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Preface

This thesis was written in the spring of 2021 and is the final assignment of my
Masters of Science degree at the Norwegian University of Science and Techno-
logy (NTNU). It is thus the concluding work of my specialization in industrial
mathematics, which has made up the final three years of the five year study
program Applied Physics and Mathematics. Specifically, my specialization is in
statistics and machine learning, which are both central concepts in this thesis.
The thesis was written in cooperation with SpareBank 1 Kreditt, and submitted
to the Department of Mathematical Sciences in June of 2021 for evaluation. For
anyone interested in reading the thesis, a background in mathematics is a great
advantage, and some knowledge of statistics, machine learning and deep learn-
ing is also helpful. To produce the results presented in this thesis, the program-
ming language Python was used, and the code can be accessed on GitHub via the
link https://github.com/HaakonHolte/Masters_Thesis_Code. Any of the code
available here is free to use. Be aware, however, that the code is written with the
specific dataset used in the thesis in mind, and this will not be made available due
to confidentiality.

If you do not care about what I’d classify as my "personal statement" regarding
this thesis, you should skip this paragraph and head straight to the acknowledge-
ments below. I was first introduced to the realm of credit scoring by SpareBank
1 Kreditt in 2020, when I interned there. When presented with results from the
work of Gunnarson et al. (2019), and the claim that deep learning did not provide
much value beyond other methods in credit scoring, I remember saying "Well then
they just haven’t found the right neural network yet". A statement which I, admit-
tedly, did not have the expertise nor experience to make. Although this thesis
was mainly an experiment to see how a full longitudinal model would perform
in credit scoring, I did have a small hope that I would prove myself right through
it. Unfortunately, as you will learn from the abstract, this thesis did not introduce
the model that would revolutionize the credit scoring world. Although this did not
come as a surprise (I do not in any way fancy myself an expert on deep learning or
survival analysis), it is always a bit dismaying when the outcome is not as splen-
did as one had a shimmer of hope for, regardless of how optimistic this may have
been. Despite this, I stand by my choice of method, and I am very thankful to both
NTNU and SpareBank 1 Kreditt for getting to work within such an interesting and
exciting field. I truly feel that I have learned a lot, and gained invaluable experi-
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conversations about all sorts of topics including statistics, pandemics and punch
cards. I would also like to extend my gratitude to Jens Morten Nilsen, who was
my supervisor at SpareBank 1 Kreditt, for his invaluable domain knowledge and
readiness to help and answer questions. I would further like to thank SpareBank
1 Kreditt for letting me use their data. I also feel like I would be remiss if I did not
pay some homage to the many brilliant scientists whose shoulders I have stood
on while working on this thesis, and whose works I refer to throughout it. Finally,
I would like to thank my family (danke sehr, Jódl) and friends for their moral
support, and my girlfriend Jenny for her admirable patience when listening to
the ramblings of an angry mathematician over why his validation error doesn’t
decrease. You all play vital parts in why this thesis exists.
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Håkon Andersen Holte



Abstract

In this thesis, a deep neural network model combined with concepts from survival
analysis is applied to sequential credit card data with the purpose of predicting
time to default for the credit card customers. Personal financial problems, societal
impact and loss of revenue for credit card institutions are all factors that motivate
the exploration of machine learning in the field of credit scoring. The thesis was
written in cooperation with SpareBank 1 Kreditt, who provided the dataset used
in the thesis. This consisted of around 11300 credit card accounts, with daily
observations on transaction data. An exploratory data analysis was performed in
order to get familiarized with the dataset. A discrete time model was introduced,
and a neural network with an LSTM structure was used to obtain predictions about
the time to default of the credit card customers. The results obtained were mixed,
with the predictions themselves being quite inaccurate, but reasonable according
to evaluation criteria currently used by SpareBank 1 Kreditt. The performance
on the models was on par with models of lower complexity that are currently
being used. Several simplifications were made and several stones left unturned
throughout the thesis, meaning there are several topics one could consider worthy
of further research. In particular, the way in which the predictions are obtained
include an unknown functional relationship which should be more thoroughly
explored.
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Sammendrag

I denne oppgaven brukes en dyp nevral nettverksmodell kombinert med konsepter
fra levetidsanalyse på sekvensielle kredittkortdata med det formål å predikere
tid til mislighold for kredittkortkunder. Personlige økonomiske problemer, sam-
funnsmessige konsekvenser og tap av inntekter for kredittkortinstitusjoner er alle
faktorer som motiverer utforskningen av maskinlæring innen kreditt-scoring. Op-
pgaven ble skrevet i samarbeid med SpareBank 1 Kreditt, som sto for datasettet
som ble brukt i oppgaven. Dette besto av rundt 11300 kredittkortkontoer, med
daglige observasjoner av transaksjonsdata. En dataanalyse ble utført for å bli kjent
med datasettet. En diskret tidsmodell ble introdusert, og et nevralt nettverk med
en LSTM-struktur ble brukt for å oppnå prediksjoner om kredittkortkundenes tid
til mislighold. Resultatene som ble oppnådd var blandede, og prediksjonene i seg
selv var ganske unøyaktige, men rimelige i henhold til evalueringskriterier som
for tiden brukes av SpareBank 1 Kreditt. Modellenes prestasjoner var på nivå med
modeller med lavere kompleksitet som for tiden er i bruk. Flere forenklinger ble
gjort gjennom oppgaven, noe som betyr at det er flere områder som kan være
verdt å undersøke videre. Disse inkluderer spesielt et ukjent funksjonalt fohold
som er sentralt i måten prediksjonene oppnås på.
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Chapter 1

Introduction

Credit cards are a very popular means of payment in Norway. In July 2020, Spare-
Bank 1 SR-Bank reported that 3.2 million Norwegians have credit cards, consumer
loans or other unsecured debt (SpareBank 1 SR-Bank, 2020). This is based on data
from the Norwegian debt register, Gjeldsregisteret. The number has decreased
somewhat since then, and is now around 3.18 million (Gjeldsregisteret, 2020).
The many advantages and the freedom that often come with paying with a credit
card explain why the payment method is so widely used. However, these advant-
ages do not come without a risk. As mentioned, more than 3 million Norwegians
have unsecured debt, and 2/3 of the people who have gotten a consumer loan
at some point in their life, still have consumer loans. Furthermore, 1/3 of people
with consumer loans are struggling to pay down their loans (Gemini, 2020). Ac-
cording to E24, 250 000 Norwegians above the age of 18 have payment remarks
due to late payments (E24, 2020). The damage of such personal monetary prob-
lems are felt both personally by the people experiencing them, by society and by
the credit institutions. Machine learning presents itself as a possible aid in redu-
cing the significance and number of occurrences of these problems. As we are
(hopefully) emerging from the Covid-19 situation, we are seeing an increase in
the use of credit cards (Finansavisen, 2021), as well as, very recently, an increase
in consumer debt (NRK, 2021). This comes after a time of around a year where
both the use of credit cards and the consumer debt has been steadily decreasing
(Finans Norge, 2020). This development further motivates the study of potential
machine learning algorithms for use in credit scoring.

This section begins by introducing the basics of how credit cards work, before
moving on to presenting the concept of credit card defaults. Emphasis will be on
the definition of default as used by the credit card company SpareBank 1 Kreditt,
whose data are used for training the models suggested in this thesis. Following this
is an outline of the problem at hand, as well as a short overview and discussion
of the history of machine learning within the field of credit scoring.

1
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1.1 Credit Cards

A credit card is a card issued by financial institutions that allows its owner to
make purchases, cash withdrawals and bank transactions with money they lend
from the institution. Both parties enter into an agreement, in which the credit card
recipient agrees to pay back the money he or she lends from the financial institu-
tion. The financial institution, on the other hand, promises to lend the customer
money up to a certain amount, known as the credit card limit, and often provides
the customer with access to benefits through insurances or bonus programs. The
financial institutions make money on the credit card business through a range of
fees, as well as from interest on the money that their customers lend and do not
pay back in full by a given due date.

When deciding whether or not to grant a potential customer a credit card, fin-
ancial institutions face a decision which can often be difficult. On the one hand,
not being able to pay ones credit card debt does not only materialize in great
personal burden, but also in financial losses for credit institutions. On the other
hand, rejecting a customer from receiving a credit card could result in the loss of
potential revenue. Therefore it is vital for these institutions to constantly make
good and informed decisions, not only on which individuals to grant credit cards,
but also on what credit limit to set, and what other measures to take in order to
ensure the continued, but not exaggerated, credit card use of their customers. It
is in making these informed decisions that credit scoring models come into play,
and we will have a look at examples of these and how they have previously been
applied. Before doing this, however, an introduction of the concept of credit card
defaults is merited.

1.2 Credit card Defaults

A credit card default occurs when a credit card owner has become severely de-
linquent on his or her credit card payments (The Balance, 2020). The term is
often used by banks, credit card companies and other financial institutions to de-
scribe the event in which a customer is unable to repay his or her debt in a certain
amount of time. This definition as well as the amount of time until a customer
is considered to have defaulted, varies between the many relevant institutions.
One common definition is the one used in the Basel II regulatory framework: a
credit card account is considered defaulted if it is 180 days past due or has been
partially or fully charged off (Qi, 2009). As this thesis is written in cooperation
with SpareBank 1 Kreditt, their definition of default will be used throughout. It
states that any customer that fails to repay a minimum amount on his or her debt
by day 120 after the due date, is considered to have defaulted.

In Figure 1.1 is shown the process of a customer going from healthy to severely
delinquent. Key events that occur during the process are indicated by marks along
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the time axis. Each mark is accompanied by the name of the event in question,
along with the number of days after due date the event occurs. On statement
date the customer receives a billing statement, which states the total amount that
the customer owes the company, and the due date for payment. If the customer
does not manage to pay the minimum amount before due date, it will receive
a statement date dunning on the next statement date. If the amount is still not
paid by the next due date, a due date dunning is ushered. Failure to pay this
dunning before it is due, results in a collection advice and accompanying due
date. If the customer is still unable or unwilling to pay, the account goes to debt
collection. Should it remain in debt collection for 60 days, the customer is declared
delinquent, and the account is said to have defaulted.

Figure 1.1: Visualization of the process a customer goes through from statement
date until default.

1.3 Problem Outline

As defaults incur a significant loss of income for credit card companies, it is desir-
able to develop statistical models able to quantify the likelihood that a customer
will experience a default. This quantity is often known as a credit score. Such mod-
els are beneficial to credit card companies in that they allow them to control the
risk in their portfolio through measures aimed at customers who seem to be at
risk of defaulting. Furthermore, such models allow the institutions to tailor their
counselling to fit the customer’s needs, and keep them in the loop about how they
seem to be doing financially. Thus, these models do not only benefit the credit
institutions, but the customers as well.

One obvious, and quite common, way to obtain credit scores is to directly pre-
dict the probability of default, often abbreviated ’PD’, for customers. This can be
accomplished through the use of machine learning methods, for instance regres-
sion trees, logistic regression or random forests. The last two are quite popular,
and ensemble methods such as random forests are known to perform quite well
for this task (Gunnarson et al., 2019). However, as was pointed out in Banasik
et al. (1999), one could argue that knowing how long time will pass before a
customer defaults, might be more valuable than knowing the probability that a
customer will default at a certain point in time. This inspires the approach taken
in this thesis: given a customer and customer data such as their age, gender and
expenditure, predict the number of days until this customer defaults. This prob-
lem is then known from the domain of statistical survival analysis. A plethora of
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methods, both parametric, semi-parametric and non-parametric are then avail-
able, many of which have been applied to the specific problem of credit card de-
faults on real-life datasets (Dirick et al., 2016).

Before proceeding with the thesis and looking at the dataset to be used, some
history and motivation for the use of survival analysis in the context of credit
risk modelling is warranted, as it is already well documented. One early example
of its use is Nahrain (1992), where the idea of using survival analysis in credit
card scoring was introduced, and where AFT models were used. Some years later,
Banasik et al. (1999) asked the question of when, rather than if, a customer will
default, and applied the Cox proportional hazard method to answer this question,
arguing that the results obtained were competitive with that of the widely used
logistic regression. Among more recent works are Zhang and Thomas (2012),
where linear regression and survival analysis are compared in predicting loss given
default (LGD), and Dirick et al. (2014), where mixture cure models are applied
to credit loan data.

The approach to the problem of predicting time to default in this thesis will be
through the use of deep learning, and more precisely, through recurrent neural
networks (RNNs). Neural networks have been very popular over the last dec-
ades, showing excellent predictive power in cases where large amounts of data
are available. RNNs are well-suited for the problem at hand because they are
able to handle sequential data very well. Their construction allows them to save
information from former iterations and consider this information when working
with the next input. In this thesis, a very popular type of RNNs, called long-short
term memory units (LSTMs), will be used. The reason for this will be more closely
explained in the theory chapter, but to make a long story short, they are able to
handle information loss over time better than the standard RNNs, and they also
handle other problems which often arise in RNNs.
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Dataset

The dataset being used in this thesis is provided by SpareBank 1 Kreditt, and
consists of profile and transaction data for several of the company’s customers. It
contains daily observations on 70 variables for each account, with around 11300
unique accounts in the dataset. There are no observations registered during week-
ends. The observations are done over a period of approximately 26 months, start-
ing in July of 2018. As default events are relatively rare in the credit card business,
the dataset is significantly imbalanced, with around 14% of the customers exper-
iencing a default event during the time period in question. The customers are not
chosen entirely at random; SpareBank 1 Kreditt calculates an initial score for their
customers, known as an application score. A correlation between low application
score and higher default rate has been observed, and thus the dataset is designed
to contain customers with a low application score. In the first part of this chapter,
the most important variables of the dataset are presented and discussed. In the
last part, consequences of the imbalance in the dataset are addressed.

2.1 Variables and Response

As mentioned, there are 70 variables present in the data set. The most important
variables and variable types are outlined here, whereas a full list of the variables
is provided in Table A.1 in Appendix A. This table also indicates what variables
are used in the data analysis and in the models trained in this thesis.

There are mainly two variables that are of interest as response variables in the
dataset: ’DC2Ind’ and ’RemaningLifetime’. The variable ’DC2Ind’ is an indicator
variable stating whether the customer in question defaults during the experiment,
and is equal to 1 if this is the case, and 0 else. ’RemaningLifetime’ states, for ac-
counts with DC2Ind=1, the number of days remaining until default occurs. For
accounts with DC2Ind=0, it simply states the remaining days until censoring or
the end of the experiment. For the task of simple binary classification or estima-
tion of probability of default, the variable ’DC2Ind’ is a clear choice for response
variable, typically to enter into some sort of cross-entropy loss function, which will

5
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be discussed later in the thesis. However, when trying to predict the time until de-
fault occurs, it is useful to include the ’RemaningLifetime’ variable, and somehow
incorporate this into a loss function which is suited for this type of predictions. As
we will see, this is a bit more of an intricate matter, partly due to the variable only
providing complete information for the accounts that actually do default; for the
ones that do not, we only know that they had not yet defaulted by the time the
experiment was ended.

The remaining variables will be used as potential covariates in the models that are
developed. They can be split into two main categories: customer profile inform-
ation and customer transaction data. The first category includes variables such
as the customer’s unique account number, the age of the customer, how many
months since the account was created and what credit card product the customer
uses. There are 15 variables in this category, 11 of them categorical and 4 of them
numerical. Several of these will not be included in the models or data analysis,
as they are non-informative in the sense that they do not contain any information
about the customers’ behaviour. The account number and the date at which the
account was created are examples of such variables.

The second category includes variables such as account balance, amount that is
overdue, number of cash withdrawals and spending on different types of products
and services. This category includes 53 variables, 4 of which are categorical, the
rest are numerical. Some of the variables in this category are cumulative, and
there is some variation as to how these behave. For instance, the variable ’BAL-
ANCE_AMT’ will remain constant until the customer makes use of their credit
card, i.e. makes a purchase, transaction or withdrawal, or pays down some or all
of their credit card balance. Meanwhile, the variable ’OVERDUE_AMT’ will only
change whenever a credit card down payment is due, in which case it will increase,
decrease or remain constant depending on how much of the balance is paid by
the customer. Other variables provide only the single-day expenditure within cer-
tain categories, so there may be no pattern between their values from one day
to the next. Among these categories are international cash withdrawals, airline
expenditure, retail expenditure and fees.

The dataset is created in such a way that all subjects have observations from the
day the account in question is opened to the end of the experiment, or until cen-
soring. This applies regardless of whether the subjects experience a default event
or not. Due to this, the ’RemaningLifetime’ variable has negative entries for any
subject that defaults during the experiment. These negative entries start occurring
after the subject defaults. The information provided in these entries is naturally of
no use, as the subject has already defaulted, and is thus no longer a customer of
the bank, and cannot use their credit card. For this reason, these negative entries
are removed from the dataset, so that customers that default do not have obser-
vations after they experience the default.
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2.2 Imbalance of Dataset

Regarding the response variable ’DC2Ind’, there is a clear imbalance in the data-
set, in that there are significantly fewer observations of customers that end up
defaulting than customers that do not. Imbalanced datasets are known to give
rise to a number of challenges when applying machine learning methods (Kuhn
and Johnson, 2013). Table 2.1 gives an overview of the numbers and percentages
of defaulters and non-defaulters in the dataset.

Number Percentage
Defaults 1597 14.1%

Non-defaults 9709 85.9%

Table 2.1: Number and percentage of customers that do/do not experience de-
fault during the experiment.

There are several ways to attempt to remedy these problems, such as random
over- and undersampling (Brownlee, 2020a). However, this thesis will not make
use of such methods.

When dealing with imbalanced datasets, one has to be aware of the consequences
the imbalance has on performance metrics. Consider for instance the quite com-
mon metric of accuracy, that is,

RA(y, ŷ) =
1
n

n
∑

i=1

I yi= ŷi
, (2.1)

where

I yi= ŷi
=

¨

1, ifyi = ŷi

0, ifyi 6= ŷi
(2.2)

is the indicator function. Assume the dataset in question consists of n = 1000
samples, 900 of which belong to class 0, and 100 of which belong to class 1.
Consider a classifier which is highly biased towards the majority class, and assume
it correctly classifies 890 of the samples from class 0, and 5 of the samples from
class 1. The reported accuracy of the model would then be 0.895, which would
give the indication that the model is performing fairly well. However, the model
only correctly classifies 5% of the samples from class 1. In the setting of defaults,
this could for instance indicate that around 95% of the customers that are at risk
of default will not be detected. When the case is such that the minority class
is the class we are mainly interested in, it is clear that a different metric, one
which addresses the low true positive rate of the classifier, is required. Two such
metrics are the balanced accuracy and Matthews correlation coefficient, which
are presented here, based on Brodersen et al. (2010) and Chicco and Jurman
(2019), respectively. The balanced accuracy is quite simply the arithmetic mean
of sensitivity and specificity,
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RBA(y, ŷ) =
1
2

�

T P
T P + FN

+
T N

F P + T N

�

. (2.3)

Here, T P denotes the number of true positive observations, T N the number of true
negatives, F P the number of false positives and FN the number of false negatives.
The rationale behind this formulation is that the accuracy is calculated within
each class, and then the average of these is reported as the overall performance of
the model. Considering again the above example, the balanced accuracy score of
that classifier would be 0.52. This naturally needs to be seen in connection with
the specificity and sensitivity, as otherwise there is no way of knowing whether
the model performs well on one class and poorly on the other, or if it performs
similarly to random guessing for both classes.
Matthews correlation coefficient is given by

RMCC(y, ŷ) =
T P · T N − F P · FN

p

(T P + F P) · (T P + FN) · (T N + F P) · (T N + FN)
. (2.4)

This metric ranges from -1 to 1, where -1 is the "worst" value, corresponding to
misclassification of every single sample, and 1 is the "best" value, corresponding to
perfect classification of all samples. A value of 0 corresponds to random guessing.
In the above example, the classifier in question obtains a Matthews correlation
coefficient of 0.096. Matthews correlation coefficient has been reported to be a
reliable measure for machine learning on imbalanced datasets, as it gives a good
score only if the model obtains good results in all four confusion matrix categories,
that is, a reasonable amount of true positives, true negatives, false positives and
false negatives (Chicco and Jurman, 2019). In this thesis, it will be used as the
main metric for evaluating classification models.

Table 2.2 shows how many defaults that occur within seven selected time inter-
vals. The first default takes place after 78 days, and the last one takes place after
684 days. Notice in particular the number of defaulters between day 100 and 150,
which is higher than the number of defaulters in any of the other intervals.

Days 77-100 100-150 150-200 200-300 300-400 400-500 >500
Defaults 194 439 157 323 216 171 97

Table 2.2: Number of defaults that occur at selected time intervals.

As can be seen from Table 2.3, half of the customers that experience a default do
so in the first 204 days of their customer relationship, and more than 75% default
within the first year. This indicates that the model needs to be evaluated using
data from early in the customer relationship, as to make sure it is able to make
sound predictions also for customers who default relatively early.
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Statistic Days
Mean 240
Std 141
25% 113
50% 204
75% 336

Table 2.3: Some summary statistics of the survival times of uncensored observa-
tions. The percentages indicate the number of days at which a certain percentage
of the uncensored observations have experienced a default event.





Chapter 3

Theory

The purpose of this chapter is to give an introduction to the theory relevant to the
methods used in the thesis. The first section gives an overview of some important
concepts in the field of survival analysis, and introduces the notion of a discrete
time model, which will be utilized later. The second section focuses on neural
networks, and provides an overview and walk-through of their key concepts. In
particular, this is where the idea of recurrent neural networks and LSTMs, which
are integral to this thesis, will be introduced. Throughout this chapter, we will try
to stay true to a notation where regular lowercase letters such as l, m and n are
scalar quantities, boldface lowercase letters such as b,h and x are vectors, and
boldface uppercase letters such as A,C and W are matrices.

3.1 Survival Analysis

The general objective of survival analysis is to model the time until the occur-
rence of some event. This time is often referred to as the failure time, survival
time, lifetime or simply event time. Letting T denote the stochastic variable for
survival time and assuming for the current time being that this is continuous, it can
be characterized in terms of its probability density function f (t) and cumulative
density function F(t) = P(T ≤ t), for t ≥ 0. Assume in this section that we have
a dataset consisting of N observations on the form (zi , yi , x i1, x i2, . . . , x id), where
zi denotes the observed survival time, yi is a binary censoring variable indicating
whether the subject experiences an event during the time of the experiment, and
x i j is the value of covariate j for subject i, where j ∈ {1, 2, . . . , D}, meaning D
covariates are present.

3.1.1 Survival Function and Hazard Rate

The survival function and hazard rate are important concepts in the field of sur-
vival analysis. They are two fundamental quantities which play essential roles in
the field (Kleinbaum and Klein, 2005). The survival function can be thought of as
a means through which one can express the cumulative density function of T ,

11
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S(t) = 1− F(t) = P(T > t). (3.1)

It gives the probability that an event has not yet occurred at time t, or equivalently
when considering death events, the probability that the subject is still alive at time
t. It is assumed that all subjects live past t = 0 and that the cumulative probability
of an event increases towards 1 as t increases, that is, S(0) = 1, S(t) is monoton-
ically decreasing and limt→∞ S(t) = 0. These assumptions are quite reasonable
from both a practical perspective and from assumptions that are usually made
about the cumulative density function, namely that it is a monotonically increas-
ing function which approaches the value 1 in the right limit. To also address the
practical perspective, we would naturally expect that if we observe a subject over
time, the probability that the subject experiences an event during this time would
increase if the time interval over which the subject is observed becomes longer.

Besides the probability that a subject will still be alive at any time t, an interesting
quantity is the instantaneous risk or rate of an event. This quantity is known as
the hazard function, and it is defined by,

h(t) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t)
∆t

=
f (t)
S(t)

. (3.2)

As it is put in Kleinbaum and Klein (2005), the hazard function gives us the in-
stantaneous potential per unit time for the event to occur, given that it has not yet
occurred by time t. In contrast to the survival function, no particular assumptions
are made about the hazard rate, and its shape could be largely dependent on the
problem at hand.

The hazard and survival functions are connected through

S(t) = e−
∫ t

0 h(u)du = e−H(t), (3.3)

where H(t) =
∫ t

0 h(u)du is known as the cumulative hazard function.

3.1.2 Censoring

Given that survival data is gathered on a total of N subjects from an experiment
starting at time t0 := 0 and ending at time t f , it is possible that not all sub-
jects experience an event before the experiment has ended. Furthermore, subjects
may exit the experiment before it has ended, also without having experienced
an event. This motivates the definition of a censored observation: an observation
whose value is incomplete due to random factors for the subject (Hosmer et al.,
2008). Observations of this this type are said to be right censored. It is assumed
that censoring is independent of the event in question, and of the censoring and
survival status of other subjects. What this means is basically that the knowledge
of the event’s existence or potential to occur does not affect the subject’s decision
to stay in or leave the experiment, and that the subject is not influenced by other
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subjects’ death, survival or leaving the experiment. As is understood from the
definition, for a censored observation we do not know the true event time. All we
know is that the subject had not experienced an event at the time it left the ex-
periment or the experiment was concluded. The importance of this becomes clear
when considering what loss function to minimize in the model training routine, as
many loss functions use the ground truth directly in order to evaluate the model
performance.

3.1.3 Discrete Time Model

In many situations, including the one explored in this thesis, time is viewed in
discrete intervals. This follows naturally from the finite precision of time observa-
tions. Time is then separated into slices, where each slice represents one time unit.
This unit can correspond to any duration of time, e.g. a day, a week, a month etc.
Slice i is then denoted by t i , giving us a series of slices t0 < t1 < ... < tL , where
L ∈ N. The extension of the survival function to the discrete case is straightfor-
ward,

S(t l) = P(T > t l) =
∑

i>l

P(T ∈ t i), (3.4)

where P(T ∈ t i) gives the probability that an event occurs at time t i , i.e. on the
ith day or during the ith week, for instance. This probability can be rewritten in
terms of the discrete survival function as

pl = P(T ∈ t l) = S(t l−1)− S(t l). (3.5)

Using this and Equation 3.2, the hazard rate in the discrete case can be defined
as the conditional probability that an event occurs at time t l given that it had not
occurred by time t l−1,

hl = P(T ∈ t l |T > t l−1) =
P(T ∈ t l)

P(T > t l−1)
=

pl

S(t l−1)
. (3.6)

Note that the hazard function is now defined as a probability, and thus it takes on
values between 0 and 1. Also note that if we increase the number of time slices,
the difference t l − t l−1 = ∆t becomes smaller and approaches zero in the limit,
resulting in our original definition of the hazard rate in the continuous case.

3.1.4 Performance Metrics for Survival Analysis Models

When evaluating the performance of a survival analysis model, one usually looks
at two aspects: discriminatory abilities and predictive abilities, where the latter
is also known as calibration. Discrimination refers to a models ability to separate
subjects with different survival times (Harrel et al., 1996). Roughly speaking, a
model has good discriminatory abilities if it in general predicts a shorter remain-
ing lifetime the shorter the true remaining lifetime of the subject, and a longer
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remaining lifetime the longer the true remaining lifetime of the subject. A com-
mon metric for assessing these abilities is the concordance index, or C-index, and
to understand this metric, we need to introduce the concept of concordance. Let
zr denote the true survival time of a subject r, and let ẑr denote the predicted
survival time of the same subject. A pair of subjects (r, s) is said to be concordant
if it holds that if zr < zs, then ẑr < ẑs. In other words, if the observed survival
time of subject r is smaller than that of subject s, then the model has to predict a
shorter survival time for subject r than for subject s for the pair to be concordant
(Harrel et al., 1996). What the C-index expresses is the percentage of concordant
subject pairs. It is defined by

C =
C Pa+ 0.5 · T Pa

PPa
, (3.7)

where Pa is short for "pairs". Here, C Pa denotes the amount of concordant pairs of
subjects, T Pa denotes the amount of tied pairs (pairs where the predicted survival
times are equal) and PPa denotes the total amount of possible pairs. For a pair of
subjects to be possible, at least one of them must have experienced an event. That
is, if a dataset consists of two subjects that experience an event and three that
don’t, then there are 7 possible pairings that include at least one of the subjects
that experienced an event, and thus PPa = 7 in this case.

The predictive abilities, or calibration, of a model refer to the quality of the dif-
ferent predictions relative to the value they are trying to predict. Simply put, a
model has better predictive abilities the closer the predictions are to the true val-
ues. Given a subject r with lifetime zr , a model exhibits strong predictive abilities
if |zr − ẑr | is small relative to the number zr . When considering predictive abil-
ities, it is important to recall that there only exists a complete ground truth for
the uncensored observations. For the censored observations it is only known that
the true lifetime is longer than the one observed, and thus it can be difficult to
find meaningful metrics for these observations. For now, we omit the censored
observations and focus on metrics that can be applied to the uncensored ones.
Assume there are M uncensored observations in the considered set. One perform-
ance metric which immediately comes to mind is the mean absolute error, defined
by

MAE=
1
M

M
∑

i=1

|zi − ẑi|, (3.8)

where zi is the observed remaining lifetime and ẑi is the predicted remaining
lifetime. The mean absolute error gives an indication of how far from the truth the
predictions are on average, and it can work well if the values that z can have are
contained in a relatively small interval. Consider that we have five observations
with remaining lifetimes 10, 13, 17, 20 and 150 days, and assume the model
has predicted remaining lifetimes of 5, 7, 8, 10 and 100 days. This gives an MAE
of 16, which is a misleading number for several reasons. First of all, only one
of the absolute errors is actually larger than 16. This could lead to the model
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getting disregarded as too imprecise, when actually, the first four predictions are
quite close to their targets, and could, depending on the context, be acceptable
predictions. Secondly, the number gives no indication of whether our model in
general predicts too small or too large values. Thirdly, it does not take into account
the size of the error relative to the true values. In the example, the predicted value
of 100 is 50 away from its target, and is thus the prediction that draws the MAE
up to a high value. However, relative to its target, it is actually the best of the five
predictions. This brings us to the next candidate performance metric, the mean
relative absolute error,

MRAE=
1
M

M
∑

i=1

|zi − ẑi|
zi

. (3.9)

The mean relative absolute error gives an indication of how large the error in the
prediction is relative to the target value. If it is equal to 0, the prediction is perfect,
and the further from 0 it is, the further the prediction is from the true value. If it is
equal to 1, the prediction is twice as large as the true value (or equal to 0, however
in this case something is likely to be wrong with the model). In our example, we
would get an MRAE of 0.46, which more clearly expresses the fact that we have
four predictions that deviate from the true value by around half of this value. An
advantage of MRAE over MAE is that it will be less affected by the presence of
outliers.

A drawback of both performance metrics introduced thus far is that, when applied
naively to an entire dataset where the truth value varies over a large range, they
do not explain in which regions the model performs well or badly. An MRAE of 0.5
could result from the model predicting values whose deviation from the true value
is generally 0.5 times the true value, or it could result from a model predicting
progressively worse for increasing remaining lifetime. In the case of prediction of
credit card default times, the latter phenomenon is likely to occur.

One metric that is suggested to use for survival data is the Brier score. A major
advantage of the Brier score is that it can be adapted to also include censored
observations. For right-censored data, Graf et al. (1999) proposed to use a Brier
score weighted by the inverse probability of censoring. Now letting t i denote the
survival time for subject i, this Brier score can be expressed as

BS(t) =
1
N

N
∑

i=1

� Ŝ(t|xi)2 It i≤t,yi=1

ŜC∗(t i − |xi)
+
(1− Ŝ(t|xi))2 It i>t

ŜC∗(t|xi)

�

, (3.10)

where Ŝ(t) is an estimate of the survival function at time t, ŜC∗(t) is an estim-
ate for the censoring probability at time t and t i− is the time right before time
t i . Note that some of the notation here is borrowed from Kvamme (2019), who
also provides some discussion around the Brier score as well as other evaluation
metrics for survival analysis. Unfortunately, as will be explained in Chapter 4, the
Brier score does not quite seem to suit our model.
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3.2 Neural Networks

Artificial Neural Networks (ANNs) constitute a branch of methods within machine
learning which have enjoyed an immense growth in popularity over the last dec-
ades. Advances with regard to these methods have been made within several
fields, particularly in image recognition, natural language processing and com-
puter vision, where the so-called multi-layered versions of ANNs have greatly
outperformed state-of-the-art methods. Neural networks draw their inspiration
from biological neural networks that exist in the bodies of many living creatures,
maybe most interestingly in humans.

In this and the following section, the basic principles of deep (and shallow) neural
networks are introduced and explained to some degree. This particular section
focuses on the central components in a neural network, and how these can be
arranged into what is known as different architectures. It holds a greater focus on
architectures for what is known as Recurrent Neural Networks (RNNs), as these
are the ones used to obtain the results in the thesis. As this thesis is more result-
oriented and does not base itself upon any particularly new theoretical results, the
concepts will be explained quite briefly, and much of the rigorous mathematical
derivations and foundations will merely be omitted. One of the primary references
used in the chpater is Goodfellow et al. (2016), which has good explanations
of many deep learning methods. The relevant theoretical foundations are also
covered here. For those interested in further reading on machine learning and its
foundations, the books by Hastie et al. (2008) and Shalev-Shwartz and Ben-David
(2014) are proposed as reading material.

3.2.1 Feedforward Neural Networks and the Multilayer Perceptron

One of the first modern neural networks that were introduced was the Rosenblatt
perceptron (Rosenblatt, 1958). It was inspired by neurons in the human body,
and in particular by the idea that a neuron could be modelled using a threshold
for when it would fire (McCulloch and Pitts, 1943). Later, the idea of the multi-
layer perceptron (MLP) was introduced, essentially placing several perceptrons
after one another in a layered structure. As explained in Du and Swamy (2013),
MLPs are what is called universal approximators for non-linear functions, meaning
they can approximate any non-linear function to an arbitrary degree of precision.
The multi-layer perceptron is a class of what is called feedforward artificial neural
networks. These networks have a structure which is logical and quite easy to grasp,
and they make for a good introduction to the components that are central to any
neural network, as well the most common mathematical operations that take place
in neural networks.

A neural network can be said to have three essential components: weights, biases
and non-linear functions. What the network actually does is calculate weighted
sums of its inputs, shift the results and apply non-linear transformations. One
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common representation of neural networks is in the form of a graph, as can be
seen in Figure 3.1. The graph consists of nodes and edges, where nodes represent
computational units and edges represent the paths along which information flows.
Usually, each node is defined by the composition of a non-linear function, known
as an activation function, with an affine-linear transformation as

f (x;w, b) = σ
� d
∑

i=1

wi x i + b
�

= σ(wT x+ b). (3.11)

Here, x ∈ Rd is an input vector, w ∈ Rd is a weight vector and b ∈ R is a bias term.
The activation function σ is a non-linear function which is applied element-wise
to its input. Common activation functions are the sigmoid, hyperbolic tangent and
ReLU functions, which are defined by

sigmoid(x) =
1

1+ e−x
(3.12)

tanh(x) =
e2x − 1
e2x + 1

(3.13)

ReLU(x) =max(0, x) (3.14)

One or more nodes together make up one layer of the neural network, where each
node performs an operation similar to that in Equation 3.11, only with different
sets of weights. Note that the summation need not be over all i ∈ {1,2, ..., d}; it
is easy to imagine that a node would only incorporate certain parts of the input
vector, denoted by an index set I ⊆ {1, 2, ..., d}, and thus have a weight vector w ∈
R|I|, where |I| denotes the number of elements in the index set I. For simplicity,
this section will assume that all layers are fully connected, i.e. all nodes in one
layer receive input from all nodes in the previous one. The output from a single
layer can then be expressed as

f(x;W,b) = σ(Wx+ b) (3.15)

where now, W ∈ Rn×d denotes the weight matrix (we accept a slight deviation
from our standard notation here) and b ∈ Rn denotes the bias vector. Note that
what is being described here is a layer with n neurons, with each neuron receiv-
ing an input in the form of a vector of dimension d. Defining the vector-valued
function gl(x;W,b) =Wlx+ bl , where Wl is the weight matrix and bl is the bias
vector for the lth layer, the final output of a neural network with L layers is a
composition of operations,

f(x;W,b) = (σo ◦ gL ◦σ ◦ gL−1 ◦ . . . ◦σ ◦ g1)(x;W,b). (3.16)

Here, W = (W1,W2, ...,WL) is a vector containing the L weight matrices, and
b = (b1,b2, ...,bL) is a vector with the L bias vectors as columns. The activation
function of the last layer, which is the output layer, is denotedσo, as this activation
function may be different from the ones used in the other layers. Of course, one
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Figure 3.1: Illustration of a simple fully connected ANN. Wi and bi , i ∈ {1, 2,3},
denote the weights and biases, respectively, of the hidden and output layers.

could also have different activation functions between different layers, however
to keep it simple it is for the moment assumed that all layers except possibly the
output layer have the same activation function.

A simple fully connected neural network is illustrated in Figure 3.1. The values in
the hidden and output layers are computed through an affine-linear transforma-
tion followed by a non-linear transformation. For instance, the values in the first
hidden layers are computed through z1

i = σ((w
1
i )

T x + b1
i ). The subscript gives

the bias or vector of weights specific to hidden node i. The attentive reader may
have noticed that the words "node" and "neuron" seem to be used interchangeably
here, and to make it clear, we are referring to the exact same thing when using
either of these words.

So in short, what a neural network does is to implement a composition of affine-
linear transformations and non-linear activation functions. The inclusion of non-
linearity through the activation functions gives neural networks increased flexibil-
ity, precisely in that it allows the network to capture non-linear effects between the
variables. A composition consisting only of affine-linear transformations would
just be a new affine-linear transformation, as can easily be seen by composing,
say, the function h1(x) = Ux+ a with the function h2(x) = Vx+ b,

(h1 ◦ h2)(x) = h1(h2(x)) = U(Vx+ b) + a= UVx+Ub+ a=Wx+ c,

defining UV =W and Ub+ a = c. Thus, without activation functions, neural net-
works would simply implement a regular linear regression. Activation functions
also play another role in neural networks, which is the reason why they are called
activation functions in the first place. They mimic the effect of action potentials
in biological networks, in that they make neurons "fire" upon sufficient activation
(Barnett and Larkman, 2007). In practice, this is done by designing the activation
functions in such a way that they output larger values when their input is larger,
i.e., they are monotonically increasing (or at least non-decreasing) functions. One



Chapter 3: Theory 19

useful function for getting an intuition of how this works is the sigmoid function,
defined as

σs(x) =
1

1+ e−x
. (3.17)

The sigmoid function ranges from zero to one and is monotonically increasing.
In other words: the larger the value of the input, the closer the output value is
to one. This can be interpreted as the neuron (or node) being "activated" when
the output from the affine-linear transformation is large, and it being "turned off"
when this value is small. This suggests a neat effect where a neural network can
train its weights in such a way that the most relevant neurons achieve the highest
degree of activation upon any input.

3.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural network architectures that are con-
structed to be able to effectively handle sequential data, that is, data with obser-
vations of the same variable at different times. In this type of data, the way in
which a variable changes over time might be of interest, not only the value of
the variable itself. RNNs attempt to capture such effects by "remembering" data
from earlier in the sequence when dealing with data later in the sequence. In-
terestingly, whereas fully connected, feed-forward neural networks are universal
approximators of non-linear functions, recurrent neural networks are universal
approximators of dynamical systems (Du and Swamy, 2013), which gives an in-
dication of the vast range of tasks that RNNs can be appropriate for. For instance,
they have been highly successful in tasks such as speech recognition, image cap-
tioning and natural language processing (Graves et al. (2013), Wang et al. (2016),
Yin et al. (2017)).

To talk about RNNs and how they treat data at different time steps, we have to in-
troduce the idea of a network’s state, or cell state. A cell is simply a computational
unit with an associated set of weights. The cell state is then the output of a given
cell at any time. The key to capturing time effects lies in what is called feedback
connections, which is a way of feeding the previous state of the network into its
current state. Before the previous state is fed into the current one, it undergoes a
transformation using a separate set of weights which is associated with the feed-
back connection. The result of this transformation is known as the hidden state.
Henceforth we will denote the cell state of cell t in layer m by Am

t , and the hidden
state based on this cell state by hm

t .

The idea of an RNN is visualized in Figure 3.2, where the network has been un-
rolled in time. That means that the feedback connections are indicated by the
arrows going sideways, which might seem a bit confusing at first, but which can
be understood as them feeding "old" information forwards in time. The network
in the figure has L layers and goes over n time steps. This can be interpreted as the
network having n cells in each layer. Cells in the same layer share the same two



20 H. A. Holte: Surv. Analysis w DRNNs for Prediction of Credit Card Defaults

sets of weights: Wli , i ∈ {1,2, ..., L}, and Wh. This parameter sharing is essential
to the model’s ability to generalize information from different time steps (Good-
fellow et al., 2016). Note that the biases b have been left out for visualization
purposes.

Figure 3.2: Illustration of a layered RNN. The arrows indicate the flow of inform-
ation in the forward pass. For visualization purposes, the biases b have been left
out.

For RNN cell t in layer m, the output computed is

Am
t = tanh(WlmAm−1

t +WhAm
t−1), (3.18)

and the hidden state is given by

hm
t =WhAm

t . (3.19)

Note that it is often usual to denote the output from regular RNNs by h, and talk
only about the hidden state, rather than a hidden state and a cell state. In this
section we have deviated slightly from this notation, which does not change the
number of sets of weights or what operations are performed during the forward
(or backward) pass. Now, some confusion might arise here regarding the inform-
ation flow in the RNN, so we will take a moment to try and clear up some of this
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confusion. The cell state Am
t is the value computed by the network in cell t, or at

time step t, and in layer m. It is computed based on inputs "coming from below"
and "coming from the left" in Figure 3.2. The input coming from below is either
the vector of model covariates x (if m= 1) or a scaled version of the previous cell
state, WlmAm−1

t (if m> 1), where Am−1
t is the previous cell state. The input coming

from the left is the hidden state hm
t−1 =WhAm

t−1. After the cell state Am
t has been

computed as in Equation 3.18, it is passed out of the cell in two directions: up-
wards and to the right. The output going upwards is scaled by the weights Wlm+1 ,
and the output going to the right is scaled by Wh. After scaling, the value going to
the right is what we have defined as the hidden state hm

t in this section. For t = 1,
i.e. for the first time step, the hidden state is initialized in some pre-determined
way. Often, it is simply set to zero.

3.2.3 Long Short-term Memory Networks

Long short-term memory units (LSTMs) were first introduced by Hochreiter and
Schmidhuber (1997). They are a type of RNNs that are designed to handle two
problems occurring in RNNs: the problems of vanishing gradients and long-term
dependencies. The latter is a phenomenon where information can get lost during
the many iterations of an RNN. The main consequence of this is that if an obser-
vation made at time t might be of importance together with an observation made
at a later time t + s, the network will not capture this importance because it has
"forgotten" the information from time t during the intermediate time s. The LSTM
architecture amends this problem by having a kind of gated structure, where each
gate has a certain task. These tasks will now be explored in some more detail.
When working with LSTMs, it is common to denote the hidden state at time t by
ht , as we did for RNNs in the previous section, and the cell state at time t by Ct .
We follow this notation in this section.

One example of how an LSTM cell is often structured is shown in Figure 3.3.
The equations behind the different quantities are given below. For the sake of
simplicity, the superscript indicating the layer is dropped. This type of LSTM cell
uses one of the most common architectures for this type of cell, and it is made up of
three gates: the forget gate (output ft), the input gate (output it) and the output
gate (output ot). All the three gates get the same input, which is the previous
hidden state ht−1 and the data xt . The role of the forget gate is to decide what parts
of the previous cell state to discard and what parts to keep. Its output is determined
by a sigmoid function, and so it is between 0 and 1. Thus, when performing the
elementwise multiplication Ct−1� ft , parts of the previous cell state Ct−1 are kept
to a larger degree the closer its corresponding element in ft is to 1. The input gate
has a quite similar role, as it decides what parts of the cell state will be updated.
Just like for the forget gate, this is done through the use of a sigmoid function,
followed by an elementwise multiplication with the cell state update vector gt .
The resulting vector is then added to the previous cell state to create the current
cell state, Ct . A tanh activation function is then applied to the cell state before it
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is passed through the output gate. Finally, the role of the output gate is to decide
what parts of the updated cell state to output from the cell. Again, this is done
through the use of elementwise multiplication with the output from a sigmoid
function. For an LSTM network with multiple layers, xt is simply replaced with
the output from the corresponding cell in the previous layer, i. e. with ht . The
equations for calculating the outputs at different points in the LSTM cell are given
below. In these equations, we let Vt denote the weights used to scale the input
coming from below in Figure 3.3, and Wt denote the weights used to scale the
input coming from the left. The superscripts simply follow the symbol given to the
different functions.

ft = σ
�

b f
t +V f

t xt +W f
t ht−1

�

(3.20)

it = σ
�

bi
t +Vi

txt +Wi
tht−1

�

(3.21)

gt = tanh
�

bg
t +Vg

t xt +Wg
t ht−1

�

(3.22)

Ct = Ct−1 � ft + it � gt (3.23)

ot = σ
�

bo
t +Vo

t xt +Wo
t ht−1

�

(3.24)

ht = tanh
�

Ct � ot

�

(3.25)

Here, the quantity denoted by C̃t in the figure is given the name gt for simplicity
and readability. Note that the subscript t indicates the time step, and is not meant
to be an index. The operator � denotes elementwise multiplication.

Figure 3.3: Illustration of an LSTM cell. The arrows indicate the flow of inform-
ation in the forward pass.

3.3 Training a Neural Network

When constructing a neural network in order to perform a task, as with all other
machine learning methods, the network needs to be trained. The performance
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of the network will depend heavily on the training routine; how the data is pre-
processed, what loss function is chosen and what optimization algorithm is used,
to mention a few elements. There is also the problem of hyperparameter tuning,
which is an entire field of study in and of itself. This section explores the most
important concepts of the neural network training procedure. It looks at the basics
of the forward and backward pass, which are the main ingredients of training a
neural network, as well as some other concepts that are often applied to make the
training faster or better.

3.3.1 The Purpose of Training and the Problem of Overfitting

Clearly, the main objective of training a neural network is to make it as skilled as
possible at solving a task, whether it is recognizing specific figures in an image,
classifying a tumor or predicting time to default for credit card customers. As with
most machine learning algorithms, this is done through the minimization of a loss
function L which is determined beforehand, and which is somehow connected
to the task the network is set to perform. Thus, the main objective of a neural
network training procedure is simply to minimize some function. Easy, right? Well
yes, but actually no. First of all, this minimization is usually very difficult, and has
to be performed numerically on a huge parameter space. Secondly, there is the
problem of overfitting, a very well known issue in machine learning. Overfitting
occurs when a model "memorizes" the training data, rather than learning from
it. There is no point in training a model if it does not generalize, i.e. if it is not
able to make reasonable predictions on new data. In the case of neural networks,
overfitting often occurs when the model is trained for too long. Fortunately, there
exists several methods for avoiding overfitting, one of which is very simple and
intuitive, and which is a key ingredient to training a neural network. Let’s take a
quick look at the general training procedure and how this gives rise to the method
advertised.

The procedure of training a neural network is usually an iterative process. First,
the data at hand is divided into three parts: training, validation and test sets. The
data from the training set is then repeatedly passed through the network in what
is known as the forward pass. Each forward pass is followed by a backward pass,
which is the procedure that allows the model to actually learn and improve its
predictions. Each pass through the whole training set is known as an epoch, and
at the end of each epoch, a loss value is calculated. If the loss value after one epoch
is lower than it was after the previous one, this is a sign that the model has made
progress in its learning. Therefore, to be able to ensure that the model is actually
learning, these losses are plotted, resulting in what is called loss curves. Loss curves
having a decreasing tendency is thus a sign that the training is going properly.
Now, overfitting usually occurs when the model has "seen" the training data too
many times, and mostly starts memorizing the training samples. Naturally, the
model will then achieve ever better performance on the training set, meaning the
training loss will keep decreasing. However, what we want is for the model to
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Figure 3.4: Example of loss curves. The blue curve indicates the training loss,
and the orange curve indicates the validation loss. The dashed red line intercepts
the validation loss curve at its lowest value.

perform optimally on unseen data. This is where the importance of the validation
set becomes clear. In addition to tracking the loss on the training set, we could
also track the loss on the validation set, and use this as an indicator for when the
model starts overfitting. The model does not learn anything from the validation
data, as no backward pass is performed during validation, so there is no danger
of the model overfitting to these observations. The strategy is then to monitor
the validation loss, and as long as it decreases, the model is getting better at
generalizing to unseen data. When the model starts overfitting, its performance
on unseen data will start to decrease, and the validation loss will start increasing.
Thus, if we cut off training just as the validation loss starts to increase, we avoid
overfitting and get a model that (hopefully) generalizes well to unseen data. This
process is visualized in Figure 3.4, where the dashed red line indicates the time
during training where the validation loss attains its minimum.

Usually when training a neural network, one will manually set a number of epochs
for the model to go through. From the reasoning above it is clear that the min-
imum value for the validation loss may be obtained before the network has gone
through all of its planned epochs. The process of stopping training earlier than
initially planned has its own, very apt name. It is called early stopping, and can be
implemented in a number of ways, but the simplest one is to stop training when
there has been no improvement in the validation loss for a certain number of iter-
ations. Another way is to set some minimum required improvement ∆L and stop
training if no such improvement has occurred over a certain number of iterations.

3.3.2 Data Preparation for Neural Networks

The first task of any machine learning procedure is to process and engineer the
data in a way that makes it possible for the model to operate on and learn from it.
In the case of neural networks, this often involves scaling the data, either through
normalizing it to lie within some range, or to standardize it. This is particularly



Chapter 3: Theory 25

important when dealing with multiple explanatory variables that have different
scales or value ranges. Scaling has also been shown to promote model perform-
ance when the range of the variable in question is large, e.g. from 0 up to 1000s
(Brownlee, 2019b). Some neural networks require their input data to be scaled
in a certain way, while others simply benefit from it. The main contributions of
scaling is to make the parameter estimates more stable, make training and con-
vergence faster and avoid hurting the learning process due to different scales in
the variables.

3.3.3 Weight Initialization

When starting to train a neural network, its weights need to be initialized with
some starting values in order to do the first forward pass. This can be done in mul-
tiple ways and has a large impact on training. Intuitively one would, if possible,
initialize the weights in such a way that they would lie in the vicinity of the global
minimum of the objective function. However, when dealing with neural networks,
the parameter space is often extremely large, and the objective quite complex, so
that this information is usually not available. It can also happen that the algorithm
does not terminate in a local or global minimum, or even that no global minimum
exists (Goodfellow et al., 2016). So why care about weight initialization? Because
the weights are important for a reason different than just explaining where on the
objective surface the algorithm’s current value is. Neural networks are trained us-
ing gradient-based optimization, and the weights are involved in this process. For
instance, initializing all weights as the same value will lead to all hidden layers
computing the same function. This leads to a lack of what is known as symmetry
breaking, which is necessary for the two layers to learn different aspects of the
dataset, which is the main motivation for using multi-layered networks. In other
words, the layers need to have different initial parameters. This leads to the idea of
initializing with random values, usually through the use of a zero-centered Gaus-
sian or uniform distribution. A further consideration is then what variance to use
in the distribution one is sampling from. A too small variance means the weights
are largely centered around 0, which can lead to the outputs growing smaller and
smaller throughout the layers of the network. This eventually leads to the gradient
of layer, say, j, wrt the weights of layer j−1 becoming small, thus ruining the gradi-
ent signal through the chain rule. A too large variance can lead to weights being
so large that activation functions such as the sigmoid and tanh saturate, meaning
they output many values that are outside of the main active area of their gradients.
By active area is meant the part or parts of the function where the gradient is sig-
nificantly different from zero. For the sigmoid function defined in Equation 3.17,
for instance, the active area of the gradient would be a small area centered around
x = 0, extending equally far on both sides to around x = ±2 or x = ±4. There is
no strict definition of what the gradient value needs to be for the argument to be
considered to be in the active area, however by looking at the sigmoid curve, one
can get an impression of what is meant by the expression. Saturation often leads to
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small gradients, and thus what is known as the vanishing gradient problem, where
gradients become smaller and smaller in value, approaching zero, and negatively
affecting the model’s ability to perform reasonable parameter updates. The choice
of variance in the weight sampling distribution is therefore important in order to
avoid this problem. One usual approach to decide what this variance should be is
to use so-called Xavier initialization. Xavier initialization seeks to enforce

Var(z) = Var(x), (3.26)

where z is the output from a layer taking x as its input. In other words, it seeks to
ensure that the variance of the output from one each layer is equal to the variance
of the input to this layer. This amounts to initializing the weights of layer i from
a Gaussian or uniform distribution with zero mean and variance 1/

p
ni , where ni

is the number of input neurons in layer i. What Xavier initialization accomplishes
is maintaining the gradient signal throughout the network, preventing vanishing
or exploding gradients in the deeper layers of the network, as explained in Glorot
and Bengio (2010). In this article, the uniform distribution is used as sampling
distribution.

3.3.4 Forward Pass

The forward pass is the most basic part of the neural network training procedure.
During the forward pass, input is fed into the network and passed through the
layers. Computations are performed at each node, and the resulting values are
then summed up, before an activation function is applied, as explained earlier
in this chapter. This acts as the output from one layer, and is then passed on to
the next layer. This is repeated until the output layer is reached, in which the
final outputs of the model are computed. These outputs are then compared to the
ground truth through the computation of the loss function value, usually simply
referred to as the loss. Very often, additional concepts such as batch normalization
and dropout are included during training in order to avoid overfitting or to avoid
problems such as vanishing and exploding gradients. These concepts often behave
differently when training and testing the model, and some of them are explored
later in Section 3.3.7.

3.3.5 Backpropagation and the Role of Gradients

After the forward pass has been performed, the model outputs have been pro-
duced and the loss value has been computed, the loss value needs to be used in
order to "inform" the network about how well its predictions compare to the true
values. The network, in turn, needs to update its parameters in a way that allows
it to make better predictions. This is done by computing the gradients of the loss
function with respect to the different parameters in the network. That is, we are
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interested in computing

dL
dwi jk

, for i ∈ {1,2, ..., L}, j ∈ {1,2, ..., ni}, k ∈ {1, 2, ..., d}. (3.27)

Here, the index i gives the layer of the weight, j gives the node in layer i the
weight is associated with and k gives the index of the input that the weight is
multiplied with. For networks with many layers, this might seem like a daunting
task at first. However, fortunately, the gradients can be computed easily through
the chain rule, which states that:

d f (g(x))
d x

=
d g(x)

d x
·

d f (g(x))
d g(x)

, (3.28)

i.e. the derivative of a composite function f (g(x)) with respect to the argument x
can be factorized in terms of the derivative of f with respect to g and the derivative
of g with respect to x . Applying this to Equation 3.27, we obtain

dL
dwi jk

=
dL
dzm
·

dzm

dzm−1
· .... ·

dz2

dz1
·

dz1

dwi jk
, (3.29)

where zl for l ∈ {1,2, ..., m} are the intermediate states that are computed in the
network. This is a crucial part of the backward pass through a neural network, and
is called backpropagation of gradients, since the gradients are computed starting
at the final layer of the network, and then passed backwards in order to compute
other gradients. For more material about backpropagation, see e.g. Goodfellow
et al. (2016).

3.3.6 Optimization and Stochastic Gradient Descent

The goal of optimization in machine learning models is usually to update the
model parameters, so that the model makes better predictions. Given some loss
function L, a ground truth value y and a model output ŷ , the objective of optim-
ization is to find the parameter values that solve the minimization problem

min
W,b

L( ŷ , y). (3.30)

Many models, including neural networks make use of gradient-based optimiza-
tion. The objective then is to try and find parameters such that the gradient of the
loss function is zero, i.e. such that ∇L = 0. Unfortunately, due to the large para-
meter space we are often dealing with, as well as the complexity of our model, it
is usually not possible to find an analytical solution to the optimization problem
3.30. Thus, numerical optimization is used instead. One of the simplest gradient-
based numerical optimization procedures, which is very often used when training
neural networks, is the gradient descent algorithm. It implements the iteration

θk = θk−1 − γ∇θL( ŷ , y). (3.31)
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Here, θk denotes the model parameters at step k of the algorithm, γ is known
as the learning rate and ∇θ denotes the gradient with respect to the parameters
θ . The idea of gradient descent is that by changing the parameter values such
that one goes in the opposite direction of the loss function gradient, the loss will
decrease as steeply as possible. The learning rate determines how far to go in this
direction before performing the parameter update, and it is in fact an extremely
important hyperparameter in all neural networks. By setting the loss rate too large,
an update step might overshoot and end up far beyond the minimum the algorithm
is headed towards. By setting it too small, training will take a long time. We will
come back to this parameter in Subsection 3.3.8. Like most other optimization
algorithms, gradient descent is usually iterated until convergence, which is often
defined by the condition ||θk − θk−1|| < ε for some chosen value of ε. Another
common stopping criterion is to repeat the algorithm for a certain number of
iterations before it is terminated.

When the training set is very large, which is often the case when neural networks
are used, computing the gradient becomes very expensive. This problem gives rise
to stochastic gradient descent, which involves computing the gradient based on only
a smaller subset of the training samples. This allows for more frequent parameter
updates, which again leads to faster convergence. The foundations of stochastic
gradient descent come from empirical risk minimization, which states that the
expected average loss on any subset of the training set is equal to the expected
average loss on the entire training set (Goodfellow et al., 2016). Using this prop-
erty, the network can be trained much more efficiently, with parameter updates
based on only a few training samples, rather than the entire dataset. The amount
of samples used to compute the gradient at each iteration is known as the batch
size, and usually consists of somewhere between one and a few hundred samples.
The batch size is one of the many hyperparameters of a neural network, and the
chosen batch size may have an effect on training. In general, larger batch sizes
will slow down training, but give better gradient approximations. Smaller batch
sizes mean the training is sped up, but the gradient approximations are worse.
Finding the optimal batch size is therefore of great interest to the programmer,
and will vary from network to network and problem to problem.

3.3.7 Additional Training Procedures, Dropout

As mentioned in Subseciton 3.3.4, additional procedures are often included in the
training of neural networks. These procedures are included with the purpose of
reducing training time, preventing overfitting or enhancing the efficiency of the
training procedure in other ways. Early stopping, which was mentioned in Sub-
section 3.3.1, is one example of such a procedure, and contributes to avoiding
overfitting. Other examples of additional training procedures are batch normaliz-
ation, weight decay and dropout. We will take a closer look at the last one, as it
is an interesting method which is quite easy to understand.
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Dropout in neural networks has as purpose to regularize the neural network, or
in other words, to reduce the chance of overfitting (Srivastava et al., 2014). The
way it works is that nodes are randomly dropped from training at each iteration,
meaning that they are essentially not part of the training procedure for that iter-
ation. As a result, the training is actually done on many different architectures,
rather than on one architecture alone. The reason why this is an advantage is that
combining several models nearly always improves performance, and is in and of
itself a type of regularization. The way dropout is implemented is that, during
training, each node is dropped out with a set probability p. As mentioned, the
dropped nodes are then excluded from the forward and backward pass during
the current iteration. When the neural network is to be validated or tested, no
nodes are dropped out, but the weights of the nodes are scaled down. The scaling
factor is decided by the probability that the node in question would be retained
during training (Srivastava et al., 2014). Notice that dropout introduces another
hyperparameter: the dropout probability, p.

3.3.8 Hyperparameters

Depending on what architecture, optimization routine and loss function is used,
there may be a very large amount of hyperparameters present when training a
neural network. Some actually concern the architecture itself, such as the number
of hidden layers or the number of nodes in each layer. Even the activation function
can be viewed as a hyperparameter. One of the most important parameters is the
learning rate (Goodfellow et al., 2016). As explained in Section 3.3.6, the learning
rate determines how large a step is taken in the gradient direction when this has
been computed. Finding the best possible learning rate is extremely helpful, as this
will contribute to reduce training time as well as improve the loss. The learning
rate is in a slightly unique position, in that one can get an impression of whether
it is too large or too small through loss curves (Brownlee (2019a)). If the learning
rate is too large, the loss curve will often have a sharp drop and then plateau after
quite few iterations. If it is too small, the loss curve will decrease very slowly. Thus,
loss curves can be of great help when tuning the learning rate.

Deciding on hyperparameter values can be a significant challenge. Setting the val-
ues manually requires insight into how the different parameters affect model per-
formance, as well as into how they interact. Even with extensive knowledge of the
hyperparameters and their effects, manually finding optimal values in the huge
parameter space can be difficult. This motivates the use of more structured and
comprehensible hyperparameter search methods, of which there are several types
to choose from. Two simple ones are grid search and random search, which are
both described in Goodfellow et al. (2016). Unfortunately, these types of searches
are often very time consuming procedures, as optimal hyperparameter values are
not necessarily independent of other hyperparameters. Because of this, not only
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all possible hyperparameter values, but also all possible hyperparameter combin-
ations, must be considered. For illustration purposes, assume we have three hy-
perparameters we want to optimize, and we start with five candidate values for
each hyperparameter. Rather than training the model 15 times, five for each hy-
perparameter, we would have to train the model 53 = 125 times. It is easy to see
how this procedure scales and becomes infeasible very quickly. Grid search also
requires a grid to be set, meaning the programmer should have some knowledge
of what parts of the parameter space are worth searching. More advanced meth-
ods exist within the field known as hyperparameter optimization. Examples are
Bayesian Optimization (Shariari et al., 2015) and Genetic Algorithms (Lambora
et al., 2019). Design of Experiments (DoE) and Response Surface Methodology
are also potential methods for use in hyperparameter tuning (Weihs et al., 2006).



Chapter 4

Method

The aim of this chapter is to introduce the method that will be used in order to
get results in this thesis. The discrete time model for survival analysis has already
been introduced in the theory section, and this method builds on that model. The
method is inspired by the one presented and used in Ren et al. (2018), and this
chapter will largely introduce the method in the same way it was introduced in
that article. The chapter will also introduce different models that will be trained,
and discussion on how these will be evaluated.

4.1 Dataset and Notation

Before introducing the method, some explanation of the outlook of the dataset is
needed. We assume that there are N unique customers in the dataset, and that
customer i for i ∈ {1,2, ..., N} has Ni observations on D variables. We further as-
sume that observation k for customer i, where k ∈ {1,2, ..., Ni}, is on the form
(zk

i , yi , xk
i1, xk

i2, . . . , xk
id), where zk

i is the true remaining lifetime of the customer
at observation k, yi is a binary variable indicating whether the subject experiences
an event during the time of the experiment, and xk

i j is the value of covariate j for
subject i at time k, where j ∈ {1, 2, . . . , D}. The vector of covariates for customer i
at time k is then denoted by xk

i . Further, denote the matrix whose rows are covari-
ate vectors at times ranging from t1 up to tNi

by Xi , with Xi ∈ RNi x D. This means
that these matrices may be of varying size, depending on how many observations
exist for the different customers.

4.2 Recurrent Model and Survival Analysis

The core idea of this method is to use a recurrent neural network to predict hazard
rates and survival functions for the different customers at different times. The way
this is done is by viewing the output of cell l of the network as the hazard rate at
time t l . That is, we estimate the hazard rate of customer i at time t l , denoted by
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hl
i , through

hl
i = fΘ(x

l
i , t l |hl−1

i ). (4.1)

Here, we let Θ denote the model parameters, and thus fΘ denotes the function
that the network with these parameters implements, and hl−1

i denotes the hidden
state of the network for customer i at time t l−1. Take care not to confuse the
hazard rate h with the hidden state h here. The former will exclusively be used
as a scalar throughout the chapter, and the latter exclusively as a vector. Using
the chain rule of probability, the survival function can be expressed through these
estimated hazard rates:

Si(t l |Xi ,Θ) = P(Ti > t l |Xi ,Θ)

= P(Ti /∈ t1, Ti /∈ t2, ..., Ti /∈ t l |Xi ,Θ)

= P(Ti /∈ t l |Ti /∈ t1, Ti /∈ t2, ..., Ti /∈ t l−1,Xi ,Θ)

· P(Ti /∈ t l−1|Ti /∈ t1, Ti /∈ t2, ..., Ti /∈ t l−2,Xi ,Θ)

· ... · P(Ti /∈ t2|Ti /∈ t1,Xi ,Θ) · P(Ti /∈ t1|Xi ,Θ)

=
l
∏

j=1

(1− P(Ti = t j|Ti > t j−1))

=
l
∏

j=1

(1− h j
i )

(4.2)

Thus, what is obtained from the model really is the predicted hazard rate for
customer i at each observed time t l , l ∈ {1, ..., Ni}. Note that this is not an actual
prediction of the remaining lifetime of the subject, nor is it a prediction of a future
hazard rate; it simply estimates the hazard rate at a time already observed, mean-
ing at a time at which we know the subject had not yet experienced an event. The
hope is then that these hazard rates can somehow be used to make predictions
about the remaining lifetime of subjects. In the spirit of the C-index introduced
in Chapter 3: we want larger predicted hazard rates for the subjects that have a
shorter true remaining lifetime. This is where the loss functions come into play.

4.3 Loss Functions

As is proposed in Ren et al. (2018), we will be using multiple loss functions in
order to train our model. The necessity for this arises from the presence of cen-
sored observations, which makes it difficult to provide direct supervision on the
observed survival times, as mentioned in Section 3.1. To deal with this, two loss
functions will be used, and they will be combined to a total loss through a convex
combination,

LTot = αL1 + (1−α)L2, (4.3)

where α ∈ (0,1) determines which loss function is attributed the most weight.
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The objective of our training algorithm is then to solve the minimization problem

min
Θ

LTot(ξ̂,ξ), (4.4)

where ξ is the truth value which we want to achieve, and ξ̂ is the predicted value.
This perhaps overly generalized formulation might seem unnecessary, but it is
used because several of the loss functions introduced in this section do not directly
supervise over the remaining lifetime. Instead, they might have the goal of pushing
a certain quantity to a specific value, e.g. pushing the survival function towards
zero or one. The two loss functions L1 and L2 will have different purposes: L1
will focus on the uncensored observations, while L2 will focus on both censored
and uncensored observations, with the hope that its inclusion will enhance the
model’s ability to discriminate between defaulters and non-defaulters.

For the loss function L2 we will use the binary cross entropy, defined by

LBC E = −
N
∑

i=1

[cilnS(t|Xi ,Θ) + (1− ci)ln(1− S(t|Xi ,Θ))], (4.5)

where ci is a binary censoring variable indicating whether the observation is cen-
sored or not, i.e.

ci =

¨

1 if observation i is censored

0 if observation i is uncensored
(4.6)

Observe that minimization of 4.5 corresponds to minimizing the survival func-
tion at time t for uncensored observations, and maximizing it for censored ones.
Through Equation 4.2 it can be seen that this corresponds to maximizing and min-
imizing the hazard rates of the censored and uncensored observations, respect-
ively. This intuitively makes sense, as we in general want the model to predict
higher hazard rates for customers at risk of defaulting.

As discussed in Chapter 2, the dataset being used suffers from a significant class
imbalance, making machine learning models biased towards the majority class
when making predictions. One way to combat this issue is by weighting the loss
related to observations from the minority class heavier than that related to ob-
servations from the majority class. This way, errors in predictions related to the
minority class are viewed as more severe by the model, and thus more emphasis is
put on these observations in the optimization procedure. Therefore we introduce
the weighted binary cross entropy loss function,

LBC EW = −
N
∑

i=1

vi[cilnS(t|Xi ,Θ) + (1− ci)ln(1− S(t|Xi ,Θ))], (4.7)

where vi is the weight applied to observation i, and where

vi =

¨

β if ci = 1

1− β if ci = 0
(4.8)
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where β ∈ (0,1).

Naturally, we also want to utilize the more complete information that lies in the
observations where a default actually occurs. Considering that the default time is
known, one way to do this is to maximize the likelihood that an event does occur
at the observed event time, which amounts to maximizing the hazard rate at this
time. This can be done through the minimization of the negative log-likelihood.
The negative log-likelihood loss function is given by

LN LL = −ln
N
∏

i=1

P(Ti = tNi
|Xi ,Θ)

1−ci

= −ln
N
∏

i=1

�

hNi
i

∏

j<Ni

(1− h j
i )
�(1−ci)

= −
N
∑

i=1

(1− ci)
�

ln(hNi
i ) +

∑

j<Ni

ln(1− h j
i )
�

(4.9)

The probability in the first line is raised to the power of 1− ci in order to allow
for the loss function to also be used for censored observations, for which the loss
function then takes the value 0. As mentioned, this loss function does not dir-
ectly involve the actual observed time to default. What it aims to do is maximize
the hazard rate at time Ni , while minimizing those at earlier times. Therefore,
when making survival time predictions based on for instance 100 days of cus-
tomer data, it is not clear how one would go from the predicted hazard rates to
an actual prediction of time to default. Indeed, the predicted hazard rates may
be of questionable value in the first place, since the predictions will be based on
a limited time span, and no default event will have been observed during this
time. Thus, if the model is trained to simply recognize how a default event looks,
its predictions on incomplete time series might be of little value. One could hope
that, somehow, training the model in the way advertised will lead to the model
generally predicting larger hazard rates for customers that default than for cus-
tomers that do not, and larger hazard rates for customers that default within less
time after being observed.

In an attempt to supervise more directly over the survival times, a third loss func-
tion is introduced, namely the mean squared error for uncensored observations,
or MSE for short. It is defined by

LMSE =
1

∑N
i=1(1− ci)

N
∑

i=1

(1− ci)(zi − ẑi)
2, (4.10)

where zi is the true remaining lifetime for observation i and ẑi is the predicted
remaining lifetime for the same observation. As the model outputs hazard rates
with values between 0 and 1, a transformation of either the true event time or the
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predicted hazard rate is necessary for this loss function to work. The approach
taken in this thesis is to scale the true survival times to be numbers between 0
and 1, with 0 being the smallest observed survival time, and 1 being some upper
bound on the predicted survival times. Immediately a drawback is clear from this:
the model will not be able to predict survival times smaller than the smallest
observed survival time or larger than whatever bound is set. Fortunately, this is
not a large problem in practice. If the smallest observed survival time is close
enough to 0, any prediction of remaining lifetime around this value will simply be
interpreted as a customer in dire need of assistance or guidance. It is impossible to
know whether the customer will default in one day, two days or a week, and what
we are really interested in is that the customer is at very high risk of defaulting
within short time. One could also omit this problem entirely by simply stating that
a remaining lifetime of 1 day corresponds to the value 0. In the case of the upper
bound, we are not that interested in customers that aren’t expected to default in a
long time, for instance in the next two years. Therefore, one could simply choose
a remaining lifetime above which one is not really concerned for the customer
at the moment, to correspond to the value 1. This approach is further supported
by the significant uncertainty that is inherent in credit card default predictions;
there is no way of knowing exactly what is going to happen over any time span,
and this uncertainty grows ever larger as the time span in question increases. A
prediction of a scaled remaining lifetime of 1 can simply be interpreted as the
customer currently not being at risk of defaulting at any time in the near future.
Using this approach to scale the true value of remaining lifetime, we would scale
the values to lie between 0 and 1 through

ζ=
z − a
b− a

, (4.11)

where z is the true lifetime, a is the minimum and b is the maximum lifetime,
which are as in the reasoning above. Note that the value of ζ increases as the true
remaining lifetime increases, which is the opposite of what we would expect from
the hazard rate. Therefore it would make more sense to compare this value to
one minus the hazard rate, as this quantity has the same expected behaviour as
ζ. Thus the MSE would be given by

LMSE =
1

∑N
i=1(1− ci)

N
∑

i=1

(1− ci)(ζi − (1− hi))
2. (4.12)

The notation ẑ is then reserved for the actual predicted remaining lifetime, which
would somehow be obtained from the predicted hazard rate. This could either be
done through assuming some functional relationship between the two, or through
using a kind of "look-up table", which would be based on hazard rate predictions
and true survival times in the training set.

Another method one could use is to directly assume a functional relationship
between hazard rates and remaining lifetime, and transform the predicted hazard
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rates into predicted remaining lifetimes before applying the loss function. Naively,
it seems reasonable to assume a relationship on the form

z =
η

h
, (4.13)

where z is the remaining lifetime, and h is the hazard rate. The parameter ηwould
then be a parameter which would have to be tuned or in some way learned. Note
that this is a very simple and quite limiting functional form which might not reflect
the true relationship between the remaining lifetime and the hazard rates, and
which is purely based on the idea that a larger hazard rate should correspond
to a shorter time to default. Note that in this case, due to the fact that we are
also applying the binary cross-entropy loss, we will essentially be calculating the
loss on two different predicted values; on the predicted hazard rates directly and
on the predicted remaining lifetimes. Of course, the decision on what functional
relationship to assume could also be aided by the use of plots, which could give
an indication of how the hazard rates and remaining lifetimes are connected. The
next section will look into how the remaining lifetime will be obtained from the
hazard rates in this thesis.

4.4 Predicting Time to Default

Since the output from the model is a predicted hazard rate, it is desirable to find
some way to transform this into a predicted remaining lifetime, as this is ultimately
what we are interested in. One way to do this is to follow an approach already
introduced, namely assuming some functional relationship z = g(h;ψ), where the
parameters ψ can be learned. The difficulty of this approach lies in choosing the
correct functional relationship. By utilizing the assumption that a higher hazard
rate should strictly be associated with a shorter remaining lifetime, one could
arrive at a naive relationship such as the one in Equation 4.13. A more refined
approach could consist in comparing plots of the predicted hazard rates versus
the true remaining lifetime with a range of candidate functions, and see which
appears to be the best fit.

A different approach, which is the one taken in this thesis, is to compare the pre-
dicted hazard rates to the true remaining lifetimes in the training set, and cre-
ate some prediction "rules" based on this. This can be done through grouping
observations with remaining lifetimes that lie inside some interval R = [a, b].
Doing this for all uncensored observations gives a number M of intervals, R1 =
[a1, b1], R2 = [a2, b2], ..., RM = [aM , bM ], where the choice of the number M
will depend on the problem at hand. In our case it is reasonable to let these in-
tervals be disjoint, and have each interval start where the previous ended, so that
we get R1 = [a1, a2), R2 = [a2, a3), ..., RM = [aM−1, aM ]. Note that we do not
require that these intervals be of equal length. After grouping the observations in



Chapter 4: Method 37

this way, we consider the predicted hazard rates of the observations within each
group. The idea is then that, for a customer with predicted hazard rate hr , the
predicted time to default should be inside the interval in which the observations
have an average predicted hazard rate closest to hr . That is, we want to predict
ẑr ∈ Rs, where s is the index of the interval satisfying the set criterion. The pre-
dicted value ẑr could then simply be the mean value of the interval, (as−1+as)/2,
or one could use an internal functional relationship that seems to fit well within
each interval. In this thesis, we will simply be using the mean.

The way this transformation is performed in practice is that M intervals, or bins,
are formed, and then for each bin i, a bin of predicted hazard rates Q i = [qi−1, qi)
is defined. It is important to note here that these bins are decided based on the
predicted hazard rates of the observations that are placed in the different lifetime
bins Ri , however no exact method of how to set the bins will be used. To inform the
decision of how to make up the bins Q i , the hazard rates of the observations within
the different bins Ri are used. This is done through the calculation of statistics such
as the mean, median and standard deviation of these hazard rates for each bin Ri .
Predicted remaining lifetime for customer r with predicted hazard rate hr is then
given by

ẑr =
ai−1 + ai

2
if hr ∈Q i . (4.14)

That is, if hr falls into the hazard rate bin Q i , then the mean value of the lifetime
bin Ri is predicted as the remaining lifetime of the customer with predicted hazard
rate hr .

This approach has its advantages. First of all, it is easy to implement and does not
require any additional parameters to be trained. Secondly, it avoids the restrictions
that assuming a functional relationship comes with, and it allows us to treat differ-
ent intervals in different ways. For instance, the variance in the predicted hazard
rate for certain intervals might be larger than for others, and thus we might be
interested in a more refined transformation in these intervals, whereas we are
happy to simply predict the mean value for the intervals with lower variance. Fur-
thermore, it combines nicely with the functional approach, as one can assume
different functional relationships within each interval, and thus potentially get a
better approximation. Note that, due to time limitations, this flexibility will not be
taken advantage of to any large degree in this thesis, and is mostly mentioned so
that the reader is aware of it. Allowing the intervals to have different lengths also
allows for more and smaller intervals where the predicted hazard rate changes
quickly, and fewer and longer intervals where it changes slowly.

One downside of the approach, particularly when always predicting the mean
value of the interval in question, is that internal differences among the observa-
tions in the interval are ignored. In particular, observations with predicted hazard
rates in opposite ends of the Q i-interval will have the same predicted lifetime,
although it would certainly seem as though we would expect a shorter lifetime
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for the observation with the larger hazard rate. Another problem is that if qi is
the upper limit in interval Q i and the lower limit in Q i+1, then observations with
predicted hazard rates h+ε and h−εwhere ε is close to 0, might get very different
predicted remaining lifetimes, despite having very similar predicted hazard rates.
Increasing the amount of intervals would remedy these problems, however this
would mean there are fewer observations in each interval, and thus the grounds
on which the intervals are chosen will be weaker, from a data perspective. As will
become clear in the result section, the dataset used in this thesis is quite difficult,
and thus predicted hazard rates will vary greatly for customers with similar life-
times. Placing customers within bins therefore seems a more trustworthy method
than putting ones full trust in the exact value predicted. Furthermore, we are not
necessarily interested in the precise number of days to default (although having
this information would naturally be awesome), and we are mainly interested in
approximately how long it will be before a customer defaults. Therefore, as long
as the intervals are sufficiently well created, we do not really care that much about
internal differences.

In order to use this method, the predicted hazard rates of the validation and test
sets might benefit from a scaling after the training is complete. The reason for this
is that the information used for training and the information used for prediction
is different. Furthermore, there may be differences in the distribution of the sets,
particularly because some observations are removed from the validation and test
sets, and not from the train set. The precise scaling to use is not necessarily clear
in this case, although it does at first seem reasonable to scale the predictions so
that they have the same mean value. However, as mentioned, the distributions
might vary, and so the optimal scaling might be a different one. Several scalings
might therefore need to be explored in order to find one which gives reasonable
results. To avoid overfitting to the test data, the scaling will be determined using
the validation set, and then applied to the test set to report the final performance
of the model.

As a final note to this section, it is pointed out that the method advertised, partic-
ularly in the form it is implemented in practice in this thesis, is quite ad-hoc and in
no major way mathematically rigorous. This is a consequence of the method being
largely based on visual inspection of plots of the predicted hazard rates against
remaining lifetimes, as well as of inspection of summary statistics for the hazard
rates in the different bins of remaining lifetime. All in all, the method is prone to
a large amount of subjectivity, something that will become apparent in Chapter 6,
where the results are presented.

4.5 Models and Datasets

As discussed in Chapter 2, it is desirable to detect potential defaulters as early as
possible. By day 100, around 12% of the customers that default have already ex-
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perienced their default event, and by day 113, this number is up to 25%. Therefore
we want to base our models on datasets consisting of observations from relatively
short time periods from the beginning of the customer relationships. Of course, by
making this time period too small, we will be discarding large amounts of inform-
ation that may be useful. Also, based on empirical experience from SpareBank1
Kreditt, customers might be hesitant to utilize their credit card at the start of the
customer relationship, and thus the data from this time alone might give a distor-
ted image of customers’ true credit card activity. It is decided to train the models
on datasets based on two different time periods, both going from the start of the
customer relationship. The first dataset contains observations up to day 70, and
the second one contains observations up to day 100. For the second dataset, cus-
tomers that have defaulted before day 100 are removed, as the predictions will
be interpreted as being the predicted remaining lifetime from day 100. By day 70,
no customers have defaulted yet, so no customers need to be excluded from this
dataset. For the training of all models, a train-validation-test split is performed on
the dataset in question. The split will put 60% of observations in the train set, 20%
in the validation set and 20% in the test set. This sort of split is quite common for
training neural networks in general (Brownlee, 2020b).

Before being passed into the neural network, the dataset went through some pre-
processing. Each variable was internally standardized to have zero mean and unit
variance, as standardization is a common means of data pre-processing, both for
neural networks and other machine learning methods, as mentioned in Chapter
3. This standardization was performed separately for each day of the customer
relationships. Thus, each variable would have a slightly different distribution for
each observation time.

As mentioned earlier in this chapter, two loss functions are combined to make
up the final loss function through a convex combination, as presented in Equa-
tion 4.3. The model suggested by (Ren et al., 2018) uses the BCE and NLL loss,
Equations 4.5 and 4.9, respectively. The first model used in this thesis will also use
these loss functions, however with the slight modification of including class-based
weights in the binary cross entropy function. This is done in order to combat the
imbalance of the dataset. An additional model will be trained using weighted BCE
along with MSE (Equation 4.12). As mentioned earlier, this is due to the original
model’s perceived inability to supervise directly over the actual remaining life-
time. Due to time constraints, this model will only be trained on the dataset with
100 observations. It is important to note that the data used during training will be
quite different for the two models. When using the NLL loss, complete time series
will be used, as this is necessary to maximize the hazard rate at the actual time of
default. When using MSE loss, incomplete time series will have to be used, since
if complete time series were used, every customer in the training set that defaults
would have a ground truth of 0 days of remaining lifetime. Therefore, the same
amount of data that is available in the validation set will be available in the train-
ing set when using the MSE loss. That is, for evaluation on the dataset with 100
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days of observations, the training set will also consist of 100 days of observations
for each customer.

4.6 Means of Evaluation

As mentioned in Chapter 3, the concordance index, or C-index, if you don’t have
much time, is a useful tool for assessing a model’s discriminatory abilities. In Har-
rel et al. (1996) it is pointed out that if the discriminatory abilities of the model
are good, then better calibration can be obtained without hurting discrimination.
However, if the model has poor discriminatory abilities, then no amount of calib-
ration can correct this. Therefore it can be considered reasonable to prioritize dis-
criminatory abilities above predictive abilities, and thus the C-index will be used
as the main evaluation metric in this thesis. Considering our choice of method for
transforming predicted hazard rates into predicted lifetimes, it is reasonable to
calculate the C-index from the predicted hazard rates rather than from the pre-
dicted lifetimes. This has the added benefit of allowing for easier supervision over
the C-index during training of the model. As higher hazard rates should mean a
shorter remaining lifetime, the value 1− h is used to compute the C-index. That
way, a higher value of 1 − h is associated with a longer remaining lifetime, and
the C-index can be calculated as normal.

As was discussed in Chapter 3, finding appropriate metrics to evaluate how well
the models are calibrated can be challenging. We mentioned the mean absolute
error and the mean relative absolute error, and the problems with using these
metrics. The Brier score in Equation 3.10 was also mentioned as a candidate, and
at first glance it seemed like it could be a useful metric to include. There are some
problems, however, the main one being that the Brier score, or at least the one
introduced in Equation 3.10, assumes that all observations have survival estim-
ates beyond their true survival times. This is not true in our case, as we base our
validation on a certain number of days of data, and then want to predict remain-
ing lifetime based on that information. Subjects that default before the time the
predictions are made, are removed from the validation set. Thus, there would be
no subjects satisfying the conditions of the first indicator function, namely that
t i ≤ t and yi = 1, where t is the time at which the predictions are made, and t i is
the time of the last observation for customer i. Another drawback is that an estim-
ate of the censoring distribution is required for weighting. This can be difficult to
estimate, as is also mentioned in Kvamme (2019). Because of the difficulty of find-
ing appropriate metrics for evaluating how well the model is calibrated, we will
limit ourselves to reporting the mean relative absolute error and provide residual
plots of the predicted lifetimes. Hopefully, this will at least give some ground for
comparing models to each other, and decide on which one is better calibrated.

As a way of evaluating the performance of their models, SpareBank 1 Kreditt are
interested in how well the predictions hold up for the coming year. That is, does
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the model in general predict a lifetime of more than one year for subjects that do
not default within the next year? And does it predict a lifetime shorter than a year
for those that do? This metric is implemented by simply providing all customers
with an additional label,

d365
i =

¨

1 if zi ≥ 365

0 if zi < 365

and similarly for the predicted lifetimes,

d̂365
i =

¨

1 if ẑi ≥ 365

0 if ẑi < 365

This approach allows to view the problem as binary classification; observations
with a lifetime of less than a year are classified to class 0, and those with a life-
time larger than a year are classified to class 1. As a consequence, metrics such as
balanced accuracy and Matthews correlation coefficient, introduced in Chapter 2,
can easily be computed to asses the predictions. For the defaulters this classifica-
tion is straightforward. For the non-defaulters, however, some distinctions need to
be made. For non-defaulters that are observed for more than a year after the time
of prediction, it is also straightforward, as the model has then predicted correctly
if it predicts a survival time of more than a year. For non-defaulters that are not
observed for a full year after the time of prediction, however, we do not know for
sure that the true lifetime will be larger than a year. Thus, these customers are
excluded from this classification approach. In order to still get an impression of
how well the model performs for these customers, we will report the percentage
of these customers for which the model predicts a lifetime larger than or equal to
the observed lifetime. This percentage will be denoted by qẑ≥z .

4.7 Hyperparameters

As mentioned in Chapter 3, hyperparameter tuning is a central but often time-
consuming part of constructing a neural network model. Due to the large amount
of time required to do proper searches, hyperparameter tuning will be performed
only to a very small degree in this thesis. As far as possible, default hyperpara-
meters will be used, and learning curves will be used to assess the learning rate.
Different values will be tried for some hyperparameters to see whether perform-
ance increases or decreases. Only one hyperparameter will be varied at a time,
but no grid search-type structure will be applied. That is, if changing the value of
one hyperparameter, call it H1, from value a1 to a2 leads to increased perform-
ance, and then changing the value of another hyperparameter H2 from value b1
to b2 further increases performance, then the combination (a1, b2) will not be
tried. In other words, potential interactions between hyperparameters will not be
explored. The absence of a properly structured hyperparameter tuning procedure
will be discussed further in Chapter 7.





Chapter 5

Data Analysis

An initial analysis of the dataset can give valuable insight into how it is structured
and what variables may be of importance. For models where the learned paramet-
ers are easily interpreted, it can also serve as a sanity check for the values of the
parameters, e. g. whether a larger value of the variable in question is associated
with a certain change in the response variable. In the case of LSTMs and neural
networks in general, evaluating parameter values and determining what effect
they have on the predictions made by the network can be difficult, due to the
highly complex structure of the model. Therefore, the goal of this section will be
to obtain insights into and get familiarized with the dataset. We will have a look
at how both categorical and numerical variables affect the two response variables
mentioned in Chapter 2, and the analysis will be split into two parts: static ana-
lysis and time series analysis. For variable definitions, please refer to Table A.1 in
Appendix A.

5.1 Static Analysis

By static analysis is meant looking at variables at only one certain point in time.
This can be useful for variables that don’t change, or change in a predictable way,
throughout the experiment, such as a customer’s gender, age or time to default
from the beginning of their customer relationship. This section will look at cus-
tomers at the beginning of their customer relationship, and analyse a handful of
variables through the use of histograms.

As there are mainly two response variables of interest in the dataset, one could
be interested in analyzing how the different explanatory variables correlate with
both. In the case of a categorical variable, it can be interesting to see how the
numbers of defaulters and non-defaulters are spread across the different categor-
ies. A simple way to express this is through a histogram. A histogram is a simple
plot showing the amount of subjects that fall into each category of some variable,
such as the number of males and females, or the number of subjects that belong
to different geographical areas. By first splitting the subjects into those that do
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experience an event, i.e. ’DC2Ind’=1, and those that don’t, i.e. those with those
with ’DC2Ind’=0, one can then create one histogram for each group for the same
explanatory variable. The degree of variation in how these histograms look can
then be used to get an initial impression of whether the variable in question is
helpful in explaining differences between the two groups.

The Figures 5.1, 5.2 and 5.3 show histograms for the three binary variables
’GENDER_NAME’, ’HAS_DIRECT_DEBIT_AGREEMENT_IND’ and
’HAS_ESTATEMENT_AGREEMENT_IND’, respectively. From Figure 5.1 it is clear
that males seem more likely to experience a default event than women. Of the
4379 women in the dataset, 423 experience a default event, giving a default rate
of around 0.0966. For the men, the rate is 0.168, with 1161 of the 6913 males in
the dataset defaulting during the experiment. Thus we would expect this variable
to be of some importance to our model. From Figure 5.2, we first of all observe
that there is a large difference in the number of people that do have a direct
debit agreement with the bank and the number of people that don’t. Only 986
customers have a direct debit agreement, and of these, 48 experience a default
event during the experiment, giving a rate of 0.0487. There are 10306 customers
that do not have a direct debit agreement, 1536 of whom experience a default.
This gives the higher rate of 0.149. Finally, Figure 5.3 shows a large difference in
the two histograms. Of the 8654 customers that do have an e-statement agreement
with the bank, 556 customers, corresponding to a percentage 0.0642, experience
a default event. On the other hand, among the 2638 that do not have such an
agreement, 1028 experience a default event, giving a rate of 0.390. This is the
only variable of the three that has more defaulters in the minority category than
the majority category. It certainly seems that this variable might be helpful in our
model.

Fem
ale Male

GENDER_NAME

0

1000

2000

3000

4000

5000

6000

Co
un

t

DC2Ind = 0

Fem
ale Male

GENDER_NAME

0

200

400

600

800

1000

1200
DC2Ind = 1

Figure 5.1: Histogram showing the number of males and females that default
(right) and do not default (left) during the experiment.
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Figure 5.2: Histogram showing the number of subjects with and without direct
debit agreement that default (right) and do not default (left) during the experi-
ment.
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Figure 5.3: Histogram showing the number of subjects with and without e-
statement agreement that default (right) and do not default (left) during the
experiment.

We now take a look at some histograms for the variable ’CustomerAge’, shown in
Figure 5.4. Observe that there is an over representation of younger people in the
dataset, and that around 6100 customers are less than 30 years old. The differ-
ences between the two histograms are not particularly large. It looks like the his-
togram of the defaulters is slightly heavier in the left part, indicating that younger
customers are more likely to default than older ones. However, when looking at
the data, it turns out that the difference is small. Looking at the actual numbers,
it turns out that among the defaulters, around 51% are below 30 years old, and
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among the non-defaulters, this number is around 55%. Customers below 25 years
make up around 23% of the defaulters, and around 27% of the non-defaulters.
The very youngest customers appear to be supporting the initial hypothesis, as
customers below 20 years old make up around 11.3% of defaulters, and around
10.5% of non-defaulters, however clearly the difference here is very small. All in
all it does not look like the age of the customers in this dataset will have too much
impact on their default rate.
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Figure 5.4: Histogram showing the age of subjects that default (right) and do not
default (left) during the experiment.

Lastly in this static analysis we will have a look at the distribution of lifetimes for
the uncensored observations, i.e. for the defaulters. The distribution is visualized
in two ways: through a histogram and through what is called a kernel density es-
timate. A kernel density estimate, or KDE for short, is a continuous estimate of the
probability density function of a variable. The estimate is based on some chosen
kernel, which in this case is the Gaussian kernel (Kim and Scott, 2012). The visu-
alizations are shown in Figure 5.5. Both the histogram and the KDE indicate that a
large amount of customers default before day 150 of their customer relationship.
To be more precise, close to 40% of the customers that default, do so before day
150. From day 150 we still see that less customers default the longer the customer
relationship has been. After one year, nearly 80% of the defaults have occurred.
These observations may indicate that customer relationships in general stabilize
over time, and that many of the customers in the dataset that do default, exhibit
"at-risk" behaviour from early on in their customer relationship.
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Figure 5.5: Histogram and kernel density estimate showing the remaining life-
time of uncensored subjects in the experiment. The left y-axis belongs to the his-
togram, and the right y-axis belongs to the KDE.

5.2 Time Series Analysis

The longitudinal data analysis is concerned with looking at entire time series
rather than just summary statistics. Such an analysis can give useful insights into
how different variables change over time, and how the change for defaulters com-
pares to the change for non-defaulters. This section will mainly present plots trying
to reveal such differences.

There are several variables in the dataset where the change over time might be
of interest. Recall that there are around 28 numerical variables associated with
the credit card activity of customers. Previous aggregated data analysis has shown
that, based on kernel density estimates, the variables ’OVERDUE_AMT’, ’IEL_AMT’
and ’CASH_BALANCE_AMT’ in particular are of interest in regard to revealing
differences between defaulters and non-defaulters (Holte, 2021). In addition, the
variables ’UtilizationL3’, ’UtilizationL12’ and ’AvgRevBalL3onL12’ are expected to
give interesting information about the customers. These variables will be explored
in the first subsection of this section. Former analysis indicates that the variables
giving a customer’s spending in different areas do not explain much of the differ-
ences between defaulters and non-defaulters, and thus they have been viewed as



48 H. A. Holte: Surv. Analysis w DRNNs for Prediction of Credit Card Defaults

less important variables. In the second subsection they will be revisited to see if
their development over time can be of use.

Before looking at the time series plots, a short explanation of how these were
created is warranted. For each variable, the values are collected in a two dimen-
sional data frame D, where each row Di: corresponds to the values associated
with one customer. Each column D: j corresponds to the values of the variable
for all customers on the jth day of their customer relationship. The element Di j
then corresponds to the value of the variable on the jth day of the customer re-
lationship of customer i. The plots are then created by plotting each of the time
series Di: for i ∈ {1,2, ..., N} in grey, and computing summary statistics such as
the mean and median values based on D: j for all "living" customers at each time
t ∈ {1, 2, ..., tMax}, where tMax is the longest observed time to default or censoring.
The quantiles are computed in the same way as the mean and median, and they
are visualized through two lines, giving upper and lower bounds within which a
certain percentage of observations lie. These lines will be denoted by Q followed
by the quantile they represent, which will either be 80 or 90. The y-axes have
been scaled to include as many complete time series as possible, while still allow-
ing for visual inspection of the summary statistics. Therefore some particularly
large values have been cut.

Note that as time progresses, more and more customers disappear from the exper-
iment, and as a consequence the statistics computed at later times have a smaller
data foundation than the ones computed at early times. Thus, the statistics for
late times should not be paid too much attention too, and as we will see, they will
often exhibit a somewhat strange behaviour. Refer to Table 2.2 from Chapter 2 for
an indication of how many customers default at different time intervals. Table 5.1
shows the number of customers that have not defaulted or been censored by dif-
ferent numbers of days into the customer relationship. However, due to the fact
that no observations are registered during the weekends or holidays, each cus-
tomer will have fewer observations than the number of days they are observed.
As an example, the customers with the longest reported observation time have
an observation time of 788 days, however the largest amount of observations for
any single customer is 546. Therefore, what the time series really represent is the
value at each time of observation, not at every single day of the customer rela-
tionship. The x-axis in the plots presented in this section should therefore not be
viewed as showing day 1, day 2, day 3 and so on of the customer relationships, but
rather as showing observation 1, observation 2, observation 3 and so on. This will
still provide the insight we seek to gain with this data analysis. Table 5.2 shows
how many customers have not defaulted or been censored by different amounts
of observations, and can thus be used as a reference for the data foundations for
the statistics computed at different times.
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Day Customers remaining
0 11292

100 11098
200 10505
300 9309
400 7643
500 5858
600 3771
700 1525
787 30

Table 5.1: Overview of the amount of customers that have not defaulted or been
censored by different times of the experiment.

x value Customers remaining
0 11292

50 11292
100 10694
150 10444
200 9497
300 7142
400 4163
500 1092
547 30

Table 5.2: Overview of the amount of customers that have not defaulted or been
censored by different amounts of observations during the experiment.
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5.2.1 General Transaction Variables

We start off by looking at some variables that former analysis on an aggregated
dataset has indicated may be of interest. Firstly, we look at the time series plot
of the variable ’BALANCE_AMT’, which can be found in Figure 5.6. Note that
this variable may in fact have negative values, which indicate a positive balance,
i.e. that the customer is owed money by the credit card institution. What is re-
vealed by the ’BALANCE_AMT’ plot is that, unsurprisingly, non-defaulters spend
less money through the use of credit cards than defaulters on average. At first
glance, this gives the indication that people that spend more money through the
use of credit cards are more likely to default than those that don’t, which clearly
is not a strange idea. However, this does not take into account the fact that many
of the non-defaulters are inactive users, i.e. they own a credit card but rarely use
it. These users contribute to lowering the mean value of the variable for the non-
defaulters, and are likely to distort the image one would get from looking at only
customers that are actually active. Setting a sort of activity threshold and then
creating the same plot using only the customers that end up above this threshold
would probably give a more correct and informative picture. The customers that
almost never use their credit card are highly unlikely to default anyway, so remov-
ing them from the analysis would most likely not result in any significant loss of
information. This goes for all variables analysed in this section.

We now go on to look at the plots of the variables ’CASH_BALANCE_AMT’, ’OVER-
DUE_AMT’ and ’IEL_AMT’, which can be found in Figures 5.6, 5.7 and 5.8. 5.9.
First of all, note that the lower quantiles, i.e. the 10% quantile and the 5% quantile,
are in general very small, and mostly equal or close to zero for both defaulters
and non-defaulters for all three variables. This further emphasizes the signific-
ant amount of inactive customers. Also note that this is not the case for ’BAL-
ANCE_AMT’ for the defaulters. Observe that, for the defaulters, the way the mean
value changes over time is quite similar for the three variables. This change is also
quite similar to that in ’BALANCE_AMT’. There is a steep increase over the first
ca. 50 observations, before there is a slight drop, followed by a slow increase to-
wards observation 400. The variables ’BALANCE_AMT’, ’CASH_BALANCE_AMT’
and ’IEL_AMT’ also have medians that behaves very similarly. These similarities
are not very surprising, as the four variables mentioned are highly correlated with
each other, something that was found in my project thesis (Holte, 2021), and
which can easily be understood from the definition of the variables. An increase
in ’CASH_BALANCE_AMT’ leads to an increase in ’BALANCE_AMT’, which again
leads to an increase in ’OVERDUE_AMT’ and ’IEL_AMT’ if the balance is not paid
down in time. Comparing the time series of the defaulters to that of the non-
defaulters, we again see the expected pattern that the defaulters in general spend
more than the non-defaulters, and that they on average owe a larger sum on which
they pay interest. They also in general have a much larger sum that is overdue.
Another interesting observation for all the four variables mentioned is that the
median is almost always smaller than the mean, both for the defaulters and the
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Figure 5.6: Time series plot for ’BALANCE_AMT’ variable. The x-axis gives the
number of days into the customer relationships, and the y-axis gives the value of
the variable in Norwegian kroner (NOK). The pairs of lines Q80 and Q90 give
bounds within which 80 and 90% of the observed values are, respectively.

non-defaulters. This might be due to the presence of very large values which in-
flate the mean, and it suggests that the distributions of the variables have quite
heavy right tails.

The next time series to be analysed are the ones for the variables ’UtilizationL3’,
’UtilizationL12’ and ’AvgRevBalL3onL12’. The plots are shown in Figures 5.10,
5.11 and 5.12. For the first two, we again observe that both the mean and me-
dian values are larger for the defaulters than for the non-defaulters, indicating
that defaulters on average spend a larger amount of their credit limit than non-
defaulters. For ’UtilizationL3’, we see that the median value for the defaulters is
around 1 for essentially all observation times. This indicates that around half of
the defaulters have maxed out their credit cards the last three months, or even
borrowed beyond their credit limit. Both the median and the mean show a step
function-like increase around observation 60 for the defaulters, and a less steep
increase around the same time for the non-defaulters. This time is around where
the first three months of the customer relationships are over, and thus the first
time at which the average over the last three months can be properly reported.
This observation emphasizes the more cautious nature of the non-defaulters, as
they appear more hesitant to max out their credit cards during the beginning of
their ownership. Again, however, inactive customers contribute to the deflation of
the statistics. Note that the means and medians for the ’UtilizationL12’ variable



52 H. A. Holte: Surv. Analysis w DRNNs for Prediction of Credit Card Defaults

0 200 400
0

10000

20000

30000

40000

50000

60000

70000
Defaulters

Observations
Mean
Median
Q80
Q90

0 200 400
0

10000

20000

30000

40000

50000

60000

70000
Non-defaulters

Observations
Mean
Median
Q80
Q90

Timeseries plot for CASH_BALANCE_AMT

Figure 5.7: Time series plot for ’CASH_BALANCE_AMT’ variable. The x-axis gives
the number of days into the customer relationships, and the y-axis gives the value
of the variable in Norwegian kroner (NOK). The pairs of lines Q80 and Q90 give
bounds within which 80 and 90% of the observed values are, respectively.
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Figure 5.8: Time series plot for ’OVERDUE_AMT’ variable. The x-axis gives the
number of days into the customer relationships, and the y-axis gives the value of
the variable in Norwegian kroner (NOK). The pairs of lines Q80 and Q90 give
bounds within which 80 and 90% of the observed values are, respectively.

start increasing almost from the start of each customer relationship and increase
steadily towards 1, which indicates that the two variables are reported differently.
Also observe that for the two ’Utilization’ variables, the median is larger than the
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Figure 5.9: Time series plot for ’IEL_AMT’ variable. The x-axis gives the number of
days into the customer relationships, and the y-axis gives the value of the variable
in Norwegian kroner (NOK). The pairs of lines Q80 and Q90 give bounds within
which 80 and 90% of the observed values are, respectively.
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Figure 5.10: Time series plot for ’UtilizationL3’ variable. The x-axis gives the
number of days into the customer relationships, and the y-axis gives the value of
the variable. The pairs of lines Q80 and Q90 give bounds within which 80 and
90% of the observed values are, respectively.

mean value for most of the time, indicating a heavier left tail in the distributions.
The plot of ’AvgRevBalL3onL12’ shows a quite similar behaviour for defaulters
and non-defaulters, as the median is around the same value and changes in about
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Figure 5.11: Time series plot for ’UtilizationL12’ variable. The x-axis gives the
number of days into the customer relationships, and the y-axis gives the value of
the variable. The pairs of lines Q80 and Q90 give bounds within which 80 and
90% of the observed values are, respectively.
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Figure 5.12: Time series plot for ’AvgRevBalL3onL12’ variable. The x-axis gives
the number of days into the customer relationships, and the y-axis gives the value
of the variable. The pairs of lines Q80 and Q90 give bounds within which 80 and
90% of the observed values are, respectively.

the same way. The mean values are also quite similar, and both the medians and
means do not vary much in time. This indicates that the average revolving balance
remains close to constant over time, with a tendency to decrease. We also see the
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time series of several customers following a stair-like development, which indic-
ates that their revolving balance increases every month. These might be customers
who only pay back the lowest possible amount each month, and then proceed to
increase their debt by further using their credit card. Notice that for both groups,
the mean is larger than the median most of the time, and it deviates more for the
defaulters than the non-defaulters, indicating heavier tails in the distribution for
this group.

5.2.2 Category-specific Transaction Variables

As mentioned initially, previous analysis of aggregated versions of the dataset used
in this thesis indicated that customers’ spending in different categories would not
be of much help in separating the defaulters from the non-defaulters. As a full
longitudinal data analysis is still warranted for these variables in order to see if
this hypothesis remains, we will now take a look at time series plots for several
category-specific spending variables. We begin with taking a look at the time series
for the variable ’SumQuasiCashL3M’, which are shown in Figure 5.13. Former ana-
lysis has indicated that this might be the most interesting of the category-specific
spending variables. From the plot it is observed that, again, defaulters on average
spend more within this category than non-defaulters, but only up to around ob-
servation 300, where there is a marked drop in the expenditure of the defaulters.
It is worth to note that, by observation 300, only around 190 defaulters remain,
whereas almost 7000 non-defaulters remain. An interesting observation is that
the mean value for the non-defaulters actually crosses the upper 80-percentage
bound. Still, the mean value here is very low, and it appears as though the reason
that this occurs is that there are very many customers that spend very little or
no money within the category, meaning the 80-percentage upper bound ends up
quite close to zero. This is in fact the typical story for these variables. The median,
for instance, is always zero for both groups.

We now take a look at some of the other categories. We will only be looking at
some selected variables, as looking at all of them is both time consuming and,
frankly, a bit boring. The variables shown are the ones that the author found the
most interesting. The variables shown are ’SumFOOD_STORES_WARE-
HOUSEL3M’, ’SumINTERIOR_FURNISHINGSL3M’, ’SumOTHER_RETAILL3M’,
’SumOTHER_SERVICESL3M’ and ’SumRESTAURANTS_BARSL3M’, and these are
shown in Figures 5.14, 5.15, 5.16, 5.17 and 5.18. Firstly, observe that, in con-
trast to ’SumQuasiCashL3M’, it is the non-defaulters that on average spend the
most within these categories. The mean values all behave in a similar manner,
seeing a steep increase quite early in the customer relationships, and then de-
creasing slowly from around observation 60 or 70. As mentioned in the discus-
sion of ’SumQuasiCashL3M’, the median is always zero, due to the majority of
customers spending little to no money within each category. We also observe
that the upper 80-percentage bound creeps below the mean value for ’SumIN-
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Figure 5.13: Time series plot for ’SumQuasiCashL3M’ variable. The x-axis gives
the number of days into the customer relationships, and the y-axis gives the value
of the variable in Norwegian kroner (NOK). The pairs of lines Q80 and Q90 give
bounds within which 80 and 90% of the observed values are, respectively.

TERIOR_FURNISHINGSL3M’ and ’SumOTHER_SERVICESL3M’, further indicat-
ing the absence of spending with a large majority of customers.

There are some variables remaining whose time series have not, and will not, be
explored. The reason for this is mostly that the plots are either considered of little
interest by the author, meaning that there is either few differences between the
time series for the defaulters and the non-defaulters, or that there are very few
non-zero observations of the variables. As a comment on this, and also as a final
note to this chapter, I wish to re-iterate the impact that inactive customers have
on the time series plots. In practice, these customers are not very interesting, as
they very rarely experience defaults and also are not customers that institutions
earn the most money from (low expenditure means loans can more easily be paid
back in full by the due date, and interest earnings are low due to the small sums
borrowed). It would therefore be interesting to explore how the plots would look
with inactive customers excluded from the analysis. The reason this has not been
done is that the time period for writing this thesis is limited, and as was mentioned
in the beginning of this chapter, the data analysis is done mostly to give insight
into the dataset, and is not expected to be of any help with regard to setting up
the model or analyzing the results. Another reason is that it is not straightforward
to define a threshold for inactivity. Removing all customers with ’BALANCE_AMT’
equal to zero for all observations could be a place to start, however it would be
reasonable to extend the concept of inactivity to also include customers with very
low spending over time.
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Figure 5.14: Time series plot for ’SumFOOD_STORES_WAREHOUSEL3M’ vari-
able. The x-axis gives the number of days into the customer relationships, and the
y-axis gives the value of the variable in Norwegian kroner (NOK). The pairs of
lines Q80 and Q90 give bounds within which 80 and 90% of the observed values
are, respectively.
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Timeseries plot for SumINTERIOR_FURNISHINGSL3M

Figure 5.15: Time series plot for ’SumINTERIOR_FURNISHINGSL3M’ variable.
The x-axis gives the number of days into the customer relationships, and the y-
axis gives the value of the variable in Norwegian kroner (NOK). The pairs of lines
Q80 and Q90 give bounds within which 80 and 90% of the observed values are,
respectively.
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Timeseries plot for SumOTHER_RETAILL3M

Figure 5.16: Time series plot for ’SumOTHER_RETAILL3M’ variable. The x-axis
gives the number of days into the customer relationships, and the y-axis gives the
value of the variable in Norwegian kroner (NOK). The pairs of lines Q80 and Q90
give bounds within which 80 and 90% of the observed values are, respectively.
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Timeseries plot for SumOTHER_SERVICESL3M

Figure 5.17: Time series plot for ’SumOTHER_SERVICESL3M’ variable. The x-
axis gives the number of days into the customer relationships, and the y-axis
gives the value of the variable in Norwegian kroner (NOK). The pairs of lines
Q80 and Q90 give bounds within which 80 and 90% of the observed values are,
respectively.



Chapter 5: Data Analysis 59

0 200 400
0

500

1000

1500

2000

2500

3000
Defaulters

Observations
Mean
Median
Q80
Q90

0 200 400
0

500

1000

1500

2000

2500

3000
Non-defaulters

Observations
Mean
Median
Q80
Q90

Timeseries plot for SumRESTAURANTS_BARSL3M

Figure 5.18: Time series plot for ’SumRESTAURANTS_BARSL3M’ variable. The
x-axis gives the number of days into the customer relationships, and the y-axis
gives the value of the variable in Norwegian kroner (NOK). The pairs of lines
Q80 and Q90 give bounds within which 80 and 90% of the observed values are,
respectively.





Chapter 6

Analysis of Results

In this chapter, the results produced by the models introduced in Chapter 4 are
presented and analyzed. The chapter is divided into two sections, where the first
section covers the results from the models trained with negative log-likelihood
and weighted binary cross entropy loss. The second section was meant to present
the results from the models trained with mean squared error and weighted binary
cross entropy loss, however, as is briefly explained in the section, results for these
models were not obtained. The variables included in the trained models can be
found in Table A.1 in Appendix A. The code used to obtain the results is available
at https://github.com/HaakonHolte/Masters_Thesis_Code.

6.1 NLL and WBCE Loss

Firstly, we present the results obtained by using the combination of loss func-
tions as proposed by Ren et al. (2018), namely the negative log-likelihood and
binary cross entropy, where in addition a weighting is applied to the latter in an
attempt to counteract the imbalance of the dataset. The loss functions are com-
bined through a convex combination as in Equation 4.3, and the hyperparameter
α, which will be used later in this section, refers to the α in this equation. Mod-
els were trained using several hyperparameter combinations, a full overview of
which can be found in Table B.2 in Appendix B. Based on the achieved C-index
scores, one model was selected and further analysed. This was done separately
for the datasets of 100 days and 70 days of information. Thus, in this section, the
results from two models will be presented. For simplicity, we will write NLL for
the negative log-likelihood loss, and WBCE for the weighted binary cross entropy
loss.

100 days

The hyperparameter values for the chosen model for the dataset based on 100
days of information are shown in Table 6.1. This model achieved a C-index of
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Hyperparameter type Hyperparameter Value
Network Hidden size 120

Layers 4
Dropout probability 0.5

Dataloader Batch size 256
Train-val-test percentages 72-14-14

Optimizer Learning rate 0.01
Momentum 0.5

Loss Loss weight α 0.6
BCE weight β 0.2

Table 6.1: Hyperparameter values for the model using NLL and WBCE loss on
dataset with 100 days.

0.72 on the validation set, and so in terms of concordance it showed the best
performance among the models trained on this dataset. The C-index achieved on
the test set was 0.67. The model was trained using 6774 customers in the training
set, 1338 customers in the validation set and 1323 observations in the test set. The
discrepancy between the validation and test set comes from the train-validation-
test split occurring prior to the removal of customers that default before 100 days
have passed. Recall that such customers are only removed from the validation and
test sets. Unfortunately, an error in the code was discovered after the results had
been obtained, and at a time where it was too late to retrain the models. This
error is lead to the percentage of customers in the validation and test sets being
lower than what was intended, and as is expressed in Table 6.1, the validation
and test sets make up 14% each of the customers, rather than 20%, which was
the percentage originally intended.

The hazard rate predicted at day 100, or at the day of the final observation for
customers not making it 100 days without defaulting, was the value analysed for
each customer. The analysis showed that the mean of the predicted values on
the train set was lower than the mean of the predicted values on the validation
and test sets. Simultaneously, the median predicted value on the train set was
larger than the one on the other two sets. This information is shown in Table
6.2. Scaling, as explained in Section 4.4, was now explored using the validation
set. Using only the ratio of means for scaling lead to the predicted hazard rates
in the validation set being smaller than what was already the case. This lead to
very low predicted hazard rates for many customers, which is expected, as the
median of the validation set was lower than that of the train set. In order to avoid
this, another scaling method was attempted, which also incorporated the median
value, and which was intended to work as a compromise between the mean and
the median. The predictions were scaled by the average of the ratio of means and
the ratio of medians. Letting S,T and V denote the train, test and validation sets,
respectively, the predicted hazard rates of the validation and test sets were scaled
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Train set Validation set Test set
Mean 0.0026 0.0030 0.0033

Median 4.7809 · 10−5 2.8886 · 10−5 2.8566 · 10−5

Standard deviation 0.0095 0.012 0.012

Table 6.2: Some summary statistics for train, validation and test set for the model
using NLL and WBCE loss on dataset with 100 days.

Bins Defaulters within bins
0-15 251
15-30 72
30-60 75
60-90 62

90-120 58
120-180 121
180-270 125
270-365 103
>365 89

Table 6.3: Bins for remaining lifetime, and how many defaulters from the train
set are in each bin for dataset with 100 days.

by

sV =
rS,V
Mean + rS,V

Median

2
, (6.1)

and

sT =
rS,T
Mean + rS,T

Median

2
, (6.2)

respectively. Here, rS,V
Mean is the mean of the predicted hazard rates on the train

set divided by the mean of the predicted hazard rates on the validation set, and
rS,V
Median is the median of the predicted hazard rates on the train set divided by the

median of the predicted hazard rates on the validation set. The same applies for
rS,T
Mean and rS,T

Median for the test set.

After scaling the predicted hazard rates for the validation and test set, it must
be decided what hazard rates would be associated with what remaining lifetime.
The method used for determining this was described and discussed in Chapter 4.
It was decided to use nine bins for the remaining lifetimes. These are shown in
Table 6.3. Customers in the train set were then organized into these nine bins,
based on their actual remaining lifetime after the first 100 days of their customer
relationship.
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Bin Min Max Mean Median Std
0-15 3.7228e-04 1.0289e-01 3.3793e-02 3.1641e-02 1.8366e-02

15-30 1.3078e-04 6.2131e-02 1.2507e-02 1.1056e-02 1.1954e-02
30-60 2.3987e-05 6.7192e-02 5.8669e-03 8.8635e-05 1.4864e-02
60-90 1.9996e-05 2.8487e-02 2.1367e-03 5.4575e-05 6.6314e-03
90-120 2.2899e-05 9.4585e-02 8.4511e-03 8.1838e-05 1.8393e-02

120-180 1.6674e-05 5.7334e-02 8.9480e-03 1.5607e-04 1.5522e-02
180-270 1.8806e-05 5.6375e-02 3.3165e-03 4.9729e-05 9.3730e-03
270-365 1.6901e-05 6.6322e-02 3.3909e-03 5.3051e-05 1.1139e-02
>365 1.7722e-05 5.4422e-02 3.1289e-03 6.4396e-05 9.3418e-03

Table 6.4: Summary statistics for the different bins for remaining lifetime for the
model using NLL and WBCE loss on dataset with 100 days.

In order to reveal what predicted hazard rates were typical for the customers in
the different bins, summary statistics within each bin were calculated. These are
shown in Table 6.4. The median and mean values for all bins were plotted against
average remaining lifetime for the different bins in order to visualize what the
connection between the hazard rate and remaining lifetime might look like. The
plots are shown in Figures 6.1 and 6.2. Note that the median values for the first
two bins ’0-15’ and ’15-30’ are removed for visualization purposes, due to them
being significantly larger than the remaining median values. As can be seen from
the plots, there is some unexpected behaviour for the mean and median hazard
rates for the different groups. In particular, observe that the hazard rate drops
quickly in the beginning, and then proceeds to increase over a certain time interval
before decreasing again. This is counter-intuitive to our idea that the hazard rate
should be monotonically decreasing as function of remaining lifetime.

After computing statistics for hazard rates within the different bins, the decision
rules of which predicted hazard rate should correspond to what predicted remain-
ing lifetime need to be set. This is done by inspecting the statistics and then defin-
ing bins for the hazard rates, within which the predicted remaining lifetime will
be the same. Three competing sets of bins were made, one based on mean values,
one based on median values and one which was made as an attempt at a com-
promise between the mean and the median. As the set based on this compromise
seemed to achieve the best performance, this is the one that it was decided to
use, and the one which will be presented here. The bins are presented in Table
6.5. In the code implementation, in order to have a specific number to work with,
predictions in the group ’>365’ are set to 370, and so this will be the value used
in plots and when computing evaluation metrics.

Now that the bins are defined, along with the remaining lifetime to be predicted
within each bin, the final results on the validation and test sets can be analysed. For
completeness, we also include the results on the train set. It is, however, the results
on the test set that should be viewed as the final evaluation of the model. Firstly,
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Figure 6.1: Plot of mean values for the bins of hazard rates against remaining
lifetime for the model using NLL and WBCE loss on dataset with 100 days.
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Figure 6.2: Plot of median values for the bins of hazard rates against remaining
lifetime for the model using NLL and WBCE loss on dataset with 100 days. The
value for bins ’0-15’ and ’15-30’ are excluded from the plot.



66 H. A. Holte: Surv. Analysis w DRNNs for Prediction of Credit Card Defaults

Bin Predicted lifetime
0− 3.1 · 10−4 >365

3.1 · 10−4 − 3.5 · 10−4 315
3.5 · 10−4 − 4.1 · 10−4 225
4.1 · 10−4 − 4.9 · 10−4 150
4.9 · 10−4 − 5.8 · 10−4 105
5.8 · 10−4 − 7.0 · 10−4 75
7.0 · 10−4 − 8.5 · 10−4 45
8.5 · 10−5 − 0.0125 21

> 0.0125 7

Table 6.5: Hazard rate bins and the corresponding predicted remaining lifetime
for observations within these bins for the model with NLL and WBCE loss on
dataset with 100 days.

residual plots are shown in Figures 6.3, 6.4 and 6.5. Optimally, all points in these
plots would lie on the line y = 0. As is clear from the plots, this is not the case, and
many of the predictions seem to miss their target. Looking at the MRAE values,
which are shown in Table 6.6, these indicate that the model on average predicts
a lifetime which is larger than what is observed. Note that both the residual plots
and MRAE values only give indications of the model performance on the customers
that default, as these are the only ones with an actual observed lifetime.

Set MRAE
Train 1.93

Validation 1.54
Test 1.69

Table 6.6: MRAE values of train, validation and test set for the model with NLL
and WBCE loss on dataset with 100 days.

As mentioned in Chapter 4, SpareBank 1 Kreditt often evaluates their models by
looking at how the predictions hold up for the coming year. This is done by check-
ing whether the model predicts that the remaining lifetime will be less than one
year for customers that do predict within one year, and similarly for those that
do not default within one year. The approach was explained in Section 4.6. Bal-
anced accuracy (BACC), Matthews correlation coefficient (MCC) and the quantity
qẑ≥z for train, validation and test set are reported in Table 6.8. The amounts of
defaulters, non-defaulters observed more than one year after time of prediction
and non-defaulters observed less than one year after time of prediction in train,
validation and test set are shown in Table 6.7.
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Figure 6.3: Plot of residuals z− ẑ against remaining lifetime for defaulters in the
train set for the model with NLL and WBCE loss on dataset with 100 days.
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Figure 6.4: Plot of residuals z− ẑ against remaining lifetime for defaulters in the
validation set for the model with NLL and WBCE loss on dataset with 100 days.



68 H. A. Holte: Surv. Analysis w DRNNs for Prediction of Credit Card Defaults

0 100 200 300 400 500
Remaining lifetime

300

200

100

0

100

200

300

400

500
Di

ffe
re

nc
e 

be
tw

ee
n 

tru
e 

an
d 

pr
ed

ict
ed

 re
m

ai
ni

ng
 li

fe
tim

e

Figure 6.5: Plot of residuals z− ẑ against remaining lifetime for defaulters in the
test set for the model with NLL and WBCE loss on dataset with 100 days.

Train Validation Test
Defaulters 956 154 163

Non-defaulters >365 3880 784 747
Non-defaulters <365 1938 400 413

Table 6.7: Amount of defaulters, non-defaulters observed more than one year
after time of prediction and non-defaulters observed less than one year after time
of prediction in train, validation and test set, for the model with NLL and WBCE
loss on dataset with 100 days.

70 days

We now proceed to present the results obtained using the model with NLL and
WBCE loss based on 70 days of information. By 70 days, no customers have de-
faulted yet, so no customers need to be removed. The best model based on this
dataset achieved a concordance index of 0.58 on the validation set, which is sig-
nificantly lower than that obtained by the best model based on the dataset with
100 days of information. The C-index achieved on the test set was 0.61, which
is actually higher than what was achieved on the validation set. The hyperpara-
meter values of the model are shown in Table 6.9. Observe that the values are
very similar to the values for the model on the other dataset. In fact, all the values
except for the learning rate, which is now lower, are the same.
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Train Validation Test
BACC 0.79 0.78 0.73
MCC 0.50 0.44 0.36
qẑ≥z 0.92 0.92 0.89

Table 6.8: Values of evaluation metrics for binary classification of default within
one year for the model with NLL and WBCE loss on dataset with 100 days.

Hyperparameter type Hyperparameter Value
Network Hidden size 120

Layers 4
Dropout probability 0.5

Dataloader Batch size 256
Train-val-test percentages 72-14-14

Optimizer Learning rate 0.0075
Momentum 0.5

Loss Loss weight α 0.6
BCE weight β 0.2

Table 6.9: Hyperparameter values for the model using NLL and WBCE loss on
dataset with 70 days.

As with the previous dataset, the last predicted hazard rates were used for the
analysis. The mean, median and standard deviation of these predictions for train,
validation and test set are shown in Table 6.10. For this model, both the mean
and median are larger for the train set than for the validation and test set. The
rescaling scheme defined by Equations 6.1 and 6.2 is used for this model as well,
with the mean and median values given in Table 6.10 making up the ratios.

Train set Validation set Test set
Mean 0.0014 9 · 10−4 0.0013

Median 3 · 10−4 2 · 10−4 1 · 10−4

Standard deviation 0.0055 0.0046 0.060

Table 6.10: Some summary statistics for train, validation and test set for the
model using NLL and WBCE loss on dataset with 70 days.

The same nine bins as defined in Table 6.3 were used for this model. The amount
of defaulters within each bin has naturally changed, and the new numbers are
shown in Table 6.11. As previously, customers in the train set were organized
into these nine bins based on their true remaining lifetime, after which statistics
regarding the predicted hazard rates were computed for each bin. These statistics
are shown in Table 6.12. Again, mean and median values were plotted against
remaining lifetime for visualization purposes. These plots are shown in Figures
6.6 and 6.7. Note that, as previously, the median values for the first two bins ’0-15’
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and ’15-30’ are removed for visualization purposes, due to them being significantly
larger than the remaining median values. The same behaviour as for the previous
model is observed in these plots as well, namely that both the mean and median
values drop very quickly initially, and then proceed to increase for a while before
decreasing again.

Bins Defaulters within bins
0-15 10
15-30 103
30-60 203
60-90 86

90-120 70
120-180 119
180-270 129
270-365 114
>365 109

Table 6.11: Bins for remaining lifetime, and how many defaulters from the train
set are in each bin for dataset with 70 days.

Bin Min Max Mean Median Std
0-15 6.8296e-03 9.6421e-02 3.3771e-02 1.9867e-02 3.0633e-02

15-30 3.4022e-04 8.0639e-02 2.4426e-02 2.1911e-02 1.8876e-02
30-60 6.6758e-05 6.1265e-02 3.8980e-03 7.8624e-04 7.5363e-03
60-90 8.2139e-05 4.2990e-02 1.4009e-03 2.8589e-04 5.2481e-03
90-120 5.8468e-05 3.5430e-02 1.8243e-03 2.9805e-04 5.2092e-03

120-180 6.2170e-05 6.0851e-02 3.9590e-03 3.9251e-04 1.0278e-02
180-270 4.3427e-05 6.1619e-02 2.6822e-03 2.8284e-04 8.5480e-03
270-365 5.2041e-05 3.5069e-02 1.9626e-03 2.7689e-04 5.6127e-03
>365 7.9596e-05 3.9809e-02 1.4045e-03 2.9251e-04 4.5815e-03

Table 6.12: Summary statistics for the different bins for remaining lifetime for
the model using NLL and WBCE loss on dataset with 70 days.

The decision rules for what predicted hazard rates are assoicated with what re-
maining lifetimes are presented in Table 6.13. They are different from the ones
in the previous model, but the same method has been used for obtaining them.
Again, the predictions in the group ’>365’ are set to 370 for practical reasons.

We are now prepared to report the final results for the model based on 70 days of
information. Starting with the residual plots, shown in Figures 6.8, 6.9 and 6.10,
much of the same tendencies as for the previous model are present. It appears
that the model based on 70 days in general predicts more large values than the
one based on 100 days. This can be seen by observing that there appears to be
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Figure 6.6: Plot of mean values for the bins of hazard rates against remaining
lifetime for the model using NLL and WBCE loss on dataset with 70 days.
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Figure 6.7: Plot of median values for the bins of hazard rates against remaining
lifetime for the model using NLL and WBCE loss on dataset with 100 days. The
value for bins ’0-15’ and ’15-30’ are excluded from the plot.
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Bin Predicted lifetime
0− 6.0 · 10−4 >365

6.0 · 10−4 − 1.0 · 10−3 315
1.0 · 10−3 − 1.5 · 10−3 225
1.5 · 10−3 − 2.2 · 10−3 150
2.2 · 10−3 − 3.0 · 10−3 105
3.0 · 10−3 − 4.0 · 10−3 75
4.0 · 10−3 − 5.2 · 10−3 45

5.2 · 10−3 − 0.022 21
> 0.022 7

Table 6.13: Hazard rate bins and the corresponding predicted remaining lifetime
for observations within these bins for the model with NLL and WBCE loss on
dataset with 70 days.

a larger density of dots along the bottom line of the plots. Looking at the MRAE
values, which are shown in Table 6.14, these indicate that the model on average
predicts a lifetime which is larger than what is observed. The reported values are
comparable to the ones obtained for the previous model.

Set MRAE
Train 1.93

Validation 1.85
Test 1.63

Table 6.14: MRAE values of train, validation and test set for the model with NLL
and WBCE loss on dataset with 70 day.

Next, we consider how well the model performed with respect to binary classifica-
tion of default one year ahead in time. Table 6.15 shows the amount of defaulters,
non-defaulters observed more than one year after time of prediction and non-
defaulters observed less than one year after time of prediction that are present in
the train, validation and test set. The different evaluation metric values are shown
in Table 6.16.On the test set, the results obtained are actually better than the once
obtained for the previous model. However, considering that the scores on both the
train and validation sets are worse than those on the test set, and considering that
this was also the case for the MRAE and C-index, we come to suspect that the split
simply favoured the test set in this particular case.

The results obtained from the trained models were mixed. For the model based
on 100 days of information, the concordance index of 0.67 on the test set is not
particularly high. However, it does indicate that the model works and does learn
some reasonable decision rules. The residual plots indicate that the model unfor-
tunately misses with more than 100 days on most of the predicted lifetimes. The
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Figure 6.8: Plot of residuals z− ẑ against remaining lifetime for defaulters in the
train set for the model with NLL and WBCE loss on dataset with 70 days.
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Figure 6.9: Plot of residuals z− ẑ against remaining lifetime for defaulters in the
validation set for the model with NLL and WBCE loss on dataset with 70 days.
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Figure 6.10: Plot of residuals z − ẑ against remaining lifetime for defaulters in
the test set for the model with NLL and WBCE loss on dataset with 70 days.

Train Validation Test
Defaulters 943 199 195

Non-defaulters >365 4128 832 837
Non-defaulters <365 1703 323 322

Table 6.15: Amount of defaulters, non-defaulters observed more than one year
after time of prediction and non-defaulters observed less than one year after time
of prediction in train, validation and test set, for the model with NLL and WBCE
loss on dataset with 70 days.

Train Validation Test
BACC 0.74 0.70 0.74
MCC 0.30 0.33 0.41
qẑ≥z 0.93 0.95 0.94

Table 6.16: Values of evaluation metrics for binary classification of default within
one year for the model with NLL and WBCE loss on dataset with 70 days.
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MRAE value of 1.69 on the test set is, surprisingly, lower than the value on the
train set. It indicates that the model often predicts values that are either close
to zero or more than twice as large as the true lifetime. Finally, the balanced ac-
curacy and Matthews correlation coefficient indicate that the model works fine
for binary classification for default within the next year, achieving scores around
what is the current standard for machine learning models at SpareBank 1 Kreditt.
For the model based on 70 days of information, the results are similar. Looking at
the MRAE values, we see that the value on the test set is actually slightly lower
than that for the model based on 100 days. It is quite similar however, and again
shows that the model predictions are mostly off target, and often the predicted
values are more than twice as large as the true ones. Again, the results for the the
binary classification task were decent, however slightly worse than those obtained
in the model based on 100 days. Further discussion of the results presented in this
chapter, as well as of the methods used to achieve them, will be presented in the
next chapter.

6.2 MSE and WBCE Loss

This section was supposed to present the results obtained by the models trained
using mean squared error and weighted binary cross entropy as loss functions. Un-
fortunately, a problem arose in the code, and this problem remained unresolved
for the remaining duration of the work on the thesis. Thus, no results were ob-
tained using these loss functions. As the MSE loss would provide a more direct
supervision over the actual remaining lifetimes, it is very unfortunate that the
effects this could have on the predicted lifetimes could not be explored. No fur-
ther discussion regarding this particular loss function in the frames of our recur-
rent, discrete time model will be provided, as this will merely serve as speculation
without any results to back it up.





Chapter 7

Discussion

In this chapter we discuss several aspects of the methods used and the results ob-
tained in this thesis, as well as the problem itself. Simplifications and assumptions
that have been made along the way are explored and discussed. Before initiating
the discussion it is worth pointing out that this thesis has been produced over a
limited time span. Many simplifications are due to this, and there are many as-
pects of the different approaches taken throughout the thesis that have not been
explored. As a result, potential for improvement and further research will also be
discussed in this chapter.

To summarize the results, both models seem to do relatively well in the case of bin-
ary classification, in that the results are on par with what is the current standard.
However, in genera, the models predict lifetimes that are quite a lot larger than
the true lifetimes, and struggle to differentiate defaulters from non-defaulters.
Considering the imbalance and incompleteness of the dataset, as well as earlier
results (e.g. Holte, 2021) and experience from the industry, these results are not
surprising. Comparing the results to those achieved in Holte (2021), it is inter-
esting to note that a full longitudinal model does not perform much better than
a model based on aggregated data. Naturally, the results are largely influenced
by the method for determining the relationship between predicted hazard rates
and remaining lifetime, which was quite experimental and not very rigorous. It
would be interesting to see how the results may have turned out if this relation-
ship was more deeply explored. Before leaving the results to discuss other aspects
of the thesis, it is worth noting that any comparison of the two models needs to
be viewed in light of the method used to choose the bins for the predicted haz-
ard rates and its lack of mathematical rigor. Differences may therefore in part be
ascribed to differences in "how well" the bins were chosen.

Thus far, we have not provided any justification for the choice of bins for the
remaining days in Chapter 6. The bins were equal for both datasets, and are shown
in Figure 6.3. The rationale between choosing the bins in this way was that, in
general, we are more interested in more refined predictions for customers that are
predicted to default within short time. This explains why the first two bins cover
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only 15 days each, while the next three cover 30 days each and the next bins
cover 60, 90 and 95 days, respectively. Looking at the plots of the hazard rate
statistics against the remaining lifetimes, we observe that the predicted hazard
rates seem to drop significantly for the first three bins, which is behaviour that
was expected, and which further motivates the use of smaller bins for small values
of remaining lifetime. The final bin covers all remaining lifetimes larger than one
year. This decision was based on the predictions becoming unreliable when the
subjects have a long remaining lifetime, and on the fact that uncertainty starts to
play a major role.

No analysis of feature importance was done in this thesis. The main reason for
this was time constraints, however the decision rules of neural networks are also
notoriously difficult to interpret, which is actually one of the main criticisms of
them. The SHAP framework, introduced by Scott M. Lundberg only four years ago,
provides a game theoretic approach to explain the output of any machine learning
model (Lundberg and Lee, 2017, Lundberg, Scott M., 2021). It could certainly be
interesting to explore feature importance in the models trained in this thesis using
this framework. A feature importance analysis would be informative in the sense
that it could give insight into how the model makes decisions, and which variables
it considers to be important when making predictions. Furthermore, comparing
the importance of the different features to the observations from the exploratory
data analysis in Chapter 5 could be interesting, and reveal if the neural network
may have uncovered deeper patterns than were recognized in that analysis.

The question of what evaluation metrics to use is essential to any machine learn-
ing method. All metrics have their advantages and drawbacks, and it might not
always be clear what metric is the most trustworthy in association with the prob-
lem at hand. In this thesis, it was decided to use the concordance index as one
of the main metrics, as it provides an indication of the discriminatory abilities of
the model, which are arguably the most important abilities for a survival model.
However, none of the loss functions used were designed specifically to maximize
the concordance index. Using loss functions that can be more easily associated
with the concordance index could therefore be a suggestion for future research.
Another option is to try and find performance metrics that are more directly op-
timized by the chosen loss functions. Other performance metrics were considered,
and in the end the mean relative absolute error was used, mainly due to the lack
of a better metric for assessing how well the model was calibrated. The Brier Score
was considered, however it was deemed unsuitable for our model, due to survival
estimates exceeding the day of default being inaccessible. Using some sort of Brier
Score that is adapted more specifically to our model could be of interest.

The dataset that has been used in this thesis presents several challenges. Firstly,
there is the imbalance. As only around 13% of the customers experience a default
during the time they are observed, and machine learning models tend to be biased
towards the majority class, our neural network may have had a hard time trying
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to learn what characterizes a customer at risk of defaulting. This also leads to the
network generally predicting hazard rates that are very low, leading to predicted
lifetimes that are very high. Combined with the fact that many defaulters and
non-defaulters exhibit very similar behaviour, the problem of predicting who will
default, and at what time, becomes complicated. Another major challenge is that,
due to privacy, the customer information that companies can gather and use is
limited. It might therefore be (and it does indeed seem to be the case) that the
useful information the dataset provides us with is limited, and that the information
that really determines how much time will pass before a customer defaults is not
available to us. Furthermore, even if we were allowed to record absolutely all
the information that we wanted about customers, we still would not be able to
foresee things like accidents, personal tragedies and other events that may affect
a person’s finances. This means that any prediction about the far future would
have to be viewed with caution.

No large amount of data preparation was done in this thesis. The data was stand-
ardized to have zero mean and unit variance, and some observations were re-
moved from the dataset, but no further feature engineering was performed. Fur-
thermore, only one type of scaling was attempted. Scaling the data differently, for
example normalizing features to have values between zero and one, could lead to
different results. Some variables in the dataset were also disregarded, either be-
cause they had the same information as other variables, or because they were on a
format which was not readily usable in the model. Spending more time extracting
information from these variables could certainly be of use.

The decision to use a recurrent neural network in this thesis was mainly based on
its adequacy for dealing with sequential data. Further, the LSTM was chosen in
order to better be able to retain information from previous time steps. Whether
these models are well suited to the different data types and combination of data
types in the dataset was not explored. The non-parametric, discrete time model
for predicting hazard rates was chosen based on the work of Ren et al. (2018), and
no material outside of the article itself was used to inform the decision of using
this model. This is partly because there is no large amount of material presenting
models that suit our problem as well as the model proposed in Ren et al. (2018).

The loss functions originally proposed in Ren et al. (2018) seemed to lead to good
results on the datasets treated in that article, however none of them provided
direct supervision over the actual remaining lifetimes. This meant that some re-
lationship between predicted hazard rates and remaining lifetime needed to be
assumed, something that brought a new and unforeseen aspect into the model. As
mentioned in Chapter 4, one could assume a functional relationship, for instance
something similar in spirit to Equation 4.13. To aid in deciding what functional
relationship to use, one could utilize plots and maybe some regression techniques.
The decision to not assume any functional relationship here was made partly due
to time limitations, and partly to avoid imposing restrictions that would follow
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from assuming a functional relationship. The method that was chosen was one
that was easy to implement and had lots of room for changes and adaption. It
was quite simple, but could easily be made more complex by assuming functional
relationships within the different bins that were created, or through creating ad-
ditional bins. The method seemed appropriate when considering the fact that the
predicted hazard rates were seen to be quite inaccurate, and considering that any
prediction could only be trusted to a certain degree due to unforeseeable events.
Furthermore, even though an accurate prediction of time to default is of course
desirable, a pinpoint indicating approximately how much time remains before a
customer defaults is mainly what can be hoped for. Still, having some more strict
decision rules for how to best create these bins could be beneficial, as no partic-
ular set of rules was followed when they were created, something that leaves a
lot of room for subjectivity. If one wanted to completely avoid the need to find
a relationship between hazard rates and remaining lifetimes, one could have the
model directly predict remaining lifetime instead. This would require the use of
different loss functions that supervised directly over remaining lifetime, or over
scaled versions of the remaining lifetime. Another alternative would be to create
an additional neural network on top of the already existing one, and have this
network try to learn the relationship between hazard rate and remaining lifetime.
This approach could certainly be of interest, as it would allow for the functional
relationship to be learned rather than assumed. It would also allow for different
degrees of complexity through the decision of network architecture.

As was mentioned initially in Chapter 6, the amount of hyperparameter tuning
performed in this thesis was quite small. Several values were tried for several para-
meters, and the goal was mainly to see if a large improvement could be achieved
by changing these in certain directions. Granted, an improvement in the C-index
was seen as a result of this experimentation, with the validation concordance in-
creasing from 0.60 in the first model to 0.72 in a later one for one of the datasets.
This illustrates that hyperparameters have a significant impact on the model one is
training, and motivates hyperparameter searches. Using more organized methods
such as grid search, response surface methodology or other more advanced meth-
ods could give further insight and most likely result in even better hyperparameter
values.

Considering that the models trained did not in effect surpass existing, simpler
models in terms of predictive performance, the current value that deep learning
adds to the problem of credit scoring has to be seen as limited according to this
thesis. Furthermore, the fact that a model based on sequential data performs com-
parably to a model based on summary statistics indicates that either there is little
more information to be gained from the full time series than from the summary
statistics, or the approach taken does not harness this information in a good way.
The many simplifications and unexplored opportunities mentioned in this chapter
motivate further research to try and unite survival analysis and deep learning to
achieve strong and reliable results for credit card data. Using other neural network
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models, looking more into proper loss functions and hyperparameter tuning, as
well as dedicating time to find proper evaluation metrics, are all topics that, at
least in the opinion of the writer, deserve attention and further research.





Summary

In this thesis, a deep neural network model combined with concepts from survival
analysis is used to predict time to default for credit card customers. The dataset
used consists of sequential data for customers of the credit card institution Spare-
Bank 1 Kreditt. An exploratory data analysis is performed to get familiarized with
the dataset, exploring both how unchanging and changing variables affect the
two main groups of customers: those that default, and those that don’t. A discrete
time model is then formulated based on central concepts from survival analysis.
An LSTM structure is used for the network architecture, and models are trained
based on data from two different time periods: from day 0 to day 70 of customer
relationships, and from day 0 to day 100. The output from the neural network is
transformed from a number between 0 and 1 to a whole number, which is then
used as the predicted amount of days until default. Several hyperparameter com-
binations are tried in order to increase performance. Two of the trained models
and the results they achieved are presented, and the results and their implications
are discussed.

The main objective of this thesis is to try a full longitudinal approach to a problem
which SpareBank 1 Kreditt has mainly treated using models based on summary
statistics. It is also an attempt at combining deep learning and survival analysis to
make predictions based on credit card data. The results are comparable to the cur-
rent standard, and do not directly motivate the use of such models in the industry,
due to their complexity. However, as several simplifications are made and several
paths left unexplored, there is an argument for further research into the topic. In
particular, the relationship between the output of the network and the expected
time to default should be more thoroughly explored. More effort should also be
put into hyperparameter tuning, choice of loss functions and choice of evaluation
metrics.
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Appendix A

Variables in dataset

Variable Description
RK_ACCOUNT_ID Internal account Id
BK_ACCOUNT_ID Internal account Id

AccountCreatedDateId Date of account (card) created (YYYYMMDD)
ApplicationScore Score of application
PRODUCT_NAME Name of (card) product

CREDIT_LIMIT_AMT Credit limit on card [kr]
GEN_BK_ACCOUNT_STATUS_CD Account Staus code

PostalCodeFirst2 First 2 numbers in postal code
HAS_DIRECT_DEBIT_AGREEMENT_IND Indicator, direct debit

agreement selected ("avtalegiro")
HAS_ESTATEMENT_AGREEMENT_IND Indicator, e-statement selected ("e-faktura")

CustomerAge Customer’s age in years
GENDER_NAME Gender

DISTRIBUTOR_NAME Bank Name
CashBackStatus CashBackAccount’s status

MonthsSinceAccountCreated Account’s age in months
AccountBalanceDateId Date of account data

(YYYYMMDD) (DD)
prevPeriodId End of month before collection opened

(YYYYMMDD), EOMB
BALANCE_AMT Balance at DD

IEL_AMT Interest earning balance at DD
CASH_BALANCE_AMT Cash balance at DD

OVERDUE_AMT The amount overdue at DD
DomCashNum Number of domestic cash withdrawals at DD
DomCashSum Sum of domestic cash withdrawals DD

DomPurchaseNum Number of domestic purchases DD
DomPurchaseSum Sum of domestic purchases DD

IntCashNum Number of international cash withdrawals DD
IntCashSum Sum intenational cash withdrawals DD
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IntPurchaseNum Number of internationsal purchases DD
IntPurchaSum Sum of international purchases DD
Transfernum Number of cash transfers DD
Transfersum Sum of cash transfers DD

FeeNum Number of fees DD
FeeSum Sum of fees DD

SumAirlineL12M Sum of transactions in given
class last 12 months (EOMB)

SumELECTRIC_APPLIANCEL12M Sum of transactions in given
class last 12 months (EOMB)

SumFOOD_STORES_WAREHOUSEL12M Sum of transactions in given
class last 12 months (EOMB)

SumHOTEL_MOTELL12M Sum of transactions in given
class last 12 months (EOMB)

SumHARDWAREL12M Sum of transactions in given
class last 12 months (EOMB)

SumINTERIOR_FURNISHINGSL12M Sum of transactions in given
class last 12 months (EOMB)

SumOTHER_RETAILL12M Sum of transactions in given
class last 12 months (EOMB)

SumOTHER_SERVICESL12M Sum of transactions in given
class last 12 months (EOMB)

SumOTHER_TRANSPORTL12M Sum of transactions in given
class last 12 months (EOMB)

SumRECREATIONL12M Sum of transactions in given
class last 12 months (EOMB)

SumRESTAURANTS_BARSL12M Sum of transactions in given
class last 12 months (EOMB)

SumSPORTING_TOY_STORESL12M Sum of transactions in given
class last 12 months (EOMB)

SumTRAVEL_AGENCIESL12M Sum of transactions in given
class last 12 months (EOMB)

SumVEHICLESL12M Sum of transactions in given
class last 12 months (EOMB)

SumQuasiCashL12M Sum of transactions in given
class last 12 months (EOMB)

SumAirlineL3M Sum of transactions in given
class last 3 months (EOMB)

SumELECTRIC_APPLIANCEL3M Sum of transactions in given
class last 3 months (EOMB)

SumFOOD_STORES_WAREHOUSEL3M Sum of transactions in given
class last 3 months (EOMB)

SumHOTEL_MOTELL3M Sum of transactions in given
class last 3 months (EOMB)
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SumHARDWAREL3M Sum of transactions in given
class last 3 months (EOMB)

SumINTERIOR_FURNISHINGSL3M Sum of transactions in given
class last 3 months (EOMB)

SumOTHER_RETAILL3M Sum of transactions in given
class last 3 months (EOMB)

SumOTHER_SERVICESL3M Sum of transactions in given
class last 3 months (EOMB)

SumOTHER_TRANSPORTL3M Sum of transactions in given
class last 3 months (EOMB)

SumRECREATIONL3M Sum of transactions in given
class last 3 months (EOMB)

SumRESTAURANTS_BARSL3M Sum of transactions in given
class last 3 months (EOMB)

SumSPORTING_TOY_STORESL3M Sum of transactions in given
class last 3 months (EOMB)

SumTRAVEL_AGENCIESL3M Sum of transactions in given
class last 3 months (EOMB)

SumVEHICLESL3M Sum of transactions in given
class last 3 months (EOMB)

SumQuasiCashL3M Sum of transactions in given
class last 3 months (EOMB)

Segment9Name Segment (see separate documentation)
Segment23Name Segment (see separate documentation)
UtilizationL12 average revolving balance last 12 months

divided by average credit limit last 12 months
UtilizationL3 average revolving balance last 3 months

divided by average credit limit last 12 months
AvgRevBalL3onL12 Avergage revolving balance last 3 months

divided by average revolving balance last 12 months
DC2Ind Indicator of default (lifetime event indicator)

RemaningLifetime Remaining life DD (days)

Table A.1: Variables included in the original dataset, and their descriptions. Vari-
ables in boldface are included in the data analysis and the trained models.





Appendix B

Trained models

Hyperparameter name Abbreviated name (used in Table B.2)
Number of layers nl

Hidden size hs
Batch size bs

Learning rate lr
Loss weight lw
BCE weight bw

Table B.1: Abbreviations for hyperparameters.

Loss functions Days Hyperparams Val conc Comment
NLL, WBCE 100 nl: 3 0.60 Concordance not computed properly

hs: 100
bs: 256
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 100 nl: 3 0.57 Concordance not computed properly
hs: 100
bs: 128
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 100 nl: 3 0.71
hs: 120
bs: 256
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 100 nl: 4 0.72 Best results for 100 days
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hs: 120
bs: 256
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 100 nl: 4 0.68
hs: 120
bs: 256
lr: 0.01
lw: 0.3
bw: 0.2

NLL, WBCE 100 nl: 5 0.66
hs: 120
bs: 256
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 100 nl: 4 0.63
hs: 66
bs: 256
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 100 nl: 4 0.62
hs: 120
bs: 256
lr: 0.01
lw: 0.6
bw: 0.3

NLL, WBCE 100 nl: 4 0.66
hs: 120
bs: 256

lr: 0.005
lw: 0.6
bw: 0.2

NLL, WBCE 70 nl: 3 0.57
hs: 100
bs: 256

lr: 0.005
lw: 0.6
bw: 0.2

NLL, WBCE 70 nl: 4 0.58 Best results for 70 days
hs: 120
bs: 256
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lr: 0.0075
lw: 0.6
bw: 0.2

NLL, WBCE 70 nl: 4 0.54
hs: 120
bs: 256
lr: 0.01
lw: 0.6
bw: 0.2

NLL, WBCE 70 nl: 4 0.56
hs: 100
bs: 256

lr: 0.0075
lw: 0.6
bw: 0.1

NLL, WBCE 70 nl: 4 0.56
hs: 120
bs: 256

lr: 0.0075
lw: 0.7
bw: 0.1

NLL, WBCE 70 nl: 4 0.56
hs: 140
bs: 256

lr: 0.0075
lw: 0.6
bw: 0.1

Table B.2: Overview of hyperparameters and validation concordance of the mod-
els trained. The models that performed best within their category have the first
line written in bold text.
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