
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Théo Degeorges

Close Control of an Autonomous
Drone for Physical Module
Replacement on Mobile Platforms

Master’s thesis in Electronic Systems Design
Supervisor: Dominik Osinski
Co-supervisor: Tor Arne Johansen

June 2021

M
as

te
r’s

 th
es

is

Théo Degeorges

Close Control of an Autonomous Drone
for Physical Module Replacement on
Mobile Platforms

Master’s thesis in Electronic Systems Design
Supervisor: Dominik Osinski
Co-supervisor: Tor Arne Johansen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Fully autonomous drones are getting more and more reliable and are
willing to be used in an increasing amount of fields. The International
Aerial Robotic Competition claims that repairing moving platforms
in an autonomous way is an important one. This thesis will try to
improve the control of an autonomous drone close to a moving boat’s
mast. This includes the creation of an attitude controller through LQR,
an Extended Kalman Filter to estimate the position of the moving
target and some strategy about the movements around the mast. A
feed-forward and non-linear input to the LQR will be explored. The
research includes real-life validation and collision testing. The results
of the LQR will be compared with an autopilot built-in PID controller.
This thesis shows that the LQR could not get significantly better than
the PIDs and that a good EKF tuning in terms of error makes the
drone jittering. For this kind of application, it is better to lose a bit of
accuracy on the EKF side but make the flight smoother.

1

Contents

1 Introduction 1
1.1 State of the Art Overview . 1
1.2 Description of Ascend-NTNU 1
1.3 Description of the Mission of the Year 2
1.4 Description of the Drones . 4
1.5 Strategy for Module Replacement 6
1.6 Scope of the Thesis . 7

2 Requirement Analysis 8
2.1 Accuracy Requirement . 8
2.2 Boundaries . 9

3 Theory 10
3.1 Control with a Flight Controller 10

3.1.1 Basic Control of the Drone 10
3.1.2 Attitude Control . 10

3.2 Linear Quadratic Regulator 10
3.2.1 Model for LQR . 12
3.2.2 Feed-Forward . 14
3.2.3 Non-Linear Input Error 14

3.3 Kalman Filter . 15
3.3.1 Extended Kalman Filter 15
3.3.2 Application of the Model for this Thesis 16
3.3.3 Predict the Future . 19

4 Experimentation 20
4.1 Description of the Most Important Tools 20

4.1.1 ROS . 20
4.1.2 Ascend Simulator . 21
4.1.3 Matlab . 21

4.2 Control With Position and Velocity Set-Points 21
4.3 Control With an LQR on Attitude 23

4.3.1 Implementation . 23
4.3.2 Experiments . 24
4.3.3 Instability Test . 26
4.3.4 LQR Control from Non-Linear Error 28
4.3.5 LQR with Feed-forward 29
4.3.6 Using Future Set-points 30
4.3.7 LQR Control Under Simulated Wind 31

4.4 Extended Kalman Filter . 31
4.4.1 Testing Procedure . 32
4.4.2 Experimentation . 33

4.4.3 Integration . 34
4.5 Combination of the Work into a Module Replacement Operation 36

4.5.1 A State Machine Based Operation 36
4.5.2 LQR from EKF Set-points 37
4.5.3 Altitude Control . 38
4.5.4 Smooth Movement Relative to the Mast 40

4.6 Real Life Testing . 41
4.6.1 Real Life Testing Difficulties 43
4.6.2 GPS Accuracy Test . 44
4.6.3 Hovering Test . 45
4.6.4 Position and Velocity Control 46
4.6.5 LQR Control . 48
4.6.6 Control With EKF . 49
4.6.7 Collision Testing . 51

5 Results and Discussion 53
5.1 Theory Versus Experimentation 53
5.2 Simulations and Real Life Tests Comparison 54
5.3 Limitations of the Results . 55
5.4 Methodology . 57
5.5 Proposition of Improvements 58

6 Conclusion 60

Appendix 61

A Appendix - Improvement of the Reference Path 61

References 62

1 Introduction

Due to large improvements in drone accuracy and intelligence, fully au-
tonomous drones are emerging, including those equipped with repairing ca-
pacities. This is highlighted by the scope of this year’s International Aerial
Robotic Competition (IARC)’s mission [10], requiring the creation of an au-
tonomous drone that achieves a communication module replacement on a
ship.

This thesis aims to improve autonomous drone capacities for repairing
mobile platforms. More specifically, this project will go through the control
of an autonomous drone in the proximity of a ship. The drone must consis-
tently stay close to an oscillating mast. This problem is similar to trajectory
tracking issues where a drone has to follow a time-parametrized reference.
However, in this case, the reference is not known in advance and will be
estimated in real-time by another project outside of the scope of this thesis.
The research will be done in collaboration with Ascend NTNU, one of the
student organizations that participates in IARC’s competitions.

1.1 State of the Art Overview

The accuracy of UAVs had not been looked into previously within Ascend,
but many papers did. [15] presents a real-time control in position for quad-
copters in outdoor conditions. It proposes a PD control with gain scheduling
with the aim of being used for trajectory control. It gets significant improve-
ment over a simple PD in terms of rapidity, accuracy, overshoot and wind
rejection. A different strategy is proposed in [3], which compares a PD con-
trol with an Extended Prediction Self-Adaptive Control (EPSAC) approach
to MPC. The design of the EPSAC focuses on a fast response without over-
shoot, which looks promising. On the other side, [14] presents a simple
quadcopter model for MPC and focus on keeping low development costs and
using computationally light calculations. [4] also details a quadcopter Mat-
lab model based on angular rate control. Finally, [19] presents the state
of the art of load transportation and interaction between UAVs and their
environment. And [11] develops a collision mitigation solution for contact
inspection.

Control-wise, this thesis aims to investigate the use of a Linear Quadratic
Regulator (LQR) controller. Some improvements of the LQR, such as feed-
forward and non-linear input, will also be looked into.

1.2 Description of Ascend-NTNU

Ascend NTNU is an organization of volunteering students from NTNU who
designs and builds drones. Every year, Ascend aims to participate in the In-
ternational Aerial Robotics Competition (IARC). It is "The World’s Premier

1

Figure 1: Schema of the link between the different technical groups within
ascend

and longest running Aerial Robotics Challenge" where competitors have to
design and produce state-of-the-art aerial robots to face challenges. At the
time they are proposed, the latter are considered as ’impossible’ and it is
possible that not any team successfully manages the mission. In that case,
the same mission will be held the following year.

The organization is composed of 4 technical groups articulated as in fig. 1.
Among them, the Hardware group deals with all the physical components
of the drone. This includes mechanical and electrical parts and electronics.
The Perception group creates the ’eyes’ of the drone by adding sensors and
gather and analyze their data. The AI group represents the brain of the
drone. They take high-level decisions throughout the mission. This group
is also responsible for making and maintaining a simulator where all groups
can test their system independently. Finally, the Control group, which the
author is a member of, executes orders from the AI group. It includes the
control of the drone during several kinds of operations, such as taking off,
traveling, or executing the module replacement operation. From the data
figured out by the perception group, the AI group may want to make the
drone move through a certain waypoint at a certain speed, which will be
handled by control.

1.3 Description of the Mission of the Year

The mission was created in 2019 but has not been solved last year because of
the current pandemic. A fully autonomous aerial robot (drone in our case)
will receive a 2kg payload that represents a communication module (fig. 2).

2

At the start, the drone will take off and fly at an altitude of less than than
15 m to approximately 3 km to apprehend a vessel. The aerial robot will
then remove the communication module from the mast of the ship (dropping
it on site) and replace it with the communication module payload that it is
carrying (fig. 3). Upon completion of the module swap, the aerial robot will
return to its point of origin and land. The entire mission must be completed
in 9 minutes. If several teams were to succeed in the mission, the fastest
team wins.

Figure 2: Picture of a communication module

More specifically, the created drone will need to perform

• Precision manipulation of heavy and large objects

• Fast outdoor operations over long distances

• Interaction with moving frames of reference

• Aerial robotic repair of mobile platforms

• Optical recognition

• Using ONLY onboard computing

3

Figure 3: Picture given by the competition of the mast with its communica-
tion module

1.4 Description of the Drones

A 1.9 x 2.3m drone is being built. The drone must be wide because it must
carry heavy loads. Also, for stability reasons, the module should not be in
front of any of the propellers at any time. Therefore, the drone must have
some room to fit the mast between 2 propellers and be able to place a module
on it. A render of the drone can be seen fig. 4. In this figure, the mast will
fit between the two propellers on the left, which is in front of the drone.

4

Figure 4: Render of the big drone that will be used during the competition

In addition to this big drone, Ascend has 2 smaller drones from the
previous missions (fig. 5). Their small size makes them more convenient for
testing and less risky.

Figure 5: Picture of one of the test drones

5

Figure 6: Render of the FaceHugger on the Mast

Every drone is equipped with a flight controller (pixhawk4 run with
Ardupilot autopilot) that collects data from the different sensors of the drone
and controls the propellers. The collected data is filtered through an EKF
to estimate the drone state (6D position and velocity). Every drone is also
equipped with a companion computer which is used as the brain of the drone
in autonomous mode. This computer can access any information that the
flight controller has and send it commands such as position or attitude set-
points. It communicates using ROS through the Mavros interface as it is
robust and widely used. This interface allows the use of the same software
for both simulator and real-life testing. It makes the tests easier and safer.

1.5 Strategy for Module Replacement

The drone that will be used in the competition will hold an independent
autonomous mechanism that carries the communication module. It is called
the FaceHugger (see fig. 6). Its goal is to settle on the mast and autonomously
take the existing communication module off and place the new one that it is
carrying. The FaceHugger will be set by the drone on the blue plate where a
communication module is mounted. The middle top of the blue plate will be
called the interaction point. This is where the FaceHugger (more precisely,
its hook) is aimed to be placed.

The use of this FaceHugger will largely reduce the complexity of the
mission. First, the accuracy needed to set the FaceHugger is much less
than the one needed to place the module without any other helping system.
Secondly, the time during which the drone will need to be across the mast
is also reduced by a lot. In addition, once the FaceHugger is set, the drone

6

can leave the mast and go back to its base. without it, the drone would need
to take the first module out and place the new module in a relatively slow
manner. That should therefore reduce the overall mission time.

1.6 Scope of the Thesis

This thesis is the continuation of a one-semester project [5] on the same
subject. It aims to help Ascend NTNU in its creation of a drone for IARC
worldwide competition in the United State of America. The aim of this
thesis is to handle the control of the drone for the whole module replacement
process. It begins when the drone hovers still in front of the mast and ends
when the FaceHugger is successfully placed on the mast and the drone safely
exited the area.

This report explores a solution based on LQR control, an EKF, and a
state machine. The Kalman filter will estimate the state of the mast (po-
sition, velocity and acceleration) that the regulator will use to control the
drone toward the position defined by the state machine. The LQR will only
control the drone on a horizontal plane. The control in altitude will be men-
tioned but kept outside of the scope of the thesis since it has been considered
less challenging. Several improvements of the basic LQR controller will be
explored, such as non-linear input and feed-forward. This thesis will also
compare the homemade LQR against an autopilot built-in position and ve-
locity PID controller. However, getting the best results possible from the
latest controller will not be a priority.

The report will first elaborate on the scope of the thesis, setting the
requirements and boundaries. It will then explain the theory used in the
experiments that will follow. The latter includes both simulator and real-life
testings. Then, the results will be discussed in order to establish a general
conclusion.

7

Figure 7: Render of the side and back of the FaceHugger

2 Requirement Analysis

The replacement of the communication module is a mission critical task.
This has been simplified by the placement of the FaceHugger system. During
this thesis, it will be assumed that the module replacement operation will be
successful as long as the FaceHugger is hooked on the top of the blue plate.

2.1 Accuracy Requirement

The FaceHugger must be placed on the blue plate of the mast (fig. 3). An
example is shown fig. 6. The position of the FaceHugger on the top of the
blue plate should not impact it success as it can center itself after being
set. Still, the room to place the FaceHugger is narrow. The diagonal beam
between the two outer poles reduces the available room.

The FaceHugger is hanged on the mast from its front hook (see fig. 7).
This hook ends 40mm behind the backplate (the part that will be against the
blue plate of the mast). So the placement has to be 20mm accurate on the x
axis (the axis going forward from the mast). This hook can be positioned on
the whole bottom left triangle marked by the diagonal beam, the top of the
blue plate and the left outer pole of the mast. This constrains the design to
about 50mm accuracy on the y and z axes.

As the mast is moving at a maximum speed of 470mm/s (as estimated
later in fig. 8), the drone must not be delayed more than about 20/470 =
0.043sec (when the mast is at maximum velocity). This delay can either be
positive or negative, the drone should not be ahead of the module by more
than 0.043sec.

8

The placement being consistently successful, it becomes important to
place the FaceHugger as quickly as possible. This is because speed is im-
portant in this competition. The winning team is the team that finishes the
whole mission in the quickest manner.

2.2 Boundaries

The movement of the mast simulates natural wave motion (sea state ≤ 3),
resulting in a mostly sinusoidal oscillation of the ship in both pitch and roll.
Neither heave (vertical component of motion) nor forward motion will be
implemented at the competition. Nonetheless, noise will be introduced so
that the pitch and roll are not entirely predictable.

An estimate of the oscillation of the mast has been calculated on an
interactive sheet fig. 8 to estimate the scale of the amplitude and the speed
of the movements. It results on relatively slow movements: the maximum
expected speed near 0.5m.s−1 with a maximum acceleration of 0, 3m.s−2.

The precision of the position of the drone is not only limited by the
accuracy of the GLSs. Ardupilot stores the drone position using latitude
and longitude coordinates and the precision of these coordinates limits the
accuracy with which the position is stored to 11mm at the equator and
9mm in Trondheim (Norway). A post on Ardupilots’s forum [2] gives a
more detailed explanation and proposes a solution to increase accuracy to
sub-millimeters. If the default storage accuracy is good enough for most
applications, the drone needs to be controlled with 20mm to 50mm accuracy.
The way the position of the drone is stored may be limiting. Still, since the
issue does not seem critical and the solution was not trivial to implement, it
has not been used in the scope of the thesis.

Figure 8: Estimate of the mast oscillation amplitudes

9

3 Theory

In this chapter, we will describe the theory around the different tools used
to achieve the thesis results. We will first go through the different types of
control available with Ardupilot autopilot. Then we will detail the use of
a Linear Quadratic Regulator (LQR). Finally, we will explain the use of an
Extended Kalman Filter (EKF).

3.1 Control with a Flight Controller

The flight controller hardware used in Ascend is the Pixhawk4 [16]. On this
controller, the Ardupilot autopilot is used [1]. The main goal of the autopilot
is to assist the user in the control of the drone. Even during autonomous
flights, the autopilot is very useful. It has several layers of control [8] that
allows the designer to only consider high-level tasks.

3.1.1 Basic Control of the Drone

During basic autonomous control, one gets the opportunity to set the drone
position, velocity, or both at the same time. Ardupilot will handle the control
has show fig. 9. Position error is translated into a velocity target through a
squared root regulator. If a velocity set-point is set, it is added to the just
found target. Then, a PID converts the velocity error into a desired leaning
angle. The latter is controlled by a lower-level control with a PID on the
leaning rates.

3.1.2 Attitude Control

Ardupilot also allows for a lower-level control of the drone. One can decide
to control the attitude of the drone (fig. 10). It is then possible to set the
orientation, the body rate, and the thrust of the drone. The controller is also
used after the previous controller in case of a position or velocity control.

On the one hand, using this middle-level control allows a faster response
of the drone. Indeed, it is much faster to set the drone to a specific orientation
than a specific position or velocity. One can also get a better hold on the
drone behavior as they design themselves what should the drone do to achieve
their goals. On the other hand, it requires a more complex algorithm, it is
less user-friendly and becomes more complex to debug.

3.2 Linear Quadratic Regulator

The work done during last semester’s project suggested that a position and
velocity control is not enough to achieve our needs (less than 5 cm accuracy
with real data). The implementation of a more complex control strategy has
then been looked into. The implementation of a Linear Quadratic Regulator

10

Figure 9: schema of the high-level control with Ardupilot (2020, ArduPilot
Dev Team. [8])

Figure 10: schema of the middle-level control with Ardupilot (2020, ArduPi-
lot Dev Team. [8])

11

(LQR) is a natural step after a PID. The LQR is easy to design and gives
high-performance control. Well tuned, this regulator can be both fast and
accurate.

To be efficient, the LQR needs to control low latency inputs. The attitude
of the drone is quick to set and directly accessible with Ardupilot. It is not
too low level so that it is still fairly easy to control and to get a feeling
of how it behaves. This regulator will only be used on a horizontal plane.
Indeed, attitude control only allows controlling the altitude of the drone
through the thrust. But the latter is not independent of the acceleration of
the drone on the horizontal plane, which would make the control much more
complex. Fortunately, altitude control is less critical than horizontal control
as the oscillations are smaller slower. We will then let Ardupilot control the
altitude of the drone internally, in a similar way as for position control.

Therefore, we will only consider the LQR for horizontal movements.

3.2.1 Model for LQR

Controlling the attitude of the drone is similar to controlling its acceleration.
Assuming that the drone will keep a slowly varying altitude, the upward force
from the propellers will almost be constant. The acceleration of the drone
is then a function of the leaning angle of the drone. On each axis,

acc = g × tan(φ) (1)

with g the gravity constant and φ the leaning angle of the drone.

The LQR will therefore send acceleration directives through leaning angle
set-points to the drone. The input of the controller must then be the error
in position and in velocity, or the relative position and velocity of the drone
compared to the mast.

We will make the assumption that the control of each horizontal axis (x
and y) is independent. They will be controlled the same way and therefore,
the attitude input to the drone becomes

U = KLQR ∗
(
position
velocity

)
(2)

A bloc diagram of the LQR control can be seen fig. 11. The scale of each
element of LQR gain can be found using the emblematic Q and R matrices.
They are convenient to efficiently find a good pre-tune. However, in the case
of this thesis, these matrices will not be used for further tuning. We will
prefer to adjust the K matrix gain directly.

On the LQR, the weights of the matrices R and Q respectively rates
how much power can be set to the system versus the control error. A first
approximation of these matrices can be done using Bryson’s rule where

Qii =
1

max_acceptable_error_of_state_i2
(3)

12

Figure 11: Bloc Diagram of an LQR

and

Rjj =
1

max_acceptable_value_of_input_j2
(4)

We are using the following estimations.

• The maximum allowed error in position is 20mm.

• The maximum allowed error in velocity is 100 mm/s. (Considering
0.2sec latency)

• The maximum acceptable input for this application is 1m/s² (the es-
timated maximum acceleration of the mast is 0.5m/s²)

Therefore, we get

Q =

(
2500 0
0 25

)
(5)

And
R =

(
1
)

(6)

From these matrices and considering a double integrator for the model of
the drone, Matlab can easily calculate the corresponding gain matrix. Using
the ’lqr’ function has been, we obtain

KLQR =
(
50.0 14.1421

)
(7)

Unfortunately, this rule has not been applied with the good parameters
at the beginning of the thesis and it resulted in a completely different matrix:

KLQR =
(
0.4189 1.1062

)
(8)

The actual theoretical value will still be discussed once the best experimental
value will be found.

As mentioned earlier, the tuning of the LQR will be done from the KLQR

matrix. Its elements respectively represent the weight of an error in position

13

and in velocity. Even though it is more common to use the Q and R matrices
or the pole placement method to tune this regulator, tuning the gain matrix
directly allows to bypass the simplifications made in the model and ensure
that the best tuning possible is reachable. In this case, the KLQR matrix is
short and explicit, so it is also intuitive and convenient to tune it directly.

3.2.2 Feed-Forward

However fast is a control, it can never be instantaneous. It will always be
some delay between a change of the input and the correction of the drone.
In our case, the position target (the mast) is continuously oscillating, and
so does the input. Therefore, we expect the drone to be slightly delayed
compared to its reference. This delay may be shortened using two differ-
ent techniques. First, one could try to predict the future and give future
set-points to the drone to overcome this issue. This will be discussed sec-
tion 3.3.3.

Adding a feed-forward to the control strategy can also improve the la-
tency. Indeed, considering that we can estimate the acceleration of the mast,
we can increase or decrease the inputs whether the mast is accelerating or
decelerating. A block diagram including the feed-forward can be seen fig. 12.
However, it may be difficult to estimate an accurate acceleration from posi-
tion measurements. A noisy estimation may worsen the results.

Figure 12: Bloc Diagram of an LQR with Feed-forward

3.2.3 Non-Linear Input Error

An accurate control requires relatively big gains. However, they can quickly
become very unstable. This is partially due to the inertia of the system. As
cited in the introduction, [15] propose a gain scheduling approach that allows
a faster, more accurate and with less overshoot response. In this solution,
the gain of the system increases when the error decreases. In a similar way,
the Ardupilot autopilot presents a square root feedback control that is also
equivalent to having a higher gain for small errors.

14

Following these examples, it seems relevant to try to take the square root
of the error before applying the LQR gain. The block diagram becomes the
one fig. 13. As the square root changes the input to the LQR, a new tuning
will have to be done.

Figure 13: Bloc Diagram of an LQR with feed-forward and squared root
block

3.3 Kalman Filter

The Kalman Filter is a widely used tool to estimate the state of a linear
system from a series of measurements. The mission requires a very accurate
estimate of the mast position, and therefore filtering of the measurements is
necessary. The Kalman filter is the best estimator in the minimum mean-
square-error sense. It allows merging the measurements from several sensors
toward the estimation of the state of the system and its covariance. Finally,
it is relatively easy to implement and not computationally heavy for today’s
computers.

The Kalman filter proceeds in two steps. First, the prediction step uses a
model to estimate the future state of the system. Then the update step ad-
justs the estimation considering all the measurements that have been made.
The Kalman filter assumes that all the measurements include a white noise
of a known covariance. These two steps have to be repeated for each time
step.

It is also possible to do the prediction step at a higher frequency than
the update step. This method can make the prediction more accurate if the
frequency of the measurement is not high enough compared to the system
dynamics. It can also make the Kalman filter more robust over not constant
measurement frequency.

3.3.1 Extended Kalman Filter

If the Kalman filter only works with a linear system, an extended version
can handle a non-linear system. However, as shown in [13] this filter only
converges locally and the global convergence can not be proven. In practice,

15

the Extended Kalman filter (EKF) does not present convergence issues and
it is very used for non-linear systems.

The EKF looks very similar to the linear Kalman filter, but with non-
linear equations for the prediction step and locally linearized matrices for
the update step. The EKF considers the following non-linear system

xk+1 = f(xk, uk) (9a)
yk = h(xk, uk) (9b)

Where:
x: is the state of the system
u: is the input to the system
y: is the output of the system (being measurable)

At each prediction step:

x̂k+1 = f(xk, uk) (10a)

Ppk+1 = Fk ∗ Pk ∗ F T
k +Qk (10b)

And for the update step:

Kk+1 = Ppk+1 ∗HT
k+1 ∗ (Hk+1 ∗ Ppk+1 ∗HT

k+1 +Rk+1)
−1 (11a)

xk+1 = x̂k+1 +Kk+1 ∗ (yk+1 − h(x̂k+1, uk+1)) (11b)
Pk+1 = (Ppk+1 −Kk+1 ∗Hk+1 ∗ Ppk+1) (11c)

Where:
x and x̂: are the estimated and predicted state of the system,
u and y: is the input and measurement vector of the system,
P and Pp: are the estimated and predicted covariance matrix,
K: is the Kalman gain,
H and F : are the Jacobian of the measurement and the prediction function
Q and R: are the covariance matrices of system uncertainty and the mea-
surements noise (considered white).

3.3.2 Application of the Model for this Thesis

In this study, the EKF will help to estimate the state of the mast of the ship.
From the mission’s rules, and as explained in section 2.2, the oscillations of
the mast will be mostly sinusoidal in both pitch and roll. The model will
consider constant oscillation characteristics. Their slow variations will be
handled by the filter as model uncertainty. Considering the mast in a polar

16

coordinate system, the state vector is as follow:

X =

p
r
ṗ
ṙ
ω
L

 (12)

Where:
p and r: are the pitch and the roll angle of the mast,
ṗ and ṙ: are the derivative of the pitch and the roll of the mast,
ω: is the frequency of the wave,
L: is the length of the mast.

The pitch and the roll of the mast are expected to have the following
shape:

p = Apsin(ωt+ φp)

r = Arsin(ωt+ φr)
(13)

therefore:
p̈ = −Apω

2sin(ωt+ φp)

r̈ = −Arω
2sin(ωt+ φr)

(14)

Which is equivalent to

p̈ = −ω2p

r̈ = −ω2r
(15)

Finally, neither the f nor the h function depends on the input set into
the system. So, the following prediction function is obtained:

f : x =

p
r
ṗ
ṙ
ω
L

 7−→

p+ ṗ× dt
r + ṙ × dt

ṗ− ω2 × p× dt
ṙ − ω2 × r × dt

ω
L

 (16)

Because the frequency of the waves ω is unknown, the system is not linear
or linearizable. The Extended version of the Kalman filter must be used and
the following Jacobian matrix has been calculated:

F =

1 0 dt 0 0 0
0 1 0 dt 0 0

−ω2dt 0 1 0 −2ωp× dt 0
0 −ω2dt 0 1 −2ωr × dt 0
0 0 0 0 1 0
0 0 0 0 0 1

 (17)

17

On the measurement side, the Perception group can give information on
4 states: the 3D position of the interaction point (the middle top of the blue
plate, where the FaceHugger should be placed) and the pitch of the mast. It
gives the following h function:

h : x 7−→ y =

x
y
z

pitch

 =

Lsin(p)
Lsin(r)

Lcos(p)cos(r)
p

 (18)

Once again, we see that the system could not be linearized. The following
Jacobian matrix has been calculated:

H =

Lcos(p) 0 0 0 0 sin(p)

0 Lcos(r) 0 0 0 sin(p)
Lcos(r)sin(p) Lcos(p)sin(r) 0 0 0 cos(p)cos(r)

1 0 0 0 0 0

 (19)

The last things to establish are the Q and R matrices presented eq. (11).
The Perception group estimates the covariance of their measurement to be
diagonal:

R =

0.001667 0 0 0

0 0.001667 0 0
0 0 0.001667 0
0 0 0 0.0001667

 (20)

However, the noise set into the simulator has the following R matrix that
is 6 times bigger:

R =

0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

 (21)

As a result, if the early estimate of the covariance matrix by the Percep-
tion group is correct, it should be easier to get an accurate estimate of the
mast state in real life than in the simulator.

There is no method to estimate the Q matrix before beginning tuning it.
It will be considered diagonal in this study. Slowly varying wave frequency
and amplitude of pitch and roll are expected. These variations can be con-
sidered as model error in the calculation of ṗ, ṙ and ω. Therefore these three

18

parameters should have a bigger coefficient.

Q =

0.005 0 0 0 0 0
0 0.005 0 0 0 0
0 0 0.05 0 0 0
0 0 0 0.05 0 0
0 0 0 0 0.05 0
0 0 0 0 0 0.005

 (22)

3.3.3 Predict the Future

The use of the prediction step several times in a row shall give the best
estimate of the future state of the system as possible. This estimation also
includes the state covariance matrix, which estimates how trustable is the
estimation. The covariance increases exponentially. Therefore, long-term
predictions are not viable. However short-term predictions can be reliable.
As nothing can be controlled without a bit of latency, such estimations may
be more valuable than the present estimation of the system.

19

4 Experimentation

In this chapter, we will put into application the different strategies developed
in the Theory chapter to control the drone. We will first go through the
methodology used by presenting the most important tools. After, we will
show what performances the position and velocity control can give. Then we
will detail the use of an LQR and its variants. After, we will be testing the
EKF and creating an autonomous operation capable of autonomous module
replacement in the simulator. Finally, we will check the simulation and
improve the tuning based on real-life testing.

4.1 Description of the Most Important Tools

Good tests require good tools. Here will be described which are the most
important ones used during this thesis.

4.1.1 ROS

First of all, ROS (Robot Operating System) is a widely used tool in the
robotics field. It is a communication infrastructure that allows hardware
abstraction. One can broadcast messages all over the system or call for
specific services to and from nodes. One can use the exact same code to talk
to the simulator or to the real drone. So ROS makes the development easier,
quicker and safer.

As ROS quickly became the backbone of robotic systems, a bunch of
packages has been built on top of it. For example, MAVROS is a library
that translates messages understandable by an autopilot (such as Ardupilot
or PX4) to ROS messages, and all the way around.

More details about ROS concepts can be found [17], but here is a quick
overview. With ROS, one can create nodes that handle a process and com-
municate with other nodes. They do it by subscribing or publishing to topics,
which could be seen as a radio channel. Each topic will talk about a specific
thing and will only be able to send one kind of data. For example, it can be
a topic about the robot position. Nodes can also execute or call for services.
Services only include two nodes, the one calling the service and the one ex-
ecuting it. The caller can send arguments at the same time and will receive
an acknowledgment. A typical service could be takeoff.

It is also possible to record bags. A bag is a file format that can store
part or all messages going through the ROS network. The bags can then be
played back which offers many good testing and debugging opportunities.
For example, if one wants the drone to always follow the same path, one can
record a bag of the reference set-points and play it again and again.

Last but not least, there is also a very convenient structure for running
codes. One can create launch files that can start several nodes or scripts

20

at the same time and include parameters. Important parameters such as
whether we want to show debugging prints or tuning options are very con-
venient to have as they are all gathered at the same place and they can be
tweaked without recompiling the code. They are also very easily accessible
so that whoever not knowing the code can still use them.

4.1.2 Ascend Simulator

As mentioned in the Introduction, Ascend develops its own simulator. Other
simulators already exist, but they have been judged not good enough for
Ascend’s application. It was especially limited when it came to physics and
camera render. The Ascend simulator is based on Unity and allows everyone
to test their work independently. For example, there is a topic publishing
ground-truth and noisy data of the interaction point position of the blue
plate if one wants to test the control strategy without running the perception
nodes.

4.1.3 Matlab

Finally, one needs to be able to analyze the performance of each test. Matlab
is a widely used tool for simulations and data analysis. During the previous
semester project [5], A Matlab script has been developed to extract data
from the tests and compare them. This script offers easy visual analysis
opportunities by plotting matching data on the same graph. The script also
executes automatic calculations to evaluate the performance of the drone.
It estimates the latency and the average and maximal distance between two
signals. The latency estimation is based on the maximum absolute cross-
correlation of the two signals ([9]).

A description of how to use the Matlab scripts can be found [7]. It has
been built to be very user-friendly. The only thing one has to do is to save
the relevant data into files (a C++ library has been made for that) and read
them with the script.

This script was especially convenient when doing some real-life testing
outside. One could get graphs of the flight of the drone almost instantly after
each test. This made testing more efficient as it allowed to check almost "on
the fly" the performances of the drone and tune accordingly.

4.2 Control With Position and Velocity Set-Points

The LQR is being implemented to try to outperform Ardupilot’s built-in
position and velocity control. The default tuning parameters give somewhat
bad results (average error of 0.40 and 0.114m on the x and y axes). But the
accuracy can largely be improved by tuning the regulator for its application.
Fig 14 has been obtained with the following gains:

21

Figure 14: Graphs of the best simulation using position and velocity control

Gain Default Best
Position Proportional 1 3
Velocity Proportional 2 4.5
Velocity Derivative 0.5 1

Table 1: Table of the default versus the best gains for position and velocity
control

The results showed table 2 are very promising. Notice that the position
proportional gain is considered dangerous by Ardupilot. No improvement
has been observed by tweaking the I gain of the velocity control.

Error projected along the X axis the Y axis
Average delay (s) 0.000 0.000
Average absolute error (m) 0.006 0.011
Max absolute error (m) 0.020 m (at 18.5s) 0.035 (at 16.2s)

Table 2: Error analysis of the best position and velocity control simulation

Fig 15 and table 3 show how well the control reacts to wind. It will be

22

Figure 15: Graphs of the best simulation under windy conditions with posi-
tion and velocity control

difficult to make it better with the LQR control.

Error projected along the X axis the Y axis
Average delay (s) 0.050 0.000
Average absolute error (m) 0.047 0.011
Max absolute error (m) 0.078 (at 16.7s) 0.039 (at 16.6s)

Table 3: Error analysis of the best position and velocity control simulation
under windy conditions

4.3 Control With an LQR on Attitude

4.3.1 Implementation

In this section will be presented an implementation of an LQR controller for
horizontal positioning with Ardupilot autopilot.

The LQR will use the position and velocity of the interaction point as an
input and give an acceleration target. Ardupilot does not handle acceleration
set-points by default. It is possible to tweak it, but it would reduce its
reliability and take a lot of time. A safer and easier method is to control
directly the leaning angle of the drone. The leaning angle of the drone is a

23

bijective function of its acceleration:

pitch = arctan(
accp
g

)

roll = arctan(
accr
g

)
(23)

Where:
g: is the gravity constant

Combining with the input-output equation from the LQR on both axis
(eq. (2)), we get

pitch = arctan(
KLQR ∗Xp

g
)

roll = arctan(
KLQR ∗Xr

g
)

(24)

where:
Xp and Xr: are the state vector along the pitch and the roll axes

During the following experiments, the LQR algorithm will be run at
20Hz. The tuning obtained only aims to point out a good idea of the per-
formances of the controller. It should validate whether it is a good control
solution in the context of the competition. In that case, more tuning can be
done in real-life on the final drone.

4.3.2 Experiments

The LQR controller is being prototyped from a simple python script and
is tested through Ascend’s homemade simulator. The script creates a ROS
node that guides the drone throughout its entire autonomous flight. First,
the drone is asked to take off. Then trajectory following can start. The script
subscribes to the state of the drone, runs the LQR algorithm, calculates
the desired attitude, and publishes it. Internally, Ardupilot will receive the
desired set-points and control the attitude of the drone toward this reference
with its internal PIDs.

This script has shown being very convenient to spot mistakes and bugs
in the implementation. The python language also showed the advantage of
being a quick solution to test different tunings. It does not require recom-
piling between each try. Python has some drawbacks though. If there is
an error in the code, it may take some time before occurring, which makes
syntax debugging longer. Also, it is difficult to keep control of what we are
exactly doing on a very high-level programming language, and some errors
may be misinterpreted (such as spelling issues).

24

Figure 16: Graphs of the first LQR simulation results

The data from the simulations are saved and analyzed with the Matlab
script explained earlier. The following simulations are based on perfect po-
sitioning data for both the drone and the reference, and no wind is being
simulated. These choices have been made in order to create a base controller
that is simple to implement, test and tune.

For the first test, the gain matrix obtained eq. (8) is being used. The
result from the Matlab script are summed up fig. 16 and table 4.

Error projected along the X axis the Y axis
Average delay (s) 0.849 0.799
Average absolute error (m) 0.047 0.131
Max absolute error (m) 0.082 0.226

Table 4: Error analysis of the first LQR simulation

This first result shows pretty big errors and delays. The best results on
the simulator have been obtained with KLQR = (7.5 5) fig. 17 and table 5.

Error projected along the X axis the Y axis
Average delay (s) 0.000 0.000
Average absolute error (m) 0.008 0.020
Max absolute error (m) 0.028 (at 13.2s) 0.048 (at 10.7s)

Table 5: Error analysis of the best LQR simulation

In this simulation, one can observe that the acceleration input oscillates

25

Figure 17: Graphs of the best simulation with LQR control

around mast acceleration, which is reflected in the velocity of the drone on
the x axis. In the simulator, one could observe the drone oscillating. This is
due to the high gains. It creates some instability in the drone and makes the
FaceHugger oscillating even though the center of the drone hardly moves.

In these simulations, the drone is following identical sinusoidal cycles
again and again. In order to better understand the results and how they
can be improved, a new graph presenting the position error over each half
sinusoid has been drawn. The superposition of the results over each half
cycle is shown fig. 18. It can be observed that the error is pretty constant
throughout the sinusoid. This shows that the controller is very consistent
whatever is the velocity or acceleration of the reference. This also means that
there is no weak point of the controller and that the drone can stay close to
the mast whenever during the whole oscillations without adding risk.

4.3.3 Instability Test

As mention just before, the gains used on the simulations to get the best
results are very high. This increases the risk of drone instability and it must
be tested. Bigger gains are going to be simulated to try to create instability
and analyze how the drone behaves.

26

Figure 18: Position error of the best LQR control for each half sinusoid of
the mast on the Y axis

Figure 19: LQR control with very high gains

27

Figure 20: Best results with squared root input on LQR control

In fig. 19, one can see that the acceleration set-points line (light orange)
looks like a PWM signal. This is due to the saturation that constrains the
input. That allows the drone to remain pretty stable despite the use of too
big gains. It shows that this saturation is very important to tune, especially
when our best tuning has big gains. Its tuning is a trade-off between the
capacity of the drone to follow fast moving references or face disturbances
and ensuring stability and smooth behavior.

This simulation was done with gains 4 times bigger than in the previ-
ous simulation. Even higher gains show the same results and confirm this
conclusion.

4.3.4 LQR Control from Non-Linear Error

As explained in the theory chapter section 3.2.3, this thesis wanted to explore
the possibility of having a non-linear error input. The signed square root of
the difference between the reference and drone state is taken before applying
the LQR gain.

The best result has be found after lowering the gains toKLQR = (1.0 0.75)
from eq. (8) and can be seen fig. 20 and table 6

28

Figure 21: Graphs of LQR control with signed squared input

Error projected along the X axis the Y axis
Average delay (s) 0.000 0.000
Average absolute error (m) 0.007 0.018
Max absolute error (m) 0.026 (at 19.2s) 0.044 (at 29.0s)

Table 6: Error analysis of LQR control simulation with squared root input

The results are not significantly better than the best results with the
linear input LQR. Even if they tend to be a bit better and the drone may be
slightly less jittery, it will be preferred to keep a linear input for the rest of
the tests. Still, if more accuracy is needed, the use of the squared root will
be looked at again.

Similar tests have been run taking the signed squared error as an input.
As one can see fig. 21, the results have been worse.

4.3.5 LQR with Feed-forward

In the theory chapter, we expected to be able to reduce the phase shift
between the drone movement and its reference by adding a feed-forward on
the acceleration of the interaction point. Even though there is barely any
phase shift, feed-forward showed to improve the results fig. 22. It is adding
valuable information to the system and helps to prevent position overshoot at

29

Figure 22: Best result with a feed-forward on the interaction point acceler-
ation

the end of the sinusoids. Here, a feed-forward of 0.5. and KLQR = (7.5 4.0)
have been used. This brings the LQR control at the same level as the built-in
position and velocity control from Ardupilot (table 7). Notice that it has
not been possible to get better results by using the signed squared root error
with feed-forward.

Error projected along the X axis the Y axis
Average delay (s) 0.050 0.000
Average absolute error (m) 0.006 0.011
Max absolute error (m) 0.025 (at 32.2s) 0.039 (at 19.7s)

Table 7: Error analysis of the best simulation with feed-forward

4.3.6 Using Future Set-points

In the Theory chapter, section 3.3.3, it was proposed to try using an esti-
mation of future set-points to improve any control strategy. However, both
the LQR or the position and velocity control or in sync with the reference,
or even a little bit ahead. Therefore, it is unnecessary and worse to use the

30

Figure 23: Control of the drone with LQR using estimated future set-points
(0.05sec ahead)

estimated future set-points. Fig 23 shows one test with LQR using estimated
set-points 0.05 seconds in the future. Here we can clearly see that the drone
(in blue) is too much ahead of the mast. And the maximum error is obtained
when the mast has its maximum velocity.

4.3.7 LQR Control Under Simulated Wind

Now that a good configuration for LQR has just been found, it is time to
try it under windy conditions (fig. 24). The usual error analysis if shown
table 8. The drone is jittering and the accuracy of the center of the drone is
much worse. The oscillations are due to the necessary big gains to keep the
error low and the randomness of the wind.

Error projected along the X axis the Y axis
Average delay (s) 0.000 0.000
Average absolute error (m) 0.0030 0.038
Max absolute error (m) 0.087 (at 17.0s) 0.139 (at 10.4s)

Table 8: Error analysis of a simulation with the best LQR control configu-
ration and simulated wind

4.4 Extended Kalman Filter

The Kalman Filter aims to find the best estimate of the interaction point
state as possible from the Perception’s measurements. To remind, the in-

31

Figure 24: Control of the drone with simulated wind using LQR control

teraction point has been defined as the middle top of the blue plate, where
the FaceHugger should be hooked. Matlab is a good tool to experiment and
prototype Kalman Filters. One can plot results to get visual representations.
On can also keep track of each state for debugging. In addition, there is no
need to compile the code, which makes iterative testing quick and easy. This
is especially useful to tune the filter.

4.4.1 Testing Procedure

The system developed in the Theory chapter is being built and validated
based on artificial mast position and measurement signals. The rules describe
that the movement of the mast will mostly be sinusoidal. So two ground-
truth sinusoids of different amplitude and phase have been implemented
for the pitch and roll axes. Matlab’s random function has been used to
transform the position of the mast into measurement by adding a white
noise with adjustable standard deviation. Later, Matlab will take ROS bags
with simulated perception measurements from the simulator. The Kalman
filter could have been tested directly from the ROS bags, but it has been
convenient to have full control of the measurements and be able to change
the parameters easily.

32

Figure 26: EKF visualization on Matlab from unknown initial state

4.4.2 Experimentation

The results after the first tune on Matlab can be found fig. 25. In this
simulation, the initial state is perfectly known. In this context, the filter is
very efficient. This is especially true for the z position which is adjusted by
the x and y position of the interaction point.

Figure 25: EKF visualisation on Matlab

Naturally, the results are not as good when the initial state is unknown
(see fig. 26). In this second case, the filter begins with very bad estimations
but reaches reasonable results in about 3 seconds. Longer simulations show
that after about 10 seconds the filter reaches its steady-state and the output
becomes almost as good as the first example. This underlines that the EKF
tends to converge.

This simulation also shows how much the Kalman filter is sensitive to
the initial state. Still, tuning can be adapted to obtain a more or less quick
transition at the expense of the "smoothing" effect.

33

Figure 27: Schema of the data flow in between the different nodes involved
in the control of the drone

4.4.3 Integration

The filter is implemented into Ascend’s pipeline as a new node that takes the
noisy data as input topics and outputs the estimated state of the mast (see
fig. 27). The module replacement operation node can then use the smoothed
data from the Kalman filter as the interaction point state reference.

It is possible to automatically translate a Matlab code toward C++.
Unfortunately, the generated code is not really usable in practice. Its quality
is bad so that it is very difficult to understand what is going on, which makes
debugging almost impossible. In the spirit of creating code that is usable for
several years in a row, it has been decided to write a proper code in C++. It
is based on an EKF library originally developed for Arduino [12]. Arduino is
a board with low computational power, so this library is optimized to run in
a short time. This library did not work out of the box, and the fixed version
can be found on GitHub [6].

The EKF estimates the state of the mast which includes pitch, roll, their
derivative, the length of the mast and the frequency of the oscillations. From
that, it is possible to estimate the state of the interaction point, which is the
data needed by the control node. It is basically the h function (eq. (18))
for the position of the interaction point. The velocity and acceleration are
derived from the spherical coordinates as follow:

34

Figure 28: Interaction point state estimation from the EKF

ẋ = Lmast × ṗ× cos(p)
ẏ = Lmast × ṙ × cos(r)

ẍ = Lmast × (ṗ2 × sin(p) + p̈× cos(p))
ÿ = Lmast × (ṙ2 × sin(r) + r̈ × cos(r))

(25)

In the real-time simulation fig. 28, the initial state is set to 0 for the mast
angles and their rate. Also, neither the mast length nor the frequency of the
movement is initialized to the ground-truth value. The y axis is clearly noisier
than the x axis. This is due to the fact that Perception cannot measure the
roll of the mast. As a result, the z axis, which is mostly estimated from the
x and y estimations is somewhat noisy as well. The velocity estimates are
quite noisy as well. More tuning could be done to try to smooth it more, but
one should first consider how does the control algorithm react to this signal.
Notice that the velocity estimate is still much better than it would be from
a simple derivation (as it was before implementing the Kalman Filter).

35

4.5 Combination of the Work into a Module Replacement
Operation

It is time to come back to the main goal of the thesis, creating an autonomous
operation capable of an autonomous module replacement. The logic of the
operation will be studied to create a Final State Machine (FSM). Then, the
EKF will be combined with the LQR control, and a fix to handle altitude
control will be proposed. Finally, smooth movement relative to the mast will
be studied.

4.5.1 A State Machine Based Operation

The LQR controller will be implemented into the pipeline used by Ascend to
control the drone. But as the LQR and the position and velocity control need
the same input, the same code can be adapted for both control strategies.

The pipeline is written in C++ and the regulator must be integrated into
the operation that will swap the communication module of the mast. This
is a final state machine (FSM) that ensures accurate and safe movements
relative to the mast (see fig. 29). The FSM decides where should the drone
be compared to the interaction point, and the controller makes it happen.
This operation will be called by the AI node as shown fig. 1 when the drone
will have found the mast position and orientation.

Code simplicity and ease of tuning have been some of the main concerns
while implementing the new controller. The controller must be usable by
anybody in the control group of ascend, and hopefully for the following
years.

Figure 29: Schema of the module replacement operation’s state machine

36

Collisions between the drone and the mast should be avoided as much
as possible. They may lead to drone instability, loss of accuracy in the
positioning and could even be dangerous. Therefore, the following of the
mast will begin with a 1.5m offset. This avoids potential collisions with the
mast while the drone is not accurate.

Once the desired accuracy is reached, the drone goes to the "Ready"
state where it waits for the best moment to move toward the mast. The
drone should reach the mast when the latter leans toward the drone as the
placement of the FaceHugger is easier and more likely to work well. The
way the drone will move toward the mast is always the same and therefore,
the drone can estimate how much time it will take. Also, by estimating the
oscillation period of the mast, the drone can calculate when it should go.

On-time, the drone can move to the "Over" state. There, the desired
position of the drone is such that the hook of the FaceHugger is just over
the interaction point of the blue plate. As soon as the drone reaches its
target, it switches to the "Placing FaceHugger" state. The drone just moves
downward in the mast frame to set the FaceHugger. Whether the latter has
been placed or not, the drone will quickly exit the mast to avoid being close
to the mast for too much time after the potential interaction.

The FaceHugger is equipped with sensors allowing it to know if it has
been hanged correctly. It will be detached only if the placement is correct.
Else, the drone will redo the operation starting from the "Approaching"
state. Once the placement has been successful, the operation is marked as
finished and the mission can continue.

The FSM has been designed so that the drone prioritized a short in-
teraction time over a very accurate movement. This is the reason why the
drone does not wait for the drone to be as accurate as possible during the
"Over" state. Indeed, it has been considered that the small potential gain
of accuracy by hovering for a long time close to the mast did not worth the
increased risk of collision. This also allows choosing when the FaceHugger
will be released compared to the leaning angle of the mast.

4.5.2 LQR from EKF Set-points

If the EKF and the control nodes work well independently, it does not mean
that they will work well together. The different tunings may need to be
tweaked accordingly.

Fig 30 shows how does the drone behave when flying with the EKF
estimate as an input of the LQR (the yellow line marked as "reference state").
We can see from the velocity graphs that the drone was jittering a bit. The
noise in the reference is getting amplified by the LQR high gains.

One may not want to reduce the gain of the LQR not to limit its accuracy.
The model of the mast should be good enough so that it can be trusted more
by the Kalman filter. The R noise matrix will then be increased resulting in

37

Figure 30: Graphs of the drone flying from a noisy signal filtered with an
EKF

a smoother estimation as shown fig. 31. The improvement is not significant,
and the error becomes quite big: about 13cm on average. This error mostly
comes from the EKF being inaccurate; the error between the LQR reference
and the drone position averages 2cms. A good trade-off between filtering
and accuracy will need to be found once the real perception measurement
will be obtained. Also, the gain of the LQR may have to be tweaked to
adapt to this new shape of input.

4.5.3 Altitude Control

Another issue mentioned in the theory chapter is the control of the altitude
of the drone. This can not easily be done through attitude control. However,
it is possible to set the attitude controller such that it tries to always keep the
same altitude. This is going to be tweaked by using a normal position and
velocity set-point which includes the altitude at which we want the drone.
This set-point is sent to Ardupilot just before the usual attitude set-point. In
this way, Ardupilot internally updates the altitude reference without causing
any disturbance with the external regulator. The results showed fig. 32 have
been run with an altitude P gain of 6. This is higher than what Ardupilot
advises, but for small movements like the mast oscillations, it is completely
fine. However, a big overshoot can be observed for step altitude inputs. It
is especially scary to see the drone falling down when the altitude set-points
is suddenly decreased.

38

Figure 31: Graphs of the drone flying from a noisy signal filtered with an
EKF with smooth tuning

Figure 32: Graphs of the drone flying with both LQR and altitude control

Here the error is at a maximum of 10mm. This is theoretically good
enough, but the simulation considers perfect data without disturbances. This
has not been considered as the most challenging aspect of the operation and
will therefore be outside of the scope of this thesis.

39

4.5.4 Smooth Movement Relative to the Mast

When the FSM will go from one state to another, while approaching the
mast, for example, the desired offset will suddenly change. The drone will
try to reach the new set-points as fast as possible and lose the steady accurate
state it just obtained. The solution proposed by this thesis is based on the
four following variable:

• The state of the drone (position, velocity and acceleration)

• The state of the interaction point on the mast (position, velocity and
acceleration)

• The desired offset distance to the mast (position vector in the mast
frame)

• The current offset state (position, velocity and acceleration)

The last variable is the key to create a smooth transition when the offset
suddenly changes. It is the offset that the drone will always try to follow,
and which aims to become the desired offset. At all times, the drone position
setpoint is the sum of the interaction point position and the current offset.
When the desired offset changes, the current offset will follow the first one
in a smooth manner by

• Keeping a constant small acceleration toward the desired offset.

• Constraining its velocity (relative to the mast).

• Slowly "braking" or decelerating to reach the desired offset at a null
relative velocity.

The resulting setpoint will keep a smooth path and the drone can follow
it while staying in a steady state.

The current offset state includes velocity and acceleration at which it
moves in the mast frame. They will be added to the interaction point state
for the input of the LQR. If this would not be done, the drone would see this
movement as a perturbation and its accuracy would decrease.

The result can be found fig. 33. In this example, it approximately takes
12 seconds to move by 50cm. The maximum velocity was 0.05m/s and
maximum acceleration 0.03 m/s². As the transition state is known, the drone
can follow a smooth transition without any significant loss of accuracy.

This can be verified by simulating a faster transition as in fig. 34. Here,
the maximum speed is 0.50m/s and the maximum acceleration is 0.15m/s².
In this case, the transition distance has been multiplied by three but only
took less than 5 seconds. The drone can still follow the reference pretty
accurately.

40

Figure 33: Graphs of the drone doing a smooth transition (In blue are the
smooth set-points and in orange the drone position)

One can also observe from the velocity graph that the maximum tran-
sition speed has just been reached. Since it is not expected to travel more
than 1.5m with this smooth transition, we can conclude that the maximum
transition speed is not a limiting factor.

However, pushing the acceleration of the transition even farther is not
suitable (see fig. 35). As mentioned during the instability test of the LQR,
the drone is constrained to a max acceleration of 0.15m/s² on the x axis.
Therefore, the drone could not handle such an acceleration and got delayed.
If moving fast was a requirement, it would be possible to increase the maxi-
mum acceleration of the drone. But that would reduce the LQR performance,
and this is the reason why it is not done here.

4.6 Real Life Testing

The simulations are getting validated in real life. The test drone is being
used with two RTK GPSs (Real Time Kinematic GPS) mounted on it. They
give a very accurate position and yaw estimation. For safety reasons, flights
have never been handled alone. At least a pilot, who was handling a remote
control (RC) (in case of unexpected behaviors), and an operator, who was
monitoring the ground station and launching autonomous programs into the
drone, were needed.

The testing procedure was similar at every test. First, one must test
that the drone can fly properly in a non-autonomous mode using GPS data.
This was done by flying in "Loiter" mode. Then, safety features such as the
motor kill-switch are checked. Then, one can run the code to guide the drone
autonomously. For safety reasons again, the drone was not allowed to arm
itself. It must be done by the RC. When the drone is armed, it can start to
fly by itself.

The control of the drone is being tested the same way in real life as

41

Figure 34: Graphs of the drone doing a fast smooth transition

Figure 35: Graphs of the drone doing a too fast transition

42

it was in the simulator. With the exception of the tuning parameters, the
exact same code is being used. But as the simulator is not being launched,
the reference position is being sent in real-time through a ROS bag of the
simulator. Of course, the drone is not following a physical mast for those
tests, it would be too dangerous at this stage.

In the same manner as the simulations, the drone writes control data into
files that can be analyzed by a homemade Matlab script. However, the drone
does not have Matlab nor a screen to analyze the data on the fly. Therefore,
a shell script has been created to transfer the files into the monitoring laptop,
and save it into a specific repository. Matlab on the laptop could see the
files and analyze them straight away. As a result, it took less than 30sec to
get the usual graphs after that the drone landed. That made testing very
efficient, especially for recursive tuning. The people who had to join for
safety reasons appreciated it.

4.6.1 Real Life Testing Difficulties

The first difficulty is to pass all the safety checks and be able to arm the
drone. The error codes are not very explicit and that makes them difficult to
debug. In Ascend, there is a pretty good experience with the potential errors
that can occur and how to try to fix them. However, this knowledge was
not written into documentations that anybody can easily access. Therefore,
all errors that occurred during the testing process have been written into a
single page that is accessible by any Ascend member. Access to this page
can be asked to the author. The aim is to gather all the most likely errors
in the long run and make flying much less cumbersome. In this thesis, most
of the errors that occurred were link with the two RTK GPS that are added
to the drone.

Once the drone was flying, it has been difficult to get the measured drone
acceleration coherent with the LQR input. This was due to both software
and hardware issues. Code-wise, some frame rotations were poorly handled,
but they did not have any impact while the drone was flying at null yaw.
Hardware-wise the Pixhawk was mounted on a plate that was too softly
mounted on the drone. As a result, it was oscillating a lot when the drone
was flying, and so was the drone acceleration estimation. So the control
of the drone was still working as it was not using this estimation, but the
results did not make sense as the estimated acceleration was not following
the acceleration set-points set by the LQR. This last point was emphasized
by the most important issue; the internal attitude control of the drone was
poorly tuned which made the drone slow to reach the desired attitude set-
points. The LQR relies on a properly tuned drone at a lower level. The
tests held with the bad internal tunes showed how important it is. As soon
as these issues have been fixed, the real-life testing got very similar to the
simulator ones.

43

Accounting for wind requires changes in some of the settings set by sim-
ulator testing. As explained section 4.3.3, a maximum leaning angle had
been set in order to limit the input that the LQR may give to the drone
to avoid highly unstable behavior. It had been optimized in the simulator
in a context without wind resulting in a 4° constrain. This is equivalent to
an acceleration of 0.69m/s². However, testing the drone in windy conditions
shows that it may also limit the efficiency of the control. The drone may
have to put a lot of effort to face strong winds and avoid drifting away.

Some tests under winds of 7 to 12 m/s led to a maximum acceleration
set-points of about 1 m/s². As a comparison, the wind simulated in the
simulator required the drone to add an acceleration offset of about 0.5m/s².
It is not expected to have very strong wind during the competition, so the
maximum acceleration has been set to 1.2m/s².

The maximum acceleration of the drone used to be constrained through
an Ardupilot parameter. However, this also limited the drone’s max angle
during recovery loiter or land mode. This made the recovery dangerous and
almost impossible during windy conditions, especially when the pilot was
not expecting it. Therefore, The maximum angle parameter is set back to
normal (15°), and the maximum acceleration is being constrained directly in
the code through the maximum LQR input. The difference is important to
keep in mind as the acceleration input is not exactly the same as the drone
acceleration.

The control in position and velocity also created some issues. Some
pseudo-random offset came between the drone position and the drone posi-
tion target. Since this offset could reach more than 1m under no wind, it
was not due to a lack of accuracy of the control. It seems like it is due to a
miss-match in the frames used. Indeed, the log from the flight controller did
not plot the same position target as the one we sent. If the issue is suspected
to be either in the reading of the drone position or in the sending of position
and velocity set-points, the exact source of the issue has not been found yet.
However, it has still been possible to extract interesting data from flight us-
ing position and velocity control. The data is being taken directly from the
log files using the website https://plot.dron.ee/. Unfortunately, this website
does not give statistics of the flight as the Matlab script does.

4.6.2 GPS Accuracy Test

The accuracy of the localization system is being tested fig. 36. This aims to
see how viable it is and how inaccurate it may introduce in future tests.

44

Figure 36: RTK GPS measurement while the drone is standing still on the
ground

We can observe a maximum amplitude over the 110sec test of approxi-
mately 40mm for the x and y axes. It results in a standard deviation of 7.4
and 8.9mm respectively.

4.6.3 Hovering Test

In order to break down the experiments, some tests have been run asking the
drone to keep the same position with position and velocity or LQR control.
These tests have been run under a wind similar to the one on the simulations,
but probably a bit more during the LQR control.

With position and velocity control, as explained in section 4.6.1 the drone
was not receiving set-points in the same frame as the drone position frame
received by the companion computer. As a result, it was an offset in the
data printed by Matlab. Therefore, the data from the Pixhawk log file will
be shown instead fig. 37. This best result has been obtained with a position
P gain of 3, and velocity P, I, and D gains of respectively 4.5, 1 and 1.

With LQR control fig. 38, the best result has been obtained for Kp = 7.5
and Kv = 5. A sum up of the error in position of both tests can be found
table 9.

45

Figure 37: Graphs of the best hovering performance using position and ve-
locity control

Figure 38: Graphs of the best hovering performance using LQR control

Control strategy Position and Velocity LQR
Error projected along axis X Y X Y
Average absolute error (m) 0.05 0.010 0.0011 0.009
Max absolute error (m) 0.027 0.040 0.048 0.035

Table 9: Error analysis of a hovering test for both position and velocity and
LQR control

4.6.4 Position and Velocity Control

Tests using only position and velocity control have been run to set a reference
for future tests with LQR control. The best gains found are the same as for

46

Figure 39: Logs of real life test using position and velocity control with best
tuning

Figure 40: Centered data for real life test using position and velocity control
with best tuning

the hovering test. The flight is represented fig. 39 using the logs from the
Pixhawk. The graph obtained on Matlab has been re-centered fig. 40 to
align with what could be seen from the logs. The flight has been done using
the best gains found from Ardupilot. It was a bit windy but less than in the
windy simulations.

Error projected along the X axis the Y axis
Average delay (s) 0.050 0.050
Average absolute error (m) 0.0011 0.017
Max absolute error (m) 0.043 (at 47.7s) 0.049 (at 24.7s)

Table 10: Error analysis of the flight with the best gains for position and
velocity control

The performances of the drone (table 10) are at least as good as in the

47

Figure 41: Real life test using LQR control

simulator for a similar amount of wind. Even though the gains were pretty
high, the drone was no oscillating that much.

4.6.5 LQR Control

The test (fig. 41) has been done after that all the testing difficulties (sec-
tion 4.6.1) have been fixed. In this test, KLQR = (7.5 4.0). The accuracy of
the drone is summed up table 11. During this test, it was just a bit of wind
on the y axis and ground-truth set-points have been used.

Error projected along the X axis the Y axis
Average delay (s) 0.000 0.000
Average absolute error (m) 0.0011 0.024
Max absolute error (m) 0.035 (at 25.3s) 0.060 (at 30.6s)

Table 11: Error analysis of a real life LQR control

During this test, it was almost no wind and ground-truth set-points have
been used. Though, the acceleration graph on the y axis shows a bit offset
from the acceleration of the reference. That means that the drone had to
fight against a little bit of wind. Unfortunately, it could not be tested with
more wind.

According to the simulations, these results can be further improved by
adding a feed-forward on the mast acceleration. The simulation fig. 42 has
been done with KLQR = (7.5 5.5) and and feed-forward of 0.5. As the big

48

Figure 42: Real life test of LQR control with feed-forward

drift in position and the offset in the acceleration graphs may suggest, a lot
of wind was present during this test. Still, during the first 25sec, the flight
has been possible and the statistics for this period of time are summed up
table 12.

Error projected along the X axis the Y axis
Average delay (s) unknown unknown
Average absolute error (m) 0.087 0.021
Max absolute error (m) 0.149 (at 17.6s) 0.065 (at 20.9s)

Table 12: Error analysis of the best real life control with LQR and feed-
forward

4.6.6 Control With EKF

Once the control works well on fake ground truth data, one can try to fly
the drone from the Extended Kalman Filter estimation. As analyzed in the
simulator, The EKF resulting noise is being amplified by high LQR gains.
Therefore big R matrix coefficients are used from the first real-life tests.

49

Figure 43: Real life test of a flight based on EKF data with position and
velocity control

Fig 43 shows how does the drone reacts when the reference state is coming
from the EKF. This flight has been done using position and velocity control.
It has unfortunately not been possible to retrieve the data with Matlab, and
therefore to get the error estimate for this flight. The average error seems to
be about 15 and 30mm with a maximum of about 40 and 50mm respectively
on the x and y axis. These numbers just come from visual analysis and won’t
be used to demonstrate anything as they are not reliable.

Figure 44: Real life test of LQR control with feed-forward based on EKF
data

On the LQR side, fig. 44 shows the result of a flight done under a wind

50

similar to the one in the simulator. This has been done with KLQR =
(7.5 5.5) and a feed-forward of 0.5. This tuning is probably the best one
for the LQR. The accuracy of the flight is summed up table 13. The error
is quite big, but as the acceleration graph suggests, the wind was somewhat
intense.

Error projected along the X axis the Y axis
Average delay (s) 0.000 0.100
Average absolute error (m) 0.0050 0.048
Max absolute error (m) 0.107 (at 26.9s) 0.099 (at 8.9s)

Table 13: Error analysis of LQR control based on EKF data

4.6.7 Collision Testing

Finally, the last kind of tests that are being done within this thesis concerns
collisions. A stick has been used to simulate contact or obstacles. The drone
handled everything in a very stable way, including 2 meter kicks fig. 45.
Disturbances have also been tested upward on the z axis and no particular
instability has been noticed.

It is very difficult to test mast-like collision without following a real mast.
During outdoor testing, it is hard to know in real-time if the drone follows
its trajectory in an accurate way, and even more in what direction is the
error. Therefore, it is not possible to simulate the action of the mast exactly
when the drone deviates too much. However, even collisions pushing the
drone away from its trajectory did not make the drone unstable. Therefore,
potential collisions with the mast should not be problematic.

51

Figure 45: Graphs of the response of the drone after a 2m kick (at 40sec)
when flying using LQR control.

52

5 Results and Discussion

A lot of experiments have been done with both the Ardupilot position and
velocity control and the homemade LQR. It is now time to analyze more
deeply the results, compare the control strategies and draw a line for further
work on the subject.

5.1 Theory Versus Experimentation

The gains found theoretically are quite far from the best results found. To
remind, the theory found KLQR = (50 14.1421) and in practice, we found
KLQR = (7.5 5). This would have been found by choosing a maximum
acceptable error of 0.19m and 0.45m.s−1 and keeping the maximum input
value to 1m/s². Even if Bryson’s rule is just a rule of thumb and that it
should not be taken as a ground-truth rule, there is still a quite big ratio
between the best theory and the experimental results. As explained in the
theory, it has been considered that the acceleration can be set instantly. In
reality, it takes about 0.2sec to set it. As the drone is too slow to react
to the input the LQR sends, the gains cannot be very high without having
big overshoots. If the delay was shorter, we could expect the experimental
results to be closer to the theory.

On the Kalman filter side, the theoretical covariance matrix is about
100 times smaller than the one used to get the best results. This results in
a bigger error in the estimation of the mast’s state but ensures a smooth
reference position for the drone. Like with the control of the drone, it is
not only the estimation error that matters here but also how smooth is the
estimation. Indeed, if the estimation is not smooth, the drone won’t be able
to follow it. That would also result in a lot of movement of the FaceHugger
hook, which would then be almost impossible to place.

In general, the theory does not take into account the offset between the
drone center and the hook of the FaceHugger. An angle of 1° of the drone
results in a movement of 8.5mm of the FaceHugger hook compared to the
drone center. Therefore, having a drone that is 1° smoother is worth losing
8.5mm of accuracy. This is all the more true that the drone seems to handle
contact well. One does not have to worry too much about it. Also, an
oscillating drone consumes more power, and the autonomy of the drone and
the lifetime of the battery can be reduced. Batteries suffer from not stable
and higher discharge current.

The movements relative to the mast worked very well as the change in
the trajectory was known by the drone. As long as no constrain was reached,
the drone did not significantly lose accuracy. This is because they did not
add any additional disturbance in the system and the movements relative to
the mast were rather smooth and slow. Faster movements could have been a
difficulty, even without acceleration constrain, because of the delay between

53

the acceleration set-points set by the drone and the time the drone actually
gets this acceleration.

5.2 Simulations and Real Life Tests Comparison

First of all, the results in the simulator and in real life have been pretty
similar. The control accuracy averages 10mm in real life and in the simulator,
for a ground truth path with no or low wind. During the research for this
thesis, several versions of the simulator have been developed. Depending
on the version, the best LQR tuning has changed (all the results showed
in this thesis have been taken from the same simulator’s version). These
versions often included changes in the drone, which required tuning it again.
The trajectory following control tuning is based on the internal attitude
control of the drone. So if the tuning was not ideal, the LQR would behave
differently and require a different tuning as well. This internal tuning has
been obtained by using the Ardupilot’s auto-tune on both the simulator and
in real life. But the tuning is not always ideal on the first try.

It should also be noted that the drone used in the simulator is the big
drone that will be used in the competition and not the drone used for the
outdoor testings. Due to its size and its configuration (X8), the dynamic
is quite different from the test drone that has been used in real life. Still,
once everything is properly tuned, the LQR worked best with the same gain
on the simulator as outside. So one can expect similar results with the big
drone in real life as well. This similarity comes from, among others, the use
of the software in the loop (SITL) version of Ardupilot.

Another important difference between the simulator and the real-life ap-
plication is the localization of the drone. In the simulator, the drone is
receiving a ground-truth position. However, in real life, it comes from the
GPSs which have about 7mm standard deviation. As the control reached
this kind of accuracy, the precision of the GPS becomes important. Still,
it should be noted that in real life, the perception group will measure the
distance directly from the drone to the interaction point. Even if the real
position of the interaction point is useful for the Kalman filter, the impact
of the GPSs accuracy should be reduced.

When it comes to the add of perturbations, the simulator has one more
time showed results similar to the real-life tests. The drone had the same
reaction under wind for both weak and strong tuning, in the simulator or
in real life. However, if the simulator can simulate wind-like perturbations,
it can not simulate wind as an airflow. For example, it is not possible to
set average wind speed, but an average force. This has the drawback of
not simulating changes in the lift generated by the drone because of the
wind. This drawback did probably not significantly impact this thesis as the
control of the altitude was not considered. But at the opposite of what had
been assumed in this thesis, the control of the altitude of the drone is not

54

completely independent of the control of the attitude. Another drawback is
that the user can not compare the simulated data with real-life testing when
the speed is known.

Another important perturbation to consider is collisions between the
drone and the external environment. The drone handled it very smoothly in
both environments. On the simulator, when the drone hit the mast during
mast following, it stays perfectly horizontal. Also, when the drone flying
through an obstacle, it stayed stable and did not over-lean. It was not pos-
sible in real life to test collisions between the drone and the mast the same
way it will be experienced in real life, but good results are being expected
since collisions pushing the drone away from its reference trajectory were
very well handled.

The ability of handling collisions is very valuable for repairing moving
platforms. Given these results, this thesis advises Ascend-NTNU to add a
V-shaped guide in front of the drone. It would surround the mast as the
drone get closer to it and give the accuracy needed on the right-left axis.
Also constantly pushing the drone toward the drone, the accuracy needed
forward would also be fixed. As just shown, the drone would still be very
stable and able to keep on following the reference. The main issue may then
be to follow the correct altitude.

Finally, simulations first seemed to show that the saturation of the atti-
tude input was very important. However, further tuning showed that it is
finally not necessary. The saturation was only limiting during very windy
tests. This saturation should therefore be removed.

All in all, the simulator can be considered trustworthy for the application
of the thesis. Nonetheless, One should keep in mind that it is not perfect
and that the simulations outside the scope of the thesis should be validated
by real-life experiments.

5.3 Limitations of the Results

Simulated flight results have been confirmed by real-life tests, but it is not
the case of the data used as an input of the system. Noisy data has only been
simulated by adding white noise to the ground-truth data. As the detection
of the reference was not finished at the time this thesis has been written,
it was not possible to test the system with real data. The main expected
difference on the shape of the noise. Since the Kalman filter model considers
white noise, the results may worsen.

Also, one should remember that these results have been obtained with a
position that was stored with 9mm accuracy. That should not impact the
results too much but only make them slightly worse than it would be with
a better position storage accuracy. As the results are good enough with this
accuracy, the thesis will not push toward fixing the issue. This fix does not

55

worth the added code complexity and potential bugs. This limiting storage
accuracy is also the reason why all the Matlab graphs have squared lines.

From all the experiments, it seems that the estimation of the delay is
only 0.050 seconds accurate. Considering that the maximum delay that the
drone should have when the mast reaches its maximum velocity is 0.043sec,
this accuracy is not enough.

Also, when the center position of the drone fits the reference, the posi-
tion of the FaceHugger’s hook is not necessarily where it was wanted. This
is due to the drone oscillations and the offset of the FaceHugger hook from
the drone center. The drone needs to adjust its leaning angle both to follow
the mast trajectory and as a way to correct the inaccuracy in position and
velocity. Under no wind, the maximum acceleration of the drone is about
0.3m/s² which gives a leaning angle of arctan(0.3/9.81) = 1.8. As explained
section 5.1, an angle of 1° of the drone leads to a shift of 8.5m of the Face-
Hugger. So at the end of a movement, when the acceleration of the mast is
maximum, the FaceHugger hook will have shifted by 15.3mm. This calcula-
tion did not take into account the corrections of the drone, which increases
the leaning angle amplitude. This added error is not neglectable. Some
actions to take it into account will be proposed section 5.5.

In this thesis, the Kalman filter R matrix has been considered diagonal
as the noise of each measurement was independent. However, that may
not be the case in real life with real sensors. So the Kalman filter may
be improvable by estimating a non-diagonal covariance matrix. Also, the
tuning of the EKF should be optimized to reduce the error in position for
the hook of the FaceHugger and not the drone. A better trade-off between
EKF accuracy and smoothness may be found. Notice that the smoother the
filter the longer it takes to converge. The tuning proposed by this thesis
already takes between 20 and 30 sec to reach its steady-state. One may also
want to test to adjust the tuning during the flight. For example, it could
be beneficial to have bigger gains on the Q matrix for the mast length and
the wave frequency while the steady-state is not reach. It can put it back
to normal afterward to increase the accuracy of the filter. This can be even
more important that we don’t know the mast length nor the wave frequency
at the beginning.

Real-life testing added a lot of unknown and randomness, mostly due to
the wind. This thesis did not have the opportunity to do many tests with the
same configuration. The understanding of the effects of the wind and how
to tune the drone under windy weather could be improved by making the
exact same test many times, and by looking at the statistics of the results.

Finally, all the real-life tests have been done with a smaller drone than
the drone that will be used during the competition. However, the controller
is only on a good tuning of the drone. As long as the internal attitude is
well-tuned the results should be similar for whichever drone. This can be
emphasized by comparing the simulator results (with a big drone) and the

56

real-life results (with a smaller drone).
So this work assumes that the drone is properly tuned. But there are

no good metrics to know if it is the case or not. Of course, the faster the
attitude is set, the better the results will be. But what overshoot should
be acceptable? From which accuracy can the attitude be considered set?
These are questions that a reader willing to reproduce the experiments may
wonder. The thesis suggests using the auto-tune feature of Ardupilot or
if it is not available, the auto-tune procedure can be followed manually.
It would be very interesting to try to get better results by tweaking the
attitude controller. One may figure that it is worth allowing more overshoot
to decrease the response time. Since the attitude control is just an internal
controller, overshoot is not as critical as for the external controllers.

5.4 Methodology

This thesis is a good place to talk about methodology, what was good and
what can be improved. The testing procedure has been fairly efficient both
with the simulator or in real life. Each test result was added into a big
documentation. So it was easy to go back and see previous results. Even
though it takes some time to write, it saved some time overall as tests are
long to do. The train of thought has been detailed so that other people could
follow the progress and learn from this. But it has also been helpful for the
author as writing helps to think. Of course, such a document has been very
helpful to write this thesis.

On the other side, the analysis done after each test could have been
improved. Some issues have been detected quite late, but they could have
been observed before. That required redoing a bunch of tests and wasted
time. Therefore, the author advises pushing the reflection and the analysis
deeply after the first tests of each series of tests.

The learning outcome of the tests including the EKF could have been
increased by recording a ROS bag of the reference found by the Kalman
filter for each EKF tuning. That way, all the flights with the same EKF
tuning would be easier to compare. During this thesis, it has been difficult
to compare two different control tuning as the shape of the reference was
significantly changing in between the tests.

Overall, Matlab has been a great analysis tool, but it has not been pushed
to its maximum efficiency. It is possible to connect Matlab to ROS and to get
data in real-time. Matlab Simulink can listen to topics and continuously plot
the data. By saving the data obtained, further analysis of error, delay and
more can be done afterward. This is potentially also a good way to visualize
ROS bags. Though, it has not been judged worthwhile to spend more time
optimizing the setup used to analyze the flights. The used analyzing setup
had been considered good enough.

No special methodology has been used for tuning. Still, it has been

57

realized afterward that a good way to tune the LQR would be to choose a
very low position gain and increase the velocity gain until some oscillations
around the reference start to occur. Then, the gain should be reduced by
about 25%. After that, the same process can be done with the position
gain, keeping the final value found for the velocity gain. Then, the feed-
forward gain can be adjusted until the best result is found. Notice that it
may be possible to get a smaller error in average by choosing a bit bigger
gain. However, this would increase the oscillations of the drone. This is not
desired as this will make the FaceHugger hook move compared to the center
of the drone. In the scope of the thesis, it is actually the position of the hook
of the FaceHugger that matters and not the position of the drone.

The LQR presents the advantage of having only 3 parameters to tune
against 4 for the position and velocity control (P gain for position and PID
gains for velocity). But Ardupilot includes a range within which the gains
should be which ease their tuning. So the tuning difficulty is similar for both
control strategies.

5.5 Proposition of Improvements

The biggest difficulty of outside testings was to counter wind perturbations.
Without wind, the control of the drone is accurate enough for the goal of
the thesis. On one hand, including a wind estimation may improve the
robustness of the control. This is not an easy task since the propellers create
a lot of air disturbances, which makes sensors like Pitot tube unreliable.
However, many researchers are developing methods to estimate it sensorless.
This can for example be done using machine learning [18]. On the other
hand, adding an integral effect to the LQR can also help to fight consistent
winds. But wind is seldom consistent and it may only hardly limit the size
of the bounced induced by the wind at the beginning of the gusts. In case
of wind, not only the steady-state matters. It may still be worth testing it.

In addition, one may also consider controlling the attitude rates instead
of the attitude itself. This would reduce the control latency from 0.2 to
0.1sec. That would however increase the amount of data needed for the
controller and therefore significantly increase its complexity, increase the
chance of bugs and make debugging and tuning less user friendly. If it is not
necessary, this thesis advises not to use this solution.

It is also possible to constrain the velocity and acceleration of the drone
within tubes that have the mast’s velocity and acceleration as center lines.
That would avoid overrated corrections and should therefore limit overshoots
and drone oscillations.

There are potentially some improvements that can be done on the control
in position and velocity as well. This control includes a filtering of the inputs
and an integral saturation that have not been tuned.

58

The measurement that the controller is based on may not be accurate
enough to reach the requirements set to place the FaceHugger. The accuracy
of the filtered measurement is estimated by the EKF through a covariance
matrix. It can be used to abort the mission if it gets too bad. This feature is
interesting for safety aspect, but may not be critical since the drone handles
collisions very well. Aborting may also be done in case it is noticed that the
drone gets out of control (because of collisions or others). This can be for
example detected by unusual big movements or a leaning angle that is far
from the reference.

In addition, it may be possible to improve the estimation of the state of
the mast through the Kalman filter. One can expect a constant or slowly
varying phase shift between the pitch and the roll. Then, the same shift is to
be expected between their derivative. Adding these two additional relations
would constrain the system and potentially make the output of the Kalman
filter more accurate. However, as constraints are added, the robustness of
the filter is reduced. If for some reason, the assumption is not verified, the
accuracy of the filter will worsen. And since the competition won’t deal with
a real ship on the sea, but with a simulated mast, one can not be sure if the
assumption is verified or not. Therefore, it should be tested how the filter
reacts if the assumption is not verified, and maybe keep a relatively high
covariance gain relative to this constant phase shift.

Without adding new constrain, the accuracy of the filtering may be im-
proved by using a non-diagonal R matrix for the Kalman filter. This covari-
ance matrix will have to be estimated from a data set of the measurements.

Finally, as explained section 5.3, due to the drone needing to lean to
correct its position and velocity, the position of the FaceHugger hook is
shifting compared to the drone center during the mast following. Therefore,
one wants the drone to be farther away from the mast when the latter is
leaning frontward, and closer when it is leaning backward. In general, the
reference path of the drone should be updated so that it takes into account
the expected leaning angle of the drone. A proposition of how to implement
it is described in appendix appendix A.

59

6 Conclusion

This thesis tested in a simulator and in real life two different control strate-
gies: the built-in Ardupilot’s position and velocity control, and a homemade
LQR control. The experiments led in the simulator and in real-life showed
that the two controllers gave similar results. Both the feed-forward and the
non-linear input improved the accuracy of the controller, but the latter was
not significantly better. The position and velocity control has the ability to
control both the altitude and the horizontal movements of the drone at the
same time, and presents a very low code complexity (outside of the Autopi-
lot). Therefore, this thesis advises the use of this type of control for accurate
trajectory following for the International Aerial Robotics Competition Mis-
sion 9. These results can also be generalized to follow slow time-parametrized
reference.

This thesis also showed that the control of a drone can be very accurate
by very simple control strategies when it has good data to be based on.
Therefore, the main issue for accurate control of drones is to get accurate
data about the drones and the target position.

60

A Appendix - Improvement of the Reference Path

Here is a description of how to take the expected acceleration of the drone
into account in the reference path to improve the FaceHugger Hook position
accuracy. To remind, due to the drone needing to lean to correct its position
and velocity, the position of the FaceHugger hook is shifting compared to the
drone center during the mast following. Increasing the size of the path to take
into account the change of position of the FaceHugger’s hook will increase
the acceleration needed by the drone. So it is not the acceleration of the
mast that should be taken into account but the acceleration of the reference
path. Still, in practice, the difference is very little, so the acceleration of the
mast is a good estimation and is much easier to find. Mathematically, we
want

dmast_drone = dmast_hook + atan(
accpath
g

) (26)

If the wind is estimated, it could also be added to the equation. The
acceleration needed by the drone to face it is

a =
Fwind

Mdrone
(27)

Therefore, eq. (26) becomes

dmast_drone = dmast_hook + atan(
accmast +

Fwind
Mdrone

g
) (28)

Still, if the estimation of the wind is very noisy, the reference trajectory
may present a lot of oscillations. They could lead to an increase of the drone
oscillations and therefore decrease the accuracy more than it would improve
it.

61

References

[1] Ardupilot ArduCopter Documentation. https : / / ardupilot . org /
copter/index.html. Accessed:2021-19-03.

[2] Chasing better accuracy. https://discuss.ardupilot.org/t/chasing-
better-accuracy/58966. Accessed:2021-02-10. December 2020.

[3] A. Hernandez; H. Murcia; C. Copot and R. De Keyser.Model Predictive
Path-Following Control of an AR.Drone Quadrotor. Oct. 2014.

[4] P. Corke. Robotics, Vision and Control: Fundamental Algorithms In
MATLAB®[2 ed.] Springer, 2017.

[5] T. Degeorges. Autonomous Physical Module Replacement. december
2020.

[6] T. Degeorges. EKF Node. https://github.com/AscendNTNU/ekf.
Accessed:2021-04-19. 2021.

[7] T. Degeorges. How to plot and analyse data from files. https : / /
confluence.ascendntnu.no/x/YobEAg. Accessed: 2020-12-19.

[8] description of the control implementation with Ardupilot. https://
ardupilot.org/dev/docs/code- overview- copter- poscontrol-
and-navigation.html. Accessed:2020-12-10.

[9] finddelay matlab function. https://se.mathworks.com/help/signal/
ref/finddelay.html. Accessed: 2020-12-06.

[10] International Aerial Robotics Competition Mission 9 rules. http://
www.aerialroboticscompetition.org/assets/downloads/mission9rules_
2.01.pdf. Accessed: 2021-03-03.

[11] L.M. González deSantos; J. Martínez-Sánchez; H. González-Jorge; F.
Navarro-Medina and P. Arias. UAV payload with collision mitigation
for contact inspection. 2020.

[12] S. Levy. Tiny EKF for Arduino. https://github.com/simondlevy/
TinyEKF. Accessed:2021-04-19. 2015.

[13] H. Rafaralahy M. Boutayeb and M. Darouach. Convergence Analysis
of the Extended Kalman Filter Used as an Observer for Nonlinear De-
terministic Discrete-Time Systems. 1997.

[14] J. Dentler; S. Kannan; M. A. Olivares Mendez and H. Voos1. A real-
time model predictive position control with collision avoidance for com-
mercial low-cost quadrotors. 2015.

[15] N. P. Nguyen and S. K. Hong. Position Control of a Hummingbird
Quadcopter Augmented by Gain Scheduling. 2018.

[16] Pixhawk 4 Official Documentation. https://docs.px4.io/v1.9.0/
en/flight_controller/pixhawk4.html. Accessed:2020-04-03.

62

https://ardupilot.org/copter/index.html
https://ardupilot.org/copter/index.html
https://discuss.ardupilot.org/t/chasing-better-accuracy/58966
https://discuss.ardupilot.org/t/chasing-better-accuracy/58966
https://github.com/AscendNTNU/ekf
https://confluence.ascendntnu.no/x/YobEAg
https://confluence.ascendntnu.no/x/YobEAg
https://ardupilot.org/dev/docs/code-overview-copter-poscontrol-and-navigation.html
https://ardupilot.org/dev/docs/code-overview-copter-poscontrol-and-navigation.html
https://ardupilot.org/dev/docs/code-overview-copter-poscontrol-and-navigation.html
https://se.mathworks.com/help/signal/ref/finddelay.html
https://se.mathworks.com/help/signal/ref/finddelay.html
http://www.aerialroboticscompetition.org/assets/downloads/mission9rules_2.01.pdf
http://www.aerialroboticscompetition.org/assets/downloads/mission9rules_2.01.pdf
http://www.aerialroboticscompetition.org/assets/downloads/mission9rules_2.01.pdf
https://github.com/simondlevy/TinyEKF
https://github.com/simondlevy/TinyEKF
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html

[17] A. M. Romero. ROS concept overview. http://wiki.ros.org/ROS/
Concepts. Accessed:2021-05-10. 2014.

[18] Balaji Jayaraman Sam Allison He Bai. Wind estimation using quad-
copter motion: A machine learning approach. Aerospace Science and
Technology, Volume98, march 2020.

[19] K. P. Valavanis and G. J. Vachtsevanos. Unmanned Aerial Systems
Physically Interacting with the Environment: Load Transportation, De-
ployment, and Aerial Manipulation. Springer, Dordrecht, 2015.

63

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Théo Degeorges

Close Control of an Autonomous
Drone for Physical Module
Replacement on Mobile Platforms

Master’s thesis in Electronic Systems Design
Supervisor: Dominik Osinski
Co-supervisor: Tor Arne Johansen

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	State of the Art Overview
	Description of Ascend-NTNU
	Description of the Mission of the Year
	Description of the Drones
	Strategy for Module Replacement
	Scope of the Thesis

	Requirement Analysis
	Accuracy Requirement
	Boundaries

	Theory
	Control with a Flight Controller
	Basic Control of the Drone
	Attitude Control

	Linear Quadratic Regulator
	Model for LQR
	Feed-Forward
	Non-Linear Input Error

	Kalman Filter
	Extended Kalman Filter
	Application of the Model for this Thesis
	Predict the Future

	Experimentation
	Description of the Most Important Tools
	ROS
	Ascend Simulator
	Matlab

	Control With Position and Velocity Set-Points
	Control With an LQR on Attitude
	Implementation
	Experiments
	Instability Test
	LQR Control from Non-Linear Error
	LQR with Feed-forward
	Using Future Set-points
	LQR Control Under Simulated Wind

	Extended Kalman Filter
	Testing Procedure
	Experimentation
	Integration

	Combination of the Work into a Module Replacement Operation
	A State Machine Based Operation
	LQR from EKF Set-points
	Altitude Control
	Smooth Movement Relative to the Mast

	Real Life Testing
	Real Life Testing Difficulties
	GPS Accuracy Test
	Hovering Test
	Position and Velocity Control
	LQR Control
	Control With EKF
	Collision Testing

	Results and Discussion
	Theory Versus Experimentation
	Simulations and Real Life Tests Comparison
	Limitations of the Results
	Methodology
	Proposition of Improvements

	Conclusion
	Appendix
	Appendix - Improvement of the Reference Path
	References

