
Knut Aasgaard Kirkhorn
BAT: A Benchm

ark Suite for Auto-Tuners

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Knut Aasgaard Kirkhorn

BAT: A Benchmark Suite for Auto-
Tuners

Development of BAT and Tuning on DGX-2 and More

Master’s thesis in Computer Science

Supervisor: Anne C. Elster

November 2020

Knut Aasgaard Kirkhorn

BAT: A Benchmark Suite for Auto-
Tuners

Development of BAT and Tuning on DGX-2 and More

Master’s thesis in Computer Science
Supervisor: Anne C. Elster
November 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

HPC (High Performance Computing) system have in the recent years become more and more
heterogeneous, containing different architectures such as multicore CPUs and accelerators such as
GPUs and FPGAs.

Because of the variety in architecture parameters, programs need to be optimized and
performance-tweaked for the given architecture in order to get the best performance. Architectural
features include special instructions to utilize the hardware parallelism of multi- and many-core
processors, different types and sizes of memory, and other special architectural features, such as
tensor cores on modern GPUs. This leads to a lot of performance tweaking for the given hardware
in order to achieve the best performance.

Since there are a lot of tweakable parameters for performance tuning, such as varying block
sizes, depths of loop unrolling and function inlining, one ends up with a huge search space that is
possible, but very hard to do by hand. It is much more efficient to use an auto-tuner for this job,
that automates the performance tuning of parameterized implementation. One problem is that
there is no standard benchmark suite for measuring the performance of auto-tuners.

This thesis presents the creation of the benchmark suite for auto-tuners named BAT
(Benchmark suite for Auto-Tuners). BAT is a benchmark suite for auto-tuners for GPU and HPC
oriented programs created in CUDA. This benchmark suite is proposed joint with Ingunn Sund as
a solution to the problem of no standard benchmark suites for auto-tuners.

BAT includes a varied selection of benchmarks of different degree of complexity and scope. The
main focus of this thesis are the parameterized codes and benchmarks done, including benchmarks
for the multi-GPU systems NVIDIA DGX-2 and IBM Power System AC922. A summary of our
findings and suggestions for future work is also included.

i

Sammendrag

HPC (High Performance Computing) systemer har i de siste årene blitt mer og mer heterogene,
og inneholder forskjellige arkitekturer som flerkjernede CPUer og akseleratorer som GPUer og
FPGAer.

P̊a grunn av mangfoldet i arkitekturparametere, m̊a programmene optimaliseres og
ytelsesjusteres for den gitte arkitekturen for å f̊a den beste ytelsen. Arkitektoniske funksjoner
inkluderer spesielle instruksjoner for å bruke maskinvareparallellitet til fler- og mangekjernepros-
essorer, forskjellige typer og størrelser p̊a minnet og andre spesielle arkitektoniske funksjoner, for
eksempel tensor cores p̊a moderne GPUer. Dette fører til mye ytelsesjustering for den gitte mask-
invaren for å oppn̊a best ytelse.

Siden det er mange justerbare parametre for ytelsesjustering, slik som varierende block size,
dybde av loop unrolling og function inlining, ender man opp med enorme søkeomr̊ader som er
mulig, men veldig vanskelig å gjøre for h̊and. Det er mye mer effektivt å bruke en auto-tuner
for denne jobben, som automatiserer ytelsesjusteringen av parametriserte implementasjoner. Et
problem er at det ikke er noen standard benchmark suite for å m̊ate ytelsen av auto-tunere.

Denne masteroppgaven presenterte hvordan en benchmark suite for auto-tuning kalt BAT
(Benchmark suite for Auto-Tuners), ble laget. BAT er en benchmark suite for auto-tunere for
GPU and HPC-orienterte programmer laget i CUDA: Denne benchmark suiten er presentert og
utviklet i samarbeid med Ingunn Sund som en løsning til mangelen p̊a en standard benchmark
suite for autotunere.

BAT inkluderer et variert utvalg av benchmarks av forskjellige grader av kompleksitet og om-
fang. Hovedfokuset i denne oppgaven har vært p̊a parameteriseringen av koder og benchmarkene
utviklet, inkludert benchmarker for multi-GPU systemene NVIDIA DGX-2 og IBM Power System
AC922. En oppsummering av v̊are funn og forslag til videre arbeid er ogs̊a inkludert.

ii

Acknowledgments

First I would like to thank both my collaborator Ingunn Sund and my supervisor, Professor Anne
C. Elster for all their support and help both with this thesis and the specialization project, that
was the precursor to this work.

I would also like to thank Rolf Harald Dahl from IT support at our Dept (IDI) and HPC-Lab
Admin Jacob O. Tørring for all their system support and suggestions.

Lastly, I want to thank NTNU and the HPC-lab at IDI for the providing access the HPC systems
utilized and benchmarked in this thesis, including several workstations with high end graphics
cards, and the IBM Power System AC922 with NVIDIA Tesla V100 cards as well as the NVIDIA
DGX2.

iii

Table of Contents

List of Figures vii

List of Tables viii

List of Listings x

List of Abbreviations xii

1 Introduction 1
1.1 Motivation and Contribution . 1
1.2 Outline . 2

2 Background - GPUs and Docker 4
2.1 GPU . 4
2.2 GPU Hardware . 4

2.2.1 NVIDIA GeForce GTX 980 . 4
2.2.2 NVIDIA Tesla V100 . 5
2.2.3 NVIDIA TITAN RTX . 5
2.2.4 NVIDIA Tesla T4 . 5
2.2.5 IBM Power System AC922 . 5
2.2.6 NVIDIA DGX-2 . 6

2.3 GPU- and Interconnect Communication . 7
2.3.1 Messaging Passing Interface . 7
2.3.2 PCI Express . 7
2.3.3 NVLink 2.0 and NVSwitch . 7

2.4 GPU Software . 8
2.5 Docker . 9

2.5.1 Docker Image . 9
2.5.2 Docker Container . 9
2.5.3 NVIDIA Docker . 10

3 Benchmarking GPUs and Auto-tuning 11
3.1 SHOC Benchmark Suite . 11

3.1.1 Radix Sort . 11
3.1.2 Triad . 12
3.1.3 Reduction . 13
3.1.4 Molecular Dynamics . 13
3.1.5 Stencil 2D . 14

3.2 Auto-Tuning . 14
3.3 Auto-Tuning Frameworks . 14

3.3.1 Kernel Tuner . 14
3.3.2 CLTune . 15
3.3.3 Kernel Tuning Toolkit . 16
3.3.4 OpenTuner . 16

4 Related Work 18

iv

5 Planning of the Benchmark Suite 20
5.1 Finding Benchmark Programs . 20
5.2 Finding Relevant Auto-Tuners . 20
5.3 Systems Selected for Testing . 21
5.4 Criteria for an Ideal Benchmark Suite . 21
5.5 Research Questions . 22

6 Creating the Benchmark Suite 23
6.1 Parameterizing of Kernels . 23

6.1.1 Ensuring that Parameters are Applied . 23
6.1.2 Triad . 23
6.1.3 MD . 27
6.1.4 Reduction . 30
6.1.5 Sort . 35
6.1.6 Stencil 2D . 40
6.1.7 Parameter Search Space . 40
6.1.8 Original Parameter Values . 41
6.1.9 Summary of Implemented Parameters . 43

6.2 Making the Benchmark Suite User Friendly . 47
6.2.1 Command-Line Interface . 47
6.2.2 Documentation . 48
6.2.3 Project Structure . 48
6.2.4 Userbase . 49

7 Testing the Benchmark Suite 50
7.1 Implementing Benchmarks with Auto-Tuners . 50

7.1.1 CLTune . 50
7.1.2 KTT . 54
7.1.3 Kernel Tuner . 56
7.1.4 OpenTuner . 57

7.2 Benchmark Parameter Availability . 59
7.2.1 Sort . 59
7.2.2 Triad . 60
7.2.3 Reduction . 60
7.2.4 MD . 61
7.2.5 Stencil 2D . 61

7.3 System Setup . 62
7.4 Testing Process . 66

7.4.1 What to Test . 66
7.4.2 How to Test . 66
7.4.3 Correctness Verification . 67

8 Results and Discussion 68
8.1 Parameter Evaluation . 68

8.1.1 OpenTuner . 68
8.1.2 Kernel Tuner . 70
8.1.3 CLTune . 70
8.1.4 KTT . 70

v

8.2 Benchmark Suite Evaluation . 72
8.3 Research Questions . 74
8.4 Auto-Tuner Evaluation . 75

8.4.1 CLTune . 75
8.4.2 KTT . 75
8.4.3 Kernel Tuner . 76
8.4.4 OpenTuner . 76

9 Conclusion and Future Work 77
9.1 Future Work . 77

References 78

Appendix A Parameter Research 82

Appendix B Repository Readme 89

Appendix C System Information 92

Appendix D Setup 100

vi

List of Figures

Figure 1 Comparison of GPU and CPU architecture. 4
Figure 2 Illustration of a IBM Power System AC922 with four GPUs and two CPUs. . 6
Figure 3 Interconnect diagram for NVIDIA DGX-2. 7
Figure 4 NVSwitch topology on NVIDIA DGX-2. 8
Figure 5 Virtual Machine vs. Docker comparison of needed components. 10
Figure 6 NVIDIA Docker architecture example. 10
Figure 7 Radix sort example. 12
Figure 8 Reduction sum operation example. 13
Figure 9 Illustration of how the GPUs are connected to the CPUs on Mini Summit. . 64
Figure 10 Stencil 2D with problem size 1 for both NVIDIA DGX-2 and IBM Power

System AC922. 69
Figure 11 Stencil 2D with problem size 4 for both NVIDIA DGX-2 and IBM Power

System AC922. 70
Figure 12 Work per thread parameter and block size parameter for GTX 980 system

for the MD benchmark in KTT. 71
Figure 13 Work per thread parameter and block size parameter for all systems for the

MD benchmark in KTT. 72

vii

List of Tables

Table 1 Abbreviations and explanations. xii
Table 2 Search techniques implemented in Kernel Tuner. 15
Table 3 Search techniques implemented in CLTune. 15
Table 4 Search techniques implemented in KTT. 16
Table 5 Search techniques implemented in OpenTuner. 17
Table 6 Search space for each parameterized benchmark. 40
Table 7 Original parameter values in the Triad benchmark. 41
Table 8 Original parameter values in the MD benchmark. 41
Table 9 Original parameter values in the Reduction benchmark. 42
Table 10 Original parameter values in the Sort benchmark. 42
Table 11 Original parameter values in the Stencil 2D benchmark. 43
Table 12 Parameters, descriptions and values for the Triad benchmark. 43
Table 13 Parameters, descriptions and values for the MD benchmark. 44
Table 14 Parameters, descriptions and values for the Reduction benchmark. 45
Table 15 Parameters, descriptions and values for the Sort benchmark. 46
Table 16 Constraints with descriptions for the Sort benchmark. 46
Table 17 Parameters, descriptions and values for the Stencil 2D benchmark. 47
Table 18 Implemented parameters in each auto-tuner for the Sort benchmark. 59
Table 19 Implemented parameters in each auto-tuner for the Triad benchmark. 60
Table 20 Implemented parameters in each auto-tuner for the Reduction benchmark. . . 60
Table 21 Implemented parameters in each auto-tuner for the MD benchmark. 61
Table 22 Implemented parameters in each auto-tuner for the Stencil 2D benchmark. . . 61
Table 23 Hardware specifications for NVIDIA GeForce GTX 980 based computer. . . . 62
Table 24 Hardware specifications for NVIDIA TITAN RTX based computer. 63
Table 25 Hardware specifications for NVIDIA Tesla T4 based computer. 63
Table 26 IBM Power System AC922 hardware specifications. 64
Table 27 NVIDIA DGX-2 hardware specifications. 65
Table 28 Parameters used in Convolution example in Kernel Tuner. 82
Table 29 Parameters used in Convolution Streams example in Kernel Tuner. 82
Table 30 Parameters used in Expdist example in Kernel Tuner. 82
Table 31 Parameters used in Matrix Multiplication example in Kernel Tuner. 83
Table 32 Parameters used in Point-in-Polygon example in Kernel Tuner. 83
Table 33 Parameters used in Reduction example in Kernel Tuner. 83
Table 34 Parameters used in SpMV example in Kernel Tuner. 83
Table 35 Parameters used in Stencil example in Kernel Tuner. 83
Table 36 Parameters used in Texture example in Kernel Tuner. 84
Table 37 Parameters used in Vector Add example in Kernel Tuner. 84
Table 38 Parameters used in Zero Mean Filter example in Kernel Tuner. 84
Table 39 Parameters used in Simple example in CLTune. 84
Table 40 Parameters used in Convolution Simple example in CLTune. 84
Table 41 Parameters used in Convolution example in CLTune. 85
Table 42 Parameters used in GEMM example in CLTune. 85
Table 43 Parameters used in Conv 3D example in KTT. 86
Table 44 Parameters used in Coulomb Sum 2D example in KTT. 87
Table 45 Parameters used in BICG example in KTT. 87

viii

Table 46 Parameters used in Transpose example in KTT. 87
Table 47 Important compiler flags for FFT and MM benchmarks in OpenTuner. 88
Table 48 Important compiler flags for RT and TSP GA benchmarks in OpenTuner. . . 88

ix

List of Listings

Listing 1 Example of launching a CUDA kernel with 128 blocks and 32 threads. 9
Listing 2 Previous Triad-program for launching the kernel with 128 blocks. 23
Listing 3 Parameterized Triad-program for launching with different block sizes. 24
Listing 4 Triad-program including the WORK_PER_THREAD to process more elements. . . 25
Listing 5 Triad-program including the LOOP_UNROLL_TRIAD to unroll the loop. 25
Listing 6 Triad-program for creating the input data to the kernel in SHOC. 26
Listing 7 Relevant part of changed code for choosing precision for computations. . . . 26
Listing 8 Previous MD-program for launching the kernel with block size 256 in in SHOC. 27
Listing 9 Parameterized MD-program for launching the kernel with different block sizes. 27
Listing 10 Previous MD-program for calling function with different precisions in SHOC. . 28
Listing 11 Changed code for choosing precision for computations. 28
Listing 12 Whether to use texture memory or not for input to compute lj force. . . . 29
Listing 13 Implementation of parameter WORK_PER_THREAD for MD 30
Listing 14 Relevant part of previous Reduction code for launching reduce kernel. . . . 30
Listing 15 Relevant part of parameterized code for launching reduce kernel. 30
Listing 16 Relevant part of previous code for calling function with different precision. . 31
Listing 17 Parameterized code for calling function with different precisions. 31
Listing 18 Relevant part of parameterized compile command. 31
Listing 19 Relevant part for setting the max register count to the compile command. . . 32
Listing 20 Command for running Reduction on four nodes using MPI. 32
Listing 21 Command for running Reduction on parameterized devices using MPI. . . . 32
Listing 22 Relevant part of unrolled loops in Reduction code. 32
Listing 23 Parameterized unrolled loops for Reduction. 33
Listing 24 Reduction part of texture memory implementation. 34
Listing 25 Previous unrolled loops in Sort SHOC. 35
Listing 26 Parameterized loop in Sort. 35
Listing 27 Original Sort block sizes. 36
Listing 28 Previous code for data sizes in SHOC. 36
Listing 29 Parameterized Sort data sizes. 36
Listing 30 Previous data sizes in SHOC. 37
Listing 31 Parameterized data Sort sizes in SHOC. 37
Listing 32 Custom CUDA uint8 struct. 38
Listing 33 Parameterized data sizes in Sort SHOC. 38
Listing 34 Relevant shared memory objects for constraint. 38
Listing 35 Previously non-inlined functions in Sort SHOC. 39
Listing 36 Parameterized inlined functions in Sort. 39
Listing 37 Parameterized number of GPUs for Stencil 2D. 40
Listing 38 Common code for CLTune algorithms . 50
Listing 39 Common JSON saver for CLTune results. 52
Listing 40 Triad helper function for CLTune. 53
Listing 41 Shared memory in Reduction CLTune. 53
Listing 42 Compiler directive for Reduction shared memory. 53
Listing 43 Sort data size constraint for CLTune. 54
Listing 44 Incorrect global size type for KTT . 55
Listing 45 Tuning techniques for KTT algorithms. 55

x

Listing 46 Triad parameters for KTT. 55
Listing 47 Triad parameters for Kernel Tuner. 56
Listing 48 Sort constraint for Kernel Tuner. 57
Listing 49 Triad parameters for OpenTuner. 57
Listing 50 Reduction parameters for OpenTuner. 58
Listing 51 Sort constraint for OpenTuner. 58
Listing 52 Stencil 2D for OpenTuner. 59
Listing 53 Topology for GTX 980 system . 92
Listing 54 NVLink status for GTX 980 system. No results because the GPU does not

have the possibility for NVLink connections . 92
Listing 55 Information about the GTX 980 GPU when running the nvidia-smi command 92
Listing 56 Information about the CPU in the GTX 980 based system when running the

lscpu command . 93
Listing 57 Topology for Titan RTX system . 93
Listing 58 NVLink status for Titan RTX system. The system has a possibility for two

NVLink connections, but they are not in use on this specific computer. 94
Listing 59 Information about the Titan RTX GPU when running the nvidia-smi command 94
Listing 60 Information about the CPU in the RTX Titan based system when running

the lscpu command . 94
Listing 61 NVLink status for part of NVIDIA Tesla T4 system. No results because the

GPU does not have the possibility for NVLink connections 95
Listing 62 Information about the first GPU when running the nvidia-smi command on

the NVIDIA Tesla T4 system . 95
Listing 63 Topology for DGX-2 (G=GPU). First matrix is the direct communication

matrix, the second is PCI only. 95
Listing 64 NVLink status on DGX-2. The listing shows only GPU 0 and 15 because

the command will print the same for every GPU in the system. 96
Listing 65 Information about the first GPU when running the nvidia-smi command on

the DGX-2 . 96
Listing 66 Information provided about the CPUs in the DGX-2. 97
Listing 67 Topology for IBM Power System AC922 (2 GPUs) 97
Listing 68 NVLink status on IBM Power System AC922 (2 GPUs) 98
Listing 69 Information about the first GPU when running the nvidia-smi command on

IBM Power System AC922 (2 GPUs). 98
Listing 70 Information provided about the CPUs in IBM Power System AC922 (2 GPUs). 98
Listing 71 Dockerfile for CLTune. 100
Listing 72 Dockerfile for KTT. 100
Listing 73 Dockerfile for Kernel Tuner. 101
Listing 74 Dockerfile for OpenTuner. 102
Listing 75 Slurm reserving of a single NVIDIA T4 and 40 CPU cores. 102

xi

List of Abbreviations

Table 1: Abbreviations and explanations.

Abbreviation Explanation

AI Artificial Intelligence

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

FLOPS Floating Point Operations Per Second

GPU Graphics Processing Unit

GB Gigabyte

GT/s Giga Transfers per second

HPC High Performance Computing

KB Kilobyte

KTT Kernel Tuning Toolkit

MB Megabyte

MD Molecular Dynamics

MPI Message Passing Interface

OS Operating System

PCIe Peripheral Component Interconnect
Express

SHOC Scalable HeterOgeneous Computing

VM Virtual Machine

xii

1 Introduction

HPC(High Performance Computing) system have in the recent years become more and more hetero-
geneous, containing different architectures such as multicore CPUs and accelerators such as GPUs
and FPGAs.

Because of the variety in architecture parameters, programs need to be optimized and
performance-tweaked for the given architecture in order to get the best performance. Architectural
features include special instructions to utilize the hardware parallelism of multi- and many-core
processors, different types and sizes of memory, and other special architectural features, such as
tensor cores on modern GPUs. This leads to a lot of performance tweaking for the given hardware
in order to achieve the best performance.

Since there are a lot of tweakable parameters for performance tuning, such as varying block
sizes, depths of loop unrolling and function inlining, one ends up with a huge search space that is
possible, but very hard to do by hand. It is much more efficient to use an auto-tuner for this job,
that automates the performance tuning of paramerterzied implementation. One problem is that
there are no standard benchmark suite for measuring the performance of auto-tuners.

Several different auto-tuners have thus arisen to compete in this challenge in the best way
possible on different kinds of codes on either CPUs or GPUs, including KTT, CLTune, Kernel
Tuner, OpenTuner and ATF.

1.1 Motivation and Contribution

While there are several different auto-tuners, there have, to our knowledge, yet to be created a
standard benchmark framework. One of the problems related to this is that the majority of the
auto-tuners create proprietary benchmarking codes for their own auto-tuner, but these codes are
typically not compatible or optimal to benchmark other auto-tuners.

We think that one of the reasons for the lack of a standard for auto-tuner benchmarks, is that
the benchmarking codes generally are complicated and very targeted, so they are not very user
friendly for other developers to take advantage of.

Joint work and the BAT Framework

This thesis builds on the fall semester project (specialzaiton project) that the author did jointly
with Ingunn Sund. The author has also collaborated with her during this work.

Jointly we propose a standardized benchmark suite for auto-tuners, named BAT
(Benchmark suite for Auto-Tuners). BAT contains a set of different benchmarks for already
implemented auto-tuners to retrieve different parameter configuration. This thesis describes the
author’s contribution to BAT and the methodology and work related to it he contributed.

1

We split up the work between us by each focusing on one the multi-GPU machines we had
access to between us as follows:

Ingunn Sund working on developing BAT on

• an IBM Power System AC922 with four Tesla V100-SXM2 32 GB GPUs and

• a Supermicro server with 20 Tesla T4 GPUs

The author developing the BAT suite for

• an IBM Power System AC922 with two Tesla V100-SXM2 16 GB GPUs and

• an NVIDIA DGX-2 with 16 Tesla V100-SXM3 32 GB GPUs.

As was described in Ingunn’s thesis, also developed and tested code on a system with a GeForce
GTX 980 graphics card and a system with a Titan RTX card. We also decided to test on one
singular graphics card of each other’s biggest multi-GPU system. Thus Ingunn did tests on one
Tesla V100 GPU of DGX-2 and I tested on one GPU of Supermicro server with the Tesla T4s.

Resarch Questions

Some research questions that have come to light include:

• Is SHOC a good benchmark suite to base a benchmark suite for auto-tuners for?

• Will this benchmark suite have enough GPU focus?

• Will it work with different types of auto-tuners?

• Will the optimal values for the implemented parameters differ for different systems?

1.2 Outline

The structure of the rest of this thesis consist of the following chapters:

Chapter 2. Background – GPUs and Docker describes information that this thesis builds upon
and uses later. It starts with describing basic GPU hardware and interconnects, and continues with
software, benchmarks and algorithms. An overview of Docker and how we use Docker on NVIDIA
GPU systems is also included.

Chapter 3. Benchmarking GPUs and Auto-tuning An description of the SHOC benchmarking
suite we use as well as our definition of auto-tuning and and overview of related auto-tuning
frameworks.

Chapter 4. Related Work describes related work for this thesis.

Chapter 5. Planning of the Benchmark Suite contains the planning, work and research
previous to creating the benchmark suite. This includes finding of the benchmark programs and
auto-tuners, presenting the systems used for testing, a criteria for a successful benchmark suite and
some research questions.

Chapter 6. Creating the Benchmark Suite describes the proceeded way of implementing the
benchmark suite by first parameterizing the kernels, showing the final search space, original

2

parameter values, implemented parameter values and how the benchmark suite are made user
friendly.

Chapter 7. Testing the Benchmark Suite describes the implementation of the benchmarks for
different auto-tuners, shows the parameters implemented for each auto-tuner, presenting
information about the different systems used in testing and the process of the testing.

Chapter 8. Results and Discussion shows the results obtained in this thesis and an analysis of
them. It contains an evaluation of the parameters implemented, the benchmark suite and of the
auto-tuners used.

Chapter 9. Conclusion and Future Work describes the final result of this thesis and shows the
significance of the work. At the end of the chapter it describes what could be done in the future
to improve this benchmark suite.

Appendices

This thesis also contains of the following appendices:

Appendix A. Parameter Research contains tables of parameters obtained by researching repos-
itories and papers of auto-tuners.

Appendix B. Repository Readme shows the readme for the Git repository of BAT.

Appendix C. System Information contains information about the systems used for testing in
this thesis.

Appendix D. Setup shows Dockerfiles and Slurm command used for setup of BAT.

Finally, this thesis also contains of the following attached files and directories:

• BAT includes the source code of the benchmark suite.

• BAT-results includes the results from the benchmarks from using BAT.

Investigating New GPU Features for Performance which is the specialization project
(fall project) the author wrote in collaboration with Ingunn Sund.

3

2 Background - GPUs and Docker

This chapter includes a description of modern GPUs and the recent GPUs that were used for our
benchmarks as well as the various types of interconnection networks these systems use for CPU -
GPU and between GPUs and a brief introduction to the CUDA programming environment used
on Nvidia GPUs. A description of how to use Docker on GPUs is also included.

2.1 GPU

A Graphics Processing Unit (GPU) is a processor that originally was made for rendering images
or graphics on a computer screen. However in later years it has been used for other computational
tasks and general purpose computing due to it’s high number of cores and threads. It can be used
in parallel processing and High Performance Computing (HPC) and . [1] The difference between a
GPU and a Central Processing Unit (CPU) is that a CPU is designed with fewer processing cores in
mind for executing tens of parallel tasks rather than a GPU that is designed with thousands of cores
capable of executing simultaneously. [2] In Figure 1 below, it is shown an example architecture
comparison between GPU and CPU with the number of cores in mind.

Figure 1: Comparison of GPU and CPU architecture. [2] Figure is used with permission from
NVIDIA.

2.2 GPU Hardware

2.2.1 NVIDIA GeForce GTX 980

This section is from my specialization project, which is attached to this thesis.

The NVIDIA GeForce GTX 980 is a graphics card from 2014 with the Maxwell 2.0 architecture. It
has 4 GB of GDDR5 memory with a bandwidth speed of 224 GB/s. It can achieve performances
of 4.9 teraFLOPS for single precision and 155.6 gigaFLOPS for double precision. The GPU is
equipped with 2048 CUDA cores. [3]

4

The Maxwell architecture introduced improved Streaming Multiprocessor (SM) architecture
design. The architecture included more power efficient processors in numerous ways, for example
by increasing the number of instructions per clock cycle. [4]

2.2.2 NVIDIA Tesla V100

This section is from my specialization project, which is attached to this thesis.

The NVIDIA Tesla V100 is a GPU based on the Volta architecture and there exists versions with
16 GB or 32 GB of the memory type HBM2 (High Bandwidth Memory) with a bandwidth speed
of 900 GB/s. It can achieve performances of 125 teraFLOPS for deep learning (mixed precision),
15.7 teraFLOPS for single precision and 7.8 teraFLOPS for double precision. The GPU is equipped
with 640 Tensor cores and 5120 CUDA cores. [5, p. 27]

Volta is the first architecture with specialized mixed-precision cores called NVIDIA Tensor
Cores.

The Tensor Cores can perform one matrix multiply and accumulate operation in one clock
cycle on a 4x4 matrix. Tensor Cores performs operations in mixed precision. The input data is
half precision, multiplication is in half precision and accumulation is in single precision. This will
lead to some precision loss, which deep neural networks can be tolerant to. HPC applications, on
the other hand, cannot always handle the precision loss. [6]

2.2.3 NVIDIA TITAN RTX

This section is from my specialization project, which is attached to this thesis.

The NVIDIA TITAN RTX is a graphics card based on the Turing architecture. The GPU has 24
GB of GDDR6 GPU memory with a bandwidth of 672 GB/s. The card can achieve performance
of 130 teraFLOPS with its 576 tensor cores made for mixed precision. The GPU also has 4608
CUDA cores. [7]

The Turing architecture provided new and improved Tensor cores. A part of the new design is
the added INT8 and INT4 precision modes for inference operations. Another new feature on this
graphics card is Ray Tracing cores. These cores came with the Turing architecture. [8, p. 4]

2.2.4 NVIDIA Tesla T4

The NVIDIA Tesla T4 is another GPU based on the Turing architecture and is in the NVIDIA’s
Tesla product lineup. [8, p. 17] It has 16 GB of GDDR6 GPU memory with a bandwidth of 320
GB/s. [9] It delivers almost double the memory and bandwidth of the previous Tesla P4 GPU and
can achieve a performance of 65 teraFLOPS for mixed precision. The GPU has 2560 CUDA cores
and 320 tensor cores.

2.2.5 IBM Power System AC922

This section is from my specialization project, which is attached to this thesis.

The IBM Power System AC922 is a system designed for giving great performance to data analytics,
HPC applications and especially AI training. IBM Power System AC922 will be referred to as Power
AC922 from now on. The system has two IBM POWER9 processors, the first chip with PCIe Gen4
which has twice the bandwidth of the previous PCIe generation. [10] [11]

5

The Power AC922 supports up to 4 or 6 NVIDIA Tesla V100 GPUs depending on the model,
where the GPUs can have 16GB or 32GB memory. [5, p. 4-8] The GPUs are split evenly between
two POWER9 CPUs. If there are a total of four GPUs, two will be directly connected to the first
CPU and the other two will be connected to the second CPU, as can be seen in Figure 2. The
GPUs are connected to their CPU and to any siblings with NVLink 2.0. The NVLink 2.0 channels
are called NVLink Bricks, and each GPUs and CPUs has six of them. The NVLink Bricks are
combined to achieve the highest bandwidth attainable. This means that if the Power AC922 has
a total of four GPUs, there will be NVLink Brick groups of three (Figure 2), and with six GPUs
there will be groups of two to ensure connection between a CPU and its connected GPUs and the
connection between the GPUs connected to the same CPU. [5, p. 12-15]

X bus

NVLink 2.0
3 bricks

NVLink 2.0
3 bricks

Power9 Power9

 Tesla
 V100

 Tesla
 V100

 Tesla
 V100

 Tesla
 V100

Figure 2: Illustration of a IBM Power System AC922 with four GPUs and two CPUs.
Figure is made in collaboration with Ingunn Sund.

2.2.6 NVIDIA DGX-2

This section is from my specialization project, which is attached to this thesis.

The NVIDIA DGX is a series of systems created by NVIDIA for deep learning and complex AI
applications. DGX-2 is version two of this system line and is approximately twice as fast as version
one (DGX-1). It consists of 16 Tesla V100 GPUs with 32 GB of memory each, which is 512 GB in
total. The system has in total 81 920 CUDA cores and 10 240 Tensor cores. [12] The system consists
of two baseboards, with each having 8 GPUs. To increase the communication speed between the
GPUs, they are connected with 12 NVSwitches, as can be seen in Figure 4. Six NVSwitches belongs
to each baseboard, which means that the connection must traverse one NVSwitch if both GPUs
are on the same baseboard, and through two NVSwitches if the GPUs are on different baseboards.
All GPUs in this system have a bonded set of six NVLinks between each other as shown in Listing
63 in Appendix C.

The system has two Intel Xeon Platinum 8168 CPUs with 24 cores and a base clock frequency
of 2.7 GHz. Between the two CPUs there is a QPI connection and each CPU has a PCIe connection
with two PCIe switches to each GPU on their baseboard as can be seen in Figure 3. It can achieve
the maximum performance for deep learning applications of 2 petaFLOPS which means that this
system may be well suited for large workloads.

6

Figure 3: Interconnect diagram for NVIDIA DGX-2. [13, p. 19] Figure is used with permission
from NVIDIA.

2.3 GPU- and Interconnect Communication

2.3.1 Messaging Passing Interface

This section is from my specialization project, which is attached to this thesis.

MPI (Message Passing Interface) is a standardized interface of protocols and functions for passing
messages and communicating in a parallel environment with multiple computers. MPI provides a
set of functions that are used in the implementations to communicate between the nodes. [14] There
exist many different implementations, such as Open MPI [15], Spectrum MPI [16] and MPICH [17].

2.3.2 PCI Express

This section is from my specialization project, which is attached to this thesis.

PCI (Peripheral Component Interconnect) Express, or PCIe for short, is a bus standard that
provides communication between connected components in a computer, such as hard drives and
graphics cards. The normal connection between the GPU and CPU is done over PCIe. However,
this can be a bottleneck due to its maximum transfer rate of 8 GT/s per lane for version 3 and 16
GT/s per lane for version 4. [18] [19]

2.3.3 NVLink 2.0 and NVSwitch

This section is from my specialization project, which is attached to this thesis.

7

NVIDIA NVLink is a GPU interconnect which offers much faster data transfer and is more scalable
than using the PCIe. [20] NVLink can be used for both GPU to GPU and CPU to GPU connection.
For each lane in the NVLink it has a transfer rate of 25 GT/s. [21, p. 115] This can reduce the
bottleneck caused by transferring over the PCIe bus.

NVSwitch is a switch for connecting NVLinks together. It has 18 ports for connecting NVLinks
and each NVLink connected can achieve simultaneously 25 GB/s bandwidth speed in both ways.
In total the NVSwitch can therefore achieve a total bandwidth speed of 900 GB/s. [22, p. 3]

In Figure 4 below it is shown the connections consisting of NVLinks between the GPUs and
NVSwitches. This is for the NVIDIA DGX-2 system.

Figure 4: NVSwitch topology on NVIDIA DGX-2. [23, p. 8] Figure is used with permission from
NVIDIA.

2.4 GPU Software

The standard programming model for NVIDIA GPUs is called CUDA (Compute Unified Device
Architecture) and was introduced in 2006. CUDA is a general-purpose parallel computing plat-
form and programming model and is designed for different programming languages such as C++,
FORTRAN and Java.

A function that runs on the GPU is called a kernel. These functions can be executed in parallel
on the device on a defined number of threads. Each of these threads are given a unique thread
ID, which makes it trivial to compute elements in vectors, matrices or volumes. To make a kernel
launchable from the host-code, one needs to define the called kernel with the global keyword.
For kernels called from device kernels, device can be is used. [2]

An example of launching a CUDA kernel can be shown in Listing 1. The kernel is performing
multiplication on two two input floating-point arrays and stores the results in the output array.
The kernel is launched using 128 grids with 32 threads per block. Threads per block is also called
block size. Total threads launched will therefore be 128× 32 = 4096.

8

1 __global__ void multiply(float* A, float B*, float* output) {

int threadId = threadIdx.x + (blockIdx.x * blockDim.x);

3 output[threadId] = A[threadId] * B[threadId];

}

5

int main() {

7 // ...

// Set up A, B and output here

9 // ...

11 multiply <<<128, 32>>>(A, B, output);

}

Listing 1: Example of launching a CUDA kernel with 128 blocks and 32 threads per block. Line
1 to 4 is the kernel and 6 to 12 is the host-code function initiating the kernel.

2.5 Docker

Docker is a tool that allows users to run their application separately and isolated inside containers
without the overhead of a full Virtual Machine. It lets the user specify versions of dependencies,
environment settings and application files easily in a configurable Dockerfile. This ensures that the
application is portable for different systems and guarantees that the different containers will run
with the same files and dependencies. [24]

2.5.1 Docker Image

A Docker image is a standalone package of software that includes all files and configuration needed
to run an application [25]. The image is a built based on a Dockerfile, and when built can be ran
many times with the same environment settings the system and files. Examples of Dockerfiles can
be seen in Appendix D.

2.5.2 Docker Container

A Docker container is a separate instance of a Docker Image. Docker containers are more lightweight
than virtual machines (VM) and there are less required components. A VM needs to encapsulate
the entire OS, but the containers only encapsulate the application and it’s dependencies. For
an illustration of the differences between virtual machines and docker containers lightweight than
virtual machines see Figure 5 below.

9

Figure 5: Virtual Machine vs. Docker comparison of needed components. This shows the overhead
of using a VM instead of a Docker container. There is one host OS running three virtual machines
and one running three Docker containers. [26] Figure is used with permission from NVIDIA.

2.5.3 NVIDIA Docker

NVIDIA Docker is an extension to Docker which lets users run containerized GPU accelerated
applications. See Figure 6 below for an illustration of the Docker architecture and its connected
components.

Figure 6: NVIDIA Docker architecture example containing components ranging from the NVIDIA
GPUs to the applications ran inside Docker containers. The two Docker containers named 1 and
N, represents that there can be N number of containers. [26] Figure is used with permission from
NVIDIA.

10

3 Benchmarking GPUs and Auto-tuning

In this Chapter, we describe SHOC, the benchmarking suite we picked to build our BAT system.
An overview of auto-tuning and auto-tuning frameworks related to our work, is also provided.

3.1 SHOC Benchmark Suite

SHOC (Scalable HeterOgeneous Computing) is a benchmark suite created by Anthony Danalis et
al. [27] for measuring performance and stability of multi GPU and CPU systems. The benchmarks
in SHOC is created for both CUDA and OpenCL programs and they are categorized into three
different levels of benchmark applications, named 0, 1, 2 respectively. The first level measures low
level architecture characteristics such as bandwidth and maximum FLOPS. The second measures
performance for common parallel algorithms such as FFT, MD and SORT. The third level measures
performance of real world applications.

The benchmarks also have three versions, named serial, embarrassingly parallel (EP) and true
parallel (TP). Serial uses only one device to perform the tests, EP uses multiple devices to perform
the tests, but does the same computation on all devices. TP uses multiple devices to perform the
tests, and divide the workload between the devices. [28]

The sections below describes some of the different benchmarks in the SHOC benchmark suite.

3.1.1 Radix Sort

One of the benchmarks in SHOC is for measuring sorting performance on the device using an
implementation of the radix sort algorithm. This is a sorting algorithm that groups the digits
by its position and compares each digit one at a time in the selected positions. [29] SHOC’s
implementation sorts unsigned integer key-value pairs and supports the problem sizes 1, 8, 48 and
98 MB. The benchmark’s performance of the sort kernel is measured in GB per seconds. [30]

In Figure 7 below, there is a step by step example of how the radix sort algorithm works for a
smaller problem size than used in SHOC. Before the start, the initial order of the elements are in
this example randomly selected. At the start it selects the rightmost digit and sorts the numbers
with this digit only in mind. If two numbers are equal, the order they were in before are kept. This
continues for the middle and the leftmost digits and is after that in the final sorted order.

11

004 012 749 038 972 301 001

004 749 038 972 301 001012

004 749038972301 001 012

004 749038 972301 001 012

004 749038972301 001 012

Initial order

(Rearrange)

(Rearrange)

004 749038 972301 001 012

(Rearrange)

004 749038 972301001 012

004 012 749038 972301001 Sorted result

Iteration 1
Sort on rightmost digit

Iteration 2
Sort on next left digit

Iteration 3
Sort on leftmost digit

Figure 7: Radix sort example.

3.1.2 Triad

Triad is a benchmark in SHOC, that is based on the STREAM (Sustainable Memory Bandwidth
in High Performance Computers) TRIAD benchmark [31]. STEAM is a benchmark set consisting
of the benchmarks COPY, SCALE, SUM and TRIAD.

SHOC’s implementation of the triad benchmark uses single precision computation with a prob-
lem size ranging from 16 KB to 64 MB and measures the sustainable memory performance of a
series of dot product operations. In SHOC this benchmark does not have the possibility to select
different problem size, and by default it tests all different sizes. [30] The algorithm is relatively
simple and is shown in equation 1. In the figure A and B is input vectors, C is the output vector
and s is the scalar which is used in a dot product with C.

Ci = Ai + s · Ci (1)

12

3.1.3 Reduction

Another benchmark in the SHOC benchmark suite is the reduction benchmark. Reduction is an
algorithm that takes an input array of numbers and returns a single number using a operation on
all the numbers. A type of reduction is a sum reduction, where the sum operation are applied to
each element in the sequence. Other operators can be, minimum, maximum and count. [32, p. 546].
In SHOC it is made for measuring the performance of a large sum reduction operation. [28] This
reduction benchmark is implemented for both single and double floating-point precision and have
problem sizes ranging from 1 MB to 64 MB. There is also implemented a true parallel version for
this benchmark. In this TP version, the data is communicated between the nodes using MPI. [27]

Figure 8 shows an example of a reduction algorithm with a sum operator. The input array
shown at the top contains random generated numbers in the range 1 to 10. The algorithm in this
example starts at the leftmost element and sums two and two numbers at a time. The previous
sum is kept for the next iteration.

7 102 5 9 51 8

9

19

24

33

34

39

47

+

+

+

+

+

+

+

Figure 8: Reduction sum operation example.

3.1.4 Molecular Dynamics

The molecular dynamics (MD) benchmark in SHOC measures the performance of a MD problem
named Lennard-Jones potential. This is a pair potential for calculating the potential energy between
two atoms and is named after the mathematician Sir John Lennard-Jones. In SHOC, the Lennard-
Jones force potential is computed in the MD benchmark and each thread on the GPU computes
acceleration for a single atom with impact from the other atoms in the given space. This benchmark
uses problem sizes based on number of atoms to compute, and it consists of problem sizes ranging
from 12288 atoms to 73728 atoms. The input data for the kernel is both single and double floating-
point precision. [28] [33]

Equation 2 shows the equation for the Lennard-Jones potential. Here r is the distance between
the two atoms, ε is the energy strength between the two atoms and σ is the distance for the effective
bond between the atoms.

13

VLJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2)

3.1.5 Stencil 2D

The Stencil 2D benchmark in SHOC measures the performance of 9-point stencil computations for
a 2D array. The supported problem sizes for this benchmark supports are specified in MB and can
be one of 512, 1024, 2048 and 4096. [28]

3.2 Auto-Tuning

Auto-tuning is tuning the performance of a program based on different defined parameters in the
code to find the most optimal configuration of these parameters for a given system, such that these
parameters can be used later to run with a good performance guarantee. Auto-tuning also allows
for performance portability between different systems to ensure good performance not just for one
system.

Different techniques for tuning for performance is available, where they change the way they
iterate and select configurations of the whole search space, rather than brute forcing all configura-
tions, which can be ineffective if at all possible for large search spaces. [34]

3.3 Auto-Tuning Frameworks

In the following sub sections, different auto-tuning frameworks are presented and the different
tuning techniques are each of them are shown.

3.3.1 Kernel Tuner

Kernel Tuner is an auto-tuner made by Ben van Werkhoven that is created in Python and is
described in his paper Kernel Tuner: A search-optimizing GPU code auto-tuner [35]. It can be
installed as a Python package to be used to auto-tune GPU kernels in both CUDA and OpenCL.
Kernel Tuner can also be used to auto-tune host code. All auto-tuning techniques that are imple-
mented in Kernel Tuner are shown and described in Table 2 below. The default search strategy
used is brute force.

14

Table 2: Search techniques implemented in Kernel Tuner.

Search Technique Description

Brute force Iterates over all different parameter configurations in the
search space.

Random sample Iterates over a random fraction sample of the search space.

Minimize Selects a fraction of the search space using a minimizer.

Basin hopping Selects a fraction of the search space using a minimizer.

Differential evolution Uses differential evolution to select the parameter configu-
rations.

Simulated annealing Uses simulated annealing to select the parameter configura-
tions.

Particle swarm optimization Uses an implementation of particle swarm optimization that
uses 20 particles for 100 iterations by default.

Genetic algorithms Uses an implementation of genetic algorithms that uses a
population of 20 for 100 generations by default.

Fire fly algorithm Uses the fire fly algorithm with a setting with 20 fireflies for
100 iterations.

Bayesian Optimization Uses the bayesian optimization to find configurations. This
is implemented in the Kernel Tuner GitHub repository [36].

3.3.2 CLTune

CLTune is an auto-tuner made by Cedric Nugteren and Valeriu Codreanu mainly for tuning OpenCL
kernels and is described in their paper CLTune: A Generic Auto-Tuner for OpenCL Kernels [37].
However it uses the abstraction layer CLCudaAPI [38] between the framework and the GPUs,
which supports CUDA-code as well. It is created as a C++ framework and can compile and tune
both CUDA and OpenCL kernels. All implemented auto-tuning techniques for CLTune can be
found in Table 3 below. The default search strategy used is brute force.

Table 3: Search techniques implemented in CLTune.

Search Technique Description

Full-search Iterates over all different parameter configurations.

Random-search Iterates randomly over a selected fraction of the search
space.

Simulated annealing Uses simulated annealing to select the parameter configu-
rations with max temperature parameter as input. It finds
parameter configuration in a selected fraction of the search
space.

Particle swarm optimization Uses an implementation of particle swarm optimization with
swarm size input. It finds parameter configuration in a se-
lected fraction of the search space.

15

3.3.3 Kernel Tuning Toolkit

Kernel Tuning Toolkit (KTT) is an auto-tuner by Filip Petrovič et al. described in A Benchmark Set
of Highly-efficient CUDA and OpenCL Kernels and its Dynamic Autotuning with Kernel Tuning
Toolkit [34]. The auto-tuner is based on CLTune, and does also work as a C++ framework for
auto-tuning both CUDA and OpenCL kernels. It is different from CLTune in the internal backend
of the tuner which was rewritten. [39] In Table 4 the different tuning techniques are described.
The full search technique is the default technique.

Table 4: Search techniques implemented in KTT.

Search Technique Description

Full Search Iterates over all different parameter configurations.

Random Search Iterates randomly over the full search space.

MCMC Uses Markov chain Monte Carlo to select the parameter con-
figurations.

Annealing Uses simulated annealing to select the parameter configura-
tions.

3.3.4 OpenTuner

OpenTuner is an auto-tuner made by Jason Ansel et al. and is described in the OpenTuner: An
Extensible Framework for Program Autotuning paper [40]. OpenTuner is created in Python and
can be installed as a Python package to auto-tune GPU kernels as well as host code and other
programs defined by the user. The default technique is AUC Bandit Meta Technique, and the rest
of the techniques can be seen in Table 5.

16

Table 5: Search techniques implemented in OpenTuner.

Search Technique Description

AUC Bandit Meta Technique Uses a combination of greedy mutation, differential evolu-
tion and two hill climber instances to find parameter config-
urations.

Pure Random Finds parameter configurations randomly.

Nelder-Mead search Uses Nelder-Mead to find parameter configurations.
Variants: random, regular, right and multi.

Torczon Uses torczon hillclimbers to find parameter configurations.
Variants: random, regular, right and multi.

Greedy Mutation Uses greedy mutation to find parameter configurations.
Variants: uniform and normal.

Differential Evolution Uses differential evolution to find parameter configurations.

Genetic algorithms Uses genetic algorithms to find parameter configurations.

Particle swarm optimization Uses particle swarm optimization to find parameter config-
urations.

Pattern search Uses a type of pattern search to find parameter configura-
tions.

17

4 Related Work

In this section some related work for auto-tuning and benchmarking is provided.

This part below is modified from my specialization project’s abstract, which is attached to this thesis.

Investigating New GPU Features for Performance is the specialization project by myself and In-
gunn Sund and it provides relevant work for this thesis for benchmarking and benchmark suites.
It compares different GPUs and multi-GPU systems to evaluate the performance of hardware fea-
tures such as Tensor Cores, NVLink and NVSwitch. Multi-GPU systems with special interconnect
configurations were benchmarked and compared. The purpose of this evaluation is to find which
of systems or GPUs that could be good for which tasks.

The systems and GPUs that were benchmarked are the NVIDIA DGX-2 and two versions of
the IBM Power System AC922, a NVIDIA GeForce GTX 980 based system and a NVIDIA Titan
RTX based system. The benchmarking was done with the benchmark suites SHOC, DeepBench,
Tartan and Scope. The results from the benchmarks shows that DGX-2 was better at GPU-GPU
communication than the Power AC922 systems, but the Power AC922 systems were better for
CPU-GPU communication. Which system advisable to use will therefore depend on what kind of
application that should run on it.

The Power AC922 systems seemed to have worse performance on the second NUMA node than
the first. Choosing the right GPUs on this system can be essential for the best possible performance,
depending on the application. An interesting result for the DGX-2 was that there were no significant
difference in the performance for the GPU-GPU communication over NVSwitches for any GPU
combination.

In the OpenTuner paper, they presents their tuning technique AUC Bandit Meta Technique.
They include benchmarks such as Poisson from the PetaBricks project and the Mario benchmark,
which has large search spaces of 103657 and 106328 respectively. These would not be possible to
brute force in feasible time.

Kernel Tuner presents an auto-tuner that can tune OpenCL, CUDA and C kernels and showing
tuning of GEMM kernel with 72.2 times speedup from brute force. For the implemented bench-
marks, the search spaces are lower than in OpenTuner, and it may be able to brute force the
optimal solutions within a shorter time frame. This is shown in the example in the paper, where
the average runtime was lower than 2350 seconds.

In the paper for CLTune, they describe an auto-tuner that shows similar or better performance
than the state-of-the-art 2D convolution auto-tuning. It was presented a search space for a matrix-
multiplication benchmark with the search space of two-hundred thousand. This is however still
much lower than in OpenTuner, and may be able to brute force within a short time frame.

KTT is an auto-tuner that in the paper show GPU implementations that outperform baseline
CPU implementations for the Xeon Phis. They introduce a set of benchmarks for use in auto-tuner,
however they are only available for their own auto-tuner. For the benchmarks in KTT the search
space is also here lower than the ones used in OpenTuner, such as GEMM with 241600 different
configurations.

TuneBench is a set of OpenCL kernels made for benchmarking tuning affects performance on
various multi-core systems made by Alessio Sclocco. The source code is stored in it’s GitHub page
described as Simple tunable OpenCL kernels for many-core accelerators [41]. It includes benchmarks
for MD, Reduction, Stencil and Triad.

ATF is an auto-tuner described in the paper ATF: A Generic Auto-Tuning Framework by [42]
by Ari Rasch et al. ATF compares itself to OpenTuner and CLTune, and showing better tuning

18

results for ATF. The comparison was done with comparing the runtime for the tuned programs. It
is made to auto-tune programs made in all types of programming languages.

19

5 Planning of the Benchmark Suite

In this chapter, the planning, work and research previous to creating the benchmark suite are
shown. This includes finding benchmark programs and auto-tuners suitable for the benchmark
suite, selecting systems for testing, but also defining a list of criteria for the benchmark suite and
some research questions.

While there are numerous different auto-tuners, there have yet to be created a benchmark for
these to be classified as a standard. Therefore we see it as a necessity to create a standardized
benchmark suite.

5.1 Finding Benchmark Programs

Before selecting benchmark programs and algorithms used as benchmarks, it was needed to find a
benchmark set suitable for HPC and GPU based applications. GPU based benchmarks was selected
as it is a central role in HPC and many auto-tuners tune GPU programs. These benchmark
programs are selected both for this thesis and for the benchmark suite created in collaboration
with Ingunn Sund. Different well known benchmark suites created for HPC was researched, and
two benchmark suites became the finalists of selecting a benchmark suite. These was Rodinia
and SHOC. Rodinia is described in the paper Rodinia: A Benchmark Suite for Heterogeneous
Computing by Shuai Che et al. [43].

We chose in collaboration to use SHOC as a base for the benchmarks as we both had used that
in our specialization project. Another reason to use SHOC was that it was made for multi-GPU
benchmarking. We also both had some experience with CUDA, so the natural choice was to use
the CUDA versions of the benchmarks in SHOC. In the KTT paper, they used a form of evaluating
the benchmarks. We does not think this is necessary to use for the benchmarks from SHOC, as
they are well used by others, and we therefore made an assumption that they decent to include.

5.2 Finding Relevant Auto-Tuners

To find relevant auto-tuners for testing the benchmarks, a thoroughly research was performed, with
the mindset of collecting auto-tuners that: was well documented and easy to use. It is important to
test with multiple auto-tuners to ensure that the benchmark suite works on many different systems.
The auto-tuners would also need to work with tuning GPU code and be suitable for the benchmark
programs selected. The auto-tuners should cover both tuning of GPU kernels and host code.

The selected auto-tuners was, OpenTuner, Kernel Tuner, CLTune and KTT. OpenTuner and
Kernel Tuner because they they fit the need of tuning host code programs, and CLTune and KTT
because they fit the need of tuning GPU kernels. Kernel Tuner also has the possibility to tune both
host code and GPU kernels. This made the selection a broad variation of auto-tuners, making it a
higher chance to be suitable for other auto-tuners.

As a part of this research, an analysis was performed of the different parameters used in these
auto-tuners. The parameters found for most algorithms during this research can be seen in
Appendix A. This was done in collaboration with Ingunn Sund to find commonly used parameters
for auto-tuning, that could potentially be used for benchmarking auto-tuners.

20

5.3 Systems Selected for Testing

To ensure that the auto-tuner benchmarks worked as intended after implementation, tests should
be completed on a varied selection of systems to ensure good coverage of auto-tuners, and that the
benchmark suite would fit for other auto-tuners. Different systems was divided between me and
Ingunn Sund. The systems chosen for this thesis was a GTX 980 based system, a RTX TITAN
based system, a multi-GPU IBM AC922 system, a multi-GPU NVIDIA DGX-2 system and a single
GPU from a multi-GPU system containing NVIDIA T4s.

5.4 Criteria for an Ideal Benchmark Suite

Before creating a benchmark suite, some points are defined as a check list to provide a guidance to
what the benchmark suite should include to be ideal. For this thesis, it’s not meant to compare auto-
tuners, but to find out what a auto-tuner benchmark should include. Future work could include
auto-tuner comparisons. Note that all points are not required to be fulfilled to succeed in creating
the benchmark suite, but as many as possible is better. These points is created in collaboration
with Ingunn Sund based on the findings of relevant benchmark programs and relevant auto-tuners.
The criteria for a successful benchmark suite for auto-tuners, can be defined as:

• The benchmark suite should have:

– HPC based benchmarks.

– Parameterized algorithms as benchmarks.

– Varied selection of benchmarks with different degree of complexity and scope.

– Benchmarks that utilizes frameworks to enable running code on GPUs. There should
be support for both CUDA and OpenCL to make it possible to run the code on both
NVIDIA and AMD GPUs.

– Benchmarks that can run on multi-GPU systems and distribute work on multiple nodes.

– Support for different types of auto-tuners. If the auto-tuner does not support certain
parameters or the auto-tuner only supports tuning of kernels, there should still not be
a problem using the benchmarks.

– Benchmarks that have been well tested with different auto-tuners and on different ma-
chines.

– Examples of how to use the benchmarks with auto-tuners.

– A way to compare auto-tuners with other auto-tuners.

• The parameterized algorithms should contain:

– Both full programs and single GPU kernels.

– Some algorithms with enough parameters that brute force is not efficient. There should
be a variation of the search space size for the different algorithms.

– Parameters that potentially could have different values on different machines or archi-
tectures.

– Some benchmarks with possibility for restrictions or constraints on the parameters pos-
sible values.

21

• The benchmark suite should be user friendly by being:

– A well structured project.

– Easy to use.

– A benchmark suite with good documentation. It should be clear what the project is and
who could benefit from using it. There should be a guide for using the benchmark suite.

5.5 Research Questions

After planning the different aspects of the benchmark suite creation, a hypothesis was created: A
benchmark suite based on SHOC will fulfill the criteria made for a benchmark suite for auto-tuners.
A set of different research questions also occurred that we wanted to be answered. These are:

• Is SHOC a good benchmark suite to base a benchmark suite for auto-tuners for?

• Will this benchmark suite have enough GPU focus?

• Will it work with different types of auto-tuners?

• Will the optimal values for the implemented parameters differ for different systems?

22

6 Creating the Benchmark Suite

This section describes how the creating and implementation of the benchmark suite was done and
how to make it user friendly. It starts with parameterizing of the different algorithms, then continues
with how the constructing the benchmark suite was performed and making it user friendly.

6.1 Parameterizing of Kernels

The process of parameterizing an algorithm was to first extracted the benchmark code and build
commands from SHOC into it’s own isolated directory. Then locating code that could be param-
eterized and testing the algorithm with different values of the parameter. To automatically test
different values of parameters, the auto-tuner OpenTuner was used for the isolated benchmark.

In the following sections, the parameters that were selected for each program-code are presented
with an implementation.

6.1.1 Ensuring that Parameters are Applied

Some parameters are not guaranteed to have an effect on the actual executed program and needs to
be tested if they are applied correctly. An example for a such parameter is loop unrolling. This is
because not all loops can be unrolled and it is up to the compiler to do it. Therefore to ensure these
types of parameters, the CUDA binary files were checked and the disassembled CUDA assembly
information was extracted using the command cuobjdump -sass <file_name>. The assembly
could then be compared with a CUDA assembly where loop unroll is disabled. However one can
not guarantee that the loop is unrolled even if the contents are different, but if they are exactly
the same, it will at least not unroll.

6.1.2 Triad

Block Size

BLOCK_SIZE is a parameter that was found to be quite commonly used in the investigated examples.
The previous version of the Triad kernel and the launching from the host code in SHOC can be
seen in Listing 2.

__global__ void triad(float* A, float* B, float* C, float s) {

2 int gid = threadIdx.x + (blockIdx.x * blockDim.x);

C[gid] = A[gid] + s*B[gid];

4 }

6 void RunBenchmark (...) {

// ...

8 const size_t blockSize = 128;

// ...

10 // ... for (int i ...

size_t globalWorkSize = elemsInBlock / blockSize;

12 triad <<<globalWorkSize , blockSize , 0, streams [0] >>>

(d_memA0 , d_memB0 , d_memC0 , scalar);

14 // ...

}

23

Listing 2: Relevant part of previous Triad-program for launching the kernel with 128 as block
size in SHOC. Kernel code is on line 1 to 5 and line 7 to 17 shows the host code.

The parameter was implemented by changing the launching arguments for the triad kernel,
specified by the variable blockSize. A new integer input argument numberOfElements was also
added to the kernel to let it know the length of the total elements, and to ensure the thread-id
was not out of range of the arrays. The grid-size kernel launch argument globalWorkSize was also
changed to adapt the block size change so that the kernel is launched with enough threads. This
was done by using the ceil-function on the grid-size.

The possible values for this block size parameter is set to all integers in the range 1 to 1024.
Even though it should be best to choose a block size that is a multiple of 32, due to the warp
size being 32, the possible values for this parameter was chosen to be all integers in the range 1 to
1024. This was done to increase the search space for this program, to check if it was actual best to
choose a multiple of 32 and if the auto-tuners could find this due to the larger search space. This
implementation with the BLOCK_SIZE parameter can be seen in Listing 3.

1 __global__ void triad(float* A, float* B, float* C, float s, int numberOfElements)

{

3 int gid = threadIdx.x + (blockIdx.x * blockDim.x);

5 // Ensure that the current thread id is less than total number of elements

if (gid < numberOfElements) {

7 C[gid] = A[gid] + s*B[gid];

}

9 }

11 void RunBenchmark (...) {

// ...

13 const size_t blockSize = BLOCK_SIZE;

// ...

15 // ... for (int i ...

size_t globalWorkSize = ceil((double)elemsInBlock / (double)blockSize);

17 triad <<<globalWorkSize , blockSize , 0, streams [0] >>>

(d_memA0 , d_memB0 , d_memC0 , scalar , elemsInBlock);

19 // ...

}

Listing 3: Relevant part of parameterized Triad-program for launching the kernel with different
block sizes. Kernel code is on line 1 to 5 and line 11 to 22 shows the host code.

Work Per Thread

Another parameter WORK_PER_THREAD was found to match the Triad-program. The code in the
CUDA-kernel was changed to adapt this new parameter by creating a loop over the items processed.
The thread id was therefore needed to be based on the WORK_PER_THREAD and the loop-iteration.
A change in the grid size variable globalWorkSize was also needed to ensure less threads launched
when increasing the number of elements processed in each thread.

The possible values for this parameter was chosen to be integers in the range 1 to 10. This
was chosen to increase the search space and since this kernel is relatively small it could be possible
that there was an improvement by computing more elements per thread. The implemented change

24

is based on the previously parameterized Listing 3 with the BLOCK_SIZE parameter, and the new
implementation including WORK_PER_THREAD can be seen in Listing 4.

__global__ void triad(float* A, float* B, float* C, float s, int numberOfElements)

2 {

int gid = (threadIdx.x + (blockIdx.x * blockDim.x)) * WORK_PER_THREAD;

4

for (int i = 0; i < WORK_PER_THREAD; i++) {

6 int threadId = gid + i;

8 // Ensure that the current thread id is less than total number of elements

if (threadId < numberOfElements) {

10 C[threadId] = A[threadId] + s*B[threadId];

}

12 }

}

14

void RunBenchmark (...) {

16 // ...

// ... for (int i ...

18 size_t globalWorkSize =

ceil((double)elemsInBlock / (double)blockSize / (double) WORK_PER_THREAD);

20 // ...

}

Listing 4: Relevant part of parameterized Triad-program for including the WORK_PER_THREAD to
process more elements per thread in the kernel. Kernel code is on line 1 to 13 and from line 15 to
22 shows the host code.

Loop Unrolling

The parameter LOOP_UNROLL_TRIAD was implemented for the triad-kernel-loop that was added with
the WORK_PER_THREAD-loop. This added a possibility to select if the loop was unrolled or not. The
loop unrolling was added by using the compiler-directives #if and #pragma unroll. It was ensured
that the compiler did not unroll by providing #pragma unroll(1) and letting the compiler choose
unroll factor otherwise. This was not set to include a factor x such as #pragma unroll(x) due to
issues with pragma unroll having higher priority by the compilers used in this thesis.

Possible values for this parameter is True (1) and False (0). The implemented change is based
on the previously parameterized Listing 4, and the new implementation including
LOOP_UNROLL_TRIAD can be seen in Listing 5.

1 __global__ void triad(float* A, float* B, float* C, float s, int numberOfElements)

{

3 // ...

#if LOOP_UNROLL_TRIAD

5 #pragma unroll

#else

7 #pragma unroll (1)

#endif

9 for (int i = 0; i < WORK_PER_THREAD; i++) {

// ...

11 }

}

25

Listing 5: Relevant part of parameterized Triad-program for including the LOOP_UNROLL_TRIAD

to choose whether to unroll the loop in the triad function or not. Kernel code is on line 1 to 13
and from line 5 to 9 is the loop-unroll compiler-directives shown.

Precision

PRECISION was another parameter found that could be implemented in the Triad benchmark.
This was done by adding input data as either single-precision (float) or double-precision (double)
floating-points arrays. This could be interesting to see if the precision of the data had any impact on
performance of the benchmark. The implementation set the compiler-directives #if and #define

to select which precision (float or double) to choose. In the host code, all input data types
was changed from the previously set float input to match the compile-time defined DATA TYPE.
A selection of relevant parts of the DATA TYPE variable in the host code in previous SHOC version
can be seen in Listing 6.

void RunBenchmark (...) {

2 float *h_mem;

cudaMallocHost ((void **) &h_mem , sizeof(float) * numMaxFloats);

4 // ...

float* d_memA0 , *d_memB0 , *d_memC0;

6 // ...

float scalar = 1.75f;

8

// ... for (int i ...

10 int elemsInBlock = blockSizes[i] * 1024 / sizeof(float);

for (int j = 0; j < halfNumFloats; ++j) {

12 h_mem[j] = h_mem[halfNumFloats + j] = (float) (drand48 () * 10.0);

}

14 }

Listing 6: Relevant part of previous Triad-program for creating the input data to the kernel in
SHOC. This is a part of the host code that launches the kernel.

Possible values for this parameter are float (32) and double (64). The new implemented
parameter are also based on the previously parameterized Listing 5, and the new one can be shown
in Listing 7.

// Select which precision that are used in the calculations

2 #if PRECISION == 32

#define DATA_TYPE float

4 #elif PRECISION == 64

#define DATA_TYPE double

6 #endif

8 void RunBenchmark (...) {

DATA_TYPE *h_mem;

10 cudaMallocHost ((void **) &h_mem , sizeof(DATA_TYPE) * numMaxFloats);

// ...

12 DATA_TYPE* d_memA0 , *d_memB0 , *d_memC0;

// ...

14 DATA_TYPE scalar = 1.75f;

26

16 // ... for (int i ...

int elemsInBlock = blockSizes[i] * 1024 / sizeof(DATA_TYPE);

18 for (int j = 0; j < halfNumFloats; ++j) {

h_mem[j] = h_mem[halfNumFloats + j] = (DATA_TYPE) (drand48 () * 10.0);

20 }

}

Listing 7: Relevant part of changed code for choosing whether to use single-precision floating-
point or double-precision floating-point for computations. The compiler-directives are on line 2 to
6 and from line 8 to 22 shows the host code.

6.1.3 MD

Block Size

The BLOCK_SIZE parameter can be used in the MD-program as well, and can be implemented similarly
as the Triad version seen in Listing 3. The part of the previous SHOC code that is relevant for
this parameter can be seen in Listing 8.

1 __global__ void compute_lj_force (...) {

int idx = blockIdx.x*blockDim.x + threadIdx.x;

3 posVecType ipos = position[idx];

// ...

5 }

7 void runTest (...) {

// ...

9 int blockSize = 256;

int gridSize = nAtom / blockSize;

11 // ...

}

Listing 8: Relevant part of previous MD-program for launching the kernel with block size 256 in
SHOC. Kernel code is on line 1 to 6 and line 8 to 14 shows the host code.

The possible values for this block size parameter is set to all integers in the range 1 to 1024.
It was added a ceil-function around the gridSize launching parameter in the host code and in
the kernel the element computation was wrapped in an if-check to ensure not computing too many
elements. This implementation with the BLOCK_SIZE parameter can be seen in Listing 9.

__global__ void compute_lj_force (...) {

2 int idx = blockIdx.x*blockDim.x + threadIdx.x;

// ...

4 // Ensure that the current thread id is less than total number of elements

if (idx < inum) {

6 // Position of this thread ’s atom

posVecType ipos = position[idx];

8 // ...

}

10

void runTest (...) {

12 // ...

int blockSize = BLOCK_SIZE;

14 int gridSize = ceil((double)nAtom / (double)blockSize);

27

16 compute_lj_force <T, forceVecType , posVecType , useTexture , texReader >

<<<gridSize , blockSize >>>

18 (...);

// ...

20 }

Listing 9: Relevant part of parameterized MD-program for launching the kernel with different block
sizes. Kernel code is on line 1 to 10 and from line 12 to 22 shows the host code.

Precision

SHOC’s benchmark for MD measures the performance in both single- and double precision. This
was split up with the use of the parameter PRECISION for this program by wrapping the runTest

function calls into compiler-directives inside the RunBenchmark function. This was done similarly
to how PRECISION was implemented for the Triad-program seen in Listing 7. Related MD code
from SHOC benchmark can be seen in Listing 10.

template <class T, class forceVecType , class posVecType , bool useTexture ,

2 typename texReader >

__global__ void compute_lj_force (...) { ... }

4

// ...

6

void RunBenchmark (...) {

8 // ...

cout << "Running single precision test" << endl;

10 runTest <float , float3 , float4 , true , texReader_sp >("MD-LJ", op);

cout << "Running double precision test" << endl;

12 runTest <double , double3 , double4 , true , texReader_dp >("MD-LJ-DP", op);

// ...

14 }

16 template <class T, class forceVecType , class posVecType , bool useTexture ,

typename texReader >

18 void runTest (...) { ... }

Listing 10: Relevant part of previous MD-program for calling the benchmark function with different
precisions in SHOC. Kernel code is on line 1 to 2 and from line 7 to 19 shows the host code.

The SHOC code used class template types for the input to the kernel. This was in this im-
plementation replaced with compiler-directives to be suitable for the selected auto-tuners. This
was done due to the auto-tuners not being able to use templated code because of the auto-tuners
compiling the code with extern "C" which is not compatible with templates due to extern "C"

disabling name mangling and templates depend on them. [44]
The possible values for this parameter are float (32) and double (64) and the new implemented

parameter are based on the previously MD parameterized Listing 9. The types T,
forceVecType, posVecType, useTexture and texReader, was therefore replaced with compiler-
directives as shown in Listing 11.

// Select which precision that are used in the calculations

2 // And define the replacements for the template inputs

#if PRECISION == 32

28

4 #define T float

#define forceVecType float3

6 #define posVecType float4

#define texReader texReader_sp

8 #elif PRECISION == 64

#define T double

10 #define forceVecType double3

#define posVecType double4

12 #define texReader texReader_dp

#endif

14

// ...

16

void RunBenchmark (...) {

18 #if PRECISION == 32

cout << "Running single precision test" << endl;

20 runTest <float , float3 , float4 , true , texReader_sp >("MD-LJ", op);

#elif PRECISION == 64

22 cout << "Running double precision test" << endl;

runTest <double , double3 , double4 , true , texReader_dp >("MD-LJ-DP", op);

24 #endif

}

Listing 11: Relevant part of changed code for choosing whether to use single-precision floating-
point or double-precision floating-point for computations. Kernel relevant code is on line 1 to 13
and from line 17 to 26 shows the host code.

Texture Memory

The parameter TEXTURE_MEMORY was implemented to choose whether to use texture memory or
not for the input data to the compute lj force kernel. Texture memory is a type of read-only
memory access pattern. SHOC’s benchmark for MD already contained the use of texture memory,
so there was no needed changes regarding implementing that. This was implemented based on
the previous parameter PRECISION, which can be seen in Listing 11. The change needed was
to set the #define useTexture TEXTURE MEMORY compiler directive instead of the input to the
compute lj force kernel. The possible values for this parameter is True (1) and False (0). This
implementation is based on the previous Listing 11 and can be seen in Listing 12.

1 #define useTexture TEXTURE_MEMORY

3 // ...

5 void RunBenchmark (...) {

#if PRECISION == 32

7 cout << "Running single precision test" << endl;

runTest <float , float3 , float4 , TEXTURE_MEMORY , texReader_sp >(...);

9 #elif PRECISION == 64

cout << "Running double precision test" << endl;

11 runTest <double , double3 , double4 , TEXTURE_MEMORY , texReader_dp >(...);

#endif

13 }

Listing 12: Relevant part of changed code for choosing whether to use texture memory or not
for the input data to the compute lj force kernel. Kernel code is on line 1 and from line 5 to 14
shows the host code.

29

Work Per Thread

The parameter WORK_PER_THREAD was implemented similarly for MD as for Triad shown in Listing
4. It was done by creating a loop over the items processed in the kernel and divide the grid-size
parameter on the work per thread value.

The possible values for this parameter was integers in the range 1 to 5. It was chosen to be this
rather than the 1 to 10 used in Triad, as this is a more time consuming benchmark, so the total
time used for running the program with the auto-tuners would be larger for this. This is based on
the previous TEXTURE_MEMORY as shown in Listing 12 and the relevant new implemented code can
be seen in Listing 13.

1 // Global ID - "WORK_PER_THREAD" atoms per thread

int idx = (blockIdx.x*blockDim.x + threadIdx.x) * WORK_PER_THREAD;

3

for (int i = 0; i < WORK_PER_THREAD; i++) {

5 int threadId = idx + i;

7 // Ensure that the current thread id is less than total number of elements

if (threadId < inum) {

9 // Position of this thread ’s atom

posVecType ipos = position[threadId];

11 // ...

Listing 13: Relevant part of parameterized MD-program for including the WORK_PER_THREAD to
process more elements per thread in the kernel. Kernel code is on line 1 to 5 and from line 11 to
22 shows the host code.

6.1.4 Reduction

Grid- and Block Size

In the reduction implementation in SHOC, we can see that the variables num blocks and
num threads are used to specify the grid size and block size respectively. See Listing 14 for the
SHOC code for this.

1 int num_threads = 256;

int num_blocks = 64;

3 // ...

reduce <T,256> <<<num_blocks ,num_threads , smem_size >>>(d_idata , d_odata , size);

Listing 14: Relevant part of previous Reduction code for launching reduce kernel. Kernel is
launched with 64 blocks and 256 threads per block.

I decided to parameterize these constants as GRID_SIZE and BLOCK_SIZE. The values for both
GRID_SIZE and BLOCK_SIZE was chosen to be 2i where i is in the range [0, 11], but with the
exception that BLOCK_SIZE needed to be below max threads per block for the selected GPU. Then
the parameterized part of the code can be seen in Listing 15.

int num_threads = BLOCK_SIZE;

2 int num_blocks = GRID_SIZE;

// ...

4 reduce <T, BLOCK_SIZE ><<<num_blocks ,num_threads , smem_size >>>

30

(d_idata , idataTextureObject , d_odata , size);

Listing 15: Relevant part of parameterized code for launching reduce kernel.

Precision

The reduction implementation does run both single and double precision by default. This is sim-
ilarly to the MD implementation and I wanted to add this parameter in this implementation as
well. SHOC’s implementation can be found in Listing 16.

1 void RunBenchmark (...) {

// ...

3 RunTest <float >("Reduction", resultDB , op);

// ...

5 RunTest <double >("Reduction-DP", resultDB , op);

// ...

7 }

Listing 16: Relevant part of previous code for calling function with different precision.

I chose to implement this like in the MD benchmark, where the runTest function calls was
wrapped into compiler-directives inside the RunBenchmark function. See Listing 17 for code with
implemented precision parameter.

1 void RunBenchmark (...) {

#if PRECISION == 32

3 cout << "Running single precision test" << endl;

RunTest <float >("Reduction", op);

5 #elif PRECISION == 64

cout << "Running double precision test" << endl;

7 RunTest <double >("Reduction-DP", op);

#endif

9 }

Listing 17: Parameterized code for calling function with different precisions.

Compiler Optimizations

During the parameterization of the reduction benchmark I noticed that the compiler could be pre-
sented different optimizations. These compiler optimizations would also work with auto-tuners. By
default SHOC compiled with the compiler optimization O2. So this could change the performance
somewhat of the benchmark, if changed. The different compiler optimizations that I found to match
the benchmark, was compiler optimization for the host- and device-code, the fast-math compiler
flag and the flag for setting max-register. This was done by providing the different parameters
in the compile commands as shown in Listing 18.

1 nvcc -I ./cuda-common -I ./ common -use_fast_math -maxrregcount ={ MAX_REGISTERS} \

-O{COMPILER_OPTIMIZATION_HOST} -Xptxas -O{COMPILER_OPTIMIZATION_DEVICE} -c \

3 ./ reduction/reduction.cu

Listing 18: Relevant part of parameterized compile command.

31

The values that was found to match the parameters was for COMPILER_OPTIMIZATION_HOST and
COMPILER_OPTIMIZATION_DEVICE integers in the range 1 to 4, for USE_FAST_MATH True (1) and
False (0) and for MAX_REGISTERS these values -1, 20, 40, 60, 80, 100, 120. For the MAX_REGISTERS

parameter, the value -1 is meant to specify if the parameter is disabled. This can be done before
calling the compile command like shown in Listing 19.

if MAX_REGISTERS != -1:

2 compile_command += f’-maxrregcount ={ MAX_REGISTERS} ’

Listing 19: Relevant part for setting the max register count to the compile command.

Number of GPUs

Since this benchmark is possible to run on multiple GPUs in SHOC, it was discovered that a
parameter for selecting the number of GPUs to perform the computations on was possible. This is
however a more special parameter as it is not accessible in the code, but from the command-line to
start the benchmark. This means that for auto-tuners to tune this parameter, needs to be able to
specify which command to run for the test. The SHOC benchmark uses MPI for communicating
of the data between the GPU nodes, and the following command in Listing 20 is the one used to
run the benchmark on four GPUs with indexes ranging from 0 to 3.

mpirun -np 4 --allow-run-as-root ./ reduction -s 1 -d 0,1,2,3

Listing 20: Command for running Reduction on four nodes using MPI.

Using a parameter for selecting a number of connected GPUs to perform the benchmark on,
can simply be implemented as in the following Listing 21. Possible values for this parameter was
selected as all legal values ranging from 1 to number of connected GPUs.

1 devices = ’,’.join([str(i) for i in range(0, GPUS)])

mpirun -np {GPUS} --allow-run-as-root ./ reduction -d {devices}

Listing 21: Command for running Reduction on parameterized devices using MPI.

Loop Unrolling

In the SHOC reduction benchmark, there was found two already unrolled loops. These loops can
be seen in Listing 22.

if (blockSize >= 512) {

2 if (tid < 256) {

sdata[tid] += sdata[tid + 256];

4 }

__syncthreads ();

6 }

if (blockSize >= 256) {

8 if (tid < 128) {

sdata[tid] += sdata[tid + 128];

10 }

__syncthreads ();

12 }

32

if (blockSize >= 128) {

14 if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads ();

}

16 if (tid < warpSize) {

if (blockSize >= 64) sdata[tid] += sdata[tid + 32];

18 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];

if (blockSize >= 16) sdata[tid] += sdata[tid + 8];

20 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];

if (blockSize >= 4) sdata[tid] += sdata[tid + 2];

22 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

Listing 22: Relevant part of unrolled loops in Reduction code.

This meant that it would be possible to reroll the loops and provide a parameter to the compiler
to tell if it should try to unroll the loops. The result of the rerolled loops was two separate loops
and the possible values for these parameters is True (1) and False (0). These loops combined with
the compiler-directives for the parameters can be seen in Listing 23.

1 #if LOOP_UNROLL_REDUCE_1

#pragma unroll

3 #else

#pragma unroll (1)

5 #endif

for (int i = BLOCK_SIZE; i > 64; i /= 2) {

7 if (blockSize >= i) {

if (tid < (i / 2)) {

9 sdata[tid] += sdata[tid + (i / 2)];

}

11 __syncthreads ();

}

13 }

15 #if LOOP_UNROLL_REDUCE_2

#pragma unroll

17 #else

#pragma unroll (1)

19 #endif

for (int i = 64; i > 1; i /= 2) {

21 if (tid < warpSize) {

if (blockSize >= i) {

23 sdata[tid] += sdata[tid + (i / 2)];

}

25 }

}

Listing 23: Parameterized unrolled loops for Reduction.

Texture Memory

This benchmark did not contain the use of texture memory in the SHOC version, but I found it
suitable to implement it for this benchmark. This was done by creating a cudaTextureObject_t

to store the information about the texture data and inserting data to it if the compiler directive
is true. Inside the GPU kernel it retrieves the data needeed using the function tex1Dfetch or

33

convertTextureObjectToDouble, depending on the precision used. Possible values for this pa-
rameter True (1) and False (0). The implementation with both the host code and kernel can be
seen in Listing 24.

// ...

2 __inline__ __device__ double convertTextureObjectToDouble(cudaTextureObject_t

textureObject , const int &position) {

uint2 values = tex1Dfetch <uint2 >(textureObject , position);

4 return __hiloint2double(values.y, values.x);

}

6

__global__ void

8 reduce (..., cudaTextureObject_t idataTextureObject , ...) {

// ...

10 #if TEXTURE_MEMORY

#if PRECISION == 32

12 sdata[tid] += tex1Dfetch <T>(idataTextureObject , i) + tex1Dfetch <T>(

idataTextureObject , i+blockSize);

#elif PRECISION == 64

14 sdata[tid] += convertTextureObjectToDouble(idataTextureObject , i) +

convertTextureObjectToDouble(idataTextureObject , i+blockSize);

#endif

16 #else

sdata[tid] += g_idata[i] + g_idata[i+blockSize];

18 #endif

// ...

20 }

22 // ...

24 cudaTextureObject_t idataTextureObject = 0;

26 #if TEXTURE_MEMORY

// Setup the texture memory

28 // Create the texture resource descriptor

cudaResourceDesc resourceDescriptor;

30 memset (& resourceDescriptor , 0, sizeof(resourceDescriptor));

resourceDescriptor.resType = cudaResourceTypeLinear;

32 resourceDescriptor.res.linear.devPtr = d_idata;

#if PRECISION == 32

34 resourceDescriptor.res.linear.desc.f = cudaChannelFormatKindFloat;

#elif PRECISION == 64

36 resourceDescriptor.res.linear.desc.f = cudaChannelFormatKindUnsigned;

#endif

38 resourceDescriptor.res.linear.desc.x = 32;

#if PRECISION == 64

40 resourceDescriptor.res.linear.desc.y = 32;

#endif

42 resourceDescriptor.res.linear.sizeInBytes = size * sizeof(T);

44 // Create the texture resource descriptor

cudaTextureDesc textureDescriptor;

46 memset (& textureDescriptor , 0, sizeof(textureDescriptor));

textureDescriptor.readMode = cudaReadModeElementType;

48

// Create the texture object

50 cudaCreateTextureObject (& idataTextureObject , &resourceDescriptor ,

34

&textureDescriptor , NULL);

52 #endif

// ...

54 reduce <T, BLOCK_SIZE ><<<num_blocks ,num_threads , smem_size >>>

(d_idata , idataTextureObject , d_odata , size);

Listing 24: Reduction part of texture memory implementation.

6.1.5 Sort

The sort benchmark was inspired by one of KTT’s auto-tuner example implementations found on
it’s GitHub page, but parameters was extended even more. The parameters that was inspired was
the block size and data size parameters.

Loop Unrolling

SHOC’s sort benchmark contained two loops that was already unrolled. These are in the kernels
scanLSB and scanLocalMem and the parameters was named LOOP_UNROLL_LSB and
LOOP_UNROLL_LOCAL_MEMORY. These could be rerolled and added a parameter to specify if the
compiler should try to unroll or not. Possible values for both these parameters is True (1) and
False (0). The two loops are very similar so only one of them will be shown here. The previous
code in SHOC for the loop in the scanLocalMem kernel can be seen in Listing 25.

1 uint t;

s_data[idx] = val; __syncthreads ();

3 t = s_data[idx - 1]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

5 t = s_data[idx - 2]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

7 t = s_data[idx - 4]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

9 t = s_data[idx - 8]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

11 t = s_data[idx - 16]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

13 t = s_data[idx - 32]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

15 t = s_data[idx - 64]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

17 t = s_data[idx - 128]; __syncthreads ();

s_data[idx] += t; __syncthreads ();

Listing 25: Previous unrolled loops in Sort SHOC.

These parameters was implemented similarly to as the unroll parameters in the Reduction
benchmark. The parameterized loop for the LOOP_UNROLL_LOCAL_MEMORY parameter can be seen
in Listing 26.

uint t;

2 s_data[idx] = val;

__syncthreads ();

4

#if LOOP_UNROLL_LOCAL_MEMORY

35

6 #pragma unroll

#else

8 #pragma unroll (1)

#endif

10 for (uint i = 0; (SCAN_BLOCK_SIZE >> i) > 1; i++) {

t = s_data[idx - (1 << i)]; // (1 << i) = pow(2, i)

12 __syncthreads ();

s_data[idx] += t;

14 __syncthreads ();

}

Listing 26: Parameterized loop in Sort.

Block Size

In the SHOC benchmark, variables for scan- and sort block sizes was already present. These can
be seen in Listing 27.

1 static const int SORT_BLOCK_SIZE = 128;

static const int SCAN_BLOCK_SIZE = 256;

Listing 27: Original Sort block sizes.

This meant that the constants SCAN_BLOCK_SIZE and SORT_BLOCK_SIZE could be removed from
the code and used as parameters instead. The search space for both these parameters was selected
as values in {16, 32, 64, 128, 256, 512, 1024}.

Data Size

Related to the block size parameters, the code in SHOC contained code for the size of the input
data to the kernels. This was 2 (uint2) for the scan data size and 4 (uint4) for the sort data size.
Relevant code from SHOC can be seen in Listing 28.

const size_t radixGlobalWorkSize = numElements / 4;

2 const size_t findGlobalWorkSize = numElements / 2;

const size_t reorderGlobalWorkSize = numElements / 2;

4

// ...

6

radixSortBlocks

8 <<<radixBlocks , SORT_BLOCK_SIZE ,

4 * sizeof(uint)*SORT_BLOCK_SIZE >>>(...);

10

findRadixOffsets

12 <<<findBlocks , SCAN_BLOCK_SIZE ,

2 * SCAN_BLOCK_SIZE*sizeof(uint)>>>(...);

Listing 28: Previous code for data sizes in SHOC.

This could be replaced with parameters and the parameterized code then became:

1 const size_t radixGlobalWorkSize = numElements / SORT_DATA_SIZE;

const size_t findGlobalWorkSize = numElements / SCAN_DATA_SIZE;

3 const size_t reorderGlobalWorkSize = numElements / SCAN_DATA_SIZE;

36

5 // ...

7 radixSortBlocks

<<<radixBlocks , SORT_BLOCK_SIZE ,

9 SORT_DATA_SIZE * sizeof(uint)*SORT_BLOCK_SIZE >>>(...);

11 findRadixOffsets

<<<findBlocks , SCAN_BLOCK_SIZE ,

13 SCAN_DATA_SIZE * SCAN_BLOCK_SIZE*sizeof(uint)>>>(...);

Listing 29: Parameterized Sort data sizes.

Relevant example of data size in the SHOC for the kernel scan4 can be seen here:

1 __device__ uint4 scan4(uint4 idata , uint* ptr)

{

3 uint4 val4 = idata;

uint4 sum;

5

// Scan the 4 elements in idata within this thread

7 sum.x = val4.x;

sum.y = val4.y + sum.x;

9 sum.z = val4.z + sum.y;

uint val = val4.w + sum.z;

11

// ...

13 }

Listing 30: Previous data sizes in SHOC.

After the parameterization of the data sizes and addition of the data types, this kernel can be
seen in Listing 31. The data types that acts as a template for which uint type to use.

1 SORT_DATA_TYPE scan4(SORT_DATA_TYPE idata , uint* ptr)

{

3 SORT_DATA_TYPE val4 = idata;

SORT_DATA_TYPE sum;

5

// Scan the "SORT_DATA_SIZE" elements in idata within this thread

7 #if SORT_DATA_SIZE == 2

sum.x = val4.x;

9 uint val = val4.y + sum.x;

#elif SORT_DATA_SIZE == 4

11 sum.x = val4.x;

sum.y = val4.y + sum.x;

13 sum.z = val4.z + sum.y;

uint val = val4.w + sum.z;

15 #elif SORT_DATA_SIZE == 8

sum.a.x = val4.a.x;

17 sum.a.y = val4.a.y + sum.a.x;

sum.a.z = val4.a.z + sum.a.y;

19 sum.a.w = val4.a.w + sum.a.z;

sum.b.x = val4.b.x + sum.a.w;

21 sum.b.y = val4.b.y + sum.b.x;

sum.b.z = val4.b.z + sum.b.y;

23 uint val = val4.b.w + sum.b.z;

37

#endif

25

// ...

27 }

Listing 31: Parameterized data Sort sizes in SHOC.

These parameters could also be extended to include a uint8 as well. This was implemented
using a custom uint8 data type, consisting of two uint4 data types. This is implemented as simple
as shown in Listing 32.

1 // Custom struct of two uint4s combined

typedef struct __builtin_align__ (16) {

3 uint4 a;

uint4 b;

5 } uint8;

Listing 32: Custom CUDA uint8 struct.

Possible values for these parameters are therefore 2, 4 or 8. The related part for defining the
data sizes in the code can be seen in Listing 33.

1 // Select data type based on data type size

// Scan data type size

3 #if SCAN_DATA_SIZE == 2

#define SCAN_DATA_TYPE uint2

5 #elif SCAN_DATA_SIZE == 4

#define SCAN_DATA_TYPE uint4

7 #elif SCAN_DATA_SIZE == 8

#define SCAN_DATA_TYPE uint8

9 #endif

11 // Sort data type size

#if SORT_DATA_SIZE == 2

13 #define SORT_DATA_TYPE uint2

#elif SORT_DATA_SIZE == 4

15 #define SORT_DATA_TYPE uint4

#elif SORT_DATA_SIZE == 8

17 #define SORT_DATA_TYPE uint8

#endif

Listing 33: Parameterized data sizes in Sort SHOC.

While implementing the data size parameters, a constraint was discovered between scan and
sort parameters. Equation 3 shows the discovered constraint.

SCAN_DATA_SIZE× SCAN_BLOCK_SIZE = SORT_DATA_SIZE× SORT_BLOCK_SIZE (3)

Another constraint was found between the available shared memory for the selected GPU and
for the shared memory in the reorderData kernel. The relevant code from the kernel can be shown
here:

__shared__ SCAN_DATA_TYPE sKeys2[SCAN_BLOCK_SIZE];

2 __shared__ SCAN_DATA_TYPE sValues2[SCAN_BLOCK_SIZE];

__shared__ uint sOffsets [16];

38

4 __shared__ uint sBlockOffsets [16];

Listing 34: Relevant shared memory objects for constraint.

we can see that the total shared memory usage is:

sizeof(sKeys2) + sizeof(sValues2) + sizeof(sOffsets) + sizeof(sBlockOffsets)

= SCAN_DATA_SIZE × SCAN_BLOCK_SIZE × 2 + sizeof(uint) × 16 × 2

which can be rewritten as:

(8× SCAN_DATA_SIZE× SCAN_BLOCK_SIZE + 128) ≤ available shared memory (4)

Function Inlining

In the sort benchmark in SHOC there was some functions that was small and looked like they could
be inlined. This was the functions scanLSB, scan4 and scanLocalMem. The content of scanLSB

was only a loop, in scan4 there was only updates to a variable and in scanLocalMem was also only
a loop. These functions in SHOC can be seen in Listing 35.

__device__ uint scanLSB(const uint val , uint* s_data) {...}

2

// ...

4

__device__ SORT_DATA_TYPE scan4(SORT_DATA_TYPE idata , uint* ptr) {...}

6

// ...

8

__device__ uint scanLocalMem(const uint val , uint* s_data) {...}

Listing 35: Previously non-inlined functions in Sort SHOC.

To use a parameters for these function inlines, I used the CUDA compiler directives
__forceinline__ and __noinline__ to force inline or prevent inline respectively for each function.
Possible values for each of these parameters are True (1) and False (0). This implementation can
be seen in Listing 36.

1 __device__

#if INLINE_LSB

3 __forceinline__

#else

5 __noinline__

#endif

7 uint scanLSB(const uint val , uint* s_data) {...}

9 // ...

11 __device__

#if INLINE_SCAN

13 __forceinline__

#else

15 __noinline__

#endif

17 SORT_DATA_TYPE scan4(SORT_DATA_TYPE idata , uint* ptr) {...}

39

19 // ...

21 __device__

#if INLINE_LOCAL_MEMORY

23 __forceinline__

#else

25 __noinline__

#endif

27 uint scanLocalMem(const uint val , uint* s_data) {...}

Listing 36: Parameterized inlined functions in Sort.

6.1.6 Stencil 2D

Number of GPUs

As the reason for including the Stencil 2D benchmark from SHOC was that it had a true parallel
(TP) version of the benchmark and in the specialization project it was discovered that it could have
different performance depending on the number of GPUs used. The only wanted parameter for
us to include for this benchmark was therefore for checking performance for using different GPUs.
This implementation was also done in collaboration with Ingunn Sund. The parameter for number
for GPUs, GPUS was implemented by using the input device number to run the benchmark on. The
implemented GPUS parameter can be seen in Listing 37.

1 devices = ’,’.join([str(i) for i in range(0, GPUS)])

mpirun -np {GPUS} --allow-run-as-root ./ Stencil2D -d {devices}

Listing 37: Parameterized number of GPUs for Stencil 2D.

6.1.7 Parameter Search Space

After implementing the different parameters for each algorithm, we can calculate the total
parameter search space for each benchmark. This is presented in Table 6.

Table 6: Search space for each parameterized benchmark.

Benchmark Search Space

Triad 1024× 10× 2× 2 = 40960

MD 1024× 2× 2× 5 = 20480

Reduction 10× 11× 2× 4× 4× 2× 7×GPUS × 2× 2× 2 = 394240×GPUS

Sort 2× 2× 3× 3× 7× 7× 2× 2× 2 = 14112

Stencil 2D GPUS

Note, for all GPUs used in this thesis, 1024 was the maximum threads per GPU block and 1024
used in the table above represents that. This might be different for different GPUs. GPUS is the
number of connected GPUs.

40

6.1.8 Original Parameter Values

In this section, tables of what the values were for the different benchmarks before the parameteriza-
tion of them are shown. These values are useful to different auto-tuners that can specify reference
values for correctness verification of the kernels to ensure correct computation.

Triad

Table 7: Original parameter values in the Triad benchmark.

Parameter Original Value

BLOCK_SIZE 128

WORK_PER_THREAD 1

LOOP_UNROLL_TRIAD False (0)

PRECISION float (32)

MD

Table 8: Original parameter values for the MD benchmark. Both precisions float (32) and
double (64) was used in SHOC’s benchmark, but not as a parameter.

Parameter Original Value

BLOCK_SIZE 256

PRECISION Both float (32) and double (64)

TEXTURE_MEMORY True (1)

WORK_PER_THREAD 1

41

Reduction

Table 9: Original parameter values in the Reduction benchmark. Both precisions float (32) and
double (64) was used and all combinations of GPUS connected was available in SHOC’s implemen-
tation. The compiler optimizations for device, fast-math and max registers was not used in SHOC’s
benchmark.

Parameter Original Value

BLOCK_SIZE 256

GRID_SIZE 64

PRECISION Both float (32) and double (64)

COMPILER_OPTIMIZATION_HOST 2

COMPILER_OPTIMIZATION_DEVICE Not available

USE_FAST_MATH Not available

MAX_REGISTERS Not available

GPUS All combinations of connected GPUs

LOOP_UNROLL_REDUCE_1 False (0)

LOOP_UNROLL_REDUCE_2 False (0)

TEXTURE_MEMORY False (0)

Sort

Table 10: Original parameter values in the Sort benchmark.

Parameter Original Value

LOOP_UNROLL_LSB True (1)

LOOP_UNROLL_LOCAL_MEMORY True (1)

SCAN_DATA_SIZE 2

SORT_DATA_SIZE 4

SCAN_BLOCK_SIZE 256

SORT_BLOCK_SIZE 128

INLINE_LSB False (0)

INLINE_SCAN False (0)

INLINE_LOCAL_MEMORY False (0)

42

Stencil 2D

Table 11: Original parameter values in the Stencil 2D benchmark. All combinations of GPUS

connected was available in SHOC’s implementation, but not as a parameter.

Parameter Original Value

GPUS All combinations of connected GPUs

6.1.9 Summary of Implemented Parameters

In this section a summary of the implemented parameters for each of the benchmark are pre-
sented. The parameters are provided a description as well as the search space values. For the sort
benchmark, the constraints between the parameters are also shown.

Triad

Table 12: Parameters, descriptions and values for the Triad benchmark.

Parameter Description Values
v where v ∈

BLOCK_SIZE Block size to launch the triad

kernel with.
{1, ..., Max GPU threads per
block}

WORK_PER_THREAD The amount of work performed by
each GPU thread.

{1, ..., 10}

LOOP_UNROLL_TRIAD Whether to unroll the loop in the
triad function or not.

{False (0), True (1)}

PRECISION Whether to use single-precision
floating-point or double-precision
floating-point for the computations.

{float (32), double (64)}

43

MD

Table 13: Parameters, descriptions and values for the MD benchmark.

Parameter Description Values
v where v ∈

BLOCK_SIZE Block size to launch the
compute_lj_force kernel with.

{1, ..., Max GPU threads per
block}

PRECISION Whether to use single-precision
floating-point or double-precision
floating-point for the computations.

{float (32), double (64)}

TEXTURE_MEMORY Whether to use texture memory or
not for the input data to the
compute_lj_force kernel.

{False (0), True (1)}

WORK_PER_THREAD The amount of work performed by
each GPU thread.

{1, ..., 5}

44

Reduction

Table 14: Parameters, descriptions and values for the Reduction benchmark.

Parameter Description Values
v where v ∈

BLOCK_SIZE Block size to launch the reduce

kernel with.
2i where i is in the
range [0, 11] with a
max of threads per
block and
excluding 32.

GRID_SIZE Grid size to launch the reduce

kernel with.
{1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024}

PRECISION Whether to use single-precision
floating-point or double-precision
floating-point for the computations.

{float (32),
double (64)}

COMPILER_OPTIMIZATION_HOST The level of optimization that are
applied by the compiler for the host
code.

{1, ..., 4}

COMPILER_OPTIMIZATION_DEVICE The level of optimization that are
applied by the compiler for the
device code.

{1, ..., 4}

USE_FAST_MATH Whether or not to use the compiler
option to use the fast math library.

{False (0), True (1)}

MAX_REGISTERS Maximum number of registers that
GPU functions can use.

{-1, 20, 40, 60, 80,
100, 120}

GPUS Number of GPUs to perform the
computation of redcution on.

{1, ...,
Connected GPUs}

LOOP_UNROLL_REDUCE_1 Whether to unroll the first loop in
the reduce function or not.

{False (0), True (1)}

LOOP_UNROLL_REDUCE_2 Whether to unroll the second loop
in the reduce function or not.

{False (0), True (1)}

TEXTURE_MEMORY Whether to use texture memory or
not for the input data to the reduce
kernel.

{False (0), True (1)}

45

Sort

Table 15: Parameters, descriptions and values for the Sort benchmark.

Parameter Description Values
v where v ∈

LOOP_UNROLL_LSB Whether to unroll the loop in the
scanLSB function or not.

{False (0), True (1)}

LOOP_UNROLL_LOCAL_MEMORY Whether to unroll the loop in the
scanLocalMem function or not.

{False (0), True (1)}

SCAN_DATA_SIZE Size of the data type that is used for
the scan functions. It chooses either
uint2, uint4 or a custom uint8 data
type.

{2, 4, 8}

SORT_DATA_SIZE Size of the data type that is used for
the sort functions. It chooses either
uint2, uint4 or a custom uint8 data
type.

{2, 4, 8}

SCAN_BLOCK_SIZE Block size to launch the scan kernels
with.

{16, 32, 64, 128,
256, 512, 1024}

SORT_BLOCK_SIZE Block size to launch the sort kernels
with.

{16, 32, 64, 128,
256, 512, 1024}

INLINE_LSB Whether to inline the scanLSB function
or not.

{False (0), True (1)}

INLINE_SCAN Whether to inline the scan4 function
or not.

{False (0), True (1)}

INLINE_LOCAL_MEMORY Whether to inline the scanLocalMem

function or not.
{False (0), True (1)}

Table 16: Constraints with descriptions for the Sort benchmark.

Constraint Description

SCAN_DATA_SIZE × SCAN_BLOCK_SIZE =
SORT_DATA_SIZE × SORT_BLOCK_SIZE

The ratio between sort and scan data- and
block sizes needs to be equal.

(8 × SCAN_DATA_SIZE ×
SCAN_BLOCK_SIZE + 128)
≤ available shared memory

Available shared memory for the selected
GPU can not be less than needed shared
memory in the reorderData kernel.

46

Stencil 2D

Table 17: Parameters, descriptions and values for the Stencil 2D benchmark.

Parameter Description Values
v where v ∈

GPUS Number of GPUs to perform the
computation of StencilKernel on.

{1, ..., Connected GPUs}

6.2 Making the Benchmark Suite User Friendly

In the process of creating the benchmark suite, we wanted to make it user friendly. This was
because of our own experience with other benchmark suites that did not prioritize this part, making
it much harder for user to use. We also had some positive experiences with some benchmarks, that
we wanted to include in this benchmark suite. The parts that we wanted to include for this
benchmark suite was a good documentation, an easy to use command-line interface, an organized
project structure and covering different users for the benchmark suite.

To start off with making it user friendly and for it to potentially become a standard, we named
the benchmark suite BAT : a Benchmark suite for Auto-Tuners. To make it even more friendly we
created a logo for it, that can be seen in Appendix B.

6.2.1 Command-Line Interface

The benchmark suite was created to contain a command-line interface (CLI), which is located in
the main.py attached to this thesis. We believe that this should be an easy-to-use CLI, and for a
more advanced user, more functionality should be possible. The CLI has the purpose of compiling
(if specified), running the auto-tuner implementations and parsing the results after tuning. The
CLI takes different input arguments. These are:

• --benchmark: The benchmark to run. If no benchmark is selected, all benchmarks will be
ran for given auto-tuner(s). Example: sort.

• --auto-tuner: The auto-tuner to run benchmarks for. If no auto-tuner is selected, all auto-
tuners will be benchmarked. Example: ktt

• --verbose: If all stdout and stderr should be printed out during the building of the bench-
mark(s).

• --size: The problem size to provide for input data for the benchmark(s). This is up to the
specific auto-tuner to handle.

• --technique: The tuning technique that the auto-tuners use for benchmarking. This is up
to the specific auto-tuner to handle.

BAT will first start by looking for auto-tuner directories below the tuning_examples directory
and then look for benchmarks inside that directory. For each benchmark, it is required to have a
config.json file in the benchmark directory. This is for BAT to know which command to run on
benchmarking. After the benchmarking is completed, BAT will copy all JSON and CSV files in the
benchmark directory to an own results directory. For each benchmark run the results directory is

47

named after the UNIX timestamp, to prevent clashes of results. BAT will after benchmarking also
read the results files specified in the configuration file and print out the best parameters found.

6.2.2 Documentation

The documentation of the benchmark suite was made in a readme markdown format in the Git
repository along with the source code. This was to display an easy to understand guide of how to
use the benchmarks and the benchmark suite, how to use the different command-line arguments,
how to add an own auto-tuner to the benchmarks and how to use Docker for running BAT. The
documentation also provided a good explanation of what the repository is and who it applies to.
There is also provided a list of all parameter values for each parameter in the documentation. The
documentation can be seen in Appendix B.

6.2.3 Project Structure

The project structure was created with a mindset of not making it too complicated, but also make
it easy if someone were to extract only a single benchmark from the source code. The structure
had to be made in such a way that it would be easy to add new auto-tuner benchmarks as well.

We chose to create a source (src) directory for storing the benchmark algorithms. The algo-
rithms were split into a programs directory for host code and GPU kernels, and kernels directory
for GPU kernels. Inside the programs directories, we stored both host code and GPU kernels to
make it easier for the user to extract the benchmarks if copied outside of the BAT directory.

Some parts of the project structure can be seen in:

BAT

docker

cltune.Dockerfile

...

src

kernels

triad

triad_kernel_helper.cu

triad_kernel.cu

...

programs

triad

triad_kernel.cu

triad_kernel.h

triad.cu

...

tuning_examples

cltune

triad

config.json

Makefile

reference_kernel.cu

triadtuner.cpp

48

...

...

main.py

README.md

6.2.4 Userbase

This benchmark suite applies to different users and the defined users were defined with Ingunn
Sund into three different groups. This group represents the users that BAT should be ensured to
work for. These are users that:

• are making their own auto-tuner and want to use the benchmarks for testing it.

• would like to compare an auto-tuner to other known auto-tuners.

• wants to check how a parameter’s value changes for different architectures.

49

7 Testing the Benchmark Suite

In this section the testing of the benchmark suite and it’s benchmarks was performed. First, the
implementation of each benchmark in each auto-tuner is shown, then a summary of the parameters
implemented are presented. After that, all the systems that BAT are being tested on are presented
and the testing process is described.

The responsibility of implementing benchmarks for the auto-tuners are divided between me and
Ingunn Sund. In this thesis the focus is implementing and testing benchmarks for CLTune and
KTT, and in Ingunn Sund’s thesis the focus is on OpenTuner and Kernel Tuner.

7.1 Implementing Benchmarks with Auto-Tuners

For all implementations using CLTune and KTT, the GPU kernels was changed to include the
extern "C", because of the kernels needing it by the auto-tuners. Kernel Tuner also needed this
due to the compiler that it used.

7.1.1 CLTune

Before the start of implementing algorithms in CLTune, it was discovered that the official repository
of CLTune contained some issues for tuning CUDA code. This was solved in a Pull Request to it’s
open-source GitHub repository 1.

For all the implemented algorithms in CLTune some common code was created for selecting
problem size and tuning technique form the input arguments to the program code, and then later
select it before the tuning and also saving the results using a common CLTune JSON results saver.
The relevant code for these parts is shown in Listing 38 below.

// If only one extra argument and the flag is set for size

2 if (argc == 2 && (string(argv [1]) == "--size" || string(argv [1]) == "-s")) {

cerr << "Error: You need to specify an integer for the problem size." << endl;

4 exit (1);

}

6

// If only one extra argument and the flag is set for tuning technique

8 if (argc == 2 && (string(argv [1]) == "--technique" || string(argv [1]) == "-t")) {

cerr << "Error: You need to specify a tuning technique." << endl;

10 exit (1);

}

12

// Check if the provided arguments does not match in size

14 if ((argc - 1) % 2 != 0) {

cerr << "Error: You need to specify correct number of input arguments."

16 << endl;

exit (1);

18 }

20 // Loop arguments and add if found

for (int i = 1; i < argc; i++) {

22 // Skip the argument value iterations

if (i % 2 == 0) {

24 continue;

1https://github.com/CNugteren/CLTune/pull/56

50

https://github.com/CNugteren/CLTune/pull/56

}

26

// Check for problem size

28 if (string(argv[i]) == "--size" || string(argv[i]) == "-s") {

try {

30 inputProblemSize = stoi(argv[i + 1]);

32 // Ensure the input problem size is between 1 and 9

if (inputProblemSize < 1 || inputProblemSize > 9) {

34 cerr << "Error: The problem size needs to be an integer in the

range 1 to 9." << endl;

exit (1);

36 }

} catch (const invalid_argument &error) {

38 cerr << "Error: You need to specify an integer for the problem size."

<< endl;

40 exit (1);

}

42 // Check for tuning technique

} else if (string(argv[i]) == "--technique" || string(argv[i]) == "-t") {

44 tuningTechnique = argv[i + 1];

} else {

46 cerr << "Error: Unsupported argument " << "‘" << argv[i] << "‘" << endl;

exit (1);

48 }

}

50

// ...

52

// Select the tuning technique for this benchmark

54 if (tuningTechnique == "annealing") {

double maxTemperature = MAX_TEMPERATURE;

56 auto_tuner.UseAnnealing(searchFraction , {maxTemperature });

} else if (tuningTechnique == "pso") {

58 double swarmSize = SWARM_SIZE;

auto_tuner.UsePSO(searchFraction , swarmSize , 0.4, 0.0, 0.4);

60 } else if (tuningTechnique == "random") {

auto_tuner.UseRandomSearch(searchFraction);

62 } else if (tuningTechnique == "brute_force") {

auto_tuner.UseFullSearch ();

64 } else {

cerr << "Error: Unsupported tuning technique: ‘" << tuningTechnique

66 << "‘." << endl;

exit (1);

68 }

70 auto_tuner.Tune();

72 // Get the best computed result and save it as a JSON to file

saveJSONFileFromCLTuneResults(auto_tuner.GetBestResult (), "best-" + kernelName +

74 "-results.json", inputProblemSize , tuningTechnique);

Listing 38: Common code for CLTune algorithms

The common JSON results saver (saveJSONFileFromCLTuneResults) for CLTune was imple-
mented to take the map returned by CLTune as input, the file name where to create the JSON file,
the problem size and the tuning technique used in the implementation and creating a JSON file
based on these inputs. This function can be seen in Listing 39.

51

void saveJSONFileFromCLTuneResults(

2 const unordered_map <string , size_t > &computationResult ,

const string &fileName , const int &problemSize ,

4 const string &tuningTechnique) {

string jsonOutput = "{\n\t\" PROBLEM_SIZE \": " + to_string(problemSize) +

6 " ,\n\t\" TUNING_TECHNIQUE \": \"" + tuningTechnique + "\"";

8 // Counters to check if the last item in the map

int counter = 0;

10 int maxCount = computationResult.size();

12 // Add comma if parameters

if (maxCount > 0) {

14 jsonOutput += ",";

}

16

// Loop all parameters and add one by one

18 for (auto const& parameter: computationResult) {

jsonOutput += "\n\t\"" + parameter.first + "\": " +

20 to_string(parameter.second);

22 counter ++;

24 // If not the last item in the vector add a comma (",")

if (counter != maxCount) {

26 jsonOutput += ",";

}

28 }

30 jsonOutput += "\n}";

32 // Save the JSON to file

fstream fs;

34 fs.open(fileName , fstream ::out);

fs << jsonOutput;

36 fs.close ();

}

Listing 39: Common JSON saver for CLTune results.

Triad

The relevant parts in the Triad implementation for CLTune, can be seen in Listing 7.1.1. Here we
can see the different parameters and thread modifications for local and global sizes.

1 // Add parameters to tune

auto_tuner.AddParameter(kernel_id , "BLOCK_SIZE", block_sizes);

3 // To set the different block sizes (local size) multiplied by the base (1)

auto_tuner.MulLocalSize(kernel_id , {"BLOCK_SIZE"});

5

auto_tuner.AddParameter(kernel_id , "WORK_PER_THREAD",

7 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10});

// To set the different grid sizes (global size) divided by the amount of work per

thread

9 auto_tuner.DivGlobalSize(kernel_id , {"WORK_PER_THREAD"});

52

11 auto_tuner.AddParameter(kernel_id , "LOOP_UNROLL_TRIAD", {0, 1});

auto_tuner.AddParameter(kernel_id , "PRECISION", {32, 64});

Due to CLTune not being able to change the input parameters for each run to the kernel, a
helper function was created with both single and double precisions. Relevant parts for this kernel
can be seen in Listing 40. This was related to the reference kernel being created only once before
the tuning, making it not possible to include reference checking when tuning both precisions, and
only on development of them.

extern "C" __global__ void triad_helper(float* Af, float* Bf, float* Cf, float sf,

double* Ad, double* Bd, double* Cd, double sd, int numberOfElements) {

2 #if PRECISION == 32

triad(Af , Bf , Cf , sf , numberOfElements);

4 #elif PRECISION == 64

triad(Ad , Bd , Cd , sd , numberOfElements);

6 #endif

}

Listing 40: Triad helper function for CLTune.

MD

Parameters was implemented the same way as for the Triad benchmark including a helper function
for the precision parameter. CLTune does not support texture memory for kernels, meaning there
had to be a change for always disabling texture memory. This was applied using the compiler
directive #define useTexture false.

Reduction

For Reduction, the implementation was also similar to the previous ones. One minor difference
was for kernel and host code due to CLTune not having a possibility to set the shared memory to
kernels. The implementation needed was:

1 // It sets shared memory size equal to the block size

auto_tuner.AddParameter(kernel_id , "KERNEL_SHARED_MEMORY_SIZE", {1});

Listing 41: Shared memory in Reduction CLTune.

In the kernel code, this was implemented as a compiler directive to set the shared memory size
in the kernel rather than in the host code. The relevant part of the kernel code can be seen in
Listing 42.

#if KERNEL_SHARED_MEMORY_SIZE

2 extern volatile __shared__ float sdata[BLOCK_SIZE*T_SIZE];

#else

4 // ...

extern volatile __shared__ float sdata [];

6 // ...

#endif

Listing 42: Compiler directive for Reduction shared memory.

53

Sort

CLTune does not support a way of combining multiple kernels and tuning them in a composite
way, therefore each of the kernels are tuned individually. This may lead to different results than
tuning the full program.

The separate functions tuned was tuneRadixSortBlocks, tuneScan and
tuneVectorAddUniform4. They were tuned similarly as to the previous example, except that
constraints was needed for some of the parameters. These constraints was for shared memory size
and block- and data sizes. The constraints can be seen in Listing 43.

1 // Constraint for block sizes and data sizes

// Expects input in order:

3 // {" SCAN_DATA_SIZE", "SORT_DATA_SIZE", "SCAN_BLOCK_SIZE", "SORT_BLOCK_SIZE "}

auto dataSizeBlockSizeConstraint = [](const vector <size_t > ¶meters) {

5 return parameters.at(2) / parameters.at(3) ==

parameters.at(1) / parameters.at(0);

7 };

9 // ...

11 // Constraint for shared memory used

auto sharedMemoryConstraint = [&](const std::vector <size_t >& vector) {

13 return ((vector.at(0) * vector.at(1) * 4 * 2) + (4 * 16 * 2))

<= available_shared_memory;

15 };

auto_tuner.AddConstraint(kernel_id , sharedMemoryConstraint ,

17 {"SCAN_BLOCK_SIZE", "SCAN_DATA_SIZE"});

19 // Constraint for block sizes and data sizes

auto_tuner.AddConstraint(

21 kernel_id ,

dataSizeBlockSizeConstraint ,

23 {"SCAN_DATA_SIZE", "SORT_DATA_SIZE", "SCAN_BLOCK_SIZE", "SORT_BLOCK_SIZE"}

);

Listing 43: Sort data size constraint for CLTune.

Stencil 2D

This benchmark was not able to be implement in CLTune, due to the only parameter implemented
for it was the GPUS, which is not possible without the possibility to run the program on multiple
GPUs.

7.1.2 KTT

Also for KTT at the start of implementing the kernels, it was discovered that it did not work with
CUDA code. This was also solved in a a Pull Request to it’s open-source GitHub repository 2.

It was also discovered that the grid size input to the kernels was not grid size, as they mentioned
in their documentation, but rather the total number of threads. This lead to adjustments in the
kernels grid argument. The printed out launching parameters to the kernel during launching was
also wrong and it was not using ceil in the backend, leading to too few threads launched.

2https://github.com/Fillo7/KTT/pull/41

54

https://github.com/Fillo7/KTT/pull/41

It was used a common JSON saver for the KTT implementations
(saveJSONFileFromKTTResults) as in CLTune. This was the same code as for the implementations
using CLTune, as both these two auto-tuners use C++ code. With a slight modification in that
KTT used its own type ComputationResult, instead of the results map as used in the CLTune
JSON saver.

One inconvenience when implementing KTT, was that the global size type that was set for the
auto-tuner, did not work with CUDA, but was required to be OpenCL, as shown in Listing 44.

auto_tuner.setGlobalSizeType(ktt:: GlobalSizeType :: OpenCL);

2 // Rather than

auto_tuner.setGlobalSizeType(ktt:: GlobalSizeType ::CUDA);

Listing 44: Incorrect global size type for KTT

KTT included different tuning techniques and setup of them than for CLTune, which can be
seen here in Listing 45 below.

1 // Select the tuning technique for this benchmark

if (tuningTechnique == "annealing") {

3 double maxTemperature = 4.0f;

auto_tuner.setSearchMethod(ktt:: SearchMethod ::Annealing , {maxTemperature });

5 } else if (tuningTechnique == "mcmc") {

auto_tuner.setSearchMethod(ktt:: SearchMethod ::MCMC , {});

7 } else if (tuningTechnique == "random") {

auto_tuner.setSearchMethod(ktt:: SearchMethod :: RandomSearch , {});

9 } else if (tuningTechnique == "brute_force") {

auto_tuner.setSearchMethod(ktt:: SearchMethod :: FullSearch , {});

11 } else {

cerr << "Error: Unsupported tuning technique: ‘" << tuningTechnique << " ‘."

13 << endl;

exit (1);

15 }

Listing 45: Tuning techniques for KTT algorithms.

Triad

Relevant parts of the KTT implementation specifically for Triad is the parameter inserting and the
thread modifications to the launching of the kernel. This can be seen in Listing 46 below.

1 auto_tuner.addParameter(kernelId , "BLOCK_SIZE", block_sizes);

auto_tuner.addParameter(kernelId , "WORK_PER_THREAD",

3 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10});

auto_tuner.addParameter(kernelId , "LOOP_UNROLL_TRIAD", {0, 1});

5 auto_tuner.addParameter(kernelId , "PRECISION", {32, 64});

7 // To set the different block sizes (local size) multiplied by the base (1)

auto_tuner.setThreadModifier(kernelId , ktt:: ModifierType ::Local ,

9 ktt:: ModifierDimension ::X, "BLOCK_SIZE", ktt:: ModifierAction :: Multiply);

// To set the different grid sizes (global size) divided by the amount of work per

thread

11 // Divide on block size and multiply by block size after ceiling to ensure enough

threads used

// Also use precision to get the grid size

13 // Using ceil because KTT does not ceil the divided grid size

auto globalModifier = [](const size_t size , const vector <size_t >& vector) {

55

15 return int(ceil(double(size) / double(vector.at(0)) / double(vector.at(1)))) *

vector.at(0) * (vector.at(2) /32*4);

};

17 auto_tuner.setThreadModifier(kernelId , ktt:: ModifierType ::Global , ktt::

ModifierDimension ::X, {"BLOCK_SIZE", "WORK_PER_THREAD", "PRECISION"},

globalModifier);

Listing 46: Triad parameters for KTT.

MD

Parameters was implemented the same way as for the Triad benchmark including a helper function
for the precision parameter. As for CLTune, KTT did not support texture memory either, leading
to the same compiler directive #define useTexture false being applied here as well.

Reduction

For Reduction, the implementation was also similar to the previous ones. One minor difference
was the compiler directive KERNEL_SHARED_MEMORY_SIZE, as previously described for the Reduction
implementation in CLTune.

Sort

The Sort implementation was different from the other KTT implementations. This was because
KTT has the support for using a composite of multiple kernels and tune them together. This was
using KTT’s TuningManipulator class. For reference checking the class ReferenceClass was used.
This implementation is also inspired by one of KTT’s own examples of sort, named sort-new. The
implementation also included the constraints that were described in the Sort implementation for
CLTune.

Stencil 2D

As for CLTune, this benchmark was not able to be implement in KTT either. This was for the
same reason, where GPUS depends on running the program on multiple GPUs.

7.1.3 Kernel Tuner

Kernel Tuner was different from CLTune and KTT in that it could tune both full programs and
kernel code. For the implemented algorithms described in this thesis, all are implemented using
full program.

Triad

The relevant parts in the Triad implementation for Kernel Tuner, can be seen in Listing 47. Here
we can see the different parameters used.

1 tune_params = dict()

tune_params["BLOCK_SIZE"] = [i for i in range(1, max_block_size + 1)]

3 tune_params["WORK_PER_THREAD"] = [i for i in range(1, 11)] # Range: [1, ..., 10]

tune_params["LOOP_UNROLL_TRIAD"] = [0, 1]

5 tune_params["PRECISION"] = [32, 64]

56

Listing 47: Triad parameters for Kernel Tuner.

MD

Parameters was implemented the same way as for the Triad benchmark using host code for the
tuning. There was one difference for this implementation in contrast to the CLTune and KTT
implementations, texture memory was possible to use since Kernel Tuner can run host code.

Reduction

For Reduction, the implementation was also similar to the previous ones. One minor difference was
like for MD, it could use the parameter for texture memory.

Sort

The Sort implementation for Kernel Tuner was implemented using the full program to tune and the
rest of the implementation is similar to the previously described for Kernel Tuner. The constraint
for block sizes and data sizes implemented in Kernel Tuner are shown in the listing below.

1 constraint = ["(SCAN_BLOCK_SIZE / SORT_BLOCK_SIZE) == (SORT_DATA_SIZE /

SCAN_DATA_SIZE)",

f"((SCAN_BLOCK_SIZE * SCAN_DATA_SIZE * 4 * 2) + (4 * 16 * 2)) <= {

available_shared_memory}"]

Listing 48: Sort constraint for Kernel Tuner.

Stencil 2D

As for CLTune and KTT, this benchmark was not able to be implement in Kernel Tuner either.
This was for the same reason, where GPUS depends on running the program on multiple GPUs.

7.1.4 OpenTuner

OpenTuner was similar to Kernel Tuner in a way that they both could tune the full programs,
but OpenTuner could not tune just the kernel as Kernel Tuner could. Therefore all implemented
algorithms described in this thesis are implemented using the full programs. In OpenTuner, the
compile commands can be created to include the parameters.

Triad

The relevant parts in the Triad implementation for OpenTuner, can be seen in Listing 49. Here we
can see the different parameters used and a compile command at the end.

manipulator.add_parameter(IntegerParameter(’BLOCK_SIZE ’, 1, max_block_size))

2 manipulator.add_parameter(IntegerParameter(’WORK_PER_THREAD ’, 1, 10))

manipulator.add_parameter(IntegerParameter(’LOOP_UNROLL_TRIAD ’, 0, 1))

4 manipulator.add_parameter(EnumParameter(’PRECISION ’, [32, 64]))

57

6 make_program = f’nvcc -gencode=arch=compute_{cc},code=sm_{cc} -I {start_path }/cuda

-common -I {start_path }/ common -g -O2 -c {start_path }/ triad/triad.cu’

make_program += ’ -D{0}={1} ’.format(’BLOCK_SIZE ’, cfg[’BLOCK_SIZE ’])

Listing 49: Triad parameters for OpenTuner.

MD

Parameters was implemented the same way as for the Triad benchmark using host code for the
tuning. Texture memory was possible in this implementation as well as in Kernel Tuner, which run
host code.

Reduction

For this implementation of Reduction it was possible to use the compiler optimization parameters.
See Listing 50 below for implemented parameters and the make command to include the parameters
to the program.

1 manipulator.add_parameter(IntegerParameter(’COMPILER_OPTIMIZATION_HOST ’, 0, 3))

manipulator.add_parameter(IntegerParameter(’COMPILER_OPTIMIZATION_DEVICE ’, 0, 3))

3 manipulator.add_parameter(IntegerParameter(’USE_FAST_MATH ’, 0, 1))

manipulator.add_parameter(EnumParameter(’MAX_REGISTERS ’, [-1, 20, 40, 60, 80, 100,

120]))

5

...

7

make_program = f’nvcc -gencode=arch=compute_{cc},code=sm_{cc} -I {start_path }/cuda

-common -I {start_path }/ common {use_fast_math }{ max_registers} -O{cfg["

COMPILER_OPTIMIZATION_HOST "]} -Xptxas -O{cfg[" COMPILER_OPTIMIZATION_DEVICE "]} -

c {start_path }/ reduction/reduction.cu’

Listing 50: Reduction parameters for OpenTuner.

Sort

The Sort implementation for OpenTuner was implemented similarly to Kernel Tuner, with using
the full program to tune. The rest of the implementation is similar to the previously described for
OpenTuner. The constraint for block sizes and data sizes implemented in Kernel Tuner are shown
in the listing below.

Check constraint for block sizes and data sizes

2 if cfg[’SCAN_BLOCK_SIZE ’] / cfg[’SORT_BLOCK_SIZE ’] != cfg[’SORT_DATA_SIZE ’] / cfg[

’SCAN_DATA_SIZE ’]:

return Result(time=float("inf"), state="ERROR", accuracy=float("-inf"))

4

Constraint to ensure not attempting to use too much shared memory

6 # 4 is the size of uints and 2 is because shared memory is used for both keys and

values in the "reorderData" function

16 * 2 is also added due to two other shared memory uint arrays used for offsets

8 shared_memory_needed = (cfg[’SCAN_BLOCK_SIZE ’] * cfg[’SCAN_DATA_SIZE ’] * 4 * 2) +

(4 * 16 * 2)

gpu = cuda.get_current_device ()

10 available_shared_memory = gpu.MAX_SHARED_MEMORY_PER_BLOCK

58

12 if shared_memory_needed > available_shared_memory:

return Result(time=float("inf"), state="ERROR", accuracy=float("-inf"))

Listing 51: Sort constraint for OpenTuner.

Stencil 2D

The Stencil 2D implementation for OpenTuner is the only auto-tuner the program is implemented
in due to the restriction of using multiple GPUs for the parameter. In this implementation it uses
MPI to run the program on multiple devices with the parameter GPUS:

1 manipulator.add_parameter(IntegerParameter(’GPUS’, 1, len(cuda.gpus)))

3 # ...

5 devices = ’,’.join([str(i) for i in range(0, chosen_gpu_number)])

run_cmd = f’mpirun -np {chosen_gpu_number} --allow-run-as-root {program_command} -

d {devices}’

Listing 52: Stencil 2D for OpenTuner.

7.2 Benchmark Parameter Availability

Not all parameters was possible to implement for all auto-tuners. This was due to different reasons,
such as that we could not specify a parameter for compiler optimization using CLTune, KTT and
Kernel Tuner. Therefore it is presented tables of different parameters available for benchmarking
for the different implementations.

7.2.1 Sort

Table 18: Implemented parameters in each auto-tuner for the Sort benchmark.

Parameter

Auto-Tuner
OpenTuner Kernel Tuner CLTune KTT

LOOP_UNROLL_LSB Yes Yes Yes Yes

LOOP_UNROLL_LOCAL_MEMORY Yes Yes Yes Yes

SCAN_DATA_SIZE Yes Yes Yes Yes

SORT_DATA_SIZE Yes Yes Yes Yes

SCAN_BLOCK_SIZE Yes Yes Yes Yes

SORT_BLOCK_SIZE Yes Yes Yes Yes

INLINE_LSB Yes Yes Yes Yes

INLINE_SCAN Yes Yes Yes Yes

INLINE_LOCAL_MEMORY Yes Yes Yes Yes

59

7.2.2 Triad

Table 19: Implemented parameters in each auto-tuner for the Triad benchmark.

Parameter

Auto-Tuner
OpenTuner Kernel Tuner CLTune KTT

BLOCK_SIZE Yes Yes Yes Yes

WORK_PER_THREAD Yes Yes Yes Yes

LOOP_UNROLL_TRIAD Yes Yes Yes Yes

PRECISION Yes Yes Yes Yes

7.2.3 Reduction

Table 20: Implemented parameters in each auto-tuner for the Reduction benchmark.

Parameter

Auto-Tuner
OpenTuner Kernel Tuner CLTune KTT

BLOCK_SIZE Yes Yes Yes Yes

GRID_SIZE Yes Yes Yes Yes

PRECISION Yes Yes Yes Yes

COMPILER_OPTIMIZATION_HOST Yes No No No

COMPILER_OPTIMIZATION_DEVICE Yes No No No

USE_FAST_MATH Yes No No No

MAX_REGISTERS Yes No No No

GPUS Yes No No No

LOOP_UNROLL_REDUCE_1 Yes Yes Yes Yes

LOOP_UNROLL_REDUCE_1 Yes Yes Yes Yes

TEXTURE_MEMORY Yes Yes No No

60

7.2.4 MD

Table 21: Implemented parameters in each auto-tuner for the MD benchmark.

Parameter

Auto-Tuner
OpenTuner Kernel Tuner CLTune KTT

BLOCK_SIZE Yes Yes Yes Yes

PRECISION Yes Yes Yes Yes

TEXTURE_MEMORY Yes Yes No No

WORK_PER_THREAD Yes Yes Yes Yes

7.2.5 Stencil 2D

Table 22: Implemented parameters in each auto-tuner for the Stencil 2D benchmark.

Parameter

Auto-Tuner
OpenTuner Kernel Tuner CLTune KTT

GPUS Yes No No No

61

7.3 System Setup

The systems used for running the auto-tuners were computer with a NVIDIA GeForce GTX 980
GPU, a computer with a NVIDIA TITAN RTX GPU, a system with 20 NVIDIA T4’s (only one
were used), an IBM Power System AC922 (Mini Summit) and the NVIDIA DGX-2 system (Heid).

NVIDIA GeForce GTX 980 Based System

This section is a modified version from my specialization project, which is attached to this thesis.

This system has a NVIDIA GeForce GTX 980 GPU with 4 GB memory and an Intel Core i7-
6700K CPU. There is a PCIe interconnect between the GPU and the CPU. Additional hardware
specifications are shown in Table 23. Appendix C has additional information about the GPU in
some listings. Listing 53 shows the topology, Listing 54 shows that the system can not use NVLinks,
and Listing 55 shows extra GPU information.

Table 23: Hardware specifications for NVIDIA GeForce GTX 980 based computer.

Component Information

CPU Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz with 4
cores.
Maximum clock frequency: 4.2 GHz.
2 threads per core, total 8 threads.

RAM 16 GB main memory
4 GB GPU memory

GPU NVIDIA GeForce GTX 980, 4 GB.

CPU-GPU Interconnect PCIe

OS Ubuntu 18.04.3

NVIDIA TITAN RTX Based System

This section is a modified version from my specialization project, which is attached to this thesis.

This computer has a NVIDIA TITAN RTX graphics card with 24 GB GPU memory. PCIe connects
the GPU to the CPU, which is an Intel Core i9-9900K processor. The TITAN RTX GPU has 576
Tensor Cores, and more specifications can be seen in Table 24. More information about the GPU
can be found in listings in Appendix C. Listing 57 shows the topology, Listing 58 shows that the
graphics card can have two NVLinks and Listing 59 displays extra GPU information.

62

Table 24: Hardware specifications for NVIDIA TITAN RTX based computer.

Component Information

CPU Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz with 8
cores.
Maximum clock frequency: 5 GHz.
2 threads per core, total 16 threads.

RAM 16 GB main memory
24 GB GPU memory

GPU NVIDIA TITAN RTX, 24 GB. 576 Tensor Cores.

CPU-GPU Interconnect PCIe

OS Ubuntu 18.04.3

NVIDIA Tesla T4 Based System

The system with NVIDIA Tesla T4 GPUs contains two CPUs and 20 T4’s, but in this thesis for
this system the focus is only on a single GPU. A single of these cards has 16 GB of memory. The
CPU for this system is a Intel(R) Xeon(R) Gold 6230. Between the GPUs and GPU there are
a PCIe connection. Additional hardware specifications are shown in Table 25. Appendix C has
additional information about the GPU in some listings. Listing 61 shows that the system can not
use NVLinks, and Listing 62 shows extra GPU information.

Table 25: Hardware specifications for NVIDIA Tesla T4 based computer.

Component Information

CPU 2× Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz with
20 cores each.
Maximum clock frequency: 3.9 GHz.
2 threads per core, total 80 threads in the system.

RAM 378 GB main memory
320 GB GPU memory

GPU 20 × NVIDIA Tesla T4, 16 GB
320 Tensor Cores.

GPU-GPU Interconnect PCIe

CPU-GPU Interconnect PCIe

OS Ubuntu 18.04.5

IBM Power System AC922

This section is a modified version from my specialization project, which is attached to this thesis.

The Power AC922 system are of the model 8335-GTH, which among other things means that it has
air cooling instead of water cooling [5]. The system has two POWER9 processors and two NVIDIA

63

Tesla V100-SXM2 GPUs with 16 GB memory each. The hardware specifications for Mini Summit
are shown in Table 26 and see Listing 69 in Appendix C for GPU information about the system.
The listings show that the SXM2 model has a power limit of 300W. This can be seen when running
the command nvidia-smi -q -i 0.

Table 26: IBM Power System AC922 hardware specifications.

Component Information

CPU 2 × POWER9 CPUs with 16 cores each.
Maximal clock frequency: 3.8 GHz.
4 SMT threads per core, total 128 threads
in the system.

RAM 512 GB main memory
32 GB GPU memory

GPU 2 × NVIDIA Tesla V100-SXM2, 16 GB.
640 Tensor Cores.

GPU-GPU Interconnect NVLink 2.0

CPU-GPU Interconnect NVLink 2.0

OS Red Hat Enterprise Linux 7.6

Mini Summit has one GPU connected to each processor and also three bricks of NVLink 2.0
connecting the GPUs to their CPUs. Mini Summit’s architecture can be seen in Figure 9. See
Listing 67 in Appendix C for the outprinted topology. Both the POWER9 CPUs and the Tesla
V100 GPUs have possibility for six NVLink 2.0 bricks to another device, but this system does not
use the other three bricks. See Listing 68 in the same appendix for the NVLink active status for
the GPUs.

Mini Summit is divided into two NUMA nodes, where each node has one CPU and one GPU.

NVLink 2.0
3 bricks

NVLink 2.0
3 bricks

 Tesla
 V100

 Tesla
 V100

X bus
Power9 Power9

Figure 9: Illustration of how the GPUs are connected to the CPUs on Mini Summit. The
illustration is made in collaboration with Ingunn Sund.

64

NVIDIA DGX-2

This section is a modified version from my specialization project, which is attached to this thesis.

The NVIDIA DGX-2 has two Intel Xeon Platinum 8186 processors and 16 NVIDIA Tesla V100-
SXM3 GPUs, each with 32 GB memory. These Tesla V100 graphic cards differs from the SXM2
version in that they have different power consumption limits and there are some architectural
differences [45]. In Listing 65 from Appendix C there is shown that Tesla V100-SXM3 has a power
limit of 350W, 50W more than the SXM2 models. This extra power is dedicated to increasing
the clock rate [46] which is about 60-80 MHz higher than for the SXM2 models, depending on the
usage. The clock rates can be seen by running the nvidia-smi -q -i 0 command. This command
also shows that the GPUs in the DGX-2 have a minimum power limit of 100W.

This system has NVSwithes between the GPUs and PCIe connection between CPU and GPU.
The connection between the GPUs traverses through a bounded set of six NVLinks, the NVLink
status can be seen in 64. The system is divided into two NUMA nodes with 8 GPUs per node.
This topology can be seen in Listing 63 in Appendix C. The graphic cards has 640 Tensor Cores
and more specifications can be seen in Table 27.

Table 27: NVIDIA DGX-2 hardware specifications.

Component Information

CPU 2 × Intel(R) Xeon(R) Platinum 8168 CPUs @ 2.70GHz with
24 cores each.
Maximum clock frequency: 3.7 GHz.
2 threads per core, total 96 threads in the system.

RAM 1510 GB main memory
512 GB GPU memory

GPU 16 × NVIDIA Tesla V100-SXM3, 32GB.
640 Tensor Cores.

GPU-GPU Interconnect NVSwitch

CPU-GPU Interconnect PCIe

OS Ubuntu 18.04.3

65

7.4 Testing Process

The process for the testing was made by first defining what to test, then defining how to test. After
these steps, the actual testing of the implementations were performed on the described systems.

7.4.1 What to Test

In the planning section previously described, it was defined that the systems to test these imple-
mentations on was a GTX 980 based system, a RTX TITAN based system, a multi-GPU IBM
AC922 system, a multi-GPU NVIDIA DGX-2 system and a single GPU from a multi-GPU system
containing NVIDIA T4s.

The different tuning techniques used for testing the auto-tuner was decided in collaboration
with Ingunn Sund, leading to similar tests performed for our theses.

We wanted to test that the parameterized benchmarks for the auto-tuners worked correctly
for both single- and multi-GPU auto-tuning. This was done by using single-GPU on all machines
tested, and I would test multi-GPU benchmarks for DGX-2 and the IBM Power System AC922.
The implementations, Reduction and Stencil 2D was possible to use with OpenTuner for this test.

We wanted to test that the algorithms worked for different types of systems and that they
worked for different auto-tuners. First we tested that the auto-tuner implementations just worked
at all, then that the different tuning techniques worked as expected.

We also wanted to test that the values for the parameters was suitable for the search spaces
and that they varied for different tested systems. This can be tested with brute force technique to
get all the different parameter combinations.

We wanted to test the brute force tuning technique with OpenTuner, due to it containing all
parameters, making it a good baseline for most performant configuration of parameters. This
includes the multi-GPU and the compiler optimization parameters. However OpenTuner did not
have a brute force tuning technique, and Kernel Tuner was used instead because of it being the one
containing the second most implemented parameters. KTT was also used for brute forcing due to
Kernel Tuner using too long time, due to the host code version being slower than a version that
only tunes kernels. Since we wanted to be sure that the results was retrieved in time, KTT was
used for these benchmarks.

To evaluate KTT, we used both MCMC and brute force as CLTune used a better tuning of multiple
kernels. We wanted to evaluate CLTune by using the particle swarm optimization technique with
the swarm sizes 1, 5 and 20. We also wanted to test CLTune with the simulated annealing technique
with max temperatures 0.1, 2 and 10. These techniques we wanted to test for the reduction and
triad implementations.

We wanted to evaluate Kernel Tuner by using the brute force technique and genetic algorithm
with a max iteration of 50 and population size of 10.

We wanted to test the OpenTuner implementations by using the AUCBanditMetaTechnique

tuning technique.

7.4.2 How to Test

The benchmark implementations was mainly tested using Docker. This was a good way to keep
the reproducibility of the benchmarks in the different systems and to have an easy installation of
the dependencies. The NVIDIA Docker plugin was used for Docker to enable GPU accelerated
applications. A single Dockerfile was created for each of the separate auto-tuners, which all can be
seen in Appendix D. The Dockerfiles are also available in the source code in the docker directory.

66

There is also a guide for using the Dockerfiles in the readme for BAT. This can be seen in Appendix
B.

For one of the machines, the job scheduler Slurm was required to reserve resources for the system,
to then run the auto-tuning benchmarks. This was for using a queue system on the machine. This
was the NVIDIA Tesla T4 based system. Example command for reserving resources on the machine
using Slurm can be seen Listing 75 in Appendix D. After the allocated resources were reserved, it
had installed NVIDIA Docker so it was similar to the DGX-2, GTX 980 and RTX TITAN systems
for running the implementations inside Docker containers.

Where Docker was not possible to use, the code had to be ran bare metal. The system that
did not have Docker was the IBM Power machine. This lead to problems with both setting up
the benchmarks and running the code, due to the machine having issues with it’s already installed
packages and environment. Therefore a lot of the dependencies was needed to be install manually
from source. Which again lead to the Kernel Tuner implementations not being ran on this machine.

The commands used for running BAT’s main.py file, are described in the readme in Appendix
B. This script conveniently saved the results to it’s own directory after completed each of the
auto-tuning benchmarks.

7.4.3 Correctness Verification

To ensure the correctness of the implemented programs, different steps were applied. These included
using reference kernels for the auto-tuners that supported this and for full program auto-tuning,
it was possible to include already created result checkers. These steps were mainly applied during
the development to assure corrected computed kernels.

67

8 Results and Discussion

All the parameterized benchmarks for the auto-tuners worked correctly when tuning both the single-
and multi-GPU versions.

8.1 Parameter Evaluation

8.1.1 OpenTuner

Stencil 2D

OpenTuner results for Stencil 2D on the multi-GPU systems are shown in Figure 10 with problem
size 1, and in Figure 11 with problem size 4. Since this benchmark only has GPUs as a parameter,
this is the only parameter shown in the graphs. In Figure 11, there are some data points missing
for some of the numbers of GPUs, this is because OpenTuner used quite a long time on the tuning
with size 4 and not every combination of the search space were run.

By looking at the figure we can see that even if the work is divided between multiple GPUs,
there is no speedup. The most efficient number of GPUs used is 1. In my specialization project,
we saw that Stencil 2D showed improved performance, in GFLOPS, when being run on multiple
GPUs. The tuning results might have been different if we used performance (GFLOPS) as the unit
when tuning instead of time.

In the future, I would consider trying to change how the algorithm uses multiple GPUs, to see
if it is possible to get a runtime speedup when running multi-GPU benchmarks.

68

Figure 10: Stencil 2D with problem size 1 for both NVIDIA DGX-2 and IBM Power System
AC922.

69

Figure 11: Stencil 2D with problem size 4 for both NVIDIA DGX-2 and IBM Power System
AC922.

8.1.2 Kernel Tuner

Sort

Using the sort benchmark implementation in Kernel Tuner, we can see that the parameter for sort
data size was 8 in all results and 2 for scan data size, 512 for scan block size and 128 for sort block
size for most results. This might indicate that these values are good, but needs more analysis to
confirm this. The rest of the parameters, loop unroll and inline functions, varied for all results and
more analysis is needed for these parameters.

8.1.3 CLTune

A more extensive analysis is needed for these results to conclude which maximum temperature for
simulated annealing and which swarm size for particle swarm optimization is best.

8.1.4 KTT

After tuning with KTT, it was discovered that both the MCMC and brute force techniques iterated
over the full search space, without the possibility to limit it. This means that both these techniques
are versions of brute force, just that they iterate over the search space in a different order.

By looking at the reduction results for different architectures, one can see that it is not clear if
one value of a parameter is best. Therefore more analysis of these results needs to be done.

For the triad results for KTT, one can see that precision is 32 for all results and that it generally
has a low value for the work per thread parameter. It is also noticed that 2 might be the best value

70

for this parameter.

Reduction

The systems IBM AC922 and DGX-2 found the best values for the precision to be 64 was best, but
on other machines found 32 to be the best. Both the IBM AC922 and DGX-2 systems contains the
same GPU, so this could be the reason for that.

For the grid size parameter, one can see that all the best values found, are high numbers. And
all the values are 1024 except one, which is 256.

MD

Figure 12: Work per thread parameter and block size parameter for GTX 980 system for the MD
benchmark in KTT.

We can see in this figure that the lower the work per thread is, the faster this benchmark is. This is
valid for all block sizes. It is also noticed that the time used for the different configurations varies
for the different block sizes, but also varies differently depending on the work per threads used.

In the figure, block sizes dividable by 32 and the block size equal to 16 is marked with a circle.
We can easily notice that the configurations where block size has these values, is faster. This is
perhaps due to the warp size being 32, which is often said to be more optimal when launching
kernels.

71

Figure 13: Work per thread parameter and block size parameter for all systems for the MD
benchmark in KTT.

In this figure we can see that the parameter for block size is a good parameter because it changes
for different architectures. Note, that behind the Power AC922 system plots, there are plots for
a DGX-2 system. This is most likely due to the GPUs being the same model for these systems,
leading to very similar runtime. For all the different GPU results in the figure, a very low block
size results into very bad runtime, and just by increasing this slightly we can see that it improves
a lot. However the runtime of block size does not change any drastically for the rest of these sizes.

In this figure as well, the block sizes are dividable by 32 and the block size equal to 16 is
marked with a circle. From this we can notice better runtime for each block size value matching
these values. At least very easily for the Tesla T4 system.

One observation in Figure 13, was that despite NVIDIA Tesla T4 GPUs being a much newer
generation graphics card and having generally better performance than the NVIDIA GeForce GTX
980, it performed worse. This is an interesting result and might be due to the difference in the
interconnects and how the GPUs are connected to the CPUs in the two systems.

8.2 Benchmark Suite Evaluation

Below is an evaluation of each of the criteria that were defined prior to the creating of the benchmark
suite in collaboration with Ingunn Sund. The criteria are evaluated based on the benchmarks
implemented in this thesis.

72

• The benchmark suite should have:

– HPC based benchmarks.
This criteria was was fulfilled by that common HPC benchmarks such as Sort,
Reduction, Triad, Molecular Dynamics and Stencil 2D was implemented.

– Parameterized algorithms as benchmarks.
All the implemented algorithms was parameterized and added multiple parameters each.

– Varied selection of benchmarks with different degree of complexity and scope.
The implemented benchmarks range from simple computations as in the Triad bench-
mark to the more advanced Stencil 2D benchmark.

– Benchmarks that utilizes frameworks to enable running code on GPUs. There should be
support for both CUDA and OpenCL to make it possible to run the code on both NVIDIA
and AMD GPUs.
All the benchmarks implemented are running on GPUs and are implemented using
CUDA. However none of them are using OpenCL and this should be considered im-
plemented in a future version of BAT to make the benchmark suite available on AMD
GPUs as well as NVIDIA GPUs.

– Benchmarks that can run on multi-GPU systems and distribute work on multiple nodes.
The benchmark Reduction is implemented to work with the true parallel version, that is
using MPI to communicate the data between multiple GPUs. The benchmark Stencil

2D does work for multiple GPUs as well.

– Support for different types of auto-tuners. If the auto-tuner does not support certain
parameters or the auto-tuner only supports tuning of kernels, there should still not be a
problem using the benchmarks.
This criteria is fulfilled by that the auto-tuners OpenTuner, Kernel Tuner, CLTune and
KTT was implemented for all benchmarks. This shows that it is possible for different
types of auto-tuners because OpenTuner and Kernel Tuner can tune a full program and
CLTune and KTT can tune kernels.

– Benchmarks that have been well tested with different auto-tuners and on different ma-
chines.
The benchmarks was tested for the different implemented auto-tuners and correction
verification of the results computed was added to the implementations. The different
auto-tuners was tested on a number of different systems, ranging from single GPU system
to multi-GPU systems.

– Examples of how to use the benchmarks with auto-tuners.
BAT contains a series of the different implemented auto-tuner benchmarks in a separate
directory. Users of the benchmark suite can get inspiration about how to implement
other auto-tuners by looking at these sources.

– A way to compare auto-tuners with other auto-tuners.
This was not a goal for this thesis due to this being a large task to implement with the
need of researching a scoring system for the auto-tuners and finding the best way to do
this. This should be included in a future version of BAT.

• The parameterized algorithms should contain:

– Both full programs and single GPU kernels.
The benchmark suite’s source code contains two different directories, where one of them

73

is for programs and one for the kernels. This is so different auto-tuners can choose which
to tune.

– Some algorithms with enough parameters that brute force is not efficient. There should
be a variation of the search space size for the different algorithms.
Benchmarks such as Triad and Reduction have search spaces of 40960 and 394240 ×
GPUS respectively. This will increase the tuning time, but for our tested systems a
good enough value. The benchmarks range from GPUS to 394240 × GPUS, which shows
a variation in the search spaces. But even larger search spaces could be obtained by
implementing even more parameters for the algorithms to ensure that brute force is not
possible at all in reasonable time for the benchmarks.

– Parameters that potentially could have different values on different machines or archi-
tectures.
As shown in the previously discussed results, the values can have different optimal values
depending on the system architecture.

– Some benchmarks with possibility for restrictions or constraints on the parameters pos-
sible values.
The benchmark Sort has two constraints, one between the data size parameters and the
block size parameters, and another between the available and needed shared memory.
The benchmark Reduction has a restriction for the block size parameter that can not
be 32.

• The benchmark suite should be user friendly by being:

– A well structured project.
After making BAT user friendly, the project was well structured in my opinion. This be-
cause one can easily copy out a single benchmark from the source directory or implement
ones own new auto-tuner for BAT.

– Easy to use.
The benchmark suite was made easy to use by including Dockerfiles for setup and a
main.py file for running the benchmarks. The main.py command-line interface was
made easy to use and customizable for running different types of benchmarks.

– A benchmark suite with good documentation. It should be clear what the project is and
who could benefit from using it. There should be a guide for using the benchmark suite.
The BAT repository contains a readme file documentation guide including a description
of what this project is. This readme specifies who the target audience of the benchmark
suite is and who could benefit from using it. In the readme file it also specifies how to use
the Dockerfiles for setup and benchmarking and for using the command-line interface to
run the benchmarks. The documentation also includes how others can use BAT with
their own auto-tuners.

8.3 Research Questions

The research questions are shown and answered here:

• Is SHOC a good benchmark suite to base a benchmark suite for auto-tuners for?
As shown in the results, SHOC seems to be a good fit for basing a benchmark suite for auto-
tuners of. This is shown by that SHOC is based on a variation of HPC benchmarks, some

74

of the benchmarks are created for multi-GPU benchmarking and that the benchmark suite is
known meaning the quality might be good.

• Will this benchmark suite have enough GPU focus?
All the benchmarks implemented to be tuned with BAT are having a GPU focus for the
benchmarks.

• Will it work with different types of auto-tuners?
The benchmarks in BAT was implemented to work in the auto-tuners OpenTuner, Kernel
Tuner, CLTune and KTT. These auto-tuners are different in the way that they represent both
full program and host-code tuning.

• Will the optimal values for the implemented parameters differ for different systems?
As discussed in the previous section, the optimal values differ for different systems.

8.4 Auto-Tuner Evaluation

In this subsection, I will provide an evaluation of each of the auto-tuners used to implement the
benchmarks for BAT. The evaluation will contain both positive and negative feedback for the auto-
tuners, what tuning techniques that are available to use in the auto-tuners and how easy it is to
set it up.

8.4.1 CLTune

At the start CLTune did not work out of the box, when tuning CUDA kernels. This was fixed in it’s
open-source Git repository. CLTune does not contain a way of using correctness verification of the
kernels for both single- and double precision at the same time. This lead to only having correctness
verification when developing the benchmarks. The tuned kernels was not able to include templates,
which lead to some work required to convert the benchmarks from SHOC. CLTune does not include
the possibility to tune multiple kernels at the same time. It is not possible to use multi-GPU while
tuning either, which is something that could have been practical for testing scaling of benchmarks.

There was no possibility to use texture memory with a CLTune kernel tuning due to that
the host-code needed to create the texture memory mapped to the input data. This could be
implemented into KTT in the future, but might require some work. Therefore the parameter
TEXTURE_MEMORY was not able to tune in CLTune.

CLTune contained different tuning techniques that could be used, but also worked well by ad-
justing the search space when changing tuning technique. The user friendly command-line interface
indicates to the user how far the auto-tuner is in the tuning process, which can be good and nice
to have. The tuning of the kernels also worked relatively fast.

8.4.2 KTT

As KTT is based on CLTune, it lacks some of the same functionality. However KTT contained a
tuning manipulator class to be able to tune kernels for them selves. This turned out to be a good
feature, especially for the sort benchmark implementation where there are multiple kernels that
depends on the results of each other. At the start KTT did not work out of the box either, when
tuning CUDA kernels. This was also fixed in it’s open-source Git repository.

75

Even though there exists a possibility to use different tuning techniques, there seems to be an
issue about using them. This is because KTT will just run the complete set of different parameter
configurations.

As for CLTune, when a reference kernel is used for a correctness verification, the reference
checking cannot use different precisions for the input data. This makes it tedious to test imple-
mentations with multiple precisions. The way used in this thesis was to hardcode the precision and
test it manually for both floating point precisions.

There is no way to limit some of the auto tuner techniques such as MCMC and random before
iterating over all different possibilities. This makes the different techniques for KTT not that usable,
and just a brute force technique, but with a different order of the tested parameter configurations.

As for CLTune, it was not possible to use texture memory with a KTT kernel. Therefore
parameter TEXTURE_MEMORY was not able to tune in KTT. Shared memory had the same issue as
texture memory and was therefore also disabled for the tuning.

8.4.3 Kernel Tuner

For Kernel Tuner both full program and GPU kernel was possible to use for tuning the kernels.
However for the full program, it took longer time to perform the tuning. The documentation for
Kernel Tuner was good and explanatory for the different parts of the auto-tuner. As for KTT and
CLTune, there was no possibility to perform the tuning on multiple GPUs for Kernel Tuner either.

8.4.4 OpenTuner

OpenTuner had the possibility to tune kernels or other programs created in different programming
languages. However the documentation of OpenTuner was not good, for example to retrieve a
list of the different tuning techniques implemented, it had to be printed out from the terminal.
OpenTuner does support for different commands executed for compiling and for running, leading
to parameters used in the commands itself. This also included the way to use multiple GPUs.
Despite OpenTuner including many different tuning techniques, there was no technique for using
brute force.

76

9 Conclusion and Future Work

This thesis presented the creation of the benchmark suite for auto-tuners named BAT (Benchmark
suite for Auto-Tuners). BAT is a benchmark suite for auto-tuners for GPU and HPC oriented
programs created in CUDA developed jointly with Ingunn Sund where I worked on developing code
for the multi-GPU side for the DGX2 and an IBM Power9 system with two GPUs, whereas Sund
worked on the 20-GPU Supermicro system and a 4-GPU IBM Power9 System. This benchmark
suite was proposed as a solution since there are currently no other standard benchmark suites for
auto-tuners that we are aware of.

A varied selection of benchmarks of different degree of complexity and scope were included
in our BAT framework. Some of the benchmarks were able to run on multi-GPU systems and
distribute the the work among multiple nodes. The benchmark suite has support for benchmarking
different types of auto-tuners. If the benchmarked auto-tuner does not support a specific type of
parameter, or only support tuning of kernels, the benchmark was provided with different versions
so comprehend this issue. BAT provides a well structured project containing a good user friendly
documentation for how to setup and use the benchmark suite. In the documentation it show how
to easily add a new auto-tuner for benchmarking or extracting benchmarks out of the BAT source
code. There are also a command-line interface for running the benchmarks which comes with
different input arguments both for advanced and novice users.

The benchmarks included as examples in the benchmark suite were well tested for different types
of systems using different types of auto-tuners. BAT thus provided an answer to the research ques-
tion, Is SHOC a good benchmark suite to base a benchmark suite for auto-tuners for? by presenting
a both working and good benchmark suite for auto-tuners based on the SHOC benchmarks.

9.1 Future Work

In the future BAT could be extended to compare different auto-tuners by assigning a scoring for
each of them while benchmarking. This was not a goal for this thesis due to being a large task
to implement with the need of researching a scoring system for the auto-tuners and finding the
best way to do this. However it is a good way of continuing the work started in this project and
with the current command-line interface this could be added very nicely to the already existing
benchmarking.

The results obtained by running the benchmarks by BAT should be further analyzed. And
other results could be collected as well. It was not time for this in the time frame of this thesis.

In a future version of BAT, OpenCL kernels should be included in the benchmarks, making the
benchmarks available to many more types of architectures. Such as AMD GPUs and Intel Core
processors.

A tip for a feature for auto-tuners that could be implemented are distributing the auto-tuning
process on multiple GPUs for parallel tuning of programs.

77

References

[1] I. M. Liseter and A. C. Elster, “Grafikkprosessor.” https://snl.no/grafikkprosessor,
September 2019. [Accessed Dec. 10, 2019].

[2] NVIDIA, “Programming Guide :: CUDA Toolkit Documentation.” https://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html, June 2020. [Accessed Jun. 13, 2020].

[3] TechPowerUp, “NVIDIA GeForce GTX 980.” https://www.techpowerup.com/gpu-specs/

geforce-gtx-980.c2621. [Accessed Dec. 11, 2019].

[4] N. Corporation, “Maxwell Architecture — NVIDIA Developer.” https://developer.nvidia

.com/maxwell-compute-architecture. [Accessed Dec. 16, 2019].

[5] R. Nohria, G. Santos (IBM Corporation), “IBM Power System AC922: Technical Overview
and Introduction.” https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf, July
2018. [Accessed Nov. 5, 2019].

[6] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “NVIDIA Tensor Core
Programmability, Performance & Precision.” https://arxiv.org/pdf/1803.04014.pdf,
March 2018. [Accessed Nov. 5, 2019].

[7] NVIDIA Corporation, “TITAN RTX Ultimate PC Graphics Card with Turing — NVIDIA.”
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/, 2019.
[Accessed Dec. 10, 2019].

[8] NVIDIA Corporation, “NVIDIA TURING GPU ARCHITECTURE.” https://www.nvidia

.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-

architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018. [Accessed Dec. 20,
2019].

[9] NVIDIA Corporation, “T4 Tensor Core Datasheet.” https://www.nvidia.com/content/d

am/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf,
2019. [Accessed Apr. 14, 2020].

[10] IBM Corporation, “IBM Power System AC922.” https://www.ibm.com/downloads/cas/6P

RDKRJ0, 2019. [Accessed Nov. 5, 2019].

[11] IBM Corporation, “IBM Power System AC922 - Details.” https://www.ibm.com/us-en/ma

rketplace/power-systems-ac922/details, 2018. [Accessed Nov. 5, 2019].

[12] NVIDIA Corporation, “NVIDIA DGX-2 Datasheet.” https://www.nvidia.com/content/d

am/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web

-new.pdf, July 2019. [Accessed Nov. 5, 2019].

[13] A. Ishii, D. Foley, E. Anderson, B. Dally, G. Dearth, L. Dennison, M. Hummel, and J. Schafer,
“NVSWITCH AND DGX-2: NVLINK-SWITCHING CHIP AND SCALE-UP COMPUTE
SERVER.” https://www.hotchips.org/hc30/2conf/2.01 Nvidia NVswitch HotChips201

8 DGX2NVS Final.pdf, 2018. [Accessed Nov. 11, 2019].

[14] MPI Forum, “MPI Forum.” https://www.mpi-forum.org/, 2019. [Accessed Dec. 12, 2019].

78

https://snl.no/grafikkprosessor
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://developer.nvidia.com/maxwell-compute-architecture
https://developer.nvidia.com/maxwell-compute-architecture
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://arxiv.org/pdf/1803.04014.pdf
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.ibm.com/downloads/cas/6PRDKRJ0
https://www.ibm.com/downloads/cas/6PRDKRJ0
https://www.ibm.com/us-en/marketplace/power-systems-ac922/details
https://www.ibm.com/us-en/marketplace/power-systems-ac922/details
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://www.mpi-forum.org/

[15] The Open MPI Project, “Open MPI: Open Source High Performance Computing.” https:

//www.open-mpi.org/, 2019. [Accessed Dec. 12, 2019].

[16] NVIDIA Corporation, “IBM Spectrum MPI — NVIDIA Developer.” https://developer.nv

idia.com/ibm-spectrum-mpi, 2019. [Accessed Dec. 5, 2019].

[17] MPICH, “MPICH — High-Performance Portable MPI.” https://www.mpich.org/, 2019.
[Accessed Dec. 12, 2019].

[18] C. Ramseyer, “PCI Express 4.0 Brings 16 GT/s And At Least 300 Watts At The Slot.”
https://www.tomshardware.com/news/pcie-4.0-power-speed-express,32525.html,
August 2016. [Accessed Dec. 10, 2019].

[19] HowStuffWorks, “How PCI Express Works — HowStuffWorks.” https://computer.howstuf

fworks.com/pci-express.htm, 2019. [Accessed Dec. 16, 2019].

[20] N. Corporation, “NVLink High-Speed GPU Interconnect — NVIDIA Quadro.” https://ww

w.nvidia.com/en-us/design-visualization/nvlink-bridges, 2019. [Accessed Dec. 10,
2019].

[21] M. N. Farooqi, T. Nguyen, W. Zhang, A. S. Almgren, J. Shalf, and D. Unat, “Asynchronous
AMR on Multi-GPUs.” https://link.springer.com/chapter/10.1007/978-3-030-3435

6-9 11, 2019. [Accessed Dec. 15, 2019].

[22] NVIDIA Corporation, “NVIDIA NVSwitch: The World’s Highest-Bandwidth On-Node
Switch.” https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf,
May 2018. [Accessed Nov. 7, 2019].

[23] G. Dearth and V. Venkataraman, “S8688: INSIDE DGX-2.” http://on-demand.gputechcon

f.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-th

e-gpu.pdf, March 2018. [Accessed Nov. 12, 2019].

[24] Docker Inc., “Docker overview — Docker Documentation.” https://docs.docker.com/get-

started/overview/, 2020. [Accessed Mar. 15, 2020].

[25] Docker Inc., “DockerWhat is a Container? — App Containerization — Docker.” https:

//www.docker.com/resources/what-container, 2020. [Accessed Mar. 15, 2020].

[26] R. Olson, J. Calmels, F. Abecassis, and P. Rogers, “NVIDIA Docker: GPU Server Application
Deployment Made Easy — NVIDIA Developer Blog.” https://developer.nvidia.com/blo

g/nvidia-docker-gpu-server-application-deployment-made-easy/, 2020. [Accessed
Mar. 15, 2020].

[27] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and
J. S. Vetter, “The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite.” https:

//www.researchgate.net/publication/220938804 The Scalable HeterOgeneous Compu

ting SHOC benchmark suite, 2010. [Accessed Nov. 12, 2019].

[28] A. Danalis, G. M. C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and
J. S. Vetter, “GitHub - The SHOC Benchmark Suite - Wiki.” https://github.com/vetter/

shoc/wiki, 2014. [Accessed Nov. 12, 2019].

79

https://www.open-mpi.org/
https://www.open-mpi.org/
https://developer.nvidia.com/ibm-spectrum-mpi
https://developer.nvidia.com/ibm-spectrum-mpi
https://www.mpich.org/
https://www.tomshardware.com/news/pcie-4.0-power-speed-express,32525.html
https://computer.howstuffworks.com/pci-express.htm
https://computer.howstuffworks.com/pci-express.htm
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges
https://link.springer.com/chapter/10.1007/978-3-030-34356-9_11
https://link.springer.com/chapter/10.1007/978-3-030-34356-9_11
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://developer.nvidia.com/blog/nvidia-docker-gpu-server-application-deployment-made-easy/
https://developer.nvidia.com/blog/nvidia-docker-gpu-server-application-deployment-made-easy/
https://www.researchgate.net/publication/220938804_The_Scalable_HeterOgeneous_Computing_SHOC_benchmark_suite
https://www.researchgate.net/publication/220938804_The_Scalable_HeterOgeneous_Computing_SHOC_benchmark_suite
https://www.researchgate.net/publication/220938804_The_Scalable_HeterOgeneous_Computing_SHOC_benchmark_suite
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki

[29] Programiz, “Programiz: Learn to Code for Free.” https://www.programiz.com/dsa/radix-

sort, 2020. [Accessed Apr. 15, 2020].

[30] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and
J. S. Vetter, “GitHub - The SHOC Benchmark Suite.” https://github.com/vetter/shoc,
2014. [Accessed Nov. 12, 2019].

[31] J. McCalpin, “Memory bandwidth and machine balance in high performance computers,”
IEEE Technical Committee on Computer Architecture Newsletter, pp. 19–25, 12 1995.

[32] G. Barlas, “Chapter 7 - the thrust template library,” in Multicore and GPU Programming
(G. Barlas, ed.), pp. 527 – 573, Boston: Morgan Kaufmann, 2015.

[33] J. Adams, “Bonding energy models,” in Encyclopedia of Materials: Science and Technology
(K. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and
P. Veyssière, eds.), pp. 763 – 767, Oxford: Elsevier, 2001.

[34] F. Petrovič, D. Střelák, J. Hozzová, J. Ol’ha, R. Trembecký, S. Benkner, and J. Filipovič, “A
benchmark set of highly-efficient cuda and opencl kernels and its dynamic autotuning with
kernel tuning toolkit,” Future Generation Computer Systems, vol. 108, p. 161–177, Jul 2020.

[35] B. van Werkhoven, “Kernel tuner: A search-optimizing gpu code auto-tuner,” Future Gener-
ation Computer Systems, vol. 90, pp. 347–358, 2019.

[36] B. van Werkhoven, “GitHub - Kernel Tuner.” https://github.com/benvanwerkhoven/ker

nel tuner, 2019. [Accessed May. 20, 2020].

[37] C. Nugteren and V. Codreanu, “CLTune: A Generic Auto-Tuner for OpenCL Kernels,” in
2015 IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip,
pp. 195–202, 2015.

[38] C. Nugteren, “CNugteren/CLCudaAPI: A portable high-level API with CUDA or OpenCL
back-end.” https://github.com/CNugteren/CLCudaAPI, 2015. [Accessed Mar. 27, 2020].

[39] F. Petrovič, “Fillo7/KTT: Kernel Tuning Toolkit.” https://github.com/Fillo7/KTT, 2017.
[Accessed Mar. 28, 2020].

[40] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and
S. Amarasinghe, “Opentuner: An extensible framework for program autotuning,” in Proceed-
ings of the 23rd International Conference on Parallel Architectures and Compilation, PACT
’14, (New York, NY, USA), p. 303–316, Association for Computing Machinery, 2014.

[41] A. Sclocco, “isazi/TuneBench: Simple tunable OpenCL kernels for many-core accelerators..”
https://github.com/isazi/TuneBench, 2016. [Accessed Mar. 29, 2020].

[42] A. Rasch and S. Gorlatch, “ATF: A generic directive-based auto-tuning framework,” Con-
currency and Computation: Practice and Experience, vol. 31, no. 5, p. e4423, 2019. e4423
cpe.4423.

[43] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron, “Rodinia: A
benchmark suite for heterogeneous computing,” in 2009 IEEE International Symposium on
Workload Characterization (IISWC), pp. 44–54, 2009.

80

https://www.programiz.com/dsa/radix-sort
https://www.programiz.com/dsa/radix-sort
https://github.com/vetter/shoc
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/CNugteren/CLCudaAPI
https://github.com/Fillo7/KTT
https://github.com/isazi/TuneBench

[44] S. C. Foundation, “How to mix C and C++, C++ FAQ.” https://isocpp.org/wiki/faq/

mixing-c-and-cpp, 2020. [Accessed Jun. 5, 2020].

[45] Inspur Systems, “AGX-5 - Inspur Systems.” https://www.inspursystems.com/product/ag

x-5/, 2018. [Accessed Dec. 15, 2019].

[46] P. Alcorn, “Inside The World’s Largest GPU: Nvidia Details NVSwitch.” https://www.toms

hardware.com/news/nvidia-dgx-2-worlds-largest-gpu-nvswitch,37661.html, August
2018. [Accessed Dec. 20, 2019].

81

https://isocpp.org/wiki/faq/mixing-c-and-cpp
https://isocpp.org/wiki/faq/mixing-c-and-cpp
https://www.inspursystems.com/product/agx-5/
https://www.inspursystems.com/product/agx-5/
https://www.tomshardware.com/news/nvidia-dgx-2-worlds-largest-gpu-nvswitch,37661.html
https://www.tomshardware.com/news/nvidia-dgx-2-worlds-largest-gpu-nvswitch,37661.html

A Parameter Research

This section contains tables with several parameters used in the examples in auto-tuners described
in this thesis. The parameters from Kernel Tuner, CLTune and KTT were found in their GitHub
repositories: github.com/benvanwerkhoven/kernel tuner, github.com/CNugteren/CLTune and
github.com/Fillo7/KTT respectivly. The parameters from OpenTuner were found in the paper
describing the framework: OpenTuner: An Extensible Framework for Program Autotuning by J.
Ansel et al. [40]. This appendix was done in collaboration with Ingunn Sund.

A.1 Kernel Tuner

Table 28: Parameters used in Convolution example in Kernel Tuner.

Parameter Search Space Explanation if Provided

filter height [i for i in range(3,35,2)]

filter width [i for i in range(3,35,2)]

block size x [16*i for i in range(1,9)]

block size y [2**i for i in range(6)]

tile size x [i for i in range(1,9)]

tile size y [i for i in range(1,9)]

use padding [0,1] Padding in shared memory

read only [0,1] Read-only cache

Table 29: Parameters used in Convolution Streams example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [16*i for i in range(1,17)]

block size y [2**i for i in range(5)]

tile size x [2**i for i in range(4)]

tile size y [2**i for i in range(4)]

num streams [2**i for i in range(6)]

Table 30: Parameters used in Expdist example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [2**i for i in range(5,10)]

block size y [2**i for i in range(6)]

tile size x [2**i for i in range(4)]

tile size y [2**i for i in range(4)]

use shared mem [0, 1]

82

https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/CNugteren/CLTune
https://github.com/Fillo7/KTT

Table 31: Parameters used in Matrix Multiplication example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [16*2**i for i in range(3)]

block size y [2**i for i in range(6)]

tile size x [2**i for i in range(4)]

tile size y [2**i for i in range(4)]

Table 32: Parameters used in Point-in-Polygon example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [32*i for i in range(1,32)] Block size is a multiple of 32

tile size [1] + [2*i for i in range(1,11)]

between method [0, 1, 2, 3]

use

precomputated

slopes

[0, 1]

use method [0, 1]

Table 33: Parameters used in Reduction example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [2**i for i in range(5,11)]

use shuffle [0, 1] Shuffle instructions (CUDA only)

vector [2**i for i in range(3)] Vector type

num blocks [2**i for i in range(5,16)] The number of thread blocks the ker-
nel is executed with

Table 34: Parameters used in SpMV example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [32*i for i in range(1,33)]

threads per row [1, 32]

read only [0, 1]

Table 35: Parameters used in Stencil example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [32*i for i in range(1,9)]

block size y [2**i for i in range(6)]

83

Table 36: Parameters used in Texture example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [16, 32]

block size y [16, 32]

oldiw [1024]

oldih [1024]

newiw [1024]

newih [1024]

Table 37: Parameters used in Vector Add example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [128+64*i for i in range(15)]

Table 38: Parameters used in Zero Mean Filter example in Kernel Tuner.

Parameter Search Space Explanation if Provided

block size x [32*i for i in range(1,9)]

block size y [2**i for i in range(6)]

A.2 CLTune

Table 39: Parameters used in Simple example in CLTune.

Parameter Search Space Explanation if Provided

GROUP SIZE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048]

Table 40: Parameters used in Convolution Simple example in CLTune.

Parameter Search Space Explanation if Provided

TBX [8, 16, 32] Work group size dim x (threads in
block)

TBY [8, 16, 32]

WPTX [1, 2, 4] Work Per Thread dim X

WPTY [1, 2, 4]

VECTOR [1, 2, 4]

84

Table 41: Parameters used in Convolution example in CLTune.

Parameter Search Space Explanation if Provided

TBX [8, 16, 32, 64] Work group size dim x (threads in
block)

TBY [8, 16, 32, 64]

LOCAL [0, 1, 2]

WPTX [1, 2, 4, 8] Work Per Thread dim X

WPTY [1, 2, 4, 8]

VECTOR [1, 2, 4]

UNROLL FACTOR [1, FS] FS = Filter size

PADDING [0, 1]

TBX XL [8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,32,33,34,35,36,
37,38,39,40,41,42,64,65,66,67,68,69,
70,71,72,73,74]

TBY XL [8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,32,33,34,35,36,
37,38,39,40,41,42,64,65,66,67,68,69,
70,71,72,73,74]

Table 42: Parameters used in GEMM example in CLTune.

Parameter Search Space Explanation if Provided

MWG [16, 32, 64, 128] Tile size dim M

NWG [16, 32, 64, 128] Tile size dim N

KWG [16, 32] Tile size dim K

MDIMC [8, 16, 32] Threads per work group in M dim

NDIMC [8, 16, 32] Threads per work group in N dim

MDIMA [8, 16, 32] Tile dimension

NDIMB [8, 16, 32] Tile dimension

KWI [2, 8] Unroll loop factor

VWM [1, 2, 4, 8] Vector width of matrix

VWN [1, 2, 4, 8] Vector width of matrix

STRM [0, 1] Strided access M dim

STRN [0, 1] Strided access N dim

SA [0, 1] Shared memory matrix A

SB [0, 1] Shared memory matrix B

PRECISION [32, 64] Precision for data types

85

A.3 KTT

Table 43: Parameters used in Conv 3D example in KTT.

Parameter Search Space Explanation if Provided

ALGORITHM [0, 1, 2] 0: Reference kernel,
1: Blocked kernel,
2: Sliding plane kernel

TBX [8, 16, 32, 64]

TBY [8, 16, 32, 64]

TBZ [1, 2, 4, 8, 16, 32]

LOCAL [0, 1, 2]

WPTX [1, 2, 4, 8]

WPTY [1, 2, 4, 8]

WPTZ [1, 2, 4, 8]

VECTOR [1, 2, 4]

ATOMICS [0, 1]

UNROLL FACTOR [1, FS]

CONSTANT COEFF [0, 1]

CACHE WORK TO REGS [0, 1]

REVERSE LOOP ORDER [0, 1]

REVERSE LOOP ORDER2 [0, 1]

REVERSE LOOP ORDER3 [0, 1]

PADDING [0, 1]

Z ITERATIONS [4, 8, 16, 32]

TBX XL [1, 2, 3, 4, 8, 9, 10, 16, 17, 18, 32,
33, 34, 64, 65, 66]

Helper parameter for number
of threads if LOCAL=2

TBY XL [1, 2, 3, 4, 8, 9, 10, 16, 17, 18, 32,
33, 34, 64, 65, 66]

Helper parameter for number
of threads if LOCAL=2

TBZ XL [1, 2, 3, 4, 8, 9, 10, 16, 17, 18, 32,
33, 34, 64, 65, 66]

Helper parameter for number
of threads if LOCAL=2

86

Table 44: Parameters used in Coulomb Sum 2D example in KTT.

Parameter Search Space Explanation if Provided

INNER UNROLL FACTOR [0, 1, 2, 4, 8, 16, 32]

USE CONSTANT MEMORY [0, 1]

VECTOR TYPE [1, 2, 4, 8]

USE SOA [0, 1, 2]

OUTER UNROLL FACTOR [1, 2, 4, 8]

WORK GROUP SIZE X [4, 8, 16, 32]

WORK GROUP SIZE Y [1, 2, 4, 8, 16, 32]

Table 45: Parameters used in BICG example in KTT.

Parameter Search Space Explanation if Provided

FUSED [0, 1, 2]

BICG BATCH [1, 2, 4, 8, 16, 32, 64]

USE SHARED MATRIX [0, 1]

USE SHARED VECTOR 1 [0, 1]

USE SHARED VECTOR 2 [0, 1]

USE SHARED REDUCTION

1

[0, 1]

USE SHARED REDUCTION

2

[0, 1]

ATOMICS [0, 1]

UNROLL BICG STEP [0, 1]

ROWS PROCESSED [128, 256, 512, 1024]

TILE [16, 32, 64]

Table 46: Parameters used in Transpose example in KTT.

Parameter Search Space Explanation if Provided

CR [0, 1]

LOCAL MEM [0, 1]

PADD LOCAL [0, 1]

WORK GROUP SIZE X [1, 2, 4, 8, 16, 32, 64]

WORK GROUP SIZE Y [1, 2, 4, 8, 16, 32, 64]

TILE SIZE X [1, 2, 4, 8, 16, 32, 64]

TILE SIZE Y [1, 2, 4, 8, 16, 32, 64]

DIAGONAL MAP [0, 1]

87

A.4 OpenTuner

Table 47: The top 10 most important compiler flags used for FFT and MM benchmarks in
OpenTuner.

FFT Matrix Multiply

-fno-tree-vectorize -fno-exceptions

-funroll-loops -fwrapv

-fno-jump-tables -funsafe-math-optimizations

-fno-inline -param=large-stack-frame=65

-fno-ipa-pure-const -fschedule-insns2

-fno-tree-cselim -funroll-loops

-fno-rerun-cse-after-loop -fno-ivopts

-fno-tree-forwprop -param=sccvn-max-scc-size=2995

-fno-tree-tail-merge -param=max-sched-extendregions-iters=2

-fno-cprop-registers -param=slp-max-insns-inbb=1786

Table 48: The top 10 most important compiler flags used for RT and TSP GA benchmarks in
OpenTuner.

Ray Tracer TSP GA

-funsafe-math-optimizations -freorder-blocks-and-partition

-ffinite-math-only -funroll-all-loops

-frename-registers -param=omega-max-geqs=64

-fwhole-program -param=predictable-branch-outcome=2

-param=selsched-insns-to-rename=2 -param=min-insn-to-prefetch-ratio=36

-fno-tree-dominator-opts -fno-rename-registers

-param=min-crossjump-insns=17 -param=max-unswitch-insns=200

-param=max-crossjump-edges=31 -param=omega-max-keys=2000

-param=sched-state-edge-probcutoff=17 -param=max-delay-slot-live-search=83

-param=sms-loop-average-countthreshold=4 -param=prefetch-latency=50

88

 README.md

A standardized benchmark suite for auto-tuners

BAT is a standardized benchmark suite for auto-tuners that is based on benchmarks from SHOC and contains benchmarks for CUDA
programs. The benchmarks are for both whole programs and kernel-code. BAT will save all your JSON and CSV results to an own results
directory after auto-tuning is completed. Then it will parse specified files and print out the best parameters found by the auto-tuner. The
parameters and other benchmarking information will be printed out prettified in the terminal.

This benchmark suite will be useful for you if you're making your own auto-tuner and want to use the benchmarks for testing or would like
to compare your auto-tuner to other known auto-tuners. BAT can also be used to check how a parameter's value changes for different
architectures.

Parameters

Parameters and search space for the algorithms can be seen in the src directory.

Prerequisites

Python 3 (Or Docker, see section Within a Docker container)

Set up auto-tuner benchmarks

Without using Docker, the following steps are required to download and install the auto-tuners:

OpenTuner
Can be downloaded along other needed dependencies by calling pip3 install -r requirements.txt from the
tuning_examples/opentuner directory.

Kernel Tuner
Can be downloaded along other needed dependencies by calling pip3 install -r requirements.txt from the
tuning_examples/kernel_tuner directory.

CLTune
Need to set the environment variable KTT_PATH=/path/to/KTT for using the benchmarks.

KTT
Need to set the environment variable CLTUNE_PATH=/path/to/CLTune for using the benchmarks.

B Repository Readme

This appendix includes documentation for the project written in collaboration with Ingunn Sund.

Running benchmarks

Run all benchmark for all auto-tuners
python3 main.py

Run the `sort` benchmark for all auto-tuners
python3 main.py -b sort

Run all benchmarks for auto-tuner `OpenTuner`
python3 main.py -a opentuner

Run benchmark `scan` for auto-tuner `CLTune`
python3 main.py -b scan -a cltune

Command-line arguments

--benchmark [name] , -b [name]

Default: none

Benchmark to run. Example: sort . If no benchmark is selected, all benchmarks are ran for selected auto-tuner(s).

--auto-tuner [name] , -a [name]

Default: none

Auto-tuner to run benchmarks for. Example: ktt . If no auto-tuner is selected, all auto-tuners are selected for benchmarking.

--verbose , -v

Default: false

If all stdout and stderr should be printed out during building of the benchmark(s). By default it does not print out the information
during the building.

--size [number] , -s [number]

Default: 1

Problem size for the data in the benchmarks. By default it uses a problem size of 1 . This is up to the specific auto-tuner to handle.

--technique [name] , -t [name]

Default: brute_force

Tuning technique to use for benchmarking. If no technique is specified, the brute force technique is selected. This is up to the specific
auto-tuner to handle.

Add your own auto-tuner

It is easy to add new auto-tuner implementations for the benchmarks, just follow these steps:

1. Implement the benchmark(s) you want with your auto-tuner. If your auto-tuner tunes a whole program, the benchmarks can be found
in src/programs. However if you have an auto-tuner that tunes kernels, the benchmarks can be found in src/kernels, and you have to
generate the input data. Generating of input data can be done like in the KTT examples found tuning_examples/ktt.

2. Store your auto-tuner implementation of a benchmark inside a auto-tuner subdirectory in tuning_examples. The path to the
benchmark implementation should look similar to ./tuning_examples/kernel_tuner/sort/ .

3. Create a config.json file in the same directory as the auto-tuner with content similar to this:

{
 "build": [
 "make clean",
 "make"
],
 "run": "./sort",
 "results": [
 "best-sort-results.json"
]
}

Content of config.json

build : A list of commands that will be ran before the run command. Note, it does not work correctly with && between commands.
This is because of a limitation in the package subprocess to run the commands in Python. A solution is therefore to split them in a list.
run : The command to run the auto-tuning benchmark.
results : A list of result files that contains the best parameters found in the auto-tuner benchmark. These will be printed out by BAT

after the auto-tuning is completed.

Within a Docker container

Building

Here are some examples of how to build the different auto-tuner Docker images:

Build OpenTuner Dockerfile
$ docker build -t bat-opentuner -f docker/opentuner.Dockerfile .

Build Kernel Tuner Dockerfile
$ docker build -t bat-kernel_tuner -f docker/kernel_tuner.Dockerfile .

Build CLTune Dockerfile
$ docker build -t bat-cltune -f docker/cltune.Dockerfile .

Build KTT Dockerfile
$ docker build -t bat-ktt -f docker/ktt.Dockerfile .

Running

Here are some examples of how to run the different auto-tuner Docker containers:

Run the KTT container
$ docker run -ti --gpus all bat-ktt

Example of running container detatched
$ docker run -d -ti --gpus all bat-ktt

Open a shell into a detatched container
$ docker exec -it <container-id> sh

After this the commands shown in the `Running benchmarks` section can be used
Example:
$ main.py -b sort -a ktt -t mcmc -s 4

C System Information

The system information in this appendix is collected in collaboration with Ingunn Sund and some
parts are from my specialization project.

C.1 NVIDIA GeForce GTX 980 Based System

C.1.1 GPU

ingunsu@hpclab04:∼$ nvidia-smi topo -m

2 GPU0 CPU Affinity NUMA Affinity

GPU0 X 0-7 N/A

4

Legend:

6

X = Self

8 SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA

nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host

Bridges within a NUMA node

10 PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the

CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe

Host Bridge)

12 PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks

Listing 53: Topology for GTX 980 system

1 ingunsu@hpclab04:∼$ nvidia-smi nvlink --status -i 0

ingunsu@hpclab04:∼$

Listing 54: NVLink status for GTX 980 system. No results because the GPU does not have the
possibility for NVLink connections

ingunsu@hpclab04:∼$ nvidia-smi

2 Sat Oct 10 16:18:39 2020

+---+

4 | NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |

|-------------------------------+----------------------+----------------------+

6 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

8 | | | MIG M. |

|===============================+======================+======================|

10 | 0 GeForce GTX 980 On | 00000000:01:00.0 Off | N/A |

| 27% 30C P8 13W / 180W | 154MiB / 4041 MiB | 0% Default |

12 | | | N/A |

+-------------------------------+----------------------+----------------------+

Listing 55: Information about the GTX 980 GPU when running the nvidia-smi command

92

C.1.2 CPU

1 ingunsu@hpclab04:∼$ lscpu

Architecture: x86_64

3 CPU op-mode(s): 32-bit , 64-bit

Byte Order: Little Endian

5 CPU(s): 8

On-line CPU(s) list: 0-7

7 Thread(s) per core: 2

Core(s) per socket: 4

9 Socket(s): 1

NUMA node(s): 1

11 Vendor ID: GenuineIntel

CPU family: 6

13 Model: 94

Model name: Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz

15 Stepping: 3

CPU MHz: 800.251

17 CPU max MHz: 4200.0000

CPU min MHz: 800.0000

19 BogoMIPS: 7999.96

Virtualization: VT-x

21 L1d cache: 32K

L1i cache: 32K

23 L2 cache: 256K

L3 cache: 8192K

25 NUMA node0 CPU(s): 0-7

Listing 56: Information about the CPU in the GTX 980 based system when running the lscpu
command

C.2 NVIDIA Titan RTX Based System

C.2.1 GPU

1 ingunsu@hpclab15:∼$ nvidia-smi topo -m

GPU0 CPU Affinity NUMA Affinity

3 GPU0 X 0-15 N/A

5 Legend:

7 X = Self

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA

nodes (e.g., QPI/UPI)

9 NODE = Connection traversing PCIe as well as the interconnect between PCIe Host

Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the

CPU)

11 PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe

Host Bridge)

PIX = Connection traversing at most a single PCIe bridge

13 NV# = Connection traversing a bonded set of # NVLinks

Listing 57: Topology for Titan RTX system

93

1 ingunsu@hpclab15:∼$ nvidia-smi nvlink --status -i 0

GPU 0: TITAN RTX (UUID: GPU-8583 ed85-a5e2-eeb3-178a-5921 ab72dcf3)

3 Link 0: <inactive >

Link 1: <inactive >

Listing 58: NVLink status for Titan RTX system. The system has a possibility for two NVLink
connections, but they are not in use on this specific computer.

1 ingunsu@hpclab15:∼$ nvidia-smi

Sun Oct 11 19:44:13 2020

3 +---+

| NVIDIA-SMI 455.23.05 Driver Version: 455.23.05 CUDA Version: 11.1 |

5 |-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

7 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

9 |===============================+======================+======================|

| 0 TITAN RTX On | 00000000:01:00.0 Off | N/A |

11 | 41% 27C P8 15W / 280W | 20MiB / 24220 MiB | 0% Default |

| | | N/A |

13 +-------------------------------+----------------------+----------------------+

Listing 59: Information about the Titan RTX GPU when running the nvidia-smi command

C.2.2 CPU

ingunsu@hpclab15:∼$ lscpu

2 Architecture: x86_64

CPU op-mode(s): 32-bit , 64-bit

4 Byte Order: Little Endian

CPU(s): 16

6 On-line CPU(s) list: 0-15

Thread(s) per core: 2

8 Core(s) per socket: 8

Socket(s): 1

10 NUMA node(s): 1

Vendor ID: GenuineIntel

12 CPU family: 6

Model: 158

14 Model name: Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz

Stepping: 13

16 CPU MHz: 799.828

CPU max MHz: 5000.0000

18 CPU min MHz: 800.0000

BogoMIPS: 7200.00

20 Virtualization: VT-x

L1d cache: 32K

22 L1i cache: 32K

L2 cache: 256K

24 L3 cache: 16384K

NUMA node0 CPU(s): 0-15

Listing 60: Information about the CPU in the RTX Titan based system when running the lscpu
command

94

C.3 NVIDIA Tesla T4 Based System

1 selbu:∼$ nvidia-smi nvlink --status -i 0

selbu:∼$

Listing 61: NVLink status for part of NVIDIA Tesla T4 system. No results because the GPU
does not have the possibility for NVLink connections

selbu:∼$ nvidia-smi

2 Sun Oct 11 23:33:42 2020

+---+

4 | NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |

|-------------------------------+----------------------+----------------------+

6 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

8 |===============================+======================+======================|

| 0 Tesla T4 Off | 00000000:1A:00.0 Off | 0 |

10 | N/A 36C P8 10W / 70W | 0MiB / 15109 MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

12 ...

Listing 62: Information about the first GPU when running the nvidia-smi command on the
NVIDIA Tesla T4 system

C.4 DGX-2

ingunsu@DGX- 2 :∼$ nv id ia - smi topo -m
2 GPU0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 CPU A f f i n i t y
GPU0 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71

4 GPU1 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71
GPU2 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71

6 GPU3 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71
GPU4 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71

8 GPU5 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71
GPU6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71

10 GPU7 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 0 - 23 ,48 - 71
GPU8 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 NV6 24 - 47 ,72 - 95

12 GPU9 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 NV6 24 - 47 ,72 - 95
GPU10 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 NV6 24 - 47 ,72 - 95

14 GPU11 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 NV6 24 - 47 ,72 - 95
GPU12 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 NV6 24 - 47 ,72 - 95

16 GPU13 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 NV6 24 - 47 ,72 - 95
GPU14 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X NV6 24 - 47 ,72 - 95

18 GPU15 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 NV6 X 24 - 47 ,72 - 95

20 Legend :

22 X = Se l f
SYS = Connection t r a v e r s i n g PCIe as we l l as the SMP in t e r connec t between NUMA

nodes (e . g . , QPI/UPI)
24 NODE = Connection t r a v e r s i n g PCIe as we l l as the i n t e r connec t between PCIe Host

Br idges with in a NUMA node
PHB = Connection t r a v e r s i n g PCIe as we l l as a PCIe Host Bridge (t y p i c a l l y the CPU

)

95

26 PXB = Connection t r a v e r s i n g mul t ip l e PCIe sw i t che s (without t r a v e r s i n g the PCIe
Host Bridge)

PIX = Connection t r a v e r s i n g a s i n g l e PCIe switch
28 NV# = Connection t r a v e r s i n g a bonded s e t o f # NVLinks

30 ingunsu@DGX- 2 :∼$ nv id ia - smi topo -mp
G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

32 G0 X PIX PXB PXB NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS
G1 PIX X PXB PXB NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS

34 G2 PXB PXB X PIX NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS
G3 PXB PXB PIX X NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS

36 G4 NODE NODE NODE NODE X PIX PXB PXB SYS SYS SYS SYS SYS SYS SYS SYS
G5 NODE NODE NODE NODE PIX X PXB PXB SYS SYS SYS SYS SYS SYS SYS SYS

38 G6 NODE NODE NODE NODE PXB PXB X PIX SYS SYS SYS SYS SYS SYS SYS SYS
G7 NODE NODE NODE NODE PXB PXB PIX X SYS SYS SYS SYS SYS SYS SYS SYS

40 G8 SYS SYS SYS SYS SYS SYS SYS SYS X PIX PXB PXB NODE NODE NODE NODE
G9 SYS SYS SYS SYS SYS SYS SYS SYS PIX X PXB PXB NODE NODE NODE NODE

42 G10 SYS SYS SYS SYS SYS SYS SYS SYS PXB PXB X PIX NODE NODE NODE NODE
G11 SYS SYS SYS SYS SYS SYS SYS SYS PXB PXB PIX X NODE NODE NODE NODE

44 G12 SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE X PIX PXB PXB
G13 SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE PIX X PXB PXB

46 G14 SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE PXB PXB X PIX
G15 SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE PXB PXB PIX X

Listing 63: Topology for DGX-2 (G=GPU). First matrix is the direct communication matrix, the
second is PCI only.

1 ingunsu@DGX-2:∼$ nvidia-smi nvlink --status -i 0

GPU 0: Tesla V100-SXM3-32GB (UUID: GPU-ad78d3a5-0a4f-ac16-0ea4-e02b88404047)

3 Link 0: 25.781 GB/s

Link 1: 25.781 GB/s

5 Link 2: 25.781 GB/s

Link 3: 25.781 GB/s

7 Link 4: 25.781 GB/s

Link 5: 25.781 GB/s

9

...

11

ingunsu@DGX-2:∼$ nvidia-smi nvlink --status -i 15

13 GPU 15: Tesla V100-SXM3-32GB (UUID: GPU-4e5a4b58-56fc-114b-5de2-ee41540cc549)

Link 0: 25.781 GB/s

15 Link 1: 25.781 GB/s

Link 2: 25.781 GB/s

17 Link 3: 25.781 GB/s

Link 4: 25.781 GB/s

19 Link 5: 25.781 GB/s

Listing 64: NVLink status on DGX-2. The listing shows only GPU 0 and 15 because the command
will print the same for every GPU in the system.

ingunsu@DGX-2:∼$ nvidia-smi

2 Sun Dec 15 16:51:35 2019

+---+

4 | NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Version: 10.1 |

|-------------------------------+----------------------+----------------------+

6 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

96

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

8 |===============================+======================+======================|

| 0 Tesla V100-SXM3 ... On | 00000000:34:00.0 Off | 0 |

10 | N/A 33C P0 49W / 350W | 0MiB / 32480 MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

Listing 65: Information about the first GPU when running the nvidia-smi command on the DGX-2

C.4.1 CPUs

1 ingunsu@heid:∼/results-bat/opentuner$ lscpu

Architecture: x86_64

3 CPU op-mode(s): 32-bit , 64-bit

Byte Order: Little Endian

5 CPU(s): 96

On-line CPU(s) list: 0-95

7 Thread(s) per core: 2

Core(s) per socket: 24

9 Socket(s): 2

NUMA node(s): 2

11 Vendor ID: GenuineIntel

CPU family: 6

13 Model: 85

Model name: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70 GHz

15 Stepping: 4

CPU MHz: 2687.537

17 CPU max MHz: 3700 ,0000

CPU min MHz: 1200 ,0000

19 BogoMIPS: 5400.00

Virtualization: VT-x

21 L1d cache: 32K

L1i cache: 32K

23 L2 cache: 1024K

L3 cache: 33792K

25 NUMA node0 CPU(s): 0-23,48-71

NUMA node1 CPU(s): 24-47,72-95

Listing 66: Information provided about the CPUs in the DGX-2 when running the lscpu command.

C.5 IBM Power System AC922

1 -bash-4.2$ nvidia-smi topo -m

GPU0 GPU1 CPU Affinity

3 GPU0 X SYS 0-63

GPU1 SYS X 64-127

5

Legend:

7

X = Self

9 SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA

nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host

Bridges within a NUMA node

11 PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the

CPU)

97

PXB = Connection traversing multiple PCIe switches (without traversing the PCIe

Host Bridge)

13 PIX = Connection traversing a single PCIe switch

NV# = Connection traversing a bonded set of # NVLinks

Listing 67: Topology for IBM Power System AC922 (2 GPUs)

-bash-4.2$ nvidia-smi nvlink --status -i 0

2 GPU 0: Tesla V100-SXM2-16GB (UUID: GPU-d5cfaea6-0aca-7f9b-5ed1-957950 b4f8f8)

Link 0: <inactive >

4 Link 1: 25.781 GB/s

Link 2: <inactive >

6 Link 3: 25.781 GB/s

Link 4: <inactive >

8 Link 5: 25.781 GB/s

10 -bash-4.2$ nvidia-smi nvlink --status -i 1

GPU 1: Tesla V100-SXM2-16GB (UUID: GPU-4822 d295-9751-d6b8-bd93-7739510 f189e)

12 Link 0: <inactive >

Link 1: 25.781 GB/s

14 Link 2: <inactive >

Link 3: 25.781 GB/s

16 Link 4: <inactive >

Link 5: 25.781 GB/s

Listing 68: NVLink status on IBM Power System AC922 (2 GPUs)

1 -bash-4.2$ nvidia-smi

Sun Dec 15 16:49:09 2019

3 +---+

| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |

5 |-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

7 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

9 | 0 Tesla V100-SXM2 ... On | 00000004:04:00.0 Off | 0 |

| N/A 37C P0 35W / 300W | 0MiB / 16160 MiB | 0% Default |

11 +-------------------------------+----------------------+----------------------+

Listing 69: Information about the first GPU when running the nvidia-smi command on IBM
Power System AC922 (2 GPUs).

C.5.1 CPUs

1 -bash-4.2$ lscpu

Architecture: ppc64le

3 Byte Order: Little Endian

CPU(s): 128

5 On-line CPU(s) list: 0-127

Thread(s) per core: 4

7 Core(s) per socket: 16

Socket(s): 2

9 NUMA node(s): 6

Model: 2.2 (pvr 004e 1202)

98

11 Model name: POWER9 , altivec supported

CPU max MHz: 3800.0000

13 CPU min MHz: 2300.0000

L1d cache: 32K

15 L1i cache: 32K

L2 cache: 512K

17 L3 cache: 10240K

NUMA node0 CPU(s): 0-63

19 NUMA node8 CPU(s): 64-127

NUMA node252 CPU(s):

21 NUMA node253 CPU(s):

NUMA node254 CPU(s):

23 NUMA node255 CPU(s):

Listing 70: Information provided about the CPUs in the IBM Power System AC922 (2 GPUs)
when running the lscpu command.

99

D Setup

D.1 Dockerfiles

D.1.1 CLTune

1 # CUDA version 10.2

FROM nvidia/cuda :10.2-devel-ubuntu18 .04

3

WORKDIR /usr/src/bat

5

RUN apt-get update && apt-get install -y \

7 git \

cmake \

9 python3

11 # Download and build CLTune

RUN cd /usr/local \

13 && git clone https :// github.com/ingunnsund/CLTune \

&& cd CLTune \

15 && mkdir build \

&& cd build \

17 && cmake -DUSE_OPENCL=OFF .. \

&& make install

19

Copy content

21 COPY . .

23 # Set the environment variable so other sources can use CLTune

ENV CLTUNE_PATH =/usr/local/CLTune

25

Set the correct encoding for Python

27 ENV PYTHONIOENCODING=utf-8

Listing 71: Dockerfile for CLTune.

D.1.2 KTT

1 # CUDA version 10.2

FROM nvidia/cuda :10.2-devel-ubuntu18 .04

3

WORKDIR /usr/src/bat

5

RUN apt-get update && apt-get install -y \

7 git \

wget \

9 python3

11 # Download premake5 (dependency of KTT)

RUN wget https :// github.com/premake/premake-core/releases/download/v5.0.0-alpha15/

premake-5.0.0-alpha15-linux.tar.gz \

13 && tar -xzf premake-5.0.0-alpha15-linux.tar.gz \

&& rm premake-5.0.0-alpha15-linux.tar.gz \

15 && mv premake5 /usr/bin

100

17 # Set CUDA path required by KTT

ENV CUDA_PATH =/usr/local/cuda-10.2/

19

Add temporary linking path for building KTT

21 ARG TEMP_LD_LIBRARY_PATH=${LD_LIBRARY_PATH}

ENV LD_LIBRARY_PATH=${CUDA_PATH}lib64/stubs:${LD_LIBRARY_PATH}

23

Create symbolic link for CUDA libraries to be used during building

25 # This is due to libraries being different in build and run phase of Docker (See

issue: https :// github.com/NVIDIA/nvidia-docker/issues /775)

This is for linking to work on Docker build for CUDA libs required by KTT

27 RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/

libcuda.so.1

29 # Download and build KTT

RUN cd /usr/local \

31 && git clone https :// github.com/Fillo7/KTT \

&& cd KTT \

33 && premake5 gmake \

&& cd build \

35 && make config=release_x86_64

37 # Copy content

COPY . .

39

Remove the symbolic link for the CUDA libraries as it is not needed anymore

41 RUN rm /usr/local/cuda/lib64/stubs/libcuda.so.1

43 # Reset the LD_LIBRARY_PATH

ENV LD_LIBRARY_PATH=${TEMP_LD_LIBRARY_PATH}

45

Set the environment variable so other sources can use KTT

47 ENV KTT_PATH =/usr/local/KTT

49 # Set the correct encoding for Python

ENV PYTHONIOENCODING=utf-8

Listing 72: Dockerfile for KTT.

D.1.3 Kernel Tuner

CUDA version 10.2

2 FROM nvidia/cuda :10.2-devel-ubuntu18 .04

4 WORKDIR /usr/src/bat

6 # Install dependencies

RUN apt-get update && apt-get install -y \

8 python3 \

python3-pip

10

Copy content

12 COPY . .

14 # Install dependencies for Kernel Tuner

RUN cd tuning_examples/kernel_tuner && \

16 pip3 install -r requirements.txt

101

18 # Set the correct encoding for Python

ENV PYTHONIOENCODING=utf-8

Listing 73: Dockerfile for Kernel Tuner.

D.1.4 OpenTuner

1 # CUDA version 10.2

FROM nvidia/cuda :10.2-devel-ubuntu18 .04

3

WORKDIR /usr/src/bat

5

Install dependencies

7 RUN apt-get update && apt-get install -y \

python3 \

9 python3-pip \

openmpi-bin \

11 openssh-client \

libopenmpi-dev

13

Copy content

15 COPY . .

17 # Install dependencies for OpenTuner

RUN cd tuning_examples/opentuner && \

19 pip3 install -r requirements.txt

21 # Due to a bug in OpenMPI (https :// github.com/open-mpi/ompi/issues /4948)

ENV OMPI_MCA_btl_vader_single_copy_mechanism=none

23

Set the correct encoding for Python

25 ENV PYTHONIOENCODING=utf-8

Listing 74: Dockerfile for OpenTuner.

D.2 Slurm

1 srun -N1 -n1 -c40 -gres=gpu:T4:1 --partition=TDT4200 --time =01:00:00 \

-w selbu --pty slurm_init

Listing 75: Slurm reserving of a single NVIDIA T4 and 40 CPU cores.

102

Knut Aasgaard Kirkhorn
BAT: A Benchm

ark Suite for Auto-Tuners

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Knut Aasgaard Kirkhorn

BAT: A Benchmark Suite for Auto-
Tuners

Development of BAT and Tuning on DGX-2 and More

Master’s thesis in Computer Science

Supervisor: Anne C. Elster

November 2020

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Background - GPUs and Docker
	Benchmarking GPUs and Auto-tuning
	Related Work
	Planning of the Benchmark Suite
	Creating the Benchmark Suite
	Testing the Benchmark Suite
	Results and Discussion
	Conclusion and Future Work
	References
	Appendix Parameter Research
	Appendix Repository Readme
	Appendix System Information
	Appendix Setup

