPU and lastly to the receiver GPU. This transfer path is the same for
all of these combinations.

When the latency is measured for a GPU on one baseboard to a GPU on the same baseboard,
there were some bigger differences than the previous observation. We can see that the latency
between a GPU on one half of a baseboard to a GPU on the same half is way worse (with a latency
of around 3400 us to 4000 us) compared to the latency between a GPU on one half of a baseboard
to a GPU on the other half of the same baseboard (which has a latency of around 3000 us to
3200 ps). These results are somewhat different from the results Li et al. presented in their paper
”Evaluating Modern GPU Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect” [34].
In the paper they stated that they could see this effect on the bandwidth results, but it was not
observed for the latency results. Our hypothesis is that they did not use a high enough data size

25

Deviceid © 1 2 3 4 5 6 7 8 9101112131415 Deviceid © 1 2 3 4 5 6 7 8 9101112131415

o 4000 0 4000
1 1
) 3500) 3500
3 3
4 r 3000 4 - 3000
5 5
6 2500 6 + 2500
7 Latency (ps) 7 Latency (us)
8 2000 8 2000
9 9
10 1500 10 I 1500
11 11
12 1000 12 1000
13 13
14 500 14 500
15 I 15 I
Figure 6: P2P PCle latency for DGX-2 Figure 7: P2P NVLink latency for DGX-2

to see this effect for latency. Their paper call this NUMA effect ”anti locality” and the definition
is that when data transfer between two GPUs has worse performance when the GPUs are closer
compared to when they are further apart. The authors of the paper believes that the anti locality
could come from the PCle-swiches with unbalanced physical signal paths on the chipsets. As we
can see in Figure [3| from [2| Background, the connection has to traverse though the same highest
level PCle switch twice, once on the way to the CPU and one back to the other GPU. If the GPUs
also share the same lowest level switch, the connection has to traverse two of the switches twice.
The fact that the switches has to be used multiple times, strengthen the hypothesis that this could
be a PCle-switch signaling complication.

This type of anti locality will not be relevant to where the GPUs are on different baseboards.
This is because the connection will not traverse the same PCle switches multiple times.

Another difference with our results compared to the results from the paper is that in our chart
we can see worse performance for the first pair in these halves of the baseboards. The pairs with
worst latency are GPU 0 and GPU 1, GPU 4 and GPU 5, GPU 8 and GPU 9, and GPU 12 and
GPU 13. The reason this is not shown in the paper could also be that the data size is too small.
Further tests need to be done to identify the reason for this result.

Another interesting observation is that there is lower latency on the first baseboard when a
GPU from one half of the baseboard communicates with one from the other half of the baseboard,
compared to the second baseboard. For example, there is lower latency when GPU 4 and GPU
0 communicates, compared to when GPU 12 and GPU 8 communicates. This could be such a
small difference that it is not necessarily important. If this result were to appear more, it could
potentially be that the first CPU is the "main” CPU, and communication has to go through it.

Figure [7|shows the same type of heat map, with the same colour scale as the previous chart, but
for NVLink connection. This result shows us that there is negligible difference in latency for the
GPU-GPU communication thorugh NVLink, even when the connection crosses two NVSwitches to
transfer data from one baseboard to the other baseboard.

Since the two heat maps uses the same colour scale, we can see that the latency is much lower for
the NVLink communication than for the PCle communication. This is expected because NVSwitch
is supposed to be much faster than PCle.

26

Figure [§ shows the P2P unidirectional bandwidth for PCle and NVLink in a logarithmic scale
because of the enormous value differences. In Figure [0] the bididrectional bandwidth for PCIe and
NVLink is shown in the same scale. These results are similar to the latency results, but not as
prominent.

The results shows that there are better performance for the bandwidth when the communication
is bidirectional than when it is unidirectional. This is probably because when the communication
goes both ways, there are more data transferred.

Deviceid © 2 4 6 8 10 12 14 Device |

3
o 10
10?

10

12

14
10!

Figure 8: P2P unidirectional bandwidth for DGX-2.
Right: PClIe. Left: NVLink

a

0 2 4 6 8 10 12 14

Deviceid © 2 4 6 8 10 12 14 Deviceid © 2 4 6

10° 108
10? 102
10
12
14
10t 100

Figure 9: P2P bidirectional bandwidth for DGX-2.
Right: PClIe. Left: NVLink

® o » N o

Bandwidth (GB/s)
Bandwidth (GB/s)
Bandwidth (GB/s)

CPU-GPU communication with Scope

Scope was used for evaluating the communication between CPU and GPU. The results in Table
[11] shows some results from CPU-GPU Memcpy with four different GPUs. There are not any
significant differences between the GPUs when the data transfers from GPU to CPU. There are
however some differences between the GPUs when host is transferring data to the GPU. There
could be many different reasons why this is the case. More benchmark data must be collected to
find the reason.

GPU 0 GPU 1 GPU 14 GPU 15
GPUToHost 1.47e409 1.48e+09 1.47e+09 1.48e+09
HostToGPU 4.66e+09 4.79¢+09 4.74e+09 4.81e+09
GPUToWC 1.31e+10 1.32e410 1.32e+10 1.32e+10
WCToGPU 1.15e+10 1.19e+10 1.19e+10 1.15e+10

Table 11: Scope| COMM Memcpy results for data size 30. The unit is bytes per second.

27

10°

Bandwidth (GB/s)

4.2 IBM Power System AC922

The Power AC922 systems were benchmarked by performing tests on each of the systems. Tests
were performed to reveal if there were any performance differences on when using different GPUs.
This section also contains some comparisons between the systems regarding which GPUs to use for
communication.

GPU-GPU communication with Tartan

Tartan was used to evaluate the GPU-GPU communication for the Power AC922 systems in the
same way, with the same data size, as for the DGX-2 system. Listing [30] and Listing [31] from
Appendix [D] shows the values from the benchmark from Yme (4 GPUs) and Mini Summit (2
GPUs) respectively.

Figure[10]shows the results from the latency benchmark for Yme (4 GPUs). We can immediately
see that the latency between GPU 0 and GPU 1 (both ways) are much lower than the latency
between GPU 2 and GPU 3 (both ways). The first two GPUs are directly connected to the first
CPU, and the other two are connected to the second CPU. A possible reason for these results could
be that CPU 0 is the "main” CPU, and all communication has to go through it.

The NVLink latency between two GPUs are shown in Figure We can see that the lowest
latency, not taking the communication with itself into account, is between the GPUs with direct
NVLink connection between them, GPUO-GPU1 and GPU2-GPU3, in their own NUMA node. The
highest latency is when a GPU communicates with a GPU on the other NUMA node. This makes
sense, since the connection has to traverse through two CPUs.

Since the same colour scale is used for both heat maps, we can see that there are differences
in latency for the maps when a GPU on one NUMA node is communicating with a GPU on
the other NUMA node. The communication will traverse though both CPUs. The reason why
the latency is lower for the NVLink mode is probably because the function that is used to make
the connection traverse through NVLinks, cudaDeviceEnablePeerAccess, enables direct access to
memory allocations on a peer device, and for PCle communication the GPU has to access memory
from CPU.

Device id 0 1 2 3 Device id ? } 2 3
0 1200 1200
1000 1000
1
800 800
Latency (ps) Latency (ps)
600 600
2
400 400
3
200 200
Figure 10: P2P PCle latency for Yme Figure 11: P2P NVLink latency for Yme
(Power AC922, 4 GPUs) (Power AC922, 4 GPUs)

28

Figure [12| and Figure [13|shows the latency for Mini Summit (2 GPUs) with PCle and NVLink
respectively. Since these charts has the same colour scale as the latency charts for Yme, we can see
that the latency is slightly lower for Mini Summit compared to Yme when two GPUs on different
NUMA nodes are communicating. For PCle the latency is around 1090 us for Mini Summit, and
around 1110 ps for Yme. The NVLink latency is around 815 ps for Mini Summit, and around 822
us for Yme. Since the difference is so minimal, we will wait to discuss this result until any other
similar results appear.

Device id (.’ 1 Device id 9 1

1200 1200

1000 1000

800 800

Latency (us) Latency (us)

600

400

200

Figure 12: P2P PCle latency for Mini Summit Figure 13: P2P NVLink latency for Mini Summit
(Power AC922, 2 GPUs) (Power AC922, 2 GPUs)

Figure [14 and Figure [T5] shows the unidirectional and bidirectional bandwidth for Yme respec-
tively. Figure [16| and Figure [17] also shows the unidirectional and bidirectional bandwidth, but for
Mini Summit respectively. These results shows the same results that latency does.

Device id Device id Device id Device id 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3
10° 10% 10%
0 0 0 0
1 1 1
2 102 2 102 2 102
3 3

-

Bandwidth (GB/s)
Bandwidth (GB/s)
Bandwidth (GB/s)

N

w
w

Figure 14: P2P unidirectional bandwidth for Yme Figure 15: P2P bidirectional bandwidth for Yme
(4 GPUs) (4 GPUs)
Right: PCle. Left: NVLink Right: PCle. Left: NVLink

29

Bandwidth (GB/s)

Device id

0
1

0 1
10°
u 102

Device id

Bandwidth (GB/s)
Bandwidth (GB/s)

0
1

0 1
10°
i 102

Device id

0
1

Device id

Bandwidth (GB/s)

0
1

0 1 0 1
10° 10°
i 102 i 102

Figure 16: P2P unidirectional bandwidth for Mini Summit Figure 17: P2P bidirectional bandwidth for Mini Summit
(2 GPUs)

(2 GPUs)

Right: PClIe. Left: NVLink

CPU-GPU communication with Scope

Right: PClIe. Left: NVLink

Scope| COMM with data size 30 was used to evaluate the communication between specific GPUs
and host. In Figure [I8 and Figure [I9] shows the Memcpy operation from GPU to host and host
to GPU respectively for each specific GPU. Yme (4 GPUs) has two NUMA nodes, the two first
GPUs are on the first NUMA node, and the two second GPUs are on the second NUMA node.
Mini Summit (2 GPUs) also has two NUMA nodes with one GPU each. Both of these bar charts
are quite similar in the way that the performance is better when using GPUs from the first NUMA
node compared to using GPUs from the second NUMA node, this applies to both Power AC922
systems.

The performance of the first GPU on each NUMA node for both systems is slightly better for
Mini Summit than for Yme. One possible reason for this could be that Mini Summit has one CPU
for each GPU, but Yme has to share the CPU between two GPUs.

14 1

Bandwidth (GB/s)

(o]

=
N
L

=
o
L

Mini Summit and Yme: Memcpy GPU to host

[0 Mini Summit
0 Yme

Figure 18: Memcpy GPU to host: Mini Summit
and Yme

30

14 1

Bandwidth (GB/s)

[ee]

Mini Summit and Yme: Memcpy host to GPU

=
N
L

=
o
L

0 Mini Summit
B Yme

Figure 19: Memcpy host to GPU: Mini Summit
and Yme

Bandwidth (GB/s)

Figure [20 and Figure 2I] shows the differences between the NUMA nodes better than the last

figures. We can see that the bandwidth when performing Memcpy from a GPU on the first NUMA
node to Write combining host is around double the bandwidth of the Memcpy from a GPU on the
second NUMA node. Most of the data sizes shows these results. We did not have enough time to
analyze why these benchmarks got these results, but our hypothesis is that the first CPU is the
”"main” CPU, and all communication has to go through it.

70

[e)]
o
L

w
o
L

w
o
L

Bandwidth (GB/s)
B
<)

20 1

10 -

Mini Summit and Yme: Memcpy GPU to WC

0 Mini Summit
0 Yme

70 1

Bandwidth (GB/s)
= N w B (6, [}
o o o o o o

o

Mini Summit and Yme: Memcpy WC to GPU

0 Mini Summit
0 Yme

Figure 20: Memcpy GPU to WC: Mini Summit and Figure 21: Memcpy WC to GPU: Mini Summit and

Yme

31

Yme

4.3 NVIDIA DGX-2 and IBM Power System AC922
comparison

In this section, results that compares NVIDIA DGX-2 and the IBM Power System AC922 machines
are presented. The focus is on showing how the performance changes when using different amounts
of GPUs for the different systems.

GPU-GPU communication on one NUMA node with Tartan

Tartan was used for measuring the unidirectional bandwidth from a GPU to another GPU in the
same NUMA node. This comparison was only done with the DGX-2 and Yme, the Power AC922
with four GPUs, because Mini Summit only has two GPUs where each of them are on different
NUMA nodes.

Figure 22| and Figure [23| shows the unidirectional bandwidth for PCle and NVLink communi-
cation respectively. The values are averages of all the measurements of same NUMA node com-
munication. For the PCle communcation, the bandwidth for Yme is on average around 35 GB/s.
This is because the bandwith between the two GPUs on the first NUMA node is around 45 GB/s,
and on the second NUMA node around 25 GB/s. The DGX-2 shows a beandwidth of around 10.5
GB/s on average. This is way worse than the Power AC922 results, and shows the significance
of using NVLink interconnects to host instead of PCI Express. When using the PCle mode, the
connection will go via host.

The NVLink communication shows how the performance turns, this time the DGX-2 has the
best perfomance with an average of around 137 GB/s. The bandwidth Yme presents is around
71 GB/s. We can see that the performance for the DGX-2, with NVSwitch, is around double the
performance for the Power AC922, which uses NVLink between the GPUs. The reason why the
performance doubles is probably because for the DGX-2 the connection traverses a bounded set
of six NVLinks, whereas for Yme it is used three NVLink bricks between the GPUs on the same
NUMA node.

The results shows that using NVLink as connection between GPU and CPU is better than
PCle, and using NVSwitch between GPUs is better than NVLink.

Unidirectional PCle bandwidth from GPU to GPU in the same NUMA node ypjdirectional NVLink bandwidth from GPU to GPU in the same NUMA node

351 140
307 1201
G 25 = 100
o o
S]
= 201 e 80
£ £
3 e
315 2 60
C c
a a
101 40 A
5 201
" : 0 ' ,
Power AC922 (Yme) DGX-2 Power AC922 (Yme) DGX-2

Figure 22: Unidirectional PCle bandwidth from GPU Figure 23: Unidirectional NVLink bandwidth from
to GPU in the same NUMA node GPU to GPU in the same NUMA node

32

Bandwidth (GB/s)
w N
o o

N
o
L

10

CPU-GPU bus speed with SHOC

To further investigate the CPU-GPU bus, SHOC was used to measure the speed between the GPU
and the CPU.

Figure [24] and Figure |25/ shows the bandwidth of GPU to one CPU for download and readback
respectively. The value is the average of the measurements for each GPU-CPU bus speed. These
results shows again how much faster the CPU-GPU connection is with NVLinks compared to PCle.
Mini Summit shows again that its performance is slightly better than Yme.

CPU - 1 GPU: Bus speed download CPU - 1 GPU: Bus speed readback
50
__ 401
&
S
£ 301
o
2
©
C
& 20
10
. . . 0 . . .
Power AC922 Power AC922 DGX-2 Power AC922 Power AC922 DGX-2
(Mini Summit) (Yme) (Heid) (Mini Summit) (Yme) (Heid)
Figure 24: Bus speed download CPU-GPU Figure 25: Bus speed readback CPU-GPU

NCCL Multi-GPU communication with DeepBench and Scope

To evaluate the multi-GPU communication we used DeepBench and Scope with NCCL. The GPUs
are chosen in order, which means that if two GPUs are used, they are the two first GPUs.

Figure shows a graph with time in ms when performing AllReduce with NCCL MPI. The
three systems are shown with values up to their total number of GPUs. Mini Summit, the Power
AC922 with 2 GPUs, has a much higher time usage with two GPUs than the other two systems.
This is because it does not have a direct connection between the GPUs. Yme, the Power AC922
with 4 GPUs, has much better performance when using two GPUs compared to Mini Summit. The
performance decreases significantly when three or four GPUs are used. This happens for the same
reason as for the other Power AC922 system, the connection has to traverse through two CPUs.
For Heid, the DGX-2 system, we can see that the performance is better than the other system for
every number of GPU. There is a slight time increase for every time the GPU number increases.
These results shows that the DGX-2 is more scalable.

In these results we can see the same as the previous result, that using NVSwithes with six
NVLink bricks between all GPUs is faster than using three NVLink bricks between GPUs in both
halfes of the system, when it comes to GPU-GPU communication without the need to involve
CPUs.

33

Multi-GPU systems: NCCL MPI AllReduce

16 A
—@— Mini Summit (Power AC922, 2 GPUs)
—8— Yme (Power AC922, 4 GPUs)
14 A Heid (DGX-2, 16 GPUs)
[]
12 4
m J
5 10
[J]
£
F 81
6 .
4 .
2 4 6 8 10 12 14 16

Number of GPUs

Figure 26: NCCL MPI AllReduce with DeepBench

In Figure [27] the broadcast operation with NCCL is evaluated with the Scope benchmark suite.
These results also includes numbers for using only one GPU. The DGX-2 system has better perfor-
mance than the other systems for every amount of GPUs. We can see the same trend in this graph
as the previous, when looking at how the performance changes for the Power AC922 systems when
using GPUs where the connection has to traverse through two GPUs.

Another point to notice is that Mini Summit has a slightly better performance than Yme when
using one GPU.

34

Multi-GPU systems: NCCL Broadcast

—&— Mini Summit (Power AC922, 2 GPUs)
100 —8— Yme (Power AC922, 4 GPUs)
Heid (DGX-2, 16 GPUs)

80 A

Bandwidth (GB/s)
o)
o

S
o
1

20 1

1 2 3 4 5 6
Number of GPUs

Figure 27: NCCL Broadcast with Scope

Multi-GPU communication with SHOC

SHOC was also used for evaluating the multi-GPU communication for the systems. Size 4 was used.
In Figure [28| the time in seconds is shown for the Quality Threshold Clustering (QTC) algorithm.
This benchmark is a real application kernel and PCle transfer is included in the time.

Since the number of GPUs starts on two, the communication has to traverse through the CPUs
for Mini Summit. Mini Summit is still the system with the best performance in this instance, which
can be surprising considering the previous results that shows the opposite. Our hypothesis is that
it has better performance because it uses one GPU on each NUMA node, where both has its own
CPU. For the other two systems the two first GPUs are chosen, which means that they are on the
same NUMA node and share the same CPU.

For Yme and the DGX-2 we can see that the time is improving when GPUs are added. A
difference between this results and the previous results is that Yme and DGX-2 has almost the
same performance when using four GPUs. This leads us to believe that this benchmark uses a lot
of CPU interaction instead of just GPU communication. Maybe because this is a real application
kernel benchmark.

35

10 Multi-GPU systems: QTC

[] —@— Mini Summit (Power AC922, 2 GPUs)
ol 2\ —e— Yme (Power AC922, 4 GPUs)
Heid (DGX-2, 16 GPUs)

Time (s)
[

2 4 6 8 10 12 14 16
Number of GPUs

Figure 28: QTC for multi-GPU systems

Figure 29 illustrates the performance in GFLOPS when performing the single precision Stencil
2D test. It shows graphs for two different scenarios for the systems. The solid lines shows the
performance when the chosen GPUs are on the same NUMA node if possible. The dashed lines
illustrates the performance when the GPUs are on different NUMA nodes. The performance from
dashed line for the DGX-2 system on four GPUs are GPU IDs 0, 1, 14 and 15, two on each NUMA
node. But the solid line shows the performance for GPU IDs 0, 1, 3 and 4, all on the same NUMA
node. When the number of GPUs increase to over half of the total, the results will be the same for
both type of lines, since the GPUs will be on different NUMA nodes.

These results shows the same results about Mini Summit’s performance as the last graph.

When comparing the performance for different NUMA nodes compared to the same NUMA
nodes for Yme and DGX-2, we can see that the performance when using different NUMA nodes
is often slightly better. For the DGX-2, the performance when using different NUMA nodes are
better on 2 and 4 GPUs, and almost the same on 6 and 8 GPUs. Since Mini Summit has the best
result for two GPUs, we can assume that there are some CPU communication involved. If there is
a lot of CPU communication, it makes sense that using GPUs on different NUMA nodes leads to
better performance because of the anti locality principle for the DGX-2.

This line chart also shows some interesting results regarding the DGX-2 lines. The performance
drops between 2 GPUs and 8 GPUs. A drop in performance is also the case for Yme, and then the
performance exceeds the performance of the DGX-2 for four GPUs. We did not have enough time
to analyze why these benchmarks got these results.

36

Performance (GFLOPS)

Multi-GPU systems: Stencil 2D

2200 A

2000 ~

1800 -

1600 -

1400 1

1200 A

1000 A

800 1

600 1

—@— Mini Summit (Power AC922, 2 GPUs)

—A- Yme (Power AC922, 4 GPUs) - Different NUMA nodes

—8— Yme (Power AC922, 4 GPUs)

—Ak- Heid (DGX-2, 16 GPUs) - Different NUMA nodes

—@— Heid (DGX-2, 16 GPUs)

6 8 10 12 14

Number of GPUs

Figure 29: Stencil 2D

37

16

4.4 GeForce GTX 980, Tesla V100 and Titan RTX
comparison

This section focuses on comparing the general performance and NVIDIA Tensor Core performance
of GeForce GTX 980, Tesla V100 and Titan RTX. There is also focus on comparing the different
Tesla V100 graphic cards: Tesla V100 SXM3 with 32 GB memory from DGX-2, Tesla V100 SXM2
with 32 GB memory from Yme (Power AC922, 4 GPUs) and Tesla V100 SXM2 with 16 GB memory
from Mini Summit (Power AC922, 2 GPUs).

General performance with SHOC

SHOC was used to generate results for general performance, and MaxFlops with single and double
precision were used as the benchmark.

Figure[30]and Figure [31]shows the performance in GFLOPS for all of the GPUs when performing
the MaxFlops test in single and double precision respectively. The results shows that for single
precision Titan RTX is quite a bit better than the rest of the GPUs. For double precision, on the
other hand, the performance is remarkably worse than the Tesla V100 cards, and it is not that
much better than the GTX 980 card. This is probably because the Titan RTX card is adapted to
have great deep learning performance. For deep learning applications the precision is not always
as important as it can be for HPC applications [2], and thus lower precision is prioritized.

The GeForce GTX 980 graphics card has the worst performance for both bar charts, as expected
considering its specifications.

The MaxFlops benchmark does not include PCle transfer, which means that the Tesla V100
from the Power AC922 systems does not get an advantage when it comes to this performance
comparison. The Tesla V100 SXM3 (32 GB) from the DGX-2 has the greatest performance of the
Tesla V100 cards for both precisions. This is probably not because of the memory size, since both
of the Tesla V100 SXM2 with same memory has almost identical performance. The fact that the
tests on the SXM2 cards were not run using Docker is probably not a reason for the SXM2 cards to
perform worse than the SXM3 card. The reason could in all likelihood be because of the different
model versions.

38

Single GPU comparison: MaxFlops SP Single GPU comparison: MaxFlops DP

175001 8000
7000
15000
9 £ 6000
S 12500 1 S
5 & 5000
g 10000 g
g 2 4000
© ©
£ 7500 £
8 £ 3000
¢ 5000 &
2000
2500 A 1000
0 . _— ' ' ' 0 , , , , ,
GeForce Titan RTX Tesla V100 Tesla V100 Tesla V100 GeForce Titan RTX Tesla V100 Tesla V100 Tesla V100
GTX 980 -SXM2 -SXM2 -SXM3 GTX 980 -SXM2 -SXM2 -SXM3
16GB 32GB 32GB 16GB 32GB 32GB

Figure 30: Single GPU comparision: MaxFlops SP Figure 31: Single GPU comparision: MaxFlops DP

Tensor Core performance with DeepBench

To evaluate how the GPUs utilized their Tensor Cores we used the DeepBench benchmark suite.
The Titan RTX card has 576 Tensor Cores, the Tesla V100 cards has 640 Tensor Cores and the
GTX 980 does not have any Tensor Cores.

Figure [32] and Figure [33] are both bar charts with results from GEMM Training with FP32
precision. The difference between the charts are the matrix sizes used for the GEMM operation.
The first chart uses the values (M, N, K, a_t, b_t) = (7680, 48000, 2560, 0, 0) and the second chart
uses (M, N, K, a_t, b_t) = (7680, 5481, 2560, 0, 1). The difference between the values are N (one
of the dimensions of the second matrix) and b_t (the second matrix is transposed). The difference
between these sizes is that the N value for the second chart is not dividable by four, but the N
value for the first chart is.

Figure [32] uses the matrix sizes that is dividable by four and all of the GPUs that has Tensor
Cores shows a great decrease in time when the cores are enabled. Figure shows that using a
matrix size that is not dividable by four leads to a very small time decrease when Tensor Cores
are enabled for the GPUs that has Tensor Cores. This leads us to believe that by using matrix
dimensions that will be dividable by four, the Tensor Cores will be more useful. This makes sense
because the Tensor Cores can only perform operations on 4x4 matrices.

Titan RTX cards have new Turing Tensor Cores that are better for inferencing and has modes
for int8 and int4 precision. For the benchmark in Figure the Titan RTX card does not improve
as much as the other graphic cards that has Tensor Cores when the cores are enabled. A reason
for this might be that the card is not optimized for higher precision and it has less Tensor Cores
than the Tesla V100 cards.

An observation from Figure [32]is that the performance for both of the Tesla V100 SXM2 cards
are worse than the performance for the SXM3 card when Tensor Cores are not enabled. But when
the Tensor Cores are enabled, the SXM2 cards have slightly better performance than the SXM3
card and notably better improvement percentage. Since the SXM2 cards are better in only one of
the scenarios it leads us to believe that the reason can not be anything external of the GPU. The

39

main difference between SXM2 and SXM3 is that the SXM3 has higher clock rate, which could
normally lead to better performance. There should be performed more tests to identify the reason
for this result.

400000 +

Time (us)

100000 -

GEMM Training, float (7680, 48000, 2560, 0, 0)

300000 A

200000 1

Tensor Cores disabled
Tensor Cores enabled

Titan RTX Tesla V100 Tesla V100 Tesla V100
SXM2 SXM2 5XM3
16GB 32GB 32GB

GeFL)rce
GTX 980

Figure 32: GEMM Training FP32.
(7680, 48000, 2560, 0, 0)

50000 1

10000 -

GEMM Training, float (7680, 5481, 2560, 0, 1)

Tensor Cores disabled
Tensor Cores enabled

GeF'orce
GTX 980

Titan RTX Tesla V100 Tesla V100 Tesla V100
SXM2 SXM2 -SXM3
16GB 32GB 32GB

Figure 33: GEMM Training FP32.
(7680, 5481, 2560, 0, 1)

Since there are plenty of benchmark results for different matrix sizes, we wanted to see how the

GPUs performed as a total for each category. We added up all of the times to get a total time for
all the operations.

Figure and Figure shows the time for all of the operations added for GEMM Training

FP32 and GEMM Inference FP32 respectively. The GeForce GTX 980 value is way above the chart
for both figures. For both of these bar charts we can see the same result with the Tesla V100 cards.
The SXM2 cards starts off worse than the cards with Tensor Cores and has the best performance
when Tensor Cores are enabled.

40

GEMM Training, float

(total of 75 operations)

3.0 GEMM Inference, float (total of 160 operations)
: 250000
Tensor Cores disabled Tensor Cores disabled
Tensor Cores enabled Tensor Cores enabled
2.5
200000 -
2.0
o 7 150000 -
g 2
£ g
F F 100000
1.0
50000 -
0.5
0.0 ; ; ; , ! 0 ; — . : 1
GeForce Titan RTX Tesla V100 Tesla V100 Tesla V100 GeForce Titan RTX Tesla V100 Tesla V100 Tesla V100
GTX 980 -SXM2 -SXM2 -SXM3 GTX 980 -SXM2 -SXM2 -SXM3
16GB 32GB 32GB 16GB 32GB 32GB

Figure 34: GEMM Training FP32.
Total sum of 75 operations.

Figure 35: GEMM Inference FP32.
Total sum of 160 operations.

Since the Titan RTX card has new Turing Tensor Cores that should be better at INTS8 oper-
ations, we added up the values for two more categories. Figure |36] shows GEMM Inference INT8
and Figure [37]shows Convolutions Inference INT8. The benchmark suite did not work for the GTX
980 cart with INTS8 precision, which is why it is not included in the new charts.

Figure [36] shows no difference in when Tensor Cores are enabled or disabled. Figure [37] shows

that Titan RTX is the only graphics

card with improvement when enabling Tensor Cores, it is

almost half of the time with Tensor Cores.

GEMM Inference, INT8

(total of 75 operations)

Oé:onvolutions Inference, INT8 (total of 107 operations)

180
70000 Tensor Cores disabled Tensor Cores disabled
Tensor Cores enabled 16000 1 Tensor Cores enabled
60000 -
14000 A
50000 4 12000 -
£ 200001 £ 10000
£ £
F 300001 £ 80007
6000 -
20000 A
4000 -
10000 | 0004
TitanRTX TeslaV100 TeslaV100 Tesla V100 Titan RTX Tesla V100 TeslaV100 Tesla V100
-SXM2 -SXM2 -SXM3 -SXM2 -SXM2 -SXM3
16GB 32GB 32GB 16GB 32GB 32GB

Figure 36: GEMM Inference INTS.
Total sum of 75 operations.

Figure 37: Convolutions Inference INTS.
Total sum of 107 operations.

41

When we look at Tensor Core performance, it is the improve percentage that is the most
interesting part, since the general performance is different for the GPUs anyway.

To give the Titan RTX a fair chance with its 576 Tensor Cores, we calculated what the perfor-
mance would be if it would have had the same amount of Tensor Cores as the Tesla V100 cards, 640
cores. After this, we found the percentage of time that using Tensor Cores lead to when comparing
usage and no usage of Tensor Cores. One other thing to note is that Titan RTX and Tesla V100
is not the same type of cards for different generations, which makes the comparison even harder.

Figure [38] shows the percentage of the time when using Tensor Cores compared to not using
Tensor Cores. We can see that for this figure that shows GEMM Training (FP32), Titan RTX
improved the non-Tensor Core time to around 45 % when the Tensor Cores are enabled. It is still
the SXM2 cards that has the best improvement, where when the Tensor Cores are activated it leads
to almost a quarter of the original time.

Figure[39shows that when the Titan RTX has activated Tensor Cores for Convolutions Inference
(INTS), it is around 40 % of original time.

All of these results shows that Titan RTX is great at lower precision calculations, and the Tesla
V100 cards are better at the higher precision calculations.

. Convolutions Interference, INT8
GEMM Training, float

100% 1

40.0%
80% 1
_ 5
& 30.0%1 v 60%-
) D
o 8
£ g
. o
S 20.0%- & 40%
1] o
o

10.0% A 20% 1

0% -

0.0% -

Titan RTX Tesla V100 Tesla V100 Tesla V100
-SXM2 -SXM2 -SXM3
16GB 32GB 32GB

Titan RTX Tesla V100 Tesla V100 Tesla V100
-SXM2 -SXM2 -SXM3
16GB 32GB 32GB

Figure 38: GEMM Training (FP32): Time percentage Figure 39: Convolutions Inference (INTS8): Time per-

with Tensor Cores compared to not using Tensor Cores centgge with Tensor Cores compared to not using Ten-
sor Cores

42

4.5 Result summary

This section contains four tables with summaries of the results found earlier and a small discussion
part for each of the results.

Type

Result

Discussion

NVIDIA DGX-2

PCle communication: GPUs that
are closer show worse performance
communicating than GPUs that are
further apart.

This is because of the anti locality effect, that
could be because of PCle-switch signaling com-
plications.

PCle communication: Every other
GPU neighbour pair shows worse
performance than the rest of the
neighbour pairs.

More tests needs to be done to identify a reason
for this.

PCle communication: Lower Ila-
tency on the first baseboard when a
GPU from one half of the baseboard
communicates with one from the
other half of the baseboard, com-
pared to the second baseboard.

More tests needs to be done, but this could pos-
sibly be because of a "main” CPU.

No significant difference in perfor-
mance when two GPUs commu-
nicates with each other through
NVSwitches no matter which pair.

This shows that data transfer over two
NVSwithes are just as effective as over one
NVSwitch.

Connection through NVSwitches
is much faster than connection
through PCle and host.

This is expected since NVSwitches are faster
than PCle interconnects.

Bandwidth results shows similar
performance as for latency.

This is since both benchmarks communicates
over interconnects.

There is better performance for the
bandwidth when the communica-
tion is bidirectional than when it is
unidirectional.

This is probably because when the communica-
tion goes both ways, there are more data trans-
ferred.

There are not any significant dif-
ferences between the specific GPUs
when the data transfers from GPU
to CPU. There are however some
differences between the GPUs when
host is transferring data to the

GPU.

There could be many different reasons why this
is the case. More benchmark data must be col-
lected to find the reason.

Table 12: Summarized results and discussion for DGX-2

43

Type

Result

Discussion

IBM Power System
AC922 comparison

Yme: The PCle latency between
GPU 0 and GPU 1 (both ways)
are much lower than the latency be-
tween GPU 2 and GPU 3 (both
ways).

A possible reason for these results could be that
CPU 0 is the "main” CPU, and all communica-
tion has to go through it.

Yme: The lowest NVLink latency
is between the GPUs with direct
NVLink connection between them.
The highest latency is when a GPU
communicates with a GPU on the
other NUMA node.

This is because the GPUs on the same NUMA
node have a NVLink connection between them.
When the GPUs are on different NUMA nodes
the connection has to traverse through two

CPUs.

Yme and Mini Summit: When a
GPU on one NUMA node is com-
municating with a GPU on the other
NUMA node there is a difference in
latency depending on if PCle mode
or NVLink mode is used. The la-
tency is lower for the NVLink mode

The reason why the latency is lower for
the NVLink mode 1is probably because
the function that is wused to make the
connection through NVLinks,
cudaDeviceEnablePeerAccess, enables di-
rect access to memory allocations on a peer
device, and for PCle communication the GPU
has to access memory from CPU.

traverse

Yme and Mini Summit: Memcpy
results shows huge differences in
bandwidth when performing Mem-
cpy from a GPU on the first NUMA
node compared to from a GPU on
the second NUMA node to WC
host.

We did not have enough time to analyze why
these benchmarks got these results, but our hy-
pothesis is that the first CPU is the ”main”
CPU, and all communication has to go through
it.

Mini Summit is generally slightly
better in performance than Yme

One possible reason for this could be that Mini
Summit has one CPU for each GPU, but Yme
has to share the CPU between two GPUs.

Table 13: Summarized results and discussion for the Power AC922 systems

44

Type

Result

Discussion

Power

AC922 and
DGX-2 comparison

The bandwidth for GPU to GPU
via host on the same NUMA node
on DGX-2 is way worse than the
bandwidth for the same scenario for

Power AC922.

This shows the significance of using NVLink in-
terconnects to host instead of PCI Express.

The GPU-GPU NVLink mode per-
formance for the DGX-2, with
NVSwitch, is around double the
performance for the Power AC922,
which uses NVLink between the
GPUs.

The reason why the performance doubles is
probably because for the DGX-2 the connection
traverses a bounded set of six NVLinks, whereas
for Yme it is used three NVLink bricks between
the GPUs on the same NUMA node.

Bus speed is better for Mini Summit
and Yme than for the DGX-2.

This is because Mini Summit and Yme uses
NVLink between GPU and CPU, but DGX-2
uses PCle.

DGX-2 has better performance than
the other systems for NCCL MPI
AllReduce and for NCCL Broadcast
for any GPU size.

This is because the DGX-2 only has NVSwitches
between GPUs. It is more scalable than the oth-
ers.

For the QTC algorithm, Mini Sum-
mit is the system with best per-
formance for two GPUs, which can
be surprising considering the pre-
vious results that shows the oppo-
site (since it is two different NUMA
nodes).

Our hypothesis is that it has better performance
because it uses one GPU on each NUMA node,
where both has its own CPU. For the other two
systems the two first GPUs are chosen, which
means that they are on the same NUMA node
and share the same CPU.

For the QTC algorithm, Yme and
DGX-2 has almost the same perfor-
mance when using four GPUs.

This leads us to believe that this benchmark uses
a lot of CPU interaction instead of just GPU
communication. Maybe because this is a real
application kernel benchmark.

Stencil 2D: When comparing the
performance for different NUMA
nodes compared to the same NUMA
nodes for Yme and DGX-2, we can
see that the performance when us-
ing different NUMA nodes is often
slightly better.

If there is a lot of CPU communication, it makes
sense that using GPUs on different NUMA
nodes leads to better performance because of the
anti locality principle for the DGX-2.

Stencil 2D: The performance drops
between 2 GPUs and 8 GPUs. A
drop in performance is also the
case for Yme, and then the perfor-
mance exceeds the performance of
the DGX-2 for four GPUs.

We did not have enough time to analyze why
these benchmarks got these results.

Table 14: Summarized results and discussion for DGX-2 and Power AC922 comparisons

45

Type

Result

Discussion

Single GPU compar-
ison

Titan RTX has much better perfor-
mance for single precision than dou-
ble precision

This is most likely because of the increasing deep
learning interest, which leads to more focus on
developing graphics cards with more support for
lower precision computations.

GeForce GTX 980 provides worse
performance than all of the other
cards.

Probably because it is older and have worse
specifications.

Tesla V100 SXM3 has better perfor-
mance than the Tesla V100 SXM2
cards for MaxFlops.

Probably because of the model type.

When using a matrix size that is di-
vidable by four, all of the Tensor
Cores shows a great decrease in time
when the cores are enabled. When
using a matrix size that is not di-
vidable by four there is a very small
time decrease when Tensor Cores
are enabled for the GPUs that has
Tensor Cores.

This leads us to believe that by using matrix
dimensions that will be dividable by four, the
Tensor Cores will be more useful. This makes
sense because the Tensor Cores can only perform
operations on 4x4 matrices.

The performance for both of the
Tesla V100 SXM2 cards are worse
than the performance for the SXM3
card when Tensor Cores are not en-
abled. But when the Tensor Cores
are enabled, the SXM2 cards have
slightly better performance than the
SXM3 card and notably better im-
provement percentage.

Since the SXM2 cards are better in only one
of the scenarios it leads us to believe that the
reason can not be anything external of the
GPU. The main difference between SXM2 and
SXM3 is that the SXM3 has higher clock rate,
which could normally lead to better perfor-
mance. There should be performed more tests
to identify the reason for this result.

Results shows that Titan RTX is
good for lower precision calculations
and Tesla V100 is better for higher
precision calculations

This makes sense for the Titan RTX card, which
is specialized for deep learning operations.

Table 15: Summarized results and discussion for the single GPUs

46

4.6 Benchmark suite evaluation

During this project we have experienced the strengths and the weaknesses for each benchmark suite
used in this report. They differed in the quality of the documentation, being updated recently and
complexity with configuring, setting up and running the suite.

The benchmark suite SHOC is a very popular benchmark suite in both stars on GitHub, as
well as citations for the associated paper. However, it has not been updated for some years and
both the documentation at the readme-file and the wiki-page at the GitHub repository page were
outdated. It is not immediately understandable what command to run and which parameters to
use. It is not the case for this benchmark suite that each benchmark application was documented
well either. This was something that also was wanted. The code for the benchmark suite was not
recently updated resulting in the code needed to be changed in order to run and compile for the
tested systems.

We profiled the SHOC commands when benchmarking and found out that the NVIDIA Tensor
Cores were not used in the benchmarks. This is due to the code not being updated to the latest
GPU features for performance.

We would like to claim that the SHOC benchmark suite is still relevant since we got some
interesting results from it. It could however need an update. The largest problem sizes are probably
approaching being too small.

Tartan was a benchmark suite that was easy to use. The code was recently updated and was
okay documented. The benchmark results should however have provided the results on a format
that could be easier to use in scripts and plotting of graphs.

DeepBench was good documented both for compiling and running, which lead to having less
problems with the benchmark suite itself. The benchmark should have better results for plotting
graphs using scripts as well. Some of the results could also been easier to interpret. When we profiled
the DeepBench commands when benchmarking we found out that the NVIDIA Tensor Cores was
being used in the benchmarks. This was good and showed that the benchmark application was
updated to newer GPU features. This makes the benchmark application able to compare the
performance of operations used in state of the art applications for High Performance Computing
and Al It was also very useful that one could choose to enable or disable the use of Tensor Cores.
It is a negative part that it is not possible to run the benchmarks on more than one GPU at a time.
This is something that should have been implemented. Another issue was that the benchmark suite
did contain too many different possibilities, making it hard to find the result that one wants.

The Scope benchmark suite generally needed more documentation as well, but especially for
running the benchmark applications. An issue for this benchmark suite was that when trying to
run the benchmark suite with more than 7 GPUs at a time, it would return out of memory error.

Commonly for all benchmark suites tested was that it would have been nice if the they had
documented a good data flow. This means documentation about where the data flows between the
CPU and GPU or GPU and GPU. Documentation such as that would have strengthen evidence
about the benchmark suites performance for the tested systems. An issue that could have been
fixed with multiple of the benchmark suites is that the benchmark suite should be able to detect
its own architecture without providing it with a parameter.

47

5 Conclusion and Future Work

This section will summarize the results and contain a conclusion for each system and GPU. Since a
huge part of the project timeline was used to troubleshoot and fix issues, this led to us getting the
results quite late in the process, and therefore getting a short period of time for analyzing results.
After the conclusion for the systems, there will be a part with future work.

The results showed that when a GPU on the NVIDIA DGX-2 communicates with another
GPU, the NVSwitch interconnect is obviously more efficient than going via the CPU and the
PCI Express. There are no significant differences when communicating through NVSwitches when
it comes to which specific GPUs to use. Some interesting results from the PCle interconnect
evaluation is the anti locality effect, which is when GPUs that are close shows worse performance
when communication compared to GPUs that are further away. The results also showed that
there were slightly worse performance on the second baseboard than the first baseboard in some
scenarios. Our hypothesis is that the first CPU is the "main” CPU. A result that needs further
work to decipher is the one where every other CPU neighbour pair shows worse performance than
the others when using PCle connections. For when the CPU is transferring data to the GPU, there
are some performance differences in for specific GPUs. This needs further work and data to figure
out the reason.

The conclusion is that when using the DGX-2 for multiple GPUs, neighbours should not be
chosen if there is need for much CPU-GPU communication because of the anti locality effect.

One results for Yme (IBM Power System AC922, 4 GPUs) the performance between two GPUs
on the first NUMA node compared to the two GPUs on the second NUMA node is way better. We
have a hypothesis that the first CPU is the "main” CPU. Since the GPUs on each NUMA node
has a three bricked NVLink between them, the communication between these GPUs will be faster
than going via two CPUs, even though there is NVLink connection from the GPU to the CPU too.

A GPU-CPU result for both of the Power AC922 systems is that the GPUs on the systems’ first
NUMA node have much better performance compared to the second NUMA node. Through almost
all of the tests that compared Mini Summit and Yme, Mini Summit has had the best results. This
might be because it has one CPU for each GPU.

It is a good idea to use Mini Summit if there is only need for one GPU, and Yme if there is a
need for two or more. If two GPUs are needed, it can be beneficial to use only one NUMA node
(the first), depending on the operations.

When comparing the Power AC922 systems to the DGX-2 we got some interesting results. The
DGX-2 is better for communication from GPU to GPU, but the Power AC922 systems are better
if you only need one GPU and a lot of GPU-CPU communications. The results showed that there
were different scenarios where the systems were best, but if a multi-GPU application is to be run,
there could be an advantage to use the DGX-2. The DGX-2 is also more scalable.

For a real application kernel benchmark (Stencil 2D) there were a drop in performance for
DGX-2 and Yme. We need more data to interpret this result.

For the single GPU comparison GeForce GTX 980 had the worst performance. This is not
surprising considering the specifications compared to the other GPUs. The Titan RTX card were
best on operations with lower precisions, and the Tesla V100 cards were better if higher precisions
were needed. All of the cards with possibility for Tensor Cores showed performance improvement
when it was enabled. The Tesla V100-SXM2 cards were the ones with the highest improvement
percentage when using Tensor Cores.

A result we did not have an explanation for is that the Tesla V100-SXM2 cards had worse
performance (with exception of GTX 980) before Tensor Cores were enabled, and best performance

48

after they were enabled.

Since the Titan RTX had best performance for lower precision operations, we can assume that
this is because the cards should appeal to deep learning applications, which does not necessarily
need high precision. For HPC applications the Tesla V100 might be more suited because it has
better performance for higher precision operations.

Comparing the Titan RTX card to the Tesla V100 card is not ideal. We should have compared
a Volta and a Turing card from the same series to make the analysis fairer.

Another not fair comparison was when we compared the GeForce GTX 980 to the other graphics
cards. This card is older and cheaper than the other cards, it is also a consumer card. Tesla V100 is
generally a professional graphics card. The cards are made for different purposes and are therefore
hard to compare in a fair way.

When comparing the Tesla V100 cards, we assumed that the memory difference would lead to
some performance differences. This was not really the case, since Tesla V100-SXM2 with 32 GB
memory (from Yme) was almost never better than Tesla V100-SXM2 with 16 GB memory (from
Mini Summit). On the contrary, the card with 16 GB memory were most often better than the
card with 32 GB. For future work we would like to find more benchmarks that pushes the memory
limits. The other main difference between the Tesla V100 cards is the clock frequency. This is also
something that could be investigated further in the future.

Next we will discuss additional future work. After receiving the results for our project, it
opened doors to much more possibilities to explore even further. This included other benchmark
suites, and even the new system ”Selbu”, that arrived recently at NTNU with 20 NVIDIA Tesla
T4 GPUs. The machine could be compared to other GPUs with Turing architecture, such as the
RTX Titan. It could also be compared to the Tesla V100 to get a fairer analysis of the Tensor Core
improvements.

For future work we would like to run the benchmarks for the two Power AC922 systems inside
Docker containers to minimize the potential overhead and making the benchmarking process more
similar. An alternative to this is to do extensive testing on Docker overhead.

We would also like to explore the RT Cores on Tesla RTX, and how these can be used for HPC
applications. For all of the results we have already collected, we would want to analyze them more
and find reasons for deviation behaviour. To inspecting more of the code to see why results are the
way they are would be beneficial. Other interesting things to explore is how to use new hardware,
that not necessarily is made for HPC, for HPC-applications.

We would like to especially explore more of the Titan RTX card to see what other application
it could perform well on. More evaluation of multi-GPU performance, especially with real life
applications would be interesting to do.

In the future we would like to see how the performance could have been on Mini Summit if all
6 NVLink connections were used between the GPU and CPU, instead of only the 3 that were used
now.

We would also like to make our own benchmark suite specialized for HPC applications with
all of the interesting functionality. Then we could also explore how to get better performance and
precision with Tensor Cores.

Two benchmark suites that was explored in this report, but was unsuccessfully tested due to
challenges with compiling and running, was the OpenDwarfs and HPs DLBS benchmark suites.
These two were both interesting from a HPC perspective because of their interesting benchmark
tests. Other benchmark suites that looked promising and relevant for this work were xtensor-
benchmark, Mirovia, PPT-GPU, benchfriend and hpcgarage/spatter.

In conclusion, there are a lot of work that could be done in the future related to this report.

49

References

1]

[2]

I. M. Liseter and A. C. Elster, “Grafikkprosessor.” https://snl.no/grafikkprosessor,
September 2019. [Accessed Dec. 10, 2019].

OmniSci, “CPU vs GPU — Definition FAQs.” https://www.omnisci.com/learn/
resources/technical-glossary/CPU-to-GPU, December 2019. [Accessed Dec. 10, 2019].

TechDifferences, “Difference Between UMA and NUMA.” https://techdifferences.com/
difference-between-uma-and-numa.html, October 2018. [Accessed Dec. 10, 2019].

D. Inc., “What is a Container? — App Containerization — Docker.” https://www.docker.
com/resources/what-container, December 2019. [Accessed Dec. 15, 2019].

N. Corporation, “NVIDIA /nvidia-docker: Build and run Docker containers leveraging NVIDIA
GPUSs.” https://github.com/NVIDIA/nvidia-docker, December 2019. [Accessed Dec. 15,
2019].

M. Forum, “MPI Forum.” https://www.mpi-forum.org/, 2019. [Accessed Dec. 12, 2019].

T. O. M. Project, “Open MPI: Open Source High Performance Computing.” https://www.
open-mpi.org/, 2019. [Accessed Dec. 12, 2019].

NVIDIA Corporation, “IBM Spectrum MPI — NVIDIA Developer.” https://developer.
nvidia.com/ibm-spectrum-mpi, 2019. [Accessed Dec. 5, 2019].

MPICH, “MPICH — High-Performance Portable MP1.” https://www.mpich.org/, 2019. [Ac-
cessed Dec. 12, 2019].

NVIDIA, “NVIDIA Collective Communication Library (NCCL) — NVIDIA Developer.”
https://developer.nvidia.com/nccl, November 2019. [Accessed Dec. 12, 2019].

NVIDIA, “NCCL and MPI - NCCL 2.5.6 documentation.” https://docs.nvidia.com/
deeplearning/sdk/nccl-developer-guide/docs/mpi.html, December 2019. [Accessed Dec.
16, 2019].

C. Ramseyer, “PCI Express 4.0 Brings 16 GT/s And At Least 300 Watts At The Slot.”
https://www.tomshardware.com/news/pcie-4.0-power-speed-express, 32525.html, Au-
gust 2016. [Accessed Dec. 10, 2019].

HowStufftWorks, “How PCI Express Works — HowStuffWorks.” https://computer.
howstuffworks.com/pci-express.htm, 2019. [Accessed Dec. 16, 2019].

N. Corporation, “NVLink High-Speed GPU Interconnect — NVIDIA Quadro.” https:
//www.nvidia.com/en-us/design-visualization/nvlink-bridges, 2019. [Accessed Dec.
10, 2019].

T. N. Z. S. A. S. U. Muhammad Nufail Farooqi, “Asynchronous AMR on Multi-GPUs.”
https://link.springer.com/chapter/10.1007/978-3-030-34356-9_11, 2019. [Accessed
Dec. 15, 2019).

50

https://snl.no/grafikkprosessor
https://www.omnisci.com/learn/resources/technical-glossary/CPU-to-GPU
https://www.omnisci.com/learn/resources/technical-glossary/CPU-to-GPU
https://techdifferences.com/difference-between-uma-and-numa.html
https://techdifferences.com/difference-between-uma-and-numa.html
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://github.com/NVIDIA/nvidia-docker
https://www.mpi-forum.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
https://developer.nvidia.com/ibm-spectrum-mpi
https://developer.nvidia.com/ibm-spectrum-mpi
https://www.mpich.org/
https://developer.nvidia.com/nccl
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/mpi.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/mpi.html
https://www.tomshardware.com/news/pcie-4.0-power-speed-express,32525.html
https://computer.howstuffworks.com/pci-express.htm
https://computer.howstuffworks.com/pci-express.htm
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges
https://link.springer.com/chapter/10.1007/978-3-030-34356-9_11

[16]

[27]

[28]

NVIDIA Corporation, “NVIDIA NVSwitch: The World’s Highest-Bandwidth On-Node
Switch.” https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf,

May 2018. [Accessed Nov. 7, 2019].

G. Dearth, V. Venkataraman (NVIDIA), “S8688: INSIDE DGX-
2.7 http://on-demand.gputechconf.com/gtc/2018/presentation/
s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf, March 2018. [Ac-
cessed Nov. 12, 2019].

TechPowerUp, “NVIDIA GeForce GTX 980.” https://www.techpowerup.com/gpu-specs/
geforce-gtx-980.c2621. [Accessed Dec. 11, 2019].

N. Corporation, “Maxwell Architecture — NVIDIA Developer.” https://developer.nvidia.
com/maxwell-compute-architecture. [Accessed Dec. 16, 2019].

R. Nohria, G. Santos (IBM Corporation), “IBM Power System AC922: Technical Overview
and Introduction.” https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf, July
2018. [Accessed Nov. 5, 2019].

S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “NVIDIA Tensor Core Pro-
grammability, Performance & Precision.” https://arxiv.org/pdf/1803.04014.pdf, March
2018. [Accessed Nov. 5, 2019].

NVIDIA Corporation, “TITAN RTX Ultimate PC Graphics Card with Turing — NVIDIA.”
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/, 2019. [Ac-
cessed Dec. 10, 2019].

NVIDIA Corporation, “NVIDIA TURING GPU ARCHITECTURE.” https://wuw.
nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018. [Accessed
Dec. 20, 2019].

IBM Corporation, “IBM Power System AC922.” https://www.ibm.com/downloads/cas/
6PRDKRJO, 2019. [Accessed Nov. 5, 2019).

IBM Corporation, “IBM Power System AC922 - Details.” https://www.ibm.com/us-en/
marketplace/power-systems-ac922/details, 2018. [Accessed Nov. 5, 2019].

NVIDIA Corporation, “NVIDIA DGX-2 Datasheet.” https://
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/
dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf, July 2019. [Accessed Nov. 5,
2019].

A. Ishii, D. Foley, E. Anderson, B. Dally, G. Dearth, L. Dennison, M. Hummel, and
J. Schafer, “NVSWITCH AND DGX-2: NVLINK-SWITCHING CHIP AND SCALE-UP
COMPUTE SERVER.” https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_
HotChips2018_DGX2NVS_Final.pdf, 2018. [Accessed Nov. 11, 2019].

A. Danalis, G. M. C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and
J. S. Vetter, “GitHub - The SHOC Benchmark Suite.” https://github.com/vetter/shoc,
2014. [Accessed Nov. 12, 2019].

51

https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf
https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://developer.nvidia.com/maxwell-compute-architecture
https://developer.nvidia.com/maxwell-compute-architecture
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://arxiv.org/pdf/1803.04014.pdf
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.ibm.com/downloads/cas/6PRDKRJ0
https://www.ibm.com/downloads/cas/6PRDKRJ0
https://www.ibm.com/us-en/marketplace/power-systems-ac922/details
https://www.ibm.com/us-en/marketplace/power-systems-ac922/details
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://github.com/vetter/shoc

[29]

[32]

[33]

[34]

A. Danalis, G. M. C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tip-
paraju, and J. S. Vetter, “The Scalable HeterOgeneous Computing (SHOC) Bench-
mark Suite.” https://www.researchgate.net/publication/220938804_The_Scalable_
HeterOgeneous_Computing_SHOC_benchmark_suite, 2010. [Accessed Nov. 12, 2019].

Baidu Research, “DeepBench: Benchmarking Deep Learning operations on different hard-
ware.” https://github.com/baidu-research/DeepBench, May 2018. [Accessed Dec. 12,
2019].

Google, “TensorFlow.” https://www.tensorflow.org/, November 2015. [Accessed Dec. 12,
2019].

Torch, “Torch — Scientific computing for LuaJIT..” http://torch.ch/, October 2002. [Ac-
cessed Dec. 12, 2019].

uuudown, “Tartan.” https://github.com/uuudown/Tartan, September 2018. [Accessed Dec.
13, 2019].

A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. Tallent, and K. Barker, “Evaluating Modern GPU
Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect.” https://arxiv.org/pdf/
1903.04611.pdf, March 2019. [Accessed Nov. 1, 2019].

NVIDIA, “CUDA Code Samples.” https://developer.nvidia.com/cuda-code-samples)
2019. [Accessed Dec. 13, 2019].

NVIDIA, “CUDA Runtime API :: CUDA Toolkit Documentation.” https://docs.nvidia.
com/cuda/cuda-runtime-api/group__CUDART__PEER.html), 2019. [Accessed Dec. 13, 2019].

NVIDIA, “NVLINK - NVIDIA Developer Forums.” https://devtalk.nvidia.com/default/
topic/1033056/nvlink/, 2019. [Accessed Dec. 13, 2019].

c3sr, “Scope.” https://github.com/c3sr/scope, July 2019. [Accessed Dec. 13, 2019].

C. Pearson and S. Hashash, “Comm|Scope.” https://github.com/c3sr/comm_scope, April
2019. [Accessed Dec. 13, 2019].

C. Pearson and S. Hashash, “NCCL|Scope.” https://github.com/c3sr/comm_scope, Febru-
ary 2019. [Accessed Dec. 13, 2019].

Y. Ren, S. Yoo, and A. Hoisie, “Performance Analysis of Deep Learning Workloads on Leading-
edge Systems.” https://arxiv.org/pdf/1905.08764.pdf, October 2019. [Accessed Nov. 1,
2019].

W. Feng, “OpenCL and the 13 Dwarfs.” http://developer.amd.com/wordpress/media/
2013/06/2155_final.pdf, June 2011. [Accessed Dec. 2, 2019].

C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong, and W.-M. Hwu, “Evaluat-
ing Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects.”
https://dl.acm.org/doi/10.1145/3297663.3310299, April 2019. [Accessed Nov. 12, 2019].

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing GPU Tensor Cores for
Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers.” http:
//www.netlib.org/utk/people/JackDongarra/PAPERS/haidar_fpl16_sc18.pdf, November
2018. [Accessed Nov. 11, 2019].

52

https://www.researchgate.net/publication/220938804_The_Scalable_HeterOgeneous_Computing_SHOC_benchmark_suite
https://www.researchgate.net/publication/220938804_The_Scalable_HeterOgeneous_Computing_SHOC_benchmark_suite
https://github.com/baidu-research/DeepBench
https://www.tensorflow.org/
http://torch.ch/
https://github.com/uuudown/Tartan
https://arxiv.org/pdf/1903.04611.pdf
https://arxiv.org/pdf/1903.04611.pdf
https://developer.nvidia.com/cuda-code-samples
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__PEER.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__PEER.html
https://devtalk.nvidia.com/default/topic/1033056/nvlink/
https://devtalk.nvidia.com/default/topic/1033056/nvlink/
https://github.com/c3sr/scope
https://github.com/c3sr/comm_scope
https://github.com/c3sr/comm_scope
https://arxiv.org/pdf/1905.08764.pdf
http://developer.amd.com/wordpress/media/2013/06/2155_final.pdf
http://developer.amd.com/wordpress/media/2013/06/2155_final.pdf
https://dl.acm.org/doi/10.1145/3297663.3310299
http://www.netlib.org/utk/people/JackDongarra/PAPERS/haidar_fp16_sc18.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/haidar_fp16_sc18.pdf

[45]

[49]

[50]

J. L. Salmon and S. M. Smith, “Exploiting Hardware-Accelerated Ray Tracing for
Monte Carlo Particle Transport with OpenMC.” https://scl19.supercomputing.org/
proceedings/workshops/workshop_files/ws_pmbsf102s2-filel.pdf, October 2019. [Ac-
cessed Dec. 1, 2019].

A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. Tallent, and K. Barker, “Evaluating Modern GPU
Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect.” https://arxiv.org/pdf/
1903.04611.pdf, March 2019. [Accessed Nov. 18, 2019].

M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans, and S. W. Keckler, “Buddy
Compression: Enabling Larger Memory for Deep Learning and HPC Workloads on GPUs.”
https://arxiv.org/pdf/1903.02596.pdf, April 2019. [Accessed Dec. 1, 2019).

S. W. D. Chien, I. B. Peng, and S. Markidis, “Performance Evaluation of Advanced Fea-
tures in CUDA Unified Memory.” https://arxiv.org/pdf/1910.09598.pdf, October 2019.
[Accessed Dec. 1, 2019].

Inspur Systems, “AGX-5 - Inspur Systems.” https://www.inspursystems.com/product/
agx-5/, 2018. [Accessed Dec. 15, 2019].

P. Alcorn, “Inside The World’s Largest GPU: Nvidia Details NVSwitch.” https://www.
tomshardware.com/news/nvidia-dgx-2-worlds-largest-gpu-nvswitch, 37661 .html, Au-
gust 2018. [Accessed Dec. 20, 2019].

NVIDIA, “nvidia-docker - Frequently Asked Questions.” https://github.com/NVIDIA/
nvidia-docker/wiki/Frequently-Asked-Questions, July 2019. [Accessed Nov. 19, 2019].

D. C. Price, M. A. Clark, B. R. Barsdell, R. Babich, and L. J. Greenhill, “Optimizing
performance-per-watt on GPUs in High Performance Computing.” https://arxiv.org/pdf/
1407.8116.pdf, October 2015. [Accessed Dec. 1, 2019).

M. Carilli, C. Sarofeen, M. Ruberry, and B. Barsdell, “Training Neural Networks with Mixed
Precision.” https://on-demand.gputechconf.com/gtc-taiwan/2018/pdf/5-1_Internaly
20Speaker_Michael’,20Carilli_PDF%20For%20Sharing.pdf, May 2018. [Accessed Dec. 13,
2019].

cpp pm, “Hunter: CMake driven cross-platform package manager for C/C++. .” https:
//github.com/cpp-pm/hunter, December 2019. [Accessed Dec. 16, 2019).

curl, “curl.” https://curl.haxx.se/, 2019. [Accessed Dec. 16, 2019].

E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster, and F. Lindseth, “Medical image segmen-
tation on GPUs — A comprehensive review.” https://www.sciencedirect.com/science/
article/pii/S1361841514001819, October 2014. [Accessed Dec. 2, 2019].

S. Li, T. Hoefler, and M. Snir, “NUMA-Aware Shared-Memory Collective Communication for
MPIL.” https://htor.inf.ethz.ch/publications/img/li-hoefler-snir-hpdc13-numa_
collectives.pdf, June 2013. [Accessed Dec. 3, 2019].

N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli, “High Performance
Discrete Fourier Transforms on Graphics Processors.” https://dl.acm.org/citation.cfm?
1d=1413373, November 2008. [Accessed Dec. 3, 2019].

93

https://sc19.supercomputing.org/proceedings/workshops/workshop_files/ws_pmbsf102s2-file1.pdf
https://sc19.supercomputing.org/proceedings/workshops/workshop_files/ws_pmbsf102s2-file1.pdf
https://arxiv.org/pdf/1903.04611.pdf
https://arxiv.org/pdf/1903.04611.pdf
https://arxiv.org/pdf/1903.02596.pdf
https://arxiv.org/pdf/1910.09598.pdf
https://www.inspursystems.com/product/agx-5/
https://www.inspursystems.com/product/agx-5/
https://www.tomshardware.com/news/nvidia-dgx-2-worlds-largest-gpu-nvswitch,37661.html
https://www.tomshardware.com/news/nvidia-dgx-2-worlds-largest-gpu-nvswitch,37661.html
https://github.com/NVIDIA/nvidia-docker/wiki/Frequently-Asked-Questions
https://github.com/NVIDIA/nvidia-docker/wiki/Frequently-Asked-Questions
https://arxiv.org/pdf/1407.8116.pdf
https://arxiv.org/pdf/1407.8116.pdf
https://on-demand.gputechconf.com/gtc-taiwan/2018/pdf/5-1_Internal%20Speaker_Michael%20Carilli_PDF%20For%20Sharing.pdf
https://on-demand.gputechconf.com/gtc-taiwan/2018/pdf/5-1_Internal%20Speaker_Michael%20Carilli_PDF%20For%20Sharing.pdf
https://github.com/cpp-pm/hunter
https://github.com/cpp-pm/hunter
https://curl.haxx.se/
https://www.sciencedirect.com/science/article/pii/S1361841514001819
https://www.sciencedirect.com/science/article/pii/S1361841514001819
https://htor.inf.ethz.ch/publications/img/li-hoefler-snir-hpdc13-numa_collectives.pdf
https://htor.inf.ethz.ch/publications/img/li-hoefler-snir-hpdc13-numa_collectives.pdf
https://dl.acm.org/citation.cfm?id=1413373
https://dl.acm.org/citation.cfm?id=1413373

[59]

[60]

[61]

B. R. de Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M. Bellido, S. L. Olivier, C. Ter-
boven, and T. G. Mattson, “The Ongoing Evolution of OpenMP.” https://ieeexplore.
ieee.org/document/8434208, November 2018. [Accessed Dec. 3, 2019].

K. Ahmed, J. Liu, S. Eidenbenz, and J. Zerr, “Scalable Interconnection Network Models
for Rapid Performance Prediction of HPC Applications.” https://ieeexplore.ieee.org/
document /7828492, December 2016. [Accessed Dec. 1, 2019].

J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG Benchmark: a New Metric for
Ranking High Performance Computing Systems.” http://www.netlib.org/utk/people/
JackDongarra/PAPERS/HPCG-benchmark.pdf, January 2015. [Accessed Dec. 3, 2019].

J. C. Meyer and A. C. Elster, “Performance Modeling of Heterogeneous Systems.” https://
folk.idi.ntnu.no/elster/pubs/meyer-elster-ipdps2010.pdf, May 2010. [Accessed Dec.
3, 2019].

o4

https://ieeexplore.ieee.org/document/8434208
https://ieeexplore.ieee.org/document/8434208
https://ieeexplore.ieee.org/document/7828492
https://ieeexplore.ieee.org/document/7828492
http://www.netlib.org/utk/people/JackDongarra/PAPERS/HPCG-benchmark.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/HPCG-benchmark.pdf
https://folk.idi.ntnu.no/elster/pubs/meyer-elster-ipdps2010.pdf
https://folk.idi.ntnu.no/elster/pubs/meyer-elster-ipdps2010.pdf

A Annotated Bibliography

Li et al. ”Evaluating Modern GPU Interconnect: PCle,NVLink, NV-SLI, NVSwitch
and GPUDirect” [46]

This paper inspiring us to use Tartan, and to display the results in heat maps for nicely displaying
the results. It also provided us with valuable insight when it came to anti locality.

S. Markidis et al. “NVIDIA Tensor Core Programmability, Performance &
Precision” [21]

This paper was very helpful for figuring out how Tensor Cores can benefit HPC applications, they
thoroughly explained how the experiments were done and we got a good idea of the downsides and
upsides of using these Tensor Cores.

A. Danalis et al. “The Scalable HeterOgeneous Computing (SHOC) Benchmark
Suite. [29]

This paper was useful for our project to learn how the SHOC benchmarking suite worked and to get
a documentation of how to use the benchmarks. SHOC is not new, but can still provide relevant
benchmark results for tested systems.

Y. Ren et al. “Performance Analysis of Deep Learning Workloads on Leading-
edge Systems.” [41]

This paper provided us with useful knowledge about the DGX-2 and IBM Power System AC922.
It was also interesting to see which results they got.

Carl Pearson et al. “Evaluating Characteristics of CUDA Communication Prim-
itives on High-Bandwidth Interconnects” [43]
This paper presented the Scope| COMM benchmark and included very useful for benchmarking

interconnects.

D. C. Price et al. “Optimizing performance-per-watt on GPUs in High Perfor-
mance Computing.” [52]

This paper gave us insight in how temperature can be vital to performance. It was also interesting
to read about the optimizing.
M. Carilli et al. “Training Neural Networks with Mixed Precision.” [53]

This presentation helped us learn how to profile benchmark applications and see if an application
benchmarked was running using Tensor Cores. It showed that the number 884 contained in the
kernels in the profiling meant that the application used Tensor Cores.

95

W. Feng, presentation about ”OpenCL and the 13 Dwarfs” [42]

The Berkeley View of parallel computing is about designing hardware for future applications,
instead of making the applications adjust to existing hardware and models. It is found 13 ”dwarfs”
that represent computational patterns that is relevant now and probably in the future. Those
dwarfs can be kept in mind for developing new hardware.

This presentation is related to the topic because new GPU hardware features are often made with
specific computational patterns and methods in mind. An example of this is the NVIDIA Tensor
Cores. The Tensor Cores are specifically designed for matrix-multiply-and-accumulate operations
and will therefore be related to the ”Sparse Linear Algebra” and ”Dense Linear Algebra” dwarfs.
Another example is the NVIDIA Ray Tracing Cores, they can be used for calculation with the
Monte Carlo method. This is related to the ”MapReduce” dwarf, which the Monte Carlo method
is a part of.

The presentation also contains information about a benchmark suite called ” OpenCL and the
13 Dwarfs” which includes benchmarks for the dwarfs. This can be used to evaluate hardware like
Tensor Cores and RT Cores.

E. Smistad et al. ”Medical image segmentation on GPUs — A comprehensive
review” [506]

This paper is about evaluating medical image segmentation methods on GPUs. Image segmen-
tation is a method to divide an image into segments (image objects). Segmentation of medical
images consists of segmenting CT, MRI and ultrasound images. This will transform the images to
something that will be easier to analyse.

Different segmentation algorithms are evaluated for GPUs and several of them are parallelisable.
This means that they also can run on larger systems with multiple GPUs and they are related to
HPC.

A limiting factor of performance discussed in the paper is memory usage. Since this paper was
written in 2014, there are multiple new improvement methods for GPU memory. Two techniques
for this are described in the literature review and are Buddy Compression and ”"memory advises”
and ”prefetch” from CUDA Unified Memory. If techniques like these are considered, the memory
usage might not be such a critical issue anymore.

S. Li et al. ?’NUMA-Aware Shared-Memory Collective Communication for MPI”
[57]

This paper describes models for MPI Collective communication (described in literature review) for
NUMA node clusters, and how to optimize them. To improve the communication, multi-threading
was used, and experimental results showed that it provided a significant performance improvement.

Improving MPI communication for NUMA nodes is very relevant to HPC applications. Multiple
NUMA nodes can collaborate to get computational results faster.

This is partly related to GPUs and GPU performance because NUMA nodes can have GPUs. A
better collective communication leads to better overall performance, and if the computations that
needs to be done needs GPUs, this communication performance will also be boosted. Some of the
techniques about MPI Collective communication for NUMA node clusters could also possibly be
used for Collective communication between GPUs.

56

N. K. Govindaraju et al. ”High Performance Discrete Fourier Transforms on
Graphics Processors” [58]

This paper presents algorithms to compute Discrete Fourier Transforms (DFT) on GPUs. The
algorithms are from a class called Fast Fourier Transform (FFT). FFT algorithms are often used
to compute HPC problems. The result from the paper is that their implementation on GPU had
much better performance than existing FFT algorithms on CPU and GPU. This paper is from
2008, which is quite old in the computer science domain. There could be better implementations
now.

To improve the performance of the FFT algorithms, new GPU techniques and features could
be utilized. NVIDIA Tensor Core could be used to accelerate FFT, and other new hardware
features could also possibly be used. It was mentioned that a bottleneck for the untried scenario
of performing the computation on multiple GPUs would be the interconnects. Since 2008 there
has been a great progress and improvement in the GPU interconnect area, with interconnects like
NVLink and NVSwitch. Utilizing newer interconnects could help lessen the bottleneck.

Like mentioned earlier, memory optimizations have advanced since this paper was written, and
could also possible boost the performance of FFT on GPUs.

B. R. de Supinski et al. ”The Ongoing Evolution of OpenMP” [59]

This paper examines the past, present and future of the multi-platform shared memory multipro-
cessing API OpenMP. Since the topic of this paper is ”"New GPU features for HPC applications”,
the main focus will be on the recent extensions of OpenMP.

Some recent additions are directives to indicate that something should be executed with SIMD
(Single Instruction, Multiple Data) parallelism, ”target” directive to address hardware devices like
GPUs, and a ”depend” clause to set dependencies between tasks. By using the ”depend” clause,
the programmer can make sure that the tasks happen in the right order. Another addition is
cancellation. This acts like a break statement in loops that is run in parallel, which, among other
things, makes error handling more efficient. These recent additions show that OpenMP focuses
more on parallelism and GPUs.

There are also plans for future extensions which partly focuses on memory allocations. This
paper is related to the topic because OpenMP is an important part of parallelism inside a node,
and thus an important part of HPC applications. OpenMP has support for GPUs, which means
that when OpenMP advances, the way OpenMP utilizes the GPU will improve, which could again
lead to better performance for HPC applications.

K. Ahmed et al. ”Scalable Interconnection Network Models for Rapid Perfor-
mance Prediction of HPC Applications” [60]

Performance Prediction Toolkit (PPT) is a simulator used to predict performance on existing and
future HPC architectures. The simulator is based on the topology of systems. There are not any
models capable of simulating an entire system in detail. A reason for this is that when there are
uncertainties in the simulation, it can lead to huge modelling errors.

PPT differs from other similar simulators because it can among other things integrate large
applications with full-scale architecture models, and it can scale and achieve high performance
using parallelization. The results show that the PPT interconnect model is a pretty accurate
model. By using PPT for HPC applications, performance can be predicted and if the model is
accurate enough, there is no need in testing the applications on a real system.

o7

Modelling and simulation toolkits generally can be great for figuring out which hardware that
could work for different applications. This could be important for developing new hardware or
architectures for GPUs to improve HPC and Al applications.

J. Dongarra et al. ”"High Performance Conjugate Gradient Benchmark: a New
Metric for Ranking High Performance Computing Systems” [61]

The High Performance Conjugate Gradient (HPCG) benchmark is focused on evaluating machines
ability to run scientific applications, which can be HPC applications. The benchmark tests common
computations from scientific applications, and the systems are ranked based on a simple additive
Schwarz, symmetric Gauss-Seidel preconditioned conjugate gradient solver.

HPCG benchmark has result lists that ranks the best systems in the world. The lists are
updated twice a year and are great for checking which systems that will be good for running big
HPC applications. This ranking is more based on HPC applications than AI applications, which is
important when there is currently so much focus on Al systems.

The HPCG benchmark is also a great way for hardware companies and makers of computer
systems to see what types of technology that ranks the highest and what specific features and
architecture they have. This way they can get tips on how to improve future computer systems by
looking at parts that improve current systems.

J. C. Meyer et al. ”Performance Modeling of Heterogeneous Systems” [62]

This paper describes a model for predicting performance of heterogeneous systems. The model uses
BSPlib, which is a library with implementation of the Bulk-Synchronous Parallelism (BSP) model.
MPI and GASnet are used for communication. The model gets characteristics from applications
and architectures and produces results for the expected performance.

Models for predicting performance on heterogeneous systems are important for HPC applica-
tions, which often runs on heterogeneous systems. GPUs are also currently a big part of heteroge-
neous systems. By predicting performance for different architectures with GPUs, techniques that
needs improvement and techniques that works well can be detected. This way changes can be made
to create optimal systems for different programs.

o8

B System Information

B.1 GTX 980 based system

knutakir@hpclabl2:~$ nvidia-smi topo -m
GPUO CPU Affinity

GPUO X 0-7
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA
nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host
Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe
Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Listing 1: Topology for GTX 980 system
knutakir@hpclabl12:~$ nvidia-smi nvlink --status -i O

Listing 2: NVLink status for GTX 980 system. No results because the GPU does not have the
possibility for NVLink connections

knutakir@hpclabl12:~$ nvidia-smi
Wed Dec 18 19:50:42 2019

o +
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
| e e B it o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
|===============================4======================4======================|
| 0 GeForce GTX 980 On | 00000000:01:00.0 Off | N/A |
| 27% 29¢C P8 13w / 180W | 17MiB / 4041MiB | 0% Default |
B et Fommm - Fommmm +

Listing 3: Information about the GTX 980 GPU when running the nvidia-smi command

B.2 Titan RTX based system

ingunsu@hpclablb5:~$ nvidia-smi topo -m
GPUO CPU Affinity
GPUO X 0-15

Legend:
X = Self
8YS = Connection traversing PCIe as well as the SMP interconnect between NUMA

nodes (e.g., QPI/UPI)

99

™

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host
Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIle
Host Bridge)

PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks

Listing 4: Topology for Titan RTX system

ingunsu@hpclabl5:~$ nvidia-smi nvlink --status -i O

GPU O0: TITAN RTX (UUID: GPU-8583ed85-abe2-eeb3-178a-5921ab72dcf3)
Link O: <inactive>
Link 1: <inactive>

Listing 5: NVLink status for Titan RTX system. The system has a possibility for two NVLink
connections, but this is not used on this particular computer.

ingunsu@hpclablb5:~$ nvidia-smi
Mon Dec 16 23:52:04 2019

Bt ittt e et e P +
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|- e B it o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
|===============================4======s================4====================== |
| 0 TITAN RTX On | 00000000:01:00.0 Off | N/A |
| 41% 37C P8 15W / 280W | 172MiB / 24217MiB | 0% Default |
o - Fommmm - e +

Listing 6: Information about the Titan RTX GPU when running the nvidia-smi command

B.3 IBM Power System AC922
B.3.1 Yme (4 GPUs)

-bash-4.2$ nvidia-smi topo -m
GPUO GPU1 GPU2 GPU3 CPU Affinity

GPUO X NV3 SYS SYS 0-63
GPU1 NV3 X SYS SYS 0-63
GPU2 SYS SYS X NV3 64-127
GPU3 SYS SYS NV3 X 64-127
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA
nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host
Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
CPU)
PXB = Connection traversing multiple PCIe switches (without traversing the PCIe
Host Bridge)
PIX = Connection traversing a single PCIe switch

60

19

NV# = Connection traversing a bonded set of # NVLinks

-bash-4.2$ nvidia-smi topo -mp
GPUO GPU1 GPU2 GPU3 CPU Affinity
GPUO X PIX SYS SYS 0-63
GPU1 PIX X SYS SYS 0-63
GPU2 SYS SYS X PIX 64-127
GPU3 SYS SYS PIX X 64-127

Listing 7: Topology for Yme (Power AC922, 4 GPUs). First matrix is the direct communication
matrix, the second is PCI only.

-bash-4.2$ nvidia-smi nvlink --status -i 0
GPU 0: Tesla V100-SXM2-32GB (UUID: GPU-8be05466-6c9b-4d91-a8c8-4ed680df64a5)
Link 0: 25.781 GB/s

Link 1: 25.781 GB/s
Link 2: 25.781 GB/s
Link 3: 25.781 GB/s
Link 4: 25.781 GB/s
Link 5: 25.781 GB/s
-bash-4.2$ nvidia-smi nvlink --status -i 3

GPU 3: Tesla V100-SXM2-32GB (UUID: GPU-ef24cc4c-5f06-bbb6-6dac-fe62e170aa75)
Link 0: 25.781 GB/s

Link 1: 25.781 GB/s
Link 2: 25.781 GB/s
Link 3: 25.781 GB/s
Link 4: 25.781 GB/s
Link 5: 25.781 GB/s

Listing 8: NVLink status on Yme (Power AC922, 4 GPUs). The listing shows only GPU 0 and 3
because the command will print the same for every GPU in the system.

-bash-4.2$ nvidia-smi
Sun Dec 15 16:45:04 2019

o - +
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Versiomn: 10.2 |
|- = - B it ittt o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Puwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
|===============================4s=s===========s==s=s==so4s==s==================|
| 0 Tesla V100-SXM2... On | 00000004:04:00.0 O0ff | 0 |
| N/A 38C PO 39W / 300W | OMiB / 32510MiB | 0% Default |
B et R et P e e Fom e +

Listing 9: Information about the first GPU when running the nvidia-smi command on Yme (Power
AC922, 4 GPUs).

B.3.2 Mini Summit (2 GPUs)

-bash-4.2$ nvidia-smi topo -m
GPUO GPU1 CPU Affinity

GPUO X SYS 0-63

GPU1 SYS X 64-127

61

Legend:

X = Self

8YS = Connection traversing PCIe as well as the SMP interconnect between NUMA
nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host
Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
CPU)

PXB = Connection traversing multiple PCIe switches (without traversing the PCIe

Host Bridge)
PIX = Connection traversing a single PCIe switch
NV# = Connection traversing a bonded set of # NVLinks
Listing 10: Topology for Mini Summit (Power AC922, 2 GPUs)
-bash-4.2$ nvidia-smi nvlink --status -i 0

GPU 0: Tesla V100-SXM2-16GB (UUID: GPU-d5cfaea6-0aca-7f9b-5ed1-957950b4f8f8)
Link O: <inactive>

Link 1: 25.781 GB/s
Link 2: <inactive>
Link 3: 25.781 GB/s
Link 4: <inactive>
Link 5: 25.781 GB/s
-bash-4.2$ nvidia-smi nvlink --status -i 1

GPU 1: Tesla V100-SXM2-16GB (UUID: GPU-4822d295-9751-d6b8-bd93-7739510f189e)
Link O: <inactive>

Link 1: 25.781 GB/s
Link 2: <inactive>
Link 3: 25.781 GB/s
Link 4: <inactive>
Link 5: 25.781 GB/s

Listing 11: NVLink status on Mini Summit (Power AC922, 2 GPUs)

-bash-4.2$ nvidia-smi
Sun Dec 15 16:49:09 2019

o - +
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|- - - et et i B it +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Puwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
| ===============================4+======================4====================== |
I 0 Tesla V100-SXM2... On | 00000004:04:00.0 Off | 0 |
| N/A 37C PO 35W / 300W | OMiB / 16160MiB | 0% Default |
B Rt it e T e i o - +

Listing 12: Information about the first GPU when running the nvidia-smi command on Mini
Summit (Power AC922, 2 GPUs).

B.4 DGX-2

ingunsu@DGX- 2:~$ nvidia-smi topo -m
GPU0O G1 G2 G3 G4 G5 G6 G7 G8 G9 G110 G11 G12 G13 Gl4 G15 CPU Affinity

62

~

11

5| GPU12

7| GPU14

5| G3

5| G13

GPUO
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7
GPUS8
GPU9
GPU10
GPU11

X NV6
NV6 X
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6
NV6 NV6

NV6
NV6

NV6
NV6
NV6

NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

GPU13

GPU15

Legend:
X

SYS
nodes (e.g., QPI/UPI)

= Self

NODE = Connection traversing

Bridges within a NUMA node
PHB
)
PXB
Host Bridge)
PIX
NV#

= Connection traversing

= Connection traversing
= Connection traversing

Connection traversing
Connection traversing

NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6

NV6
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
X
NV6

NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
NV6
X

0-23,48-71
0-23,48-71
0-23,48-71
0-23,48-71
0-23,48-71
0-23,48-71
0-23,48-71
0-23,48-71
24-47,72-95
24-47,72-95
24-47,72-95
24-47,72-95
24-47,72-95
24-47.,72-95
24-47,72-95
24-47,72-95

PCle as well as the SMP interconnect between NUMA

PCle as well as the

interconnect between PCle Host

PCIe as well as a PCle Host Bridge (typically the CPU

multiple PCle switches (without traversing the

a single PCle switch
a bonded set of # NVLinks

ingunsu@DGX- 2:~$ nvidia-smi topo -mp

GO
X
PIX

Gl
PIX
X

G2
PXB
PXB
PXB PXB X PIX
PXB PXB PIX X
NODE NODE NODE NODE
NODE NODE NODE NODE
NODE NODE NODE NODE
NODE NODE NODE NODE
SYS SYS SYS SYS
SYS SYS SYS SYS
SYS SYS SYS SYS
SYS SYS SYS SYS
SYS SYS SYS SYS
SYS SYS SYS SYS
SYS SYS SYS SYS
SYS SYS SYS SYS

G3
PXB
PXB

G4
GO
G1
G2

G4
G5
G6
GT7
G8
G9
G10
Gl11
G12

X
PIX
PXB
PXB
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

Gl4
G15

G5
NODE NODE NODE NODE
NODE NODE NODE NODE
NODE NODE NODE NODE
NODE NODE NODE NODE
PXB
PXB
PIX
X
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

PIX
X
PXB
PXB
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

G6

PXB
PXB
X
PIX
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

G7

G8

G9

SYS
SYS
SYS
SYS
SYS
SYS
SYS

SYS

X
PIX
PXB
PXB
NODE NODE NODE NODE X
NODE NODE NODE NODE PIX
NODE NODE NODE NODE PXB
NODE NODE NODE NODE PXB

SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
PIX

X

PXB
PXB

G10
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
PXB
PXB
X
PIX

Gl11
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
PXB
PXB
PIX

X

G12
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
NODE NODE NODE NODE
NODE NODE NODE NODE

G13
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

PCle

Gl4
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

G15
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

NODE NODE NODE NODE
NODE NODE NODE NODE

PIX
X
PXB
PXB

PXB
PXB
X
PIX

PXB

PXB

PIX
X

Listing 13: Topology for DGX-2
second is PCI only.

(G=GPU).

First matrix is the direct communication matrix, the

ingunsu@DGX-2:~$ nvidia-smi
GPU 0: Tesla V100-SXM3-32GB
Link 0: 25.781 GB/s
Link 1: 25.781 GB/s
Link 2: 25.781 GB/s
Link 3: 25.781 GB/s

(UUID:

nvlink --status
GPU-ad78d3a5-0ad4f-acl6-0ead-e02b88404047)

63

-i 0

%)

10

Link 4: 25.781 GB/s
Link 5: 25.781 GB/s

ingunsu@DGX-2:~$ nvidia-smi nvlink --status -i 15

;] GPU 15: Tesla V100-SXM3-32GB (UUID: GPU-4e5a4b58-56fc-114b-5de2-ee41540cc549)

Link 0: 25.781 GB/s
Link 1: 25.781 GB/s
Link 2: 25.781 GB/s
Link 3: 25.781 GB/s
Link 4: 25.781 GB/s
Link 5: 25.781 GB/s

Listing 14: NVLink status on DGX-2. The listing shows only GPU 0 and 15 because the command

will print the same for every GPU in the system.

ingunsu@DGX-2:~$ nvidia-smi
Sun Dec 15 16:51:35 2019

o
| NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Versiomn: 10.1

|- - - - o o
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
| Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M.
|===============================4======================4======================
| 0 Tesla V100-SXM3... On | 00000000:34:00.0 0ff | 0
| N/A 33C PO 49W / 350W | OMiB / 32480MiB | 0% Default
B et R it Rt ittt et e

Listing 15: Information about the first GPU when running the nvidia-smi command on the DGX-2

64

C Setup

This appendix describes prerequisites and how to run the different benchmarks.
How the Docker images were built and ran:
How to build Docker image

Build from the Dockerfile
docker build -t <image_name> .

Or build from a specific file
docker build -f <path_to_dockerfile> -t <image_name> .

Listing 16: Build Docker image

How to run the Docker container
This command will remove the container after use and enable interactive terminal output making
it easy for running multiple commands after each other.

nvidia-docker run --rm -ti <image_name>

Listing 17: Run Docker container

Note, the Dockerfiles provided for each benchmark suite below is for x86_64 architecture. If
NVIDIA Docker had worked during this project for the tested POWER9 IBM systems, the Dock-
erfiles for them would not be that much different from the ones provided below for each benchmark
suite. The main difference would be the FROM-image that it would be built from. This would be
changed from the x86_64 architecture image nvidia/cuda to nvidia/cuda-ppc64le.

C.1 SHOC

To build the SHOC benchmark suite it is needed to:

e Clone the code from our Git repository fork: our fork contains modifications that are needed
to run the benchmark suite with CUDA version 10.2 and on IBM Power AC922 systems. The
fork is located on GitHub at https://github.com/Knutakir/shocl

e Have a working CUDA toolkit: this is needed for running the benchmarks used in this report,
as the used ones are written using CUDA-code.

e Specify the target architecture in the configure command: because the configure command
does not automatically detect the given system architecture to compile the code for.

e Specify the --with-mpi flag in the configure command: if one needs to run the benchmark
suite on multiple GPUs with MPI.

e Have a working implementation of MPI: this needs to be an implementation that is included
in the system environment variable paths so that SHOC finds it.

e Have a working |Perl interpreter: this is needed to run the script that combines all the
benchmark applications and gives an output in the terminal. Note, this is not needed to run
the benchmarks separately.

e Have a working NVIDIA Docker: if the benchmark suite is ran inside a Docker container.
Example of Dockerfile is shown below in Listing

65

https://github.com/Knutakir/shoc
https://www.perl.org/

e Run the configure script with its needed parameters and the make commands as on line 15
to 18 in Listing

To run the SHOC bencmark suite it is needed to:

Run the command as below on line 21 in Listing [I8] or run the individual benchmarks with
their respective executable files.

Specify the -s parameter for selecting the problem size to run the benchmarks with.

Specify the -cuda parameter for running the CUDA benchmarks.

Specify the -d parameter for selecting which device to run on. If this is not specified, it will
default to device 0.

Same version as nvidia/cuda:latest as of 20.11.2019, just more specified
FROM nvidia/cuda:10.1-devel-ubuntul8.04

WORKDIR /usr/src/shoc

Install dependencies

RUN apt-get update && apt-get install -y \
openmpi-bin \
openssh-client \
libopenmpi-dev

COPY

Configure with mpi for the target architecture and compile the sources

RUN ./configure CUDA_CPPFLAGS="-gencode=arch=compute_70,code=sm_70" --with-mpi
RUN make clean

RUN make

RUN make install

Example command to run benchmark on two GPUs with size 4
CMD perl ./tools/driver.pl -s 4 -cuda -d 14,15

Listing 18: SHOC Dockerfile for the DGX-2 system with Volta GPUs.

C.2 DeepBench
To build the NVIDIA benchmarks for DeepBench it is needed to:

e Clone the code from the authors Git repository.

e Have a working CUDA toolkit: this is needed as the benchmarks from this benchmark suite
used in this report, are written using CUDA-code.

e Have a working cuDINN: this is needed as the benchmarks used in this report uses it.
e Have a working cuBLAS: this is needed as the benchmarks used in this report uses it.

e Have a working NCCL: this is needed as NCCL is used to communicate between multiple
nodes in this benchmark suite.

66

e Have a working implementation of MPI: this needs to be an implementation that is included
in the system environment variable paths so that DeepBench finds it, or specified using the
MPI_INCLUDE_PATH and the MPI_PATH parameters as in the build command on
line 19 in Listing[I9] The ncel_mpi Makefile target inside the Makefile in the nvidia-directory
needs to match the installed location of the MPI installations lib-directory. This is the linking
part to the MPI_PATH lib-directory and was needed to be changed to 1ib64 from 1ib for
building this benchmark on the IBM POWERY9 systems.

e Specify the target architecture in the build command. This is done by providing the
ARCH parameter and is needed because the benchmark suite does not automatically detect
the given system architecture to compile the code for.

e Specify to use Tensor Cores in the build command. This is to enable the Tensor Cores for
the benchmarked operations. This is specified by the USE_TENSOR_CORES parameter.

e Have a working NVIDIA Docker: if the benchmark suite is ran inside a Docker container.
Example of Dockerfile is shown below in Listing

e Run the make nvidia command with the needed parameters as on line 19 in Listing
To run the training and inference benchmarks for DeepBench it is needed to:

e Run either of the following commands from the code-directory with specified training or
inference and the given precision for the benchmarks:

— ./bin/conv_bench <train|inference> <float|half|int8>
— ./bin/gemm_bench <train|inference> <float|half|int8>

— ./bin/rnn_bench <train|inference> <float|half>
To run the AllReduce benchmarks for DeepBench it is needed to:

e Have a working implementation of MPI, such that running using a command like mpirun can
be used. This is needed to run the nccl_mpi_all_reduce benchmark as shown below.

e Run either of the following commands from the code-directory with respectively specified the
number of ranks or the number of GPUs for the benchmarks:

— mpirun -np <num_ranks> ./bin/nccl_mpi_all_reduce

— ./bin/nccl_single_all_reduce <num_gpus>

FROM nvidia/cuda:10.0-cudnn7-devel-ubuntul8.04

WORKDIR /usr/src/deepbench

5/ # Install dependencies

RUN apt-get update && apt-get install -y \
openmpi-bin \
openssh-client \
libopenmpi-dev

COPY

3| # Change directory into code

67

¥

12

WORKDIR /usr/src/deepbench/code

Make the nvidia benchmarks without tensor cores

7|# Rerun with ‘USE_TENSOR_CORES=1‘ to enable them

Change the ARCH parameter for the given system
RUN make nvidia ARCH=sm_75 USE_TENSOR_CORES=0 MPI_INCLUDE_PATH=/usr/include/mpi
MPI_PATH=/usr/

Listing 19: DeepBench Dockerfile for the Titan RTX system with Turing GPU.

C.3 Tartan

To build the scale_up_p2p_test and scale_up_p2p_packet benchmarks for Tartan it is needed
to:

e Clone the code from the authors Git repository.

e Have a working CUDA toolkit: this is needed for running the benchmarks used in this report,
as the used ones are written using CUDA-code.

e Have a working implementation of MPI: this needs to be an implementation that is included
in the system environment variable paths so that Tartan finds it.

e Specify the GPU architecture in the shared.mk-file in the microbenchmark-directory. This
is the ARCH variable.

e Specify the CUDA path in the shared.mk-file in the microbenchmark-directory. This is the
CUDA _DIR variable.

e Have a working NVIDIA Docker: if the benchmark suite is ran inside a Docker container.
Example of Dockerfile is shown below in Listing

e Run the make clean and make commands for each benchmark application in their respective
directory.

To run the scale_up_p2p_test and scale_up_p2p_packet benchmarks for Tartan it is needed to:
e Run either of the following commands in its respectively directory:

— ./scale_up_p2p_test
— ./scale_up_p2p_packet

FROM nvidia/cuda:10.2-devel-ubuntul8.04
WORKDIR /usr/src/tartan

COPY

WORKDIR /usr/src/tartan/microbenchmark

Make the ‘scale_up_p2p_test‘ benchmark
RUN cd scale_up_p2p_test && make clean && make

Make the ‘scale_up_p2p_packet ‘ benchmark

68

N

o

RUN

cd scale_up_p2p_packet && make clean && make

Listing 20: Tartan Dockerfile for the DGX-2 system.

C.4 Scope

To build the Comm|Scope and NCCL|Scope benchmarks for Scope it is needed to:

Clone the code from the authors Git repository.

Have a working CUDA toolkit: this is needed for running the benchmarks used in this report,
as the used ones are written using CUDA-code.

Have a working NCCL: this is needed as NCCL is used to communicate between multiple
nodes in this benchmark suite.

Have a working implementation of MPI: this needs to be an implementation that is included
in the system environment variable paths so that Scope finds it.

CMake version 3.12 or higher: this is needed to build the benchmarks. The CMake needs to
be built with a cURL that has SSL enabled. This is due to this benchmark suite is dependent
on Hunter a package manager used for downloading and installing the dependencies.

The Git submodules needs to be updated from their sources.

Have a working NVIDIA Docker: if the benchmark suite is ran inside a Docker container.
Example of Dockerfile is shown below in Listing

Run the cmake and make commands as on line 23 to 30 in Listing

To run the Comm|Scope and NCCL|Scope benchmarks for Scope it is needed to:

Run the command ./scope from the build-directory.

Specify the number of GPUs to use for the benchmark. This is for the NCCL benchmarks
and is done by using the --ngpu parameter.

Specify the selected GPUs to communicate between. This is for the Comm benchmarks
and is done by using the -c=x -c=y parameters, where x and y represent the GPU IDs.

Specify the —-benchmark_filter parameter for selecting benchmark(s) to run.

Specify the ——benchmark_out_format=json and --benchmark_out=<file_name>. json pa-
rameters to save the benchmark result output to a JSON file.

FROM nvidia/cuda:10.2-cudnn7-devel

RUN

apt-get update && apt-get install -y --no-install-recommends --no-install-

suggests \

RUN

curl \
git \
&& rm -rf /var/lib/apt/lists/*

gcc --version

69

16

RUN curl -sSL https://cmake.org/files/v3.12/cmake-3.12.1-Linux-x86_64.tar.gz -o
cmake.tar.gz \
&& tar -xf cmake.tar.gz \
&% cp -r cmake-3.12.1-Linux-x86_64/* /usr/. \
&% rm cmake.tar.gz

RUN cmake --version

ENV SCOPE_ROOT /opt/scope
COPY . ${SCOPE_ROOT}
WORKDIR ${SCOPE_ROOT}

RUN mkdir -p build \
&& cd build \
&& cmake .. -DCMAKE_BUILD_TYPE=Release \
-DENABLE_MISC=0FF \
-DENABLE_NCCL=0N \
-DENABLE_CUDNN=0FF \
-DENABLE_COMM=0N \
-DENABLE_EXAMPLE=0FF \
-DNVCC_ARCH_FLAGS="3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0" \
&& make VERBOSE=1

2| ENV PATH ${SCOPE_ROO0T}/build:$PATH

Listing 21: Scope Dockerfile for the DGX-2 system modified from Scope’s GitHub repository [38].

70

D Benchmark Results

This appendix contains most of the results discussed in this report. GitHub repository with all
benchmark results: https://github.com/ingunnsund/SP19-Benchmark-results

D.1 SHOC

Results from SHOC benchmark for size 4. More SHOC results can be seen here: |GitHub - SHOC

)

10

16

results

GPU O
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 7
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 8
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 15
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

11.8479 GB/sec

13.1504 GB/sec

16241.7000 GFLOPS
8140.8000 GFLOPS

11.8653 GB/sec

13.1492 GB/sec

16238.7000 GFLOPS
8146.5200 GFLOPS

11.8526 GB/sec

13.1490 GB/sec

16244.6000 GFLOPS
8149.0400 GFLOPS

11.9008 GB/sec

13.1502 GB/sec

16209.5000 GFLOPS
8149.0400 GFLOPS

Listing 22: Part of SHOC results for 1 GPU on DGX-2

Average values from Listing
BusSpeedDownload:

(11.8479 + 11.8526 + 11.9008 + 11.8653) /4 = 11.86665 GB/s

BusSpeedReadback:

(13.1504 + 13.1490 + 13.1502 + 13.1492) /4 = 13.1497 GB/s

https://github.com/ingunnsund/SP19-Benchmark-results
https://github.com/ingunnsund/SP19-Benchmark-results/tree/master/SHOC
https://github.com/ingunnsund/SP19-Benchmark-results/tree/master/SHOC

N

10

16

36

46

MaxFlops SP:

(16241.7000 + 16244.6000 + 16209.5000 + 16238.7000)/4 = 16233.625 GFLOPS

MaxFlops DP:

(8140.8000 + 8149.0400 + 8149.0400 + 8146.5200) /4 = 8146.35 GFLOPS

1 GPU:
Running benchmark Stencil2D

result for stencil: 646 .

2 GPUs:
IDs: O, 1:
Running benchmark QTC

result for qtc: 9.
Running benchmark Stencil2D
result for stencil: 1005.

IDs: 0, 15:
Running benchmark Stencil2D

result for stencil: 1035.

4 GPUs:
IDs: O, 1, 2, 3:
Running benchmark QTC

result for qtc: 5.
Running benchmark Stencil2D
result for stencil: 923.

IDs: O, 1, 14, 15:
Running benchmark Stencil2D

result for stencil: 950.

6 GPUs:
IDs: O, 1, 2, 3, 4, 5:
Running benchmark QTC

result for qtc: 4.

result for qtc_kernel: 3.
Running benchmark Stencil2D

result for stencil: 902.

result for stencil_dp: 661.

IDs: 5, 6, 7, 8, 9, 10:
Running benchmark Stencil2D

result for stencil: 904 .
result for stencil_dp: 661.
8 GPUs:

IDs: O, 1, 2, 3, 4, 5, 6, 7:
Running benchmark QTC

result for qtc: 3.
Running benchmark Stencil2D
result for stencil: 1176.

IDs: 4, 5, 6, 7, 8, 9, 10, 11:
Running benchmark Stencil2D

result for stencil: 1163.

10 GPUs:
IDs: O, 1, 2, 3, 4, 5, 6, 7, 8, 9:
Running benchmark QTC

result for qtc: 2.
Running benchmark Stencil2D
result for stemncil: 1438.

72

5240

4461

6100

0200

5789

6450

2330

1859
2554

6660

9390

1280

5450

3905

9600

8400

8812

6300

GFLOPS

GFLOPS

GFLOPS

GFLOPS

GFLOPS

GFLOPS
GFLOPS

GFLOPS
GFLOPS

GFLOPS

GFLOPS

GFLOPS

60

64

66

68

12 GPUs:
IDs: O, 1, 2, 3, 4, 5, 6, 7, 8, 9,
Running benchmark QTC
result for qtc:
Running benchmark Stencil2D
result for stencil:

2| # 14 GPUs:

IDs: O, 1, 2, 3, 4, 5, 6, 7, 8, 9,
Running benchmark QTC

result for qtc:
Running benchmark Stencil2D

result for stencil:

16 GPUs:

Running benchmark QTC
result for qtc:

Running benchmark Stencil2D
result for stencil:

10, 11:

2.5148 s

1635.6200 GFLOPS

10, 11, 12, 13:

2.2556 s

1938.2200

GFLOPS

1.9353 s

2230.6100 GFLOPS

Listing 23: Part of SHOC results for multi-GPU on DGX-2

GPU O
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 1
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 2
Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:
Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 3

Running benchmark BusSpeedDownload
result for bspeed_download:

Running benchmark BusSpeedReadback
result for bspeed_readback:

;| Running benchmark MaxFlops

result for maxspflops:
result for maxdpflops:

70.8237 GB/sec
72.6437 GB/sec

15637.8000 GFLOPS
7841.0500 GFLOPS

65.8635 GB/sec
71.7696 GB/sec

15530.8000 GFLOPS
7822.3600 GFLOPS

41.6925 GB/sec
35.5537 GB/sec

15564.3000 GFLOPS
7814.4500 GFLOPS

41.6885 GB/sec
35.1447 GB/sec

15556.7000 GFLOPS
7840.5800 GFLOPS

73

)

Listing 24: Part of SHOC results for 1 GPU on Yme (Power AC922, 4 GPUs)

Average values from Listing

BusSpeedDownload:

(70.8237 + 65.8635 + 41.6925 + 41.6885) /4 = 55.01705 GB/s

BusSpeedReadback:

(72.6437 + 71.7696 + 35.5537 + 35.1447) /4 = 53.777925 GB/s

MaxFlops SP:

(15637.8000 + 15530.8000 + 15564.3000 + 15556.7000) /4 = 15572.4 GFLOPS

MaxFlops DP:

(7841.0500 + 7822.3600 + 7814.4500 + 7840.5800)/4 = 7829.61 GFLOPS

1 GPU:
Running benchmark Stencil2D
result for stencil:

2 GPUs:

IDs: 0O, 1:

Running benchmark QTC
result for qtc:

Running benchmark Stencil2D
result for stencil:

IDs: 0, 2:
Running benchmark Stencil2D
result for stemncil:

3 GPUs:

IDs: 0, 1, 2:

Running benchmark QTC
result for qtc:

Running benchmark Stencil2D
result for stencil:

4 GPUs:

Running benchmark QTC
result for qtc:

Running benchmark Stencil2D
result for stencil:

618.6470

9.6263

960.6280

973.8870

6.9794

924.1910

5.4775

1119.1400

GFLOPS

S

GFLOPS

GFLOPS

S

GFLOPS

S

GFLOPS

Listing 25: Part of SHOC results for multi-GPU on Yme

(Power AC922, 4 GPUs)

GPU O

Running benchmark BusSpeedDownload
result for bspeed_download:
Running benchmark BusSpeedReadback
result for bspeed_readback:

Running benchmark MaxFlops
result for maxspflops:
result for maxdpflops:

GPU 1

Running benchmark BusSpeedDownload
result for bspeed_download:

72.5094

72.6444

GB/sec

GB/sec

15590.2000 GFLOPS

7817.5800

41.6871

74

GFLOPS

GB/sec

13| Running benchmark BusSpeedReadback
result for bspeed_readback:

5| Running benchmark MaxFlops
result for maxspflops:

17 result for maxdpflops:

35.5730 GB/sec

155663.9000 GFLOPS
7821.0800 GFLOPS

Listing 26: Part of SHOC results for 1 GPU on Mini Summit (Power AC922, 2 GPUs)

Average values from Listing

BusSpeedDownload:

(72.5094 + 41.6871)/2 = 57.09825 GB/s
BusSpeedReadback:

(72.6444 + 35.5730) /2 = 54.1087 GB/s

MaxFlops SP:

(15590.2000 + 15563.9000)/2 = 15577.05 GFLOPS
MaxFlops DP:

(7817.5800 + 7821.0800)/2 = 7819.33 GFLOPS

1|# 1 GPU:
Running benchmark Stencil2D
result for stencil:

5| # 2 GPUs:

Running benchmark QTC

7 result for qtc:

Running benchmark Stencil2D
9 result for stencil:

666.7810 GFLOPS

8.8826 s

1041.3000 GFLOPS

Listing 27: Part of SHOC results for multi-GPU on Mini Summit (Power AC922, 2 GPUs)

1|# First iteration

Running benchmark MaxFlops
3 result for maxspflops:
result for maxdpflops:

Second iteration

7| Running benchmark MaxFlops
result for maxspflops:
9 result for maxdpflops:

18201.7000 GFLOPS
550.2150 GFLOPS

18201.9000 GFLOPS
550.2180 GFLOPS

Listing 28: Part of SHOC results for Titan RTX

Average values from Listing

MaxFlops SP:

(18201.7000 + 18201.9000)/2 = 18201.8 GFLOPS
MaxFlops DP:

(550.2150 + 550.2180)/2 = 550.2165 GFLOPS

1|# First iteration
Running benchmark MaxFlops
3 result for maxspflops:
result for maxdpflops:

75

4934.0400 GFLOPS
157.3030 GFLOPS

Second iteration
7| Running benchmark MaxFlops
result for maxspflops: 4927.8000 GFLOPS
9 result for maxdpflops: 1567.1560 GFLOPS

Listing 29: Part of SHOC results for GTX 980

Average values from Listing

MaxFlops SP:

(4934.0400 + 4927.8000) /2 = 4930.92 GFLOPS
MaxFlops DP:

(157.3030 + 157.1560)/2 = 157.2295 GFLOPS

76

9

D.2 Tartan

Results from Tartan benchmark scale_up_p2p_packet for size 33554432. More Tartan results
can be seen here: |GitHub - Tartan results

===== 33554432 =====
Uni-PCIe-Bandwidth
D\D 0 1 2 3
0O 744.36 44.93 30.50 29.89
1 44.69 741.36 30.71 30.02
2 29.91 30.05 741.36 25.32
3 29.98 29.98 24.99 743.04
Uni-NVLink-Bandwidth
D\D 0 1 2 3
0 741.04 71.35 41.08 40.78
1 71.31 741.36 40.61 41.01
2 40.92 40.76 T742.88 71.22
3 40.67 40.69 71.14 740.99
Bi-PCIe-Bandwidth
D\D 0 1 2 3
0 779.03 57.94 44.84 45.46
1 58.83 781.15 44.37 44.19
2 44.31 44.89 782.11 23.38
3 45.04 44.35 23.01 782.20
Bi-NVLink-Bandwidth
D\D 0 1 2 3
0 776.52 142.03 39.78 39.14
1 142.16 782.05 39.09 38.19
2 39.68 39.06 782.99 141.67
3 39.17 38.14 142.47 781.12
PCIe-Latency
D\D 0 1 2 3

0 89.10 743.
1 735.72 89.
2 1118.30 1118.86

06 1092.52 1119.50
03 1086.50 1113.06
89.08 1334.33

3 1119.99 1119.22 1349.60 89.04
NVLink-Latency
D\D 0 1 2 3
0 89.20 470.10 817.41 821.70
1 470.21 89.05 825.97 817.01
2 820.17 822.77 89.13 471.11
3 824.66 822.47 471.07 89.10

Listing 30: Yme (Power AC922, 4 GPUs): Tartan result from scale_up_p2p_packet

33554432
Uni-PCIe-Bandwidth
D\D 0 1
0 753.29 30.36
1 31.07 755.40
Uni-NVLink-Bandwidth
D\D 0 1
0 754.86 41.07
1 41.08 753.29
Bi-PCIe-Bandwidth
D\D 0 1
0 784.86 45.91
1 46.45 789.89

77

https://github.com/ingunnsund/SP19-Benchmark-results/blob/master/Tartan

Bi-NVLink-Bandwidth
D\D 0 1
0 785.45 39.66
1 39.64 790.54
PCIe-Latency
D\D 0 1
0 87.80 1100.70
1 1082.52 87.72
NVLink-Latency
D\D 0 1
0 87.77 814.64
1 815.02 87.77

Listing 31: Mini Summit (Power AC922, 2 GPUs): Tartan result from scale_up_p2p_packet

===== 33554432 =====
Uni-PCIe-Bandwidth
D\D 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
0 806.04 8.38 9.53 9.563 10.88 10.86 10.84 10.84 10.65 10.70
10.67 10.65 10.67 10.62 10.69 10.66
1 8.37 807.09 9.50 9.47 10.88 10.86 10.86 10.89 10.69 10.66
10.61 10.67 10.59 10.57 10.67 10.62
2 9.47 9.46 807.09 9.46 10.86 10.86 10.82 10.83 10.65 10.68
10.57 10.67 10.61 10.58 10.63 10.64
3 9.57 9.56 9.48 809.09 10.91 10.92 10.91 10.90 10.65 10.60
10.52 10.65 10.59 10.54 10.62 10.55
4 10.89 10.90 10.89 10.87 813.10 8.39 9.50 9.51 10.62 10.65
10.60 10.62 10.63 10.58 10.60 10.62
5 10.92 10.91 10.92 10.97 8.39 809.09 9.53 9.563 10.67 10.68
10.60 10.67 10.67 10.61 10.67 10.66
6 10.96 10.92 10.95 10.89 9.58 9.59 809.09 9.48 10.61 10.62
10.55 10.56 10.55 10.57 10.58 10.60
7 10.94 10.91 10.92 10.87 9.55 9.55 9.46 811.09 10.57 10.63
10.58 10.64 10.56 10.54 10.58 10.56
8 10.85 10.81 10.82 10.83 10.80 10.78 10.75 10.79 807.09 8.30
9.06 9.09 10.46 10.45 10.47 10.46
9 10.84 10.83 10.81 10.82 10.83 10.81 10.79 10.78 8.29 811.09
9.10 9.11 10.50 10.47 10.49 10.48
10 10.81 10.84 10.79 10.79 10.81 10.82 10.79 10.80 9.07 9.07
811.09 9.24 10.46 10.46 10.46 10.43
11 10.86 10.87 10.84 10.82 10.83 10.83 10.86 10.87 9.08 9.10
9.22 809.09 10.47 10.48 10.47 10.47
12 10.82 10.82 10.79 10.80 10.78 10.81 10.76 10.77 10.46 10.46
10.49 10.45 807.09 8.29 9.07 9.09
13 10.85 10.86 10.82 10.85 10.85 10.84 10.84 10.83 10.46 10.46
10.40 10.44 8.30 811.09 9.08 9.07
14 10.86 10.89 10.84 10.86 10.86 10.88 10.84 10.85 10.42 10.43
10.45 10.49 9.09 9.09 810.65 9.24
15 10.89 10.91 10.84 10.86 10.85 10.84 10.83 10.81 10.47 10.46
10.43 10.45 9.10 9.10 9.25 807.53
Uni-NVLink-Bandwidth
D\D 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
0 808.09 136.81 136.52 136.69 137.03 137.02 136.84 137.09 137.10 136.59
136.85 135.89 136.36 137.17 137.13 136.30
1 136.39 809.09 136.63 136.57 136.60 137.26 136.65 136.88 136.44 136.31
136.40 136.84 136.54 136.21 136.39 136.54

78

o

49

2

136.

3

136.

4

136.

5

136.

6

136.

7

136.

8

136.

9

136.

10

807.

11

136.

12

137.

13

135.

14

137.

15
137

136
58
136
42
136
52
136
54
136
58
136
88
136
31
136
57
136
09
136
93
136
01
136
91
136
38
136
.06

.64

136.

.45

136.

.68

136.

.66

136.

.90

136.

.91

136.

.44

137.

.54

136.

.25

137.

.30

811.

.21

137.

.43

136.

.72

137.

.36
137

136.

43

136.

80

136.

58

136.

84

136.

92

136.

85

136.

24

136.

36

136.

28

136.

09

136.

41

136.

49

136.

52

136.

.41

Bi-PCIe-Bandwidth

D\D

11

0

0 840.61

17.
1
17.
2
18.
3
18.
4
17.
5
17.
6
17.
7
17.
8
10.
9
10.
10
845
11

02

8.

07

10.

03

10.

15

16.

04

16.

09

17.

99

17.

97

16.

24

16.

25
17

.63
17

17.
77
17.
30
18.
26
18.
64
17.
67
17.
31
18.
17
18.
64
10.
58
10.
.31
10
.31

12
8
03

845.

07

10.

12

10.

18

16.

06

16.

00

17.

07

17.

22

16.

25

16.

27

17.

.27

17.

10.22 845.63

12
16.
13
16.

16
95

16
96

.60

16

82

136.

65

136.

59

136.

92

136.

88

137.

95

136.

76

137.

64

136.

52

137.

80

137.

28

809.

55

137.

59

136.

79
137

7T
16.
63
16.
27
17.
28
17.
69
16.
71
16.
36
17.
34
17.
61
16.
64
16.
30
16
27
16.
.61

811.09

136.58

136.63

137.10

136.68

137.02

136.12

136.41

136.81

137.17

137.12

137.27

136.65

137.36

.09 137.

2
13
10.27
63 16.
10.24
60 16.
846.72
28 17.
10.30
28 17.
17.21
63 16.
17.28
64 16.
18.51
25 17.
18.64
33 17.
17.09
54 16.
17.09
57 16.
18.12
.96 16
18.09
93 16.
17.03

16.87 844.54 8.

.58
16.

16
96

.62

17.07

66 136.

69 136.

33 137.

76 136.

07 136.

76 136.

19 136.

76 136.

29 137.

11 137.

09 136.

13 809.

81 136.

136.

78

809.

74

136.

07

136.

95

136.

77

136.

78

136.

43

136.

58

136.

27

137.

21

137.

96

137.

09

136.

32

136.

06

14

10.

62

10.

62

10.

29

845.

26

17.

63

17.

61

18.

27

18.

29

17.

54

17.

53

18.

.93

18.

94

16.

75

17.

8.76 844.54

68

137.

09

136.

81

136.

88

136.

86

136.

73

136.

27

136.

48

136.

99

137.

12

137.

02

136.

10

136.

58

808.

30

137.

27
17.
26
17.
30
18.
63
18.
18
17.
29
17.
44
18.
65
18.
11
16.
03
16.
16
17
26
17.
98
10.
06
10.

136.
07
136.
91
809.
54
137.
93
136.
79
136.
75
136.
54
136.
86
136.
33
137.
42
137.
79
136.
92
136.
28
136.
26

15
16.
03
16.
06
17.
05
17.
14
845.
12

08
10.
17
10.
10
16.
91
16.
90
17.
.28
17.
25
16.
25
16.
27

44

136.

51

136.

09

136.

13

136.

96

136.

85

136.

50

136.

46

136.

42

137.

10

136.

18

136.

36

136.

35

136.

53

809.

17.
67
17.
34
18.
38
18.
63
17.

LTT

17.
26
18.
29
18.
61
16.
61
16.
35
17
28
17.
63
10.
64
10.

136.

95

136.

67

136.

85

811.

95

136.

62

136.

90

136.

89

136.

61

137.

35

137.

91

137.

33

136.

89

136.

79

136.

7T

16.

04

16.

10

17.

19

17.

11

10

845.

02

10.

06

10.

21

16.

86

16.

93

17.

.33

17.

26

16.

26

16.

29

79

80

55

72

09

61

83

60

72

17

07

13

97

40

94

65

67

31

34

77

63

28

28

64

62

34

35

63

62

136.

136.

136.

136.

811.

136.

136.

136.

136.

136.

137.

136.

136.

137.

17.

17.

18.

18.

10.

10.

844.

10.

17.

17.

17.

18.

17.

17.

50

55

65

69

09

58

53

33

86

88

15

47

37

16

24

13

47

60

26

29

54

28

08

03

98

13

06

05

136.

136.

136.

136.

136.

809.

136.

136.

137.

137.

137.

137.

136.

137.

17.

17.

18.

18.

10.

10.

10.

845.

17.

17.

18.

18.

17.

17.

52

99

57

94

93

09

16

46

15

12

33

17

39

32

35

35

47

65

27

30

29

63

07

01

17

25

04

06

136.

136.

136.

136.

136.

136.

807.

136.

137.

137.

137.

136.

136.

137.

16.

16.

17.

17.

16.

16.

17.

17.

845.

10.

10.

16.

16.

88

62

40

54

57

64

09

28

36

04

16

85

69

23

63

60

31

27

58

58

26

32

63

.75

24

24

55

56

136.

136.

136.

136.

137.

136.

136.

809.

136.

137.

137.

137.

137.

137.

16.

16.

17.

17.

16.

16.

17.

17.

844 .

10.

10.

16.

16.

46

60

43

41

15

36

84

09

33

17

31

27

11

29

60

58

24

32

61

56

27

23

.75

54

24

24

53

54

10

61

79

81

14 17.32 17.32 18.15 18.24 17.33 17.31 18.22 18.09 16.90 16.
17.20 17.22 10.26 10.22 844.40 10.27

15 17.33 17.27 18.13 18.23 17.31 17.39 18.23 18.13 16.92 16.
17.28 17.30 10.25 10.25 10.27 844.60

Bi-NVLink-Bandwidth
D\D 0 1 2 3 4 5 6 7 8
11 12 13 14 15

0 841.25 252.43 255.44 254.21 255.20 258.75 254.34 257.48 254.64 253.
255.91 254.90 254.92 253.46 256.62 258.91

1 254.02 842.37 254.81 257.41 254.61 258.42 255.20 256.00 253.43 251.
257.61 252.84 255.00 255.00 256.60 256.80

2 252.64 255.20 844.54 256.40 256.00 258.42 254.61 258.63 253.43 255.
257.61 254.81 256.00 254.41 258.42 258.22

3 255.00 254.21 257.41 843.45 255.80 257.81 256.00 258.63 254.61 254.
256.40 254.02 253.43 254.81 259.45 259.86

4 256.20 253.62 256.80 256.80 842.37 258.42 254.61 257.21 254.81 255.
258.22 254.61 253.62 255.40 258.22 257.21

5 253.82 254.21 256.60 257.41 257.41 842.37 255.80 256.40 253.43 253.
259.86 256.20 256.80 255.20 259.45 259.45

6 255.20 253.43 256.80 256.40 256.20 256.20 843.45 255.40 255.60 256.
257.81 256.00 254.41 255.00 256.20 258.22

7 252.06 252.64 257.21 257.61 256.20 258.22 253.23 842.37 255.40 255.
256.20 256.00 256.40 254.21 256.60 259.45

8 254.02 252.26 255.80 256.00 253.82 256.60 254.21 257.41 843.45 253.
256.40 255.00 251.87 251.48 253.43 255.40

9 254.02 252.45 253.82 256.40 255.80 256.40 253.82 256.00 253.03 842.
255.80 254.41 253.03 253.03 255.40 256.60

10 254.81 254.02 257.00 257.41 255.80 258.63 254.21 257.81 255.60 255.
844 .54 256.40 255.20 254.02 259.45 258.22

11 253.62 254.81 255.20 256.60 257.81 258.02 253.23 256.40 253.03 255.
257.21 843.45 252.26 254.02 257.81 256.80

12 253.82 252.06 256.20 255.80 254.02 258.02 252.84 256.40 255.00 254.
256.40 254.81 843.45 252.84 252.26 255.40

13 255.40 255.00 257.00 256.20 255.00 257.61 254.81 255.60 255.00 254.
258.02 254.81 251.48 843.45 258.63 257.41

14 253.38 254.33 259.05 258.16 255.76 256.89 253.54 254.42 253.33 256.
259.79 255.40 253.70 256.02 842.67 259.37

15 253.87 253.71 256.02 256.46 257.19 256.97 254.42 256.74 255.54 256.
256.09 255.87 255.84 255.06 259.05 842.26

PCIe-Latency
D\D 0 1 2 3 4 5 6 7 8
11 12 13 14 15

0 81.33 3930.25 3476.11 3478.56 3052.04 3053.20 3055.98 3056.75 3132
3133.17 3132.56 3133.77 3131.74 3132.39 3132.47 3131.79

1 3948.65 81.34 3485.45 3484.45 3067.27 3065.14 3069.05 3069.41 3136.
3135.56 3138.60 3137.08 3136.84 3135.42 3136.95 3134.57

2 3484.32 3486.02 81.41 3488.37 3056.51 3057.64 3060.09 3062.63 3137.
3137.29 3135.43 3132.78 3135.41 3131.40 3133.42 3131.45

3 3477.46 3482.69 3486.46 81.35 3054.28 3055.11 3059.20 3057.97 3134.
3135.10 3133.26 3134.98 3137.82 3134.47 3136.42 3132.55

4 3057.82 3063.39 3057.19 3057.15 81.35 3940.70 3488.05 3487.39 3136.
3136.41 3136.05 3136.16 3136.27 3133.75 3135.20 3132.95

5 3058.32 3065.21 3055.74 3055.70 3945.80 81.31 3476.57 3472.66 3137.
3134.83 3134.37 3135.91 3135.44 3135.12 3136.16 3135.37

6 3060.39 3066.12 3061.97 3063.60 3484.47 3481.82 81.39 3479.11 3138.
3141.16 3135.85 3141.35 3135.29 3138.48 3141.50 3137.30

7 3060.04 3060.16 3062.15 3060.98 3492.21 3489.03 3493.40 81.35 3146.
3137.23 3144.30 3134.52 3145.07 3135.79 3137.91 3134.21

8 3080.22 3078.35 3079.17 3079.91 3081.09 3079.94 3083.25 3081.61 81.

80

91

94

78

87

40

21

40

82

20

40

62

37

60

80

81

61

08

23

.36

22

98

81

56

56

39

95

35

10

10

91

99

105

109

4024.21 3661.89 3659.70 3199.22 3199.73 3198.16 3199.14

9 3079.07 3077.76 3080.76 3081.41 3081.32 3080.96 3082.

05 3084.

81.33 3662.16 3657.66 3195.52 3196.07 3194.56 3195.22

10 3081.33 3078.81 3080.57 3081.15 3082.62 3081.34 3078.
81.36 3625.09 3187.69 3187.42 3186.09 3188.23

11 3078.64 3076.83 3081.35 3080.34 3079.28 3078.98 3077.
81.31 3189.53 3188.68 3189.83 3190.66

12 3080.57 3078.62 3082.21 3082.69 3081.60 3081.74 3081.
81.41 4021.30 3665.71 3657.15

13 3080.24 3077.16 3077.94 3077.65 3079.76 3078.27 3077.
3194.24 3194.41 3194.43 4021.11
14 3078.14 3078.66 3078.20 3081.44 3079.49 3080.17 3076.
3187.79 3188.30 3191.59 3661.03 3665.45
15 3074.77 3073.94 3077.46 3075.29 3078.99 3078.11 3076.
3187.85 3186.12 3186.24 3660.21 3663.90 3627.05

3662.30

3659.86 3629.93

3193.87 3193.13 3192.79

NVLink-Latency
D\D 0 1
11 12
0 81. 246
246.75 26
1 246. 81.
246.74 30
2 246. 246.
246.59 38
3 246. 246.
246.57 16
4 246. 246.
246.61 29
5 246. 246.
246.58 23
6 246. 246.
246.55 33
7 246. 246.
246.66 16
8 247. 247 .
246.88 48
9 247.13 247.
246.83 246.63
10 247.10 247.

13
246.
24
246.
45
81.
38
246.
28
246.
37
246.
48
246.
40
246.
37
247 .
57
247 .
63
247.

34
246.
41
246.
48
246.
37
246.
42
246.
50
246.
39
246.
35
246.
26
246.

.53
246.
33
246.
47
246.
48
246.
45
246.
49
246.
48
246.
66
246.
33
246.
34
246.
34

2 3 4 5
14 15
246. 246.48
38 27 246.
246. 246.49
37 27 246.
246. 246.46
35 16 246.
81. 246.45
43 26 246.
246. 81.35
46 28 246.
246. 246.33
55 37 246.
246. 246.30
45 36 246.
246. 246.35
50 20 246.
247. 247 .12
54 37 246.
20 247. 247 .10
246.63 37 246.
21 247 247.04

64
246.
53
246.
44
246.
49
246.
46
246.
39
246.
42
246.
46
246.
25
246.

54
246.
50
246.
52
246.
34
246.
43
246.
44
246.
50
246.
41
246.
27
246.
17
246.
.18

246.
40
246.
50
246.
40
246.
42
246.
42
81.
46
246.
45
246.
46
246.
61
247 .
48
246.

44

40

26

32

36

34

43

48

79

04

75

81.45 246.39 246.50 246.50 246.26 246.41

11 247.08 247.26 247.
246.59 81.33 246.38
12 247.11 247.40 247.
246.89 246.48 81.40
13 247.35 247.23 247.
246.72 246.28 246.49
14 247.24 247.21 247.
246.86 246.54 246.78
15 247.13 247.27 247.
246.67 246.12 246.43

18 247.00 247.00 246.
246 .44 246.26 246.57
27 247.22 247.14 247.
246.61 246.42 246.51
22 247.29 247.01 246.
81.35 246.39 246.56
25 247.18 247.18 247.
246.73 81.36 246.44
31 246.84 246.80 246.78
246.60 246.34 81.34

88

04

91

13

68 3082.

98 3079.
35 3082.

08 3078.

81.36 3661.40 3655.29

41 3077.

81.43 3626.81

67 307T7.

81.38

246.67 246.23 246.

246 .54 246.34 246.

246.61 246.34 246.

246.46 246.24 246.

246 .34 246.14 246.

246 .51 246.22 246.

81.42 246.08 246.

246.56 81.31 246.

246.95 246.79 81.

247 .36 246.86 246.

246 .86 246.69 246.

247.04 246.74 246.

246.99 246.59 246.

246.90 246.57 246.

247 .26 246.62 246.

247.04 246.45

00

31

54

20

01

66

99

27

26

22

25

24

24

22

32

48

59

47

57

52

62

64

246 .47

4023.

3665.

3663.

3193.

3197.

3188.

3188.

246.70

246.70
246.68
246.71
246 .66
246.60
246.60
246.62
246.97
81.49
246.81
246.64
246.83
246.82
246.87

246.79

44

89

82

07

12

24

07

10

Listing 32:

DGX-2: Tartan result from

81

scale_up_p2p_packet

~

13

19

39

10

D.3 Scope

D.3.1 Scope|COMM
More Scope| COMM results can be seen here: \GitHub - Scope| COMM results

{
"name": "Comm_Memcpy_GPUToHost/log2(N) :30/manual_time",
"iterations": 9,
"real_time": 7.9656620820363358e+07,
"cpu_time": 7.9808650222222209e+07,
"time_unit": "ns",
"bytes_per_second": 1.3479630606242205e+10,
"bytes": 1.0737418240000000e+09,
"cuda_id": 0.0000000000000000e+00

[u}

"name": "Comm_Memcpy_HostToGPU/log2(N) :30/manual_time",
"iterations": 9,

"real_time": 7.8470226791169912e+07,

"cpu_time": 7.8625670000001773e+07,

"time_unit": "ns",

"bytes_per_second": 1.3683429600089111e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 0.0000000000000000e+00

~

"name": "Comm_Memcpy_GPUToWC/log2(N) :30/manual_time",
"iterations": 47,

"real_time": 1.4764326783095269e+07,

"cpu_time": 1.4809836510638202e+07,

"time_unit": "ns",

"bytes_per_second": 7.2725417133777054e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 0.0000000000000000e+00

"name": "Comm_Memcpy_WCToGPU/log2(N) :30/manual_time",
"iterations": 47,

"real_time": 1.4787259234234374e+07,

"cpu_time": 1.4807360595744727e+07,

"time_unit": "ns",

"bytes_per_second": 7.2612632739551361e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 0.0000000000000000e+00

Listing 33: Memcpy between GPU 0 and CPU on Yme

"name": "Comm_Memcpy_GPUToHost/log2(N):30/manual_time",
"iterations": 9,

"real_time": 7.9924696849452123e+07,

"cpu_time": 8.0076797111111373e+07,

"time_unit": "ns",

"bytes_per_second": 1.3434418475462261e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

82

https://github.com/ingunnsund/SP19-Benchmark-results/tree/master/Scope/COMM

16

22

24

30

36

40

10

14

16

20

26

"name" :

"Comm_Memcpy_HostToGPU/log2(N) :30/manual_time",

"iterations": 9,

"real_time": 7.8523172272576228e+07,
"cpu_time": 7.8676283777778313e+07,
"time_unit": "ns",

"bytes_per_second": 1.3674203332905825e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

"name":

"Comm_Memcpy_GPUToWC/log2(N) :30/manual_time",

"iterations": 47,

"real_time": 1.4759395350801183e+07,
"cpu_time": 1.4805322085106324e+07,
"time_unit": "ns",

"bytes_per_second": 7.2749716264068649e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

"name" :

"Comm_Memcpy_WCToGPU/log2(N) :30/manual_time",

"iterations": 47,

"real_time": 1.4788778300615067e+07,
"cpu_time": 1.4809492595744247e+07,
"time_unit": "ns",

"bytes_per_second": 7.2605174151224030e+10,

"bytes": 1.0737418240000000e+09,
"cuda_id": 1.0000000000000000e+00
} k]
Listing 34: Memcpy between GPU 1 and CPU on Yme
{
"name": "Comm_Memcpy_GPUToHost/log2(N):30/manual_time",
"iterations": 6,

S}

"real_time": 8.6491568634907410e+07,
"cpu_time": 8.6713417333333120e+07,
"time_unit": "ns",

"bytes_per_second": 1.2414410340184826e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 2.0000000000000000e+00

"name":

"Comm_Memcpy_HostToGPU/log2(N) :30/manual_time",

"iterations": 9,

"real_time": 7.8842226001951426e+07,
"cpu_time": 7.8998858444445357e+07,
"time_unit": "ns",

"bytes_per_second": 1.3618867432452044e+10,

"bytes":
"cuda_id

"name" :

1.0737418240000000e+09,
": 2.0000000000000000e+00

"Comm_Memcpy_GPUToWC/log2(N) :30/manual_time",

"iterations": 23,

"real_time": 3.0239759417979613e+07,
"cpu_time": 3.0314348260869499e+07,
"time_unit": "ns",

83

28

30

36

38

40

[V}

10

16

24

30

34

36

10

"bytes_per_second": 3.5507617939631714e+10,
"bytes": 1.0737418240000000e+09,
"cuda_id": 2.0000000000000000e+00

"name": "Comm_Memcpy_WCToGPU/log2(N) :30/manual_time",
"iterations": 27,

"real_time": 2.5919982197659988e+07,

"cpu_time": 2.5942769185184665e+07,

"time_unit": "mns",

"bytes_per_second": 4.1425253142995430e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 2.0000000000000000e+00

Listing 35: Memcpy between GPU 2 and CPU on Yme

()
.

"name": "Comm_Memcpy_GPUToHost/log2(N):30/manual_time",
"iterations": 6,

"real_time": 8.6330885688463852e+07,

"cpu_time": 8.6553008333332568e+07,

"time_unit": "ns",

"bytes_per_second": 1.2437516601818914e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 3.0000000000000000e+00

"name": "Comm_Memcpy_HostToGPU/log2(N) :30/manual_time",
"iterations": 9,

"real_time": 7.8932084971004069e+07,

"cpu_time": 7.9086391333330795e+07,

"time_unit": "ns",

"bytes_per_second": 1.3603363250754648e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 3.0000000000000000e+00

"name": "Comm_Memcpy_GPUToWC/log2(N) :30/manual_time",
"iterations": 23,

"real_time": 3.0520908372557681e+07,

"cpu_time": 3.0596830000000041e+07,

"time_unit": "mns",

"bytes_per_second": 3.5180532993750458e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 3.0000000000000000e+00

"name": "Comm_Memcpy_WCToGPU/log2(N) :30/manual_time",
"iterations": 27,

"real_time": 2.5906639242613759e+07,

"cpu_time": 2.5928271259258676e+07,

"time_unit": "ns",

"bytes_per_second": 4.1446588804687759e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 3.0000000000000000e+00

Listing 36: Memcpy between GPU 3 and CPU on Yme

84

¥

10

12

26

36

40

14

"name" :

"Comm_Memcpy_GPUToHost/log2(N) :30/manual_time",

"iterations": 9,

"real_time": 7.8821813894642726e+07,
"cpu_time": 7.8974236888888702e+07,
"time_unit": "ns",

"bytes_per_second": 1.3622394245268427e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 0.0000000000000000e+00

"name":

"Comm_Memcpy_HostToGPU/log2(N) :30/manual_time",

"iterations": 9,

"real_time": 7.7445870472325221e+07,
"cpu_time": 7.7595123777778476e+07,
"time_unit": "mns",

"bytes_per_second": 1.3864416752649126e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 0.0000000000000000e+00

"name" :

"Comm_Memcpy_GPUToWC/log2(N) :30/manual_time",

"iterations": 47,

"real_time": 1.4767099290769150e+07,
"cpu_time": 1.4811986212765941e+07,
"time_unit": "ns",

"bytes_per_second": 7.2711763011656006e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 0.0000000000000000e+00

"name" :

"Comm_Memcpy_WCToGPU/log2(N) :30/manual_time",

"iterations": 47,
"real_time": 1.4784960789566344e+07,
"cpu_time": 1.4803410936169857e+07,

"time_unit":

" n

ns",

"bytes_per_second": 7.2623920975004074e+10,

"bytes": 1.0737418240000000e+09,
"cuda_id": 0.0000000000000000e+00
} k]
Listing 37: Memcpy between GPU 0 and CPU on Mini Summit
{
"name": "Comm_Memcpy_GPUToHost/log2(N):30/manual_time",
"iterations": 6,

(-
-

"real_time": 8.6413566023111343e+07,
"cpu_time": 8.6635182000000790e+07,

"time_unit":

" n

ns",

"bytes_per_second": 1.2425616409729317e+10,

"bytes":

1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

"name":

"Comm_Memcpy_HostToGPU/log2(N) :30/manual_time",

"iterations": 9,
"real_time": 8.1054421762625381e+07,
"cpu_time": 8.1210262444443524e+07,

85

18

20

¥
%]

24

26

30

38

10

16

22

"time_unit": "ns",

"bytes_per_second": 1.3247171476277288e+10,
"bytes": 1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

"name": "Comm_Memcpy_GPUToWC/log2(N) :30/manual_time",
"iterations": 23,

"real_time": 3.0247684406197589e+07,

"cpu_time": 3.0323988086956393e+07,

"time_unit": "ns",

"bytes_per_second": 3.5498314832324684e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

"name": "Comm_Memcpy_WCToGPU/log2(N) :30/manual_time",
"iterations": 27,

"real_time": 2.5971899360970214e+07,

"cpu_time": 2.5993310962962613e+07,

"time_unit": "ns",

"bytes_per_second": 4.1342445120266670e+10,

"bytes": 1.0737418240000000e+09,

"cuda_id": 1.0000000000000000e+00

Listing 38: Memcpy between GPU 1 and CPU on Mini Summit

D.3.2 Scope|NCCL
More Scope|NCCL results can be seen here: |GitHub - Scope|l NCCL results

1 GPU

{
"name": "NCCL/ops/broadcast/log2(N) :30/manual_time",
"iterations": 69,

"real_time": 1.0048626071732977e+07,
"cpu_time": 1.0060178434782607e+07,
"time_unit": "ns",

"bytes_per_second": 1.0685459050172652e+11,
"avg": 1.0041631698608398e+01,

"bytes": 1.0737418240000000e+09

}
2 GPUs
{
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 22,
"real_time": 3.1565079465508461e+07,
"cpu_time": 3.1575743045457538e+07,
"time_unit": "mns",
"bytes_per_second": 3.4016762896899738e+10,
"avg": 3.2160000409930944e-03,
"bytes": 1.0737418240000000e+09
}
3 GPUs
{
"name": "NCCL/ops/broadcast/log2(N) :30/manual_time",
"iterations": 20,

86

https://github.com/ingunnsund/SP19-Benchmark-results/tree/master/Scope/NCCL

"real_time": 3.5115980729460716e+07,
28 "cpu_time": 3.5119151150000505e+07,
"time_unit": "ns",
30 "bytes_per_second": 3.0577013704167439e+10,
"avg": 3.1359998974949121e-03,
32 "bytes": 1.0737418240000000e+09
}
34| # 4 GPUs
{
36 "name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 20,
38 "real_time": 3.5187609679996967e+07,
"cpu_time": 3.5197830700001016e+07,
40 "time_unit": "ns",
"bytes_per_second": 3.0514770220677647e+10,
12 "avg": 3.2880001235753298e-03,
"bytes": 1.0737418240000000e+09
44| }
5 GPUs
16| {
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
18 "iterations": 20,
"real_time": 3.5256524756550789e+07,
50 "cpu_time": 3.5267769399999335e+07,
"time_unit": "ns",
52 "bytes_per_second": 3.0455123737074936e+10,
"avg": 3.7183999083936214e-03,
54 "bytes": 1.0737418240000000e+09
}
56| # 6 GPUs
{
58 "name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 20,
60 "real_time": 3.5355033352971077e+07,
"cpu_time": 3.5435224249997079e+07,
62 "time_unit": "ns",
"bytes_per_second": 3.0370267601791630e+10,
64 "avg": 3.2800000626593828e-03,
"bytes": 1.0737418240000000e+09
66| }
Listing 39: Scope|NCCL: DGX-2, size 30
1 GPU
2| {
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
4 "iterations": 64,
"real_time": 1.1004969986970536e+07,
6 "cpu_time": 1.1020289062499966e+07,
"time_unit": "ns",
8 "bytes_per_second": 9.7568809844213043e+10,
"avg": 1.0997920036315918e+01,
10 "bytes": 1.0737418240000000e+09
}
12| # 2 GPUs
{
14 "name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 11,
16 "real_time": 6.2659577212550424e+07,

87

18

22

24

30

34

36

40

™

10

12

N
%]

"cpu_time": 6.2673325090908736e+07,
"time_unit": "ns",

"bytes_per_second": 1.7136116644351288e+10,
"avg": 4.1119996458292007e-03,

"bytes": 1.0737418240000000e+09

¥
3 GPUs
{
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": b5,
"real_time": 1.3210091590881348e+08,
"cpu_time": 1.3211960559999910e+08,
"time_unit": "mns",
"bytes_per_second": 8.1281936360015984e+09,
"avg": 4.1066664271056652e-03,
"bytes": 1.0737418240000000e+09
}
4 GPUs
{
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 5,
"real_time": 1.3051654994487762e+08,
"cpu_time": 1.3053456880000027e+08,
"time_unit": "ns",
"bytes_per_second": 8.2268633706107330e+09,
"avg": 4.1359998285770416e-03,
"bytes": 1.0737418240000000e+09
}
Listing 40: Scope|NCCL: Yme, size 30
1 GPU
{
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 64,
"real_time": 1.0911102959653363e+07,
"cpu_time": 1.0924489062499544e+07,
"time_unit": "mns",
"bytes_per_second": 9.8408183661215485e+10,
"avg": 1.0904959678649902e+01,
"bytes": 1.0737418240000000e+09
}
2 GPUs
{
"name": "NCCL/ops/broadcast/log2(N):30/manual_time",
"iterations": 5,
"real_time": 1.2810552120208740e+08,
"cpu_time": 1.2812559800000116e+08,
"time_unit": "ns",
"bytes_per_second": 8.3816982587828074e+09,
"avg": 4.1439998894929886e-03,
"bytes": 1.0737418240000000e+09
}

Listing 41: Scope|NCCL: Mini Summit, size 30

88

N

¥

)

N

DeepBench

Running training benchmark

Times
m n k a_t b_t precision time (usec)
7680 48000 2560 0 0 float 42775
7680 5481 2560 0 1 float 15526
Listing 42: GEMM Training (float): DGX-2 with TC
Running training benchmark
Times
m n k a_t b_t precision time (usec)
7680 48000 2560 0 0 float 126962
7680 5481 2560 0 1 float 16667
Listing 43: GEMM Training (float): DGX-2 without TC
Running training benchmark
Times
m n k a_t b_t precision time (usec)
7680 48000 2560 0 0 float 40241
7680 5481 2560 0 1 float 16923
Listing 44: GEMM Training (float): Yme with TC
Running training benchmark
Times
m n k a_t b_t precision time (usec)
7680 48000 2560 0 0 float 152053
7680 5481 2560 0 1 float 17107
Listing 45: GEMM Training (float): Yme without TC
Running training benchmark
Times
m n k a_t b_t precision time (usec)
7680 48000 2560 0 0 float 37499
7680 5481 2560 0 1 float 16465
Listing 46: GEMM Training (float): Mini Summit with TC
Running training benchmark
Times
m n k a_t b_t precision time (usec)
7680 48000 2560 0 0 float 151428
7680 5481 2560 0 1 float 16661

Listing 47: GEMM Training (float): Mini Summit without TC

89

¥

%)

¥

%)

10

Running training benchmark

Times
m n k a_t precision time (usec)
7680 48000 2560 0 float 58032
7680 5481 2560 0 float 14454

Listing 48: GEMM Training (float): Titan RTX with TC

Running training benchmark

Times
m n k a_t precision time (usec)
7680 48000 2560 0 float 134574
7680 5481 2560 0 float 14511
Listing 49: GEMM Training (float): Titan RTX without TC
Running training benchmark
Times
m n k a_t precision time (usec)
7680 48000 2560 0 float 471997
7680 5481 2560 0 float 53839

Listing 50: GEMM Training (float): GTX 980

NCCL MPI AllReduce

Num Ranks: 2

100000 400000 0.0384472 0.0385512
3097600 12390400 0.169455 0.169464
4194304 16777216 0.214412 0.214421
6553600 26214400 0.308329 0.308338

16777217 67108868 2.70963 2.70974
38360000 153440000 1.68379 1.68395
64500000 258000000 2.77863 2.77874

NCCL MPI AllReduce

Num Ranks: 3

100000 400000 0.0373482 0.0374285
3097600 12390400 0.20466 0.20471
4194304 16777216 0.258751 0.258769
6553600 26214400 0.376342 0.376359

16777217 67108868 2.80293 2.80327
38360000 153440000 1.98109 1.98125
64500000 258000000 3.24947 3.24967

NCCL MPI AllReduce

Num Ranks: 4

100000
3097600
4194304
6553600

16777217
38360000
64500000

400000
12390400
16777216
26214400
67108868

153440000
258000000

0.0414398
0.227037
0.286671
0.414103

2.84221
2.10368
3.49185

0.0417442
0.227077
0.286699
0.414155

2.84256
2.10396
3.49215

10| NCCL MPI AllReduce
Num Ranks: 8

100000 400000 0.0518246 0.0522136

16 3097600 12390400 0.279964 0.280061
4194304 16777216 0.351505 0.351608

18 6553600 26214400 0.498288 0.49841
16777217 67108868 2.99622 2.99712

50 38360000 153440000 2.30725 2.30818
64500000 258000000 3.91183 3.91286

NCCL MPI AllReduce
54/ Num Ranks: 12

58 100000 400000 0.0570434 0.057639
3097600 12390400 0.326875 0.327046
60 4194304 16777216 0.401075 0.40122
6553600 26214400 0.555655 0.555805
62 16777217 67108868 3.05683 3.05844
38360000 153440000 2.47745 2.47889
64 64500000 258000000 3.97833 3.97976

66/ NCCL MPI AllReduce
Num Ranks: 16

100000 400000 0.0709125 0.0717716

72 3097600 12390400 0.366346 0.366564
4194304 16777216 0.435344 0.435558

7 6553600 26214400 0.600155 0.60035
16777217 67108868 3.10012 3.10208

76 38360000 153440000 2.60025 2.60229
64500000 258000000 4.0425 4.04476

Listing 51: NCCL MPI AllReduce: DGX-2

1| NCCL MPI AllReduce
Num Ranks: 2

100000 400000 0.0493164 0.0493305

7 3097600 12390400 0.260277 0.260281
4194304 16777216 0.334999 0.335002

9 6553600 26214400 0.510145 0.510148
16777217 67108868 3.3676 3.36766

91

38360000
64500000

153440000
258000000

2.71301
4.42318

2.71303
4.42321

NCCL MPI AllReduce
Num Ranks: 3

100000 400000 0.0798487 0.0798962
3097600 12390400 0.777842 0.777848
4194304 16777216 1.01134 1.01135
6553600 26214400 1.52334 1.52335

16777217 67108868 6.797 6.79718
38360000 153440000 8.51575 8.51579
64500000 258000000 14.3225 14.3225

NCCL MPI AllReduce

Num Ranks: 4

100000 400000 0.0852101 0.085241
3097600 12390400 0.876076 0.876083
4194304 16777216 1.11588 1.11589
6553600 26214400 1.626 1.62601

16777217 67108868 6.9926 6.99267
38360000 153440000 9.2942 9.29426
64500000 258000000 15.50562 15.50562

Listing 52: NCCL MPI AllReduce: Yme

™

NCCL MPI AllReduce
Num Ranks: 2

100000 400000 0.0612649 0.0612709
3097600 12390400 0.66023 0.660237
4194304 16777216 0.883019 0.88303
6553600 26214400 1.34992 1.34992

16777217 67108868 6.37216 6.37219
38360000 153440000 7.55603 7.55608
64500000 258000000 12.4679 12.4679

Listing 53: NCCL MPI AllReduce: Mini Summit

92

	List of abbreviations
	Introduction
	Background
	Setup, Approach and Benchmark Suites
	Results and Discussion
	Conclusion and Future Work
	References
	Appendix Annotated Bibliography
	Appendix System Information
	Appendix Setup
	Appendix Benchmark Results

