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Abstract

This work presents a linearized model of a floating wind turbine using the semi-submersible OOStar base
geometry, a 10MW turbine and automation of the potential flow coefficients computation. It is associated
with a design optimization problem which minimizes the cost of the platform w.r.t. two hull-shape geometric
variables. Constraints based on international standards, limiting the maximum motion, stress and fatigue
response are applied. A comparison with state-of-the-art non linear simulations showed that the response to
waves is rather accurate but the response to wind needs to be improved for above-rated wind speeds. The
linear model is however acceptable for capturing trends in the system’s dynamics and is therefore suited
for early design stage calculation. Eventually, the model is used to explore the design space manually, and
identify optimization trends. The decrease in the columns’ diameter is limited by the resulting drop in pitch
restoring and by the pitch natural frequency getting too close to the wind excitation range. Decreasing the
pontoon length drives the heave frequency dangerously close to the wave frequencies.
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Introduction

In a world highly threatened by the consequences of climate change, and largely dependent on depleting
resources, the need of transitioning to non-emitting and renewable sources of energy could not be greater.
Developing offshore wind could be an effort in that direction, provided that politics and operators in the
sector fully understand the challenges of such an intermittent source of energy, requiring expensive and
resource-hungry manufacturing and installation.
Extracting the wind power away from the shore has already met its developers and a number of commercial
offshore wind farms have been producing energy in the past years. But the desire to take advantage of
stronger and more constant winds led to the design of floating platforms capable of supporting turbines in
deeper waters and thus even further from land. As floating offshore wind becomes a more and more mature
technology, it has been shown that scaling up the turbines is a way of reducing the levelized cost of energy
(LCOE) of floating wind turbines (FWT). While the few floating concepts that are operating out in the sea
currently don’t exceed 6MW of rated power, the industry and the research are already looking at 10MW
turbines as the future of offshore wind. In practice, this would mean larger substructures, possibly higher
loads and definitely important challenges in terms of manufacturing and installation. With the substructure
usually representing 15-30% of a FWT CAPEX, developing cheaper platform designs would have a significant
impact on the overall system cost.

That’s why numerical design optimization is extensively used for marine structures as it represents an efficient
way of coming up with performant and cost-efficient designs. Clauss and Birk [1] made an early attempt of
large-volume offshore structures optimization. The target was seakeeping and the objective to minimize was
the significant amplitude of the overturning moment calculated on a design sea spectrum. They eventually
managed to significantly reduce forces and motions on multiple structures by optimizing their shape and
using long-term wave statistics. Still in the hydrodynamic performance, Park et al. [2] present a fully
automated procedure for hull-form optimization of a semi-submersible floating production unit. The cost
function is a weighted sum of the 3-hour heave most probable extreme value and the structural weight.
The use of a simulated annealing algorithm (probabilistic) led to four optimized results, depending on the
objective weight distribution.
Closer to our scope, research focused on offshore wind turbines optimization. In Karimi et al. [3], the design
space includes the three stability classes of FWT. Two objective functions, the platform cost and the nacelle
acceleration were minimized with a genetic algorithm. Evaluation and comparison of different platforms
were performed using a Pareto front. In Chew et al. [4], the mass of a jacket supporting a 5MW turbine
was minimized using an analytical gradient-based algorithm. A sequential quadratic programming (SQP)
optimizer used the analytical direct differentiation method (DDM) to compute the gradients of the objective
function and the constraints. Very few FWT design optimization were performed with a gradient-based
algorithm. One of them comes from Fylling and Berthelsen [5], who minimized the cost of a spar buoy,
its mooring and power cables using finite-difference method to calculate the gradients of the objective and
the constraints. This introduces the complexity but also the great increase in efficiency that comes with
computing analytical derivatives.
FWT are highly coupled systems, usually requiring hydro-aero-servo-elastic solvers to capture accurately the
response to environments. Optimizing the platform, the turbine or the mooring separately would lead to
a sub-optimal solution. Therefore it is desirable to use multidisciplinary optimization (MDO) to design all
the components simultaneously. Lemmer et al. [6] included a self-tuning controller in the floater geometric
optimization of a semi-submersible mounted with a 10MW turbine. They managed to reduce the wind and
wave loads at the expense of an increased material cost. An integrated optimization of spar-type FWTs has
been done by Sandner et al. [7]. Two models of a varying level of detail were used to optimize both the
hull and the control system at the same time. The cost function included the rotor speed and the tower
bending degree of freedom instead of tower base moment, since no structural model was included. Ashuri
et al. [8] also used a MDO architecture to perform an integrated aerodynamic and structural design of the
rotor and tower of an offshore wind turbine simultaneously. The result of the design optimization process
shows 2.3% decrease in the levelized cost of energy. Recently, a linearized aero-hydro-servo-elastic floating
spar wind turbine model was developed by Hegseth et al. [9] to optimize simultaneously the platform, tower,
mooring system, and blade-pitch controller. Using a gradient-based algorithm and analytical derivatives the
optimization showed that the solutions for the tower and blade-pitch control system are clearly affected by
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the simultaneous design of the platform. This integrated and efficient model is however limited to spar-type
wind turbines, where the hydrodynamic properties can easily be estimated. Yet, the analysis of large-volume
substructures like semi-submersibles ususally requires solving the potential flow problem.

The presented project aims at extending gradient-based optimization processes to semi-submersible substruc-
tures requiring the computation of frequency-dependent potential flow coefficients. This report develops a
simplified model of a semi-submersible platform, inspired from the Olav Olsen’s OOStar, topped with a
10MW turbine. It uses a potential flow solver to generate the hydrodynamic coefficients and computes the
linearized response of the rigid-body platform and flexible tower in the frequency domain. The model is imple-
mented in the OpenMDAO framework [10] to optimize the dimensions of the platform using a gradient-based
algorithm. A function of the platform cost is minimized w.r.t two geometric parameters, while constraints
regarding the stability of the system, fatigue and strength of the tower are applied. The purpose of the
project is to see if the optimization can identify key parameters or trends for cost reduction, as well as
driving constraints for the design of semi-submersibles. This work also aims at building a computationally
efficient tool for early design stage, which allows the designer to quickly evaluate the consequence of a design
change in the general behavior of the system.
The current report presents in section 1 some theoretical background about FWT, optimization and potential
flow theory. The FWT model is described in section 2 and the optimization problem is detailed in section
3. In section 4, a training model was developed to practice with the OpenMDAO framework. Section 5
validates the linear results and apply the model to several points in the design space.
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1 Theory

This section serves as a theoretical background for the major concepts used during the work. It gives some
literature-based insights in the FWT technology, such as system dynamics, design and modeling. Since the
model developed in the report uses potential flow hydrodynamic coefficients, some basic elements about this
theory are given. Finally, this section provides an introduction to the vast topic of numerical optimization
and gives more details about the specific optimizer used in this report.

1.1 Review of FWT technology

1.1.1 Basic concepts of FWT

Chapter 9 of Offshore Wind Power [11] details some of the design drivers for the floating substructures
supporting wind turbines. Among the most important is resisting the steady component of the turbine
thrust and therefore ensuring enough static stability. This can be achieved in several ways and leads to the
different stability classes. Floating support structures for wind turbines can generally be classified in three
main groups. Naturally, all the real platforms actually use a combination of these stability types, but they
are mainly characterized by one of them. Butterfield et al. [12] help understanding the characteristics of
these groups:

• The ballast-stabilized platforms use heavy weighting far down the platform to place the center of
gravity way below the center of buoyancy. It thus creates a righting moment and ensures a high inertia
resistance in roll and pitch. The draft is usually large. The projected area to the waves is relatively
small and the natural frequencies are rejected below the wave frequencies, creating slow and small
motions. Typical examples are spar platforms, like the Hywind spar developed by Equinor for the
Hywind Scotland wind farm.

• The buoyancy-stabilized platforms use a large and/or distributed waterplane area to ensure large
hydrostatic restoring. In return, they usually have a large projected area to waves yielding higher
loads and important motions of the floater. This is the principle used by barges and to some extent
by semi-submersibles, like the WindFloat concept developed by Principle Power and field-tested in
Portugal.

• The mooring-stabilized platforms use mooring tension combined with excess buoyancy to reduce the
motion response. Structures like tension-leg platforms (TLP) have high vertical stiffness and shift the
natural frequencies above the wave frequencies. The result is small motion but a more challenging
installation.

Figure 1: The three main concepts of floating support structures for offshore wind turbine
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Robertson, Jonkman and Matha [13] [14] provide a thorough comparison of different platforms dynamics
among the mentioned concepts. They found that the dynamic coupling between the turbine and the platform
induced, for all the cases, increased loads in the turbine components compared to land-based. The turbines
must therefore be strengthened to account for e.g. higher bending moment in the tower, at the blade
root and at the yaw bearing. Moreover, two different designs belonging to the same stability class have
pretty similar responses which means that the method for stabilizing the platform has greater impact on
the system’s dynamics than the design details. Finally, the TLPs, spars and semi-submersibles don’t show
significant difference in terms of fatigue and ultimate loads (except for the loads in tower which are lower
for a TLP).

Another important design driver from is to minimize the motions due to the wave loads [11]. This can be
achieved by reducing the area of the structure projected against the waves near the waterline. The main
structure should consequently be above the highest wave or deeply submerged. Moreover, having natural
frequencies away from the wave frequencies is essential to avoid resonance. Increasing the hull inertia also
helps reducing the motions. Less conventional solutions are the use of damping plates or vortex-suppression
strakes.

1.1.2 FWT design

LIFE50+ is an international collaborative project funded by European Horizon-2020 and led by SINTEF
Ocean. It aims at “proving cost effective technology for floating substructures for 10MW wind turbines
at water depths greater than 50m”. The outcomes of the program are two mature floating substructure
designs in line with 10MW-turbines ambitions, increased scientific and industrial knowledge on numerical
and experimental design methodologies and procedures, and ultimately, a considerable LCOE reduction for
large floating offshore wind farms. The resulting deliverables provide a very recent overview of the FWT
state-of-the-art technology.

The report [15] uses a synthesis of the existing design practices to provide a state-of-the-art procedure for
designing FWT substructures. In particular, figure 7 in the report presents a high-level design diagram. It
gives reference procedures in every aspect of FWT design for the three main stages, “conceptual design”,
“basic design” and “detailed design”. These three major steps typically involve calculations based on spread-
sheets and frequency-domain models followed by coupled aero-hydro-servo-elastic time domain simulations,
and finally component-specific analysis.
More in our interest, the part on the substructure design recalls the two methodologies for hydrodynamic
analysis: computational models and more complex water tank test campaigns to validate the computational
results as well as to calibrate the parameters used in the models.

1.1.3 FWT dynamics

A floating wind turbine dynamic response is mostly characterized by its natural frequencies. Hydrostatic
restoring, mooring stiffness and mass properties create a natural frequency in the six degrees of freedom.
The coupling between the tower and the support structure yields tower bending natural frequencies that are
different from a stand-alone tower.

Jonkman et al. [13] conducted a dynamic numerical analysis of three platforms from the three stability
classes. The results, partly described in figure 2, show how the dynamic response is typically spread across
the frequencies. The DeepCWind model test campaign [16] provides experimental RAOs for the same
concepts (Figure 3). The systems are designed such that most of the system modes don’t lie in the wave-
excitation region, so one can see that there is little response in the wave frequency range. Non linear effects
can excite the systems at lower and higher frequencies and trigger resonant motions. At resonance, damping
is essential to limit the response.

10



(a) Environmental condition : Uw=11.4
m/s, Hs=3.1 m, Tp=10.1 s

(b) Environmental condition : Uw=50 m/s,
Hs=12.7 m, Tp=14.1 s

Figure 2: [17] Dynamic pitch response of three FWT concepts

Figure 3: [16] Experimental RAOs derived from white-noise wave excitation with Hs=7.1 both with and
without wind present at 21.8 m/s; colored box indicates wave frequency range

1.1.4 FWT numerical modeling

Floating wind turbines are highly complex systems. Figure 4 gives an idea of the numerous load and
excitation sources on a FWT. Several aspects must be investigated when conducting at FWT analysis:

• Environmental conditions: the system is subject to turbulent wind fields and random waves

• Load analysis: forces resulting from environmental conditions result in aerodynamic loading on the
turbine and hydrodynamic loading on the floater and the mooring.
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• Response analysis: After integration of the loading, structural dynamics of the system and mooring
response can be assessed

• Control theory: the turbine control aiming at optimizing the power production influences greatly the
system’s dynamics

Figure 4: Load sources on a floating offshore wind turbine

In addition, non-linearities take place in the geometry (large blade deflection), in the loads (drag forces) and
in boundary conditions (blade pitch actuator). The strong coupling between the aforementioned aspects
and these non-linearities require integrated aero-hydro-servo-elastic time-domain simulations. [17] and [15]
provide state-of-the-art modeling practice for aerodynamics, hydrodynamics and structures.

Hydrodynamic modeling:

For slender structures that are transparent to waves, Morison equation is used to compute inertia and drag
forces. It is typically applied for bodies with a diameter D to wave-length λ ratio of less than D/λ < 0.2 and
use added mass and drag coefficients from look-up tables or determined with experimental tests. In that
case, the normal force on a moving structure in waves is given by equation 1. In long waves, CA = 1 and the
diffraction part of the excitation loads can be neglected, while in short waves, the diffraction is important.
In small and moderate waves, the inertia force dominates, while in extreme waves, the drag force dominates.

fN (t) = −ρCAAr̈ + ρ (1 + CA)Aa+
1

2
ρCDDvr |vr| (1)

Where CA and CD are the added mass and drag coefficient, A is the cross-sectional area of the element, a
is the water particle acceleration, r̈ is the body acceleration and vr = v − ṙ is the relative velocity between
the water and the body.

For large-volume and hydrodynamically non-transparent structures, potential flow theory is used to solve
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the diffraction-radiation problem. It is typically applied when D/λ > 0.2, for diffraction dominated cases.
For first order potential flow theory, linear Airy wave theory is used for calculation of wave kinematics. The
outputs are the frequency-dependent added mass and wave radiation damping matrices, as well as the wave
excitation forces. Second order potential flow theory accounts for the sum and difference-frequency forces
resulting from non-linearities of real surface waves. Higher order wave theories have to be applied depending
on the wave height, period and water depth. With higher order potential flow theory, the instantaneous
floater position and instantaneous water level can be applied. Finally, viscous effects are usually added using
the drag term from the Morison equation.
More details into this theory are given in section 2.3.

Aerodynamic modeling:

The industry standard for wind turbine aerodynamics is the Blade Element Momentum theory. It combines
the momentum conservation of a stream tube going through an actuator disk and the lift/drag forces on a
2D blade section. This computationally efficient method requires however corrections to account for local
viscous effect, dynamic inflows, tip losses and tower shadow.

More advanced methods, based on potential flow , like the generalized dynamic wake method or the free
vortex wake method can be used.

Structural modeling:

The whole turbine and the mooring is modeled with finite elements. Dynamic and non-linear FEM is needed
to compute the stresses and deformation in the system. The floating platform is usually modeled as a rigid
body.

1.1.5 Overall assessment of modeling practices on semi-submersibles

Robertson et al. [18] provide a synthetic comparison of the different codes used in the OC5 campaign to an-
alyze their semi-submersible concept. The results showed that whatever theories were used in the integrated
analysis, they all underpredicted the ultimate and fatigue loads compared to experiments. The regions with
the largest underprediction of force were the low-frequency responses outside the wave-excitation region,
associated with the excitation of the surge and pitch natural frequencies. Therefore, emphasis is laid on
the importance of modeling non-linear forces, using second order potential flow theory or wave kinematics,
wave stretching or application of the wave loads at the instant body position. For moorings, it was observed
that having a dynamic (rather than quasistatic) model was important for capturing the ultimate and fatigue
loads in the lines, and that the inclusion of hydrodynamic excitation from the waves could create larger line
loads. For the hydrodynamics, the limitation of Morison equation to long waves is recalled, as well as the
need to compute the dynamic pressure forces on the ends of the heave-plates when using Morison.
Kvittem et al. [19] also found that in the case of the WindFloat semi-submersible, Morison’s equation com-
pares well to potential flow theory if one chooses the coefficients carefully and integrates to the instantaneous
free surface.

1.2 Optimization

In a pure mathematical point of view, optimization is the search for the optimum of a function within a
domain defined by a set of variables and restricted by a number of constraints. It has been a field of interest in
mathematics for centuries and has now been applied to many disciplines, among which is engineering.

An design optimization problem can be formulated in the following way:

minimize f(x)

with respect to x ∈ Rn

subject to ĉj(x) = 0, j = 1, 2, . . . , m̂

ck(x) ≥ 0, k = 1, 2, . . . ,m

(2)
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f is the objective function
x is the vector of design variables
ĉ is the vector of quality constraints
c is the vector of inequality constraints

The objective function is one measure of how “bad” a design is and can therefore be used to compare quan-
titatively different designs. The design variables are the ones changing along the optimization to eventually
yield an optimal design. Constraints are limits that relate to practical design obligations, e.g. a marine
structure must float and must not fail under certain environmental conditions.

Today, numerical optimization provides a way to automate the design process and to transition from finding
a good or satisfying design to finding an optimal design. It has been extensively used in the marine world
in order to improve structures design, performance or cost. The methodology usually assists the designer in
the early design stages (i.e. conceptual design and basic design) to focus on the most feasible solutions from
the beginning and thus speed up the overall design process.

A large number of optimization methods exist. They are usually divided between gradient-free and gradient-
based methods. Gradient-free algorithms are the most widely used for marine structures, essentially because
of their easier implementation. They allow a wide exploration of the design space but they usually can’t
give any optimality guarantee since they don’t have access to derivative information. Their ambition is
rather to find near-optimal points that are good enough for the given problem. Among them, the genetic
algorithms and particle swarm method are suited for discrete variables and finding local minima. Gradient-
free algorithms are quickly limited when the number of variables increases.

On the contrary, gradient-based optimizers are not exactly suited for a wide exploration of the design space.
They are more valuable for a deterministic and systemic improvement of an existing design, where small
changes actually make a difference. They perform way better than other methods when the number of
design variables is large. However they are limited to smooth and continuous function. Their basic principle
is to evaluate the gradient of the objective function and the constraints at every step to choose a “downhill”
search direction. Gradient-based methods thus take a more direct path to the optimum. The resulting
challenge is the calculation of the gradients, which can be computationally expensive and inaccurate if done
with finite-difference, or tedious to implement if using analytical derivatives.

Numerous engineering problems are highly multidisciplinary. Designing a FWT, for example, requires analy-
sis of structures, hydrodynamics, aerodynamics and control systems. It then sounds natural to optimize such
a system by considering every aspect at the same time. This is seldom the case and optimization procedures
usually converge towards sub-optimal solutions. Multidisciplinary design optimization techniques, where the
substructure geometry, tower design, wind turbine control parameters, and mooring system are optimized
simultaneously, can provide real novel optimized designs.

In parallel, simplified models of the structure to optimize is an essential part of the framework, as the
numerous iterations that are part of an optimization procedure require a sufficiently small runtime. The
LIFE50+ report on design practice for 10MW turbine support structures [20] outlines two innovation needs
for future work. One is the need to develop more reliable simplified and cost-efficient numerical models to use
in FWT optimization. The other one is a lack of a general optimization framework which provides precise
procedures regarding the models and the optimizers.

The present work uses the well known gradient-based Sequential Quadratic Programming (SQP) algorithm
to carry out the optimization. To understand its behavior, one needs to be familiar with the root finding
Newton’s method and the optimality conditions of constrained functions.

1.2.1 Optimality conditions

A local minimum of a smooth unconstrained function is usually defined where its gradient becomes zero and
where its Hessian is positive definite.
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In the case of a constrained function, optimal points are defined by the Karush-Kuhn-Tucker (KKT) con-
ditions. These conditions are based on the Lagrangian function, which is defined as the objective function
minus a weighted sum of the constraints.

L(x, λ̂, λ, s) = f(x)−
m̂∑
j=1

λ̂j ĉj(x)−
m∑
k=1

λk
(
ck(x)− s2k

)

L(x, λ̂, λ, s) = f(x)− λ̂T ĉ(x)− λT
(
c(x)− s2

)
(3)

λ̂ and λ are the vectors of the Lagrangian multipliers associated with respectively the equality constraints
and the inequality constraints. s is a vector of slack variables. The idea here is to go from searching for the
optimum of a constrained function to searching for the stationary points of an unconstrained function. One
can see that a stationary point of the Lagrangian verifies the optimality condition on the function gradient
and satisfies the constraints. A stationary point of the constrained function will satisfy the following:

∇xL = 0⇒ ∂L
∂xi

=
∂f

∂xi
−

m̂∑
j=1

λ̂j
∂ĉj
∂xi
−

m∑
k=1

λk
∂ck
∂xi

= 0, (i = 1, 2, . . . n) (4)

∇λ̂L = 0⇒ ∂L
∂λ̂j

= ĉj = 0, j = 1, . . . , m̂ (5)

∇λL = 0⇒ ∂L
∂λk

= ck − s2k, k = 1, . . . ,m (6)

∇SL = 0⇒ ∂L
∂sk

= λksk = 0, k = 1, . . . ,m (7)

λk ≥ 0, k = 1, . . . ,m (8)

These are the first order ”necessary” KKT conditions. They are not sufficient to guarantee a local minimum.
A sufficient condition comes from second order information, on the Hessian of the function: the solution
x∗, λ̂∗, λ∗ and s∗ found above is a constrained minimum if the Hessian at that point is positive definite in
the subspace defined by the constraints. In other words, if

yT∇2
xxL

(
x∗, λ̂∗, λ∗

)
y > 0 (9)

for any feasible direction y defined by

∇ĉj (x∗)
T
y = 0 j = 1, . . . , m̂

∇ck (x∗)
T
y = 0 for all k for which λk > 0

1.2.2 Newton’s method

In optimization, Newton’s method is an iterative process for minimizing a function using second order
information. At each iteration, this method approximates the function with a second order Taylor expansion
and finds the minimum of this quadratic approximation. It results in the construction of a sequence xk that
converges towards a minimizer x∗. At each iterate:

f(xk + dk) = f(xk) +∇f(xk)T dk +
1

1
dTk∇2f(xk)dk (10)
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The next iterate xk+1 = xk + dk uses the minimum of this quadratic approximation. It is found by deriving
the last expression w.r.t dk and setting it to zero. The Newton step that minimizes the quadratic model
therefore satisfies the following linear system:

∇2f(xk)dk = −∇f(xk) (11)

One can see that if f happens to be a quadratic function, the first iteration would directly find the optimum
of f .

One limitation of this method is the computation of the second order derivative matrix, the HessianH = ∇2f ,
which can be quite challenging. Quasi-Newton methods were developed to approximate the function’s Hessian
based simply on first order information. The various quasi-Newton methods differ in how they update the
approximate Hessian.

1.2.3 Sequential Quadratic Programming

The SQP method is the application of the Newton’s method (or quasi-Newton) to the Lagrangian function
defined previously. It takes Newton steps in the x and λ directions. If we consider a problem with only a set
of equality constraints ĉ = 0, the Lagrangian function becomes L(x, λ̂) = f(x) − λ̂>ĉ(x). The Jacobian of
the constraints is written A(x) = ∇ĉ(x) and the gradient of the objective function is written g(x) = ∇f(x).
Applying Newton’s method to the Lagrangian, the Newton step that minimizes the approximated quadratic
model at point k is defined by:

∇2L(xk, λk)dk = −∇L(xk, λk) (12)

Detailing the coefficients of the Lagrangian’s Hessian:

∇2L(xk) =

[
∇2
xxL(xk) ∇2

xλL(xk)

∇2
λxL(xk) ∇2

λλL(xk)

]
=

[
W (xk) −A(xk)>

A(xk) 0

]
(13)

Inserted in the Newton equation, the Newton step is found as:[
W (xk) −A(xk)>

A(xk) 0

][
pxk

pλk

]
=

[
∇f(xk)−A(xk)>λ

c(xk)

]
(14)

To account for inequality constraints, one of the most common types of strategy, the active set method, is
to consider only the active constraints at a given iteration and treat those as equality constraints.

1.2.4 Computing derivatives

A major bottleneck in gradient-based optimization is the calculation of derivatives. We want them both
accurate and efficient to have an effective optimization. Different numerical method of calculation are
possible.

The finite difference method is very easy to implement and no source code is needed. It is however subject to
potentially large errors and its cost is proportional to the number of variables. A first order Taylor expansion
gives the expression:

f ′(x) =
f(x+ h)− f(h)

h
+O(h) (15)

It requires two function calls, which can be expensive is the considered function involves heavy calculation.
The accuracy depends on the step size h. It should be small enough to have an accurate estimate of f ′, but
not too small to avoid subtraction errors due to the finite number of digits that computers use to represent
floats.

The complex step method gets rid of subtractive errors and improves the precision of the derivative estimate.
However the function needs to support complex inputs and may therefore require some modification of the
code.

f ′(x) =
Im[f(x+ ih)]

h
+O(h2) (16)
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Analytical methods are the most accurate and efficient ones. But they are tedious to implement as they
require analytical expressions for the partial derivatives at every intermediate step in the model. They
require detailed knowledge of the computational model but the cost is independent of the number of design
variables. Typical methods are the direct and the adjoint method. In the end, analytical methods are the
only hope for ambitious optimization with a large number of design variables.

1.3 Potential flow theory

Potential flow theory assumes non-viscous fluid and irrotational flow. The velocity in the fluid can then be
expressed as the gradient of a potential function φ.

V (X, t) = ∇φ (17)

This potential satisfies the Laplace equation in the whole fluid domain.

∇2φ = 0 (18)

The velocity potential satisfies the boundary condition on the body surface, ensuring that the fluid velocity
normal to the body is equal to the body velocity.

∂φ

∂n
(X, t) = ~V (X, t) · ~n (19)

and the non-linear free surface condition, ensuring the continuity in the pressure and the impermeability of
the free surface

∂2Φ

∂t2
+ g

∂Φ

∂z
+ 2∇Φ · ∇∂Φ

∂t
+

1

2
∇Φ · ∇(∇Φ · ∇Φ) = 0 (20)

applied at the exact free surface

ζ(x, y) = −1

g

(
∂Φ

∂t
+

1

2
∇Φ · ∇Φ

)
z=ζ

(21)

The pressure follows from Bernoulli’s equation

p(X, t) = −ρ
(
∂Φ

∂t
+

1

2
∇Φ · ∇Φ + gz

)
(22)

The velocity potential, the body motions and the wave elevation can be expanded in perturbation se-
ries

Φ(x, t) = Φ(1)(x, t) + Φ(2)(x, t) + · · ·

ξ = ξ(1) + ξ(2) + · · ·

ζ(x, y) = ζ(1)(x, y) + ζ(2)(x, y) + · · ·

Given a wave spectrum, it is usual to assume the spectrum is expressed as a linear superposition of the
first-order incident waves of different frequencies. Thus the total first order potential for the wave-body
interaction can be expressed by a sum of components having frequency ωj :

Φ(1)(x, t) = Re
∑
j

φj(x)eiωjt (23)

At the second-order, the total velocity potential takes a form

Φ(2)(x, t) = Re
∑
i

∑
j

φ+ij(x)ei(ωi+ωj)t + φ−ij(x)ei(ωi−ωj)t (24)
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φ+ij and φ−ij are referred to as the sum- and difference-frequency velocity potential with frequencies ωi + ωj
and ωi − ωj , respectively.

The induced forces are calculated by integrated the pressure on the body surface.

The first order wave-body interaction problem is obtained with the first order function components and by
linearizing the boundary conditions. The problem is then divided in two sub-problems.

• In the diffraction problem, the body is assumed fixed. Incident waves, characterized by the velocity
potential φI are diffracted on the body into scattering waves, characterized by the potential φS . The
sum of the two potentials gives the diffraction potential φD. The resulting first-order excitation forces
combine two contributions that can be separated theoretically but not physically: Froude-Krylov forces,
induced by the unperturbed incident waves, and diffraction forces, induced by the perturbation alone.

• The radiation problem assumes an oscillating body in still water. Oscillation in every degree of
freedom yields radiated waves with total velocity potential φR. The resulting forces present a com-
ponent proportional to the body acceleration and a component proportional to the body velocity:

F iR(ω) = −
∑NDoF

j=1

(
Aij(ω)Ẍj(ω) +Bij(ω)Ẋj(ω)

)
. The matrices A and B are the added mass and

wave-radiation damping matrices.

The linearity of the problem allows the superposition of the two sub-problems, giving a total velocity poten-
tial:

φ = φI + φS + φR = φD + φR (25)

Second-order wave forces also combine effects due to the incident wave and the diffracted wave. They are
represented by their Quadratic Transfer Functions (QTF).
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2 Floating wind turbine model

Since an optimization process involves several iterations to converge, it is necessary to use a simplified
model to keep the computational time reasonable. The model that is developed in this work is therefore
computationally-efficient but also low-fidelity. Its purpose is to quickly understand the system’s basic charac-
teristics, dynamic response and crucial performance like fatigue life and ultimate strength. It doesn’t provide
in-depth analysis of the system’s performance, which would require non-linear coupled simulations.

The baseline design in the model is inspired from the Olav Olsen’s OOStar semi-submersible. The main
geometry is used, with a couple simplifications. First, the bottom skirt that surrounds the pontoons was
removed. Second, the pontoons are not tapered and keep a constant width equal to the outer columns’
bottom diameter. Without fundamentally changing the platform dynamics, these modifications simplify the
geometry changes during the optimization. Other than that, the initial dimensions are the same as described
in the public design definition report [21]. The hull geometry and the name of shape parameters are given in
figure 6. The OOStar is described originally as a concrete platform but due to the lack of public information
about internal structure of concrete hulls, a steel structure was preferred. More details are given in the mass
model section. The turbine and the tower are also defined as in [21]. It’s a modified version of the DTU
10MW [22] where the tower was adapted to withstand the semi-submersible dynamics. The mooring system
is the one defined for the OOStar, three catenary lines connected to the top of the outer columns and divided
in two segments by a clump weight.

The FWT is moored in open sea with 130m water depth. The model analyzes the response in the xz plane
with aligned wind and wave in the x-direction. The model focuses only on three degrees of freedom, which
are the rigid-body response in surge and pitch, and the first bending mode of the tower. It doesn’t include
any rotor model or controller. The only contribution from the rotor is a thrust force and aerodynamic
damping. The equation of motion is linearized and solved in the frequency domain.

An integrated model of the OOStar and 10MW DTU turbine was built in the SIMA software, following the
state of the art modeling of FWT. This high-fidelity model is used to provide the simplified optimization
model with an accurate evaluation of constant characteristics of the system. The action of the wind on
the rotor and the mooring stiffness are computed in that way. It is also used to compare and validate the
performances predicted by the optimization model.

Figure 5: Description of the system
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2.1 Mass model

Figure 6: Parameterization of the platform

2.1.1 Steel mass distribution

As mentioned before, the OOStar is modeled here as a steel platform for simplicity. The hull doesn’t present
any prohibitive characteristic for being treated as a steel structure. The hull is therefore modeled as a
hollow shell with steel walls of constant thickness tw. For a braceless concept such as the OOStar, a steel
mass Msteel equal to 0.23 times the displacement is a reasonable estimate [23]. Based on that estimate, the
thickness of the outer shell tw is calculated to be constant throughout the structure. The center of mass is
approximated to be the center of volume of the hull.

To calculate the steel hull’s pitch moment of inertia, the strategy is to divide the geometry into components
of “standard shape”, for which the inertia calculation is relatively easy. The inertia of each component is
then expressed at its center of mass around local axis (Ix′ , Iy′), displaced at the global origin around the
global y-axis (Iy(0)) and added to the other moments of inertia. The mass of each considered component is
written m and the angle between the global x axis and a pontoon is written θ.

Pontoons
The pontoon legs are assimilated as rectangular boxes, open at both ends, with length Lpont − apont, width
Wpont, height Hpont and wall thickness tw. The moment of inertia around the local longitudinal axis x′

is
Ix′ =

m

6

(
W 2
pont +H2

pont

)
The moment of inertia around the local transverse axis y′ is found by integrating the parallel axis theorem
applied to the 2D moment of inertia of a cross section.

I2Dy′ =
ρs
12

[
WpontH

3
pont − (Wpont − 2tw)(Hpont − 2tw)3

]
Iy′ = (Lpont − apont)I2Dy′ +

m

12
(Lpont − apont)2

Finally, the pitch moment of inertia of a pontoon leg at the global origin is found as:

Iy(O) = Ix′ cos2 θ + Iy′ sin2 θ +m

[
1

4
(Lpont + apont)

2 cos2 θ + (−draft+
Hpont

2
)2
]

(26)
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To complete the pontoons, the circular edges are modeled as hollow half cylinders with diameter DOCbot and
height Hpont. The moment of inertia around the local transverse axis x′ and y′ are equal to:

Ix′ = Iy′ =
m

12

[
3(
D2
OCbot

2
−DOCbottw + t2w) +H2

pont

]

The pitch moment of inertia of the circular edges at the global origin is then:

Iy(O) = Ix′ cos2 θ + Iy′ sin2 θ +m

[
L2
pont cos2 θ + (−draft+

Hpont

2
)2
]

(27)

Outer columns
The outer columns’ top part are hollow cylinders, open at both ends, with diameter DOCtop and height
LOCtop.

Iy′ =
m

12

[
3(
D2
OCbot

2
−DOCbottw + t2w) + L2

OCtop

]

Iy(O) = Iy′ +m

[
L2
pont cos2 θ + (fbOC −

LOCtop
2

)2
]

(28)

The OCs’ cap are circular plates of thickness tw.

Iy′ = m

[
D2
OCtop

16
+
t2w
12

]

Iy(O) = Iy′ +m
[
L2
pont cos2 θ + fb2OC

]
(29)

For the OCs conical part’s moment of inertia, the formula for hollow cylinders, open at both ends, with
diameter Dcone = (DOCtop + DOCbot)/2 and height LOCcone is used. However, the mass m and center of
mass Zg,cone are kept as those of a cylinder.

Iy′ =
m

12

[
3(
D2
OCcone

2
−DOCconetw + t2w) + L2

OCcone

]

Iy(O) = Iy′ +m
[
L2
pont cos2 θ + Z2

g,cone

]
(30)

Central column
The same way as for the OCs, the pitch moment of inertia of the top part, cap and conical part of the CC
are respectively:

Iy(O) =
m

12

[
3(
D2
CCbot

2
−DCCbottw + t2w) + L2

CCtop

]
+m

[
fbCC −

LCCtop
2

]2
(31)

Iy(O) = m

[
D2
CCtop

16
+
t2w
12

]
+mfb2CC (32)

Iy(O) =
m

12

[
3(
D2
CCcone

2
−DCCconetw + t2w) + L2

CCcone

]
+mZ2

g,cone (33)
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Figure 7: Description of the ballast distribution

2.1.2 Ballast mass distribution

Knowing the displacement, the steel mass, the tower mass and RNA mass, the ballast is calculated to have
static equilibrium:

Mballast = ∇ρ−Msteel −Mtower −MRNA

Figure 7 shows the ballast distribution in red: it is equally spread out in the pontoons, filled from the bottom
up to a height hballast to provide the correct mass. The ballasts are assumed to be solid blocks of concrete
with density ρconcrete = 2600 kg.m−3 . To calculate the moment of inertia of the ballast, the weights are
divided into blocks in the same way as for the steel hull.

The pontoon legs are rectangular blocks of length Lpont − apont, width Wpont and height hballast. The local
moments of inertia are:

Ix′ =
m

12

(
W 2
pont + h2ballast

)
Iy′ =

m

12

(
(Lpont − apont)2 + h2ballast

)
Iy(0) = Ix′ cos2 θ + Iy′ sin2 θ +m

[
1

4
(Lpont + apont)

2 cos2 θ + (draft− hballast
2

)2
]

(34)

The end of the pontoons are half cylinders of diameter DOC,bottom and height hballast. For these blocks:

Ix′ = Iy′ = m

(
D2
OC,bottom

16
+
h2ballast

12

)

Iy(0) = Ix′ cos2 θ + Iy′ sin2 θ +m

[
L2
pont cos2 θ + (draft− hballast

2
)2
]

(35)

The center block is a triangular prism of height hballast and side Wpont:

Iy(0) =
m

12

(
W 2
pont

2
+ h2ballast

)
+m

(
draft− hballast

2

)2

(36)
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2.2 Hydrodynamics

The studied platform has a large dimensions compared to the fluid motions in most sea states. The analysis
of this type of platform is typically done with the potential flow theory. To account for viscous effects,
additional damping is modeled with the viscous term of the Morison equation.

2.2.1 Potential flow

The hydrodynamic coefficients of the platform are calculated using the SESAM software package. The hull
geometry is defined and meshed in GeniE to create an finite element model. Regarding the meshing, a rule
of thumb is to have 6 elements per wavelength. If we take a broad estimation and consider that waves in
open sea have a time period between 2s and 30s, in order to capture the smallest waves, the panels shall have
a length of one meter. The FE model is then turned into a panel model in HydroD and the Wadam solver is
called to solve the potential flow problem. We’re interested here in the added mass, radiation damping and
first order excitation forces in surge and pitch.

A =

[
A11 A15

A51 A55

]
B =

[
B11 B15

B51 B55

]
Fexc =

[
Fexc,1

Fexc,5

]

2.2.2 Viscous damping

The drag forces acting on the platform are modeled as an equivalent viscous damping matrix, formulated by
a stochastic linearization of the Morison drag term [24]. This means that the drag force on a cylinder strip

dFD = − 1
2ρCDDu|u| is approximated by dFD = − 1

2ρCDD
√

8
πσuu. Here, σu is the standard deviation of the

strip velocity. It is found using an iteration scheme and depends on the studied sea state. The excitation part
of the drag forces is not taken into account as it is negligible in front of the potential excitation loads.

Figure 8 shows the drag elements of the structure: outer columns top and conical part in dark green and
light green, central column in dark blue, pontoon circular edge in yellow, pontoon leg in blue and heave
plate in red. The drag coefficient of every element is given in table 1 and is based on [25]. They are kept
constant during the optimization. The linearized damping coefficients are obtained by considering the drag
forces resulting from the surge and pitch rigid body motions of the platform η1 and η5. Each drag element
is assigned a 2x2-sized B matrix, which, added together, form the linearized viscous damping matrix Bvisc.

This procedure is detailed hereafter. The notation C̃D = 1
2ρCD

√
8
π will be used.

Figure 8: Drag elements of the structure
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Outer columns
Considering first the outer columns top part, the horizontal velocity of a cylinder strip at depth z is u =
η̇1 + zη̇5. Therefore, the transverse drag force on this strip and the corresponding moment around ~y can be
written:

dFD,1 = −C̃DDσu (η̇1 + zη̇5)

dFD,5 = zdFD,1

The corresponding linear damping coefficients for one of the OC’s top part are identified by integrating these
elementary force and moment over the submerged part of the cylinder (from d = −draft+Hpont +LOCcone
to the waterline).

FD,1 = −
∫ 0

d

C̃DDσudz η̇1 −
∫ 0

d

C̃DDσuzdz η̇5 = −B11η̇1 −B15η̇5 (37)

FD,5 = −
∫ 0

d

C̃DDσuzdz η̇1 −
∫ 0

d

C̃DDσuz
2dz η̇5 = −B51η̇1 −B55η̇5 (38)

For the conical part, the drag coefficient is the average of the values provided by [25] and D =
DOCtop+DOCbot

2 .
The damping coefficients are identified in the same way, integrating the elementary forces over the length of
the conical part.

For the circular ends of the pontoons, D = DOCbot.

Central column
Only the central column’s conical part is submerged. For this part, the drag coefficient is the average of the
values provided by [25] and D = DCCwl+DCCbot

2 , where DCCwl is the diameter of the central column at the
waterline.

Pontoon legs
The pontoons are subject to horizontal and vertical drag loads. The same drag coefficient is used for both.
Let’s write θ the angle between the global axis ~x and a leg axis ~x′, and study a leg strip located at depth
h = −draft+

Hpont

2 and distance x = x′cos(θ) from the origin.
Then the normal component of that strip’s horizontal velocity is un = (η̇1 +hη̇5) sin(θ). Let’s write the drag
force in the ~x direction and the corresponding moment ~y:

dFD,1 = −C̃DHpontσun
(η̇1 + hη̇5) sin(θ)2

dFD,5 = hdFD,1

The corresponding damping coefficients are identified by integrating over the leg length, between d1 = apont
and d2 = Lpont − bpont:

FD,1 = −
∫ d2

d1

C̃DHpontσun
sin(θ)2dx′ η̇1 −

∫ d2

d1

C̃DHpontσun
sin(θ)2hdx′ η̇5 = −B11η̇1 −B15η̇5

FD,5 = −
∫ d2

d1

C̃DHpontσun sin(θ)2hdx′ η̇1 −
∫ d2

d1

C̃DHpontσun sin(θ)2h2dx′ η̇5 = −B51η̇1 −B55η̇5

The vertical velocity of the leg strip is w = −x′ cos(θ)η̇5. Let’s now write the vertical drag force and the
resulting pitch moment:

dFD,3 = C̃DWpontσwx
′ cos(θ)η̇5

dFD,5 = −x′ cos(θ)dFD,3

24



The corresponding damping coefficient is identified by integrating dFD,5 over the leg length:

FD,5 = −
∫ d2

d1

C̃DWpontσw (x′ cos(θ))
2
dx′ η̇5 = −B55η̇5 (39)

Heaveplates
The heaveplates are subject to only vertical drag forces. The bottom area is written Ahp. The vertical
velocity of a heaveplate is w = −Lpont cos(θ)η̇5. Let’s write the resulting moment on the heaveplate:

FD,3 = C̃DAhpσwLpont cos(θ)η̇5

FD,5 = −Lpont cos(θ)FD,3 = −C̃DAhpσw (Lpont cos(θ))
2
η̇5 = −B55η̇5

Member CD

OC top part 0.72

OC conical part 0.713

Circular edge 0.706

CC conical part 0.716

Pontoon leg 2.05

Heave plate 10

Table 1: Drag coefficient of the platform members

2.2.3 Hydrostatic restoring

The hydrostatic stiffness coming from the platform only is calculated as:

Khydro,55 = ρgIwp + ρg∇zB −Mplatformgzg,platform (40)

2.3 Aerodynamics

The aerodynamics on the turbine are highly simplified. The rotor and controller modeling is considered
outside the scope and the power production is not of interest in the project. That is why the wind action
on the nacelle is reduced to an excitation thrust force and a linear damping. The model uses thrust force
spectra computed beforehand with the SIMA model of the DTU 10MW rotor. The spectra were generated
using 1h simulations with a wind input using the Kaimal spectrum and the Kaimal exponential coherence
model, with the normal turbulence model (NTM) for class B turbines [26]. The nacelle was considered fixed
in space and the tower shadow effect for the baseline DTU10 MW tower was included.
Regarding the damping, a simple coefficient Baero = 1.25× 105 kg/s is applied on the RNA.

2.4 Mooring

For each sea state, the mean thrust force from the wind yields a mean surge and pitch offset of the structure.
The restoring forces from the mooring are linearized for each sea state around this mean position. The
SIMA model with a finite element mooring description is used once again. Constant wind tests provide the
offsets as a function of the wind speed. Then, at each mean position, a small pure force dF and a small pure

moment dM are applied on the structure. The resulting small displacements dη
(dF )
1 , dη5(dF ), dη

(dM)
1 and
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dη5(dM) are measured. Now if we write Q the inverse of the system’s linear stiffness matrix, the following
static equations can be written for each mean position:[

dη
(dF )
1

dη
(dF )
5

]
= Q

[
dF

0

] [
dη

(dM)
1

dη
(dM)
5

]
= Q

[
0

dM

]

The coefficients of Q can then be obtained as:

Q11 =
dη

(dF )
1

dF
Q51 =

dη
(dF )
5

dF
Q15 =

dη
(dM)
1

dM
Q55 =

dη
(dM)
5

dM

The sea state-dependent mooring stiffness matrix Kmoor is obtained by inverting Q and removing the hydro-
static stiffness contribution from K55. Kmoor is considered constant throughout the optimization. It is worth
noting that the main source of non-linearity in the mooring stiffness comes from the surge-surge coefficient.
The pitch-pitch stiffness is close to being linear throughout the wind range.

2.5 Generalized displacements

The model uses generalized displacements to describe the response of the system as a weighted sum of arbi-
trary mode shapes ψ(z) = [ψ1(z) ψ5(z) ψ7(z)]. The frequency dependent weights x(ω) = [x1(ω) x5(ω) x7(ω)]
come from the equation of motion’s solution. As mentioned before, three generalized degrees of freedom are
considered, respectively surge, pitch and tower bending first mode. The surge and pitch mode shapes are
known and are enforced as pure surge an pitch motion (ψ1(z) = 1, ψ5(z) = z/hhub). However, the bending
mode is unknown and may change significantly with the platform modification. It is therefore calculated
by solving the eigenvalue problem of a simple finite element model. The FE model takes the platform and
the RNA as lump masses and models the clamped tower with 2-dof beam elements. The hydrostatic and
mooring restoring are modeled as point stiffness on the platform. The infinite frequency added mass coming
from the potential flow solution is also taken into account. Once the eigenvalue problem is solved, a 4th
order polynomial is fitted to the bending mode shape, in order to have analytical expressions for its first and
second derivatives.

The generalized mass, damping and stiffness matrices are defined in equation 41, 42 and 43. The three
modes are not orthogonal and will give rise to coupling effects, represented by off-diagonal elements in the
generalized matrices. K̄ has a contribution from the axial force in the tower N(z), coming from the RNA
and tower weight.

M̄(ω) =

∫ hhub

hbase

m(z)ψ(z)ψ>(z)dz +Mplatformψ(zg,platform)ψ>(zg,platform) +MRNAψ(hhub)ψ>(hhub)

+ Iplatformψz(0)ψ>z (0) +A11(ω)ψ(0)ψ>(0) +A15(ω)ψ(0)ψ>z (0) +A51(ω)ψz(0)ψ>(0)

+A55(ω)ψz(0)ψ>z (0)

(41)

B̄(ω) =B11ψ(0)ψ>(0) +B15ψ(0)ψ>z (0) +B51ψz(0)ψ>(0) +B55ψz(0)ψ>z (0)

+Bvisc,11ψ(0)ψ>(0) +Bvisc,15ψ(0)ψ>z (0) +Bvisc,51ψz(0)ψ>(0) +Bvisc,55ψz(0)ψ>z (0)

+Baeroψ(hhub)ψ>(hhub)

(42)

K̄ =

∫ hhub

hbase

EI(z)ψzz(z)ψ
>
zz(z)dz +

∫ hhub

hbase

N(z)ψz(z)ψ
>
z (z)dz +Khydro,55ψz(0)ψ>z (0)

+Kmoor,11ψ(0)ψ>(0) +Kmoor,15ψ(0)ψ>z (0) +Kmoor,51ψz(0)ψ>(0) +Kmoor,55ψz(0)ψ>z (0)

(43)

26



The excitation loads considered in the model are the potential flow wave excitation forces on the hull and
the thrust force on the rotor. The generalized force per unit wave height F̄w and the generalized force per
unit wind load F̄U are given in equation 44 and 45.

F̄w = Fexc,1ψ(0) + Fexc,5ψz(0) (44)

F̄U = 1×ψ(hhub) (45)

2.6 Equation of motion

The dynamic equilibrium yields the following equation of motion in the generalized coordinates:

M̄ẍ+ B̄ẋ+ K̄x = F̄ (46)

This equation is solved in the frequency domain. The conservative assumption of no interaction between
the wave-induced and wind-induced response is made. It allows to superpose the wave-induced response
spectrum and the wind-induced response spectrum to obtain the total response of the system. Assuming a
periodic load of frequency ω, the linear system yields a periodic response x = x̃eiωt of the same frequency.
For wave loads due to regular waves with unit amplitude, the equation of motion becomes:[

−ω2M̄ + iωB̄ + K̄
]
x̃eiωt = F̄we

iωt

A complex transfer function for the responses due to a unit wave amplitude can be established as in 47. It
contains information about the amplitude and the phase of the response.

Hx,w(ω) =
[
−ω2M̄ + iωB̄ + K̄

]−1
F̄w (47)

The response for each degree of freedom to a wave spectrum Sw is calculated as:

Sxk,w = |Hxk,w|2Sw (48)

Similarly, a transfer function for the response due to unit thrust force can be established:

Hx,U (ω) =
[
−ω2M̄ + iωB̄ + K̄

]−1
F̄U (49)

And the response for each degree of freedom to a thrust force spectrum SFU
is calculated as:

Sxk,U = |Hxk,U |2SFU
(50)

To find the total response of the system, the contribution from the waves and the wind are added together:

Sxk
= Sxk,U + Sxk,w (51)

To compute the viscous damping, the transfer functions of the response derivative are needed. They are
calculated as:

Hẋ,w(ω) = iωHx,w(ω) Hẋ,U (ω) = iωHx,U (ω)

For a given spectrum S, the spectral moments are calculated as:

mk =

∫ ∞
0

ωkS(ω)dω

The standard deviation is then defined as σ =
√
m0.
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2.7 Environmental conditions

The environmental conditions that are considered are both operational load cases and extreme load cases.
The wave conditions are modeled through Jonswap spectra with a peak parameter γ = 3.3. The wind
conditions are modeled through thrust force spectra. The design basis from Life50+ [27] provides the
normal sea states for the fatigue study (table 2) and the extreme sea state with a return period of 50 years
for the ultimate strength analysis (table 3). The turbine is parked for the extreme sea state.

Uhub [m/s] Hs [m] Tp [s] P [%]

4 1.38 5 3.45

6 1.38 7 6.89

4 1.38 11 3.45

6 1.67 5 5.99

8 1.67 8 11.98

6 1.67 11 5.99

10 2.2 5 6.41

10 2.2 8 12.83

10 2.2 11 6.41

14 3.04 7 5.12

14 3.04 9.5 10.24

14 3.04 12 5.12

18 4.29 7.5 2.9

18 4.29 10 5.81

18 4.29 13 2.9

20 6.2 10 0.94

20 6.2 12.5 1.88

20 6.2 15 0.94

20 8.31 10 0.19

20 8.31 12 0.37

20 8.31 14 0.19

Table 2: Operational environmental conditions for fatigue study

Uhub [m/s] Hs [m] Tp [s]

44 10.9 16

Table 3: Extreme environmental conditions with a 50-year return period
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3 Optimization problem

This section gives the framework of the optimization problem, its objective function, design variables and
constraints. To keep the project to a reasonable extent, the optimization only focuses on the semi-submersible
geometry. The mooring system, the tower, the turbine and internal structure of the system are not modified
and the optimization is narrowed down to a simpler and single-disciplinary problem.

3.1 Objective function

Solving an optimization problem of this kind eventually goes down to finding the “best design possible”.
In the case of a FWT, the best design can be seen as the one producing the most energy at the cheapest
cost (for a constant lifetime). This is once again equivalent to minimizing the LCOE of the system. The
deliverable D2.2 of the Life50+ project [28] details the calculation of a floating wind turbine LCOE. Just
like any power production facility, the LCOE for a set lifetime is defined as

LCOE =
Life cycle cost

Electrical energy provided

The first factor here, the amount of energy produced throughout the FWT’s life, depends mostly on its
geographical location and the efficiency of the turbine control system. Since these parameters are fixed
in this study, the optimization will not influence the power production. The second term, the life cycle
cost, typically includes CAPEX for capital expenses, OPEX for operation and maintenance expenses and
decommissioning expenses DECEX. OPEX and DECEX will not be affected in this study and are removed
from the scope. Going further down the CAPEX, only the manufacturing cost of the floating substructure
is of interest here. The mooring system characteristics are kept constant and the potential changes in its
dimensions due to changes in the floating substructure size will have a negligible impact on the cost. In
the same way, the turbine and the tower are kept constant during the optimization. The cost CFS of a the
floating substructure can be written as the sum of three factors:

CFS = TCLC + TCMC + TCOC

Where TCLC is the total labor cost, TCMC is the total manufacturing cost and TCOC is the total overhead
cost. If the floating platform has n components to be manufactured with p different materials, then

TCLC =

n∑
i=1

tFSi × cLCi

TCMC =

n∑
i=1

p∑
j=1

mij × cij

where tFS is the manufacturing time, cLC the hourly labor cost, m is the mass of the material and c is
the cost of the material. Overhead costs are directly related to the manufacturing process and one way to
account for them is to apply a percentage of the manufacturing cost. Given that the general geometry of
the floater is already defined and that the optimization will only change the length of some components, it
can be assumed that these costs won’t be affected by the optimization and they are hence not taken into
account.

The price of concrete being negligible in front of the price of steel, a simple cost model of the platform is its
mass of steel. The objective function to minimize is chosen to be Msteel.

3.2 Design variables

The design variables are only geometrical and are chosen among the dimensions listed in 6. To keep the
geometry changes simple, especially for the meshing automation, Lpont andDOC are taken as design variables.
This means that all the other parameters that are independent of Lpont and DOC are kept constant.
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3.3 Constraints

The more constraints are established, the larger the computational effort will be. Therefore, the challenge is
to limit their number by understanding which constraint is already included in which constraint. For example,
it might not be necessary to restrict the motions of the system if the stresses in different components are
already checked. In this section, the optimization constraints are determined in that philosophy.

The definition of the constraints is based to a large extent on the requirements presented in the DNVGL
standards [29]. Following common design practices, the structure must be checked according to ultimate limit
state (ULS) and fatigue limit state (FLS). Basic requirements are also imposed to keep the design realistic.
The constraints on maximum values apply to every considered sea state and use a 3h duration.

3.3.1 Constraints related to the platform

Since no structural model of the platform is used, the constraints on the semi-submersible will be related to
only its rigid body response. First and very basic, the platform must float with the correct draft. Ballast
will be adjusted to balance the buoyancy with the weight of the whole system. The ballast mass is therefore
required to be positive.
A maximum surge displacement of 30 m is defined to avoid rupture of the power cables. This value is chosen
based on the original system’s response to environments characterized by a wind speed close to rated: for
typical operational sea states with U = 10 m/s, the maximum surge excursion is 28m. No modeling of the
tension in the mooring lines was done and so no constraint on a maximum tension can be applied. The limit
on the surge motion will therefore also serve as a mooring constraint.
A stability check based on the calculation of the area below the stability curve is usually required. To avoid
such calculation, it is typically assumed that setting a limit for the static pitch angle under rated wind speed
is enough to ensure sufficient static intact stability. A limit of 5 deg is therefore defined for the static pitch
angle. [27] also requires a maximum dynamic pitch angle of 10 deg in operational conditions.
Finally, since the model doesn’t include the heave degree of freedom, a constraint on the natural heave period
is necessary to control that motion. T3 can not be smaller than 20s, to avoid being in the wave frequency
range.

3.3.2 Constraints related to the tower

Figure 9: coordinate system for the structural analysis of a tower section

The stresses inside the tower arise from the axial force Nx and bending moment My. Nx comes from the
weight of the RNA and the tower, and is constant through time and optimization. My is calculated using the
curvature of the bending mode shape. Normally, the stresses around the whole circumference of the tower
should be checked, but with a 2D model subject to aligned wind and waves, only the point θ = 90◦ on the
outer radius can be checked. The resulting axial stresses at that point are calculated as:

σx(z, ω) =
Nx(z)

A(z)
− My(z, ω)

Iy(z)
r =

Nx(z)

A(z)
− EIy(z)ψzz(z)x̃7(ω)

r(z)

Iy(z)
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A linear relation can be established between the generalized bending response x̃7 and the bending stress:

HσM
(z) = −Eψzz(z)r(z)

The response spectrum of the bending stress along the tower is then:

SσM
(z, ω) = |HσM

(z)|2Sx7
(ω) (52)

The fatigue analysis of the tower is performed with the SN curve methodology, under the assumption of
linear cumulative damage. The SN curve gives the number of cycles to failure given a stress range. The
analysis is here based on the SN curve D from table 2.1 in [30] (figure 10). S-N curves are different for axial
stress and shear stress. Here we focus only on the axial stress since it’s usually the most critical. Since the
SN curve method relies on stress ranges, only the dynamic stresses (due to My) are of interest in the fatigue
study.
To compute the fatigue damage for a specific sea state, we apply the Dirlik’s method [31]. It is a stochastic
method using the spectral moments of the bending stress response spectrum. The fatigue damage during T
seconds according to Dirlik is:

DDK =
vpT

K
(2σ)m

(
G1Q

mΓ(1 +m) + (
√

2)m (G2R
m +G3) Γ

(
1 +

m

2

))( t

tref

)mk
(53)

Where

G1 =
2
(
xm − α2

2

)
1 + α2

2

, G2 =
1− α2 −G1 +G2

1

1−R
, G3 = 1−G1−G2 , Q =

1.25 (α2 −G3 −G2R)

G1
, R =

α2 − xm −G2
1

1− α2 −G1 +G2
1

and

α2 =
m2√
m0m4

, xm =
m1

m0

√
m2

m4
, vp =

1

2π

√
m4

m2

In equation 53, m and K = ā are the parameters of the first part of the SN curve, where N ≤ 107 cycles.
By summing the fatigue damage of all the considered sea states, weighted by probabilities of occurrence, the
design criterion is given in equation . The FWT is designed for a 25-year lifetime. According to [29], the
design fatigue factor is taken equal to DFF = 1.

DFF.D25y ≤ 1 (54)

The ultimate strength capacity of the tower in yielding must be assessed. Since the system was made linear,
a Gaussian wave process will yield a Gaussian bending stress response. Therefore, the maxima distribution
in a SσM

realization will follow a Rayleigh distribution, and the expected largest bending stress during a sea
state of 3h is given by:

σmax,3h = σσ

(√
2 lnN3h +

0.5772√
2 lnN3h

)
(55)

Where N3h is the number of individual maxima in 3h and σσ is the standard deviation of SσM
. The tower

is considered safe if the axial stresses never exceed the steel yield stress all along the tower:

γf

(
σmax,3h +

Nx
A

)
≤ σy
γm

Here, the partial safety factor for the material is γm = 1.1 according to [32]. The partial safety factor for
the load is γf = 1.35 according to [29].
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No constraint on buckling of the tower was applied. Axial stresses are typically studied for the buckling
assessment, and here the dead weight of the turbine is the main contributor. Since the tower design will not
change during the optimization, we just have to check that the initial design is safe regarding buckling.

Figure 10: SN curve in air

Property Value Unit

Young’s modulus E 210 GPa

Poisson’s ratio ν 0.3 -

Mass density ρ 7855(8500) kg/m3

Minimum yield strength σy 355 MPa

Table 4: Properties of the tower steel

3.4 Calculation of derivatives

Since the panel meshing and potential solver are black boxes and we don’t have access to the code, the
only solution to approximate the derivatives of the hydrodynamic coefficients is to use finite differences.
This dramatically increases the run time since the potential solver must be run another time to compute
the partials. For the rest of the model, time constraints didn’t allow to provide analytical partials to every
components. Analytical partial derivatives are calculated for all the components related to the platform
geometry, the mass model and the viscous forces. All the remaining components are attributed finite-
difference partials.
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4 Training model

A first optimization process was carried out with a very basic model to get the hang of such a procedure.
This model doesn’t relate in any way to the studied OOStar, but the model structure is similar. The idea is
to practice and get used to working in the OpenMDAO environment with a model that can be visualized and
verified easily. Once the concepts of objective function, constraints, and convergence were handled correctly,
the more advanced model was be developed.

This “training model” is a catenary-moored floating cylinder, similar to a spar, supporting a dead weight
corresponding to the 10MW DTU wind turbine. The problem is solved in the frequency domain and the
model simply looks at the linear rigid body response of the floater in the (x, z) plane for one given sea state.
Only the surge and pitch degree of freedom are included. Only wave excitation is considered, no wind input.
The spar is described by its diameter D, draft d, freeboard fb and a constant wall thickness of tw = 10
cm.

The model relates very little to reality and the results are to be taken purely illustratively. Once again the
purpose is to be able to assess a correct optimized result.

Figure 11: Sketch of the training model

4.1 Description of the training model

The training model follows the same logic as the real model, but in a very simplified version. Just like the
real model, the training model solves the following equation of motion:

(M +A) η̈ +Bη̇ +Kη = Fexc

The mass matrix is calculated in the following way: D and d yield the submerged volume and the displacement
of the system, 23% of which is allowed to the steel mass, eventually ballasts are filled up from the bottom so
that Msteel +MDTU10MW +Mballast equals the displacement. The added mass matrix is approximated using
the the analytical expression for a 2D circular cylinder with diameter D in infinite fluid [34]:

a11 = ρπD2/4

The damping of the system is modeled here as purely viscous and formulated again by a stochastic lin-
earization of the Morison drag term [24]. The elementary transverse force on a cylinder strip with CD = 0.7
is:

dFD1 = −1

2
ρCDD (η̇1 + zη̇5) |η̇1 + zη̇5| ≈ −

1

2
ρCDD

√
π

8
ση̇1+zη̇5 (η̇1 + zη̇5)

The linear wave excitation forces are approximated using the diffraction forces from MaxCamy-Fuchs theory
[35]. The horizontal force per unit length on the cylinder strip due to a regular wave of unit amplitude is
given by:
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dFexc =
4ρg

k

cosh k(z + h)

cosh(kh)
Gei(ωt−α)

1

G
=

√
J ′1(k

D

2
)2 + Y ′1(k

D

2
)2 and tan(α) =

J ′1(kD2 )

Y ′1(kD2 )

The stiffness matrix is composed of the hydrostatic restoring and the mooring restoring, linearized around 0
thanks to the SIMA model.

4.2 Definition of the training optimization

The optimization of the training model is similar to the complete one but simplified. The objective function
to minimize is the mass of steel. The two design variables are the diameter D and the draft d of the platform.
The first constraint is about static equilibrium, the ballast mass needs to be positive so that the cylinder
floats. Basic stability requires that the pitch restoring stiffness is positive. Furthermore, the static pitch
angle under rated thrust is typically limited to 5 degrees. Finally, to limit the motions of the floater, an
upper limit on the surge and pitch response standard deviation is imposed. These limits are not based on
any standard, they are arbitrary values, chosen simply to build the optimization.

To sum up, the training optimization problem can be written as follows:

minimize Msteel

with respect to D ∈ [2 m, 25 m] and d ∈ [50 m, 150 m]

subject to Mballast > 0

K55 > 0

η5 < 5◦ for Fthrust = 1.5e6 N

ση1 < 5m

ση5 < 0.075◦

For simplicity, only one sea state is used in this problem. It is characterized by a Jonswap spectrum with the
parameters Hs = 6.2m, Tp = 12.5s and γ = 3.3. The SciPy SLSQP optimizer is used and all the derivatives
are computed with finite difference.

4.3 Visualization of the training problem

The main advantage of this model is the possibility to plot the values of interest. By evaluating the objective
function and the constraints throughout the design space defined by D and draft, the surfaces and contours
in figure 12 can be obtained.

The objective function here is very simple and increases logically with the diameter and the draft. The
ballast mass increases in the same direction. The constraint on the standard deviation of the surge and pitch
response prevents the structure to have (1) a too large diameter, which would result in large wave loads,
and (2) a too small draft which would reduce the stability of the platform. Finally, the instability showed
by the rated pitch constraint going to infinity occurs when the pitch stiffness goes to zero: at some point,
the CoG goes above the CoB and ρgV ZB −MgZG becomes negative. When it exceeds the waterplane area
stiffness contribution, K55 becomes negative and the platform is unstable. Therefore, we have to remember
that the part of the design space outside this pitch angle ”barrier” is not physical because the platform is
not stable.
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(a) Objective function: mass of steel (b) Mass of ballast - must be > 0

(c) Standard deviation of the surge response
for the studied sea state - must be < 5m

(d) Standard deviation of the pitch
response for the studied sea state - must be

< 0.075deg

(e) Static pitch angle under rated thrust - must be < 5deg

Figure 12: Surface plots of the objective function and the constraints of the training model
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(a) Starting point: D = 17m, d = 130m (b) Starting point: D = 23m, d = 140m

(c) Starting point: D = 20m, d = 100m (d) Starting point: D = 23m, d = 140m, draft not scaled

Figure 13: Iterations of the optimization in the design space, with objective function and
constraints represented

4.4 Results and observations of the training optimization

The optimization was carried out for three different starting points, to check the behavior of the optimizer
in different conditions. The results are shown graphically in figure 13 and the details are given in table
5. On the graphs, the background is the contours of the objective function, the curves represent where
the constraints are equal to their limit value, and the yellow dots describe the optimization path. The
feasible space is therefore located above the rated pitch constraint and on the left of the standard deviation
constraints. The actual values of the solutions are not of interest since the training model is not meant to
represent a real platform. However the way the optimizer finds that solution, as well as potential errors, can
teach multiple lessons about how the optimization works.

The first observation is that the constraint on the static pitch angle under rated thrust is a clear “wall” to
minimizing the mass of steel. The optimized solution is therefore expected to be on that red line, where the
pitch angle is the maximum tolerated. In other words, the rated pitch constraint will be active at the solution
and would represent a driving constraint for the platform design. A consequence is that the constraint on
the ballast mass to be positive to make the platform float is useless. It could never be active because of
the rated pitch constraint. With a bit of thinking, it could have been anticipated that a static stability
requirement would prevent the floater from becoming so small that it would not float anymore. Removing
a constraint would save some computational time.
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Another observation is that the optimizer first uses a direction close to the steepest descent, without ap-
parently accounting for constraints. Once it crosses the pitch constraint, it goes back and then follows the
constraint until reaching the solution. A consequence is that the algorithm allows unfeasible points. It
doesn’t seem to be a problem here but we need to remember that the model should be robust enough to
support dealing with potentially non-physical designs. The results also shows that starting from an unfeasi-
ble point (D = 23m and d = 140m) can be acceptable.
This specific optimization problem proved to be quite tricky because the driving pitch constraint is almost
parallel to the steel mass contour. Therefore knowing that the solution would be on the constraint is not
enough to guess where the optimum is. This shows how useful and efficient optimization algorithm are.
An important lesson from this exercise is how sensitive the optimization is to scaling. To get the results in
figure 13, the objective function, the design variables and the constraints were scaled so that their value stay
in the same range of magnitude. The subfigure d in figure 13 shows an example of a run where only the draft
was not scaled. One can see that the difference in magnitude between the two design variables causes the
optimizer to prefer a horizontal, and therefore less direct, path. A badly scaled problem could even cause
the optimizer not to converge if, e.g. a constraint is too dominating.

Opti 1 Opti 2 Opti 3

Starting
point

[17,130] [20,100] [23,140]

Iterations 12 14 17

Function
evaluations

12 14 19

Gradient
evaluations

12 14 17

Optimum 45.93742322 45.93742348 45.93742349

Location of
the optimum

[15.40920667 , 102.10189288] [15.40921865 , 102.10179362] [15.40921942 , 102.10178723]

Rated pitch
at optimum

5 5 5

ση1 and ση5
at optimum

[3.18355074 , 0.04499912] [3.1835544 , 0.04499922] [3.18355463 , 0.04499923]

Table 5: Results of the training optimization
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5 Results and application of the model

In order to assess the validity of the model, the first part of this section presents a comparison between the
system’s performances predicted by the linear model and the state-of-the-art non-linear SIMA model. The
linear model and the optimization set up are complete. Unfortunately, time was missing to carry out the
whole optimization. However, the purpose of the project was also to build an efficient model that could
provide a quick insight into the consequences of modifying the design. That’s why the second part of this
section investigates 9 different points of the design space, trying to determine manually some design-driving
patterns.

5.1 Validation of the model

This part looks at the results given by the linear model and the SIMA model for the original design.
Comparing the two is a way to check if the linear results are consistent. It must be recalled here that the
linear model represents a steel platform, instead of concrete. Therefore the mass distribution is not the same.
Essentially, the center of mass of the platform is 2m lower in the linear model than the original reference
platform, and the pitch moment of the platform is greater. Added to the simplifications inherent to the
model, it must be said that the point of the validation is not to match the SIMA results perfectly. It is
rather to make sure the linear model captures the essential dynamics of the FWT.

Figure 16 shows the first bending mode shape of the original design calculated with the FEM component
within the linear model. The shape makes sense and its natural frequency ω7 = 4.4 rad/s is close to the
reference (4.9 rad/s). The fitted polynomial is used to calculate ψz and ψzz.

Figure 14 shows the standard deviation of the surge, pitch and bending moment response to the operational
sea states. The linear results follow quite well the trend of the integrated model before rated wind speed.
However, the surge motions are overestimated for most wind speeds. A reason for that can be the mooring
modeling. Since the mooring restoring is the only source of stiffness in the surge motion, the approximations
resulting from its linearization is likely to cause the overestimation. The pitch motions are largely under-
estimated for above-rated wind speeds. A reason for that can be the aerodynamics modeling. A constant
damping coefficient was simply applied on the RNA, while the real aerodynamic damping forces depend to
a large extent on the rotor state, e.g. blade ptich, and the wind speed. The bending moment looks closely
coupled with the pitch motion and present the same gaps with the SIMA results.

More information about these differences can be found by looking at the response spectra in figure 15. The
first thing to notice is that the linear model has a good estimation of the natural frequencies, around 0.038
rad/s in surge and around 0.22 rad/s in pitch. The natural frequency of the first tower bending mode lies
away from any excitation, not contributing to the response and therefore not shown on the graphs. The
spectra show that the system’s response to waves is correctly assessed by the linear model. The energy is
located in the same frequency range for the linear and the SIMA model. On the contrary, the response
at lower frequencies, triggered by wind forces, are quite different between the two models and explain the
discrepancies visualized in the standard deviations. The linear response at the surge frequency is too large
compared to the response at the wave frequencies. The linear response at the pitch frequency is too small
and too much energy is attributed to frequencies close to 0 rad/s. This shows the limit of modeling the rotor
interaction with the wind simply with a thrust force and constant damping.

Figure 17 shows the 25-year fatigue damage along the tower. Confirming what previous studies on the 00Star
showed, the fatigue critical point is not at the tower base but further up. With the SIMA model giving a
25y fatigue damage of 0.224 at the tower base, it appears however that the fatigue damage estimated by
the linear model is largely underestimated. A reason for that is the mentioned inaccuracy in the system’s
response to wind. In a smaller extent, the Dirlik fatigue calculation method also brings limitations because
it uses only one part of the S-N curve.

To sum up, the linear model captures pretty well the hydrodynamics of the system and therefore its response
to waves. On the other side, the aerodynamics modeling seems to be unsatisfactory to represent the response
to wind. In a general way, the trends in motion and bending moment response are correctly represented
for below-rated wind speeds, where wave action dominates but get away from reality for above-rated wind
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speeds, where wind action takes over. The fatigue calculation along the tower yields the correct vertical
distribution, with the maximum damage occurring at around 43% of the tower length. The underestimation
in absolute value makes it delicate to implement a fatigue constraint in the optimization, but it can at least
be used in a relative way to compare different designs. The linear model doesn’t match the OOStar results
but captures well enough the FWT dynamic trends to compare different designs of steel platforms.

(a) Standard deviation of the surge response (b) Standard deviation of the pitch response

(c) Standard deviation of the tower base bending moment response

Figure 14: Standard deviation of the original design’s response to operational sea states
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(a) Surge response to every operational sea states

(b) Pitch response to every operational sea states

(c) Tower base bending moment response to every operational sea states

Figure 15: Comparison between the response of the original design predicted by the linear
model and the SIMA model
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Figure 16: First bending mode shape of the
original design - ω7 = 4.4 rad/s

Figure 17: 25-year fatigue damage from tower
base to tower top of the original design
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5.2 Exploration of the design space

Time was missing to perform the full optimization on the linear model. But since every calculation in the
model was automated for that purpose, it is very easy to change the values of the design variables Lpont

and DOCtop and look at the consequences in the system’s performances. This part makes use of that model
strength to explore the design space manually and investigate 9 new designs.

Table 6 makes a summary of the linear model results for D0 the original model and D1-9 the new designs.
It includes the value of the design variables, the objective function Msteel, the degree of freedom natural
frequencies and some of the optimization constraints: maximum displacement in surge and pitch, maximum
bending moment at the tower base and heave natural frequency. Figures 18 and 19 superpose the standard
deviations and 25y fatigue damage of every Di.

D2, D6 and D9 present a negative generalized pitch stiffness, due to a too small hydrostatic restoring. These
designs are therefore not stable. Looking at the other designs in the graphs, it is clear that changing the
design variables doesn’t change the trend of the responses. The standard deviations and the fatigue results
have the same shape for every design but they change in magnitude. Keeping the overall shape of the
platform (3-legged semisub with columns) fixed, the overall behavior of the system is also fixed. None of the
designs give rise to a new trend in surge, pitch, bending moment or fatigue response.

The table gives more insight into the trade-offs. All the designs reduce the mass of steel in the platform
compared to the original design, which is the whole point of the work. Reducing the diameter of the outer
column’s top part is efficient at decreasing the objective function but increases also significantly the pitch and
surge motions. A smaller DOCtop means less stiffness in pitch and drives ω5 dangerously close to the wind
excitation. For instance, D1 presents unacceptably large pitch and surge motions, even with an unchanged
Lpont.
Reducing the pontoon length has moderate effects on the maximum response. But the resulting decrease
in mass and heave added mass takes ω3 close to the wave frequencies. Since that degree of freedom is not
represented in the linear model, it needs to be monitored through its natural frequency. The 0.32 rad/s
constraint on ω3 mentioned in section 4 would reject D3, D4 and D7.

Design Lpont / DOCtop Msteel Max surge Max pitch Max M ω1 ω3 ω5 ω7

[m,m] [kg] [m] [deg] [N.m] [rad/s] [rad/s] [rad/s] [rad/s]

D0 [37 , 13.4] 6.021E+06 31.9 8.143 32.13 0.039 0.223 0.310 4.40

D1 [37 , 9] 5.411E+06 35.4 18.6 42.8 0.041 0.24 0.094 4.47

D2 [37 , 6] Not stable

D3 [32 , 13.4] 5.596E+06 32.38 9.6 32.1 0.041 0.33 0.19 4.64

D4 [32 , 15] 5.863E+06 32.05 8.24 34.8 0.040 0.36 0.23 4.60

D5 [32 , 11] 5.241E+06 34.13 14.9 37.34 0.042 0.29 0.125 4.69

D6 [32 , 9] Not stable

D7 [30 , 13.4] 5.426E+06 32.7 10.6 32.5 0.041 0.34 0.18 4.75

D8 [40 , 9] 5.666E+06 33.8 14.4 36.4 0.040 0.23 0.115 4.34

D9 [40 , 6] Not stable

Table 6: Linear model predictions for different design across the design space
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In conclusion, optimizing the platform will go down to how much DOCtop can be decreased before making
the system too unstable, and how much Lpont can be decreased before having resonance in heave. It must
recalled that multiple aspects of the real system’s response are not accounted for. Typically, changing the
length of the pontoons will affect significantly the bending moment within the legs. The results given here
must be therefore analyzed with the model capability and limitations in mind.

(a) Standard deviation of the surge response (b) Standard deviation of the pitch response

(c) Standard deviation of the tower base bending moment response

Figure 18: Standard deviation of the original design’s response to operational sea states
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Figure 19: 25-year fatigue damage from tower base to tower top
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Conclusion

The present work is an effort towards the development of multi-disciplinary gradient-based optimization of
floating wind turbines. It wants to contribute to designing cheap and performant semi-submersible sub-
structures for wind turbines growing in size. The innovation of the project lies in its use of the efficient
mathematical methods from gradient-based algorithms, combined with the accurate potential flow calcula-
tion for large-volume hull shape.

The main effort of the project was the building of a computationally efficient low-fidelity model of a FWT
in the OpenMDAO framework. Using the base geometry of the OOStar and the DTU 10MW turbine, the
model solves the linearized equation of motion in the frequency domain for three degrees of freedom, namely
surge, pitch and the first tower bending mode. The WADAM solver is called to compute the hydrodynamic
coefficients of the hull and the wave excitation forces. Thrust force spectra are used to represent the wind
action. The one asset of the model is its full parameterization, coupled with the automation of panel meshing
and hydro computation. Changing one of the platform dimensions is thus made very simple. A comparison
of the linear results with an integrated SIMA model showed the accuracy range and limitations of the linear
model. The response to waves is captured quite well but the limited aerodynamic modeling causes a major
underestimation of the pitch response for above-rated wind speeds. This is reflected in the tower fatigue
damage, for which the distribution is correct but lower than predicted by SIMA.

A reflection about the key performances of a FWT led to the construction of an optimization problem.
In order to reduce the cost of the system, the mass of steel in the platform can be minimized w.r.t two
design variables, namely the pontoon length and the outer columns’ top diameter. Constraints based on
international standards and model-oriented were applied.

The described optimization problem was applied on a very basic structure to practice on a training model.
It allowed to familiarize with optimization and to identify the main procedures and hardships of working
with an SQP solver in OpenMDAO.

Time was missing to perform the optimization on the real model. However, a manual exploration of the
design space identified the main consequences of modifying the design variables. Therefore, no optimum
was found but an overview of the design space and a better understanding of how the optimization should
perform was obtained.

Finally, some recommendations for further work are to be presented, as there is a lot of potential for
improvement. First, the accuracy of the model needs to be improved. Modeling the rotor using e.g. the
BEM theory and solving the catenary equations for the mooring can be part of the solution. Secondly, for
the optimization to run smoothly, the objective function, design variables and constraints need to be scaled.
To make it efficient, a tedious work of providing the missing analytical partial derivatives should be done.
It is very likely that the run time of the model can also be improved with smarter coding and handling of
variables. Last, the optimization problem can be enlarged. Not only by increasing the number of geometric
variables, but also by making the platform flexible, parameterizing the tower or accounting for the turbine
control. Including more disciplines in the process is really what gives added value to the optimization.
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