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ABSTRACT

The safety of offshore operations is highly dependent on the dynamic positioning (DP) capability of
a vessel. Meanwhile, DP capability comes down to the ability of the thrust generated by thrusters
to counteract environmental forces. Therefore, it is significant to investigate which thrusters are im-
portant to the position-keeping ability of vessels. However, complex environmental factors make the
investigation of thrusters’ importance more complicated. Hence, this paper proposes a new method
to identify the influence of each thruster on vessel’s station-keeping capability in different sea states.
The station-keeping capability is quantified by a defined synthesized positioning ability criterion com-
prised by vessel position, heading angle, and consumed power. Through the comparison of different
machine learning approaches, support vector machine (SVM) is used for building a surrogate model
between DP capability and thrusters. In order to determine the most sensitive thruster in the whole
process of vessel operation, an improved sensitivity analysis (SA) called ‘PAWN’ is employed along
with statistical analysis to evaluate the significance of thrusters from different perspectives. Seventeen
cases are investigated with respect to different thruster failures in various sea states. The results show
the proposed method is able to identify the significance of each thruster in different scenarios.

1. Introduction1

As the exploration and exploitation of marine resources2

such as oil and gas, renewable energy and other minerals,3

marine operations are becoming more and more frequent4

in recent years. Due to the influence of environmental dis-5

turbances, it represents significant safety and integrity chal-6

lenges that shall threaten the offshore operations. For the7

sake of safe offshore operations, vessels with dynamic po-8

sitioning (DP) system are playing a critical role. They can9

automatically maintain the desired position. In order to en-10

sure that a loss of position shall not occur even after a worst-11

case failure in all components, DP 2 and DP 3 are designed12

with redundant power systems in which 20% of electrically13

generated power shall be reserved [1]. The high position-14

keeping ability of DP 2 and DP 3 enables them to work in15

various offshore operations. Their wide applications have16

drawn great attention from stakeholders. Many researchers17

devoted to optimizing control parameters, improving con-18

troller performance, and detecting thruster failure [2, 3, 4].19

However, few of them investigated the interior relation be-20

tween thrusters and the vessel’s DP capability. Hence, it is21

of great potential to analyze the interaction among thrusters22

and environmental factors for on-board support of the ves-23

sel’s DP capabilities improvement.24

In order to test the operational safety of DP vessels, a25

digital twin is introduced and widely used in the service of26

designing and evaluating system performance, safety, and27

structural integrity. It is a digital model that integrates data28
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from varying sources, and can simulate all operations in the 29

real asset while saving time and money. The digital twin has 30

been successfully applied in a simulation of DP operations 31

as well as the assessment of DP capability [5]. As all DP 32

vessels carry a risk of loss of position, which has detrimen- 33

tal effects on personnel, the environment and equipment [6], 34

they have a high requirement of DP capability. For the as- 35

sessment of DP capability of a vessel, thruster’s failures are 36

also seen as the first concern in most of assessing guidelines 37

[7]. It makes sense to use digital simulation platform for in- 38

vestigating whether vessels can provide sufficient forces us- 39

ing the rest of thrusters to counteract against environmental 40

loads when a certain thruster failure occurs such as a tunnel 41

thruster failure or a main thruster failure. 42

To date, there have been many attempts to analyze 43

thruster failure in marine operations. Xu et al. developed 44

a novel synthesized criterion to analyze the positioning per- 45

formance of DP vessels. Various thruster failures were con- 46

sidered in the research [8]. Benetazzo et al. utilized a par- 47

ity space approach and a Luenberger observer to gain the 48

residuals. Next, the cumulative sum algorithm was applied 49

on these residuals to detect and isolate thruster failures [9]. 50

Sheng et al. developed a program to investigate the DP capa- 51

bility of semi-submersible vessels under the case of thruster 52

failure [10]. This research contributed to demonstrating the 53

safety of the DP system and provided adequate guidance to 54

the thrust system’s design. Han et al. used a deep Con- 55

volutional Neural Network method to detect the potential 56

thruster failure [4]. This data-driven method had a good per- 57

formance to detect and isolate thruster failure without any 58

vessel-dependent models. However, the relation between 59

DP capability and thruster failures is not investigated further 60
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for papers as mentioned above. Xu et al. proposed a method61

using sensitivity analysis (SA) to investigate the influence of62

thrusters on positioning capability [11]. However, the paper63

adopted local SA which can not reflect the characteristics of64

vessel sea-keeping ability in whole input space. Cheng et65

al. used global SA method to analyze thrusters’ importance66

to ship heading [12]. Nevertheless different thruster failure67

cases were not considered in their study. In a word, there68

are few researches to carry out a comprehensive analysis of69

how much contribution thrusters make to DP capability in70

the case of various thruster failures and different sea states.71

This paper proposes a novel methodology to analyze the72

significance of each thruster on DP capability. It could not73

only provide onboard support for improving DP capability,74

but also give guidance for power system design as well as75

thrusters’ maintenance with the help of statistical analysis76

and SA. The predominant contributions are as follows: 1)77

positioning capability is quantified by a designed synthe-78

sized criterion made up of ship position, heading angle, and79

consumed power; 2) machine learning (ML) and a modified80

PAWN are combined to quantify the significance of each81

thruster; 3) this method is applied to analyze the importance82

of each thruster during DP operation in different failure con-83

ditions and environmental load scenarios.84

The rest of this paper is structured as follows: the next85

section describes related works on DP capability assessment86

and SA. Section 3 details the procedure of obtaining signifi-87

cance of thrusters from data generation, data preprocessing,88

an optimal ML selection to significance analysis. Section 489

compares the performance of ML based on the benchmark90

function, and tests the ability of the proposed method to ana-91

lyze the importance of thrusters using professional simulator92

in a variety of scenarios. Section 5 is conclusion.93

2. Related works94

2.1. Dynamic positioning capability assessment95

Some offshore operations, like oil production, pipe lay-96

ing, and drilling, deeply rely on DP capability to maintain97

vessel position or heading within an accepted criterion. Tra-98

ditionally, dynamic positioning capability (DPCap) analysis99

is performed based on industrial standards, such as ‘IMCA100

M140’, ‘DNV GL ERN’, and ‘ABS skp’ [13]. DPCap stud-101

ies test whether the vessel has favorable actuator capacity102

to counteract environmental loads while keeping a constant103

position [14]. However, they have limited ability to provide104

other relevant and desired information. A significant short-105

coming of the quasi-static DPCap analysis is the inability to106

consider the transient conditions during a failure and recov-107

ery after the failure [15].108

These deficiencies call for the development of next-level109

DP capability analysis. Dynamic capability (DynCap) was110

proposed to determine the station-keeping capability of a111

vessel using systematic time-domain simulations. It em-112

ploys a complete six-degree of freedom (DOF) vessel model.113

This model includes dynamic environmental loads, a com-114

plete propulsion system with thrust losses and so on [15].115

One of the advantages of the DynCap analysis, compared to 116

traditional DPCap, is that the limiting environment can be 117

computed by applying a set of user-defined acceptance cri- 118

teria. The position and heading excursion are set to allow a 119

wide or narrow footprint. The ‘DNVGL-ST-0111’ standard 120

introduced detailed requirements, principles and acceptance 121

criteria [1]. It also provides complete analysis methods for 122

the three DP capability levels. 123

Many researchers have been working on DP capability 124

analysis for decades. Pivano et al. performed full-scale tri- 125

als using the DynCap method to validate a vessel’s station- 126

keeping capability [13]. Different comparisons were made 127

by statistics of time-domain data with various environmental 128

loads. 129

Xu et al. investigated positioning performances for DP 130

vessels considering thruster failure modes by a synthesized 131

criterion [8]. The criterion is used to quantify the positioning 132

ability by integrating positioning accuracy and consumed 133

power. However, these criteria can not fully represent the 134

DP capability from the perspective of statistics. 135

In this study, positioning capability refers to how well 136

the DP vessel is positioned, instead of the extremity of the 137

environmental conditions the vessel can counteract, as un- 138

derlined by [11]. Based on prior studies and our SA method 139

[16], positioning capability is quantified by time-series ship 140

parameters such as ship position, heading, and consumed 141

power. Some aforementioned statistics of time-domain data 142

to analyze the DP capability of offshore vessels were ac- 143

cepted and adopted. 144

2.2. Sensitivity analysis 145

SA is a powerful tool to identify how much the varia- 146

tion of model output can be apportioned to inputs [17]. SA, 147

in general, is made up of variance-based and density-based 148

methods. 149

Variance-based methods includes Sobol [18], the 150

Fourier Amplitude Sensitivity Test (FAST) [19], and the 151

Extend-FAST (EFAST) [20] and so on. A well-known ad- 152

vantage of variance-based methods is their ability to quan- 153

tify the individual parameter contribution and the contribu- 154

tion resulting from parameter interactions [21]. However, 155

variance-basedmethods do not completely represent the out- 156

put uncertainty when the model output is highly skewed 157

[22]. 158

To overcome this drawback, a new method called 159

moment-independent global SA method—also known as 160

density-based method, was proposed, which includes an 161

Entropy-based sensitivity measure [23] and the �-sensitivity 162

method [24]. However, optimal bandwidth selection has a 163

high computational cost. Hence, the development of these 164

methods has been limited. Francesca et al. came up with 165

a novel SA method called ‘PAWN’ that characterizes the 166

output distribution by its cumulative distribution function 167

(CDF) instead of probability distribution function (PDF) 168

[17]. One advantage of PAWN is that it hugely reduces com- 169

putational cost because there is no need to compute unknown 170

parameters for the approximation of empirical CDF. Another 171

Chunlin Wang et al.: Preprint submitted to Elsevier Page 2 of 11



  +

Significance analysis Data preprocessing

Splitting data

Outlier detection

Normalization

Real vessel

Power
Statistical analysis Sensitivity analysis

Thrust

Synthesized
criterion

+
PAWN

ML modeling

...

Sea states
Desired position
Thruster states

…

Digital twin

DP data
Data 

generation

Data 
analysis

On-board
support

Sensor 
data

                         …

DP controller 
tuning

Power system 
optimization

Thruster 
maintenance

Figure 1: The system structure of significance analysis of thrusters in DP operations.

advantage is that sensitivity indices can be easily obtained,172

by considering either entire range of variation of the model173

output or a sub-range.174

SA is widely applied for maritime applications with dif-175

ferent purposes. Li et al. applied a derivative-based SA176

method to simplify a neural network (NN) model so as to177

predict ship motion [25]. Zhang et al. adopted a sum of178

square derivatives to choose inputs for the nonlinear auto179

aggressive model in order to create a compact ship motion180

model [26]. Mizythras et al. proposed an SA to determine181

parameters that have impacts on vessel propulsion and ma-182

neuverability [27].183

In this study, based on our previous experience [16], the184

PAWN method is adopted to conduct an SA of thrusters. In185

addition, we make some modifications and improvements186

according to features of DP data.187

3. System structure188

This section outlines the procedure of significance anal-189

ysis of thrusters in DP operations. The workflow consists190

of three parts as shown in Fig. 1. The first part generates191

raw simulated DP data by DP simulator which is considered192

as a digital twin of a real vessel. Users are able to change193

inputs to the simulator, such as sea states, desired position,194

and thruster states, to simulate different scenarios to obtain195

several data sets. After the behavior of vessel changes over196

time, new raw sensor data are generated and come into the197

digital platform for further modeling and simulation. The198

second part is data analysis that is made of data preprocess-199

ing and significance analysis. Outcomes of analysis are used200

to offer on-board support of real vessel’s operations as well201

as system optimization.202

R

Figure 2: DP operations of a vessel at sea.

3.1. DP data generation 203

In the study, the DP data are generated from a profes- 204

sional simulator in the Offshore Simulator Centre — the 205

world’s most advanced provider of simulators for demanding 206

marine operations1. Fig. 2 illustrates the simulator conduct- 207

ing DP operation under the impact of environmental distur- 208

bances. Its position is limited within a red circle whose di- 209

ameter is denoted as R. The limit of heading is restricted by 210

red sector whose angle is represented as �. Fig. 3 shows the 211

environmental effects on the ship. Wind with an attack an- 212

gle of � can be changed in the simulation. Current and wave 213

coming from other directions are fixed in the study. In Fig. 214

3, the Earth-fixed reference frame is denoted as (XE , YE). 215

The body-fixed reference frame (X,Y) is fixed on the body 216

of the vessel. Its origin is the vessel’s center of gravity. The 217

DP vessel is equipped with six thrusters including four tun- 218

nel thrusters (Thruster 1-4) and two main thrusters (Thruster 219

5 and 6). In the simulator, sea state, thruster state, and the 220

1https://osc.no/
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Figure 3: The thruster configuration of DP vessel.

desired position are all adjustable.221

In this paper, two different sea states are investigated222

as shown in Table 1. The desired position is set to (0,0).223

Thruster states involve various thruster failure modes. Based224

on our experiment design, after the corresponding thrusters225

are shut off, the rest of thrusters are used for actuating vessel226

to generate several groups of time-domain DP data. For each227

sea state, experiments are performed on different thruster228

failure modes. Then ship position and heading are obtained229

after each experiment, and the other ship state parameters230

such as thruster arguments are obtained as shown in Table231

3. These time series data are raw DP data. They will be232

processed in the following step.233

Table 1
Sea states

Beaufort
description

Wind
velocity
(m/s)

Wave
height
(m)

Wave
period
(s)

Current
speed
(m/s)

Fresh
breeze 7.90 1.30 6.50 0.75

Strong
breeze 13.80 3.10 8.50 0.75

3.2. Data preprocessing234

Data preprocessingmakes it possible to ensure efficiency235

and accuracy for computation of the computed PAWN sen-236

sitivity indices. It requires three substeps that are splitting237

data, denoising, and normalization. This experiment was set238

as a ship that was intact at the beginning but in failure mode239

by the end. The whole experiment produced a lot of time-240

series DP data related to various combinations of thruster241

failure modes and sea states. These data are full of anoma-242

lies resulting from noise, which would threaten the accuracy243

of SA. In this paper, Isolation Forest (iForest) was applied244

for data cleaning. The iForest is an algorithm that uses a tree 245

structure to isolate instances [28]. It can (i) achieve a low lin- 246

ear time-complexity and a small memory-requirement, and 247

(ii) deal with the effects of swamping and masking effec- 248

tively. iForest detection is a two-stage process. The first 249

stage uses the given training data to build an isolation tree. 250

The second one computes an average path length of each in- 251

stance through isolation trees. 252

Let X = [x1, x2, ..., xm] ⊆ ℝm×d be a sample set of m 253

instances with d-variate distribution. Firstly, iForest is con- 254

structed by the proposed algorithm in [29]. Secondly, path 255

length ℎ(x) of each instance is computed by counting the 256

number of edges from the root node to a leaf node in an iTree. 257

Next, Eq. (1) is used to gain c( ) that is the average of ℎ(x) 258

given  . 259

c( ) =

⎧

⎪

⎨

⎪

⎩

2H( − 1) − 2( − 1)∕m  > 2,
1  = 2,
0 otℎerwise.

(1) 260

where  is the subsampling size during the stage of building 261

an iForest; H(i) is the harmonic number which can be esti- 262

mated by Euler’s constant (ln(i)+0.57721). Finally, Eq. (2) 263

is used to calculate the score of every instance: 264

s(x,  ) = 2
E(ℎ(x))
c( ) (2) 265

whereE(ℎ(x)) is the expectation of ℎ(x) from the collection 266

of iTrees. If s is close to 1, then the instance is seen as an 267

anomaly and removed from the data set. 268

After data cleaning, these data need to be normalized in 269

the range of [0, 1] by Eq. (3) for the purpose of formulating 270

a synthesized criterion. 271

x̃i =
x̂i − min(X̂)

max(X̂) − min(X̂)
i = 1… l (3) 272

where X̂ = [x̂1, x̂2,… , x̂l] ⊆ ℝl×d . Therein, l is smaller 273

than m because some abnormal instances are removed. Af- 274

ter the procedure of data pre-processing, the processed data 275

will be used to create a synthesized criterion to construct a 276

surrogate model. 277

3.3. Significance analysis 278

Significance analysis is the last step to identify the sig- 279

nificance of thrusters. It is comprised of statistical analysis 280

and SA. These two methods can analyze the significance of 281

thrusters from different respects. Meanwhile, the integra- 282

tion of both methods can provide guidance for power alloca- 283

tion, DP system optimization. Statistical analysis focuses on 284

statistical features of DP data by virtue of mean, maximum 285

value, variance and PDF [13]. As a supplementary instruc- 286

tion for SA, it is able to show the variation of each of data 287

attributes intuitively. SA is capable of quantifying the con- 288

tribution of each thruster to DP capability. It is comprised of 289

three portions: 1) proposing a synthesized criteria to quan- 290

tify DP capability; 2) selecting an optimal ML method to 291
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build a surrogate model; 3) using PAWN to compute sensi-292

tivity indices.293

3.3.1. Synthesized criterion294

To investigate the significance of every thruster on posi-295

tioning capability in different sea states and failure modes, a296

synthesized criterion that quantifies the positioning perfor-297

mance needs to be defined. This criterion is used to eval-298

uate how well the ship is positioned. According to the DP299

capability level in ‘DNVGL-ST-0111’ standard, assessment300

of station-keeping capability is mainly based on statistics of301

the position deviation and heading deviation. Therefore, po-302

sition and heading should be integrated into the synthesized303

criterion. In addition, for ensuring the safety and accuracy304

of DP operations, the DP vessel has a higher power require-305

ment than other conventional vessels [8]. Therefore, power306

consumption is also taken into consideration in this crite-307

rion. As a result, we create a synthesized criterion by Eq.308

(4) to lump the above-mentioned ship parameters together,309

with extra modification to make it adapt to the SA method.310

⎧

⎪

⎨

⎪

⎩

V = !1 ×D + !2 × A + !3 × P
!1 + !2 + !3 = 1
Cri = −ln(V ) V > 0.

(4)311

where!1,!2, and!3 are weighting factors within [0,1];D is312

position deviation computed by the distance between current313

and original position;A denotes the heading angle variation;314

P represents total power consumed by thrusters; Cri is the315

synthesized criterion computed by the inverse of the mono-316

tone increasing function ‘ln’. The larger V is, the worse the317

positioning capability (Cri). Compared to the exponential318

function in the interval [0,1], the minus of ‘ln’ function can319

amplify the value of V to better reflect the distinction of po-320

sitioning capability [30]. Cri will be used as the model out-321

put when ML trains a surrogate model between thrusters’322

parameters and DP capability.323

3.3.2. Sensitivity analysis324

A modified PAWN is adopted as an SA method to quan-325

tify the influence of thrusters to positioning capability. Com-326

pared with traditional method, it is able to overcome the is-327

sue of being hard to define three parameters, i.e., the num-328

ber of unconditional input samples (Nu), the number of con-329

ditional input samples (Nc), and the number of conditional330

points (n) [31].331

Let
⟨

X̃, Y
⟩

be a generic sample where X̃ is the pro-332

cessed input samples; Y denotes the value of quantifying333

DP capability. It is handled by splitting the range of input334

factor x̃i into n equal subintervals Ik. The PAWN indices335

approximation is shown as follows:336

⎧

⎪

⎨

⎪

⎩

Ŝi = max
k=1,...,l

KS(Ik)

KS(Ik) = max
y

|Fy(y) − Fy|x̃i (y|x̃i ∈ Ik)|
(5)337

338

where Ŝi is sensitivity index; KS is Kolmogorov-Smirnov339

statistic; Fy(y) is unconditional CDF where y ⊆ Y and 340

Fy|x̃i (y|x̃i ∈ Ik) is conditional CDF where x̃i is fixed. Us- 341

ing Eq. (5) to compute the sensitivity index ensures there 342

is no need to specify Nc . It coincides with the number of 343

points in Ik as approximately N∕n, where N is the size of 344

the generic sample. As for the unconditional sample Nu, a 345

better option is to use subsample of Y as the conditional ones 346

i.e.,Nu = Nc . 347

The process of SA executed by PAWN combined with 348

ML is shown in Algorithm 1. In this algorithm, ‘LIBSVM’ 349

is used as an SVM tool to train the surrogate model [32]. 350

The model training parameters like ‘s’, ‘t’, ‘bestc’, ‘bestg’, 351

‘p’, ‘v’, and the introduction of functions like ‘SVMcgFor- 352

Regress’, ‘libsvmtrain’, and ‘libsvmpredict’ can be found in 353

[32]. This algorithm mainly includes three parts. The first 354

part is modelling (line 2-6). The thrust of all thrusters is 355

the model input, and the positioning capability as defined 356

by Cri above is the model output. ML is employed to con- 357

struct a surrogate model between the model input and out- 358

put. The second part is resampling (line 6-7). ‘Uncon- 359

ditional_sampling’ is used to generate unconditional sam- 360

ples; ‘PAWN_sampling’ is used to gain conditional sam- 361

ples. The last part is sensitivity index computation (line 9- 362

10). The ‘PAWN’ indices of all thrusters are computed by 363

‘PAWN_index’. Its function is shown in line 11-17. Line 364

12-13 is to calculate the unconditional output and condi- 365

tional output. Line 14-16 is to compute the ‘PAWN’ index 366

using Eq. (5). Detailed computing process could be found in 367

[31]. The introduction of parameters and functions regard- 368

ing PAWN method can be found in [22]. 369

Algorithm 1: SA algorithm
Input: Tℎrust ,Cri s, t, p, v
Output: SA_index

1 for i = 1 ∶ num do
2 X ← Tℎrust
3 Y ← Cri
4 [bestc, bestg] ← SVMcgForRegress(X, Y )
5 cmd ← [s, t, bestc, bestg, p, v]
6 model ← libsvmtrain(X, Y , cmd)
7 U ← Unconditional_sampling
8 C ← PAWN_sampling
9 index(i) ← PAWN_index(U,C,model)

10 SA_index← index∕num
11 Function PAWN_index(Xu, XX, model):
12 Y u← libsvmpredict(Xu,model)
13 Y Y ← libsvmpredict(XX,model)
14 [Y F , Fu, F c] ← PAWN_cdf (Y u, Y Y )
15 KS ← PAWN_ks(Y F , Fu, F c)
16 index← max(KS)
17 return index
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Table 2
Parameters of the offshore vessel.

Items Values

Length between perpendicilars [m] 82.7

Breadth [m] 23.0

Draught [m] 7.5

Tunnel thruster propulsion [KN] ≤173.0

Main thruster propulsion [KN] ≤1350.0

Table 3
The variables of DP data.

Inputs Unit

Ship status

east position [m]

west position [m]

heading [deg]

Thruster1

rpm [RPM]

thrust [KN]

consumed power [KW]

Thruster2

rpm [RPM]

thrust [KN]

consumed power [KW]

Thruster3

rpm [RPM]

thrust [KN]

consumed power [KW]

Thruster4

rpm [RPM]

thrust [KN]

consumed power [KW]

Thruster5

rpm [RPM]

thrust [KN]

consumed power [KW]

Thruster6

rpm [RPM]

thrust [KN]

consumed power [KW]

4. Case study370

4.1. An optimal ML selection based on Ishigami371

function372

In order to find an optimal modeling method, first of373

all, three prevalent ML methods, such as back propagation374

(BP), regularized extreme learning machine (RELM), and375

SVM, are introduced into training models [16, 33, 34]. Next,376

PAWNcombined with these threemodels is used to compute377

sensitivity indices of three parameters of Ishigami function.378

Finally, SA results are compared with a benchmark to iden-379

tify the optimal MLmethod for analyzing the significance of380

Table 4
Environment and thruster failures setting for significance anal-
ysis.

Sea states Attack angle [deg] Thruster failure

Strong breeze 45

011111

101111

110111

111011

111101

111110

110110

Strong breeze 90
101111

110110

Strong breeze 135
101111

110110

Fresh breeze 45
101111

110110

thrusters. 381

In the course of determining an optimal ML method, 382

Ishigami function is selected as a mathematical model, be- 383

cause Ishigami is a widely-used benchmark model that is ap- 384

plied to test the validity of sensitivity analysis method [17]. 385

It is shown in Eq. (6). 386

y = sin(�1) + asin(�2)2 + b�4
3 sin(�1) (6) 387

where a and b are random constants that can influence the 388

sensitivity index of �i, i ∈ {1, 2, 3}. �i follows a uniform 389

distribution over [−�, �]. Here, we set a = 2 and b = 1. Fig. 390

4 displays SA results as well as benchmark value. The dotted 391

line is the benchmark value of sensitivity indices of the three 392

parameters �i in Eq. (6). The corresponding sensitivity in- 393

dices areS1=0.53,S2=0.19, andS3=0.35, respectively. It is 394

evident that both BP and RELM cannot figure sensitivity in- 395

dex out correctly; whereas PAWN combined with SVM has 396

a better approximation to the benchmark. Therefore, SVM 397

is selected as modelling method in the follow-up sensitivity 398

analysis of thrusters in different scenarios. 399

4.2. Experimental design 400

This significance analysis of thrusters is conducted to de- 401

termine the variation of positioning capability apportioned 402

to each thruster. The specifications of the vessel are listed 403

in Table 2. This vessel is actuated by six thrusters shown 404

in Fig. 3. The actuator forces relate to the control forces 405

and moments by � = T (�)f , where � = [�1, ..., �p] ∈ ℝp
406

is a vector of azimuth angles and T (�) is the thrust con- 407

figuration matrix [35]. In this paper, � is fixed. In or- 408

der to obtain the demanded thrust for each thruster, an un- 409

constrained least-squares (LS) optimization problem is con- 410

structed. Through using Lagrange Multipliers to solve LS 411
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Figure 4: SA results computed by PAWN based on different
ML methods.

optimization problem, we can obtain f = T †� , where412

T † = W −1T ⊤(TW −1T ⊤)−1 is recognized as the gener-413

alised inverse (GI) matrix. Here, W is a positive definite414

matrix weighting the control forces. The detailed reasoning415

process has been interpreted in [35].416

The attack angles � is set as [45◦, 90◦, 135◦] for differ-417

ent scenarios. The direction of current and wave is fixed for418

simplifying the experiment. The limits of ship position and419

heading are set as R = 3m and � = 6◦, respectively. Table420

4 lists four different combinations of sea states and attack421

angle. They are ‘strong breeze 45◦’, ‘strong breeze 90◦’,422

‘strong breeze 135◦’, and ‘fresh breeze 45◦’. For ‘strong423

breeze 45◦’, there are seven different thruster failure modes424

represented by binary string: ‘011111’, ‘101111’, ‘110111’,425

‘111011’, ‘111101’, ‘111110’,‘110110’. Here, ‘0’ denotes426

the thruster is malfunctioning; ‘1’ denotes the thruster is427

working normally. For example, ‘101111’ indicates the sec-428

ond thruster is malfunctioning while the others are working429

normally. The required parameters of ship states are listed430

in the Table 3. The sampling frequency is set as 20HZ.431

The synthesized criterion involves specifying three432

weighting factors: !1, !2 and !3. In this study, we set433

!1 = 0.5, !2 = 0.4, and !3 = 0.1 based on the follow-434

ing reasons. On the one hand, since DP vessels are designed435

with the redundant power system, in general, 20% of power436

will be reserved to avoid loss-of-position occurrence. That437

indicates the power is sufficient to keep a vessel’s position438

and heading during DP operations. Therefore, power uti-439

lizationwas considered the least important factor in the crite-440

rion. On the other hand, ship position is seen as the most sig-441

nificant factor because the loss of position brings amore con-442

siderable detrimental impact on DP operations than heading.443

For PAWN, n is set to 10 based on the samples of data as well444

as experience as described in other papers [16, 31].445

In this paper, the experiment investigates the significance446

of thrusters under circumstances of different thruster failures447

in two sea states. Using the proposedmethod for timely com-448

putation of thrusters’ sensitivity is studied as well. 449

4.3. Significance analysis in different thruster 450

failure modes at two sea states 451

This section mainly analyzes and compares SA results in 452

different environmental factors and thruster conditions. Ta- 453

ble 5 lists the SA results of thruster failures at the strong 454

breeze and fresh breeze sea states. It is found that thruster 455

5 is more significant than the rest of thrusters in most cases. 456

Its contribution accounts for around 30%∼ 40%. Especially, 457

when thruster 6 fails to work, the significance of thruster 5 458

exceeds 35% because thruster 5 as the only main propeller 459

must generate much more thrust to counteract the influence 460

of environmental disturbances. When one thruster failure 461

occurs, the significance of thrusters that play a complemen- 462

tary role will have a significant increase as shown in Table 5. 463

For example, the PAWN index of thruster 6 increases from 464

8% to 30% when thruster 5 fails in ‘strong breeze 45◦’. The 465

same happens to thruster 1 and 2. For the case of ‘101111’ in 466

‘strong breeze 45◦’, for instance, the significance of thruster 467

1 rises by 13% up to 26.42%. For dual thruster failure 468

‘110110’ in all sea states, at least two of tunnel thrusters’ 469

significance go up to over 20% compared with one thruster 470

failure. That possibly results from the drastic variation of 471

the ship heading. It is reflected from the above analysis that 472

the significance of thrusters depends on the conjunction of 473

sea states, wind direction as well as thruster failures. 474

Next, significance analysis of thrusters is carried out in 475

detail from the respect of statistics and SA. In order to illus- 476

trate how to do analysis by SA coupled with statistical anal- 477

ysis, we will use ‘111111’ in the case of strong breeze with 478

attack angle 45◦ as an example. For the case of ’111111’ in 479

‘strong breeze 45◦’, an average of thrust and SA results are 480

shown in Fig. 5. The left y-axis represents the PAWN in- 481

dex of each thruster while the right one denotes mean value 482

of thrust. These two analysis methods are able to show the 483

importance of thrusters from their own perspective. In addi- 484

tion, there are interior connections between these two meth- 485

ods. The results of SA show that the order of importance 486

of thrusters is quite as similar as that of statistical analysis. 487

The PAWN index shows that thruster 5 has the most influen- 488

tial effect on positioning capability, at 29.76%. The second- 489

largest effect is thruster 4, accounting for roughly 22.46%. 490

Thrusters 3, 1, 2, and 6 follow in that order. Thruster 6makes 491

only an 8.17% contribution to the station-keeping ability of 492

DP vessel despite its similarities to thruster 5, which makes 493

the largest contribution. However these two methods show 494

some distinctions, such as inconsistency of SA results with 495

statistical analysis for thruster 6. 496

From the perspective of statistics, thruster 6 has as much 497

thrust as thruster 5 as shown in Fig. 6. The mean and vari- 498

ance of thrust generated by thruster 5 are the same as those 499

generated by thruster 6. The two thrusters also consume the 500

same amount of power and have similar statistical features. 501

But observing results obtained by the proposed SA method 502

in Fig. 5, in which all SA indices are drawn as blue bars, 503

shows that thruster 6 is far less significant than thruster 5. It 504
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Table 5
SA results of thruster failures in strong breeze and fresh breeze.

Sea states Direction (deg)
Thruster

failure

PAWN index

Thr1 Thr2 Thr3 Thr4 Thr5 Thr6

Strong

breeze

45

111111 0.1342 0.1040 0.1576 0.2246 0.2976 0.0817

011111 0 0.3701 0.1448 0.1480 0.2284 0.1087

101111 0.2642 0 0.0604 0.1069 0.3222 0.2459

110111 0.1992 0.2080 0 0.0850 0.3058 0.2019

111011 0.1415 0.2483 0.0853 0 0.3472 0.1775

111101 0.2629 0.1839 0.1433 0.1098 0 0.3000

111110 0.1674 0.1225 0.1435 0.1456 0.4209 0

110110 0.2106 0.2026 0 0.2050 0.3818 0

90
111111 0.2877 0.1211 0.0829 0.1485 0.1313 0.2283

101111 0.2723 0 0.1103 0.1100 0.2985 0.2089

110110 0.0737 0.3337 0 0.2392 0.3534 0

135
111111 0.1832 0.1638 0.1224 0.1888 0.2544 0.0873

101111 0.0987 0 0.3491 0.3273 0.1268 0.0980

110110 0.2285 0.4016 0 0.0997 0.2702 0

Fresh

breeze
45

111111 0.1373 0.0729 0.1317 0.0771 0.3460 0.2350

101111 0.2591 0 0.1007 0.0901 0.3401 0.2099

110110 0.1826 0.2113 0 0.2282 0.3780 0
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Figure 5: The SA result and average thrust of 6 thrusters for
‘111111’ in ‘strong breeze 45◦’.

is even less than thruster 2. It reveals that SA results do not505

entirely conform with results obtained by statistical analysis.506

Both methods did give us insights that thruster 6 consumed507

amounts of power but generated too much useless force in508

this case.509

To obtain more insights from Fig. 5, thrusters 4 and 6 are510

for detailed investigation. Fig. 7 displays the PDF of power511

consumed by thrusters 4 and 6 respectively. The power con-512

sumed mostly appears in the interval [100 KW, 600 KW],513
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Figure 6: The PDF of consumed power and thrust generated
by thrusters 5 and 6 for ‘111111’ with strong breeze and � =
45◦.

which is far less than the power consumed by thruster 6 as 514

shown in the blue area. Moreover, the mean of thrust gener- 515

ated by thruster 4 is far less than that generated by thruster 516

6. Based on Fig. 5 and Fig. 7, we can find that thruster 517

6 consumed more power and generated more thrust but less 518

contribution than thruster 4. 519

Through SA and statistical analysis, it is definitely found 520

that some thrusters have fewer influences on DP capabil- 521

ity, although they consumed more power. That results in 522
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Figure 7: The power consumed by thrusters 4 and 6 in ‘strong
breeze 45◦ 111111’.

a waste of power. Therefore, significance results could be523

used to provide guidance to improve the power allocation al-524

gorithm. For example, sensitivity indices as weighting fac-525

tors are added into the algorithm. In this case, thruster 6526

with high power consumption but a little contribution to DP527

capability will be reallocated less power by the power sys-528

tem. Instead, more power should be redistributed to thruster529

4, which could improve DP capability with low power con-530

sumption.531

4.4. Real-time computation of thrusters’532

sensitivity533

Although the existing method is efficient to analyze the534

thrusters’ significance in [11], it is not competent in the real-535

time computation of thrusters’ sensitivity. This section is to536

verify the feasibility of the proposed method in estimating537

thrusters’ sensitivity online.538

A simulation experiment is carried out when thruster539

state changes from ‘111111’ to ‘011111’ in ‘strong breeze540

45◦’. The thrust generated by thrusters is shown in Fig. 8.541

Red dotted line represents the point at which thruster 1 fails542

to work. In order to visualize each curve clearly, multiple543

shifts of 80 KN along the y-axis direction is performed for544

thruster 2-6. In fact, the value of the thrust of all thrusters545

starts from 0.546

Fig. 9 shows the variation of sensitivity indices of547

thrusters over time. The horizontal axis denotes sensitivity548

index is computed at a window time of 25s that comprises549

500 sample points. Evidently, the proposed method is able550

to gain the contribution of each thruster to the DP capability551

in the process of vessel counteracting against environmental552

forces. Especially, when thruster 1 shuts down at 650s de-553

picted by a red circle, the importance of thruster 1 becomes554

0 thereafter. On the other hand, thruster 2 plays a more and555

more important role since this point. This is because thruster556

1 and 2 are bow thrusters, as shown in Fig. 3, the malfunc-557

tion of thruster 1 leads to the rise of thruster 2 importance in558
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Figure 8: Time-domain variation of thrust from ‘111111’ to
‘011111’.

the long term. In addition, the importance of other thrusters 559

rises to some extent as well after thruster 1 fails to work. 560

At the point of 650s, the detailed information can be 561

found in the Fig. 10. From this figure, the importance of 562

thruster 2 and 4 grow rapidly compared with other thrusters. 563

Therefore, the instant change of the indices could provide 564

the operator evidence to improve the power-consuming of 565

thruster 2 and 4 to promote the DP capability quickly after 566

the failure of thruster 1. 567

To sum up, the proposed method is capable of finding 568

the contribution of all thrusters in a real-time manner. 569

4.5. Discussion 570

For the case of ‘111111’ in ‘strong breeze 45◦’ in Fig. 571

6, the discrepancy in terms of power and thrust between 572

thruster 5 and 6 possibly results from the fact that the rudder 573

angle of main thrusters is fixed. As shown in Fig. 3, in order 574

to resist the wind whose attack angle is 45◦, thruster 5 must 575

bear much more load than thruster 6. Therefore, the power 576

and thrust of thruster 5 vary more drastically compared with 577

those of thruster 6. It can be shown from the above analysis 578

that thruster’s importance is affected by a synthesized factor, 579

including the configuration of thrusters, the attack angle of 580

sea states, and the thrust allocation algorithm. 581

In Fig. 4, the result of BP and ELM is not as ideal as 582

that of SVM. This situation mainly results from the limited 583

training sample on account of online significance analysis. 584

Considering the requirement of on-board support, therefore, 585

SVM is used for the real-time estimation of sensitivity in- 586

dices. Since the sensitivity index computed by SVM can 587

converge to a stable value after 500 training samples, we 588

chose a window time of 25s corresponding to 500 training 589

samples under the sampling frequency of 20HZ in Section 590

4.4. 591

Chunlin Wang et al.: Preprint submitted to Elsevier Page 9 of 11



Figure 9: Real-time computation of the significance of thrusters.
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Figure 10: The instant variation of the significance of thrusters
before and after thruster 1 failure.

5. Conclusion592

This paper proposes a method that mainly focuses on593

studying the significance of thrusters based on a synthesized594

positioning capability criterion in different thruster failure595

conditions. In order to quantify the DP capability, a synthe-596

sized assessment criterion is proposed by integrating ship597

position, heading and power. Next, the Ishigami function598

is used as a benchmark to determine an optimal modelling599

method. Through the comparison with ANN and ELM,600

SVM is selected to construct a surrogate model between601

thrusters and DP capability. Finally, different thruster fail-602

ure cases in two sea states are designed to elaborate on how603

statistical features and SA are combined to quantify and an- 604

alyze the significance of thrusters. 605

The purpose of significance analysis results is as follows: 606

1) they can provide onboard support to control power system 607

to allocate more power to the most significant thruster when 608

thruster fails to work, which contributes to efficiently im- 609

proving DP capability; 2) they also can be used to provide 610

guidance to optimize power allocation. By observing statis- 611

tics of power, and sensitivity results, thrusters that consumed 612

more power but made much less contribution to positioning 613

capability should be reallocated less power. This is able to 614

be accomplished by, for example, adding sensitivity indices 615

as weighting factors into the allocation algorithm. That is 616

helpful to improve vessel’s DP capability with less power 617

consumption. 618

For future work, efforts will be put on investigating the 619

impact of azimuth thrusters and the thrust allocation logic 620

on the significance of thrusters in DP operations. 621
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