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Abstract

This thesis investigates the possibility of using Visual Simultaneous Localization and Map-
ping (VSLAM) to increase the local situational awareness and local positioning accuracy
of Work Class Remotely Operated Vehicles (WC-ROV). The existing methods covering
the local situational awareness and local positioning are mainly acoustic systems and iner-
tial navigation, each having different trade-offs in terms of accuracy, cost and complexity.
The motivation of this thesis, is to contribute in development of autonomous solutions on
WC-ROVs by providing low-cost and accurate alternative to the existing methods.

The main contribution of this thesis is a proposed real-time WC-ROV VSLAM system
based on using the stereo camera rig of NTNU’s WC-ROV Minerva and the VSLAM
method ORB-SLAM2. The system accounts for underwater imaging effects, provides esti-
mates of the WC-ROV position, orientation and point cloud of local environment, detects
the closest observed obstacle, and conveys the closest detected obstacle to the Autonomy
Framework of Minerva. The real-time WC-ROV VSLAM system was implemented in the
framework Robot Operating System (ROS), using the programming language C++. The
baseline of the stereo camera rig was set to 0.2 m based on calculations on the stereo over-
lapping field of view and expected disparity values of matched features in the left and right
stereo image pair. The system uses Contrast Limited Adaptive Histogram Equalization
(CLAHE) to contrast enhance the unevenly illuminated underwater stereo image pairs
received from the stereo camera rig, ORB-SLAM2 to estimate position, orientation and
point cloud of the surrounding environment, plane fitting with Random Sample Consensus
(RANSAC) and an Euclidean based clustering method to infer the closest detected obsta-
cle, and communicates and provides the global coordinate of the closest detected obstacle
to the Autonomy Framework of Minerva using TCP connection.

The system was tested in an underwater obstacle course in the Marine Cybernetics Lab
(MC-lab) at NTNU, both under ideal light conditions and subsea simulated lighting con-
ditions, using the full resolution capacities of the stereo rig cameras and in a halved
resolution mode with increased light sensitivity. The optical measurement system Qual-
isys was used as ground truth for the position estimates, the measured dimensions of the
obstacle course were used as ground truth for the estimated map and closest detected
obstacle algorithm. Prior to the experiment, the stereo camera rig was camera calibrated
under water at the distances 1, 3, 4 and 5 m establishing relevant camera parameters to
be used in ORB-SLAM2. The integration of the system in the Autonomy Framework of
Minerva was tested doing Hardware In the Loop-testing with an altered version of the
system generating synthetically obstacles instead of true obstacles from visual inputs.
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The results from the underwater obstacle course tests showed that the position estimates
of the real-time WC-ROV VSLAM system provided good accuracy in local areas in short
times intervals, but error accumulated in the estimated positions when the stereo cam-
era rig explored larger areas of the environment. The estimated maps provided adequate
spatial relations with some inconsistency of previously and newly mapped obstacles. The
closest obstacle detection managed to detect and infer the closest obstacles, but the per-
formance reduced in the subsea simulated test cases due to increased noise levels and
misalignments in the estimated map. Additionally, showed the results that the benefits of
using cameras in full resolution was inferior to the binned mode due to reduced estimation
frequency of ORB-SLAM2.

The thesis concluded with that the use of the VSLAM method ORB-SLAM2 in the real-
time WC-ROV VSLAM system showed that the local situational awareness could be in-
creased by using the estimated position and map of ORB-SLAM2, and that they could
be used in autonomous features of the WC-ROV such as for example the proposed closest
obstacle detection. The use of the estimated position to increase the local positioning, was
however more questionable due to the increased drift occurring and jumps in the estimated
positions due to relocalization and loop-closures.

ii



Sammendrag

Denne oppgaven undersøker muligheten for å bruke Visuell Simultan Lokalisering og Kart-
legging (VSLOK) til å øke den lokale situasjonsbevistheten og lokale posisjonsnøyaktighet
til fjernstyrte undervannsarbeidsfarkoster (FUAF). Eksisterende metoder som dekker lokal
situasjonsbevistheten og lokal posisjoneringen, er hovedsakelig akustiske systemer og treghet-
snavigasjon som begge har ulike kompromisser i henhold til nøyaktighet, kostnad og
kompleksitet. Motivasjonen for denne oppgaven er å bidra til utviklingen av autonome
løsninger til FUAF ved å komme med et lavkostnads og nøyaktig alternativ til de eksis-
terende metodene.

Hoved bidraget i denne oppgaven er et foresl̊att sanntids FUAF-VSLOK system basert
p̊a stereokamerariggen til NTNUs FUAF Minerva og VSLOK metoden ORB-SLAM2.
Systemet tar hensyn til virkningen som oppst̊ar av bilder tatt under vann, gir ut esti-
mater p̊a posisjon, orientering og en punktsky av de lokale omgivelsene til Minerva, detek-
terer nærmeste observerte hindring, og videreformidler den nærmeste detektere hindringen
til det Autonomi Rammeverket til Minerva. Sanntids FUAF-SLOK systemet ble imple-
mentert i rammeverket Robot Operativ System (ROS) ved å bruke programmeringsspr̊aket
C++. Avstanden mellom kameraene i stereokamerariggen ble satt til 0.2 m basert p̊a
beregninger gjort p̊a det stereo-overlappende synsfeltet og forventet misforholdsverdier til
korresponderende nøkkelpunkter i de venstre og høyre stereo bildene. Systemet bruker
Kontrast Begrenset Adaptiv Histogram Utgjevning (KBAH) for å forbedre kontrasten
i de ujevnt belyste undervannsstereobildeparene mottatt fra stereokamerariggen, ORB-
SLAM2 for å estimere posisjon, orientering og punktsky av omgivelsene, plantilpasning av
punkter med Tilfeldig Sampling Konsensus (TSK) og en Euklidsk basert klyngemetode for
å avgjøre den nærmeste detekterte hindring, og kommuniserer og formidler det globale ko-
ordinatet av den nærmeste detekterte hindringen til Autonomi Rammeverket til Minerva
ved å bruke TCP tilkobling.

Systemet ble testet in en undervannshinderløype i Marin Kybernetikk Laboratoriumet
Lab p̊a NTNU, b̊ade med ideell belysning og med dyphavs simulert belysning, ved å bruke
den fulle oppløsningskapasiteten til stereokamerariggen og i en halvert oppløsningsmodus
med forbedret lyssensitivitet. Det optiske m̊alesystemet Qualisys ble brukt som refer-
ansem̊aling til posisjonsestimatene, de m̊alte dimensjonene p̊a undervannshinderløypen
ble brukt som referansem̊aling til det estimerte kartet av omgivelsene og den nærmest
detekterte hindringsalgoritmen. I forkant av eksperimentet, ble stereokamerariggen kam-
erakalibrert under vann p̊a avstandene 1, 2, 4 og 5 m for å etablere de relevante kamera
parameterne brukt i ORB-SLAM2. Integrasjonen av systemet i Autonomi Rammever-
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ket til Minerva ble testet ved å foreta Fastvare I Løkken (FIL) med en endret versjon
av sanntids FUAF VSLOK systemet som genererte syntetiske hindringer istedenfor ekte
hindringer observert fra visuell inndata.

Resultatene fra undervannshinderløypen viste at posisjonsestimatet fra sanntids FUAF
VSLOK systemet gav god nøyaktighet i lokale omr̊ader i korte tidsintervall, men feilen
akkumulerte i estimatet etter hvert som stereokamerariggen utforsket større omr̊ader av
omgivelsene. Det estimerte punktskykartet gav adekvat romlig sammenheng med noen
uregelmessigheter mellom tidligere og nye kartlagte hindringer. Den nærmeste hindring
detekteringsalgoritmen klarte å detektere og fastsl̊a nærmeste hindring, men ytelsen ble
redusert i de dyphavs simulerte test scenarioene p̊a grunn av økt støyniv̊a og forskyvninger
i det estimerte kartet. I tillegg, viste resultatene at fordelene med å bruke kameraene i
full oppløsning var mindre enn i den lyssensitive modusen p̊a grunn av redusert estimer-
ingsfrekvens i ORB-SLAM2.

Denne oppgaven konkluderte med at bruken av VSLOK metoden ORB-SLAM2 i sanntids
FUAF VSLOK systemet viste at den lokale situasjonsbevistheten kunne bli økt ved å bruke
den estimerte posisjonen og kartet fra ORB-SLAM2, og at de kan bli brukt i utviklingen
av autonome egenskaper i FUAF’er slik som for eksempel den foresl̊atte nærmeste hin-
drings detekteringsalgoritmen. Bruken av den estimerte posisjonen til å øke den lokale
posisjoneringen, var ikke egnet p̊a grunn av den økende feilen og hoppene i de estimerte
posisjonene som følge av relokalisering og løkkelukking.
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Chapter 1

Introduction

1.1 Background

Harvesting resources from the ocean has always been vital for the human survival and de-
velopment. Many industries have through the ages been established from ocean resources,
ranging from fisheries to mineral extraction, by designing appropriate technologies for the
ocean environment. The growing human population raises the demand for new technolo-
gies to meet the challenges of utilizing the ocean resources more efficiently. In the existing
offshore hydrocarbon production industry, the lack of new easily accessible reservoirs has
driven the operations to deeper waters. The growing aquaculture industry with its focus
on fish welfare has a demand for underwater monitoring and maintenance. The emerging
offshore wind industry requires appropriate technology to handle the difficulties in the
accompanying subsea installations of the offshore windmills.

For many subsea applications, the Work Class Remotely Operated Vehicle (WC-ROV) is
an extensively used technology. The WC-ROV acts as an efficient extension for human
workers as it makes it possible to observe and intervene in the harsh and inhospitable
subsea environments. However, the WC-ROV has its limitations. The intervention capa-
bilities of the WC-ROV is heavily dependent on the operator’s experience and relies on a
surface vessel to operate from in order to execute its mission. Skilled WC-ROV operators
are costly to hire, and the day rates contributes to the high costs of missions where an
WC-ROV is used.

A possible solution to the operator requirements and the associated costs of operating an
WC-ROV, is to introduce autonomous capabilities to the WC-ROV. Autonomous features
such as obstacle avoidance, path planning and unsupervised mission execution, could make
the mission success be less dependent on the operator skill and remove the WC-ROV
dependability of a surface vessel.

Two important waypoints on the path to autonomous WC-ROVs are local situational
awareness and precise local position estimates of WC-ROVs. The situational awareness
and positioning of WC-ROVs are today mainly covered by underwater acoustic systems
or inertial navigation (also called dead-reckoning). Each of these methods have different
trade-offs in terms of accuracy, cost, and complexity. A promising new low-cost approach
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for increasing the local situation awareness and local position accuracy of WC-ROVs, could
be Simultaneous Localization and Mapping (SLAM). SLAM is the method of concurrently
estimating the position of you agent, or robot, and the environment that the robot is
sensing. SLAM methods uses a variety of sensors to make observations of the environment,
and in the branch of Visual SLAM (VSLAM), the utilized sensors are cameras. The
cameras are an attractive SLAM sensor due to their low cost and capability of obtaining
high amounts of data. Since most WC-ROVs have existing camera setups, either in mono
or stereo configuration, the benefits of using VSLAM for localization and mapping can be
exploited directly without any hardware modifications.

1.2 Motivation

The motivation for this Master’s thesis is to contribute in the development of the au-
tonomous capabilities of WC-ROVs by utilizing VSLAM, in order to increase the local sit-
uational awareness and local positioning accuracy of WC-ROVs. The local map produced
by VSLAM can be used to establish autonomous features such as obstacle avoidance, while
the accurate local positional estimates could prove vital in autonomous mission executions
in areas inherited by subsea infrastructure.

1.3 Objective and Scope

The goals in which this thesis was set to investigate was comprised into the following
objectives:

• Review necessary literature within the fields of underwater SLAM and VSLAM,
underwater imaging and camera calibration.

• Perform underwater camera calibration of the stereo camera rig of the WC-ROV
Minerva in the Marine Cybernetics Laboratory (MC-Lab).

• Propose a real-time VSLAM system for the WC-ROV Minerva based on the VSLAM
method ORB-SLAM2 and the stereo camera rig of Minerva. The real-time system
should account for underwater imaging effects, utilize the produced point cloud of
ORB-SLAM2 to conduct closest obstacle detection, and be capable of conveying the
closest detected obstacle to the existing Autonomy Framework of Minerva.

• Test the performance of the real-time WC-ROV VSLAM system in underwater ob-
stacle course experiments in MC-Lab, both under ideal and subsea simulated lighting
conditions.

• Evaluate the performance of the real-time WC-ROV VSLAM system by comparing
the position estimates with optical ground truth measurements, and the estimated
map and closest obstacle detection capability with ground truth measured underwa-
ter obstacle course.

• Verify the integration of the real-time WC-ROV VSLAM system with the Autonomy
Framework on Minerva.

Limitations In the master agreement presented in the beginning of this thesis, one
of the work objectives was to carry out field tests of the proposed real-time WC-ROV
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VSLAM system. Due to the Covid-19 situation occurring in the spring of 2020, the field
tests were not possible to conduct. It is worth noting that the expectations of conducting
field tests played a major part in the selected direction for the determined objectives.

1.4 Remotely Operated Underwater Vehicles

This section aims to give an introduction to ROVs, present the operational domain of
WC-ROVs, and present the WC-ROV Minerva. The content of this section has served as
the basis for many of the design choices of the WC-ROV VSLAM system.

Remotely Operated Undewater Vehicles (ROV) are a category of unmanned underwater
vehicles, and are characterized by being directly controlled by an operator through its
surface tethered umbilical. The umbilical allows for unlimited power supply and high
bandwidth data transmission between ROVs and the surface, but limits their spatial range.
Due to the ROVs being manually controlled, they standardly equipped with cameras, but
can also be euqipped with other surveying sensor such as sonars. Larger ROVs are often
equipped with manipulator arms making them capable of performing subsea intervention
missions and collect samples.

Figure 1.1: Categories of underwater vehicles. [1]

The common operation areas of ROVs are monitoring, intervention, mapping and sam-
pling. These operations vary depending on the operational depths and market segments
of the operators, and the classification of ROVs follows a similar structure. The different
ROV classes are defined in [1] as observation class, mid-sized, work class and special-use
vehicles.

• Observation Class: Ranges from the smallest ROVs up to ROV sizes of 100 kg.
Limited to depths of 300 m, and are generally DC-powered. They are most often
used for underwater inspections and typically hand launched with a hand tending
tether.

• Mid-sized: Weighs from 100 kg up to a 100 kg, and are generally deeper rated ver-
sion of the observation class with AC-power. They are mostly all electric, but with
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some hydraulic power for the operation of manipulators and small tooling package
options. Due to the weight, and launch and recovery system and a tether manage-
ment system is often needed.

• Work Class: Generally heavy electromechanical vehicles running on high-voltage
AC circuits. The delivered power is generally changed immediately to hydraulic
power for the vehicle locomotion, manipulation and tooling functions.

• Special-use Vehicles: These are ROVs not falling under the main categories due to
their non-swimming nature. In general crawling underwater vehicles, towed vehicles
or structurally compliant vehicles.

1.4.1 ROV Minerva

The ROV Minerva is an WC-ROV owned and operated by the Applied Underwater
Robotics Laboratory1 (AUR-Lab) at the Institute of Marine Technology, NTNU. The
application area of the Minerva is to access the seafloor for sampling and observation in
marine science, and conduct experiments in engineering research such as control systems
and autonomy [2].

Minerva weighs 2400 kg in air and has a depth rating down to 3000 m. It is rigged with
seven thrusters capable of controlling the vehicle in six degrees of freedom using its control
system developed at AUR-lab. The navigation sensors equipped on Minerva are an acous-
tic transponder for global positioning, an Inertial Measurement Unit (IMU) for inertial
measurements, and a Doppler Velocity Log for velocity measurements. The surveying sen-
sors are a stereo camera rig, a forward looking sonar and a video system. Minerva is also
rigged with a manipulator arm capable of collecting samples and perform interventions
tasks. Figure 1.2 shows Minerva being deployed from NTNU’s research vessel Gunnerus.

Figure 1.2: The deployment of the WC-ROV Minerva.

1https://www.ntnu.edu/aur-lab
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1.4.2 Operation Domain of WC-ROVs

The operation domain of WC-ROVs is characterized by performing interventions tasks,
surveying or sample collection down to below 3000 m. The subsea environment at these
depths introduces challenges to the visual data because of no ambient lighting and reduced
visibility due to turbidity in the water. The quality of the visual data is additionally
reduced due to scattering effects occurring due to the use of artificial illumination. The
expected visibility is hence often assumed to be from three to six meters.

Many WC-ROV missions are conducted at, or in the close proximity to, subsea installa-
tions. This introduces challenges of the WC-ROV unintentionally colliding with obstacle
damaging both the WC-ROV and the subsea installations. Due to installations being
placed carefully in planned areas, it can be assumed that the seabed is flat in the opera-
tional area of the WC-ROV.

1.5 ROV Minerva Autonomy Framework

This thesis was a part of a larger work on developing increased situational awareness and
autonomy for ROVs. The work comprised of at team of master student working on joining
our thesis works into a combined solution in an proposed Autonomy Framework to be
applied on the WC-ROV Minerva. The parts of the solution consisted of a mission planning
and management architecture, a path planner, a VSLAM based motion estimation system
and the obstacle detection of the proposed WC-ROV VSLAM system of this thesis. The
work was formulated in to the manuscript in Appendix A, and applied to the Oceans 20202

conference.

The integration of the Autonomy Framework on Minerva was based upon the Minerva con-
trol system developed by AUR-Lab since 2010. The control system was initially developed
for dynamical positioning and trajectory tracking [3], and is comprised of two modules: a
graphical user interface allowing high-level control and mode selection of missions, and a
low-level control system. The proposed Autonomy Framework was added to the graphical
user interface module.

2https://gulfcoast20.oceansconference.org/
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1.6 Literature Review of Underwater SLAM and VSLAM

This section presents the literature review on SLAM and VSLAM methods which was
essential in the decision of selecting the VSLAM method ORB-SLAM2 for the real-time
WC-ROV system.

Most of the literature describing the SLAM problem operates in land based environments.
This often in relations to localization of robots in Global Navigation Satellite System
(GNNS) suppressed buildings or for robot path planning and decision making. SLAM in
the underwater setting offers the same problems as in land based SLAM, but introduce
new limitation and challenges. These challenges are mostly related to the restrictions
on the sensors that are available for vehicles operating in subsea environments and the
reduced visibility when using VSLAM methods.

In Hidalgo and Bräunl [4], a review of different SLAM solutions applied in the underwater
domain based upon the major SLAM paradigms of Extended Kalman Filters (EKF),
Particle Filters (PF) and Graph-based SLAM is conducted. Most of the reviewed methods
were based on the EKF, and only two of the methods used a camera, or cameras, as the
primary sensory. The two camera based methods were both Graph-based. The sensor
setup of the reviewed methods varied depending on the given underwater environment.
For an structured environments the most common sensors were Mechanical Scanned Image
Sonars (MSIS), Forward-Look Sonars (FLS) and cameras. In unstructured environments,
e.g. seafloor application, usage of Side-Scan Sonars (SSS), FLS and cameras were the most
common.

The EKF based SLAM methods struggles with computational complexity and linearization
errors. This is especially a problem in the underwater domain where SLAM is applied in
a large-scale manner. There are some EKF methods that avert this problem by reducing
the global problem to a set of subproblems, and then joining the subproblems together
to a global solution, e.g. Aulinas et al. [5] and Burguera Burguera and Bonin-Font [6].
In Aulinas et al. [5], feature bounded independent local maps are built from features
extracted from SSS data. The global map is built from the constructed submaps by relating
them through loop closure mechanisms. In Burguera Burguera and Bonin-Font [6], a
similar approach is made, but instead of conjoining feature based maps, local trajectories
of relative motion are used to construct a global trajectory. Both the local and global
trajectories are estimated from matched visual image feature and altitude measurements
using Iterative Extended Kalman Filters (IEKF). The loop closure detector is based upon
finding loop candidates from image hashes.

Another method for reducing the computational complexity of the EKF is to utilize In-
formation Filtering Techniques. These methods takes advantage of the sparsity of the
inverse covariance matrix to reduce the complexity. The method described in Eustice et
al. [7] is based upon the Information Filter, and uses visual inputs together with inertial
measurements to estimate the location of an surveying ROV.

Due to the challenges of the EKF there has been in the recent years a great focus on
graph-based SLAM methods. Especially on VSLAM solutions, much due to their low-
cost and highly accurate and rich data acquisition capabilities. In Quattrini Li et al.
[8], a experimental comparison of the most used open-source VSLAM methods is done.
The comparisons are performed on a variety of different data sets including four data sets
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collected in underwater environments. The overall best performing method was the graph-
based monocular camera ORB-SLAM [9]. It, together with PTAM [10], performed best
on the underwater datasets. Much to to their robust nature of being in-direct methods.

In Carrasco, Bonin-Font, and Codina [11], a VSLAM method specifically made for AUVs
operating in shallow waters is proposed. The method is graph-based and takes visual
inputs from a set of stereo cameras. The method shows many similarities to ORB-SLAM,
and in its further extension in Negre, Bonin-Font, and Oliver [12], ORB-SLAM is com-
pared with the extended version. The extension in Negre, Bonin-Font, and Oliver [12]
further accompanies its shallow waters operational area by introducing a new loop de-
tection method. Loop closing is performed by grouping visual features from multiple
keyframes to create clusters of features, and matching is performed on the clusters instead
of keyframe features. In the comparison it performs better than ORB-SLAM, much do to
its increased capability to obtain loop-closures. The comparison is conducted in shallow
waters in an environment colonized by sea grass.

In the graph-based VSLAM method proposed in Kim and Eustice [13], the challenge of
loop detection is addressed by establishing a local and global metric of saliency for the
image frames registered by the camera. The proposed method is designed for underwater
ship inspection with an ROV where the obtained camera frames often are feature less.
The local metric focuses on the image saliency of the frame, linking only salient frames
to the graph. The global saliency metric focuses on the uniqueness of the current salient
frame, and is used for guiding the ROV to areas of high uniqueness to obtain large-scale
loop closure as well as detecting anomalies on the ship hull.

In Menna et al. [14], a preliminary accuracy assessment is performed on ORB-SLAM2
and a visual odometry approach proposed by the authors. The assessment was conducted
on an small observation class ROV moving in a straight line in a small feature-sparse
pool. The results showed promising, but further tests were recommended to be done. In
Weidner et al. [15] ORB-SLAM2 was tested in an underwater cave environment. The
test was motivated by the authors to compare their proposed underwater 3D mapping
algorithm in an underwater cave environment with variable light sources. ORB-SLAM2
showed promising result regards to tracking and mapping, but did not conduct any loop
closure due to the non looping image data set.

1.7 Contribution

The contribution of this thesis is the investigations of using VSLAM on WC-ROVs for in-
creased local situational awareness and local position accuracy. The contribution revolves
around utilizing the existing VSLAM method ORB-SLAM2 in a developed real-time WC-
ROV VSLAM system for the ROV Minerva. The thesis contribution can be summarized
as the following:

• A literature review mapping different SLAM and VSLAM approaches used in the
underwater domain.

• A proposed real-time WC-ROV VSLAM system using the framework Robot Oper-
ating System (ROS) composed of the following parts:

– The stereo camera rig of the WC-ROV Minerva.
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– An image processing part accounting for underwater imaging effects.

– The VSLAM method ORB-SLAM2.

– A closest obstacle detection algorithm based on point cloud clustering.

– A communication part conveying the closest detected obstacle position to the
Autonomy Framework of Minerva.

• The testing of the system in an underwater laboratory experiment, displaying promis-
ing closest obstacle detection capabilities, but struggling with accumulated drift in
the estimated positions and map.

• The manuscript in Appendix A of the joint master student work on the Autonomy
Framework of the WC-ROV Minerva applied to the Oceans 2020 conference.

1.8 Outline of Report

This thesis is divided into six chapters. The introduction in Chapter 1 presents the thesis
definition, the underwater SLAM and VSLAM literature review, and provides information
about ROVs, the WC-ROV Minerva and the joint master student work on the Autonomy
Framework of Minerva. In Chapter 2 the theory serving as the foundation in the develop-
ment of the WC-ROV VSLAM system is presented. The theory is within mono and stereo
camera geometry, VSLAM and ORB-SLAM2, underwater imaging, image processing and
point cloud processing. In the methods part of Chapter 3, the architecture and method-
ology for developing the WC-ROV VSLAM system is presented. Chapter 4 explains the
setup of the experiments testing the WC-ROV VSLAM system, while Chapter 5 presents
the results of the experiments. The discussion in Chapter 6 discusses the results from
the experiment and experiences made in the thesis work. Lastly, Chapter 7 presents the
thesis conclusion and recommendations for further work.
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Chapter 2

Theory

This chapter presents the theory serving as the foundations of the methods used in the
development of the real-time WC-ROV VSLAM system. Section 2.1 explains the geom-
etry of mono and stereo cameras, presents the features of stereo vision and gives a short
introduction to theory behind camera calibration. Section 2.2 introduces the concepts of
contrast enhancement using image histograms, feature detection, and descriptors in image
processing. Section 2.3 gives an introduction to SLAM, graph-based SLAM and VSLAM,
and gives an detailed explanation of the VSLAM method ORB-SLAM2. Section 2.4
describes the characteristics of the underwater imaging process. Lastly, in Section 2.5
Random Sampling Consensus (RANSAC), and an Euclidean based clustering method for
point cloud processing is presented.

2.1 Camera Geometry

This section introduces the pinhole camera model in digital imaging, the geometry of stereo
vision systems, and gives an short introduction to the theory behind camera calibration.

2.1.1 Pinhole Camera Model

A camera projects 3D world points onto a 2D image plane. The mathematical description
of this behavior can be achieved using the perspective camera model, or the pinhole camera
model. In the pinhole camera model illustrated in Figure 2.1, the light from a scene passes
through a tiny opening creating an inverted projection of the scene onto an image plane
placed behind the pinhole. The distance between the pinhole and the image plane is the
focal length f , and the inversion can be avoided by modeling the pinhole camera with a
virutal image plane placed at the distance f in front of the pinhole.

Pinhole

Image plane Virtual image plane

Figure 2.1: The pinhole camera model.
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In digital imaging, the pinhole camera model describes the correspondence between ob-
served 3D points in the world and the 2D pixels of the captured image. Figure 2.2
illustrates the three coordinate frames of the model: the world frame Fw, the camera
frame Fc and the image frame Fi. The Fw is an arbitrary selected reference frame, while
Fc has its origin at the camera projective center C with the Z-axis pointing forward. The
Fi spans the normalized image plane at z = 1 in Fc, where the principal point P is where
the Z-axis intersects the Fi.

Normalized image plane, z = 1

Figure 2.2: The world frame Fw, camera frame Fc and image frame Fi of the pinhole camera
mode. The red dotted line is the mapping of xc to u onto Fi.

The pinhole camera model in digital imaging consists of three parts each containing a
linear transformation:

• An extrinsic part covering the transformation from 3D coordinates in the world
frame to the camera frame.

• A perspective projection of 3D camera coordinates to 2D coordinates on the nor-
malized image plane.

• A camera specific intrinsic part covering the affine transformation of 2D coordinates
from the normalized image plane to the image plane.

Both the 3D and 2D points are represented by homogeneous coordinates using homoge-
neous matrices for the linear transformations.

Homogeneous Coordinates: A homogeneous coordinate vector x̃c = λ[x, y, z, 1]T ,
where x̃ = λx̃ for all non-zero scalars λ, can be constructed from a Cartesian coordinate
vector xc = [x, y, z]T with the mapping in Equation (2.1).

x =



x
y
z


 ∈ R3 7→ x̃ = x̆ =




x
y
z
1


 ∈ P3 (2.1)

The x̆ denotes the normalized homogeneous coordinate according to Euclidean normal-
ization, where x̃ is scaled such that its extra dimension is 1. The extra dimension of
the homogeneous coordinate allows for rigid-body transformations of coordinates to be
represented as a linear matrix multiplication [16].
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2.1.1.1 Camera Extrinsic

The extrinsic part of the pinhole camera model describes the relative pose between Fw
and Fc. The relation is expressed by the homogeneous transformation matrix Tab in
Equation (2.2) called the pose matrix.

Tab =

[
Rab taab
0> 1

]
∈ SE(3) (2.2)

The pose matrix contains a rotation matrix Rab ∈ SO(3) describing the orientation of a
frame Fb relative to a frame Fa, and a translation vector taab ∈ R3 given in Fa giving the
position of Fb relative to Fa. The homogeneous coordinate position of x̃w in Fw can hence
be transformed into the homogenous coordinate position x̃c in Fc using the pose matrix
Tcw

x̃c = Tcwx̃w (2.3)

2.1.1.2 3D to 2D Projection

The 3D to 2D projection of the pinhole camera model describes the transformation from
a coordinate xc = (xc, yc, zc) in Fc to a coordinate xn = (xn, yn) in the normalized
image plane. By using similar triangles in Figure 2.3, the transformation is described by
Equation (2.4).

xn =
1

zc

[
xc

yc

]
(2.4)

In homogeneous coordinates, the transformation in Equation (2.4) can be represented by
the standard perspective projection matrix Π0 in Equation (2.5), where x̃n is the homoge-
neous representation of the 2D point in the frame of the normalized plane, and x̃c is the
homogeneous representation of xc.

x̃n = Π0x̃
c, Π0 =




1 0 0 0
0 1 0 0
0 0 1 0


 ∈ R3×4 (2.5)

Figure 2.3: The relation vn = 1 · yc

zc between the camera point xc and the point xn in the
normalized image plane using similar triangles.

11



Chapter 2. Theory

2.1.1.3 Camera Intrinsics

The intrinsic part of the pinhole camera model describes the affine transformation from
2D coordinates in the normalized image plane to 2D pixel coordinates in the image frame
Fi. The transformation is described by the homogeneous transformation given in Equa-
tion (2.6) where ũ is the 2D pixel coordinates in Fi, K is the intrinsic camera matrix and
x̃n is the 2D coordinates in the normalized image plane

ũ = Kx̃n, K =



fu sθ cu
0 fv cv
0 0 1


 ∈ R3×3 (2.6)

The intrinsic matrix K, often called the calibration matrix, is camera specific. The ele-
ments of K gives the relationship between the pixels in Fi and the coordinate positions
in the normalized plane. The elements have the following meaning:

• fu and fv is the size of unit length in horizontal and vertical pixels. They can be
expressed as fu = fsu and fv = fsv where f is the camera focal length in metric
unit and su and sv are is the scaling factor giving the pixel density.

• cu and cv is the u- and v-coordinate of the principle point P in pixels.

• sθ is the skew of the pixel, most often close to zero.

The complete homogeneous projection of a world point x̃w given in Fw to the pixel coor-
dinate ũ in Fi using the intrinsic matrix K, the standard projection matrix π0 and the
pose matrix Tcw is given by

ũ = KΠ0Tcwx̃w (2.7)

2.1.1.4 Projection Function

The projection function πp in Equation (2.8) gives the Euclidean point projection of a
world point xw to the pixel coordinate u in the image frame Fi. It is equivalent to
the homogeneous projection of Equation (2.7), using Rcw and tccw of the pose matrix in
Section 2.1.1.1 to transform xw to xc.

u = πp
(
Tcw, xw

)
=

[
fu

xc

zc + cu
fv

yc

zc + cv

]

[
xc yc zc

]T
= Rcwxw + tccw

(2.8)

2.1.1.5 Field of View

The field of view (FOV) of a camera express how wide the viewing angle of a camera is,
i.e how much of a scene a camera can observe. For square image sensors, it is expressed
by the FOV angle θ and can be calculated using the camera focal length f and the sensor
length l. Depending on definition, the sensor length l could be the image sensor diagonal,
its horizontal length, or vertical length. Equation (2.9) solves the trigonometric problem
giving the camera field of view θ.

θ = arctan
l/2

f
(2.9)
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2.1.1.6 Lens Distortion

Distortion in the pinhole camera model is the deviation of the straight 3D line assumption
from the camera point xc in Fc to the pixel points u in Fi. Distortion is caused by the
presence of the camera lens and is in the descentering model of Brown [17] separated into
radial - and tangential distortion.

Radial Distortion: Radial distortion cause pixel points in the image frame to appear
closer or further away in the radial direction of the principle point P . Positive radial
distortion cause a barreling effect on the image, while negative radial distortion causes a
pincushioning effect, see Figure 2.4. The radial distortion is caused by the radial change
in thickness of the camera lens causing different bending angles of the light rays in the
radial direction from P due to refraction. See Section 2.4.2 for refraction.

(a) No distortion (b) Positive radial distortion (c) Negative radial distortion

Figure 2.4: The radial distortion effect.

Tangential Distortion: Tangential distortion is caused by misalignment of the image
sensor and camera lens, illustrated in Figure 2.5. Correction for tangential distortion will
manifest itself as a tilting of the image plane.

LensImage sensor

Light reys

Figure 2.5: Unaligned image sensor and lens.

Both radial and tangential distortion are non-linear effects and can be modeled by a
polynomial correcting the position of the image pixel points. In the descentering model,
Equation (2.10) is used for the correction where ud = (ud, vd) is the distorted pixel coor-
dinates, uu = (uu, vu) is the undistorted pixel coordinates, k1, k2 and k3 are the radial
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distortion coefficients, and p1 and p2 are the tangential distortion coefficients.

ud =uu(1 + k1r
2 + k2r

4 + k3r
6) + 2p1udvd + p2(r2 + 2u2

d)

vd =vu(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2v2

d) + 2p2udvd
(2.10)

The coefficients of Equation (2.10) can be obtained for a given camera by camera cali-
bration. See Section 2.1.4. The distortion coefficients when obtained can then be used to
remove the lens distortion of an image by applying the inverse mapping of Equation (2.10).

2.1.2 Stereo Vision

In stereo vision, 3D information is extracted from a scene by comparing pairwise images
from two different viewpoints. The depth of the scene is inferred by comparing the relative
positions of objects in the pairwise images. For point features this procedure is referred
to as point triangulation and is best described using epipolar geometry.

Figure 2.6: The epipolar geometry of two cameras observing the world point xw.The projected
points uL and uR are contained in the left and right red dotted epipolar lines.

2.1.2.1 Epipolar Geometry and Point Triangulation

Epipolar geometry describes the constraints image views of the same scenes poses on
to themselves. In Figure 2.6 two cameras with both known K and T are observing a
world point x̃w. The projections of x̃w in the image views are denoted ũL and ũR. The
projections of each optical centre in the other camera’s image plane are called the epipoles
and are denoted ẽLt and ẽR. The epipolar lines are the red dotted lines intersecting
(ẽR, ũR) and (ẽL, ũL). These are the 2D projections of the virtual backprojected 3D lines
of ũL and ũR in the opposite image planes.

Epipolar constraint: The epipolar constraint states that projection of x̃w on the
left and right camera image view, ũL and ũR, must be contained on the epipolar lines
intersecting (ẽL, ũL) and (ẽR, ũR) respectively.

Hence, if both image points ũL and ũR are known, the world point x̃w can be triangulated
using both the camera’s K and T. The reader is referred to Hartley and Zisserman [18]
for a detailed description of point triangulation in multiple view geometry.
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2.1.2.2 Image Rectification

Image rectification is the procedure of applying projective transformations on a set of
images such that the images appear on a common image plane. It can be applied to pairs
of stereo images in order to obtain the assumption of a fronto parallel stereo camera.
The assumption gives the two properties: the epipolar lines are parallel to he horizontal
axis, the corresponding image points have the identical vertical coordinate [19].The two
properties are often utilized in stereo vision as searches for descriptor matches is only
necessary along the horizontal pixel lines of the image. See Section 2.2 for descriptors.

Figure 2.7 depicts the stereo camera of Figure 2.6 where image rectification has been
applied with the two mappings

ũrecL = HLũL, HL ∈ R3×3

ũrecR = HRũR, HR ∈ R3×3
(2.11)

on every homogeneous pixel coordinate of the left an right image view using the projection
transformation matrices HL and HR. The frames FiL and FiR of the left and right image
views in Figure 2.6, are transformed into the rectified frames FreciL

and FreciR
of Figure 2.7

residing in a common image plane such that the fronto parallel assumption holds. The
projection transformation matrices HL and HR can be determined from the known relative
orientation RLR and translation tRRL of the cameras. The reader is advised to Fusiello,
Trucco, and Verri [20] for detailed description about this methodology.

Figure 2.7: The rectified image frames Frec
iL

and Frec
iR

transformed from the image frames FiL

and FiR of Figure 1.4. The red dotted epipolar line of ũrec
L and ũrec

R is parallel to the horizontal
axises of the rectified image frames.

2.1.3 Range of Depth and Disparity

The range of depth of a fronto-parallel stereo vision system is the minimum and maximum
depth that can be perceived for given stereo vision system’s range of disparity values. The
disparity is the horizontal pixel difference d = uL−uR of two left and right image points uL

and uR matched to the world point xw. The minimum disparity value is usually a single
pixel, while the maximum is the width of the stereo image resolution. The equation used
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to determine the range of depth can be obtained from the geometry of a stereo vision setup
observing a scene with a world point xw. Figure 2.8 depicts two fronto-parallel cameras
represented by the image frames FiL and FiR where the baseline b is the horizontal distance
between them. From the two pairs of similar triangles T1/T3, and T2/T4, the world point
depth zw can be expressed by Equation (2.12)

zw = f
b

d
(2.12)

where f is the focal length, d is the disparity and b is the baseline. Hence the ability of
a stereo system differentiating depth is affected by f and b. The focal length is usually
fixed, thus the stereo visions range of depth can be altered by adjusting b.

Figure 2.8: The image frames FiL and FiR of two fronto-parallel cameras and their geometry
described by similar triangles T1/T3, and T2/T4.

2.1.3.1 Stereo Projection Function

The stereo projection function is a function that describes the Euclidean point projection
of world point xw to a pixel coordinate u in a fronto-parallel stereo vision setup. By
assuming the stereo cameras being fronto-parallel, Equation (2.12) can be utilized to gain
an additional constraint in the the single camera projection function of Equation (2.8).
The additional constraint gives an extra equation to the projection, thus making the scale
of the projected point observable. The equation containing the extra constraint is obtained
by inserting d = uL − uR in Equation (2.12) and solving for uR, resulting in the stereo
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projection function πs in Equation (2.13).

us =



ucL
vcL
ucR


 = πs

(
Tcw, xw

)
=



fu

xc

zc + cu
fv

yc

zc + cv
fu

xc−b
zc + cu




[
xc yc zc

]T
= Rcwxw + tccw

(2.13)

2.1.4 Camera calibration

Camera calibration is the procedure of estimating the intrinsic parameters and the dis-
tortion coefficients of an camera. It can be extended to stereo camera calibration, where
the extrinsic parameters of two cameras are additionally determined. There are a variety
of techniques used in camera calibration ranging from using 3D calibration objects Wei
and Ma [21], to self-calibration methods based on taking images by moving the camera in
static scene Maybank and Faugeras [22].

A common and renowned method for camera calibration is Zhang’s methods given in Zhang
[19]. The method is based upon using projective transformations to establish constraints
used in a non-linear minimization problem for estimating the camera parameters. The
projective transformations are described by Equation (2.14), where ũ is an image point,
xw is a world point, r1 and r2 are the first and second columns of the rotation matrix R,
t is the translation vector, and K is the camera intrinsic matrix.

ũ = Hxw, H = K [r1 r2 t] (2.14)

The established projective transformations describes the transformation of an known plane
with different orientations in a given set of images. The plane is typically a rigid board
printed with checker board pattern of known dimensions, and the image set is collected
by capturing images of the plane in different orientations. The resulting non-linear mini-
mization problem of Zhang’s method is presented in Equation (2.15),

n∑

i=1

m∑

j=1

∥∥uij − ŭ
(
K, k1, k2,Ri, ti,x

w
j

)∥∥2
(2.15)

where ŭ(K, k1, k2,Ri, ti,x
w
j ) is the projection of a point xwj in an image i according to

the established projective transformation for image i in Equation (2.14) followed by a
distortion correction using k1 and k2. To obtain the resulting non-linear minimization
problem, a series of steps is performed including the distortion correction. The reader is
referred to Zhang [19] for details about these steps.

Due to the use of projective transformations, Zhang’s method has a pitfall. The establish-
ment of the projective transformation constraints is based upon properties of the rotation
matrix. If two consecutive images has the same rotation matrix, they will not provide
any additional constraint. Hence, if the plane undergoes pure translations, the second
of the two consecutive images will not contribute to the calibration problem [19]. Pure
translations is thus unwanted while conduction camera calibration according to Zhang’s
method.
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2.2 Image Processing

This section presents the image contrast enhancing techniques of histogram equalization
and contrast limited adaptive histogram equalization, and explains the concepts of feature
detectors and descriptors.

2.2.0.1 Histogram Equalization

Histogram equalization is a method of increasing the contrast of an image by adjusting
the image’s grayscale values based on its image histogram. In an image histogram, the
grayscale pixel intensities are along the x-axis, while the y-axis is the number of pixels. The
pixel intensities of an image is often centered around the intensity mean, and the concept
of histogram equalization is to evenly distribute these pixel intensities over the whole
intensity range of the image. The intensity range of an image depends on the pixel format,
and for grayscale images where each pixel consists of a byte, it consists of 256 graylevels.
By having the intensities spread in the histogram, the contrast of the image is enhanced
thus highlighting the information contained in the image. The histogram equalization of
an image is shown in Figure 2.9b, with corresponding histogram in Figure 2.10b.

2.2.0.2 Contrast Limited Adaptive Histogram Equalization

On images where the pixel intensities are not centered around a mean, i.e images where
the different areas of the images are either dark or bright, ordinary histogram equalization
would not prove the necessary local contrast enhancing. The Contrast Limited Adaptive
Histogram Equalization (CLAHE) [23] is an extended version of histogram equalization
coping with the problem of local contrast enhancing by dividing the images into local
regions and perform local histogram equalization in the divided regions. An issue with local
contrast enhancing is that noise in homogeneous regions of the image will be overamplified.
The CLAHE solves this by limiting the amplification by redistributing the intensity values
of the histogram from above a specific given intensities value. This intensities value limit
is called the clip limit, as it clips the height of the histogram, and uniformly allocates
the clipped intensities values along the whole histogram [23]. Homogeneous regions of the
image is shown as peak in the histogram, and thus by clipping these peaks, the effect of
intensity increasing these peaks is reduced. Figure 2.9c shows the contrast enhancing of
an image with containing both dark and bright regions using histogram equalization and
CLAHE, Figure 2.10c shows the corresponding histograms.

(a) Unprocessed (b) Histogram equalization (c) CLAHE

Figure 2.9: The contrast enhancing of an image with uneven brightness.
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Figure 2.10: The histograms of the images in Figure 2.9

2.2.1 Feature Detection and Descriptors

In image processing, feature detection is the method of locating the image pixel coordinates
related areas of interest in an image. Descriptors are encodings applied to the detected
image features in order to differentiate the detected features. Feature detection could
be based on larger regions such as edges, or a specific interest points given by a single
pixel coordinate such as corner points. Figure 2.11 show an image with it’s detected
corners points using harris corner detection [24]. Descriptors applied to corner points
often selects a surrounding patch of a pixel width and height around the detected corner,
and performs calculations on this patch in order to obtain an encoding of the corner point.
The calculated encodings can be used to compare the corner point descriptors of different
images observing the same scene, in order to match features across images.

Figure 2.11: Harris corner detection applied to an image.

ORB Features

Oriented FAST and Rotated BRIEF (ORB) [25], is an efficient combined feature detector
and descriptor. It is built upon the keypoint detector Features from Accelerated and
Segmented Test (FAST) [26], and the descriptor (Binary Robust Independent Elementary
Feature) [27]. In ORB, modifications are added to the FAST and BRIEF in order to make
the features scale and rotation invariant. ORB is made partly scale invariant by using
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a multiscale image pyramid. The multiscale image pyramid is an image representation
consisting of sequence of image scaled down in resolution from the original image. By
detecting features on each level, ORB is detecting features on different scales. The rotation
invarians is made by calculating the feature orientation based upon the change in intensities
within the feature.
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2.3 Simultaneous Localization and Mapping

This section presents the problem definition of Simultaneous Localization and Mapping
(SLAM), explains the branch of graph-based SLAM, introduces Visual SLAM (VSLAM),
and gives an extensive description of the VSLAM method ORB-SLAM2.

2.3.1 The SLAM Problem Definition

SLAM consists of the simultaneous estimation of a robot’s state and the construction of
a model of the environment, the map, that the sensors of the the robot are perceiving
[28]. The SLAM problem can be formulated in two ways; the full SLAM problem or the
online SLAM problem [29]. The mathematical formulation of the full SLAM problem can
be expressed as the joint posterior probability in Equation (2.16).

p(XT ,m|ZT ,UT ) (2.16)

In Equation (2.16), the objective is to estimate the sequence of robot locations XT and a
model of the world m from all of the available data. The available data is the sequence
of odometry measurements UT and sensor measurements ZT perceived by the robot. The
online SLAM formulation expressed in Equation (2.17) differs from full SLAM as it only
seeks to recover the current robot location xt instead of the entire path.

p(xt,m|ZT ,UT ) (2.17)

There is a variety of different methods proposed for solving the SLAM problem. Most of
these methods are derived from the three major paradigms of SLAM: Extended Kalman
Filter (EKF), Particle Filter (PF) and graph-based [29]. The two first, EKF SLAM
and PF SLAM, are regarded as filtering methods as they seek to solve the online SLAM
formulation in Equation (2.17), while graph-based methods in Equation (2.16) solve the
full SLAM problem.

This thesis will consider the graph-based VSLAM method ORB-SLAM2. The following
subsections will thus present the basics of graph-based SLAM and VSLAM.

2.3.2 Graph-Based SLAM

Graph-based SLAM uses graphs to describe the sensory constraints of a robot exploring
the world. The observed landmarks L and robot locations XT can be thought of as the
nodes in a graph, while the constraints between the robot locations and landmarks are
the graph edges. These are connecting every consecutive pair of locations xt−1,xt, and
between landmarks li and locations xt given that the robot sensed the landmark i at time
t.

A simple graph from a robot exploring is illustrated in Figure 2.12. The graph was
constructed by adding nodes for each new robot location and measured landmark. The
edges were connected between the current and previous locations, and the current location
and new sensor measurements.
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x1 x2 x3

l1 l2

Figure 2.12: A simple graph-based SLAM formulation. A robot at the three separate locations
x1, x2 and x3 are observing the two landmarks l1 and l2.

Due to the inherent uncertainty of the odometry and sensory measurements, the graph
edges act as soft constraints between the nodes of the graph. It allows for the graph-
based SLAM problem to be formulated as an non-linear optimization problem. The key
to graph based SLAM is that while the graph increases in size during exploration, it will
remain sparse due to the limited number of constraints between each node. The number
of constraints is at worst linear in the time elapsed and in the number of nodes in the
graph [29]. The sparsity makes graph-based SLAM applicable for efficiently solving the
full SLAM formulation through non-linear optimization.

Maximum A Posteriori Estimate

The full SLAM formulation defined in Equation (2.16) can for graph-based SLAM be
solved using the maximum a posteriori (MAP) estimate in Equation (2.18) [30].

XT
∗,L∗ = arg max

XT,L
p(XT ,L|ZT ,UT ) (2.18)

In Equation (2.18), xi ∈ XT are the robot poses, lk ∈ L are the landmark locations, ui ∈
UT are the odometry measurements, and zj ∈ Z are the measurements of the landmark
features. The MAP estimate seeks to find the set of robot poses and landmark locations
that maximizes the posterior density for the given odometry and landmark measurements.

Assuming measurement models with additive Gaussian noise [30], the optimization of
Equation (2.18) leads to the following nonlinear least-squares problem:

XT
∗,L∗ = arg max

XT,L
p(XT ,L|ZT ,UT )

= arg min
XT,L

−logp(XT ,L|ZT ,UT )

= argmin
XT,L

[∑

i

‖xi − fi (xi−1,ui−1)‖2Σi
w

+
∑

j

∥∥zj − hj
(
xij , lkj

)∥∥2

Σj
i

] (2.19)

where fi and hj are the odometry and sensory measurement models with zero-mean ad-
ditive Gaussian noise with covariances Σi

w and Σi
v. By defining ‖e‖2Σ = eTΣ−1e and lin-

earizing about the current estimate, Equation (2.19) converts into the linear least-squares
form for the state update vector solved with the normal equations in Equations (2.20)
and (2.21)

arg min
∆Θ

‖A∆Θ− b‖2 (2.20)

∆θ =
(
A>A

)−1
A>b (2.21)
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The vector Θ consists of the robot location and landmarks, A is the stacked whitened
measurement Jacobian, and b is the corresponding residual vector. The non-linear problem
can solved by iteratively re-linearizing and solving until the solution converges. Common
methods for this are the Gauss-Newton or Levenberg Marquadt algorithms.

2.3.3 Visual SLAM

In Visual SLAM (VSLAM) the sequence of odometry and landmark measurements, UT

and ZT are obtained from the visual input from either monocular, stereo or RGB-D (Red,
Blue, Green, Depth) camera. The state of the robot is represented by its pose Tcw, as
shown in Equation (2.2) which is the position and orientation of the given robot relative
to a reference frame. The model constructed from the environment, or the landmarks
L, depends on the selected VSLAM approach, where dense methods reconstructs the
environments through the estimated depth while sparse methods uses point locations of
observed landmarks.

When solving the full SLAM problem in VSLAM, it is common to separate the VSLAM
system into two main components: the front end and the back end [28].

• Front end: The front end extracts relevant data from the raw measurements pro-
vided by the cameras, performs data association between measurements and the
map, building the optimization problem.

• Back end: The back end performs inference on the data provided by the front end,
solving the optimization problem over the robot poses and measurement.

The data association in the front end consists mainly of the task of detecting and match
features from the observed camera frame, and perform data recognition to invoke loop-
closure when places are being revisited.

The back end depends on the formulation of the nonlinear optimization problem. In VS-
LAM are it is either formulated as a direct or in-direct. The direct formulation seeks to
minimize the photometric error, while the in-direct method seeks to minimize the geomet-
ric error formulated through the either the projection function defined Equation (2.8), or
the stereo projection function defined in Equation (2.13). Minimizing the geometric error
is often referred to as Bundle Adjustment.

Bundle Adjustment

Bundle Adjustment (BA) is the problem of refining a visual reconstruction in order to
obtain a jointly optimal 3D structure and viewing parameter estimates [31]. The viewing
parameters could either be the camera poses, calibration parameters or both.

In SLAM, the interest is to optimize the 3D world points xwj ∈ R3 and camera poses
Tiw ∈ SE(3) (see Section 2.1.1.1) with regards to the world frame Fw. BA does this
by minimizing the reprojection error with respect to matched image points ui,j ∈ R2

of separate images of the visual data set. The reprojection error of an observation of a
map point j in an image frame i is the difference in its measured and predicted the pixel
position given in Equation (2.22).

ei,j = ui,j − πi(Tiw,x
w
j ) (2.22)
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The projection function πi projecting map points to a given image frame i, could either be
defined for a monocular or stereo camera using the mono or stereo projection function in
Equation (2.8) or Equation (2.13). The cost function minimized in bundle adjustment is
given in Equation (2.23), where ρh is the Huber robust cost function and Ωi,j = σ2

i,jI2×2.

C =
∑

i,j

ρh

(
eTi,jΩ

−1
i,j ei,j

)
(2.23)

BA can be performed in different variations depending on the image frames and map
points involved. Some of these variations are the following:

• Motion Only Bundle Adjustment: The camera pose, or poses, are optimized
based upon the observed map points.

• Local Bundle Adjustment: A local window of image frames and map points are
optimized

• Full Bundle Adjustment: All image frames and map points are optimized.

2.3.4 ORB-SLAM2

ORB-SLAM2 is a VSLAM system for monocular, stereo or RGB-D cameras [32]. It is a
real-time VSLAM method capable of map reuse, loop closing, and relocalization. It is an
sparse in-direct based methods with a BA based back end optimizing the camera poses
and map points. The design is based upon its monocular predecessor, ORB-SLAM, where
most of the architecture and theory is still used. The following theory section is based
upon the theory described in the ORB-SLAM [9] and ORB-SLAM2 [32] papers.

2.3.4.1 System Overview

In this section, the key concepts of ORB-SLAM2 according to Figure 2.13 are explained.

Parallel Threads: ORB-SLAM2 runs in three parallel threads with each of its specific
objective:

1. Tracking Thread: The tracking thread ensures to localize the camera on every
incoming frame, and decides when to expand the map by adding keyframes.

2. Local Mapping Thread: The local mapping thread manages the local map of
keyframes by optimizing the map points using local BA.

3. Loop Closing Thread: The loop closing thread corrects for accumulated drift by
detecting loops and perform pose-graph optimization. This thread also launches a
fourth thread executing full BA to obtain the structure and motion solution.

The parallel threads will in more detail be separately explained in Sections 2.3.4.2 to 2.3.4.4
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Figure 2.13: The system structure of ORB-SLAM2. Left: Three parallel threads, tracking, local
mapping and loop-closing. Right: the input preprocessing. Courtesy of [32]

Orb Features: ORB-SLAM uses ORB features for tracking, mapping and place recog-
nition tasks, see Section 2.2.1. They are fast to extract and match allowing for real time
operation and have good precision in bag of word place recognition

Keypoints: Keypoints are the detected features of an image where feature detection has
been applied. In the mono camera configuration of ORB-SLAM2, keypoints are extracted
as ORB features from every single incoming frame. In the stereo configuration however,
the keypoints are extracted from two incoming frames and the keypoints are distinguished
by being either monocular or stereo keypoints. See Figure 2.13.

• Stereo keypoints: Stereo keypoints are defined by three coordinates xs = (uL, vL, uR),
where (uL, vL) are the coordinates of the left image and uR are the horizontal coor-
dinate of the right image. ORB features are extracted from each image, and every
left ORB is searched for match in the right image. The searching is made efficient
by the epipolar constraint assuming fronto-parallel cameras. A stereo keypoints is
classified as close if its associated depth is less than 40 times the stereo baseline.
It is classified as far if above. Close keypoints can safely be triangulated from one
frame as depth is accurately estimated. The triangulation provides scale, translation
and rotation information. Far keypoints provide strong rotational information, but
weaker scale and translation. These are only triangulated if supported by multiple
views.

• Monocular keypoints: Monocular keypoints are defined by two coordinates xm =
(uL, vL) on the left image, and corresponds to all the ORB features for which a stereo
match could not be found. These keypoints are triangulated from multiple views,
and do not contain any information about scale.

Map points and Keyframes: The map points and keyframes are the building blocks
of the optimization problems of the parallel threads and consists of the following:

Map Points, pi store the following:

1. Its 3D position xwi in the world coordinate system.
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2. The viewing direction ni, which is the mean unit vector of all its viewing direction.

3. A representative ORB descriptor Di.

4. The maximum and dmax and minimum dmin distances at which the point can be
observed according to the scale invariance limits of the ORB features.

Keyframes, Ki stores the following:

1. The camera pose Tiw relative the world coordinate system.

2. The camera intrinsic matrix K.

3. All the ORB features extracted in the frame, either associated with a map point or
not.

In ORB-SLAM2, the map points and keyframes are generated generously with a focus
on rather removing redundant keyframes, wrongly matched or non-traceable map points
afterwards. It allows for flexible map expansion by bounding the map size during revisiting
of previously explored areas.

Covisibilty Graph: The covisibility graph links the camera keyframes together by their
common observed map points. It is an undirected weighted graph, where the nodes are
keyframes and the edges are set between keyframes sharing observations of the same map
points. The weight, θ, of the edge is the number of common map points. Which for the
covisibilty graph is minimum 15.

Essential Graph: The essential graph is a reduced version of covisibility graph. It
retains all the keyframes of the covisibility graph, but has fewer edges. The edges of the
essential graph are the subset of edges from the covisibility graph with high covisibility,
θmin = 100, the loop closure edges and the edges of the spanning tree. The spanning tree
is a subgraph of covisibility graph having minimal edges. It is built incrementally from the
initial keyframe by whenever a new keyframe is inserted, it is connected in the spanning
tree with the keyframe that it shares the most observed map points.

Bag of Words Place Recognition: The embedded bag of words place recognition
module of ORB-SLAM2 is based upon DBoW2 [33]. The bag of words is a technique
that uses a visual vocabulary to convert an image into a sparse numerical vector. It
allows management of big sets of images, and are in ORB-SLAM2 used to perform loop
detection and relocalization. The visual vocabulary is created offline by discretizing the
ORB descriptors from a large data set into visual words. The vocabulary is then used
online by incrementally building an database that contains an invert index, which stores for
each visual word in the vocabulary, in which keyframe it has been observed. The database
also accounts for overlapping keyframes and keyframes being deleted. Additionally, the
vocabulary is used to speed up the brute force matching in the triangulation of new points
by requiring the ORB features to be matched to belong on the same node in the vocabulary
tree at a certain level. (2 out of 6).

Map Initalization: The map initalization depends whether ORB-SLAM2 is configured
as monocular, stereo or RGB-D.

• Monocular: The depth for a monocular configuration can not be determined from a
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single frame. The map initialization for the monocular case therefor uses a structure
from motion approach, computing two parallel geometrical model accounting for
initialization either in a planar or general scene.

• Stereo and RGB-D: With stereo and RGB-D configuration, the depth is known
for every frame. The map is then initialized in the first frame.

2.3.4.2 Tracking Thread

This section gives an outline of the steps of the tracking thread in Figure 2.13. The
tracking steps are performed on every received frame.

ORB Extraction: On the each incoming frame, or stereo image pair, a pre-selected
number of FAST corners are extracted. The number of extracted FAST corners should
vary with the image resolution, where images of higher resolution requires a higher number.
The FAST corners are extracted on a multiscale pyramid representation of the images,
where the default number of levels are eight with a default scaling factor of 1.2. In order
to ensure a homogeneous distribution of features, on each scale level the image is divided
into a grid where at least a pre-set number of corners is tried extracted from each cell. The
amount of required corners extracted from each cell is adapted if no corners are retained.
The orientation and ORB descriptor are computed on the retained FAST corners.

Initial Pose Estimation: The initial pose estimation depends whether the tracking was
successful for the last frame or not.

• Successful tracking: If the tracking was successful, a constant velocity model is
used to predict the camera pose such that a guided search for map points observed in
the last frame can be done. If the number of matches found is not sufficient, a wider
search is then conducted. With the found correspondences, the pose is optimized
using motion-only BA.

• Lost Tracking: If the tracking is lost, a search for candidate keyframes in the bag
of words database will be conducted to try obtain global relocalization. Correspon-
dences with ORB associated with map points are in each keyframe computed. If
a camera pose with enough inliers is found, the pose is optimized and the tracking
continues.

Track Local Map: With the initial estimated pose and the initial set of feature matches,
the map is projected into the frame, and more map point correspondences are searched for.
The complexity is bounded by not projecting the whole map, but only a local map. The
local map contains the set of keyframes K1, which share map points of the current frame,
and a set K2 with neighbors to the keyframes K1 in the covisibility graph. A reference
keyframe, Kref ∈ K1, that shares most map points with the current frame is also defined.
Each map point seen in K1 and K2 are then searched in the current frame according to
Algorithm 1. When the searching procedure is complete, the camera pose is optimized
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again using the map points found in the frame.

Algorithm 1: Searching procedure for finding common map points in the current
frame, K1 and K2

1. Project the map points x in the current frame. Discard if outside of image bounds.
2. Calculate the angle between the current viewing ray v and the map point mean
viewing direction n. Discard if v · n < cos(60°).

3. Calculate the distance d from map point to camera center. Discard if it is out of
the scale invariance region of the map point d /∈ [dmin, dmax].

4. Calculated the scale in the frame by the ratio d/dmin.
5. Compare the representative descriptor D of the map point with the still
unmatched ORB features in the frame, near x, at the predicted scale, and associate
the map point with the best match.

New Keyframe Decision: The last step of the tracking thread is to decided whether
the current frame should be delivered as a new keyframe in the local map. The general
idea is that keyframes will be inserted as fast as possible to provide robustness, and the
culling mechanism in the local mapping thread will remove redundant keyframes later on.
The following conditions must be met for a keyframe to be inserted:

1. More than 20 frames must have passed since the last global relocalization.

2. Local mapping is idle, or more than 20 frames have passed from last 20 keyframe
insertion.

3. Current keyframe tracks at least 50 points.

4. Current frame tracks less than 90% points than Kref

If a keyframe is inserted while the local mapping is busy, the local BA is stopped to further
process with the new keyframe.

Stero Camera Keyframe Decision: Due to the distinction between close and far
points in stereo cameras, an additional constraint is made for keyframe insertion for stereo
cameras. It is important to have sufficient amount of close points to accurately estimate
translation. If the number of tracked close points drops below τt and the frame can create
at least τc new close stereo points, the system will insert a new keyframe.

2.3.4.3 Local Mapping Thread

The following subsection describes the steps done for every newly inserted keyframe Ki

performed in the local mapping thread of Figure 2.13.

Keyframe Insertion: A new node is added to the covisibility graph for the keyframe
Ki, the edges of the graph are updated corresponding to the shared map points of Ki with
other keyframes. The spanning tree are then updated by linking Ki with the keyframe
with most common map points, and the bag of words representation of Ki are computed.

Recent Map Points Culling: Map points, after the first three keyframes of being
created, must pass a restrictive test that ensures that they are trackable. A point must
fulfill the conditions:
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1. The tracking must find the point in more than 25% of the frames in which it is
predicted to be visible.

2. If more than one keyframe have passed from map point creation, it must be observed
from at least three keyframes.

After a point passes this test, it can only be removed if it is observed from less then three
keyframes. This can happen when keyframes are culled or when local BA discards outlier
observations.

New Map Point Creation: New map points are created by triangulating ORB features
from connected keyframes Kc in the covisibility graph. For each unmatched ORB feature
in Ki, matches are searched for in other unmatched points from other keyframes. This
matching is sped up by using bag of words, as explained in Section 2.3.4.1, and points not
fulfilling the epipolar constraint are discarded. ORB feature pairs are triangulated, and
new points are accepted after checking positive depth in both cameras, parallax, reprojec-
tion error, and scale consistency. The new points could also possibly be observed from more
keyframes, and are therefore projected into connected keyframes and correspondences are
searched for according to Section 2.3.4.2.

Local Bundle Adjustment: In the local BA the optimization is conducted on the
currently processed keyframe Ki, all its connected keyframes in the covisibility graph
Kc, and all the map points seen be these keyframes. All other unconnected keyframes
that observe these map points are included in the optimization, but remain fixed. The
observations that are marked as outliers are discarded at the middle and at the end of the
optimization.

Local Keyframe Culling: In order to reduce the complexity of the problem, the local
mapping tries to detect and remove redundant keyframes. This is beneficial for the bundle
adjustment, but also for bounding the problem growth in small environments. Keyframes
in Kc whose 90% of the map points have been observed in a least three other keyframes
in same or finer scale, are discarded.

2.3.4.4 Loop Closing Thread

In this section the steps of the loop closing thread of Figure 2.13 is explained. The loop
closing thread takes the last frame Ki processed by the local mapping and tries to detect
and close loops.

Loop Candidates Detection: To detect loop candidates the similarity between the bag
of words vector of Ki and all its neighbors in the covisibility graph is computed. The lowest
score smin is retained, and every keyframe that scores lower than this in the recognition
database is discarded. All the keyframes connected to Ki are discarded from the results.
To accept a loop candidate, three consecutive loop candidates that are connected in the
covisibility graph must be detected. There can be several loop candidates if there are more
places with similar appearance to Ki.

Loop Candidate Validation: The loop candidate validation depends whether ORB-
SLAM is configured as a monocular RGB-D or stereo camera setup:

• Monocular: In monocular SLAM the scale is unobservable, and therefore to close
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a loop, a similarity transform is computed from the current keyframe Ki to the loop
keyframe Kl that gives information about the error accumulated in the loop. The
computed similarity serves also as geometrical validation of the loop.

• Stereo and RGB-D: Since the scale is observable, the geometric validation are
based on rigid body transformations instead of similarities.

Loop Fusion: If a loop has been validated and confirmed, duplicated map points are
fused and a new edges representing the loop is inserted in the covisibilty graph. The
method for doing this depends on the monocular, RGB-D or stereo configuration:

• Monocular: The current keyframe Ki is corrected with the similarity transform
from the ”Loop Candidate Validation”, and the correction is propagated to all its
neighbors aligning both sides of the loop. Map points observed by the loop key frame
and its neighbors are projected into Ki and it neighbors. A narrow match search,
according to Section 2.3.4.2 is done around the projection. The matched map points
and inliers in the computation of the similarity transforms are fused. The edges
of the covisibility graph is updated accordingly, creating edges attaching the loop
closure.

• Stereo and RGB-D: Due to the observable scale, the similarity transform consid-
eration is unnecessary. The loop fusion is based upon rigid body transformations.

Essential Graph Optimization: The effects of the loop fusion are put to work by per-
forming pose graph optimization over the Essential Graph. The optimization distributes
the loop closing error along the graph. After the optimization each map point is trans-
formed according to the one of the keyframes that observes it.

Full Bundle Adjustment: After the pose graph optimization, full BA is initiated in a
separate thread to achieve optimal solution. If a new loop is detected while the optimiza-
tion is running, the full BA is aborted, and a new full BA is launched.

30



Chapter 2. Theory

2.4 Underwater Imaging

This section presents the challenges in underwater imaging addressed through the under-
water imaging process and refraction of light.

2.4.1 Underwater Imaging Process

Imaging processes in water are affected by a variety of traits causing a deteriorated per-
formance compared to land based situations. In deep waters, the light reflections recorded
by the camera are caused by an artificial light source often close, or following the cam-
era. Before the transmitted photons returns to the camera, they experience a variety
of disturbances causing loss of light intensity. These losses are caused by light attenua-
tion, backscatter and small-angle forward scattering [34], and reduces the image quality
significantly.

Figure 2.14 illustrates the light intensity loss in the underwater imaging process caused
by the light attenuation, backscatter and small-angle forward scattering. The light inten-
sity losses can be categorized into the six sub problems of Figure 2.14: projected light
outward scattered (A), projected light attenuated (B), projected light backscattered (C),
reflected light attenuated (D), reflected light small angle forward scattered (E), reflected
light outward scattered (F).

Figure 2.14: The light losses in the underwater imaging process [34].

2.4.1.1 Light attenuation

Water selectively attenuates light as a function of wavelength or color [35]. The function
depends in the amount of dissolved organic material in the water, but in general is it the
longer wavelengths that attenuates the most. In pure water the colors around blue and
green are well transmitted while the reds are strongly attenuated. Two of the implications
of this are the perceived color of an object will depend on the range of the camera from
the target and that reds are difficult to detect at significant range.
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2.4.1.2 Backscatter

Backscatter is the amount of reflected light the camera records caused by particles and
inhomogenities in the water [34]. The backscatter reduces the image contrasts giving a
lower quality image.

2.4.1.3 Small-Angle Forward Scattering

Small-angle forward scattering introduces resolution losses [34]. Scattering is the process
by which the direction of individual photons is changed without any other alternation.
If the scattered angle is small, the photons reaches the camera and gets recorded. The
trajectory of the scattered photon from the seabed to camera is not straight and will
cause blur to the image reducing its resolution. The scattering is nearly independent of
wavelength in seawater, because of the scattering being mostly caused by the different
sizes of particles in the seawater.

2.4.2 Refraction of Light - Snell’s Law

Refraction of light is the change in direction of light waves passing through an interface of
two media of different refraction indexes [36]. The refraction of light follows Snell’s Law
in Equation (2.24) where θ2 is the angle of refraction, θ1 is the angle of incidence, n1 and
n2 are the corresponding tabulated refractive indices.

sin θ2

sin θ1
=
n1

n2
(2.24)

Figure 2.15 illustrates a light ray P with θ1 passing through an interface between two
medias of n1 and n2 being refracted into the light ray Q. Due to θ2 < θ1 the second media
having a higher refractive index (n2 > n1). It is the equivalent of what is occurring in
in underwater imaging, where the larger refraction index of water causes reduced field of
view of the cameras compared to in air. The approximate refraction indices of air and
water are presented in [37]. Note that these values depend on temperature, pressure and
other physical conditions.

Table 2.1: Approximate refraction in-
dexes of water and air.

Refraction Indexes

nair 1.00029 [−]
nwater 1.33 [−]

Interface

Figure 2.15: The refraction of a light ray passing through
the interface two media of different refractive indexes n1
and n2.
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2.5 Point Cloud Processing

This section presents two methods for point cloud processing; the random sample consen-
sus, and clustering.

2.5.1 Random Sample Consensus

Random Sample Consensus (RANSAC) [38] is an algorithm that in its essence fits a given
model to a set of data points. The assumptions is that the set of data points both contain
inliers and outliers, where the inliers corresponds to the underlying true model and outliers
are contaminated data. The fitting is done by repeatedly drawing random samples of data
points from the set, fit models to the drawn sample data, and calculated the consensus of
the different models with the complete data set. The model with the highest consensus
becomes the final model. The procedure can be formalized with five steps presented in
Algorithm 2.

Algorithm 2: The RANSAC algorithm for fitting a model to a set of data points S.
Adapted from [18]

1. Select a random sample of s data points from the data set S and fit a model to
this subset.

2. Determine the subset Si of S that are within a distance threshold t of the model.
The set Si are the inliers of the sample and is the consensus set.

3. If the number of inlier in Si is above than some threshold T, re-fit the model using
all the points in Si and terminate.

4. If the size of Si is less than T, select a new sample subset and repeat 1 ,2 and 3.
5. After N trials the largest set Si is selected, and the model is re-fitted using all the
data points of Si

2.5.1.1 Threshold Values and Number of Sample Draws

Distance threshold: The distance threshold t can be selected based upon the the
probability distribution of a point being an inlier of the fitted model. Since this distribution
is often unknown, t is usually chosen empirically. The reader is referred to [18] on the
methodology for selecting t based upon probability distributions.

Number of Sample Draws: The number of samples N can be decided based upon the
probability p of a random sample of s points only containing inliers. In Equation (2.25),
N is determined using the probability that a point is an outlier ε and s.

N =
log(1− p)

log(1− (1− ε)s) (2.25)

The probability p is usually set to 0.99 [18], while ε needs to be known. In the case
of unknown ε, N can be determined adaptively by counting the number of outliers for
each sample in Algorithm 2 to determine ε and update Equation (2.25) accordingly. The
algorithm is initialized using a worst case guess of ε.

Consensus Threshold: The size of the acceptable consensus set T is usually selected
based upon a rule of thumb [18], where its size is assumed to be the around the same
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number of inliers in S. For a known ε and n data points T is given in Equation (2.26).

T = (1− ε)n (2.26)

In case of unknown ε, the termination of Algorithm 2 will be determined by the adaptive
N in Equation (2.25) removing the dependability of T.

2.5.1.2 Estimating a Plane with RANSAC

The RANSAC algorithm can be used to fit a plane to a set of 3D points. The plane is
defined by its model coefficients a, b, c and d satisfying Equation (2.27).

ax+ by + cz + d = 0 (2.27)

2.5.2 Point Cloud Clustering

In terms of point clouds, clustering is the procedure of segmenting a set of data points
into smaller subsets where the data points in each subsets, or clusters, are closer to each
other in terms of a given distance metric than the rest of the data set.

In [39] a clustering algorithm is proposed on the basis using the euclidean distance as the
distance metric and kd-trees for efficient nearest-neighbors search.

For two distinct point clusters Oi = {pi ∈ P} and Oj = {pj ∈ P} Equation (2.28) must
hold where dt is a given maximum imposed distance threshold.

min ‖pi − pj‖2 ≥ dt (2.28)

Algorithm 3: An Euclidean based point cloud clustering algorithm as presented in
[39].

Result: A list of clusters C containing all the points of P
1. Make a kd-tree representation of the input point cloud data set P;
2. Establish an empty list of clusters C and a queue of the points to be checked Q;
3. for every pi ∈ P do

add pi to the queue Q;
for every point pi ∈ Q do

Search for the set Pki of point neighbors of pi in a sphere with radius r < dt;

for every neighbor pki ∈ Pki do
if point has not been processed then

add point to Q;

When all points of Q has been processed, add Q to the list of clusters C and reset
Q.

4. The algorithm terminates when all points pi ∈ P have been processed and are a
part of the list of point clusters C

Kd-tree: A kd-tree [40] is in computer science a data structure that organize points
in a k -dimensional space. Its use case area are mainly in multidimensional searches, e.g
nearest neighbor searches and range searches.
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Method

This chapter presents the methodology of establishing the real-time WC-ROV VSLAM
system. Section 3.1 presents the overall architecture of the system. Section 3.2 gives an
introduction to (ROS), which serves as the framework of the implementation. Section 3.3
presents the hardware of the system, consisting of the stereo camera rig and the processing
computers. Sections 3.4 to 3.8 gives individual explanations of the different parts of the
system architecture. Section 3.9 explains the calculations performed in order to determine
the baseline of the stereo camera rig. Lastly, Section 3.10 presents the conducted camera
calibration together with the obtained parameters.

3.1 System Architecture of the WC-ROV VSLAM System

The real-time WC-ROV VSLAM system is a VSLAM system designed to be used in
conjunction with the stereo cameras of the ROV Minerva. The system produces estimates
of the ROV position and orientation, a map of the ROV surroundings and provides the
position of the immediate closest obstacle to the ROV. The architecture of the system is
presented in Figure 3.1 comprising of: the stereo camera rig of Minerva consisting of two
fronto-parallel cameras, a camera driver that administers the stereo camera settings and
interprets the camera signals producing stereo image pairs, an image processing part that
synchronizes, undistorts and rectifies the stereo image pairs, the renowned VSLAM method
ORB-SLAM2 [32] which is the core component of the system, a point cloud processing
part inferring the surrounding obstacles and provides the closest detected obstacle, and
lastly a LabView communication part distributing the closest detected obstacle to the
Autonomy Framework of the ROV Minerva. The different parts were implemented in to
separate ROS nodes. ROS and ROS nodes are explained in section Section 3.2.

The WC-ROV system was implemented in C++ using the framework ROS on the distri-
bution Kinetic Kame. The system consists of both existing implementation. e.g ORB-
SLAM2, and implementation written by the author. In this thesis, the system runs on a
desktop computer using Ubuntu 16.04.
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Figure 3.1: System architecture.

3.2 Robot Operating System

Robot Operating System (ROS)1 is an open-source framework for robot software devel-
opment. It provides a wide range of functionalities to efficiently create robot applications,
including package management, message-passing between processes, hardware abstraction,
and low-level device controls. ROS based systems are usually built consisting of multiple
processes communicating using the message-passing capabilities of ROS. The processes
are small programs performing system specific tasks e.g. camera driver, data filtering.
The message-passing is independent of programming languages, and supports both syn-
chronous and asynchronous message exchange.

The main reason for selecting ROS as the framework of the WC-ROV VSLAM system was
due to its use case area of real-time applications and existing implementations relevant to
the objectives of this thesis. Additionally, does a standardized framework help transfer
implementations and experience for other than the author to use on a later basis. The
logging capabilities of ROS also makes it easy for others to utilize the obtained data of
this thesis. The following subsections explains in detail about the process communication,
logging capabilities and other relevant tools for the system integration within ROS, and
how to use it.

1https://www.ros.org
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3.2.1 ROS Communication

ROS uses a graph structure to organize the communication between processes. Processes
are represented as nodes in a graph, while the connecting edges, termed topics, handles
information exchange through message-passing between the nodes. If a node produces an
output to be distributed to the system, it advertises a topic containing the output. If
a node receives input, it subscribes to a topic. ROS also contains a database of shared
static or semi-static parameters called the parameter server. The information exchange is
done in the form of ROS Messages. ROS messages are a predefined data packet containing
specific data fields for the given message type. Listing 3.1 is an example of ROS image
message type

Listing 3.1: ROS Image message

1 # This message contains an uncompresses image
2

3 Header header # Header containing timestamp, etc
4

5 # Image parameters
6 uint32 height # Image height, number of rows
7 uint32 width # Image width, number of columns
8 string encoding # Encoding of pixels
9

10 uint8 is bigendian # is data bigendian
11 uint32 step # Full row length in bytes
12 uint8[] # Actual matrix data

3.2.1.1 ROS Master

Every ROS system is initialized using the process called the ROS Master. The ROS
master sets up peer-to-peer communication between nodes using its register of published
and subscribed topics, and keeps track of the global parameters of the system using the
parameter server. Each time a node has been initialized, it registers itself to the ROS
Master informing about its current subscribed and/or published topics. The decentralized
architecture is illustrated in Figure 3.2 where the ROS Master is providing the connection
information to the two nodes talker and listener.

Figure 3.2: The node talker publishing to the subscribing node listener. The communication is
registered by ROS Master
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3.2.2 ROS Launch

ROS nodes are separate processes and needs to be run in separate terminals. The package
roslaunch provides the possibility if launching multiple nodes using roslaunch configuration
files, or lauch file. Additionally can the parameters, or static variables, in the parameters
server of the ROS system be set using the launch file. Launch files for a ROS system
startup can be initiated using the following command

Listing 3.2: Launch a ROS system using roslaunch

1 $ user@hostname roslaunch ros configuration.launch

3.2.3 Recording of Data in ROS

ROS message data can be recorded and played back using the ROS package rosbag. Rosbag
logs subscribes topics into a file format called bags, which allows for messages to be played
back in a manner that replicates the original publishing of the recorded nodes. Rosbag
is command line based, and to initate a recording of a specific set of topics the following
command can be used

Listing 3.3: Record subscribed topics using rosbag

1 $ user@hostname rosbag record topic1 topic2 topic3

To play previous recorded messages

Listing 3.4: Play previous recorded topics using rosbag

1 $ user@hostname rosbag play name recording.bag

3.3 Hardware

The hardware of the WC-ROV VSLAM system consists of the stereo camera rig of Minerva,
a desktop computer for real-time processing of the system, and a laptop computer for
camera calibration and experiment data collection.

3.3.1 Stereo Camera Rig

The stereo camera rig of Minerva consists of two Allied Vision Prosilica GC 1380C mounted
horizontally displaced in a fronto-parallel manner. The GC 1380C cameras by Allied Vision
[41] are suitable for underwater operation due to their high sensitivity to lightning and
low signal to noise ratio. They are capable of recording at a resolution of 1360×1024 with
a frame rate of 20 frames per second. The cameras have a global shutter and allows for
increased framerates by reducing the resolution height. Additional camera specifications
i.e. exposure time, gain level and pixel format can be set by accessing the in-camera
settings. The data is transmitted from the cameras by a GigE Vision compliant Gigabit
Ethernet interfaces (IEEE 802.3 1000 baseT) allowing a bandwidth of 125 MB/s.

The cameras of the stereo camera rig are installed in waterproof casings with interfaces
from Ethernet (RJ45) to SubConn 13-pin bulkhead connector (DBH13F ) to allow con-
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nection with the ROV standardized framework. The waterproof casings are mounted to
a rail allowing the horizontal displacement of the cameras to be adjusted, hence changing
the baseline. See Figure 3.3a for the mounting rail.

(a) The stereo camera rig mounted on the SUB-
fighter 30K ROV during a mission in Trondheims-
fjorden, courtesy of [42]

(b) The Prosilica GC1380C of the stereo camera rig,
courtesy of Allied Vision [41]

Figure 3.3: The stereo camera rig.

A lab kit and a rod mount for the stereo camera rig was established to accommodate the
laboratory camera calibration and testing of the WC-ROV VSLAM system.

Lab Kit: The lab kit of the stereo camera rig allows for the cameras to be accessed by
a computer while residing in the waterproof casing. The kit consists of an DBH13F to
RJ45 (Ethernet) cable with an attached a 12 V, and a 2.5 [m] DIL13F to DIL13M cable
extender. Both of the cameras are accessed simultaneously by using an Gigabit Ethernet
switch. The kit is presented in Figure 3.4a.

Stereo Camera Rig Rod Mount: The rod mount for the stereo camera rig makes it
possible to perform underwater translation and orientation of the stereo camera rig during
laboratory experiments. The mount consists of a 2 m long aluminum rod with a bracket
at the end for mounting the stereo camera rig. The rod mount is displayed in Figure 3.4b.

(a) Lab kit (b) Rod mount

Figure 3.4: The lab kit and rod mount of the stereo camera rig.
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3.3.2 Desktop Computer for Real-time Processing

The WC-ROV VSLAM system is run real-time on a desktop computer provided by NTNU
AUR-Lab. The desktop computer uses an Intel Core i7-7820X CPU running at 3.60GHz
with 16 cores and has 62.3-GB RAM. The computer is intended to be used on bard
Gunnerus during the field experiments.

3.3.3 Laptop Computer for Data Collection

The data collection in the laboratories experiments are conducted using a laptop computer.
The use of a laptop is due to the limited practicality of using a desktop computer while
maneuvering in confined spaces. The laptop computer is a Lenovo X230 using an Intel
Core i5-3210M CPU running at 2.50Ghz with 4 cores and 7.5-GB RAM.

3.4 Camera Driver

The camera driver of the WC-ROV VSLAM system is the first ROS node of the pipeline.
It converts the signals received from the stereo cameras to ROS image messages, and
administers the settings of the cameras. The camera driver is integrated in system using
an existing ROS camera driver implementation2 based on the Software Developing Kit
(SDK) provided by Allied Vision.

3.4.1 Camera Settings

The different cameras setting of the Prosilica GC1380C were addressed in the manners
presented in the following paragraphs. Most notably is the two different resolution modes,
which has contributed to the foundation for testing the WC-ROV VSLAM system.

Resolution Modes: The cameras were arranged into operating in two different pixel
resolutions modes; full resolution mode and binned mode. The full resolution mode utilized
the cameras full pixel capacity giving maximum information per image. At this resolution,
the framerate of the cameras were capped at 20 Hz. The binned camera mode used pixel
binning. Pixel binning is the process of combining the electric charge from adjacent sen-
sor pixels of the camera. The process enhances the signal-to-noise ratio, and is especially
advantageous in areas width low-light conditions [43]. The binned mode of the cameras
were set to combine adjacent sensor pixel both in the vertical and horizontal direction
resulting in halved the pixel resolution. Due to the lower resolution, the maximum fram-
erate of the binned mode was 45 Hz. It is worth mentioning that the exposure time of
the binned mode needed to be considerably less as the pixel binning provides double the
light sensitivity. The resulting camera resolutions corresponding maximum framerate are
presented in Table 3.1.

Table 3.1: The resolutions of the stereo camera resolution modes.

Full Resolution Binned Mode

w 1360 680 [px]
h 1024 512 [px]
FPSmax 20 45 [Hz]

2http://wiki.ros.org/avt_vimba_camera
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Pixel Format: The cameras were configured into sending images on the monochrome
image format MONO8. The image format MONO8 gives grayscale images where each
pixel contains a single byte giving the pixel intensity. The image format MONO8 was
selected instead of other camera capable color pixel formats, i.e RGB, due to the ORB
features of ORB-SLAM2 being designed to work on grayscale images.

Exposure Time: The exposure times of the stereo cameras were selected prior to each
time they were operated due to the varying illumination conditions of the operation lo-
cations. Prior to the camera operations, the necessary exposure times was helped being
determined by using the auto focus feature of the camera software Vimba Viewer3 pro-
vided by Allied Vision. The determined exposure times will be presented in this thesis
when relevant.

Gain: The gain setting of the cameras was consequently set to 0 to reduced the camera
noise.

Lens Focusing Distance: The focusing distances of the lenses of the Prosilica GC1380
cameras were adjustable. To accompany the operating distance of the ROV, the lenses
were manually adjusted to a focusing distance of 3 m. The adjustment was conducted by
the use of a high contrast optical target placed in a measured distance of 3 m away from
the cameras.

3.4.2 Bandwidth Calculations

The joint bandwidth usage of the stereo cameras were calculated with the determined
camera settings in order to ensure that there was no loss in the transmission of the stereo
image data. The bandwidth usage was calculated using Equation (3.1), where ncam is the
number of cameras, FPS (Frames Per Second) is the camera framerate, hr and wr are
the pixel height and width, and bytes/pixel is the number of bytes per pixel.

Bandwidth usage = ncameras × FPS × hr × wr × bytes/pixel (3.1)

By inserting the height, width and maximum framerate for both the full resolution and
binned mode in Equation (3.1), the maximum bandwidth usages were correspondingly
55.7 MB/s for the full resolution mode, and 31.3 MB/s for the binned mode. It confirmed
that the bandwidth capacity of the Gigabit interface was not violated, and hence the
framerate could later be selected freely without considering the bandwidth usage.

3.5 Image Processing

The image processing of the WC-ROV VSLAM system consists of synchronization, con-
trast enhancing, stereo rectification and correction of lens distortion. The processing was
implemented in the image processing node of the ROS architecture, subscribing to the
raw stereo images of the camera drive and publishing processed stereo image pairs. The
image processing pipeline is displayed in Figure 3.5. For each received raw image pair, a
callback is triggered processing the incoming pair and publishing the processed version.
The open source library OpenCV4 was used to implement the processing pipeline.

3https://www.alliedvision.com/en/products/software.html
4https://opencv.org/
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Synchronize

Contrast	Enhance	using
CLAHE

Undistort	and	Rectify

Stereo	Image	Processing	Node

Stereo	Image	Pair

Contrast	Enhanced	Stereo	Image	Pair

Processed	Stereo	Image	Pair

Right	Raw	ImageLeft	Raw	Image

Figure 3.5: The image processing pipeline.

3.5.1 Synchronization

The synchronization of the incoming raw left and right image was performed using the
existing ROS package message filters5. The message filters works by subscribing to two
or more topics and initiating a common callback function when the timestamps of the
subscribed topics matches.

3.5.2 Contrast Enhancing

The contrast enhancing of the stereo image pairs was conducted using CLAHE of Sec-
tion 2.2.0.2. The method CLAHE was selected due to the uneven lighting conditions of
ROVs working subsea caused by their artificial illumination. The CLAHE was integrated
in the image processing node using the class CLAHE of OpenCV. Contrast enhancing is
applied on both images using a predetermined clip limit and tile size of the CLAHE. The
selected clip limit and tile size is stored in the parameter server of the WC-ROV VSLAM
system and can be changed by altering the ROS launch file. The value of the clip limit de-
pended on the current conditions, where dark scenes required a higher clip limit. The tile
sizes were selected based upon the aspect ratio of the image resolution in order to reduce
the occurrence of image anomalies caused by successive overlapping local histograms. The
size of the tile was selected based upon how affected the current scene was of combined
dark and bright regions, where larger til sizes reduces overbrightening effect, and smaller
tile sizes gave a contrast enhancing similar to normal histogram equalization.

Figure 3.6 displays CLAHE of the image processing node applied on an image with severe
uneven lighting. The clip limit is set to 5, while the tile is a non-aspect ratio defined small
square of size 5. The final selected CLAHE parameter values is presented in Chapter 5
with their accompanying data sets.

5http://wiki.ros.org/message_filters
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(a) Unprocessed. (b) Processed with CLAHE.

Figure 3.6: CLAHE applied on an underwater image with uneven lighting. Clip limit = 5. tile
size 5× 5

3.5.3 Distortion and Rectification

The rectification and undistortion of the stereo image pairs was implemented by creating a
mapping from the raw left and right images to rectified and undistorted stereo image pairs
using a set of predetermined projection transform matrices, the camera intrinsic parame-
ters and the camera distortion coefficients. The mappings were created using the function
initUndistortRectifyMap of OpenCV, where the projection transform matrices are es-
tablished using the intrinsic and extrinsic parameters, and the distortion coefficients of
the stereo camera using the OpenCV function stereoRectify. The projection transform
matrices, intrinsic matrices and distortion coefficients used in the map establishement are
stored in a yaml file which is loaded on the initialization of the system. The mappings
applied to a stereo image pair is displayed in Figures 3.7 and 3.8, where Figure 3.7 is the
unprocessed stereo image pair, and Figure 3.8 is the contrast enhanced, undistorted and
rectified stereo image pair.

(a) Left camera (b) Right camera

Figure 3.7: An unprocessed stereo image pair.
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(a) Left camera (b) Right camera

Figure 3.8: The stereo image pair of Figure. FIGURE contrast enhanced, undistorted and
rectified.

3.6 ORB-SLAM2

The VSLAM algorithm ORB-SLAM2 [32] is the core of the WC-ROV VSLAM system
by performing the estimation of the stereo camera rig position, orientation and point
cloud of the surrounding environment. The reader is referred to Section 2.3.4 for an
extensive explanation of the theory and details about the algorithm. ORB-SLAM2 was
integrated in the WC-ROV VSLAM system using the existing ROS implementation of
ORB-SLAM2 provided by Applied AI Initiative6. The ROS implementation was heavily
based upon the original open source ORB-SLAM2 implementation7 provided by the author
of ORB-SLAM2. The ORB-SLAM2 node of the WC-ROV VSLAM system subscribes to
the synchronized, contrast enhanced, and rectified stereo image pairs provided by the
image processing node, and publishes itself the estimated stereo camera rig pose and the
estimated point cloud of its surrounding environment. The ORB-SLAM2 node publishes at
the frequency of either the currently set framerate of the camera driver node, or at its own
rate of computation. The rate of computation is strongly dependent on the resolution of
the received processed stereo image pairs. The published position, orientation and point
cloud are defined in a local frame with an origin at position of the WC-ROV VSLAM
system initiation. The local frame is in this thesis referred to as the local VSLAM frame
Fl.

ORB-SLAM2

ORB-SLAM2	Node

Processed	Stereo	Image	Pair

Estimated	Point	Cloud	of	SurroundingsEstimated	Stereo	Camera	Rig	Pose

Figure 3.9: ORB-SLAM2 pipeline.

6https://github.com/appliedAI-Initiative/orb_slam_2_ros
7https://github.com/raulmur/ORB_SLAM2
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ORB-SLAM2 Parameters: The ORB-SLAM2 algorithm has a variety of static pa-
rameters that can be set in the system ROS launch file. These parameters are nFeatures,
scaleFactor, nLevels, iniThFAST, minThFAST, and ThDepth. The first five are parame-
ters are related to the extraction of ORB features: nFeatures sets the number of ORBs
to be extracted on each of the two incoming stereo image pairs, nLevels sets the number
of levels in the ORB image scaling pyramid, iniThFAST and minThFAST sets the maxi-
mum and minimum number of FAST corners detected in the grid divided scale level. See
Section 2.3.4.2 for more details. The ThDepth sets the threshold of stereo keypoints being
defined as close or far points, see Section 2.3.4.1.

The ORB-SLAM2 does additionally publish a debug stream showing the tracked map
points at each incoming frame. An example from the debug stream is shown in Figure 3.10.

Figure 3.10: The debug screen published by ORB-SLAM2.

3.7 Point Cloud Processing

The objective of the point cloud processing of the WC-ROV VSLAM system is to identify
the closest detected obstacle and determine its relative position and size. The point cloud
processing was implemented in the point cloud processing node using the C++ library
PCL8. The node subscribes to the estimated stereo camera rig pose and point cloud
published by the ORB-SLAM2 node. The point cloud processing node publishes itself
a custom ROS message containing the closest detected obstacle position and dimension,
the stereo camera rig position, and the distance between the closest detected obstacle and
stereo camera rig. For each incoming point cloud message, the processing is conducted.
The point cloud processing pipeline is presented in Figure 3.11 and consists of estimation
and removal of seabed points, clustering of the remaining points to identify obstacles, and
determining and publishing the currently closest obstacle to the stereo camera rig.

8https://pointclouds.org/
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Seabed	Estimation

Clustering

Closest	Obstacle	Decision

Point	Cloud	Processing	Node

Point	Cloud	of	Underwater	Scenery

Point	Cloud	without	Seabed	Points

A	Set	of	Obstacle	Point	Clouds

Closest	Detected	Obstacle

Stero	Camera	Rig	Pose

Figure 3.11: The point cloud processing pipeline.

3.7.1 Seabed Estimation

The first part of the point cloud processing pipeline is the removal of the points associated
with the seabed. The seabed points are identified by fitting points to a plane perpendicular
to the z-axis. The model of the plane are estimated using RANSAC of Section 2.5.1 for
a given distance threshold value t, and given slack angle of the plane being perpendicular
to the z-axis set in the launch file. All the points within the distance threshold value
of the estimated plane are then removed from the point cloud before further processing.
The RANSAC is conducted using the class EuclideanClusterExtraction of PCL. Fig-
ure 3.12b shows the points the point cloud associated with an estimated seabed plane of
an original point cloud provided by the ORB-SLAM2 node in Figure 3.12a. The plotting
tool used to make figures is the ROS tool Rviz 9-

(a) Point Cloud produced by ORB-SLAM2. (b) Estimated seabed points of Figure fig. 3.12a

Figure 3.12

9http://wiki.ros.org/rviz
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3.7.2 Clustering

The second part of the point cloud processing pipeline is obstacle identification by con-
ducting clustering. The point cloud with removed seabed points is segmented into clusters
of points using the Euclidean based clustering algorithm of Section 2.5.2. The algorithm
is implemented in the class EuclideanClusterExtraction of PCL and was used in the
integration of the WC-ROV VSLAM system. The cluster point distance tolerance, the
minimum and maximum cluster size are set in the launch file. The resulting clusters of
the point cloud are assumed to be obstacles of the mapped surroundings. The obstacles
are modeled as cuboids where the dimensions of the cuboids od = (l, w, h) are determined
using the maximum and minimum values of the points contained in the cluster according
to

l = xmax − xmin
w = ymax − ymin
h = zmax − zmin

(3.2)

The obstacle positions op = (xo, yo, zo) are determined using the mean of the maximum
and minimum points of the cluster

xp =
xmax + xmin

2

yp =
ymax + ymin

2

zp =
zmax + zmin

2

(3.3)

Figure 3.13 shows a sample of the clustering node estimating cuboid clusters, plotted as
green cubes, from point clouds received from ORB-SLAM2. The cluster point tolerance
is set to 0.15 m and the minimum and maximum cluster size is respectively set to 20 and
10000. The plot was made using Rviz.

Figure 3.13: The identified cuboid obstacles (green), closest detected obstacle (red), and current
estimated stereo camera pose (red arrow).
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3.7.3 Closest Obstacle Decision

The last part of the point cloud processing pipeline is determining the closest obstacle
in the set of detected obstacles. For each cuboid defined obstacle, the distance from the
current estimate stereo camera rig position cp = (xc, yc, zc) is calculated to each cuboid face
and corner position of/c = (xf/c, yf/c, zf/c) using the Euclidean distance in Equation (3.4).

d(cp,of/c) =
√

(xc − xf/c)2 + (yc − yf/c)2 + (zc − zf/c)2 (3.4)

The smallest of the calculated face and corner distances d(cp,of/c) becomes the distance
between the obstacle and camera. The obstacles in the obstacle set with the closest
distance to the camera is the resulting closest detected obstacle. The custom ROS message
in Listings. 3.5 is then generated and published containing the current stereo camera rig
position, the closest detected obstacle position and dimensions, and the distance between
the camera and closest detected obstacle.

Listing 3.5: ROS closest obstacle message

1 # The position and distance is given in the VSLAM frame
2

3 Header header # Header containing timestamp, etc
4

5 geometry msgs/Point positionVSLAM # Position of stereo camera
6 geometry msgs/Point positionObstacle # Position of obstacle
7

8 float64 distance # Distance between camera and obstacle
9 float64 dimensionX # Obstacle cuboid length

10 float64 dimensionY # Obstacle cuboid width
11 float64 dimensionZ # Obstacle cuboid height

3.8 LabView Communication

The LabView communication of the WC-ROV VSLAM system handles the information
exchange with the autonomy framework of Minerva. The WC-ROV VSLAM system re-
ceives the global ROV position, while sending back information about the closest detected
obstacle to the ROV autonomy framework. Obstacle information is only sent given that
a distance threshold of 5 m is satisfied. The LabView communication was implemented
in the LabView communication node establishing TCP (Transmission Control Protocol)
connections using sockets in C++10. The LabView communication node subscribes to the
closest detected obstacle ROS message published by the point cloud processing node, and
consists of the two threads Obstacle Callback and TCP Protocol. Each thread operates
asynchronously on separate frequencies, where the frequency of the Obstacle Callback
thread matches the frequency of the WC-ROV VSLAM system (either the framerate or
the ORB-SLAM2 computational time), and the TCP Protocol thread matches the decided
LabView communication frequency. The pipeline, and the interlinking of the two threads
are displayed in Figure 3.14.

10http://www.linuxhowtos.org/C_C++/socket.htm
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Figure 3.14: The LabView communication pipeline.

3.8.1 TCP Protocol

The TCP Protocol thread conducts the TCP communication according to the commu-
nication protocol decided with the team of master students working on ROV Minerva
Autonomy Framework, see Section 1.5. The autonomy framework in LabView act as the
TCP server, while the WC-ROV VSLAM system is a TCP client connecting to the server
IP-address and port number. The protocol starts by LabView sending a string of the
global ROV position to the WC-ROV VSLAM system on the format in Equation (3.5)
where xROV , yROV and zROV are the ROV position in the North-East-Down (NED) global
frame Fg. The string is converted to the translation vector tggr of the ROV body frame
Fr relative to Fg.

$xgROV , y
g
ROV , z

g
ROV ; (3.5)

The protocol continues by the WC-ROV VSLAM system sending information about the
closest detected obstacle to LabVeiw if the distance threshold is violated. The obstacle
avoidance of LabView expects spherical obstacles, and the message sent contains the global
obstacle positions xgo, y

g
o and zgo , and the sphere diameter do. The message is a four element

array of doubles on the format given in Equation (3.6).

[
xgo, ygo , zgo , do

]
(3.6)

If there are no detected obstacles within the distance threshold, the obstacle message sent
to LabView only contains zeros. The TCP Protocol thread operates at the frequency of
2 Hz.

3.8.2 Obstacle Callback

The Obstacle Callback thread converts the closest obstacle ROS messages received from
the point cloud processing node to TCP messages containing spherical obstacles. For
every incoming closest obstacle ROS message, the distance threshold is checked. If the
obstacle distance is larger than the threshold, a TCP message containing only zeros is
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generated. If the obstacle distance is lower than the threshold, a TCP message on the
format of Equation (3.6) containing the global obstacle position and its spherical diameter
is generated.

Global Obstacle Position: The global position of the obstacle xgo = (xgo, y
g
o , z

g
o) is

determined by conducting coordinate translation transformation from the local VSLAM
frame Fl to the global NED frame Fg on the local VSLAM obstacle position xlo. First, the
obstacle position in the stereo camera rig frame Fc is determined by Equation (3.7), where
xlc and xlo are the stereo camera rig position and obstacle position in the local VSLAM
frame Fl. Both xlc and xlo are contained in the closest obstacle ROS message.

xco = xlo − xlc (3.7)

The global position of the obstacle xgo is then found by adding the translation vector tggr
of the ROV body frame Fb relative to the global NED frame Fg, the translation vector trrc
of the stereo camera rig frame Fc relative to the ROV body frame Fr, and the obstacle
position xco given in Fc.

xgo = tggr + trrc + xco (3.8)

No rotation transform is needed in the coordinate transformation from Fc to Fr due to the
frames being aligned. The coordinate frames along with their translation transformation
vectors are displayed in Figure 3.15.

Diameter: The sphere diameter do of the closest detected obstacle is determined by
selecting the largest of the cuboid dimensions od = (l, w, h) contained in the received
closest obstacle ROS message.

ROV	Minerva

Figure 3.15: The coordinate frames of the WC-ROV VSLAM system.
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3.9 Baseline Selection

In this section the calculations on determining the stereo camera rig baseline and the
selected baseline is presented. The baseline of the stereo camera rig influences a variety
traits concerning the performance of the stereo imaging algorithms of ORB-SLAM2. A
wider baseline gives higher range of depth, while a narrower baseline grants higher over-
lapping field of view (OFOV), and a lower minimum stereo observable distance between
the stereo camera and scene. The baseline selection can be considered as a trade-off, and
was in this thesis selected based upon the philosophy of having the widest possible baseline
as long as the OFOV and minimum distance are not too critically affected. The baseline
was decided by performing calculations on the OFOV and the range of depth of the stereo
camera in both full resolution and binned mode.

3.9.1 Overlapping Field of View

The OFOV depends on the current baseline b and the distance between the observed scene
and the stereo camera dOFOV . The OFOV in water is affected by the reduction of the single
camera field of view θ due to refraction in water. By assuming stereo geometry, fronto-
parallel cameras and symmetrical θ along the principle axis on both cameras, the refraction
corrected overlapping field of view OFOVcorr can be modeled as illustrated in Figure 3.16.
The MATLAB script FieldOfViewCalculations.m in Appendix B estimates the percentage
OFOVcorr of the total refraction corrected overlapping field of view TOFOVcorr at a
given distance dOFOV and baseline b. The calculations uses the in air calibration focal
lengths fairl and fairr , the camera resolution width w and the refractive indices of air and
water nair and nwater from Table 2.1. Additionally does the script output the minimum
stereo observable distance dmin for the current given baseline b. The script performs the
estimations by following the steps of Algorithm. 4.

Figure 3.16: The refraction corrected overlapping field of view (OFOVcorr) of a stereo camera
with baseline b.
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Algorithm 4: Refraction corrected overlapping field of view calculations

Result: The percentage OFOVcorr of TFOVcorr for given b and dOFOV , and dmin for
given b.

1. Calculate θl and θr of each camera using fairl and fairr according to Equation (2.9);
2. Calculate θcorrl and θcorrr by correcting for refraction in water using nair and
nwater according to Snell’s Law in Equation (2.24). The red stippled lines in
Figure 3.16 sketches the corrected FOVs;

3. Calculate the minimum distance dmin for the given b, θcorrl and θcorrr using
trigonometry;

4. Calculate the OFOVcorr for a given distance lOFOV using dmin, θcorrl and θcorrr ;
5. Calculate the refraction corrected left and right camera field of view FOVcorrl and
FOVcorrr using θcorrl and θcorrr ;

6. Calculate the percentage of OFOVcorr that covers the total corrected field of view
TFOVcorr by utilizing TFOVcorr = FOVcorrl + FOVcorrr −OFOVcorr;

Using the camera parameters of Table 3.2 the percentage OFOVcorr of TOFOVcorr and
dmin were calculated the for three baseline widths b1 = 0.1 m, b2 = 0.2 m and b3 = 0.3 m
at the three observation distances d1 = 1 m, d2 = 3 m and d3 = 5 m. The observation
distances were selected based upon the expected visibility and operation distance of the
WC-ROV Minerva. The results are presented in Tables 3.3 to 3.6.

Table 3.2: In air camera calibration parameters of the stereo camera rig.

Full Resolution Binned Mode

fairl 1109.1 613.3 [px]
fairr 1112.3 613.4 [px]
w 1360 680 [px]

Table 3.3: Percentage OFOVcorr of
TOFOVcorr at given b [m] and distance
from camera dOFOV [m] at full resolution.

d1 = 1 d2 = 3 d3 = 5
b1 = 0.1 79.9% 92.5% 94.5%
b2 = 0.2 62.0% 85.6% 91.0%
b3 = 0.3 48.0% 79.0% 86.9%

Table 3.4: Percentage OFOVcorr of
TOFOVcorr at given b [m] and distance
from camera dOFOV [m] at binned mode.

d1 = 1 d2 = 3 d3 = 5
b1 = 0.1 77.3% 91.8% 95.0%
b2 = 0.2 59.3% 84.4% 90.3%
b3 = 0.3 44.5% 77.4% 85.8%

Table 3.5: Minimum observable distance dmin

for given baseline b at full resolution.

dmin

b1 = 0.1 0.117 [m]
b2 = 0.2 0.234 [m]
b3 = 0.3 0.351 [m]

Table 3.6: Minimum observable distance dmin

for given baseline b at binned mode.

dmin

b1 = 0.1 0.128 [m]
b2 = 0.2 0.255 [m]
b3 = 0.3 0.380 [m]
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3.9.2 Range of Depth

The range of depth was examined by plotting the disparity d against the observation
distance, or depth z, using the focal length f and a given baseline b according to Equa-
tion (2.12). The produced plots shows the expected disparity values at given depths.
Ideally large differences in disparity values for the different distances is wanted such that
the stereo imaging algorithm more easily can distinguish the depths.

The disparity plots of the stereo camera in full resolution and binned mode are presented
in Figure 3.17. The plots are calculated using refraction corrected focal lengths obtained
from fairl and fairr of Table 3.2 and the baselines b1 = 0.1 m, b2 = 0.2 m and b3 = 0.3 m.
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Figure 3.17: The disparity versus depth.

3.9.3 Selected Baseline

According to Tables 3.3 and 3.4 the percentage OFOVcorr for b3 = 0.3 m at d1 = 1 m
are for both binned mode and full resolution too low to be accepted. The depth versus
disparity plot of binned mode in Figure 3.17a shows that for b1 = 0.3 m produces small
changes in disparity at depths close to 5 m compared to b1 = 0.3 m and b1 = 0.3 m. From
these two arguments, and considering the calculations being mere estimates, it was decided
to set the stereo camera baseline to b = 0.2 m.

3.10 Underwater Camera Calibration

Underwater camera calibration was performed in order to obtain the intrinsic parameters
Kl and Kr, the distortion coefficients dl and dr, and the relative orientation of the cameras
in the stereo camera rig Tl

lr. The calibration was conducted underwater due to refraction
in water affecting the calibration parameters.

The calibration was performed in both the full resolution and binned mode, at four dif-
ferent distances in between the stereo camera rig and the calibration object. The selected
distances were 1, 3, 4 and 5 m reflecting the expected visibility of a subsea operating WC-
ROV. The determined baseline of b = 0.2 m of Section 3.9 was used in all calibrations.
The calibration data was acquired in the basin of MC-lab, while the calibration param-
eters were estimated using MATLAB’s camera calibration software. The results of the
underwater camera calibration are eight sets of intrinsic calibration parameters, four for
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each camera of the stereo camera rig, and four corresponding sets of extrinsic parameters
giving the relative orientation of the cameras.

3.10.1 Calibration Data Acquisition

The calibration object used in the calibration was an 1.5 m × 1.2 m checkerboard with
20× 15 complete 80 mm squares provided by AUR-Lab. The checkerboard was kept fixed
while the stereo camera rig was oriented and translated such that the calibration samples
together covered the total FOV of both the left and right camera. The calibration data
was obtained by recording the synchronized stereo image stream of the stereo camera rig
in rosbags at 2Hz. The exposure time was in-field adjusted to obtain non-blurred images
with adequate brightness.

(a) The checkerboard fixed at 3 m (b) The recording of a calibration data set

Figure 3.18: The underwater camera calibration in MC-lab.

Calibration Image Sets: The calibration image sets were established by extracting
stereo image pairs from each calibration data rosbag. The original size of the extracted
stereo image sets ranged from 200 to 600 stereo image pairs, and was reduced in size
by selecting stereo images of high quality with unique orientation and translation. The
resulting calibration image set sizes ranged from 20 to 50 stereo images depending on the
quality of the recorded calibration rosbag. Sample images from the calibration image sets
are shown in Figures 3.19 and 3.20.

Note that due to the limited FOV at the calibration distance of 1 m, parts of the checker-
board was covered proving a reduced checkerboard of 8× 7 squares.
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(a) 1 m (b) 3 m (c) 5 m

Figure 3.19: Sample images from the full resolution mode left camera calibration data sets.
Exposure time is set to 80 ms.

(a) 1 m (b) 3 m (c) 5 m

Figure 3.20: Sample images from the binned mode left camera calibration data sets. Exposure
time is set to 50 ms.

3.10.2 Camera Calibration with MATLAB

The single camera and stereo camera calibration of the obtained calibration image sets
were performed using MATLAB’s Camera Calibrator App and Stereo Camera Calibrator
App. The applications are based upon Zheng’s method described in Section 2.1.4 and
provides tools for efficiently analyzing the calibration image data sets.

The calibrator apps outputs after each estimation the mean pixel reprojection error, and
the pixel reprojection error corresponding to each calibration image or stereo calibration
image pair. It contributes to determining the necessary distortion parameters, and allows
for efficient supervision of the calibration images data set by removing sample outliers.

(a) The Camera Calibrator App of MATLAB (b) The Stereo Camera Calibrator App of MATLAB

Figure 3.21
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The cameras were first calibrated separately on each corresponding left and right cali-
bration image set, in order to obtain the individual intrinsic parameters and distortion
coefficients for the given image set. Each of the obtained intrinsics and distortion coeffi-
cients, were then used to do stereo camera calibration in order to obtain the corresponding
relative orientation of the given calibration image set.

Distortion Coefficients It was selected to use the first and second radial distortion
coefficients, k1 and k2 and the tangential distortion coefficients p1 and p2. The choice
was made due to estimations with p1 and p2 obtained lower a mean pixel reprojection
error than without. It was tested to perform estimates with additional radial distortion
coefficients, but the mean reprojection error remained the unaffected. Every individual
left and right camera calibration were hence performed with two the radial distortion
coefficients, k1 and k2, and the tangential distortion coefficients, p1 and p2.

3.10.3 Underwater Calibration Results

The resulting intrinsic parameters Kl and Kr, distortion coefficients dl and dr, and relative
camera orientation Tl

lr for the calibration distances 1, 2, 3, 4 and 5 m are presented in
the following tables. Tables 3.7 and 3.8 gives the Kl and Kr of the left and right camera,
Tables 3.9 and 3.10 gives the dl and dr of the left and right camera, while Table 3.11 gives
the Tl

lr of the cameras.

Calibration Parameters Set for Further Use: The preferred camera calibration
parameters for further use was determined by considering the resulting relative translation
vector of the cameras as the quality metric. The camera calibration data sets which had
the relative translation vector that reflected the true measured translation the most, were
the parameter sets that was recommended for further use. Hence, according to Table 3.11
were the camera calibration set obtained at 1 m recommended for the full resolution mode,
and the camera calibration set obtained at 3 m recommended for the binned mode.

Table 3.7: The intrinsic parameter at full resolution mode. The parameters are given in pixels.

Left Rigth
fu fv cu cv fu fv cu cv

1 m 1703.3 1700.7 704.4 530.2 1697.0 1696.2 669.5 534.2
3 m 1693.8 1689.9 705.0 532.4 1695.7 1693.1 673.0 528.1
4 m 1684.0 1681.1 713.7 520.0 1689.7 1688.1 682.3 517.9
5 m 1665.2 1662.1 702.9 525.1 1672.4 1670.2 680.0 521.5

Table 3.8: The intrinsic parameter at binned mode. The parameters are given in pixels.

Left Rigth
fu fv cu cv fu fv cu cv

1 m 847.1 845.8 355.6 264.7 845.7 845.0 337.2 266.4
3 m 841.5 839.7 355.2 264.9 841.0 839.8 340.2 263.9
4 m 840.3 838.7 355.7 261.0 846.2 845.1 341.2 259.5
5 m 804.8 804.1 353.3 254.6 812.9 812.5 340.3 255.9
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Table 3.9: The distortion coefficients at full resolution mode.

Left Right
k1 k2 p1 p2 k1 k2 p1 p2

1 m 0.1347 0.6513 0.0024 0.0058 0.1162 0.7675 0.0042 -0.0047
3 m 0.1130 0.6656 0.0015 0.0054 0.1180 0.6307 0.0020 -0.0046
4 m 0.1131 0.5601 -0.0028 0.0070 0.1111 0.5895 -0.0022 -0.0023
5 m 0.1004 0.5728 0.0023 0.0079 0.1114 0.6370 -0.0004 -0.0046

Table 3.10: The distortion coefficients at binned mode

Left Right
k1 k2 p1 p2 k1 k2 p1 p2

1 m 0.1295 0.6593 0.0013 0.0084 0.1252 0.6190 0.0031 -0.0029
3 m 0.1080 0.6842 0.0012 0.0075 0.1173 0.5990 0.0021 -0.0019
4 m 0.1059 0.6149 -0.0020 0.0071 0.1088 0.6296 -0.0013 -0.0015
5 m 0.1001 0.4388 -0.0040 0.0057 0.1018 0.4901 -0.0028 -0.0021

Table 3.11: The relative translation of the stereo cameras at full resolution mode and binned
mode. The translation is given in millimeters.

Full Resolution Binned Mode
tx ty tz tx ty tz

1 m -198.1 -0.6 0.1 -193.5 -0.6 1.4
3 m -193.1 -7.0 7.0 -195.7 -1.9 1.1
4 m -191.1 5.3 12.7 -197.1 -8.5 27.6
5 m -204.9 -2.1 19.5 -198.8 -6.3 50.5
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Experiments

In this chapter, the experiments testing the real-time WC-ROV VSLAM system are pre-
sented. The conducted experiments consisted of an laboratory experiment of the system
in an underwater obstacle course, and a Hardware In the Loop-testing (HIL) with the sys-
tem operating together with the Autonomy Framework of Minerva. Section 4.1 describes
the underwater obstacle course experiment where the system’s capability of estimating its
position, orientation, surrounding environment and detect its closest obstacle was tested.
The lab tests was conducted in both full resolution and binned mode, both under ideal
lighting conditions and in subsea simulated conditions. Section 4.2 describes the HIL-
testing in which the communication with the Autonomy Framework was verified using an
altered version of the LabView Communication node in Section 3.8 generating syntheti-
cally detected obstacles.

4.1 Obstacle Course Experiment

The obstacle course experiment was conducted in order to test the capabilities of the WC-
ROV VSLAM system estimating its position and orientation, surroundings, and detecting
its immediate closest obstacle. The testing was performed using both the full resolution
and binned mode. Both modes were tested in order to address the increased computational
complexity occurring at higher resolutions, and the increased light sensitivity using the
binned mode. Each of the modes were tested in ideal illumination condition with full
ambient lighting, and in subsea simulated conditions with no ambient lighting and artificial
illumination. The test data from the obstacle course was collected in rosbags on the laptop
computer, while the real-time runs of the WC-ROV VSLAM system was conducted using a
desktop computer by playing back the rosbags. The computers are described in Section 3.3.
Measurements obtained from the Qualisys motion tracking system acts as the ground truth
for the position and orientation estimates, while the measured dimensions of the obstacle
course acts as the ground truth for the estimated map. The setup of the experiment and
the procedure for data collection is explained in the following two subsections.

4.1.1 Underwater Obstacle Course Experiment Setup

The underwater obstacle course experiment was conducted in Marine Cybernetics lab
(MC-lab). The ground truth for the WC-ROV VSLAM motion and map estimates were
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respectively the Qualisys motion tracking system and the dimensions of the constructed
underwater obstacle course. The subsea simulated artificial illumination was generated by
using an underwater flashlight. The system used the selected camera calibration parame-
ters of Section 3.10, and some specifically determined exposure times and framerates for
both the resolution modes. The parts of the experiment setup is thoroughly explained in
the following paragraphs.

Marine Cybernetics lab: The MC-lab at Marinteknisk senter in Trondheim consists
of a 15 × 20[m] basin with a depth ranging from 0.5[m] to 1.5[m] installed with a wave
generator, towing carriage and Qualisys for motion tracking.

Qualisys Motion Tracking System The Qualisys motion tracking system is an optical
tracking system capable of tracking 6 degrees of freedom. Qualisys tracks the motion of
a desired object by optically measuring the position of optical targets installed on the
desired object. The Qualisys of MC-lab has three cameras installed above water and four
underwater cameras installed in the basin. The rod mounted camera rig was installed
with three Qualisys motion tracking target spheres for motion tracking. The spheres are
located 1.4 m in the y-direction of the stereo camera frame, see Figure 4.3b. The bone
length tolerance of the 6DOF tracking was set to 80 mm. The Qualisys measurements
were collected from the three cameras above the water due to these providing a larger
calibration volume.

Obstacle Course: The obstacle course was constructed by placing objects of known
dimensions to a selected area of 11.36 m×6.45 m in the basin. The area was selected based
upon the calibrated volume of Qualisys. The relative positions of the placed obstacles were
measured and presented in Figure 4.1. The obstacles were a soda case, a aluminum bar,
a hollow aluminum cube and a stepladder. Their dimensions are presented Table 4.2.

Figure 4.1: Obstacle course. The positions is given from the volumetric center of the obstacles.

Table 4.1: The dimensions of the obstacles of the obstacle course, where l is the length, w is the
width, h is the height and d is the diameter.

l w h d

Soda case 0.4 0.3 0.3 - [m]
Cube 0.54 0.54 0.54 - [m]
Stepladder 0.93 0.48 1.72 - [m]
Bar 2 - - 0.1 [m]
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Artificial Illumination: The subsea conditions was simulated by keeping the ceiling
lights of MC-lab turned off and mounting a flashlight to the stereo camera rig for artificial
illumination. The flashlight was a Magicshine MJ-810E diving torch producing 740 lm at
its maximum light intensity setting. The light intensity setting is set to max during the
experiment.

Exposure Time and Framerate: The exposure time and framerate of the full res-
olution mode and the binned mode were set individually. According to the bandwidth
calculations in Section 3.4.2, the upper restriction of the frame rate was bounded by the
camera shutter speed and could thus be set freely. Regarding the exposure time, the
histograms of the previously collected calibration data sets of Figures 3.19 and 3.20 were
analyzed. The histograms showed that the pixel intensities in full resolution mode was
shifted to the lower band implying that a reduced exposure time would reduce the in-
formation provided in the images. The histogram of the binned mode showed that the
pixel intensities were evenly distributed giving a lower requirement of the exposure time.
To maintain an acceptable framrate, the exposure time for the full resolution mode was
marginally reduced to 71 ms. The exposure time of the binned mode was set to 40 ms
to increase the framerate capacity. The framerate settings were matched to the selected
exposure time at 14 Hz for the full resolution mode and 24 Hz for the binned mode.
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(a) Full resolution sample image in FIG REFF.
Exposure time is 80 ms.
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(b) Binned mode sample image in FIG REFF.
Exposure time is 50 ms.

Figure 4.2: Image histogram of the full resolution and binned mode camera calibration sample
images.

4.1.2 Procedure of Data Collection

The underwater obstacle course test data was collected by moving the stereo camera rig
through the underwater obstacle course and recording the produced stereo camera outputs
in rosbags.

The movement of the stereo camera rig was conducted by maneuvering the stereo camera
rig from the small towing carriage of MC-lab, see Figure 4.3b. The rig was moved in a
circular pattern starting from the middle left of the obstacle course in Figure 4.1, moving
to the top right and then returning to the starting point. The circular pattern was selected
in order to induce loop closings of the ORB-SLAM2 algorithm. Performing the motion
of the stereo camera rig requires two persons. The first person operated the rig on the
towing cart, orienting and translating in the widthwise direction, while the second person
pushed the towing cart translating the rig in the lengthwise direction.
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The underwater obstacle course test data was recorded on the laptop computer using ros-
bags. The rosbag recordings contained the raw image streams of the left and right camera
of the stereo camera rig. The recordings were initiated simultaneously with the Qualisys
motion tracking system by having a Qualisys operator in the control room communicating
with the WC-ROV VSLAM system operator using wireless communication. The real-time
results of the underwater obstacle course experiment was produced by playing back the
rosbag data sets on the WC-ROV VSLAM system using the desktop computer. See section
Section 3.2 regarding ROS and rosbags.

(a) The underwater obstacle course with the four
placed obstacles: stepladder, cube, rod and soda
case

(b) The stereo camera rig with installed motion
tracking targets prior to obstacle course data col-
lection

Figure 4.3: The underwater obstacle course setup in MC-Lab.

4.1.3 Summary of Underwater Obstacle Course Experiment

To summarize the underwater obstacle course experiment description, data sets of four
different test cases were collected. The test cases are presented in Table 4.2.

Table 4.2: The different cases for obstacle course data collection

Resolution mode FPS [Hz] Exposure time [ms] Artificial Ilumiation

Case 1 Full Resolution 14 71 Yes
Case 2 Full Resolution 14 71 No
Case 3 Binned 24 40 Yes
Case 4 Binned 24 40 No

4.2 HIL-testing

The HIL-testing was conducted in order to verify the integration of the WC-ROV VSLAM
system in to the ROV Autonomy Framework. The experiment was performed by running
the ROV Autonomy Framework together with the control system of the ROV Minerva
connected to a simulator replacing the sensor signals of Minerva. Due to the difficulty
of arranging an image data set to match the simulator environment, it was decided to
test the integration of the systems by generating synthetically detected obstacles instead
of obstacles truly detected by the WC-ROV VSLAM system inputted by an image data
set. An altered version of the ROS LabView communication node of Section 3.8 was
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established sending TCP messages of detected obstacles from a predefined set of obstacles
instead of obstacles received from the point cloud processing node of Section 3.7. The
main objective of the HIL-testing was thus to verify the TCP communication protocol of
the WC-ROV system and the ROV autonomy framework.

The setup of the HIL-testing consisted of two computers connected by TCP connection.
The first computer ran the ROV Autonomy Framework and the Minerva control system
and simulator, while the second computer was the described desktop computer of this
thesis running the alternated Labview Communication Node. The messages conveying
the closest detected obstacle and ROV position between the two computers was set to
be transmitted at 2 Hz. The communication flow is illustrated in Figure 4.4, and details
about the Minerva simulator and Autonomy Framework is described in the manuscript of
the joint work by the master students working on ROV autonomy in Appendix A.

ROV	Autonomy
Framework

Altered	LabVIEW
Communication	Node

Desktop	Computer ROV	Autonomy	Framework	and	Simulator	Computer

ROV	SimulatorROV	Control	System

Figure 4.4: The communication between the two computers of the virtual experiment.
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Results

This chapter presents the results of the conducted experiments described in Chapter 4.
Section 5.1 presents the results of the four cases of the underwater obstacle course exper-
iment of Table 4.2, the test cases are: full resolution and binned mode in both ideal and
subsea simulated lighting condition. Section 5.2 presents the results of the HIL-testing.

5.1 Underwater Obstacle Course Experiment Results

The results of the underwater obstacle course experiments are presented using comparative
plots of the WC-ROV VSLAM system estimated and the measured Qualisys position and
orientation. The comparative plots are accompanied by the calculated error plots. The
notation of the orientations are φ, θ, and ψ for the roll, pitch and yaw. The results of the
map estimation is presented by plotting the estimated map points against the measured
dimensions of the underwater obstacle course in a three dimensional plot. The closest
obstacle detection results are presented using a three dimensional plot of the estimated
map points, the obstacle course dimensions and vector denoting the detection of a newly
detected closest obstacle. A new obstacle is defined as an obstacle that differs at a distance
of 0.15 m from the previously detected closest obstacle.

For each test case, a sample image from the data set in both unprocessed and CLAHE
applied version is given, and the used WC-ROV VSLAM static parameters are presented
in tables. In the tables, the clipl, tilew and tileh are the clip length, width and height of
CLAHE. The nf is the number of extracted ORB features extracted from a single image
in ORB-SLAM2, tr is the distance threshold of the RANSAC, and tc, cmin and cmax
are the respectively point distance threshold, minimum and maximum cluster size of the
Euclidean clustering. In the full resolution mode, the underwater obstacle course data
sets were run with halved the frequency giving the data sets doubled duration compared
to collected data set. More on this in the discussion of Section 6.1.1. In the parameter
table, it is presented as the framerate factor ffps which is multiplied by the original frame
rate.

The results were obtained using the recommended camera calibration parameters deter-
mined in the underwater camera calibration of Section 3.10. The recommended camera
calibration parameter sets obtained at 1 m was used in the full resolution mode, and the
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recommended camera calibration parameter set obtained at 3 m was used in the binned
mode.

Data set Alignment: Prior to the plotting of the WC-ROV VSLAM results and
Qualisys measurements, the data sets needed to be temporally and spatially aligned. The
temporal difference occurred due to the minor difference in the logging initiation of the
obstacle course data sets and the Qualisys measurements. The spatial difference was
due to the coordinate reference frames of the WC-ROV VSLAM system and Qualisys
measurements having different origin and orientation. The data sets were first temporally
aligned by comparing the shift in the estimated and measured attitudes, the data sets were
then spatially aligned by first rotating the estimated positions of the WC-ROV VSLAM
system by examining the error drift in the positions caused by misaligned reference frames,
and then translating both data sets starting points to the origin. To generate the error
plots, the Qualisys data set were interpolated to match the same amount of data points
as the ones generated by the WC-ROV VSLAM system. The map estimate and closest
detected obstacle plots were aligned by manually rotation and translating the point cloud
at trajectory to fit the measured underwater obstacle course.

5.1.1 Full Resolution Mode Ideal Light Conditions

Table 5.1: The static parameters of the WC-
ROV VSLAM system and data set attributes
of the test case full resolution mode ideal light
conditions.

CLAHE
clipl 4 [-]
tilew 5 [px]
tileh 5 [px]

ORB-SLAM2 nf 2400 [-]

RANSAC tr 0.13 [m]

Clustering
tc 0.15 [m]
cmin 20 [-]
cmax 10000 [-]

Data Set
FPS 14 [-]
ffps 1/2 [-]

Figure 5.1: Trajectory of ORB-SLAM2 (orange)
and Qualisys (blue) in the test case full resolution
mode ideal light conditions.

(a) Unprocessed (b) With CLAHE

Figure 5.2: Sample image from the full resolution mode ideal light conditions data set.
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5.1.1.1 Position Estimate

0 50 100 150 200 250 300 350

0

1

2

3

4

5

0 50 100 150 200 250 300 350

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

-0.3

-0.2

-0.1

0

0.1

0.2

(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) position.
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(b) The calculated error of the comparative plots of
OS2 and Q position.

Figure 5.3: The position estimates of the test case full resolution mode in ideal light conditions.

5.1.1.2 Orientation Estimate
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(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) orientation.
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(b) The calculated error of the comparative plots of
OS2 and Q orientation.

Figure 5.4: The orientation estimates of the test case full resolution mode in ideal light conditions.
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5.1.1.3 Map Estimation

Figure 5.5: The estimated map points and measured underwater obstacle course of the test case
full resolution mode ideal light conditions.

5.1.1.4 Closest Obstacle Detection

Figure 5.6: Top view of the closest detected obstacle of the test case full resolution mode ideal
light conditions, visualized as the red vectors.
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(a) (b)

Figure 5.7: Bird view (a) and (b) of the closest detected obstacle plot, of the test case full
resolution mode ideal light conditions.

5.1.2 Binned Mode Ideal Light Conditions

Table 5.2: The static parameters of the WC-
ROV VSLAM system and data set attributes
of the test case binned mode ideal light con-
ditions.

CLAHE
clipl 1.5 [-]
tilew 5 [px]
tileh 5 [px]

ORB-SLAM2 nf 1500 [-]

RANSAC tr 0.13 [m]

Clustering
tc 0.15 [m]
cmin 20 [-]
cmax 10000 [-]

Data Set
FPS 24 [-]
ffps 1 [-]

Figure 5.8: Trajectory of ORB-SLAM2 (orange)
and Qualisys (blue) in the test case binned mode
ideal light conditions.

(a) Unprocessed (b) With CLAHE

Figure 5.9: Sample image from the binned mode ideal light conditions data set.
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5.1.2.1 Position Estimate
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(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) position.
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(b) The calculated error of the comparative plots of
OS2 and Q position.

Figure 5.10: The position estimates of the test case binned mode in ideal light conditions.

5.1.2.2 Orientation Estimate

(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) orientation.
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(b) The calculated error of the comparative plots of
OS2 and Q orientation.

Figure 5.11: The orientation estimates of the test case binned mode in ideal light conditions.
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5.1.2.3 Map Estimation

Figure 5.12: The estimated map points and measured underwater obstacle course of the test
case binned mode ideal light conditions.

5.1.2.4 Closest Obstacle Detection

Figure 5.13: Top view of the closest detected obstacle of the test case binned mode ideal light
conditions, visualized as the red vectors.
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(a) (b)

Figure 5.14: Bird view (a) and (b) of the closest detected obstacle plot, of the test case binned
mode ideal light conditions.

5.1.3 Full Resolution Mode Subsea Simulated Lighting Condition

Table 5.3: The static parameters of the WC-
ROV VSLAM system and data set attributes
of the test case full resolution subsea simu-
lated lighting conditions.

CLAHE
clipl 16 [-]
tilew 9 [px]
tileh 6 [px]

ORB-SLAM2 nf 2400 [-]

RANSAC tr 0.13 [m]

Clustering
tc 0.15 [m]
cmin 20 [-]
cmax 10000 [-]

Data Set
FPS 14 [-]
ffps 1/2 [-]

Figure 5.15: Trajectory of ORB-SLAM2 (orange)
and Qualisys (blue) in the test case full resolution
mode subsea simulated lighting conditions.

(a) Unprocessed (b) With CLAHE

Figure 5.16: Sample image from full resolution mode subsea simulated light conditions data set.
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5.1.3.1 Position Estimate
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(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) position.
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Figure 5.17: The position estimates of the test case full resolution mode subsea simulated lighting
conditions.

5.1.3.2 Orientation Estimate
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(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) orientation.
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Figure 5.18: The orientation estimates of the test case full resolution mode subsea simulated
lighting conditions.
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5.1.3.3 Map Estimation

Figure 5.19: The estimated map points and measured underwater obstacle course of the test
case full resolution mode subsea simulated lighting conditions.

5.1.3.4 Closest Obstacle Detection

Figure 5.20: Top view of the closest detected obstacle of the test case full resolution mode subsea
simulated lighting conditions, visualized as the red vectors.
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(a) (b)

Figure 5.21: Bird view (a) and (b) of the closest detected obstacle plot, of the test case full
resolution mode subsea simulated lighting conditions.

5.1.4 Binned Mode Subsea Simulated Lighting Conditions

Table 5.4: The static parameters of the WC-
ROV VSLAM system and data set attributes
of the test case binned mode subsea simulated
lighting conditions.

CLAHE
clipl 8 [-]
tilew 85 [px]
tileh 64 [px]

ORB-SLAM2 nf 1500 [-]

RANSAC tr 0.13 [m]

Clustering
tc 0.09 [m]
cmin 20 [-]
cmax 10000 [-]

Data Set
FPS 24 [-]
ffps 1 [-]

Figure 5.22: Trajectory of ORB-SLAM2 (orange)
and Qualisys (blue) in the test case binned mode
subsea simulated lighting conditions.

(a) Unprocessed (b) With CLAHE

Figure 5.23: Sample image from binned mode subsea simulated light conditions data set.
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5.1.4.1 Position Estimate
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(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) position.
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Figure 5.24: The position estimates of the test case binned mode subsea simulated lighting
conditions.

5.1.4.2 Orientation Estimate
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(a) Comparative plot of the ORB-SLAM2 (OS2) es-
timated and Qualisys measured (Q) orientation.
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Figure 5.25: The orientation estimates of the test case binned mode in ideal subsea simulated
lighting conditions.
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5.1.4.3 Map Estimation

Figure 5.26: The estimated map points and measured underwater obstacle course of the test
case binned mode subsea simulated lighting conditions.

5.1.4.4 Closest Obstacle Detection

Figure 5.27: Top view of the closest detected obstacle of the test case binned mode subsea
simulated lighting conditions, visualized as the red vectors.
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(a) (b)

Figure 5.28: Bird view (a) and (b) of the closest detected obstacle plot, of the test case binned
mode subsea simulated lighting conditions.

5.1.5 Induced Loop Closures

In order to explore the effect of loop closures, the data set for the binned mode ideal lighting
condition was ran on the WC-ROV system in loops to forcibly induce loop closures. After
three loops, the resulting estimated map of the underwater obstacle course is presented in
Figure 5.29.

5.1.5.1 Closest Obstacle Detection

Figure 5.29: The estimated map of the binned mode ideal lighting condition test case run in
three loops.

5.2 HIL-testing Results

The results of the HIL-testing is presented using a three dimensional plot of the logged
ROV position messages received by the Autonomy Framework, and the logged obstacle
messages sent by the altered LabView communication node.

Figure 5.30 shows the data of the messages sent and received in an arbitrary simulation
of the ROV Minerva encountering an obstacle during a mapping mission. The blue line is
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the received global ROV position in the NED frame, while the red line denotes the ROV
position when detected obstacle messages were sent. In the simulation setup, the altered
LabView communication node sent the closest detected obstacle messages when the ROV
was within a distance of 5 m from the detected obstacle.

Figure 5.30: The data of the messages sent and received during an arbitrary simulation mission
consisting of the received ROV position (blue line), and the interval of when detected closest
obstacle messages is sent (red line).
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Discussion

6.1 Underwater Obstacle Course Experiment Discussion

This section presents the discussion of the results from the underwater obstacle course
experiment: the position estimates, map estimates and the closest obstacle detection.

6.1.1 Initial Remarks

Qualisys Problems

Before addressing the experiment results, the problems of the ground truth measurement
made by Qualisys needs to be mentioned. Due to Qualisys loosing the measurements of
the optical tracking targets, the stereo camera rig body frame of Qualisys was reinitial-
ized during both the binned mode test cases, and for the full resolution in ideal lighting
condition. The reinitialization caused the direction of the x- and y-axis of the Qualisys
body frame to change, and thus switching the signs of the measured roll and pitch. The
switching of signs was manually corrected in the orientation plots in the Figures 5.4, 5.11
and 5.25, but the difficulty of finding the exact moment of axis direction change, may have
caused the magnitude of the errors after the direction change to be somewhat misleading.
The loss of measurement occurred approximately halfway through in the mentioned test
cases, and is visible as missing measurements.

The reinitialization was not a problem in the full resolution subsea simulated lightning
test case due to ORB-SLAM2 failing to estimate before reaching halfway through the test.
Note that the Qualisys loss of tracking occured at the very end of the underwater obstacle
course, suggesting that the obstacle course was place poorly within the calibration volume
of Qualisys.

Halved Stereo Image Frequency in Full Resolution Mode

Initially, when running WC-ROV VSLAM system in full resolution mode, ORB-SLAM2
lost frequently tracking during the test runs. The tracking loss was caused by the increased
computational complexity of ORB-SLAM2 conducting feature detection and matching on
the full resolution images. The frequency of published estimations reduced from 14 Hz
to 7 Hz, resulting in the scenery change in between each received image pair processed
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by ORB-SLAM2 being to large for ORB-SLAM2 to track successfully. In order to still
examine the effects of using the full resolution capabilities of the cameras, the publishing
frequency of the raw stereo image pairs was halved from 14 Hz to 7 Hz, slowing down the
experienced motion of the stereo camera rig and doubling the running time of the tests.

Loop Closure

In all of the test cases, no loop-closures were induced. No previously visited keyframes of
ORB-SLAM2 were connected to new emerging keyframes while exploring. It meant that
no important spacial constraints where introduced to the BA, and thus eliminating the
possibility to correct for error drift. In the loop induced test of the binned mode ideal
light condition in Figure 5.29, it is shown that the top basin wall has been better aligned
with the introduction of loop closures. An important prerequisite for loop closures, is to
have partly the same viewing angle of the scene such that the keyframe signatures in the
bag of word place recognition module of ORB-SLAM2 are sufficiently similar enough to
be identified as connected. The path of the stereo camera rig in the underwater obstacle
course did barely show any revisited places from the same viewing angle, thus resulting
in no detected loop closures. If loop closures had occurred in the data sets, less drift in
mapping and positioning would have occur.

6.1.2 Position Estimates

The position estimates of ORB-SLAM2 in the WC-ROV VSLAM system in the Figures 5.3,
5.10, 5.17 and 5.24, shows in general to have small errors with low standard deviation in
the first 25 s to 40 s of the tests. However, as the system continuous on exploring the
environment the magnitudes of the errors increases. The increasing error is mainly caused
by ORB-SLAM2 failing to map the environment consistently during excessive rotations,
thus estimating the corresponding positions and orientations wrongly. It is clearly seen
during the 180° yaw rotation halfway through the tests, where the orientation errors in-
crease drastically. The orientation error manifests itself to the position estimates when the
camera translates, and the positions of x, y and z can be seen to drift accordingly. The
reader is referred to the Figures 5.10 and 5.11 of the binned mode ideal light conditions
for example of the position error drift, where the error magnitudes of the orientations
increases between 10° to 15° during the 180°. In the full resolution mode subsea simulated
lighting in Figures 5.17 and 5.18, the estimation failed before reaching the 180° turn, but
an small increase in the pitch error can be seen occurring by the abrupt yaw rotation at
around 30 s.

The accuracy difference in the position estimates running in ideal lighting conditions or
subsea simulated conditions are minimal. The biggest difference is the two times occur-
rence of tracking loss and relocalization in the binned mode subsea simulated lighting, on
contrary to the ideal lighting where non occurred. The tracking loss and relocalization is
seen in Figure 5.24 around 40 s and 75 s as a sudden change in the position. Tracking loss
and relocalization did also occur for the full resolution ideal light in Figure 5.3, but this
was not related to the lighting conditions, but rather because of computational time. In
the full resolution mode subsea simulated lighting, a complete tracking loss with no relo-
calization resulting in the estimation ending. On closer inspection of the data set, it was
discovered that the tracking loss occurred during a fast and sudden rotation proving to
much view difference for features of stereo image pairs and estimated map to be matched.

79



Chapter 6. Discussion

To summarize the position estimates, the estimated positions have good accuracy in local
areas in short time intervals, but the position error accumulates when the stereo camera
rig continues on exploring the environment. Abrupt and excessive rotations are a source
of increased errors during the exploration. Loop closures would correct the error drift
of the current position, but will introduce, as with relocalizations, a sudden jump in the
position estimate and hence limiting their application area e.g. could introduce gain jumps
if used in the WC-ROV controller causing unstable control and damages to the WC-ROV
actuators.

6.1.3 Map Estimates

The estimated map of each test case provided in general adequate spatial relation between
the obstacles of the underwater obstacle course, with some inconsistency of previously
mapped and newly mapped obstacles. The maps estimated in full resolution mode pro-
vided slightly higher local detailing compared to the binned mode, while the binned mode
ideal light condition test case, was the only test case where the last yaw rotation of 180°
was performed without loss of tracking. In its estimated map in in Figure 5.12, it is shown
that the basin wall mapped in the last rotation misaligned with the existing mapped basin
wall. This illustrates how the error drift affects the consistency of previously mapped
obstacles with newly mapped obstacle. The same test case was run doing three loops to
induce loops closures, and in its corresponding map in Figure 5.29, it can be seen how the
basin wall aligned after the map update due to the linking of loop keyframes in the BA.

The difference between the mapping in the ideal and subsea simulated lighting conditions
are related to the ORB features being detected in a smaller area of the camera FOV,
and the increased use of CLAHE introducing more noise in the visual measurements.
The smaller detection area of ORB features, were caused by the CLAHE not capable of
compensating for the complete uneven light distribution of the artificial light source. The
detected features were accordingly centered around the illuminated areas of the images,
giving an undesired low spread of tracked map points. This is undesired both for the
mapping purpose, and for the tracking in ORB-SLAM2. The increased noise of CLAHE,
did also cause phantom points to occur by feature points in the light cone of the artificial
illumination being matched and triangulated. Some of these points were caused by the
backscattering of larger particles in the water, which is something that could be expected
to happen more of if the WC-ROV VSLAM system is tested in the field on Minerva.

To summarize the map estimation, the estimated maps provided adequate spatial relations,
but with some inconsistency of previously and newly mapped obstacles. The full resolution
mode provides a slightly more locally detailed map, and the maps of the subsea simulated
environment have more noise than the ideal light conditions maps. Note that the maps
were manually aligned, making the true mapping results of the different test cases deviate
slightly.

6.1.4 Closest Obstacle Detection

The closest obstacle detection algorithm performs well in the underwater obstacle course.
In all test cases, it manages to detect the closest obstacle, and provided an accurate local
spatial relation between the stereo camera rig and immediate closest obstacles. In the
subsea simulated lighting conditions however, the algorithm was affected by the increased
noise of the point cloud, and the reduced accuracy of the basin floor estimation. The effect
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of the noise is visible as more arrows being drawn due to the fluctuation of the inferred
obstacle position, while the inaccurate estimation of the basin floor is shown as closest
detected obstacles being detected at the basin floor.

It was attempted to cope with the increased noise by reducing the clustering distance
threshold in the subsea simulated lighting test cases giving some improvements, but a
considerable amount of the fluctuations remained. The fluctuations of the inferred obstacle
position did also increase with the duration of the test runs. It occurred due to the
plane fitting of RANSAC being confused by new misaligned estimated basin floors being
introduced in the point cloud. The RANSAC plane is fitted at each received point cloud,
causing different set of points to be defined as seabed floor and removed. This causes
continuous changes in basis of the clustering, resulting in increased fluctuation in the
estimated position of the obstacles.

The obstacles detected at the basin floor, is caused by the RANSAC algorithm failing to
remove every point in the point cloud associated with the assumed flat seabed. This is
again due to the misalignment of the estimated basin floor, which results in the estima-
tion consisting of more than just one plane. The effect of noise and inaccurate seabed
estimations are especially seen in the binned mode subsea simulated lighting condition of
Figure 5.28, where the basin floor was inferred as the closest obstacle seven times.

To summarize the closest obstacle detection, the closest obstacle detection manages to
detect and infer the closest obstacle, but the performance reduces in the subsea simulated
test cases due to the increased noise levels and map estimation misalignment. The ro-
bustness of the algorithm is thus somewhat questionable, and the performance in an real
subsea environment, where the seabed could be naturally unaligned and contain curves, is
hard to address without real life tests. It is expected that the performance of the algorithm
would be negatively affected in real life tests.

6.1.5 Closing Remarks

Resolution Mode

The marginal quality increase using full resolution, and the lowered ORB-SLAM2 estima-
tion frequency makes it inferior to the binned resolution mode. The binned resolution mode
has increased light sensitivity, lowered signal to noise ration, and still manages to provide
visual measurements of the environment containing enough information for ORB-SLAM2
to estimate results similar to the full resolution mode. Additionally, does the increased
estimation frequency of ORB-SLAM2 provide more frequent estimations proving better
usability in autonomous applications.

Comparability to Real Life WC-ROV Operation

The differences between the underwater obstacle course experiment compared to real life
operation of an WC-ROV, is the size of the spatial and temporal interval covered during
real life missions, the deviation from a flat seabed assumption in true subsea environments,
the practically non existent turbidity in the basin of MC-lab limiting the scattering effects,
and the quick and excessive rotations happening during the data collection in MC-lab. Due
to these differences, it is hard conclude that the testes WC-ROV VSLAM system in the
underwater obstacle course reflects the real life performance of the system on Minerva.
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6.2 HIL-testing

The sole purpose of the HIL-testing in terms of the WC-ROV VSLAM system, was to
verify the integration of the system in to the ROV Minerva Autonomy Framework. The
provided plot in Figure 5.30 confirms that the communication was successful, thus proving
that field tests on the ROV Minerva using the WC-ROV VLSAM system together with
the ROV Autonomy Framework is possible.

6.3 Camera Calibration

It was initially expected to uncover a relation between the calibration parameters of the
stereo camera rig and the given calibration distance. However, no such relation was uncov-
ered due to the consistency of the calibration results largely depending on the quality of the
data set. The variation of the calibration data set quality originates in the images of the
calibration object having too similar planar orientation, thus producing weak constraints
for non-linear minimization problem performed to estimate the camera parameters. The
estimated camera parameters of poor calibration data sets, showed itself by estimating
way different focal lengths of the two cameras of the stereo camera rig, and giving wrong
relative orientations and translation.
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Conclusion

In this thesis, a real-time WC-ROV VSLAM system based on the stereo camera rig of
the WC-ROV Minerva and the VSLAM method ORB-SLAM2 has been developed and
implemented. In the system, ORB-SLAM2 estimates the position, orientation and a map
of the environment based upon stereo image pairs provided by the stereo camera rig. The
stereo images are before received in ORB-SLAM2, compensated for the uneven lighting
caused by artificial illumination using the contrast enhancing method CLAHE, and are
undistorted and rectified using the camera calibration parameters obtained from under-
water camera calibration. The estimated stereo camera rig position and point cloud of
ORB-SLAM2, is used in an clustering based closest obstacle detection algorithm in order
to infer the closest obstacle to the stereo camera rig. The algorithm is based upon fit-
ting a plane with RANSAC to filter out the points associated with the seabed, and then
perform Euclidean based clustering on the remaining points to identify the surrounding
obstacles. The real-time WC-ROV VSLAM system is capable of conveying the closest
detected obstacle to the Autonomy Framework of Minerva using TCP connection.

The performance of the real-time WC-ROV VSLAM system was tested in an underwater
obstacle course established in the basin of MC-lab. The system was both tested in ideal
lighting condition and in subsea simulated lighting conditions, using both the full resolu-
tion capacity of the cameras, and the binned resolution mode halving the resolution and
increasing the light sensitivity. In the underwater obstacle course experiment, the optical
motion measurement from Qualisys was used as ground truth for the estimated position
and orientation, while the measured obstacle dimensions were used as ground truth for
the estimated map and the closes obstacle detection. The integration of the WC-ROV
VSLAM system with the Autonomy Framework of Minerva, was verified with HIL-tests
conducted together with the master students working on the Autonomy Framework of
Minerva. The WC-ROV VSLAM system was altered to generate synthetic obstacles in-
stead of true obstacles detected by visual input.

The results from the underwater obstacle course shows that the position estimates have
good accuracy in local areas in short times intervals, but error accumulates when the
stereo camera rig explores the environment. The estimated maps provides adequate spatial
relations with some inconsistency of previously and newly mapped obstacles. The closest
obstacle detection manages to detect and infer the closest obstacles, but the performance
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reduces in the subsea simulated test cases due to increased noise levels and estimated
map misalignment. Additionally, shows the results that the benefits of using cameras
in full resolution is inferior to the binned mode due to reduced estimation frequency of
ORB-SLAM2.

To conclude this thesis, the use of the VSLAM method ORB-SLAM2 in WC-ROV VSLAM
system shows that the local situational awareness of WC-ROVs could be increased by using
the estimated position and map of ORB-SLAM2, and that they can be used in autonomous
features for the WC-ROV such as the proposed closest obstacle detection. The use of the
estimated position to increase the local positioning, is however more questionable due to
the increasing drift occurring and jumps in the estimates positions due to relocalization
and loop-closures.

Further Work

The following is the proposed further work in order to improve the WC-ROV VSLAM
system.

The first proposed further work, is to the test the WC-ROV VSLAM system in true subsea
conditions. Only by doing this, the real challenges of VSLAM applied on WC-ROV will be
revealed. The second, is to enhance the synchronization of the stereo images by installing
physical triggers between the stereo cameras. The Prosilica CG1380C support this feature,
and can be done by wiring the specific trigger pin-out of the cameras together. The third, is
to deal with lack of robustness in the closest detected obstacle algorithm of the WC-ROV
VSLAM system. It can be dealt with by investigating alternative point cloud filtering
and clustering techniques, focus on successfully removing the seabed associated points, or
introduce logic that eliminates closest obstacles detected at seabed. The last proposed
further work, is to investigate alternative underwater image enhancing methods. The
Gray-World transformations of Buchsbaum [44], or the Distance Adjusted Gray-World
approach of Bryson et al. [45] could be promising methods.
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Abstract—This paper proposes a semi-autonomous mission
planning and management architecture for a Remotely Operated
Vehicle (ROV). The work has focused on three main aspects
to increase the autonomy of ROV inspections: developing a
plan-based mission management architecture for ROV global
navigation and local intervention, integrating path planning as a
refinement of actions, and real-time communication with visual
VSLAM (VSLAM) systems for obstacle detection and motion
estimation. The architecture is inspired by the hybrid agent
architecture [1] using a deliberative and a reactive layer to
perform planned tasks and handle contingencies. Hardware-in-
the-loop (HIL) simulations are carried out to test and verify
the capability and feasibility of the proposed layered mission
management architecture. The results demonstrate that the
mission planning and management system can automatically
generate the correct plan and guide the ROV to achieve its
mission goals.

Index Terms—autonomy, obstacle avoidance (OA), mission
planning, visual-SLAM, path planning

I. INTRODUCTION

Enabling autonomy in ROV operations will increase effi-
ciency and save costs [2]. The general purpose of the work in
this paper is to develop a mission planning and management
system for underwater navigation and operation, and integrate
vision-based situation awareness in ROV localization and
obstacle detection. Under manual operation, human operators
face risks of wrongly analyzing the situation, performing
unnecessary or even fatal operations, increasing operation
risks and costs. A plan-based mission management system
can significantly avoid the above problems and simplify the
execution procedure.

By placing a docking station on the seabed, long-term
resident ROVs are feasible. With a docking station placed on
the seabed, ROVs can charge their batteries and receive and

transfer data to the operators onshore. Creating functionality
for this is a big step in the direction of fully autonomous
long-term missions. Furthermore, in order to increase ROV
autonomy, situation awareness and accurate local positioning
are required. Existing acoustic positioning systems covers the
global position of ROVs well, but tends to lack adequate
local positioning precision. Stereo cameras are cheap sensors
and can be used for ROV local navigation when paired with
computer vision techniques. Visual simultaneous localization
and mapping (VSLAM) is the problem of using visual inputs
to concurrently construct a map of an unknown environment
while estimating its location within it. VSLAM has been exten-
sively researched on land-based vehicles proving good results.
Developing subsea-based VSLAM systems could increase the
local positioning accurately and simultaneously grant local
situational awareness by providing a local map.

An overview of existing ROV standards considering un-
derwater vehicle autonomy is presented in [2]. Four levels
of autonomy were suggested in [3], being Manual Oper-
ation, Management by consent, Management by exception,
and Fully autonomous. The level of situational awareness,
decision making and control are increased with increasing
levels of autonomy. This paper aims to increase the level of
autonomy towards level three (Management by exception) for
ROV subsea intervention. A new definition of symbolic actions
for ROV mission planning and management is proposed, en-
abling automated planning to guide and integrate with mission
management systems for task execution.

A. Related Work

This paper is an extension of the work done in [4]. The
extension is concerned with implementing a governing mission



planner, deciding what the sequence of actions to carry out to
reach the goal states. In addition, a path planner is added to
ensure safe transit around known obstacles. VSLAM is further
included to detect and warn about unknown obstacles.

A similar approach to enhance path planning was tested in
[5]. An A* algorithm was proposed for the path planning of
an autonomous underwater vehicle (AUV) in a partially-known
environment with promising results. VSLAM was suggested
for localization, where only a simple VSLAM method was
used with a forward-facing sonar.

The benefits of choosing the A* algorithm as the path
planning method for underwater vehicles were described in
[6]. The algorithm has high maturity, is easy to implement
and store, and has a low computational cost. The downsides,
however, were that the algorithm has low efficiency and is not
suitable for large scale space searches.

Filtering-based approaches and graph-based formulations
are two typical kinds of method appiled to solve a SLAM prob-
lem. With the improvement of computer computing power,
graph-based SLAM has been mainstream in recent decades. A
graph is constructed whose vertices represent vehicle positions
or landmarks and the edge between two vertices represents a
sensor observation that constrains the vertices proposed by Lu
and Milios [7]. The sparse linear algebra makes it efficient to
solve the optimization of the error minimization problem.

The outline of the paper is as follows: Section II presents the
ROV mission management architecture, the mission planning
methods, path planning for homing and docking, and vision-
based motion estimation and obstacle detection strategy. The
simulation results are presented and discussed in Section III.
Section IV concludes on the performance of the proposed
semi-autonomous mission planner and suggests modifications
for further work.

II. METHOD

A. ROV Control System and HIL Simulator

The ROV control system used for simulations has been
developed by the Applied Underwater Robotics Laboratory
(AUR Lab) since 2010. The control system was firstly de-
veloped for DP and trajectory tracking [8]. As shown in Fig.
1, the control system is built on two basic modules: Frigg
Graphical User Interface (GUI) and Njord Control system.
The Frigg GUI enables high-level control and mode selection
of missions, while the Njord control system performs low-
level control, including a guidance system and a Nonlinear
PID-controller. The proposed Autonomy Framework is added
in Frigg GUI, providing autonomous mission execution com-
mand for lower-level control.

The Verdandi Simulator is a HIL simulator which incor-
porates hardware components into the numerical simulation
environment. The HIL simulations are necessary to test the
performance of the system and debug the system before
fieldwork. The simulator constructs a mathematical model of
the ROV and can take disturbance and environmental forces
into consideration during virtual experiment. HIL simulations

Fig. 1. Structural chart of the ROV control system

are implemented by connecting the Verdandi simulator and the
ROV control system using TCP connection.

B. Mission Planning and Management Architecture

A design of hybrid mission planning and management sys-
tem is proposed, consisting of a deliberative layer performing
planned actions to achieve mission goals, a reactive layer re-
sponding fast to non-predictable events and a control execution
layer acting as a coordinate mechanism that determines if
actions from either the deliberative or the reactive layer should
be executed by the lower-level controllers. Fig. 2 is a diagram
of the hybrid mission planning and management system.

The deliberative layer performs autonomous behaviors
based on known situations and events. The mission planner
in this layer enables the ROV to plan tasks automatically and
performs necessary re-planning. For the given user commands
and known environment derived from sensors and a world
model, the mission planner can recognize and categorize the
tasks, generating a plan that fulfills the mission requests, and
deliver a set of actions or commands to the mission controller.
The mission will be re-planned automatically due to events
such as failures in control, environment changes (such as
the encounter with unexpected obstacles), and changes of
mission target. In the deliberative layer, a layered design is
implemented for global navigation and local operations as sub-
missions. With actions of Station Keeping, Launch, Descent,
Transit and Operation, global navigation enables the vehicle
to approach a target location where local operation is to be
performed. After the performed operation, the ROV is asked
to go back to the predefined ending location. The sub-planner
acts as the refinement of Local Operation. Possible actions
for Local Operation are Mapping, Sampling and Charging.
A fast-forward search [9] method for mission planning is
implemented to generate a near-optimal plan that fulfills the
goals. An A* path planning algorithm for homing and general
path planning is implemented in operation as refining of
sampling and charging. A docking option is also implemented
to simulate full homing and docking behavior.

The reactive layer responds to contingencies by analyzing
sensor data, reasoning unexpected or unknown situations,
modifying and interrupting missions. Exceedance of cable
tension and obstacle avoidance are the two reactive behaviors
implemented in the reactive layer. For actions that require



Fig. 2. Mission Planning and Management Architecture

path planning, such as sampling and charging, new detected
obstacles are updated to the map, and re-planning is called
to generate a new path that avoids both the known and the
detected obstacles. For the other actions, a new waypoint is
created based on the distance to the obstacle, the size of the
obstacle and safety parameters for avoiding obstacles, as seen
in Fig. 3.

A method of heading change is used to deal with this
situation. When encountering a new obstacle, the direction of
heading change is determined by β and ψ. β demonstrates the
relative direction of the obstacle to the vehicle, and ψ is the
heading angle of the vehicle. If the heading angle ψ is smaller
than β, the new heading angle is ψnew = β−α. Otherwise, the
new heading angle is ψnew = β+α. The angle α is calculated
as sin(α) = R

S , based on the diameter of the dangerous region
and the distance between the vehicle and the obstacle. d is the
diameter of the obstacle, and e is a safety parameter. Thus,
R = D

2 + e is the radius of the dangerous region. L is the
calculated length from the vehicle to the new waypoint. The
position of the new waypoint is calculated based on the new
heading angle and length L.

Fig. 3. Obstacle avoidance behavior

The global coordination function evaluates the output be-
haviors from the two architectures and will transfer inputs
from the reactive architecture to the executor once it is acti-
vated. Since only one deliberative action is activated at a time
in the deliberative layer and a coordinate mechanism is applied
in the functional reactive layer to select the behavior with the
highest priority among all activated behaviors under this layer.
The control execution layer is thus organized as a selection of
outputs between the deliberative layer and the reactive layer.
It is responsible for deciding which layer and which action is
activated and summing up the necessary parameters required
by the control system.

C. Integration of Path Planning

The A* algorithm, created by [10], was selected for path
generation during missions that require path planning because
it is easily adaptable, simplistic and performs well in known
environments with low obstacle density [11]. Euclidean dis-
tance, presented in (1), was used for the heuristic function
since it allows for movement in all eight neighboring tiles in
a 2D grid space.

√
(xcurrent − xgoal)2 + (ycurrent − ygoal)2 (1)

As the entire mission uses depth-control, a 2D path is jus-
tified. However, as there will be fluctuations and uncertainties
in depth, known obstacles above and below two meters of the
desired depth will be seen as relevant obstacles by the algo-
rithm. This is also reasonable considering the specifications of
the simulated ROV.

The path created by the A* algorithm can often include
unnecessary turns for an underwater vehicle (UUV), which
can move in any direction, not just in a straight path from
the center of one tile to the center of the next. To make the
path more smooth and avoid unnecessary turns, the smoothing
method Moving Average Filter was used, implemented with
the equation shown in (2).



ys(i) = (y(i−2)+y(i−1)+y(i)+y(i+1)+y(i+2))/5 (2)

Because of the Constant Jerk Guidance [12] used in the
ROV control system, a high number of waypoints would mean
a high number of stop’s and go’s. For this reason, collinear
waypoints were firstly removed altogether from the generated
path from the A* algorithm. However, as suggested in [13],
the distance between waypoints should be seen in relation to
the requirement of position computation. With longer path
segments, the possibility of drift is higher. For this reason,
a max waypoint distance is set. A comparison between the
original path and the modified path can be seen in Fig. 4.

1) Docking Behavior: As the intended docking station for
the mission is a platform docking station, a simple docking
behavior is created. A pre-defined path, which can be seen
in Fig. 5, is calculated from the size and orientation of the
docking station. The path is intended to guide the UUV from
the endpoint of the homing path to a waypoint with a fixed
distance from the entrance of the dock, then to the next
waypoint above the intended dock position, before descending
down to land on it. The exact docking mechanism has not been
addressed in this paper.

D. Integration of VSLAM-based motion estimation

The flow diagram of the VSLAM system is presented
in Fig. 6. The VSLAM system for motion estimations is
programmed with C++ using open-source libraries OpenCV
and g2o. Images from underwater environments often have
different contrast in different image parts due to poor lighting
conditions. It is hard to detect features in the low contrast
part, so image enhancement is necessary. Every time a new
frame is sent to the system, contrast limited adaptive histogram
equalization (CLAHE) [14] is implemented to enhance the
contrast of stereo images. It works by mapping the histogram
of the image to another histogram with a wider distribution
of intensity values, so the intensity values are spread over the
whole range.

ORB algorithm [15] is implemented to detect and de-
scribe features. Then feature matching is performed by using
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Fig. 6. Flow chart for VSLAM-based motion estimation

Hamming distance for ORB descriptors to find projection
relationships between 2D pixel features and 3D map points
from the VSLAM map. Generally, the matching results are not
good enough to directly estimate the camera position because
mismatching is hard to avoid. Distance filter and the RANSAC
algorithm [16] are used together to remove mismatches. Next,
the camera position is estimated by using the EPnP algorithm
[17] based on the matched 3D-2D points in feature matching.

The map of the VSLAM system stores all map points and
keyframes. It is initialized when the first stereo image frame
is processed. Then the map is updated when new keyframes
are added. A keyframe is chosen if the number of matched
features in the current frame is small, and new map points
are required. Features on the left and the right camera images
are matched to compute new map points. Graph optimization
[18] is implemented to minimize the projection error between
observed and predicted image pixel locations to find the best
map point positions and keyframe camera positions.

The local positions of the camera are converted to the
local positions of the ROV based on the camera coordinates
in the ROV body frame. The ROV positions are transferred
to the ROV mission planner using TCP communication. The



system obtains the initial position of the ROV from the mission
planner when it starts running so that the local position can
be converted to a global position.

E. Integration of VSLAM-based Obstacle Detection

The real-time VSLAM-based Obstacle Detection revolves
around utilizing the outputs of the renowned Visual VSLAM
method ORB-SLAM2 [19]. The outputs of ORB-SLAM2 are
the estimations of the ROV pose and point clouds of the
surrounding environment of the ROV. From these two outputs,
the closest detected obstacle is inferred. The obstacle detection
system is implemented in C++ using the framework Robot
Operating System (ROS). It is comprised of: a camera driver
for running the stereo camera rig of the ROV Minerva, an
image processing part using the open-source library OpenCV,
an existing ROS implementation of ORB-SLAM21, a point
cloud processing part using the open-source library PCL and a
communication part communicating with the ROV Autonomy
Framework providing the closest detected obstacle. The com-
munication is conducted using TCP connection. The system
architecture is displayed in Fig. 7.

The stereo camera rig of Minerva consists of two Allied
Vision Prosilica GC1380C mounted horizontally displaced. By
considering the overlapping field of view and expected dispar-
ity values, the horizontal displacement, or baseline, is set to 0.2
meters. The cameras are configured in binned mode, reducing
the resolution, but increasing the light sensitivity and signal to
noise ratio. The image processing undistorts and rectifies the
stereo image pairs based upon obtained underwater calibration
parameters, and additionally, contrast enhances the images
using CLAHE. The point cloud processing first removes point
cloud points associated with the seabed by fitting a plane
using RANSAC; the remaining points are clustered using the

Left	Camera

ORB-SLAM2

Point	Cloud	Processing

Image	Processing

Underwater
Scenery

LabVIEW
Communication

Camera	Driver

Point	Cloud	of	Underwater	SceneryEstimated	Camera	Pose

Closest	Detected	Obstacle

Processed	Stereo	Image	Pairs

Right	Raw	ImageLeft	Raw	Image

ROV	Autonomy
FrameworkClosest	Obstacle	Message

Real-time	Processing	Computer	Running	ROS

Right	Camera

Stereo	Camera	Rig

ROV	NED	Position

Fig. 7. System architecture of the vision based obstacle detection system

1http://wiki.ros.org/orb slam2 ros

Euclidean based clustering method of [20]. The obstacle sizes
od and position op are inferred using

od = cmax − cmin

op =
cmax + cmin

2

(3)

where cmax and cmin are the maximum and minimum
point position of the cluster. The closest detected obstacle
is determined by finding the obstacle with the shortest Eu-
clidean distance to the current estimated ROV pose. The
LabView communication handles the TCP connection with
the Autonomy Framework and generates messages containing
information about the closest detected obstacle on the format
in (4) if the distance threshold of five meters is violated.

[
xgo, ygo , zgo , do

]
(4)

The message is an array of doubles containing the obstacle
position in the NED frame xgo, ygo and zgo , and the obstacle
spherical diameter do. The spherical diameter is determined
by selecting the largest estimated dimension of od.

III. SIMULATION RESULTS

A. VSLAM-based motion estimation

The VSLAM system performance is tested on a seabed
image set from a mission at Stokkbergneset in February 2017
by NTNU ROV SF-30k. For the simulation, 60 paired left and
right camera images with a time interval of 2 seconds are used.
The result presented in Fig. 8 is simulated on this image set
and the corresponding navigation data from the ROV control
system.

The result shows that the VSLAM motion estimation suc-
cessfully estimates the position of ROV in this simulation. The
estimated orientation of ROV movement is slightly different
from the true orientation, which causes errors in both north
and east positions.
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Estimated North-East position from ROV sensors and SLAM system

Fig. 8. Simulation of VSLAM-based motion estimation



B. VSLAM-based obstacle avoidance

The real-time VSLAM-based obstacle detection system is
tested at the Marine Cybernetics Lab (MC-Lab) at Marin
teknisk senter, NTNU. The stereo camera rig is mounted to a
rod and moved through a measured underwater obstacle course
installed in the basin of MC-Lab. Subsea light conditions
are simulated by having no ambient light and an artificial
light source installed on the rod. The results are presented in
Fig. 9 where the measured obstacle course is plotted together
with the estimated trajectory (OS2), estimated point cloud
and the currently estimated closest obstacle outputted if the
distance to the previously detected closest obstacle is larger
than 0.15 meters. The obstacle course consisted of two boxes,
a stepladder and rod.

Fig. 10 presents position estimates and desired positions of
the vehicle in the North-East (NE) plane, giving satisfactory
simulation results of reactive obstacle avoidance. A VSLAM-
based obstacle detection code is programmed to test the
distance between the vehicle’s current position and obstacles.
When the distance becomes shorter than five meters, the
vehicle will perform reactive obstacle avoidance. Table III-B
shows the location for three detected obstacles. Under some
circumstances, more than one obstacle might be encountered
at a time. The system chooses the nearest one as the current
obstacle and executes the obstacle avoidance correspondingly.

The vehicle is performing the Transit action when the first
obstacle is detected. The vehicle firstly moves to the desired
position and then detects the Obstacle 01, performing obstacle
avoidance correspondingly. Before reaching the waypoint for
avoiding Obstacle 01, the vehicle detects a new Obstacle 02
and generates a new waypoint to avoid it. The third obstacle
is detected after reaching the waypoint for avoiding Obstacle
02. The test result shows that the obstacle avoidance algorithm
successfully guides the vehicle to avoid collisions during
mission execution. The mission planning and management
system can encounter more than one obstacle at a time and
update its waypoints based on the position of the closest
obstacle. The system is also able to tackle obstacle avoidance
when performing other actions. Reactive obstacle avoidance is
also tested in Section III-C.

Fig. 9. Laboratory experiment of VSLAM-based obstacle detection.

Fig. 10. Simulation of obstacle avoidance

TABLE I
OBSTACLES IN SIMULATION OF OBSTACLE AVOIDANCE

Obstacle North East Depth Diameter [-]

01 7036914 570120 15 2 m

02 7036912 570114 15 1 m

03 7036922 570112 15 1 m

C. Autonomous mission planning and management

1) Mapping, charging and OA: Obstacle Avoidance and
Charging are tested during Mapping as reactive actions. The
positions of the two manually set obstacles are listed in
Table III-C1. The testing is carried out with hardware-in-the-
loop (HIL) simulation. Fig. 11 shows that there are a lot of
fluctuations when the vehicle changes its heading.

The performance of waypoint tracking is mainly determined
by the low-level control system.

In the mission, the vehicle starts at (7036892, 570128,
10) in UTM coordinates and then moves towards waypoints
generated from the mission planner sequentially. The vehicle
firstly performs Launch and Descent to the desired depth of
operation. Then, the vehicle transits to the starting position
of mapping and performs mapping, tracking six waypoints
sequentially, found in Table III-C1. The desired trajectory of
mapping is defined before starting the mission, while the path
planner plans the waypoints of charging for homing once the
Charge action is activated. During mapping, ’low battery’ is
manually set, indicating that the vehicle has to abort mission
and move to the docking station to charge. The charging
station is set at (7036882, 570140, 27).

TABLE II
OBSTACLES IN SIMULATION OF MAPPING, CHARGING AND OA

Obstacle North East Depth Diameter [-]

01 7036900 570144 15 2 m

02 7036886 570125 15 2 m



Fig. 11. Simulation of mapping, charging and OA

TABLE III
WAYPOINTS OF MAPPING

Waypoint North Position East Position Depth [-]

01 7036912 570143 15 m

02 7036887 570143 15 m

03 7036887 570138 15 m

04 7036912 570138 15 m

05 7036912 570133 15 m

06 7036887 570133 15 m

2) Full mission with OA: A similar mission as above, now
with all four global states and three local states executed, was
simulated. The resulting plots can be seen in 2D in Fig. 12
and in 3D in Fig. 13. Four ”unknown” obstacles were detected
by the VSLAM obstacle avoidance. The positions of theses
obstacles are presented in Table III-C2. The action sequence
of the full mission is Launch-Descent-Transit-Mapping (OA
and Charging)-Sampling (OA)-Transit (OA)-Descent.

This simulation includes testing of obstacle avoidance for
actions Transit, Mapping and Sampling. For Transit and

TABLE IV
OBSTACLES IN FULL MISSION

Obstacle North Position
[m]

East Position
[m]

Depth
[m]

Diameter
[m]

01 7036900 570144 15 2

02 7036907 570122 16 1

03 7036900 570112 15 1

04 7036893 570105 15 2

Fig. 12. 2D simulation of mission employing all states

Fig. 13. 3D simulation of mission employing all states

Mapping, the reactive behavior is turning its heading and
move to a temporary waypoint for obstacle avoidance. During
Sampling, obstacle avoidance is implemented by adding the
newly detected obstacle in the obstacle list and replan to
generate a new path with the A* algorithm which avoids the
new obstacle.

IV. CONCLUSION

We have successfully implemented the autonomous mission
planning and management system in the ROV control sys-
tem, integrating vision-based situation awareness for motion
estimation and obstacle detection. The system uses mission
planning, guiding the vehicle to achieve the mission requests,
and path planning is applied for local operations.

The use of the A* algorithm in an autonomous mission
planning and management proved to be a good choice, as



it was convenient to implement it in the already existing
framework. Adapting it to react to newly detected obstacles
was also done in a successful manner, creating a robust path
planner for the intended short range missions.

The VSLAM-based obstacle detection system performs well
being capable of providing the currently closest obstacle in
its locally estimated surroundings. However, as the laboratory
experiments results imply, the removal of every seabed associ-
ated map point is not successful as some of the closest detected
obstacles are located at the basin floor, and the positional
consistency of the newly and previously mapped obstacles
degrades over the running time due to accumulated drift.

The VSLAM-based motion estimation presents good simu-
lation results, using images derived from previous sea-trials.
The testing result is valid in short periods. The deviation in-
creases with the testing process. However, real-time VSLAM-
based motion estimation has not be tested yet.

Since conducting the joint missions for this paper, both the
docking behavior and A* path planning behaviors have been
altered. A safety distance around obstacles have been added in
the A* algorithm, and an ultra-short-baseline transducer has
been simulated to situate at the dock to ensure more reliable
position measurements when docking.

A. Further work

To verify the capability and performance of the autonomous
mission planning and management system, sea-trails should be
conducted. During simulations, sensor noise and environmen-
tal forces (such as current and waves) are not simulated. Also,
the simulations use depth control during the execution of the
mission. For further improvement, a combination of depth and
altitude control should be designed such that the ROV could
execute actions more accurately also relying on measurements
from a doppler velocity log.

Up to now, the mission planning and management system is
only capable of performing observations. Sampling and dock-
ing behaviors are simplified as trajectory tracking generated
by path planning. More refinement should be designed for the
actual realization of these actions.

The path planning algorithm is developed in a 2D plane
while the ROV moves in a 3D underwater environment. The
path planning in 3D can be further optimised including a full
3D model to the path generation procedure.

The VSLAM system for motion estimation is tested in a
short time simulation. Loop closure techniques are expected
to be added in the VSLAM system to reduce estimation error
for long time position estimation.
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Appendix B

FieldOfViewCalculations.m

1 %% OVERLAPPING FIELD OF VIEW IN WATER CALCULATIONS:
2 % Author: Erlend R ilid Vollan
3 % Last editet 25.04.2020
4

5 % Assumptions:
6 % * Stereo geometry is assumed. The image planes are aligned
7 % * The field of view is symmetric along the principle axis
8

9 % b = baseline [m]
10 % l tot = distance to calculate field of view overlap [m]
11

12 % rw l = resolution width left camera [px]
13 % rw r = resolution widt right camera [px]
14 % f l = focal length left camera in air [px]
15 % f r = focal length right camera in air [px]
16 % theta l = field of view left camera in water [rad]
17 % theta r = field of view right camera in water [rad]
18

19 b = 0.2;
20 l tot = 1;
21

22 rw l = 1360;
23 rw r = 1360;
24 f l = 1109.1;
25 f r = 1112.3;
26

27 %% Determine field of view each camera in air
28 % theta l a = field of view left camera in air [rad]
29 % theta r a = field of view right camera in air [rad]
30

31 theta l a = 2*atan((rw l/2)/f l);
32 theta r a = 2*atan((rw r/2)/f r);
33

34 %% Correct the field of view due to refraction between air and water
35 % n a = refractive index in air [−]
36 % n w = refractive index in water [−]
37 n a = 1;
38 n w = 1.33;
39 theta l = 2*asin((n a/n w)*sin(theta l a/2));
40 theta r = 2*asin((n a/n w)*sin(theta r a/2));
41 f l corr = (rw l/2)/(tan(theta l/2));

X



Appendix B. FieldOfViewCalculations.m

42 f r corr = (rw r/2)/(tan(theta r/2));
43

44 %% Calculate minimum distance for given baseline
45 % l min = minimum where field of view overlap happens [m]
46 syms b l s b r s l min s
47

48 E1 = b l s + b r s == b;
49 E2 = b l s/(tan(theta l/2)) == l min s;
50 E3 = b r s/(tan(theta r/2)) == l min s;
51

52 solx = solve(E1,E2,E3,b l s,b r s,l min s);
53

54 l min = solx.l min s;
55

56 %% Calculate overlapping field of view for given distance
57 % l ofov = length where the field of views are overlapping
58 % ofov l = overlapping field of view from left camera
59 % ofoc r = overlapping field of view from right camera
60

61 l ofov = l tot − l min;
62 ofov l = tan(theta l/2)*l ofov;
63 ofov r = tan(theta r/2)*l ofov;
64

65 OFOV = ofov l + ofov r;
66

67 %% Calculate field of view for left and right camera
68 %FOV l, FOV r = Field of view for left and right camera
69

70 FOV l = 2*tan(theta l/2)*l tot;
71 FOV r = 2*tan(theta r/2)*l tot;
72

73 %% Calculate percentage of overlapping field view of total
74 %TOFO = total field of view
75 TOFOV = FOV l + FOV r − OFOV;
76 percentage covered = double(OFOV/TOFOV);
77

78 fprintf('Percentage of overlapping FOV of total FOV at %.1f [m] is %.1f ...
percent \n', l tot, percentage covered*100);

79 fprintf('Minimum distance from cameras to scene is %.3f [m] \n', ...
double(l min));

XI
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