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Summary

Ringing is a phenomenon that can cause a threat to the structural integrity of offshore wind

turbine monopiles. It is characterized by sudden transient oscillation at a wave frequency

significantly lower than the eigenfrequency of the structure, induced by higher harmonic

wave loads. Bottom fixed offshore wind turbine monopiles are located at finite water

depth, and are more likely to experience ringing as waves in finite water are significantly

nonlinear compared to waves in deep water. With a natural period of 3-5 seconds, the

natural frequency can coincide with 2ω, 3ω and 4ω components of incoming waves. The

FNV theory by Faltinsen, Newman and Vinje (1995) was developed to model nonlinear

wave loads, but Kristiansen and Faltinsen (2017) found that the third harmonic wave load

on a bottom mounted circular cylinder is overpredicted by existing FNV theory for long

and steep waves. In order to determine if three dimensional effects not accounted for in

present analytical expressions can explain the discrepancies, a 3D CFD-FNV load model

has been developed in this thesis.

The 3D CFD-FNV load model combines two dimensional CFD simulations by the use of

strip theory and existing terms in FNV theory, with the addition of a slender body term ac-

counting for three dimensional effects in the total horizontal wave loads on the monopile.

Two dimensional CFD simulations used in the load model were performed using Open-

FOAM, and convergence studies of the numerical model indicated that the model was

unable to accurately model flows with KC > 6. Comparison of the results from the 3D

CFD-FNV load model showed that the three dimensional term did not significantly affect

the total horizontal force amplitude. Investigation of the added term did however show that

the third harmonic of the three dimensional force is out of phase with the third harmonic

of the viscous force from two dimensional CFD simulations, indicating that three dimen-

sional effects do in fact reduce the total horizontal force. The contribution to the third load
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harmonic from the three dimensional force was largest for steep and long waves, in the

range where analytical expressions overpredict the third harmonic force. The amplitude of

the three dimensional force is this range was 5-6% of the total horizontal force amplitude,

which substantiates the idea that three dimensional effects are the reason for discrepancies

between theoretical and experimental results for the third harmonic load on monopiles.

The results obtained in this thesis do however show that the added slender body terms

in the 3D CFD-FNV load model do not alone account for the discrepancies in the third

harmonic load predictions. Recommendations for further work include a study of other

three dimensional effects, for instance vortex shedding in the yz-plane. Experiments show

a local rear run-up that is believed to be caused by a high pressure zone from vortex

shedding, and higher harmonic load contributions from this may explain the discrepancies

in the predicted third harmonic load.
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Chapter 1
Introduction

This chapter presents the motivation for studying ringing loads on offshore wind turbine

monopiles, and a background of the problem. A scope of the thesis and an overview of the

report structure is provided.

1.1 Motivation

Humans have affected the Earth’s climate system at an unsustainable rate through land-

scape transformations, use of natural resources and waste generation since the pre-industrial

period in the 18th century (Hoekstra and Wiedmann, 2014). Intergovernmental Panel on

Climate Change (IPCC) states that human made global warming is causing alterations in

the current climate system. Among these changes are increased temperatures and more

heatwaves on land and in the ocean, and there is evidence that the global climate change

relative to the pre-industrial period has impacted both ecosystems and human systems

(Hoegh-Guldberg et al., 2018). As a result of the climate change discussion, the Paris

Agreement (UNFCCC, 2015) was signed at the United Nations Framework Convention

on Climate Change (UNFCCC) in December 2015 in Paris. The Paris Agreement is a
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global agreement made in order to ensure that the nations of the world commit to con-

fine climate change through national determined contributions. The agreement states that

the ”[...] parties share a long-term vision on the importance of fully realizing technology

development and transfer in order to improve resilience to climate change and to reduce

greenhouse gas emissions” (UNFCCC, 2015, p.14). It is recognized by the parties that

there is need for a significant reduction of global emissions, and the objective of the agree-

ment is to keep the global temperature rise in the 21st century below 2◦C.

A part of the response is to find replacements for fossil fuel generation with low carbon

energy production, such as solar and wind power. The International Renewables Agency

(IRENA) states that wind and solar power will lead the way for a global transformation

of the electricity sector. According to IRENA (2019b), over 90% of the carbon dioxide

emissions reductions related to energy necessary to achieve the 2◦C target can be reached

through accelerated deployment of renewables, along with electrification and increased

energy efficiency. IRENA (2019a) predicts that onshore and offshore wind power com-

bined will generate more than 35% of the total electriy needs by 2050. Hence, scaling up

wind energy investments is key in order to meet the targets set in the Paris Agreement.

Figure 1.1: Offshore wind power deployment based on historical values from IRENA’s renew-
able capacity statistics (IRENA, 2019c) and future predictions based on IRENA’s analysis (IRENA,
2019a). Figure retrieved from IRENA (2019a).
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The predicted offshore wind deployment over the next decades are presented in Figure 1.1,

demonstrating that the total installed offshore wind capacity will increase significantly

over the next decades. IRENA (2019b) predicts that the total installed offshore wind ca-

pacity in 2050 will be near 1 TW , which is 40 times the 2018 capacity at 23 GW .

The use of offshore wind enables countries to harness higher wind resources in densely

populated coastal areas. The visual and environmental impact of the turbines are far less

offshore as opposed to onshore wind farms, in addition to no size limit due to transport by

rail or road. Offshore wind is considered to be one of the emerging renewables technol-

ogy, gaining momentum through policy and financial incentives over the last two to three

years (IRENA, 2019a). With the expansion of the offshore wind market, it is increasingly

important to understand the marine environmental effects on the wind turbines.

Offshore wind farms are more expensive than their onshore counterparts, with 50% higher

investment perMW (Morthorst and Kitzing, 2016). This is a result of larger structures and

more complicated installations, along with higher cost for foundations, construction and

grid connection. The costs related to the foundations and support structure can however

be reduced with optimized design, along with cheaper production and faster installations

offshore (Kallehave1 et al., 2015). Some typical foundations concepts for bottom fixed

offshore wind turbines (OWTs) are shown in Figure 1.2.

Figure 1.2: Typical foundation concepts for bottom fixed OWTs. (a) Gravity based foundation, (b)
monopile foundation, (c) caisson foundation, (d) multipile foundation, (e) multi caisson foundation
and (f) jacket foundation. Figure retrieved from Kallehave1 et al. (2015).
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The monopile foundation (b) in Figure 1.2 is the most popular support structure as of

present day, and represented 70% of all newly installed foundations in 2019 (WindEurope,

2019). A monopile foundation is a circular cylinder structure that is driven into the seabed,

extending over the mean sea level.

1.2 Background

The average distance to shore for offshore wind farms in Europe in 2019 was 59 km

at an average water depth at 33 m (WindEurope, 2019). Bottom fixed OWT monopiles

are mounted in finite water depth, and designing offshore structures at finite water depth

brings along challenges. Waves in finite water depth, especially in storm conditions, are

significantly nonlinear compared to waves in deep water (Dean and Dalrymple, 1991).

Nonlinear waves pose a threat to the structural integrity of the monopile as it can lead to

a phenomena called ringing. Ringing is a sudden transient oscillation leading to large

structural deflections of the structure, that are induced by excitation of the natural period

from higher harmonic wave loads. Due to the increased nonlinearity of waves in finite

water compared to waves in deep water, bottom fixed OWT monopiles at more likely to

experience ringing than for for instance oil and gas platforms located in deeper water.

Since the capacity of the installed OWTs have increased over the last years, the size of

the OWTs monopiles have increased as well. Larger body dimensions lead to a higher

eigenfreqeuncy, which has a higher likelyhood of coinciding with 3ω and 4ω components

of incoming waves (Suja-Thauvin et al., 2014). This means that today’s OWT monopiles

are more exposed to ringing both due to their finite water depth location and increased

structural size.

The structural costs of OWTs can be reduced by better design and reduction of excessive

material. The ability to accurately predict higher order wave loads on OWT monopiles in

an efficient manner can possibly reduce uncertainties regarding the structural integrity, and

avoid building unnecessary oversized monopiles to reduce the risk of ringing in extreme

sea states. A precise load model that can predict higher harmonic loads on monopiles can

4



potentially make the design process of OWT monopiles more flexible, and reduce material

costs of future offshore wind farms.

Faltinsen, Newman and Vinje (1995) provided an analytical expression for nonlinear wave

loads on circular cylinders in deep water, using a perturbation approach of the wave num-

ber and the wave slope. The theory is denoted as FNV theory in this thesis. Kristiansen

and Faltinsen (2017) generalized the theory to finite water depth, by replacing the infinite

water limit and applying wave kinematics for finite water. Experimental results show that

the first and second harmonic of the wave load are well described by the FNV theory, but

the third load harmonics are only accurately described for small to medium steep waves

(Kristiansen and Faltinsen, 2017). Up to a distinct limiting wave steepness, the theory

overpredicts the third harmonic of the wave loads, with the discrepancy increasing for in-

creasing wave steepness. The reason for the observed discrepancies have been attempted

found, by for instance involving two dimensional viscous effects (Sæter, 2019). This did

however not explain the discrepancies. During model tests by Kristiansen and Faltinsen

(2017), a local rear run-up and upwelling of the free surface on the monopile has been

observed. It is therefore of interest to study the three dimensional effects of the flow, and

determine if the higher harmonic components of an added slender body term is able to

disclose the gap between theory and experiments.

1.3 Scope

The scope of this thesis is to examine three dimensional effects of higher harmonic wave

loads on OWT monopiles in severe wave conditions. The main focus will be on the addi-

tion of a slender body term in FNV theory, and the development of a combined 3D CFD-

FNV model that includes a three dimensional term. Two dimensional CFD simulations in

OpenFOAM are to be used for simulation of viscous forces on the cylinder by the use of

strip theory, along with existing FNV theory. The third harmonic of the horizontal force

will be examined closer, in order to determine if three dimensional effects can explain the

discrepancies between present experimental results and theoretical predictions.
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1.4 Report structure

This thesis will first present a theoretical background of the topic. An overview of regular

wave theory including both linear and Stokes waves is given in chapter 2, along with

methods for computing forces on vertical cylindrical structures. The focus will be on

Stokes perurbation theory up to fifth order and FNV theory for nonlinear wave loads.

Following in chapter 3 is an introduction to CFD and relevant software, and a description

of the numerical model used for two dimensional flow simulations. The chapter includes

convergence studies of the model along with a discussion of the observed flow regimes

from the tests. Chapter 4 describes the concept of the combined 3D CFD-FNV load model

along with the input parameters used to obtain relevant results. Next, chapter 5 presents

the results from this project, by comparing numerical results with present experimental and

theoretical data. The third harmonic load and the effects of the added three dimensional

term is investigated, along with recommendations for further work. Concluding remarks

are given in chapter 6.
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Chapter 2
Theory

This chapter provides a theoretical background of the thesis topic. First, basic assumptions

of fluid flow and the boundary value problem is introduced as a basis for completeness in

the derivation of higher order wave theory. Linear and Stokes wave theory is presented,

with focus on Stokes fifth order wave theory as it will be used to compute the input to

the new 3D CFD-FNV load model. Methods for calculating wave forces on cylindrical

structures are further given, including Morison’s equation and FNV theory. The ringing

phenomena and its complications on OWT monopiles are considered.

2.1 Regular wave theory

2.1.1 Potential flow

Sea loads can be investigated using potential theory, by considering sea water as a potential

flow. A potential flow as denoted by Faltinsen (1990) is an incompressible and inviscid

fluid with irrotational fluid motion. Incompressible is a fluid property used to describe a

fluid with constant density throughout its motions, indicating that the volume of the fluid is
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constant. An inviscid fluid has zero viscosity, meaning there are no viscous forces caused

by internal friction in the fluid. An irrotational flow has zero vorticity, implying that the

particles in the flow are not rotating.

A potential scalar function φ exists for potential flows. φ describes the fluid velocity field

as a gradient of itself. The velocity vector U = (u, v, w) at time t at point x = (x, y, z)

can then be written as a function of φ,

U = ∇φ ≡ i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z
(2.1)

i, j and k are the unit vectors in x-, y- and z-direction respectively. The density of an

incompressible fluid is constant, which means that the fluid has a material derivative of

zero. This implies that the divergence of the fluid velocity is

∇ · U = 0 (2.2)

The vorticity vector ωωω for an irrotional fluid is also zero,

ω = ∇× U = 0 (2.3)

It follows from Equation (2.2) and Equation (2.3) that the velocity potential φ satisfies the

Laplace equation,

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (2.4)

This way, the three unknown velocity components u, v and w are converted into only

one unknown function φ. It is important to note that Equation (2.4) is only applicable in

regions where it is reasonable to assume an irrotational flow. The velocity potential φ of

the flow is found by solving the Laplace equation, and applying a set of relevant boundary

conditions on the fluid. A solution to the Laplace equation for φ can then be used to

determine all three components in the velocity field U everywhere in the flow using the

relations in Equation (2.1). The solution is valid also for unsteady flows, since time is not a

variable in the incompressible continuity equation. As a result, an unsteady flow field will

8



at any time step adjust to satisfy the Laplace equation for the current boundary conditions

at that time step.

2.1.2 The boundary value problem

The boundary value problem is a set of differential equations constrained by boundary

conditions. This is applied to problems in hydrodynamics by assigning boundary condi-

tions to fluid domains, usually involving a marine structure. The boundary value problem

for a fixed body in a moving fluid is illustrated in Figure 2.1. The problem in the figure

demonstrates a fluid domain with boundaries consisting of a fixed, marine structure as a

solid body, the free surface, the seabed, an inlet and an outlet. This problem is considered

in the following of Section 2.1.2.

Figure 2.1: Illustration of the boundary value problem for a fixed body in a moving fluid. SSB is
the seabed, SB is the solid body and SFS if the free surface.

The Laplace equation in Equation (2.4) is the governing equation for the fluid domain in

Figure 2.1. In order to obtain a unique solution to the Laplace equation for the problem,

boundary conditions for the velocity potential φ are assigned to the boundaries of the

domain. The two types of boundary conditions imposed on the fluid are known as the

9



kinematic and dynamic free surface conditions.

SBS is the seabed surface in the fluid domain. The seabed is assumed to be impermeable,

with no flow across or along the surface. This means that the flow can not enter or leave the

seabed, and has zero horizontal and vertical velocity at this surface. This is also denoted

as the no slip condition. Since the differentiation along the normal to the seabed is positive

in z-direction, the kinematic boundary condition at the bottom is formulated as

∂φ

∂z
= 0 on z = −h (2.5)

The impermeability condition also applies to the fixed body in the fluid. The surface of

the body is denoted as SB , and the kinematic boundary conditions on the body is

∂φ

∂n
= U · n = 0 on SB (2.6)

where U is the velocity of the body and n the normal vector of the body pointing out into

the surrounding fluid. Since the body considered in this problem is fixed, U is zero.

At the free surface SFS of the fluid domain, both the free surface elevation ζ and the ve-

locity potential φ are unknown. This means that both the kinematic and dynamic bound-

ary conditions need to be applied to the free surface. The kinematic boundary condi-

tion requires that all fluid particles located on the free surface remain on the free surface.

Given that the location of a fluid particle is at position z and the free surface is defined as

ζ(x, y, t),

z − ζ(x, y, t) = 0 (2.7)

The substantial derivative of Equation (2.7) gives the following expression for kinematic

boundary condition on the free surface,

∂

∂t
(z − ζ(x, y, t)) +∇φ · ∇(z − ζ(x, y, t)) = 0 (2.8)

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
= 0 on z = ζ(x, y, t) (2.9)
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The dynamic boundary condition on the free surface states that the atmospheric pressure

is equal to the fluid pressure. This means that there is no pressure change across the free

surface. The condition is formulated from Bernoulli’s equation with uniform pressure,

gζ +
∂φ

∂t
+

1

2

[(∂φ
∂x

)2
+
(∂φ
∂y

)2
+
(∂φ
∂z

)2]
= 0 on z = ζ(x, y, t) (2.10)

The inlet and outlet boundary conditions are dependent on the specification of the fluid

problem. In addition, the far field condition implies that waves generated by interaction

between the fluid and the body die out far away from the body. By imposing these bound-

ary conditions on the fluid domain, the boundary value problem can be solved.

2.1.3 Linear wave theory

Linear wave theory is based on the assumptions of a horizontal seabed and an infinite free

surface in horizontal direction. The theory is also known as Airy theory and applies to

propagating waves. Linear theory involves a linearization of the nonlinear free surface

boundary conditions, which in many cases still provides sufficient information. By lin-

earizing the problem the velocity potential φ becomes proportional to the wave amplitude

ζa, which is valid by assuming that ζa is small relative to the characteristic wave length and

body dimensions. The terms are linearized by the use of a Taylor expansion of the bound-

ary conditions in Equation (2.9) and Equation (2.10) from the free surface z = ζ(x, y, z)

to the mean free surface at z = 0, and keeping the linear terms in the expression for the

wave amplitude. This gives the following kinematic and dynamic boundary conditions

respectively:
∂ζ

∂t
=
∂φ

∂z
on z = 0 (2.11)

gζ +
∂φ

∂t
= 0 on z = 0 (2.12)

The velocity potential φ is obtained from solving the boundary value problem. With φ

known, the free surface elevation ζ can be found by combining Equation (2.11) and Equa-
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tion (2.12).
∂2φ

∂t2
+ g

∂φ

∂z
= 0 on z = 0 (2.13)

Linearization of the nonlinear free surface boundary conditions is a great simplification of

the problem. Linear wave theory can however be insufficient when it comes to describing

the wave induced motion and loads on large volume structures. For structures such as

bottom fixed vertical cylinders, nonlinear wave theory is needed in order to accurately

describe the wave-structure interaction.

2.1.4 Stokes wave theory

An accurate theoretical description of wave characteristic is essential in our understanding

of wave forces on marine structures. Linear wave theory is limited to waves of very small

amplitudes, and is inaccurate for waves with finite amplitudes (Skjelbreia and Hendrick-

son, 1960). A wave theory for finite amplitude waves of an inviscid and irrotational flow

was first derived by Stokes (1847). The waves incorporated in the theory are nonlinear

and periodic two dimensional surface waves propagating without change of form, and are

referred to as Stokes waves. These are modelled using an expansion approach with the

use of trigonometric series, by assuming that the boundary value problem in Section 2.1.2

can be described by a perturbation series. The solution is expressed as a power series of

a small perturbation parameter ε, that is of the same order at the nondimensional wave

steepness kζ1. ζ1 is the free surface elevation to the first order and k is the wave number.

The wave number k is the number of radians per wave length, defined as

k =
2π

λ
(2.14)

ε quantifies the margin of error of the solution, which is the discrepancy between the

approximated and exact solution to the problem. ε is assumed to be very small, i.e. ε << 1.

The accuracy of the solution obtained by the perturbation approach is thus dependent on

the number of terms in each series. The expressions for the velocity potential φ and free
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surface elevation ζ are given as power expansions with increasing order of ε.

φ = φ̃1ε+ φ̃2ε
2 + φ̃3ε

3 + ....... (2.15)

ζ = ζ̃1ε+ ζ̃2ε
2 + ζ̃3ε

3 + ....... (2.16)

φ̃n and ζ̃n denote the terms proportional to εn. A collection of terms proportional to εn

will thus yield a nth order solution of the boundary value problem. A linear solution is

obtained by collecting the terms independent of ε, while collecting terms up to n = 3

gives a solution of third order and so on.

The accuracy of the solutions for φ and ζ increases as the order increases. The expres-

sions do however become increasingly more computationally demanding for higher order

waves, as the coefficients in Equation (2.15) and Equation (2.16) become progressively

more complicated as more terms are added to the series. It should be noted that Stokes

perturbation approach remains an approximation, and there is yet no closed form evidence

that the series converge to exact solution. Still, comparisons of theoretical predictions and

measured quantities shows that by Stokes higher order wave theory is in close agreement

with experimental results (Patel, 1989).

2.1.5 Stokes fifth order wave theory

By expanding the Stokes perturbation series up to five terms, the solution will extend to

waves of higher steepness than the ones covered by linear wave theory. Coefficients in

series up to fifth order are however complex and require tedious calculations. In order

to provide a solution for fifth order Stokes waves that was accessible to industrial engi-

neers, Skjelbreia and Hendrickson (1960) provided a method of computing the value of

the coefficients as a function of the water depth to wave length ratio h/λ.

The following of this section is an overview of the considerations made in the derivations

by Skjelbreia and Hendrickson (1960). It should be noted that this section contains two

deviations from the original paper, in order to maintain consistency in this thesis. The first
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is that the coordinate system is defined on the mean free surface according to Figure 2.1,

instead of on the seabed. The second is the use of the constant γ instead of λ in the

derivations, as this thesis discusses λ as the wave length. In order to avoid confusion, γ is

used as a replacement as done by Patel (1989).

Skjelbreia and Hendrickson (1960) considered oscillatory, non-viscous waves at constant

depth that extend in infinite direction perpendicular to the direction of propagation. Given

that the Laplace equation and relevant boundary conditions are satisfied, the relations in

Equation (2.1) can be used to determine the velocity components u and v from the velocity

potential φ. The phase angle θ for oscillatory waves is given by

θ =
2π

λ
(x− cwt) = k(x− cwt) (2.17)

where cw is the wave celerity. By applying this definition combined with the relation

between the velocity potential and velocity components in Equation (2.1), the kinematic

and dynamic free surface conditions can be expressed respectively as

∂w

∂x
=
−w

cw − u
(2.18)

(cw − u)2 + w2 = c2w − 2g(K + ζ) (2.19)

where K in Equation (2.19) is a constant. The problem can then be solved for fifth order

Stokes waves by finding a solution to Laplace equation that also satisfies the boundary

condition on the seabed in Equation (2.5) along with Equation (2.18) and Equation (2.19).

Skjelbreia and Hendrickson (1960) provided a series form for the velocity potential φ that

meet these specifications. The expression for φ is given here in the same compressed

matter as Fimland (2018),

φ =
cw
k

5∑
n=1

Dn cosh(nk(h+ z)) sin(nθ) (2.20)
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The surface profile ζ that satisfies the symmetry requirements is assumed to be

ζ =
1

k

5∑
n=1

En cosh(nθ) (2.21)

Fimland (2018) introduced the coefficientsEn andDn for simplification of the expressions

for φ and ζ from the original paper.

Table 2.1: Definition for coefficients Dn of En.

n Dn En

1 γA11 + γ3A13 + γ5A15 γ

2 γ2A22 + γ4A24 γ2B22 + γ4B24

3 γ3A33 + γ5A35 γ3B33 + γ5B35

4 γ4A44 γ4B44

5 γ5A55 γ5B55

The coefficients Aij and Bij in Table 2.1 make up the algebraic complexity of the ex-

pressions for φ and ζ. These coefficients along with Cij are given in the original paper

by Skjelbreia and Hendrickson (1960). It should be noted that the original expression for

C2 includes a term with +2592, but Fenton (1985) found that this should be replaced by

−2592.

The wave celerity cw describes the propagation velocity of the wave crest or trough, and

is expressed as

cw =

√
C2

0 (1 + γ2C1 + γ4C2)

k
(2.22)

and the constant K used in Equation (2.19) is given by

K =
γ2C3 + γ4C4

k
(2.23)

Skjelbreia and Hendrickson (1960) assume the wave height H , water depth h and wave

period T to be known values. The unknowns to be found in the problem are the wave
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length λ and the coefficient γ in the expression for Aij and Bij . The problem is solved

by rearranging Equation (2.21), which combined with Equation (2.22) form a set of two

nonlinear equations with unknowns λ and γ:

πH

h
=
λ

h
(γ + γ3B33 + γ5(B35 +B55) (2.24)

h

λ0
=
h

λ
(1 + γ2C1 + γ4C2) (2.25)

λ0 in Equation (2.25) is given by

λ0 =
gT 2

2π
(2.26)

By solving Equation (2.24) and Equation (2.25) for λ and γ, the velocity potential φ can be

found. The relation in Equation (2.1) can then be used to determine the particle velocities

in the horizontal and vertical direction,

u = cw

5∑
n=1

nDn cosh(nk(h+ z)) cos(nθ) (2.27)

w = cw

5∑
n=1

nDn sinh(nk(h+ z)) cos(nθ) (2.28)

The time derivatives of Equation (2.27) and Equation (2.28) yield the particle accelera-

tion in horizontal direction. The horizontal and vertical velocity gradient of u are also

determined. These are the wave kinematics used to compute wave forces on cylindrical

structures in FNV theory.

a1 =
∂u

∂t
= cwω

5∑
n=1

n2Dn sinh(nk(h+ z)) cos(nθ) (2.29)

∂u

∂x
= −cwk

5∑
n=1

n2Dn sinh(nk(h+ z)) cos(nθ) (2.30)

∂u

∂z
= cwk

5∑
n=1

n2Dn sinh(nk(h+ z)) cos(nθ) (2.31)

A comparison of fifth order Stokes wave and a linear sine wave is illustrated in Figure 2.2.
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It can be seen that fifth order Stokes waves inherit sharper and taller crests, and flatter

and lower troughs. The water particle orbits have a steady down wave drift components,

instead of circular or elliptical orbits.

Figure 2.2: Properties of gravity waves, where A and B are start and end of the cycle for a water
particle orbit. Figure retrieved from Patel (1989).

The procedure presented in the section has been widely implemented in the offshore in-

dustry. By taking only three input parameters H , T and h, the method gives an output for

velocities, accelerations and pressures at given coordinates.

2.1.6 Limitations of Stokes wave theory

Stokes fifth order wave theory is considered unreliable for h
λ <

1
8 (Patel, 1989). At these

wave conditions the contribution from the fifth and higher order terms in the perturbation

series are considered substantial, and reduce the numerical convergence of the solution.

Hedges (1995) proposed regions of validity of analytical wave theories, including Stokes

wave theory. The approximate limits for analytical wave theories were allocated according

to the Ursell number Ur. Ur was defined by Ursell (1953) and describes the nonlinar

behaviour of long waves as the ratio between the wave height H and wave length λ to the
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water depth h.

Ur =
Hλ2

h3
(2.32)

The limitations for Stokes was theory as proposed by Hedges (1995) is illustrated in Fig-

ure 2.3 below.

Figure 2.3: Approximate regions of validity of analytical wave theories as a function of Ur. Figure
retrieved from Hedges (1995).

Figure 2.3 shows that the upper limit for Stokes’s second and higher order wave theory

is at Ur = 40, indicating that the application of Stokes fifth order wave theory should be

limited to wave conditions with Hλ/h3 > 40.

2.2 Wave forces on vertical cylindrical structures

2.2.1 Morison’s equation

Morison’s equation (Morison et al., 1950) is widely used in ocean engineering to analyse

hydrodynamics loads on a vertical cylindrical structures. The equation gives the the sec-

tional horizontal force on a strip of a cylinder from unbroken surface waves, and is the
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sum of two force components:

1. Drag force proportional to the square of the velocity.

2. Inertia force proportional to the horizontal accelerative force exerted by the water

mass displaced by the cylinder.

Morison’s equation for the horizontal force a strip section dz of a cylinder is given by

dFx = dFI + dFD =
(ρπ

4
D2CMa1 +

1

2
ρDCDu|u|

)
dz (2.33)

where the force is positive in the wave propagation direction. ρ denotes the water mass

density and D the cylinder diameter. u and a1 are the horizontal velocity and accelera-

tion of the water particles in the middle of strip dz. CD and CM are non-dimensional

coefficients of drag and inertia respectively, that are empirically determined. Sarpkaya

(1976) found that CD and CM both depend on the Keuleagen-Carpenter number KC and

the Reynolds number Re. KC and Re are defined accordingly to Equation (2.34) and

Equation (2.35).

KC =
UmT

D
(2.34)

Re =
UmD

ν
(2.35)

Um is the amplitude of the incoming flow, T is the flow period and ν is the kinematic

viscosity of the fluid flow. TheKC number number is used to describe the circular motion

of the flow particles relative to the body dimensions, in this case the cylinder diameter D.

The Reynolds number Re is the ratio of inertial to viscous forces on the body, and is used

to classify flows as laminar or turbulent.

Sarpkaya (1976) performed experiments of vertical cylinders in harmonic oscillating flow

with zero mean velocity, and found that CD and CM for smooth cylinders are functions of

KC and Re, especially for Re > 20000. His findings also indicate that the relationship

between the coefficients are not unique, and depends on the specific KC value as seen in

Figure 2.4.
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Figure 2.4: Drag coefficient CD (a) and inertia coefficient CM (b) coefficients dependence on
Re and KC for a smooth circular cylinder from experimental results by Sarpkaya (1976). Figure
retrieved from Sarpkaya (1976).

Morison’s equation requires relatively low computational costs and its simplicity has made

it widely used among engineers to determine horizontal force on cylinders in oscillatory

flows.

2.2.2 Ringing

The ringing phenomenon was first acknowledged during the design phase of the first ever

Tension Leg Platform (TLP). When performing model tests of the Hutton TLP located
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at the UK continental shelf, sudden bursts of resonance were observed during rough sea

states with only a few occurring events (Natvig and Teigen, 1993). The phenomenon was

characterized as a nonlinear motion with rapid build-up and a slow decay. The ringing

impact attracted attention after the Hutton TLP project, as it could not be described by

existing theory.

The causes of ringing are not yet clearly known. It is defined as large structural oscillation

of the structure at natural frequencies significantly higher than the present wave frequen-

cies, and occurs in extreme sea states with steep waves. Figure 2.5 shows a ringing event

on a four column TLP, whereas the upper curve represents the incident wave and the lower

curve the measured tension. Excitation of resonant response is evident at approximately 30

seconds as the incident wave suddenly build up to a high amplitude relative to the current

sea state.

Figure 2.5: Experimental data of ringing on a TLP with four columns. The upper plot shows the
incoming wave, and the bottom plot is the measured tension at the structural eigenfrequency. Data
from Jefferys and Rainey (1994). Figure retrieved from Faltinsen et al. (1995).

Resonance is a threat to the structural integrity of offshore structures, and can lead to

significant fatigue damage. This is why it if important to understand and predict how
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nonlinear wave loads can lead to ringing. The phenomenon is not explained by traditional

diffraction theories, nor Morison’s equation.

The lowest natural period for an OWT monopile is typically 3-5 seconds (Grue et al.,

1994). This means that the natural frequency of the monopile can coincide with 2ω, 3ω and

4ω components of incoming waves. Nonlinear wave loads are higher in intermediate water

depths than in deep water, which means that offshore structures such as bottom fixed OWT

monopiles are more exposed to ringing than ones in deep water. Waves in finite water are

additionally more nonlinear than waves in deep water (Dean and Dalrymple, 1991). This

is root to the motivation for development of an efficient and accurate prediction of ringing

in finite water.

Natvig and Teigen (1993) note that there are strong indications that certain effects are

of importance when modelling ringing loads. Wave forces need to account for column

interaction and possible upwelling effects. Variable submergence of the column during

wave passage will lead to variable added mass, and needs to be accounted for. Though

viscous drag to the free surface is considered to be insignificant, it should not be neglected.

Finally, ringing is believed to be caused mainly by waves with a steep front or steep back.

Such waves are generated in model tests in basins, but it is not evident if open ocean waves

are quite as steep as the generated waves.

2.2.3 FNV theory

As mentioned, ringing is not explained by traditional wave theory. Observations from

experiments suggest that ringing events occur for sea states with steep waves and a wave

height H of similar magnitude to the cross-sectional dimension of the structure. In order

to describe these nonlinear wave loads on a cylindrical structure, Faltinsen, Newman and

Vinje (1995) developed an extended diffraction wave theory for wave loads up to third

order. The theory is denoted as FNV theory in this thesis.

The cylinder radius a is considered the most relevant scale in the diffraction analysis. For
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offshore platforms in extreme sea states the wave length λ is significantly larger than a,

which legitimizes the long wavelength approximation. Though the incoming waves are

of long wave length, the wave amplitude ζa is comparable to the body dimensions. Since

ringing appeared to occur for structures with dimensions of same magnitude as the wave

height magnitude, Faltinsen et al. (1995) found it necessary to reevaluate the perturbation

analysis with the assumption that ζa/a = O(1). The assumptions made in order to develop

the FNV theory are:

• The linear incident wave slope kζa and the nondimensional cylinder radius ka are

of the same order, i.e. kζ = O(ε) and ka = O(ε).

• The long wavelength approximation is valid, which means that he wave amplitude

ζa and cylinder radius a is small relative to wave length λ, i.e. kζa � 1 and ka� 1.

Figure 2.6: Cartesian and cylindrical coordinate system of cross-section of the cylinder in the xy-
plane and the vertical cylinder in the zx-plane.

The method in the original paper is derived for infinite water depths and regular incident

Stokes waves of third order. It is based on potential theory, and neglects flow separation.

As a result of the long wavelength approximation, far field wave generation from the cylin-

der can be neglected. As the wave slope kζa is very small, no wave breaking occurs. A
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coordinate system as shown in Figure 2.6 is considered, with z = 0 at the undisturbed free

surface and the fluid domain at z < 0. The x-axis is positive in the direction of the incident

wave propagation.

The total velocity potential φ is expressed as

φ = φI + φS + φψ (2.36)

where φD = φI + φS make up the diffraction potential that satisfies Laplace equation

up to the incident free surface, including the incident wave potential φI and the linear

diffraction potential φS . φψ is the third order diffraction potential, satisfying the three

dimensional Laplace equation and approximating the free surface conditions up to third

order. The problem is further divided into a linear and nonlinar analysis.

The linear diffraction problem includes the linear diffraction potential φD = φI + φS .

When solving this problem, the domain is divided into two complementary sub-domains

including the inner and outer domain. In the inner domain r = O(a) where a is of order

1, and h of order 1/ε. In the outer domain r = O(λ). The velocity field is considered

close to constant along the vertical cylinder axis in z-direction, and the vertical derivative

is therefore of much small magnitude than the horizontal derivatives in x- and y-direction.

∂φ

∂z
� ∂φ

∂x
,
∂φ

∂y
(2.37)

This means that ∂φ∂z can be considered negligible in the linear diffraction problem. Conse-

quently, Laplace equation is reduced to two dimensions,

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (2.38)

φD can then be expressed as a two dimensional potential φD = φD(x, y), and only needs

to satisfy Laplace equation in the horizontal plane. By Taylor expansion of φD around

x = 0, y = 0 to first order in x-direction, the solution for the near field of the cylinder is
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expressed by

φD = φI+
∂φI
∂x

∣∣∣
x=0,y=0

(x+φ11)+
∂2φI
∂x2

∣∣∣
x=0,y=0

(
1

2
x2+φ12)+f(z, t)+O(ε4) (2.39)

φD = φI+u(x = 0, y = 0)(x+φ11)+
∂u

∂x

∣∣∣
x=0,y=0

(
1

2
x2+φ21)+f(z, t)+O(ε4) (2.40)

The terms in Equation (2.39) and Equation (2.40) are of order φ11 = O(ε), φ11 = O(ε2)

and f(z, t) = O(ε3). f(z, t) is the hydrodynamic interaction potential and is the slender

body term in the expression for φD. f(z, t) does not contribute to the horizontal force of

order lower than O(ε6), as shown by Faltinsen (1999). φ11 and φ12 only need to satisfy

the two dimensioanl Laplace equation in Equation (2.38), and can be determined using the

impermeability boundary condition on the cylinder.

∂(x+ φ11)

∂r

∣∣∣
r=a

=
∂( 1

2x
2 + φ12)

∂r

∣∣∣
r=a

= 0 (2.41)

The force on the cylinder due to φD is found by integration of the pressure along the

cylinder surface,

F ′(z, t) = −
∫ 2π

0

p n1 dθ = −
∫ 2π

0

p cosθ dθ (2.42)

where n1 is the normal vector pointing into the flow, accounting for the surge compo-

nent. The pressure p acting on the cylinder in Equation (2.42) is found from the Bernoulli

equation as follows,

1

ρ
p = −∂φD

∂t
− 1

2

(∂φD
∂r

)2
− 1

2a2

(∂φD
∂θ

)2
− 1

2

(∂φD
∂z

)2
(2.43)

Combined this gives an expression for the distributed force from φD:

F ′(z, t) = ρπa2
(∂u
∂t

+ u
∂u

∂x
+ w

∂u

∂z

)
+ a11

(∂u
∂t

+ w
∂u

∂z

)
(2.44)

The nonlinear scattering potential φψ was introduced by Faltinsen (1999), as the linear

diffraction potential φS does not satisfy the inhomogenous boundary conditions. The third
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order scattering potential φψ is therefore implemented in the nonlinear analysis of the

problem in FNV theory, in order to satisfy the three dimensional Laplace equation in

addition to the inhomogenous boundary condition. The free surface boundary condition is

then

∂2φψ
∂t2

+ g
∂φψ
∂z

= −2∇φ · ∇φt −
1

2
∇φ · ∇(∇φ)2 on z = ζ (2.45)

φψ varies rapidly in vertical direction. This means that the vertical gradient of the potential

∂φψ/∂z is much larger than the second time derivative ∂2φψ/∂t2. ∂2φψ/∂t2 on the left

side of Equation (2.45) is thus assumed to one order lower. Since φψ varies vertically, the

free surface condition is not imposed on the mean water level at z = 0, but at the linear

incident free surface elevation z = ζI1. One of the main assumptions in the development

of the FNV theory is that the wave slope ka is very small, so the free surface condition in

the inner region of the fluid problem can be limited to satisfy the horizontal plane z = ζI1

located at x = 0, y = 0.

By solving the boundary value problem with the above prerequisites, an expression for the

force acting on the cylinder from the third order diffraction potential φψ is obtained. The

force is denoted by Fψ , and is considered at x = 0, y = 0.

Fψ = ρπa2
4

g
u2
∂u

∂t

∣∣∣
x=0,y=0

(2.46)

The total horizontal force Fx on the cylinder is the sum of the force contributions from the

linear diffraction potential φD and the third order diffraction potential φψ . The force is

computed by integrating the distributed force F ′(z, t) in Equation (2.42) from the seabed

to the incident free surface, and adding Fψ in Equation (2.46).

Fx =

∫ ζ

−∞
F ′(z, t)dz + Fψ (2.47)

The integration in Equation (2.47) is divided into three separate intervals. Faltinsen (1999)

defined one interval from infinite deep water to the mean water level (−∞ ≤ z ≤ 0), one

from the mean free surface to the linear incident free surface (0 ≤ z ≤ ζI1) and one from
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the linear incident free surface to the local wave elevation of third order (ζI1 ≤ z ≤ ζ). The

local wave elevation is ζ = ζI1 + ζI2, including both incident waves and local diffraction.

By redefining Fx according to these three intervals, the total horizontal force is

Fx =

∫ 0

−∞
F ′(z, t)dz +

∫ ζ1

0

F ′(z, t)dz +

∫ ζ

ζ1

F ′(z, t)dz + Fψ (2.48)

2.2.4 Generalized FNV theory

The original FNV theory by Faltinsen et al. (1995) was derived for infinite deep water, and

Kristiansen and Faltinsen (2017) generalized the theory to finite water depth. The theory

was generalized by replacing the infinite water limit z = −∞ with a finite water depth of

z = −h and applying wave kinematics for finite water depth. The expressions for the total

horizontal force from Equation (2.48) at finite water is consequently

Fx =

∫ ζt

−h
F ′(z, t)dz + Fψ (2.49)

Fx =

∫ 0

−h
F ′(z, t)dz +

∫ ζ1

0

F ′(z, t)dz +

∫ ζ

ζ1

F ′(z, t)dz + Fψ (2.50)

The application of the generalized FNV theory was evaluated by Kristiansen and Faltin-

sen (2017) through systematic experiments in the medium sized wave tank at the Marine

Technology Centre at NTNU. The measured force from the experiments and the theoret-

ical prediction from the generalized FNV theory were bandpass filtered into the five first

load harmonics, and the main focus was to study the third harmonic of the horizontal wave

loads. Comparison of the results showed good compliance for conditions of small wave

steepness, but the theoretical third harmonic load was found to be overpredicted for severe

wave conditions. Above the limit of a distinct wave steepness, the FNV theory overpre-

dicts the third harmonic load. The discrepancies between experimental and theoretical

results increases as the wave steepness increases, as seen in Figure 2.7 from the original

paper by Kristiansen and Faltinsen (2017).
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Figure 2.7: Amplitude of the first three harmonics of the horizontal force due to regular waves at
water depth h/a = 7.83 versus wave steepness for nondimensional wave numbers ka = 0.163,
ka = 0.127 and ka = 0.105. Figure retrieved from Kristiansen and Faltinsen (2017).

Kristiansen and Faltinsen (2017) stated that the local KC number along the cylinder axis

indicates that flow separation occurs in the wave conditions where the discrepancies are

present. The addition of a drag term and KC-dependent added mass coefficients did

however not explain the discrepancies for the third harmonic load. During the experiments,

a local rear run-up was observed. The run-up was found be to due to a locally high pressure

at the rear of the cylinder, caused by vortex shedding from flow separation. This resulted

in a local steep wave propagating in the opposite direction of the propagating waves, and

the load associated with the run-up was believed to be be cause of the discrepancies in

the third harmonic load. Sæter (2019) derived a combined CFD-FNV load model in order

to replicate viscous effects in the flow that are not accounted for in inviscid FNV theory.

The load estimations from the CFD-FNV load model did however not comply better with

experimental results, and two dimensional viscous effects were not able to explain the

observed discrepancies in the third harmonic loads.
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Chapter 3
Numerical model

This chapter introduces the numerical model that is used for two dimensional CFD simu-

lations of the flow in the 3D CFD-FNV load model. An introduction to CFD and Open-

FOAM is first given. Next is a description of the grid structure of the numerical model,

along with imposed boundary and initial conditions used to model the flow. Convergence

studies of the numerical model are performed in order to assess the quality of the mesh.

Finally, a study of the flow regimes around the monopile is presented.

3.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is use of numerical analysis to solve fluid flow

problems. CFD research is based on solving the key governing equations that describe the

physics of fluid dynamic, namely the continuity equations, Navier Stokes equations and

energy equations (Yen et al., 2017). The numerical approach in CFD is to approximate the

solution to these equations by replacing complex Partial Differational Equations (PDEs)

with algebraic equations that are easier solve. In order to attain a definite solution, the

fluid flow domain needs to be constrained by boundary conditions providing the relations
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between the velocity, pressure, temperature and density in the flow.

CFD solvers are continually improving and are becoming more available through com-

mercial CFD software. Computational power has increased rapidly in the last decades,

allowing for more complex and detailed flow analysis with the use of CFD. The use of

CFD to model wave loads on offshore structures has been practiced for some time, but

there are few studies of simulation of higher order loads from nonlinear waves. Liu et al.

(2001) performed CFD analysis of higher harmonic wave loads on a surface piercing cylin-

der, using a mixed Eulerian-Langrangian boundary element model. The numerical results

agreed remarkably well with experimental data, and Liu et al. (2001) concluded that this

provided evidence that ringing excitations are a direct result of nonlinear wave diffrac-

tion. Paulsen et al. (2014) investigated steep regular water waves on a vertical cylinder

using a two-phase incompressible Navier Stokes solver, whereas numerical analysis of the

secondary load cycle showed good agreement between the numerical approximations and

FNV theory for the third harmonic force. Paulsen et al. (2014) also observed that the third

harmonic forces agreed well by Morison’s formulation at deep water, but is overestimated

by Morison at intermediate depths.

CFD simulations in general require far less resources than physical experiments involving

offshore marine structures. However, complex test conditions require high computational

costs, leading to time consuming simulations. CFD simulations as design tool is not com-

monly used in the offshore industry as it it considered too impractical as of present day.

3.2 OpenFOAM

OpenFOAM (Open Field Operation and Manipulation) was used for two dimensional CFD

simulations in the combined 3D CFD-FNV load model in this thesis. OpenFOAM is a

free and open source CFD software created for the GNU/Linux operating system, initally

released in 2004. The motivation behind developing OpenFOAM was to design a powerful

and adaptable simulation toolbox, and C++ was used as a programming language due to its
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modular and object oriented features (Russel and Cohn, 2012). As an open source software

the user has the rights to change and distribute the source code, and the OpenFOAM syntax

makes it suited for customization of numerical solvers and post-processing utilities.

Russel and Cohn (2012) list advantages and disadvantages to OpenFOAM. Some of the

advantages include friendly syntax for PDEs, the unstructured grid capabilities, the range

of applications and models readily available, along with the continuous commercial sup-

port by developers and the zero license costs. The disadvantages are the lack of integrated

graphical interface, and insufficient Programmer’s guide and lack of updated documenta-

tion making it harder for new users.

OpenFOAM was used in this thesis due to its flexibility and wide range of flow mod-

elling options, including both mesh generation of the numerical domain and simulation of

oscillating flow for both regular and higher order Stokes waves.

3.3 Grid structure

Viscous effects in the new combined 3D CFD-FNV load model are accounted for by two

dimensional CFD simulations. The numerical model of the flow around an OWT monopile

is developed as a square, two dimensional flow domain around a cylinder, and the topology

of the model is assembled as a grid structure.

The mesh generation utility blockMesh in OpenFOAM was used to develop the grid struc-

ture. The topology is created by discretizing the domain into three dimensional hexahedral

blocks, where the geometry of the blocks is defined by the location of eight vertices in each

corner of the block. This grid structure is classified as a structured grid. The advantages of

a structured grid to an unstructured grid is that there are fewer cells generated that are easier

to numerate with indices, leading to a simplified solving procedure (Çengel and Cimbala,

2006). Structured grids are unfit to model complex geometries, but for the present case

with a circular cylinder a structured grid geometry was deemed sufficient.
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The grid is generated from the directory file blockMeshDict in the OpenFOAM case folder.

Changes to the grid can be performed directly into blockMeshDict and updated. In order to

build an appropriate domain for the numerical model, all vertices for the blocks and curved

edges need to be defined. This was done by creating a parametric model in MATLAB and

writing the data to the blockMeshDict file in the correct syntax. The use of a parametric

model in MATLAB made it possible to easily adjust geometrical parameters and grid

refinement, which was essential to streamline further convergence studies.
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Figure 3.1: Discretization of two dimensional computational domain for a circular cylinder with
diameter D = 0.144 and domain size L× L = 20D × 20D.

Figure 3.1 shows the discretization of the domain. OpenFOAM operates in three dimen-

sions, so in order to simulate a two dimensional flow the domain is one cell thick in z-

direction. This way, the flow cannot move in z-direction. The geometrical dimension

in z-direction was set equal to the cylinder diameter D. The subdomain surrounding the

cylinder was modelled in a circular manner in order to manage the grid resolution and

grading in this area with regards to vortex shedding around the cylinder. Since the flow to
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be studied is oscillatory and shedding will occur both in front and back the cylinder, the

cylinder was placed with equal distance to the inlet and the outlet. The outer area of the

domain consists of blocks perpendicular to the boundaries, in order to avoid significantly

skewed cells where the flow arrives and exits the domain. Figure 3.2 shows the meshed

grid structure in the OpenFOAM visualization tool ParaView.

Figure 3.2: Mesh of two dimensional computational domain in ParaView with D = 0.144 and
domain size L× L = 20D × 20D.

3.4 Boundary conditions

The boundaries for the domain are defined in the blockMeshDict file in the OpenFOAM

case folder according to Figure 3.3. The inlet and outlet are set as patch, which in Open-

FOAM is defined as a general boundary. Since the case is two dimensional, the front and

back of the domain is set to empty to ensure that there is no flow in z-direction. Because

the fluid problem is considered as an infinite fluid, top and bottom of the numerical model

are imposed by the symmetryPlane condition which represents symmetry in the planar

patches. The cylinder surface is set as wall, and treated as a fixed, no-slip wall.
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Figure 3.3: Two dimensional domain with specified boundary conditions.

3.5 Initial conditions

Initial conditions need to be set in order to initiate the flow. This is done by specifying the

velocity and pressure in the U and p file respectively in the 0 folder in the OpenFOAM

case folder. Table 3.1 summarizes the initial conditions given for the domain.

Boundary U p

Inlet pressureNormalInletOutletVelocity uniformFixedValue

Outlet pressureNormalInletOutletVelocity uniformFixedValue

Top symmetryPlane symmetryPlane

Bottom symmetryPlane symmetryPlane

cylinder fixedValue zeroGradient

Front and back empty empty

Table 3.1: Initial conditions on boundaries in the two dimensional domain domain in U and p file
in 0 folder.
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Since the flow is oscillatory, the same conditions apply for the inlet and the outlet. The

boundary conditions on the inlet and outlet are imposed in order to simulate a pressure

driven flow. The initial pressure condition at the inlet and outlet is set to uniformFixedV alue,

which applies a time dependent value on the surface through a uniformV alue. The val-

ues were read using tableF ile, whereas an inline list of time value pairs were imposed

throughout the simulation cycle from a text file in the OpenFOAM case folder. The pres-

sure at the inlet and outlet were provided from two separate text files pin.txt and pout.txt,

that were generated from an input MATLAB script. The pressure input values as a function

of time were derived from the Navier-Stokes equation in x-direction, assuming a uniform

flow,
∂p

∂x
= −ρ∂u

∂t
(3.1)

By assuming anti-symmetry for at the inlet and outlet, the pressure at the boundaries can

be found as a function of the horizontal acceleration and the length of the computational

domain.

∫ −L/2
L/2

∂p

∂x
dx = −ρ

∫ −L/2
L/2

∂u

∂t
dx = p(L/2)− p(−L/2) = −ρL∂u

∂t
(3.2)

whereas anti-symmetry gives

p(L/2) = −p(−L/2) (3.3)

which yields

p(L/2) = −1

2
ρL

∂u

∂t
(3.4)

p(−L/2) =
1

2
ρL

∂u

∂t
(3.5)

p(−L/2) denotes the initial pressure condition at the inlet and p(L/2) the initial pressure

condition at the outlet.

The velocity at the inlet and outlet were set to pressureNormalInletOutletV elocity

with a value of uniform (0 0 0). This is an initial condition applied to boundaries where
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the pressure is specified, which indicates a zero gradient condition for the outflow and a

velocity obtained from the flux normal to the inlet for the inflow. By specifying a zero

uniform value, the velocity at both the inlet and outlet are zero at t = 0.

The top and bottom of the domain are set to symmetryP lane for velocity and pres-

sure also here, enforcing a symmetry constraint. The velocity at the cylinder surface is

prescribed fixed value fixedV alue of uniform (0 0 0), ensuring zero velocity in all di-

rections. Pressure at the cylinder surface is zeroGradient. The velocity and pressure at

the front and back are empty.

3.6 Transport properties

The transport properties of the flow are defined in the constant folder in the OpenFOAM

case folder. A Newtonian transport model is used, assuming a constant kinematic viscosity

ν equal to 1e − 06. The turbulence properties are also defined in this folder, and the

simulation type is set to laminar using no turbulence models.

3.7 Solver

The solver pimpleFoam is used. pimpleFoam is a transient solver used for incom-

pressible, turbulent flows of Newtonian fluids. The solver applies the PIMPLE algo-

rithm, which combines the Pressure Implicit with Splitting of Operators (PISO) and Semi-

Implicit Method for Pressure Linked Equations (SIMPLE) algorithms.

The OpenFOAM simulations were performed using Ubuntu. The convergence studies

were mainly performed remotely on the computer Euler at the Marine Technology Centre

at NTNU through private user access in the terminal. The tests of the 3D CFD-FNV load

model were performed on VirtualBox installed on a private computer connected to an

external hard drive, due to the large size of the post processing data.
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3.8 Convergence studies

Convergence studies of the mesh are performed in order to evaluate the quality of the

numerical model. Convergence studies of the numerical model involved grid refinement

in radial direction including varying number of grid cells and varying grading from the

outer domain to the cylinder surface. Grid refinement along the cylinder surface was also

evaluated. As the numerical model is to be used in tests with oscillating flow, the force

coefficients CD and CM were used as parameters in the convergence studies. Considering

Morison’s equation for the horizontal force on a strip,

dFx =
(π

4
ρD2CMa1 +

1

2
ρDCDu|u|

)
dz (3.6)

where he velocity u and acceleration a1 are harmonically varying. This means that the

force coefficients can be obtained by Fourier averaging (Mentzoni et al., 2018),

∫ nT

0

Fxudt = 0 + CD

∫ nT

0

1

2
ρDu|u|udt (3.7)

∫ nT

0

Fxa1dt = CM

∫ nT

0

ρ
π

4
D2a1a1dt+ 0 (3.8)

The integration needs to be performed over an integer number n of period cycles. Further,

we assume that the total horizontal force can be approximated by the horizontal viscous

and pressure forces computed by OpenFOAM.

From Equation (3.7) and Equation (3.8), CD and CD are given by

CD =

∫ nT
0

Fxa1dt∫ nT
0

1
2ρDu|u|udt

(3.9)

CM =

∫ nT
0

Fxa1dt∫ nT
0

π
4 ρD

2a1a1dt
(3.10)

The tests were run for KC numbers ranging from 2 to 16 for Re = 70000. To maintain

constant Re for all KC numbers, the period was varied with the velocity amplitude. The
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tests were run over a total of 10 periods. The simulations were performed with an ad-

justable time step in order to increase the efficiency of the model. The adjustable time step

settings were adjusted according to a maximum Courant-Friedrichs-Lewy (CFL) number

(Courant et al., 1928) value of 0.5. The two dimensional CFL number is defined as

CFL =
u∆t

∆x
+
v∆t

∆y
(3.11)

and is used as a criteria in explicit CFD schemes to ensure a stable numerical solution. ∆t

is the time step and ∆x and ∆y denote the grid size in horizontal and vertical direction

respectively. By setting the CFL number to a maximum limit, one defines a limit for how

far the flow can move within one time step. For CFL < 1, the flow cannot advance more

than one grid cell per time step, and the numerical errors in the solutions are considered

insignificant.
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3.8.1 Grid refinement in radial direction

The effect of number of grid cells in radial direction Nr is shown in Figure 3.4. In order to

evaluate Nr independently, the grading was set to 1. This means that the grid cells in the

domain surrounding the cylinder are of equal length in radial direction. Number of grid

cells along the cylinder surface are kept constant at Nc = 400. Four different cases with

Nr = 50, Nr = 100, Nr = 150 and Nr = 200 are presented.
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Figure 3.4: Drag coefficient CD and added mass coefficient CM for Nr = 50, Nr = 100, Nr =
150 and Nr = 200 with constant Nc = 400 and gr = 1.

The plots in Figure 3.4 shows the dependence on Nr. The drag coefficient CD increases

linearly with the KC number. For low KC numbers at < 6, increased Nr gives lower

CD values, but there is no apparent trend correlating to Nr for higher KC numbers. CM

is approximately 2 at KC = 2 independent of Nr, and decays gradually to KC = 10.

For 2 < KC < 8 it appears that increased Nr results in a slightly lower CM value. At

KC > 10,CM deviates clearly for allNr values. There is no clear trend for increasingNr,
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but it should be noted that the fluctuations appear to be bigger at finer mesh. At Nr = 50

for instance, the curve simply flattens out asKC increases. A possible explanation for this

is the transition between the domain surrounding the cylinder and the outer domain. The

transition between fine mesh from the domain around the cylinder to coarser mesh to the

outer domain can cause discontinuations in the flow.

In order to assess the mesh quality, the the total number of grid cells along with maximum

aspect ratio in the numerical model are plotted as a function of Nr in Figure 3.5.
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Figure 3.5: Total number of grid cells and maximum aspect ratio for mesh with Nr = 50, Nr =
100, Nr = 150 and Nr = 200 with constant Nc = 400 and gr = 1.

Naturally, the total number of grid cells increase linearly withNr. The aspect ratio denotes

the ratio between the longest and shortest length of a grid cells, and should ideally be

1. This would however require a very fine mesh. As seen in Figure 3.5 the maximum

aspect ratio decreases as Nr is increased, and appears to stabilize at 3-4 for the finest grid

refinement in radial direction.

It is evident that CD and CM depend on how well the boundary layer is resolved. The

velocity profile in the boundary layer is described by a velocity gradient ∂u/∂y normal to

the cylinder surface. ∂u/∂y is used to compute the vorticity, and can if not modelled cor-

rectly in the boundary layer cause whirl separation of inaccurate manner in the boundary

40



layer. Faltinsen (1990) provided a formula for the boundary layer thickness η,

η = 4.6

√
2ν

ω
(3.12)

which is the distance from the surface surface to where the local velocity is 99% of the

free stream velocity. In order to evaluate the effect of grid cell resolution of the boundary

layer, the number of grid cells in radial direction Nr was held constant at 100, while the

grading of the blocks surrounding the cylinder was adjusted. The grading was modified

using the cell expansion ratio simpleGrading, that specifies the uniform expansions of

the grid cells in local directions. The results are shown in Figure 3.6.
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Figure 3.6: Drag coefficient CD and added mass coefficient CM for gr = 1, gr = 10, gr = 20 and
gr = 20 with constant Nr = 100 and Nc = 400.

The grading of the inner domain clearly affects the computation ofCD andCM . gr denotes

the uniform grading expansion of the grid cells in radial direction. The value for CD

is higher as the grading is increased from 1 to 30 from KC > 4, and develops with a
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higher gradient for KC > 8 as gr is increased. The behaviour of CD is similar for all

gradings, increasing linearly up to KC = 8 and remaining relatively stable from KC = 8

to KC = 16. The computed value for CD at gr = 30 is twice as high as the value

at gr = 1 with no grading, but appears to stabilize at gr = 20 and higher. The curves

of CM show that the computed values vary with gr. Similar trends are observed as the

KC number increases, with a decaying CM for KC < 6, a slight increase and a dip at

KC = 12 before increasing again. The irregularities for gr = 30 at higher KC numbers

are unexpected, as the curves were presumed to converge for higher values of gr as the

boundary layer got increasingly resolved. Why this occur is unclear, but such a high

grading could make the cells at the cylinder surface very skewed as the width tangential to

the cylinder surface of the cells are held constant during the grading test with Nc = 400.

The plotted maximum aspect ratio in Figure 3.7 as a function of Nc does however suggest

that the skewness of the cells are relatively unaffected as the grading is increased
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Figure 3.7: Total number of grid cells and maximum aspect ratio for mesh with gr = 1, gr = 10,
gr = 20 and gr = 20 with constant Nr = 100 and Nc = 400.

Figure 3.7 shows that the maximum ratio is approximately 3.5 for when grading is applied.

This is similar as for Nr > 100, meaning that increased grading is a good alternative to

increased number of grid cells in radial direction in terms of aspect ratio of the grid cells.

The results from grid refinement in radial direction show that the mesh clearly influence

the results. The aim of this convergence study is to identify a stable mesh that provides
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reasonable results. In terms of computational cost, a very fine mesh is undesirable. Based

on the above results, the parameters in Table 3.2 are chosen for further tests.

Nr gr

100 20

Table 3.2: Conclusion grid refinement in radial direction.

3.8.2 Grid refinement along cylinder surface

The subdomain surrounding the cylinder consists of eight blocks, as seen in Figure 3.1.

Nc denotes the total number of grid cells surrounding the cylinder surface, meaning that

each block has a total og Nc

8 grid cells at the cylinder surface. Four cases with varying Nc

are were run in order to assess the effect of Nc, and the results are given in Figure 3.8.
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Figure 3.8: Drag coefficient CD and added mass coefficient CM for Nc = 240, Nc = 320,
Nc = 400 and Nc = 480 with constant Nr = 100 and gr = 20.
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The results are relatively consistent for KC < 6, whereas CD increases linearly up to

KC = 10 before stabilizing. For some KC values it appears that a coarse mesh with

Nc = 240 gives somewhat higher values of CD than the finer meshes. The curves for CM

shows that a finer mesh with Nc = 480 gives a lower value than the coarser meshes at

KC > 6, and coincides well with the curve for Nc = 320 for KC ≤ 8 and KC = 12. As

previously the results at higherKC numbers fluctuates seemingly randomly, butNc = 320

andNc = 480 show a relatively stable development at the flow conditions evaluated in this

test.
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Figure 3.9: Total number of grid cells and maximum aspect ratio for mesh with Nc = 240, Nc =
320, Nc = 400 and Nc = 480 with constant Nr = 100 and gr = 20.

Figure 3.9 shows how the total number of grid cells are increased with Nc. The maximum

aspect ratio is unaffected by grid refinement along the cylinder surface.

Nc appears to affect the results at higher KC numbers. Due to the flucations at Nc = 320,

the finest mesh with Nc = 480 is chosen for further studies. Table 3.3 summarizes the

conclusions made from the convergence tests in this section.

Nr gr Nc

100 20 480

Table 3.3: Conclusion grid refinement along cylinder surface.
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3.8.3 Comparison with numerical and experimental results

The accuracy of the numerical model is evaluated by comparing the values for CD and

CM to existing numerical and experimental results. Sæter (2019) and Fimland (2018) per-

formed convergence studies of an oscillatory flow around a cylinder, and the optimum grid

parameters from their respective studies are plotted in Figure 3.10 along with the results

from the present numerical model. It should be noted that Fimland (2018) performed con-

vergence studies at Re = 10000, while the convergence studies from the numerical model

are performed at Re = 70000 in order to limit computational execution time.
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Figure 3.10: Comparison of results of drag coefficient CD and added mass coefficient CM from
numerical simulations by Sæter (2019) (Re varying with KC) and Fimland (2018) (Re = 10000).

Figure 3.10 show that the results for CD from the numerical model agree with the results

from Sæter (2019) at 2 < KC < 9. At higher KC values the computed values remain

relatively stable at 0.5 while the results from Sæter (2019) continues to increase linearly

up to almost twice the value at KC = 16. It should be noted that Sæter (2019) applied
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the k − ω turbulence model for wall treatment in his analysis, and found that the usage of

a laminar model in his case provided a significantly lower CD for KC > 4 stabilizing at

CD ' 0.3 − 0.4. The values for CD from Fimland (2018) are higher than the numerical

results, but behave in a similar trend with a dip at KC = 2 and stabilizing at KC ' 8.

The results for CM seem to agree up to KC = 6. At KC values higher than 6 the values

from the numerical model decreases in a similar matter as the results from Fimland (2018),

whereas CM from Sæter (2019) does not decrease until KC > 9.

There are discrepancies in the literature for KC-dependent CM and CD. Based on prior

numerical and experimental results for oscillatory flows and discussions with supervisor,

some trends were expected. These include a CM ≤ 2 for KC ≤ 5, drop at KC ' 6 and a

minimum at KC = 10− 12. It is however observed that CM drops already at KC = 3 an

decreasing to KC = 8− 10. At higher KC values higher than 8 the results fluctuate and

an apparent minimum is not observed, but CM does seem to increase as KC > 12. For

CD there was expected to be an approximate linearly increasing trend between KC ' 2

and KC = 10− 12, before if flattens out and decreases somewhat. A linear trend for CD

is evident for KC > 7, but the curve flattens out earlier at KC = 7 − 8. There is not

noticeable decrease at higher KC values.

In order to further assess the accuracy of the numerical model, values of CD and CM are

plotted along with results by Sarpkaya (1976) at Re = 20000 and Re = 40000. The

results are given below in Figure 3.11
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Figure 3.11: Comparison of results of drag coefficient CD and added mass coefficient CM from
numerical simulations to experimental results by Sarpkaya (1976).

The numerical model significantly underestimates CD. It appears that the model is un-

able to capture the skin friction drag contribution and provides a CD under 0.5 for both

Re = 20000 and Re = 40000. At Re = 20000 the model agrees for CM up to KC = 4,

where there is a sudden drop down to KC = 8 instead of a gradual decay as flow sep-

arates from the cylinder. For higher KC > 8 the CM value suddenly increases before

stabilizing. As observed in the convergence studies, the model is inconsistent for higher

KC numbers, and the overprediction of the inertia force at low Re confirms this. The

trend at Re = 40000 is similar to the results by Sarpkaya (1976) with a gradual decrease

for increasing KC numbers as flow separates from the cylinder, though the values are
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seemingly underpredicted for KC < 4. At KC = 11 there is a sudden spike in CM ,

whereas the value at KC = 12 follows the previously observed trend.

A comparison of the results from the numerical model in OpenFOAM with numerical and

experimental results show that the numerical model is unreliable for higher KC numbers

at lowRe values. ThoughCD is underpredicted according to empirical data from Sarpkaya

(1976), the results show consistency with the numerical model by Sæter (2019) up to

KC ≤ 9. At KC > 6 the results appear to fluctuate randomly, which indicates that the

model is not able to capture the inertia force at these levels. This can imply that the model

has problems modelling flows with increased turbulence from vortex shedding, which can

be explained by the use of a laminar simulation type. By applying turbulence modelling of

the boundary layer around the cylinder surface this weakness could be improved, but due

to time limitations this was not done in this thesis.

When simulating the wave forces around the cylinder the maximum KC number is as-

sumed to approximately 10, so going forward it should be noted that the stability of the

model at KC > 6 is uncertain.

3.9 Flow regimes

This section presents an overview of the flow regimes as a function of the KC number.

The KC number as given by Equation (2.34) is a function of the maximum velocity Um,

the period of the oscillating flow T and the cylinder diameter D. The oscillatory flow

considered up till now in the convergence studies is a sinusoidal flow with a velocity given

by

U = Umsin(ωt) (3.13)

with a maximum velocity of

Um = Aω =
2πA

T
(3.14)
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In order to maintain a constant Reynolds number Re at different KC values, the period

T was adjusted accordingly. For a sinusoidal case the KC number can be rewritten as a

function of the motion amplitude A.

KC =
2πA

D
(3.15)

The right hand side of Equation (3.15) can be used to describe the physical meaning of the

KC number. The numerator is proportional to the motion stroke 2A and the denominator

D is the cylinder diameter which in this case is held constant. This means that at smallKC

number the orbital motion of the fluid particles is small relative to the diameter. For high

KC numbers however, the fluid particles move large distances compared to the diameter.

Figure 3.12 shows the flow regime at KC = 2. There is no vortex shedding occurring

behind or in front of the cylinder, and the flow behaves like a creeping flow where the

inertial forces are small compared to the viscous forces.

(a) Flow direction left. (b) Flow direction right.

Figure 3.12: Flow regime for KC = 2 at Re = 40000.

Flow separation occurs as the KC number is increased to 4. The shedding around the

cylinder first builds up as a pair of symmetric vortices as flow separates, as seen in Fig-

ure 3.13. As the flow builds up over a few periods, the vortices increase in size and move

further away from the separation point. Eventually the symmetry between the attached
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vortices breaks down and a vortex shedding regime is established.

Figure 3.13: Build up of vortex shedding in flow regime for KC = 4 at Re = 40000.

The vortex shedding regime for KC = 4 is given in Figure 3.14. The vortex shedding in

this regime occurs each half period of the oscillatory motion as the flow separates from the

cylinder surface, and the vortices are pushed on the other side of the cylinder as the flow

changes direction.

(a) Flow direction left. (b) Flow direction right.

Figure 3.14: Flow regime for KC = 4 at Re = 40000.

It is clear that the water particles move further away from the cylinder as theKC number is

increased. The flow regime forKC = 6 in Figure 3.15 shows that the vortices move larger

distances both horizontally and vertically relative to the cylinder compared to KC = 4,

creating a shedding regime over larger area of the flow.
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(a) Flow direction left. (b) Flow direction right.

Figure 3.15: Flow regime for KC = 6 at Re = 40000.

As KC is increased to 8, the flow regime becomes less organized. Williamson (1985)

found that for 7 < KC < 15 the main vortices shed from the cylinder induce velocity,

which creates a trail of vortices perpendicular to the horizontal flow direction. This is

denoted as a transverse vortex street, and occurs as vortices are shedding on either the

lower or upper side of the cylinder. Observations by Williamson (1985) indicated that the

vortex street can changes sides relative to the cylinder. This phenomenon is however not

clearly evident in the flow visualization in Figure 3.16. This could be due to the simulation

time terminating at 10T , and that a transverse vortex street had not yet formed at this point.

(a) Flow direction left. (b) Flow direction right.

Figure 3.16: Flow regime for KC = 8 at Re = 40000.
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The flow regime for KC = 12 is shown in Figure 3.17. Here the vortices behave in

a similar observed trend, moving at larger distances horizontally and vertically from the

cylinder. The snapshot of the flow regime for the right flow direction show that the vortex

pairs upstream of the cylinder move towards the top left corner of the flow domain, and

could indicate that a transverse vortex street has formed in this direction.

(a) Flow direction left. (b) Flow direction right.

Figure 3.17: Flow regime for KC = 10 at Re = 40000.

Vortices shedding from the cylinder dissipate into the domain, which can indicate that the

use of a laminar model prevents turbulence in the flow to soothe out the vortices further

away from the cylinder. As KC is increased the vortices move in the changing flow

direction, and the fluctuations in the results in this range could perhaps be explained by

the influence of distant vortices.
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Chapter 4
Method

This chapter introduces the combined 3D CFD-FNV load model, including derivation of

the new three dimensional term and computation of wave forces on a discretized monopile.

The implementation of Stokes fifth order waves as input is described, and the test condi-

tions used to evaluate the 3D CFD-FNV load model are presented.

4.1 3D CFD-FNV load model

Slender body theory is used to approximate the solution to Stokes flow around bodies

that are long compared to their cross-sectional dimensions. Existing FNV theory does not

include slender body terms accounting for three dimensional effects, such as upwelling as

observed in experiments by Kristiansen and Faltinsen (2017). This section is dedicated

to a derivation of the 3D CFD-FNV load model that will be used to evaluate the effects

of three dimensional slender body terms in nonlinear higher harmonic waves interacting

with an OWT monopile. It it important to note that the load model is called 3D CFD-FNV

due to the addition of a three dimensional term, and not due to three dimensional CFD

simulations. The CFD simulations used in the combined load model are only performed
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for two dimensional flows.

In order to derive the 3D CFD-FNV load model for a monopile, we first consider the three

dimensional Navier Stokes equations in x- and y-direction, neglecting the gravity term.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν∇2U (4.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν∇2U (4.2)

The vertical velocity w is assumed to be known from fifth order Stokes theory, and unaf-

fected by the presence of the monopile. Furher, the pressure term p in Equation (4.1) and

Equation (4.2) is divided into two components:

p = pCFD + pw (4.3)

The component pCFD is the contribution from two dimensional CFD simulations, and

the component pw accounts for the three dimensional effects. By implementing the new

definition for the pressure term, Equation (4.1) can be split into two equations,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂pCFD

∂x
+ ν∇2U (4.4)

w
∂u

∂z
= −1

ρ

∂pw

∂x
(4.5)

The strip theory approach is applied to compute the wave forces on the monopile. Strip the-

ory involves dividing a submerged structure into a finite number of strips, and determining

the three dimensional force on the total structure by computing the two dimensional force

on each strip and summing the force components over the length of the body. The Eulerian

specification is used for discretization of the monopile into strips, as seen in Figure 4.1.

54



h

i = 1 

i = 2 

i = n-1 

i = n 

i = 1 

i = 2 

i = n-1 

i = n 

Figure 4.1: Eulerian discretization of monopile into n strips.

The monopile is discretized into n strips. The Eulerian specification involves strips with

fixed thickness throughout the flow cycle, where the fluid properties are functions of space

and time. The strips have varying thickness ∆zi, whereas the thickness gets smaller from

the seabed and up to the mean free surface z = 0. This is done in order to reduce com-

putational costs. The strips at the surface are thinner than the ones on the seabed, since

the velocity gradient is significantly higher than near the seabed. The monopile radius a is

assumed to be constant.

The monopile is discretized using a stretched mesh in z-direction, equivalent to the stretched

mesh using by Fimland (2018).

∆zi = αi−1∆z1 (4.6)

where α and ∆z1 is the strip on the bottom of the monopile touching the seabed. ∆z1 is

defined as

∆z1 = αi−1∆z1 (4.7)
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Figure 4.2: Notation for strip and plane numbering in discretization of monopile into n strips.

The two dimensional CFD pressure pCFD on strip i is found with two dimensional CFD

simulations of the strip in OpenFOAM at z = zi−1 and z = zi. The output from the

two separate simulations provide the horizontal velocity u(zi−1) and u(zi), along with

the horizontal force FCFD(zi−1) and FCFD(zi). The total two dimensional force in

the middle of strip i is found by interpolating the force at zi and zi−1 from the CFD

simulations,

FCFDi =
FCFD(zi) + FCFD(zi−1)

2
(4.8)

zi−1/i is the vertical coordinate at the middle of strip i, according to Figure 4.2.

zi−1/i =
zi + zi−1

2
(4.9)

This means that z0 is the bottom and z1 the top of strip 1, and the middle of the strip is at

z0/1. Similarly, z1, z2 and z1/2 account for strip 2 and so on.

Two dimensional CFD simulations are performed at xy-planes located at z = z0, z = z1,
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..., z = zn to the top of strip n. At strip i with thickness ∆i, the horizontal velocity

tangential to the bottom and the top are u(zi−1) and u(zi) from CFD simulations. wi−1/i

is the vertical velocity in the middle of strip i, and is assumed to be known from fifth order

Stokes wave theory. The left side of Equation (4.5) can then be approximated as

w
∂u

∂z

∣∣∣∣
zi−1/i

' wi−1/i
ui + ui−1

∆zi
(4.10)

The pressure at the boundaries of the domain is assumed to be known from the two di-

mensional Bernoulli equation. The pressure acting on the monopile surface at r = a is

denoted p(a), and is further referred to as pw accounting for three dimensional effects.

The pressure pw on the monopile can be determined by integrating the pressure gradient

from the monopile surface to domain boundaries, which yields

pw(a, θ, zi−1/i)− p(rd)︸ ︷︷ ︸
known

=

∫ a

rd

∂pw

∂x
dl = −ρ

∫ a

rd

w
∂u

∂z
dl (4.11)

where p(rd) is the pressure at the radius rd of the far field circular control surface. rd is a

distance from the monopile where the flow is not affected by the body. In the numerical

model in OpenFOAM, this distance is defined as rd = r + L/2 as seen in Figure 4.3.

y

x
a

p (rd)

p (a)

rd

Figure 4.3: xy-plane of domain at z = zi with monopile radius a and far field circular control
surface rd.
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p(rd) is determined from the potential flow solution for a dipole. The velocity compo-

nents at rd in radial and angular direction are defined according to Equation (4.12) and

Equation (4.13).

ur(rd, θ, zi−1/i) = u(zi−1/i)
(

1−
( a
rd

)2)
cosθ (4.12)

uθ(rd, θ, zi−1/i) = −u(zi−1/i)
(

1−
( a
rd

)2)
sinθ (4.13)

where a is the radius of the monopile and u(zi−1/i) is the horizontal velocity in the middle

of the strip, known from Stokes fifth order wave theory. The pressure at rd can then be

determined from the two dimensional Bernoulli equation as

p(rd, θ, zi−1/i) =
1

2
ρ(u2θ + u2θ) (4.14)

With rd held constant in the analysis, p(rd) in the xy-plane at zi−1/i is a function of θ. As

of Equation (4.5), the above expression for pw can be rewritten as follows,

pw(r, θ, zi−1/i) = p(rd, θ, zi−1/i)− ρ
∫ a

rd

w
∂u

∂z
dl

' p(rd)− ρ
∫ a

rd

wi−1/i
ui + ui−1

∆zi
dl

(4.15)

In order to obtain the numerical values for ui and ui−1 in OpenFOAM, the magnitude of

the velocity is measured using the probe function. 100 probes along probelines evenly

distributed radially at an angle θ around the cross-section from r to rd are implemented in

the two dimensional numerical model, as illustrated in Figure 4.4.
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Figure 4.4: Probelines around the monopile from r = a to r = rd at the monopile cross-section at
plane z = zi.

The integration in Equation (4.15) are performed in post processing by numerically inte-

grating over the velocity at the 100 probes along the probelines at (r, θj , zi−1/i).

This provides the pressure pw at (r, θj , zi−1/i) for strip i. In order to obtain the force

component, the monopile circumference is discretized into elements with straight lines

tangential to the surface with equal length ∆s. The force component on each element at

angle θj is then

Fw(r, θj , zi−1/i) = ∆s · pw(r, θj , zi−1/i) · n (4.16)

where n is the normal vector of the element surface into the surrounding flow. The to-

tal three dimensional force contribution is then found by summing the force on all the

elements around the monopile:

Fwi =

k∑
j=1

∆s · pw(r, θj , zi−1/i) (4.17)
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The total force including both the two and three dimensional force components for on

strip i is determined by multiplying with the strip thickness ∆zi. Due to the Eulerian

discretization scheme, the submergence of the strips will vary with the incident free surface

ζ as a function of time. This means that the strips above the surface will not contribute to

the horizontal force. To account for this, the computed force components at strip i are set

to zero when the center of the strip if submerged, i.e. FCFDi + Fwi = 0 if zi−1/i > ζ as

illustrated in Figure 4.5 below.

Figure 4.5: Force distribution on strip i at ζ < zi−1/i and ζ > zi−1/i.

The new force terms are combined with existing FNV theory by replacing the time deriva-

tive terms in Equation (2.44) with FCFDi and adding the three dimensional contribution

Fwi for all n strips. The terms in the new 3D CFD-FNV load are as follows,

Fx =

n∑
i=1

FCFDi ∆zi +

n∑
i=1

Fwi ∆zi +

∫ ζ

−h

(
a11u

∂u

∂x
+ 2a11w

∂u

∂z

)
+ Fψ (4.18)

where

Fψ = ρπa2
4

g
u2
∂u

∂t

∣∣∣∣
z=0

(4.19)
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4.2 Input

The wave kinematics input for the 3D CFD-FNV load model are computed using Stokes

fifth order wave theory. The method in Section 2.1.5 by Skjelbreia and Hendrickson (1960)

was implemented in MATLAB in order to obtain the time series for the relevant kinemat-

ics as a function of wave period T , wave steepness H/λ and water depth h. In order to

estimate the fluid motion from the seabed and up to the incident free surface, the compo-

nents are Taylor expanded for h < z ≤ ζ. Considering the wave kinematics components

as a function f , this gives

f(z) = (f1 + f2 + f3 + f4 + f5)|z=0 + z
∂(f1 + f2 + f3 + f4)

∂z

∣∣∣∣
z=0

+ ...

z2

2

∂2(f1 + f2 + f3)

∂z2

∣∣∣∣
z=0

+
z3

6

∂3(f1 + f2)

∂z3

∣∣∣∣
z=0

+
z4

24

∂4f1
∂z4

∣∣∣∣
z=0

(4.20)

where fi is the i-th order Stokes wave theory. The Taylor expanded horizontal velocity u

for ka = 0.127 and ka = 0.105 are shown in red in Figure 4.6.

Figure 4.6: Horizontal velocity u from Stokes fifth order wave theory for ka = 0.105 and ka =
0.127 at wave steepness H1/λ = 1/25 at h/a = 7.83 with time step T/100.

The time is discretized by dividing the time period into a constant number intervals. The

time steps used under for the following test conditions are T/100.
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4.3 Test conditions

Kristiansen and Faltinsen (2017) performed experiments of a single monopile in long and

moderately steep waves in deep to intermediate depth wave conditions. The experiments

were carried on in the medium-sized wave tank at the Marine Techonology Centre at

NTNU. The full scale monopile diameter was D = 6.9 m at water depths h = 27 m

and h = 19 m, and tested at full scale wave periods at T = 6 s and T = 16.5 s. The

model tests were Froude scaled by 1:48, with a model monopile diameter of D = 0.144

m and radius a = 0.072 m at water depths h = 0.5635 m and h = 0.3958 m. The test

conditions used to evaluate the 3D CFD-FNV load model are chosen so that they match

the test condition parameters using in the model tests at h = 0.5635. The wave steepness

used in test conditions range from H1/λ = 1/100 to H1/λ = 1/20, whereas H1 denotes

the linear wave height from linear wave theory. The relevant test condition parameters are

presented in Table 4.1, including model scale and full scale wave period TM and TF .

h/a = 7.83

ka [−] TM [s] TF [s] KC1 [−] KC5 [−] Ur [−] Re/103 [−]

0.388 0.866 6.000 1.0 1.2 0.4 24.3

0.290 1.010 6.998 1.4 1.6 0.9 27.9

0.229 1.155 8.002 1.7 2.1 1.7 30.8

0.190 1.299 9.000 2.1 2.7 3.0 33.1

0.163 1.443 9.997 2.4 3.4 4.8 34.8

0.142 1.588 11.002 2.8 4.3 7.2 36.1

0.127 1.732 12.000 3.1 5.3 10.1 37.1

0.115 1.876 12.997 3.4 6.5 13.7 37.9

0.105 2.021 14.002 3.8 8.0 17.9 38.5

0.097 2.165 15.000 4.1 9.7 23.0 39.0

0.090 2.309 15.997 4.4 11.8 28.8 39.4

Table 4.1: Test condition parameters from model tests by Kristiansen and Faltinsen (2017). KC1,
KC5, Ur and Re are given for wave steepness H1/λ = 1/25.
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KC1 and KC5 are the maximum KC number present in the wave condition according to

linear and Stokes fifth order wave theory respectively. The maximum KC number refer

to the maximum wave particle velocity at the wave crest. As seen in Table 4.1, KC5 > 6

for longer waves at ka > 0.127 and higher for H1/λ = 1/25. The limitations of the

numerical model in this KC range should therefore be considered when evaluating the

results at these ka values. It should also be noted that Ur for all test conditions presented

in Table 4.1 are within the validity limit of Ur < 40 for Stokes fifth order wave theory as

presented by Hedges (1995).
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Chapter 5
Results and discussion

This chapter presents the results from the 3D CFD-FNV load model, along with discussion

of the findings. First, the parameters used to set up the load model are discussed. Further,

the 3D CFD-FNV model is evaluated by comparing the results to experimental data and

theoretical predictions with focus on the third load harmonic. The contribution from the

added three dimensional term is investigated closer in a separate section. Recommenda-

tions for further work are provided at the end of this chapter.

5.1 Set up

The 3D CFD-FNV load model was performed for the test conditions in Section 4.3. The

monopile was discretized into 10 strips, resulting in two dimensional CFD simulations at

11 planes on the top and bottom of each strip for each wave condition. The strip thickness

was stretched as described in Section 4.1, and the height of the monopile above the mean

free surface was adjusted according to the test conditions as seen in Figure 5.1.
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Figure 5.1: Discretization of monopile into 10 strips at for ka = 0.105 at wave steepness H1/λ =
1/40 and H1/λ = 1/25 at h/a = 7.83. The blue line represents the free surface ζ.

One probeline for each third grid cell along the cylinder surface was applied to measure

the horizontal velocity in the plane, resulting in a total of 160 probelines distributed evenly

around the cylinder circumference.

Due to the Eulerian discretization scheme of the monopile, the flow regime on the hor-

izontal planes on top and bottom of the strips vary vertically. As seen in Figure 4.6,

the magnitude of the horizontal velocity is higher close to the fifth order free surface.

The strips located on top of the monopile near the free surface will therefore experience

a higher velocity than the strips on near the seabed. Consequently, the maximum KC

numbers on each strip increases. The maximum KC number for the horizontal planes ac-

cording to Stokes fifth order theory denoted KC5 are shown in Figure 5.2 for ka = 0.105

and ka = 0.127, and are determined by the maximum horizontal velocity at the vertical

location of the plane.
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Figure 5.2: KC5 at z-planes 0 to 11 for ka = 0.105 at wave steepness H1/λ = 1/40 and H1/λ =
1/25 at h/a = 7.83.

As seen in Figure 5.2, KC5 increases as the waves get steeper and longer. KC5 gets

higher as the plane location is closer to the free surface, and develops faster for steeper

waves. The lower planes experience a higher KC5 magnitude for these wave conditions,

indicating that flow separation is expected to occur at closer to the seabed as the wave

steepness is increased. As discussed in Section 3.8 the numerical model is unreliable for

KC > 6, which means that the accuracy of the results for longer with with low ka number

and higher wave steepness at the top strips are uncertain.

5.2 Comparison of experimental results, the FNV method

and the 3D CFD-FNV load model

The results from the 3D CFD-FNV load model for the test conditions in Table 4.1 are

provided in Appendix A.2. The time series for the total and first three harmonics of hor-

izontal force as predicted by the 3D CFD-FNV load model are plotted against the results

from the FNV method. A MATLAB band-pass filtering script provided by supervisor is

used to isolate the first, second and third harmonic loads. A notable difference between the

two methods is seen in the predictions of the total horizontal force for longer and steeper

waves. The force predictions by the 3D CFD-FNV load model is lower in the wave prop-
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agation direction, resulting in lower force amplitudes. The force in the opposite direction

is however unaffected. This is due to an irregularity occurring after the the troughs in the

predicted total horizontal force on the monopile that appears for longer and steeper waves

for ka > 0.127. An example of this is shown in Figure 5.3.
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Figure 5.3: Example of time series of the total and first three harmonics of the horizontal force for
ka = 0.105 and H/λ = 1/25 at water depth h/a = 7.83 from experimental results, FNV method
and 3D CFD-FNV load model.

This first occurs for steeper waves at ka > 0.127. It appears as if the monopile experiences

an additional force reducing the first load harmonic and occur as a peak at the force series

troughs. Since this occurs at the troughs, an possible explanation for the irregular peaks
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could be the force at non-subermged strips being set to zero causing discontinuities in the

force summations. These peaks are however not present for ka < 0.127.

KC5 > 6 for steep waves at ka > 0.127, as mentioned in Section 5.1. As the numerical

model is unreliable at KC number above 6, it is likely that the computed viscous force on

the cylinder provided by the CFD pressure force is affected by weaknesses in the numerical

model.

As seen in Figure 5.3, the 3D CFD-FNV load model overpredicts the third harmonic load.

The third order incident potential is zero at infinite water, but accounts for a significant

contribution to the third harmonic load at finite water (Kristiansen and Faltinsen, 2017).

It can be seen that the theoretical third load harmonic is higher than the experimental as

well, and in closer agreement to the results from the 3D CFD-FNV load model. The third

load harmonic from the 3D CFD-FNV load model is somewhat out of phase with the

experimental and theoretical third load harmonic.

The nondimensional horizontal force amplitude of the first three harmonics for H1/λ =

1/40 and H1/λ = 1/25 as predicted by the 3D CFD-FNV load model is plotted in Fig-

ure 5.4 against experimental and theoretical results. In order to assess the three dimen-

sional term added to the load model in Equation (4.18), the predicted amplitude from the

method without the three dimensional term in plotted as well. This is denoted as CFD-

FNV in the figures.
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Figure 5.4: Horizontal force amplitude of the first three harmonics for H1/λ = 1/40 and H1/λ =
1/25 at water depth h/a = 7.83 from experimental results, FNV method, CFD-FNV load model
and 3D CFD-FNV load model.

For wave steepness H1/λ = 1/40 the 3D CFD-FNV load model agrees well with both

experimental and theoretical results all three harmonics for ka > 0.127. For the shortest

waves in this range the in-line inertia forces dominates, and the viscous forces predicted

by the CFD simulations are small. At lower ka values for longer waves, the first har-

monic is underpredicted by the method. The predicted second harmonic load is relatively

well predicted, but somewhat higher for the longest waves. The third harmonic load is

overpredicted for 0.229 < ka < 0.105, whereas the method agrees remarkably well with

experimental and theoretical results for the lowest ka values. The compliance for the third

harmonic appears to occur approximately as the dip in the first harmonic occurs, and is

likely due to the out of phase contribution from linear diffraction computed theoretically
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from FNV in the load model.

For the steeper wave condition H1/λ = 1/25, a similar trend for the first harmonic load

is observed. The amplitude is underpredicted earlier and the discrepancies are apparent

at ka = 0.190. The second harmonic load is overpredicted by the 3D CFD-FNV load

model for 0.229 < ka < 0.115, whereas the predicted amplitude longest waves are lower

than the theoretical and experimental results. As for the third harmonic, the 3D CFD-FNV

load model overpredicts the amplitude for 0.229 < ka < 0.190, similar as the case for

the second harmonic load. The third harmonic load amplitude for the steepest waves at

ka > 0.105 are significantly higher than the experimental results.

As seen in the figure for bothH1/λ = 1/40 andH1/λ = 1/25, the three dimensional term

in the 3D CFD-FNV load model does not contribute to the amplitude of either one the first

three harmonics. The third harmonic load amplitude for the longest waves is a little bit

lower for the 3D CFD-FNV compared to the CFD-FNV load model, but the difference is

almost unnoticeable. This comparison of the load models show that the three dimensional

contribution is negligible.

In order to assess how the wave steepness affects the nondimensional horizontal force

amplitude, the 3D CFD-FNV load model is tested at constant ka values and wave steepness

H1/λ ranging from 1/100 to 1/20. The results are shown in Figure 5.5.
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Figure 5.5: Horizontal force amplitude of the first three harmonics for ka = 0.163, ka = 0.127
and ka = 0.105 versus wave steepnessH1/λ at water depth h/a = 7.83 from experimental results,
FNV method, CFD-FNV load model and 3D CFD-FNV load model.

The discrepancies in the first harmonic load amplitude occur for lower steepness as the

waves get longer and ka decreases. This indicates that the underprediction of the force is

related to KC. In order assess this relation, the values in Figure 5.4 and Figure 5.5 are

plotted as a function of KC5 in Figure 5.6 and Figure 5.7.
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Figure 5.6: Horizontal force amplitude of the first three harmonics for H1/λ = 1/40 and H1/λ =
1/25 versus KC5 at water depth h/a = 7.83 from 3D CFD-FNV load model.

For H1/λ = 1/40 and H1/λ = 1/25 the dip in first load harmonic load occur as early as

KC5 ' 3− 4. The discrepancies in the first harmonic load correlate with an underpredic-

tion of the first harmonic for increasedKC5, and the results in Figure 5.6 show compliance

in the KC5 range where this occurs. The second and third harmonic force amplitude in-

creases with KC5, and the second harmonic force amplitude appears to increase with a

lower gradient as KC5 > 8.
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Figure 5.7: Horizontal force amplitude of the first three harmonics for ka = 0.163, ka = 0.127
and ka = 0.105 versus KC5 at water depth h/a = 7.83 from 3D CFD-FNV load model.

The discrepancies seem occur around KC5 ' 4− 5 when plotting the force amplitude as

a function of H1/λ in Figure 5.7. It is also apparant that the gradient in the first harmonic

for ka = 0.163 and ka = 0.127 decreases a at these KC5 values. The results from these

figures confirm that the discrepancies in the load model occur at a KC value about 4-5

and reoccur continuously for KC > 6.

The results from this section shows that numerical model used in the 3D CFD-FNV model

is unfit to describe higher order wave loads for KC > 6. As the viscous forces become

increasingly dominant, the discrepancies between the load model amplitude and experi-

mental results increases. It is however evident that the three dimensional added term do

not explain the discrepancies in the theoretical and experimental amplitude, as the pre-

dicted force with and without the three dimensional term are close to identical.
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5.3 Contribution from three dimensional term in the third

harmonic load

As discussed in Section 5.2, the three dimensional term does not contribute to the estimated

force amplitude for the first three load harmonics. In this section, the contribution from

three dimensional term in the 3D CFD-FNV load model will be assessed closer. Time

series of the total and first three harmonics the force components for all test conditions

from the 3D CFD-FNV load model are provided in Appendix B.2, where FCFD is the

first viscous term in Equation (4.18) from CFD, Fw the second three dimensional term

and FFNV the remaining two terms that are computed from existing FNV theory. The

amplitude of the first three load harmonics of the contribution from the three dimensional

term in the 3D CFD-FNV load model are plotted separately in Figure 5.8.
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Figure 5.8: The first three harmonics of three dimensional force Fw component amplitude for
H1/λ = 1/40 and H1/λ = 1/25 at water dpeth h/a = 7.83 from 3D CFD-FNV load model.
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It is evident that the three dimensional force contribution increases for longer and steeper

waves. The third harmonic force component amplitude increases significantly for both

H1/λ = 1/40 and H1/λ = 1/25 as ka > 0.163. As observed by Kristiansen and

Faltinsen (2017), locally high pressure caused upwelling at the rear end of the monopile

caused a local steep wave propagating in the opposite direction of the incident waves. It

is apparent that the three dimensional effects are increasingly significant as the waves get

steeper and longer, though the amplitude is still small. Since the motivation for adding

a three dimensional term to the CFD-FNV load model is to see how it contributes to the

total third harmonic load for low ka numbers, the force components for ka = 0.163,

ka = 0.127 and ka = 0.105 are examined closer in Figure 5.9. The flow regimes at these

wave conditions are additionally visualized in Appendix B.1.
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Figure 5.9: Time series of third harmonic of force components from 3D CFD-FNV method for
ka = 0.163, ka = 0.127 and ka = 0.105 at water depth h/a = 7.83.
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The time series in Figure 5.9 show that the contribution from the three dimensional force

is small compared to the contribution from the CFD force. The CFD force account for the

viscous effects in the flow. However, the third harmonic of the three dimensional force is of

out of phase with the CFD force, which means that it does contribute to a small reduction

of the total third harmonic load. The observed run-up in the experiments by Kristiansen

and Faltinsen (2017) resulted in a local steep wave propagating in negative x-direction for

the duration of 1
4T to 1

3T , and it is possible that the out of phase three dimensional third

harmonic force is related to this observation.

As the convergence studies and the prediction of the first harmonic load amplitude in

Figure 5.4 show, the numerical model has trouble modelling flows at KC > 6, i.e steep

waves at ka > 0.127. This may affect the assessment of the three dimensional term, as

the third harmonic CFD force does not have a constant amplitude for low ka numbers.

To eliminate this as a possible source of error, the three dimensional term is added to the

theoretical FNV force in Equation (2.50). The results for ka = 0.163, ka = 0.127 and

ka = 0.105 are given in Figure 5.10.
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Figure 5.10: Time series of third harmonic of horizontal force from FNV method and three dimen-
sional force component for ka = 0.163, ka = 0.127 and ka = 0.105 at water depth h/a = 7.83.

Here, F 3D−FNV accounts for the theoretical force with the added three dimensional term,

and FFNV is the theoretical force without the three dimensional term. As seen in Fig-

ure 5.9, the three dimensional force is out of phase with the theoretical FNV force as

well. The amplitude of F 3D−FNV is somewhat lower than FFNV for ka = 0.127 and

ka = 0.105, and it appears that the three dimensional force term affects the amplitude at

steeper waves. The contribution is though very small.

In order to assess the significance of the contribution from the three dimensional term,

the amplitude of the three dimensional force component is divided by the total horizontal

force. This is given in Figure 5.11.
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Figure 5.11: Fraction of the first three harmonics of three dimensional force Fw component ampli-
tude to total horizontal force amplitude Fx for H1/λ = 1/40 and H1/λ = 1/25 at water depth
h/a = 7.83 from 3D CFD-FNV load model. Legend entries 3D − CFD − FNV and FNV
denotes the total horizontal force amplitude from 3D CFD-FNV and FNV method respectively.

The amplitude of first harmonic of the three dimensional force is relatively constant but

somewhat increased for the longest waves. The contribution is higher compared to the

3D CFD-FNV amplitude since the first harmonic load is underpredicted by the numeri-

cal model. The amplitude of the second harmonic decreases gradually as the waves get

longer but get higher for the longest waves. The amplitude of the third harmonic of the

three dimensional force amplitude is largest relative to the the total horizontal force am-

plitude is for the longest waves at H1/λ = 1/25. This is consistent with the theoretical

force amplitude as well, and indicates that the three dimensional contribution is of some

significance in this range. The highest F (3ω)
w /F

(3ω)
x ratio is approximately 5-6%, and as
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discussed in Section 5.2 the contribution does not affect the third harmonic force amplitude

to the degree that it can explain the discrepancies between the experimental and theoretical

results.

The results from this section indicate that the added slender body term in the 3D CFD-

FNV model does not account for the observed discrepancies between theoretical and ex-

perimental results for long and steep waves. The slender body term accounting for three

dimensional effects in vertical flow direction is out of phase with the dominant viscous

forces from CFD simulations, indicating that three dimensional forces contribute to re-

ducing the total horizontal force. The three dimensional forces are of highest significance

for severe wave conditions at low ka number of high steepness, which means that the ex-

clusion of three dimensional effects in existing generalized FNV theory could explain the

discrepancies in these wave conditions.

5.4 Further work

Time series of the three dimensional force show that it is out of phase with the viscous

force contribution, indicating that three dimensional effects reduce the amplitude of the

total force. The three dimensional contribution of of highest significance for the most se-

vere wave conditions with steeper and longer waves. As discussed above, the slender body

terms added to the CFD-FNV load model do likely not account for the total three dimen-

sional contribution. In order to examine the discrepancies between theory and experiments

for longer and steeper waves in further work, it is recommended to consider other three

dimensional effects on the monopile. The 3D CFD-FNV load model accounts for only

two dimensional vortex shedding in the xy-plane, and it is possible that induced vortex

shedding in the yz-plane contributes to the three dimensional force as well.

During the experiments by Kristiansen and Faltinsen (2017), the flow on the surface was

attempted visualized using confetti as shown in Figure 5.12.
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(a) (b)

(c) (d)

Figure 5.12: Snapshots from high speed video from experiments by Kristiansen and Faltinsen
(2017) for ka = 0.127 and H1/λ = 1/25 at water depth h/a = 7.83 illustrating local run-up
at rear end of the cylinder. Time instants are approximately T/120 apart, where T is the ave period.
Pictures retrieved from Kristiansen and Faltinsen (2017)

A local rear run-up extending a distance of same order as the monopile diameter was ob-

served during the experiments. This is referred to as upwelling, and caused the confetti on

the free surface to move away from the rear end of the monopile, without returning. Kris-

tiansen and Faltinsen (2017) stated that it was clear that this occurred due to an upwelling

from below, and that the cause for the upwelling was a high pressure forming under the

free surface due to flow separation. It is therefore of interest to study the three dimensional

vortex shedding perpendicular to the wave propagation direction, as the induced velocity

by the vortices could possibly explain the fluid motion in the local rear run-up.

The use of CFD to simulate oscillating flow around circular object is a challenging. As

seen in the convergence studies by the numerical model, the viscous forces are hard to

predict accurately as theKC number increases. Comparisons with Sæter (2019) show that

a turbulence model may be necessary in order to accurately model the near wall treatment

of the flow. The use of three dimensional CFD simulations for similar test conditions

will likely require high computational costs compared to present two dimensional CFD

simulations. However, it may be necessary to convert to three dimensional flow modelling

81



in order to accurately describe the fluid motion in z-direction.

The motivation for developing the 3D CFD-FNV load model was to find an efficient and

accurate model for higher order wave loads. As discussed, the accuracy of the numerical

model is uncertain for KC > 6, which means that the application range of the method is

limited. The two dimensional CFD simulations in OpenFOAM are run at relatively low

computational cost due to grid refinement and use of adjustable time step. Post processing

of the results are however greatly time consuming due to the size of the data. Since the

velocity data was sampled at 100 probes for 160 probelines at 11 planes for eight wave

periods, the data used to integrate the three dimensional force was of significant size. In

total, nearly 1 TB of storage was used to obtain the results from the 3D CFD-FNV load

model. If the method was to be developed further, the possibility of reducing the number

of probe locations should be considered in order to save time reading the probe velocity

data from OpenFOAM.
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Chapter 6
Conclusion

In this thesis a combined 3D CFD-FNV load model has been developed. Two dimensional

CFD simulations in OpenFOAM have been performed based on strip theory, replacing the

terms in existing FNV theory proportional to ∂u
∂t . The remaining terms from FNV theory

were computed analytically, and a slender body term accounting for three dimensional

effects on the monopile was added. A comparison of the results from the 3D CFD-FNV

load model with experimental results showed that the numerical model had difficulties

representing flows at KC > 5 − 6, and underpredicts the total and first load harmonic as

KC increased above this range. The three dimensional force contribution implemented in

the 3D CFD-FNV load model was investigated, and results showed that the contribution

was very small to negligible. The contribution was however observed to be out of phase

and of highest contribution for longer and steeper waves, indicating that the discrepancies

between theoretical and experimental results may be due to similar three dimensional ef-

fects. Further work should include a further investigation of the three dimensional effects

for severe sea states, with focus on the local upwelling on the free surface on the rear end

of the monopile. An implementation of the three dimensional vortex shedding in the yz-

plane along with strip theory based CFD simulations and FNV theory has the potential of

capturing the effects that are not adequately described by the 3D CFD-FNV load model.
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Appendix A

A.1 Time series of the total and first three harmonics of

the horizontal force on monopile from FNV theory,

3D CFD-FNV load model and CFD-FNV load model
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A.2 Time series of the total and first three harmonics of

the force components from 3D CFD-FNV load model
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Appendix B

B.1 Visualization of flow regimes around monopile

t = 4

Plane 4 Plane 6 Plane 8 Plane 10Plane 2

t = 8

Figure B.1: Flow regime around monopile for ka = 0.163 and H1/λ = 1/40.

t = 4

Plane 4 Plane 6 Plane 8 Plane 10Plane 2

t = 8

Figure B.2: Flow regime around monopile for ka = 0.163 and H1/λ = 1/25.
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t = 4

Plane 4 Plane 6 Plane 8 Plane 10Plane 2

t = 8

Figure B.3: Flow regime around monopile for ka = 0.127 and H1/λ = 1/40.

t = 4

Plane 4 Plane 6 Plane 8 Plane 10Plane 2

t = 8

Figure B.4: Flow regime around monopile for ka = 0.127 and H1/λ = 1/25.

t = 4

Plane 4 Plane 6 Plane 8 Plane 10Plane 2

t = 8

Figure B.5: Flow regime around monopile for ka = 0.105 and H1/λ = 1/40.
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t = 4

Plane 4 Plane 6 Plane 8 Plane 10Plane 2

t = 8

Figure B.6: Flow regime around monopile for ka = 0.105 and H1/λ = 1/25.
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