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Background 

For autonomous ships, the ability to reactively plan and replan a path to avoid collision during 

maneuvering and voyaging is crucial. For this purpose, bio-inspired neural networks (BINN) are 

explored to serve as a guidance model for online and stepwise path-planning. These are discrete, 

topologically organized networks that contain information of “targets” and “obstacles” and are updated 

dynamically as the external environment changes. Typically, the optimal path-planning used in BINN 

applications are very simplistic. The objective of this thesis is to study optimal path-planning techniques 

that will improve the resulting path on a BINN model, in order for it to be feasible for a ship as well as 

minimizing certain cost. For this task, both model-predictive control (MPC) with mixed-integer 

programming (MIP) and the Hybrid A* search algorithm are relevant methods to be explored.  

An autonomous system is to be developed for testing and verification of the path-planning algorithms 

through simulations and in MC-lab experiments – if available. In such a system, it is the responsibility 

of a cognitive machine pilot to sense and interpret the ambient conditions with high certainty, plan a 

path and speed, navigate, and execute the plan by maneuvering the ship from departure to destination 

without human intervention. This involves understanding of: 

• The ship dynamics (inertial delays, responses to currents, wind, and propulsion, etc.), 

• path feasibility requirements and safety maneuvers (crash stop, turning circle, etc.) for the ship, 

• how to maneuver safely and optimally in waves and currents, 

• in-voyage path and speed decision making to satisfy local and global objectives, and 

• the sensors and monitoring variables for data analysis to ensure situational awareness. 

Not all these aspects are objectives in this thesis. The following list details the work tasks: 

Work description 

1. Perform a background and literature review to provide information and relevant references on: 

• BINN as a dynamic guidance model. 

• Basic graph theory for efficient computations on a network of neurons. 

• Methods for optimal path-planning (MIP, MPC, Hybrid A*).  

• Dynamic obstacle avoidance compliant with relevant ship rules and regulations. 

• MC-Lab and the CyberShip Enterprise 1 (CSE1) model. 

Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the 

literature study and project assignment. 
 

2. Work together with other students on preparing CSE1 for testing and experimentation in the MC-

Lab. Formulate the experimental problem, including a description of setup, the vessel and its 

equipment, dynamic models, operation workspace, test scenarios, and specific assumptions. 
 

3. Propose one or several optimal path-planning techniques (incl. Hybrid A* and/or MPC) to be used 

on a discrete BINN model. Explain the objective functions and constraints used in each method, and 

how these handle vessel constraints and act on the information provided by neural activities in the 

BINN. Specify a few interesting topographical landscapes, containing some obstacles, and find an 

optimal path from an initial position to one or several targets. Present the results. 
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4. Introduce relevant ship rules to the guidance model (e.g. COLREGs). Simulate the path-planning 

algorithms in different scenarios (i.e., an obstacle moving in different directions with different 

speeds) by using a receding horizon scheme (i.e., for each BINN evolution, implement only the next 

optimal waypoint, and repeat the process until the target is reached). Present the results. 
 

5. Implement and present a path-generation algorithm (e.g., Bézier curves) that ensures a smooth (𝐶3) 

curve in the connection points. The next waypoint can be assumed to be determined by the path-

planner at some point along the current path segment, with enough time to replan and compute next 

segment. Derive the heading and speed reference along the path. 
 

6. Modify the guidance system by, for example, selecting 2, 3, or more waypoints forward for each run 

of the optimization, instead of only the “next waypoint”. For all cases, suggest and justify a 

common key performance indicator (KPI) to evaluate path performance with. Evaluate this for each 

path, and tabulate and discuss the results. 
 

7. Set up an autonomous system, with your developed functions, for simulation and control of CSE1. 

System modules include the path-planner and path-generator, an observer, and a motion controller. 

Simulate some scenarios for the transit phase of a voyage on an appropriate simulation model, and 

thereafter test the system on CSE1 in the MC-Lab. Present the implementation and results. 
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Abstract

Intelligent path-planning for surface vessels is crucial when enhancing their level of autonomy
– or self-government. Path-planning is typically based on a guidance model, that replicates
the operational environment according to a priori knowledge and perceptual information.
Changes in the model prompt replanning of the path, which is intrinsic to collision avoidance
and the execution of a safe voyage. A bio-inspired neural network proposed by Yang and
Meng (2001) was explored to serve as the guidance model. The model seems promising in
how information can be fused into a neural activity landscape. A downside is related to the
steepness of the landscape, yielding minimal differences in the activities of neurons associated
with free space, and thus increasing the difficulty of determining the better waypoints.

Waypoints were determined by a path search strategy. A mixed-integer program was formu-
lated, but did not produce practicable outputs. Nevertheless, to promote system reactivity,
the receding horizon approach was proceeded with and combined with a hybrid-state A*
path search. Advantages of the hybrid A* algorithm include that it considers the continuous
nature of the search space as well as nonholonomic constraints of the vehicle. Expansions
of the search tree were performed either with straight lines of a predefined length or with
arcs based on the vessel’s minimum turning circle, and according to an heuristic estimate of
the distance to the target. The latter was either calculated as the Euclidean distance, or a
modification based on neural activities and with a penalty on changes in search direction.
Straight-line expansions together with the former heuristics finished in the shortest time,
but the latter heuristics generally yielded paths with less turns. Although any combination
of heuristics and type of expansion finished within reasonable computation times, it might
worsen in congested environments. Then, enhancing the heuristic estimate by, for instance,
assigning it to the maximum of several admissible estimates is a possible way forward.

Predictable behavior of the autonomous surface vessel in encounter situations was sought
by complying with the rules of the sea (COLREGs). A rectangular avoidance region, that
adapted to the distance and bearing between the encountering vessels, was defined. The vessel
under control was repelled from moving inside the region by manipulating neural activities of
the neurons within the region. Although the method proved effective in different encounter
situations, a severe shortcoming is that the vessel might get trapped inside the avoidance
region – leading to potential hazardous situations. A redefinition of the region is required,
possibly with another geometric shape, so that the vessel at least can enter a minimum risk
condition as defined in the guidelines of DNV GL (DNV GL, 2018).

The path planner was integrated as part of a guidance, navigation, and control system. A
path generator using Bézier curves, together with the path planner, comprised the guidance
module. Based on the planned WPs, the path generator was responsible for defining a contin-
uous path, taking inherent limitations of the vessel into account. A backstepping maneuvering
controller then computed the forces and moment to be produced by the propulsion system
in order to follow the path. Accurate estimates of the vessel’s position and heading were
provided by a nonlinear passive observer, even when measurements were corrupted by noise,
and sent to the controller and path planner. The path planner proved to be responsive to in-
puts and changes in the environment, and the straight-line expansion was probably the most
promising considering computation time and consistent outputs in the form of equidistant
WPs.
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Sammendrag

Planlegging av en trygg og kollisjonsfri bane er avgjørende når graden av autonomi i skip øker.
Det gjøres med utgangspunkt i en modell av omgivelsene, som her har vært i form av et bio-
inspirert nevralt nettverk. En strategi for å finne en mulig bane i dette landskapet er hybrid
A*. Denne algoritmen tar hensyn til at området skipet beveger seg i er kontinuerlig, samt
fartøyets iboende begrensninger i form av svingradius. To ulike metoder for å danne søketreet
ble utviklet: Enten ved bruk av rette linjestykker med fast lengde, eller med buesegmenter gitt
av fartøyets minste oppnåelige svingradius. I tillegg ble to kostfunksjoner evaluert, hvorav
en er den Euklidiske avstanden til mål, mens den andre var justert for nevral aktivitet og
inkluderte en straff på endring i søkeretning. Hybrid A* algoritmen ble testet gjennom
simuleringer, og bruk av rette linjestykker sammen med førstnevnte kostfunksjon viste seg å
være mest effektiv med tanke på antall noder som evalueres ved hvert søk etter en bane.

Trygg ferdsel og forutsigbare handlinger i situasjoner med møtende trafikk sikres ved å få
skipet til å følge konvensjonen om internasjonale regler til forebygging av sammenstøt på
sjøen, COLREG. Strategien var å definere et område framfor det møtende skipet som ikke
skulle krysses av skipet under kontroll. Området ble beregnet utfra relativ vinkel og avstand
mellom skipene, slik at manøvrer passende til den gjeldende situasjonen ble igangsatt. Simu-
leringer viste at strategien fungerte i ulike situasjoner, men en alvorlig svakhet er at skipet
kan bli fanget inne i området som skal unngås, som igjen kan resultere i potensielt farlige
situasjoner. En mulig løsning er å benytte en annen geometrisk form enn et rektangel og i
det minste sikre at skipet har en mulig utvei.

Baneplanleggeren ble integrert som en del av et helhetlig autonomt system. Det inkluderte en
banegenerator, en estimator, samt et kontrollsystem. Utfra veipunktene gitt av baneplanleg-
geren, var banegeneratoren ansvarlig for å definere en sammenhengende og glatt bane tatt i
betraktning fartøyets iboende begrensninger. Til dette ble Bézier-kurver benyttet. Kontroll-
systemet var ansvarlig for at skipet faktisk fulgte banen, ved å beregne nødvendige krefter
og moment som propulsjonssystemet måtte generere. Estimatoren viste seg å gi nøyaktige
estimater av skipsposisjonen, selv med støyete målinger, og disse ble benyttet av baneplan-
leggeren. Hybrid A* med rette linjestykker er trolig den mest lovende metoden i et slikt
system, ettersom den er forutsigbar i det at den gir veipunkter med konstant avstand fra
hverandre.
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Chapter 1

Introduction

Autonomy is a term of ancient Greek origin and literally translates as ’self-government’. In
the context of vehicle control, autonomy refers to the degree to which decisions about future
actions can be made without the intervention from a human operator. For the time being,
the International Maritime Organization (IMO) distinguishes between four levels of auton-
omy, ranging from a ship with some automated processes and decision support to a fully
autonomous ship (IMO, n.d.). The self-governing abilities are dependent on the information
available to the vehicle, regarding its position and surroundings, as well as the required actu-
ator control to accomplish a certain mission. This chapter gives a brief discussion on aspects
that motivate the development of autonomous ships, and, from a technical perspective, what
remains to be done for them to become a reality. The contribution and an outline of this
thesis is also presented.

1.1 Motivation

Technologies enabling autonomous sailing are improving rapidly, leveraging advances in the
fields of computer and materials sciences and improved connectivity at sea. The invention
of a device for the automatic steering of a ship – an autopilot – dates back to the early
twentieth century (Fossen, 2011, p. 231). Since then, the ship autopilot has become more
sophisticated, and with the recent advent of automated docking systems (Wärtsilä, 2018;
Kongsberg, 2020) fully automatic fjord crossings, although still supervised, are being ex-
ecuted. However, unmanned shipping is not far away, being anticipated in the Oslofjord
within two years (Kongsberg, n.d.). In the mean time, there are still some challenges to be
properly addressed – among others related to the use of smart sensors and the reliability of
situational awareness systems, cybersecurity and robustness of software, and national and
international legislation.

Solving encounter situations by machines is a critical part of autonomous systems. In fact, as
a majority of ship collision and grounding incidents are imputed to human errors (Chauvin
et al., 2013; DNV GL, 2015), increasing the level of autonomy is expected to reduce the
number of accidents and help human operators make more informed decisions. Furthermore,
autonomous sailing has the potential to impact fuel economy, travel time and congestion.
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Unmanned vessels, in particular, can be designed more efficiently as there will be no need for
accommodation and safety equipment for a human crew, and they may keep slower cruise
speeds to save fuel (Wright, 2020). The planning of an efficient and safe voyage can be divided
into three main layers (Huang et al., 2020):

1. A route, or voyage, plan,

2. a planned path, and

3. reactive replanning of the path.

The route plan is drawn on a large scale map and describes the entire voyage – berth to
berth, considering all navigational information available (e.g. weather forecasts and traffic).
Path-planning is the problem of finding a collision-free path on a local map while underway.
A path is established by defining waypoints (WPs), headings and safe speeds. The feasibility
of the path depends on the accuracy of the map and the complexity of the surrounding
environment.

Sailing through congested and dynamic environments requires for intelligent path-planning
algorithms. Non-static environments are characterized by information that is incomplete and
uncertain. This motivates the search for a path-planner which reactively adjusts the path
to perceptual information and at the same time considers the characteristics and limitations
of the vehicle itself. The latter is necessary to ensure that the vehicle is actually capable
of following the planned path. Commonly, vehicle dynamics are first taken into account in
the subsequent path-following problem (Kamal, Gu, and Postlethwaite, 2005). However, in-
troducing the vehicle characteristics at an earlier stage has the potential of yielding a more
suitable and optimal path. The hybrid A* algorithm seems promising in this regard. More-
over, optimality can be pursued by searching for a path that minimizes certain objectives,
such as fuel consumption. This brings up mathematical programming and model predictive
control (MPC) as relevant methods to explore.

1.2 State of the art in the industry and academia

The world’s first unmanned system was, in fact, a radio-controlled surface vessel. Tesla
(1898) patented the technology for his “teleautomaton” and demonstrated the miniature
boat publicly in Madison Square Garden (Nikola Tesla Museum, n.d.). Yet, up until recently,
autonomous ships have not received as much attention as other autonomous systems (Savitz
et al., 2013). Today, Tesla’s name is rather associated with the American electric-automobile
manufacturer and their ambitions to commercialize driverless cars (The Tesla Team, 2016).
Technology advancements in modern cars, comprising adaptive cruise control, self-parking
capabilities and driving assistance systems (e.g. Mercedes-Benz, n.d.; Ford, n.d.), as well as
extensive testing of fully-autonomous automobiles, such as Waymo’s (n.d.) self-driving car,
has encouraged the maritime industry to proceed towards unmanned ships (Kühner, 2017).

Norway, being a maritime nation, aims to be at the forefront in the development of au-
tonomous ships. With designated test beds for autonomous vessels in the Trondheimsfjord,
Storfjord, and Oslofjord (NFD, 2019), there are several initiatives both in industry and
academia. Among others, Autoferry and Autosea are two research projects concerned with
autonomous all-electric passenger ferries, and sensor fusion and collision avoidance (NTNU,
n.d.). A commercial counterpart, receiving considerable media attention, is the all-electric
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shortsea container ship Yara Birkeland (Kongsberg, n.d.). The vessel is expected to be
launched this year, and gradually move from manned to fully autonomous operation within
two years. Overseas, joint effort by industry and academia, under the US Office of Naval
Research, already resulted in a fully autonomous voyage of the 40-meter-long Sea Hunter,
from California to Hawaii and back, in 2019. In the UK, simulators of autonomous vessel
control and ship maneuvering by L3 ASV and BMT, respectively, are merged to evaluate
multi-vessel conflicts and the coexistence of autonomous and conventional manned ships in
shared waters (Wright, 2020). These are only a few of the ongoing research and development
projects on autonomous ships in Norway and abroad.

An extensive study of technological, economic, social and regulatory factors essential for real-
izing autonomous ships was conducted by the Advanced Waterborne Applications Initiative
(AAWA) in 2016. The initiative was led by academic researchers at some of Finland’s lead-
ing universities together with members of the maritime clusters, including Rolls-Royce and
DNV GL. From a technical point of view, Poikonen et al. (2016) points out that ships are
not confined to narrow roads and operate at relatively slow speeds as opposed to cars. At
the same time, ships have a large inertia and struggle in taking sharp turns or stop quickly.
Therefore kinematic (e.g. turning radius) and dynamic constraints (e.g. speed limits) of
the vessel have to be considered when planning a path. Furthermore, processing of sensor
data and maintaining an updated map of the environment will be critical for the planning
and reactive replanning of a path. Herein, prediction of future positions of moving obstacles
is essential. According to Jokioinen (2016), sensor technology needed for autonomous and
remotely operated ships already exists. The challenge lies in an proper fusion of different
types of radars and visual sensors, and, further, to use this information to generate a feasible
path. The latter will be addressed in this thesis.

(a) Autoferry. Courtesy of
Dragland (n.d.).

(b) Yara Birkeland. Courtesy
of Yara (2019).

(c) Sea Hunter. Courtesy of
Williams (2016).

1.3 Literature review

As indicated in Section 1.2, modern automobiles are generally more advanced in autonomous
operations than present-day ships. Studies on autonomous ground – as well as on underwater
and airborne – vehicles can provide valuable references for the path-planning problem. Re-
cent reviews on path-planning methods within these fields are presented by Campbell et al.
(2020), Panda et al. (2020), and Aggarwal and Kumar (2020), respectively. However, experi-
ences and results from other fields may not be directly transferable to the maritime domain
(Wright, 2020; Chen, Hopman, and Negenborn, 2018; Poikonen et al., 2016). Among others,
the large inertia of vessels and hydrodynamic impacts yield slower acceleration and decel-
eration compared to other vehicles. Furthermore, environmental forces from waves, wind,
and currents significantly affect ship motions, and increase the level of uncertainty in motion
control. Nevertheless, the path-planning algorithms presented for maritime craft are mostly
based on similar principles as for ground and airborne vehicles.
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Path-planning, in general, is the task of finding a feasible path for a vehicle to move from
one location to another. A formal definition of the path-planning problem is given by Petereit
et al. (2012): “Given a map, find the cost-optimal path from the vehicle’s current location
to a goal region subject to the constraints given by the vehicle kinematics and the terrain”.
In maritime applications the ‘terrain’, or the surrounding environment, will comprise oceans,
seas, bays, estuaries, islands and other major water bodies, as well as the airspace above.
There are mainly two types of planning problems, illustrated in Figure 1.3.1: point-to-point
problems and coverage problems (Beard and McLain, 2012). The objective of the former is to
plan a path passing through one or a few target points, whereas the second type of problems
aim at finding a path such that all unobstructed points in a certain region are covered. If
the region is equal to the entire workspace, the problem is referred to as complete coverage.
The two types of planning problems can also be combined, such as in Scibilia, Jørgensen,
and Skjetne (2012) where an AUV transits through an obstructed area before performing a
complete coverage. Coverage problems can be regarded as a special case of point-to-point
paths, and for this reason the latter will be in focus.

free space target waypoint pathobstacle

Figure 1.3.1: Illustration of a point-to-point problem to the left and a (complete) coverage
problem to the right.

Commonly, path-planning approaches are divided into deliberative and reactive systems
(Beard and McLain, 2012), along with hybrid architectures seeking to benefit from both (Erik-
sen and Breivik, 2017). The former, also known as global path-planning, computes explicit
paths based on a priori information of the environment. Methods herein include the construc-
tion of roadmaps from visibility graphs and Voronoi diagrams (e.g. Šeda, 2007), sampling-
based algorithms such as rapidly-exploring random trees (RRT) (Beard and McLain, 2012,
pp. 212-219), and grid-based algorithms like the A* search algorithm in Hart, Nilsson, and
Raphael (1968). Highly dynamic environments, where information is incomplete and uncer-
tain, require reactive or local path-planning. Examples of such methods are genetic algo-
rithms (e.g. Hu and Yang, 2004), potential field methods originating from Khatib (1985), the
dynamic window approach in Fox, Burgard, and Thrun (1997), and receding-horizon opti-
mization (e.g. Schouwenaars et al., 2001). These online algorithms typically use a minimum
of computations leading to sub-optimal solutions. Furthermore, sensors are needed to detect
unknown obstacles for the replanning of the path. Subjected to a continuous flow of infor-
mation and time-varying constraints, the path-planning problem becomes rather complex.
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Due to complexity, path-planning algorithms may turn into computationally expensive opti-
mization problems. Complexity stems both from a large set of constraints, and the fact that
these constraints might be highly nonlinear. The latter suggests that linear approximations
will not yield acceptable results. Even a single nonlinear constraint in the program to be
solved increases the difficulty in obtaining a solution. According to Reif and Sharir (1985),
path-planning among a finite number of moving obstacles is NP-hard. A problem is said to
be NP (nondeterministic polynomial) if a solution can be randomly guessed and verified in
polynomial time, and being NP-hard, it is at least as hard as any NP problem (Weisstein,
n.d.[b]). An intrinsic challenge of the path-planning problem is related to the nonconvex
nature of the search space. For instance, a vehicle moving in a two-dimensional space can
choose to pass on either side of an obstacle (Richards, Feron, et al., 2002). Nevertheless,
planning algorithms have to be computationally efficient and respect hardware limitations of
the on-board computer as they are executed on a regular basis in an outer feedback loop.
Regular execution of the algorithm is necessary to enable replanning of the path.

Besides the computational complexity of path-planning algorithms, another challenge lies in
the continuous nature of the search space. The vessel surroundings are typically partitioned
into a regular grid, where the cell size depends on whether a deliberative or a reactive system
is concerned and the time needed to perform an avoidance maneuver or a crash-stop. A
coarse partitioning yields few nodes to optimize on, and hence shorter computation times,
but at the cost of how reactive the system will be. Thus, in narrow and densely obstructed
waters, a fine grid partition is preferable, whereas during transit in open waters a coarser
grid may be applied. Alternatives to the regular grid include polygonal maps, navigation
meshes and Voronoi graphs, but these are all discrete representations of the environment and
produce non-smooth paths that generally do not satisfy nonholonomic1 constraints of the
vehicle. This shortcoming was addressed by Richards, Sharma, and Ward (2004) through the
hybrid A* algorithm. It uses a heuristic search in continuous coordinates to produce a path
that respects the vehicle’s turning radius. Nonholonomic constraints can also be incorporated
into mathematical programming, in which optimization within a continuous search space is
possible. Therefore, both hybrid A* and mathematical optimization seem promising for the
path-planning for an ASV.

Grid-based methods, such as the A* search algorithm, are traditionally applied to costmap
representations of the environment. Costs are assigned to each cell in the grid, and can,
for instance, be used to maximize the distance to obstacles (Jaillet, Cortes, and Simeon,
2008). Occupancy grids are considered the ancestor of modern costmaps: Each cell main-
tains a stochastic estimate of its occupancy state based on sensor readings (Elfes, 1989).
Disadvantages of both costmaps and occupancy grids include that the knowledge acquired in
generating one map cannot be reused or generalized. Moreover, costs have a single interpreta-
tion, and storing all data in one map can be problematic when evaluating new observations.
For this reason, multiple and layered costmaps have been used in some applications (e.g.
Ferguson and Likhachev, 2008; Lu, Hershberger, and Smart, 2014), but the layers need to be
managed dynamically to provide the right context. Another way of representing the vehicle
surroundings is a bio-inspired neural network (BINN), as proposed in Yang and Meng (2001).

1A holonomic vehicle has constraints on configurations only, and can immediately move in any direction
with any orientation. Nonholonomic vehicles have additional constraints imposed on velocities and accelera-
tions: A car, for instance, cannot move directly into a parking spot on its side, but has to drive backwards
and forwards in order to turn.
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It is a topological map where obstacles and targets can be identified as maxima and minima.
Advantages of using BINNs as a guidance model include their ability to take and assimilate
information about the environment, both known a priori and perceived underway. Here, the
BINN will be explored and replace the conventional costmap, with neural activities serving
as costs in the path search.

Replanning strategies to avoid collisions while underway are crucial to guarantee feasibil-
ity of the path at all times. A comprehensive study on state-of-the-art collision avoidance
methods is presented in Huang et al. (2020). Replanning requires for a measure of collision
risk, and according to Huang et al. (2020) the risk is either determined by experts or through
a simplified collision model. The former strategy is often defined in terms of risk indicators
with a preset threshold, whereas the latter can be calculated probabilities of collision based
on uncertainties in sensor information, environmental disturbances, and reaction times. In
any case, accurate motion prediction of other traffic participants is needed. Physics-based
methods predict the motions based on physical laws while ignoring control inputs or treating
maneuvers as white noise. Hence, if the other vessel alters its course, the predictions will be
inaccurate. Interaction-aware methods are probably the most accurate; utilizing communica-
tions between vessel to negotiate, broadcast, or exchange intentions and path information (e.g.
Porathe, 2017; Chen, Hopman, and Negenborn, 2018). However, smaller crafts like leisure
and fishing boats mostly do not have the needed equipment for route exchange. Moreover,
the information received from other vehicles might be erroneous. Therefore, maneuver-based
methods will be in focus here. These methods consider the navigational intention of other
vessels, either learned or estimated from historical traffic data and conventions for vessel
encounters.

A challenge in avoiding collisions is the interaction between the vehicle and obstacles. For
navigation among pedestrians, Ferrer and Sanfeliu (2014) presents a variant of an RRT in
which motion of obstacles and the robot are jointly forward simulated to identify trajecto-
ries that minimize social work. At sea, predictable behavior can be obtained by obeying
rules and regulations. The International Regulations for Preventing Collisions at Sea (COL-
REGs), published in 1972 (IMO, 1972), dictate appropriate actions by motorized vessels in
different encounter situations. These are frequently integrated in path-planning algorithms,
and strategies to achieve COLREGs-compliant behavior include the extension of bounding
boxes around obstacles (e.g. Chiang and Tapia, 2018; Song et al., 2019) and vector-based
methods (e.g. Johansen, Perez, and Cristofaro, 2016; Zaccone, Martelli, and Figari, 2019).
Song et al. (2019) argue that at some occasions violation of COLREGs might be accept-
able: For instance, if other vessels do not comply with their obligations, then hazard levels
might increase if the ASV blindly follows the rules. This line of thought is also seen in the
simulation-based optimization approach in Johansen, Perez, and Cristofaro (2016), where
the selected control is a compromise between COLREGs-compliance and acceptable levels
of grounding and collision hazards. Furthermore, several rules may be activated simultane-
ously in real-world scenarios (Huang et al., 2020). Hence, COLREGs will be regarded as soft
constraints2 in the search for a feasible path.

2Soft constraints can be violated, but incurs a penalty, whereas hard constraint must be satisfied by any
feasible solution.
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Compatibility with other autonomy-enabling subsystems is essential for the path-
planning unit to be practical. A path is typically defined in terms of WPs, being interme-
diate points along the desired trajectory. Combining these WPs with straight-line segments
generally gives a nonsmooth path, violating the nonholonomic constraints of the vehicle.
Therefore, the WPs produced by the path planner should be processed by a path manager
(Beard and McLain, 2012), hereinafter referred to as the path generator. The path generator
defines a continuous path by, for instance, constructing a Dubins path (Dubins, 1957), or
by path-smoothing using Bézier curves (Choi, Curry, and Elkaim, 2008) or non-parametric
interpolation (Dolgov et al., 2008). This requires for the output from the path planner to be
readable by the path generator and contain all necessary information to generate a smooth
and traversable path (e.g. constraints on curvature, desired speed, and clearance to obstacles).
Moreover, a continuous path definition is worthless if there exists no motion control system
that can transform the desired vehicle state into actuator inputs. Therefore, the synergy
between modules constituting the autonomous system, and in particular the responsibility of
the path-planning module in such a system, will be examined.

1.4 Objectives

The master’s thesis is a continuation of the specialization project written during the fall of
2019. Then, some algorithms for optimal path-planning were evaluated through simulations
on a kinematic vessel model. Results therefrom indicated that the hybrid A* search could
be a possible way forward to obtain a path that accounts for constraints set by the vehicle
itself and defined in a continuous search space. In that respect, also MPC with mixed-integer
programming (MIP) yielded promising results, although a reformulation is needed to make
it computationally less expensive and to take the continuous nature of the search space into
account. Furthermore, the algorithms have to produce paths that are compliant with rules
and regulations, and the path planner must work as part of and together with other modules
in a guidance, navigation and control system. These considerations will be the focus in this
thesis.

1.5 Contribution

The contribution of the thesis is a brief review of methods for optimal path-planning for
autonomous surface vessels, and the development and implementation of a path planner
based on a hybrid-state A* path search algorithm and an anti-collision strategy to obtain
COLREGs-compliant behavior. Information from the dynamic and unstructured environ-
ment is captured in a guidance model in the form of a BINN. The proposed path search
algorithm utilize two different strategies for expanding the search tree: Either by straight-
lines or by arcs related to the minimum turn circle of the vehicle. Feasibility and performance
of the path planner was examined through simulations in MATLAB and Simulink, and eval-
uated against selected key performance indicators (KPIs). The Simulink model comprised a
simulation model of a real model boat, a Bézier-based path generator, a backstepping ma-
neuvering controller, and a nonlinear passive observer. Details on the implementation as well
as the choice of KPIs are elaborated on in this report.
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1.6 Outline

The remainder of this report is structured as follows: Chapter 2 presents the problem and the
scope of study. Thereafter, mathematical models of the system are given in Chapter 3, and
a theoretical background on path-planning and the proposed designs follow in Chapter 4.
The sections on BINN and MPC, in particular, are to a large extent based on the project
thesis. Performance measures as basis for the evaluation and comparison of the path-planning
algorithms are also specified in Chapter 4. Chapter 5 focuses on implementation details
of the modules in the autonomous system architecture other than the path planner, and
Chapter 6 presents some simulation cases and results therefrom. A discussion of each
simulation case is provided, and strengths and shortcomings of the algorithms as well as
future directions are pointed out. Concluding remarks and suggestions for further work
follow in Chapter 7.
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Chapter 2

Problem formulation

2.1 System description

Consider a vessel operating on the water surface with no or reduced attention from a bridge
crew, commonly referred to as an autonomous surface vehicle (ASV). In general, the config-
uration of a marine craft moving freely in three dimensions can be completely defined by a
total of three translational and three rotational components. These 6 components constitute
the degrees of freedom (DOFs) of the craft, and are depicted in Figure 2.1.1.

Figure 2.1.1: Motions in 6 DOFs. Courtesy of Fossen, 2020.

The ASV is assumed to be metacentric stable. This implies that restoring forces will coun-
teract perturbations away from the equilibrium points in heave, roll and pitch (Fossen, 2020,
p. 68). The equilibrium points correspond to zero inclination in roll and pitch and is approx-
imated to lie at the mean water surface in heave. Thus, it is reasonable to neglect motions
other than those in the horizontal plane, and only consider surge, sway, and yaw dynamics.

9



Chapter 2. Problem formulation

A 3DOF kinematic representation of the ASV is given by (Fossen, 2020, p. 43)

ẋ = u cosψ − v sinψ, (2.1.1a)
ẏ = u sinψ + v cosψ, (2.1.1b)

ψ̇ = r. (2.1.1c)

According the notation of SNAME (1950), η := [x, y, ψ]> denotes the vehicle position and
orientation with respect to an inertial frame, and ν := [u, v, r]> are the 3DOF linear and an-
gular velocities in the body-fixed frame. It is assumed that the ASV is at least fully actuated
in the horizontal plane, implying that forces and moment can be produced independently in
surge, sway and yaw. Then, the vessel is capable of controlling all three DOFs by use of its
propulsion system in what is called dynamic positioning (DP) (Fossen, 2011, p. 286).

Two different reference frames – an inertial and the body-fixed frame – are introduced to ex-
press the generalized coordinates η and ν. For local navigation, within a smaller geographical
area about 10km× 10km, it is acceptable to assume that the North-East (NE) frame {n} is
inertial (Fossen, 2020, p. 18, 41). The NE coordinate system spans an Earth-fixed tangent
plane, aligned such that the xi- and yi-axis point to the North and East, respectively. The
body-fixed frame {b} has its origin at the center of gravity of the vehicle, with the xb-axis
pointing out of the bow and the yb-axis directed towards starboard (Fossen, 2020, p. 16–
19). The reference frames {n} and {b} and the generalized position η and velocities ν are
illustrated in Figure 2.1.2.

v

u

U

ψ

χ

xn

yn

xb

yb

(x, y)

Uc

Ur

Figure 2.1.2: Illustration of the coordinate systems {n} and {b} and the generalized coordi-
nates in 3DOF. Adapted from Fossen (2020, Fig. 2.8).

The focus in this study will be on the transit phase of a voyage. This phase is characterized
by passage on relatively open waters at close to a constant speed. A reasonable assumption is
that the speed in surge will be much larger than that in sway, so that the total speed U ≈ u.
Further, if ocean currents are negligible so that Uc ≈ 0, the course angle χ will coincide with
the heading of the vessel ψ. Then, the kinematics (2.1.1) can be rewritten as
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2.1. System description

ṗ =

[
ẋ
ẏ

]
= U

[
cosψ
sinψ

]
, (2.1.2a)

ψ̇ = r. (2.1.2b)

The ASV will operate in a dynamic and unstructured environment. Since there will not
necessarily be officers on watch, changes in the surroundings are detected by a situational
awareness (SA) system of sensors mounted on board (e.g. lidar, radar, and cameras). It
is assumed that the position, velocity and direction of movement of obstacles can be accu-
rately identified within a detection region Rd at all times. Based on this information, future
positions of the obstacles can be predicted. Adopting the definition of collision avoidance
(COLAV) from Huang et al. (2020), motion prediction is the first step in determining an
evasive action.

Definition (Collision Avoidance, COLAV) Collision avoidance is the pro-
cess in which one ship (manned or unmanned) departs from its planned trajectory
to avoid a potential undesired physical contact at a certain time in the future.

Following motion prediction are the steps of conflict detection and conflict resolution. As a
conflict is detected by the SA system, a measure is needed to quantify the collision risk and
determine when to take action. On a fully autonomous vehicle, the conflict is then to be
resolved by machines. This involves the tasks of deciding on appropriate actions to avoid
collision and to replan the vehicle’s path. The actions should be in agreement with relevant
rules and regulations.

As mentioned in Section 1.3, rules on the duties of a vessel in a vessel-to-vessel encounter are
stated in COLREGs. Pertinent rules to a COLAV system are found in Part II, Section B,
and include (IMO, 1972):

Rule 13 – Overtaking situation. A vessel coming up from a direction larger than
22.5◦ abaft of another vessel, is considered an overtaking vessel. The overtaking vessel is
obliged to keep out of the way of the vessel being overtaken, regardless of any subsequent
changes in bearing between the two vessels.

Rule 14 – Head-on situation. If two power-driven vessels are approaching each other
on reciprocal or near reciprocal collision courses, each vessel shall alter course to star-
board so that they pass on the port side of the other.

Rule 15 – Crossing situation. In a crossing situation between two power-driven
vessels that involves risk of collision, the vessel with the other on her starboard side
shall keep out of the way, and, as far as possible, avoid passing ahead of the other
vessel.

Rule 17 – Action by stand-on vessel. The vessel not expected to keep out of the
way shall maintain her course and speed. If the give-way vessel is not taking appropriate
action or if collision cannot be avoided by the action of the give-way vessel alone, then
the stand-on vessel shall take action that best aids in preventing collision. Obligations
of the give-way vessel are not reversed by this rule.
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Chapter 2. Problem formulation

The encounter situations are exemplified in Figure 2.1.3. By Rule 8, any alterations in speed
and/or course shall be made in ample time and be large enough to be readily detected by
the other vessel. Furthermore, a safe distance should be kept at all times, and Rule 13
demands every vessel to proceed with a safe speed so that appropriate and effective actions
are executable to the prevailing circumstances and conditions. The first step in determining
the appropriate action is hence to identify the rules that apply to the situation at issue.

(a) (b) (c)

(b.1) (b.2)

(c.2)

(c.1)

Figure 2.1.3: Encounter situations and appropriate maneuvers as defined by COLREGs: (a)
Head-on; (b) overtaking on (b.1) starboard and (b.2) port side; (c) crossing situation in which
(c.1) is the give-way vessel and (c.2) is the stand-on vessel.

2.2 Problem statement

On an autonomous vehicle, a guidance, navigation and control (GNC) system is responsible
for collision prevention. The guidance system detects and solves conflicts by deciding when
and how to take evasive actions. It may be divided into a path planner and a path generator,
providing a discrete and continuous definition of the path, respectively. The navigation part
of the GNC system offers information to support the guidance system, and the control system
is responsible for implementing the planned actions (Huang et al., 2020). An illustration of
the system architecture on board the ASV is shown in Figure 2.2.1. More tightly coupling of
the GNC blocks might improve performance, but from an industrial point of view modularity
is preferred as it facilitates software updates of single blocks (Fossen, 2011, p. 232).

Consider the horizontal NE-frame and an ASV in an arbitrary, but known, initial position.
The vessel is requested to move to a fixed and known final position, or several consecutive
target positions. Given the kinematic model of the vehicle (2.1.2), a static map of the area of
interest, and the availability of accurate perceptual data within a certain region around the
vessel, the problem is to develop a GNC system for maneuvering control of the ASV. The ASV
is expected to follow a path that connects the initial and final position(s) with a desired speed
profile along the path. Since the GNC system operates online, the underlying algorithms have
to be computationally efficient and respect hardware limitations of the computer on board.
The responsibilities of each GNC module are presented next. In this study, the emphasis is
put on the guidance system, and more specifically on the path planner.
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Maritime Traffic System

Control System

Path-planner

Path-generator

Observer

Guidance System

Navigation System

η̂, ν̂, b̂

ηd, νd

WP

u

Figure 2.2.1: System architecture on board the unmanned vehicle. Adapted from Beard and
McLain, 2012; Huang et al., 2020.

2.2.1 Navigation system

Navigation is composed by the Latin words for ‘ship’ and ‘to drive’, respectively navis and
agere. It comprises the task of directing a vehicle by determining its position, course, and
distance traveled, as well as its velocity and acceleration. Hence, a navigation system forms
the foundation in the planning and execution of a safe and timely operation (Fossen, 2011,
p. 233). This is achieved by processing data from a global navigation satellite system (GNSS)
and motion sensors such as accelerometers and gyroscopes. A signal processing unit is usually
responsible for monitoring and evaluating the quality of the measurement signals, before an
observer performs noise filtering, prediction, and reconstruction of unmeasured states. The
aim of the navigation system is thus to provide accurate estimates of the ASV states.

Define the estimation error as

e(t) =

η̃(t)
ν̃(t)

b̃(t)

 =

η(t)− η̂(t)
ν(t)− ν̂(t)

b(t)− b̂(t)

 , (2.2.1)

with η̂ and ν̂ being the estimated generalized coordinates and velocities, and where the
bias b represents unmodeled dynamics and external disturbances and b̂ is the corresponding
estimate. Then, an observer shall be designed such that the equilibrium [η̃, ν̃, b̃]> = 0 is
asymptotically stable, or equivalently

lim
t→∞
|e(t)| = 0, (2.2.2)

where | · | := | · |2 denotes the second, or Euclidean, vector norm. As shown in Figure 2.2.1,
the state estimates [η̂, ν̂, b̂]> are forwarded to the guidance and control systems.

2.2.2 Guidance system

Guidance refers to the system that continuously computes the reference position, heading,
velocity and acceleration of the ASV (Fossen, 2011, p. 233). The reference signals are passed
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Chapter 2. Problem formulation

to the motion control system, as illustrated in Figure 2.2.1. Input from the navigation
module to the guidance module comprise motion estimates and external data, such as weather
information. Here, the guidance system is divided into a path planner and a path generator.

Path planner

The path planner is responsible for determining WPs that define the desired path for the
ASV to follow. Each WP represents a unique position in the NE-frame, given as Cartesian
coordinates p = [x, y]>. Constraints on placing the WPs include both feasibility and opti-
mality considerations. Feasibility is related to the path being traversable for the vessel, by
means of avoiding obstacles and taking inherent limitations of the vessel itself into account.
The latter, for instance, includes bounds on its rate of turn and hence place restrictions on
path curvature. Optimality is evaluated against certain criteria. Relevant measures to be
minimized could be the path length, the time of travel, and the accumulated heading change
along the path.

In general, the path-planning problem can be stated in terms of a graph representation
G(V,E) of the environment (see Section 4.1.1). Let V be the set of all feasible positions in
the horizontal plane, called nodes or vertices, and E be the set of all traversable connections
between nodes. Further, let T ⊆ V be the set of nodes marked as targets. Each target node
corresponds to a position in the plane where the path is required to pass through. Then,
the path-planning problem is to define a walk in G; that is a sequence of WPs given by the
ordered set

VP = {p1,p2, . . . } , T ⊆ VP ⊆ V, EP ⊆ E. (2.2.3)

The set of WPs VP must necessarily contain all target nodes, and the edges that connects
two consecutive WPs in VP have to be traversable and hence be contained in E. Figure 2.2.2
illustrates the problem and sets of nodes and edges.

node in V

node in T

node in VP

edge in E

edge in EP

obstacle

Figure 2.2.2: Diagram illustrating the path-planning problem. For clarity, nodes in T and
VP are also contained in V , and the edges in EP form a subset of E, as stated in (2.2.3).
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Replanning

The graph G(V,E) will be updated continuously based on perceptual information from the
SA system. If objects are detected along the planned path, the WPs in VP have to be
reevaluated to avoid collision and to keep an appropriate safety margin when passing the
obstacle. This is achieved by modifying the sets of feasible nodes V and edges E in the
graph. Replanning of the path will be based on the perceived position, velocity and direction
of movement of the obstacle. Perceptual information is assumed to be known and accurate
within a detection regionRd around the ASV. Furthermore, the replanned path should trigger
COLAV maneuvers in compliance with the relevant COLREGs rules stated in Section 2.1.

Path generator

Given a list of WPs, the path generator is responsible for uniting these points into a feasible
and continuous path. The path is expressed as a hybrid1 parametric curve given by

ηd(s) =

xd(s)yd(s)
ψd(s)

 , s = s′ + l − 1, s′ ∈ [0, 1], l ∈ {1, ...,m} (2.2.4)

where s is the path parameter, m is number of line segments in EP , and s′ is the parameter
along a line segment. A certain degree of parametric continuity along the path is sought to
ensure a smooth transfer between line segments. This implies that the path (2.2.4) must be
sufficiently differentiable.

Along with the parameterized path and heading curve (2.2.4), the output of the path-
generator contains a speed profile vd(s, t). The speed profile dictates the speed along the
path. By differentiating the position curve in (2.2.4) with respect to time and assigning it to
the commanded speed Uref (t), as in

|ṗd(s)| =
√
xsd(s)

2ṡ2 + ysd(s)
2ṡ2 = |psd(s)| ṡ = Uref (t), (2.2.5)

then the speed profile along the path can be defined as

vd(s, t) :=
Uref (t)∣∣psd(s)∣∣ , (2.2.6a)

vsd(s, t) = −Uref (t)
psd(s)

>p2sd (s)∣∣psd(s)∣∣3 . (2.2.6b)

Since this study is limited to the transit phase of a voyage, only forward motion is considered.
This implies that Uref (t) ≥ 0 and hence vd ≥ 0.

2.2.3 Control system

The motion controller determines necessary control forces and moments that the vessel must
produce in order to meet a certain control objective (Fossen, 2011, p. 233). In accordance
with the maneuvering problem formulation by Skjetne (2005), the control objective comprises
two tasks. The primary task is to follow the path given by the path generator: With a
parameterized definition of the path (2.2.4), the path-following problem can be stated as

lim
t→∞
|η(t)− ηd(s, t)| = 0. (2.2.7)

1A mix of both a continuous and a discrete parameterization (Skjetne, 2005).
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As soon the path is reached, the ASV will be forced to stay on it for all future time. Secondary
to the geometric task of path-following is the dynamic task of satisfying the desired speed
assignment (2.2.5) along the path. This is achieved by forcing the time derivative of the path
parameter ṡ to converge to vd(s, t), according to

lim
t→∞
|ṡ(t)− vd(s, t)| = 0. (2.2.8)

The responsibility of the control system also includes control allocation. Solving the maneu-
vering problem (2.2.7) and (2.2.8) with an appropriate control law, yields a 3DOF generalized
control vector τ = [X,Y,N ]> with the needed forces in surge and sway, and moment in yaw.
Control allocation is then the task of computing individual inputs u ∈ Rr to each of the r ac-
tuators in order to produce the commanded τ . This is a model-based optimization problem,
which in its simplest form is unconstrained and given by (Fossen, 2011, p. 398–410)

min
f

f>Wf ,

subject to: τ − T (α)f = 0
(2.2.9)

whereW is a matrix weighting the control forces f , and T (α) describes the configuration of
actuators with angles α. Control forces are related to the inputs u through a diagonal force
coefficient matrix K, that is f = Ku. The optimization problem (2.2.9) can be augmented
to include physical limitations, such as input amplitude and rate saturation.

2.2.4 Assumptions and delimitation

The delimitation of the study and underlying assumptions in the derivation of a GNC system
for the ASV can be summarized as follows:

• Operations are assumed to be performed in calm waters, such that the influence of
waves and ocean currents is negligible (or captured by a bias b).

• Only the transit phase of a voyage is considered. This phase is characterized by forward
motion with the surge velocity u markedly larger than in sway, so that the total speed
U ≈ u. Accordingly, the commanded speed is assumed to satisfy Uref ≥ 0.

• The ASV is sufficiently metacentric stable so that motions in heave, pitch and roll are
neglected. Hence, a 3DOF horizontal plane model, comprising surge, sway and yaw
dynamics, is used.

• The ASV is at least fully actuated in the horizontal plane, so that it can control all
3DOFs independently and enter a DP mode.

• The ASV is a rigid body, thus ignoring forces acting between individual mass compo-
nents. This is a prerequisite in the derivation of the equations of motions of the ASV
(Fossen, 2020, p. 53).

• Operations are conducted within a limited region on the Earth’s surface, and the NE-
frame {n} is inertial. Consequently, forces on the ASV due to the Earth’s rotation are
neglected (Fossen, 2020, p. 53).

• The position, velocity and direction of movement of obstacles are accurately perceived
by the ASV within a region of detection Rd.
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Chapter 3

Vessel modeling

The first step in designing a GNC system for an ASV is to model the physical system by
nonlinear differential equations of motion. The physical system comprises the ASV, including
actuators and sensors, while operating in its environment. Even though approximations
and simplifications are needed at this step, the aim is to capture in mathematics all key
characteristics of the physical system (Beard and McLain, 2012, p. 5). The result is a high-
fidelity simulation model used for computer simulations. From the more complex simulation
model, one may derive simpler models for the purpose of designing controller and navigation
systems. Figure 3.0.1 illustrates the three types of models and how they interact. These
are the control design and observer design models, in addition to the simulation model. A
presentation of the sets of equations constituting each model is given in this chapter.

Wind, waves and

ocean currents

Marine craft

Model-based

observer

Model-based

controller

Simulation model

Figure 3.0.1: Models for guidance, navigation and control. Adopted from Fossen (2020).
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3.1 Simulation model

3.1.1 6DOF nonlinear maneuvering model

A simulation model is of high fidelity and captures all essential characteristics of the system.
The main purpose of such a model is to reproduce the real dynamics as accurately as possible
(Sørensen, 2018, p. 102). It comprises the craft dynamics, propulsion system, as well as
environmental impacts by wind, waves, and ocean currents. For a marine craft, the general
maneuvering model can be represented in 6DOF with 12 ordinary differential equations on
the following compact vector form (Fossen, 2020, ch. 6)

η̇ = JΘ(η)ν, (3.1.1a)
Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ + τwind + τwave. (3.1.1b)

Here, impacts from wind and waves are added as external forces τwind and τwave. Although
environmental forces generally are highly nonlinear and multiplicative to the dynamic equa-
tions of motion, the superposition property1 is valid for most marine control applications
(Fossen, 2020, ch. 10). Wind loads are caused by the movement of air relative to the Earth’s
surface, and can be represented in terms of speed, angle of attack, and dynamic pressure.
Wave-induced forces arise due to a pressure change on the hull surface, and can be divided
into first- and second-order components. The former yield zero-mean oscillatory perturba-
tions that vary linearly with wave elevation, referred to as wave-frequency motions, whereas
low-frequency motions are induced by second-order slowly-varying wave forces. Due to the
high inertia of craft and considering power consumption and potential wear of the actuators,
only slowly-varying mean wind and wave forces and moments need to be compensated for by
the propulsion system.

Ocean currents are incorporated through the relative velocity between the body and the fluid:

νr := ν − νc, (3.1.2)

where the 6DOF body-fixed velocity vector is given by ν = [u, v, w, p, q, r]> and surface
currents are assumed to be irrotational with velocity νc = [uc, vc, wc, 0, 0, 0]> in {b}. The
first three components of the velocity vectors represent linear velocities in surge, sway, and
heave, and the last three components are angular rates in roll, pitch, and yaw. Transformation
from {b} to {n} is achieved through the 6DOF rotation matrix JΘ(η). The Euler angles Θ =
[φ, θ, ψ]> specify the orientation of the body in {n}, and, together with the vehicle position
p = [x, y, z]> in {n}, make the 6DOF position and orientation vector η = [p>,Θ>]>. System
inertia and added mass is given by the matrix M = MRB +MA in (3.1.1). Furthermore,
C(νr) = CRB(νr)+CA(νr) is the Coriolis-centripetal matrix,D(νr) is the damping matrix,
and g(η) is a vector of gravitational and buoyancy forces and moments. Propulsion loads
τ ∈ R6 for m actuators are defined by

τ = τ 1 + τ 2 + · · ·+ τm, (3.1.3)

and for each i ∈ {1, . . . ,m}, τ i can be split into forces Fi and momentsMi according to

τ i :=

[
Fi
Mi

]
, Fi :=

Xi

Yi
Zi

 [N ], Mi :=

Ki

Mi

Ni

 [Nm]. (3.1.4)

1The sum of responses caused by each disturbance individually.
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Being a maneuvering model, (3.1.1) is valid for a ship moving in calm water at constant
positive speed U . As opposed to seakeeping theory which deals with ships motions at constant
speed in waves, maneuvering theory does not consider fluid memory effects2 and approximate
the hydrodynamic coefficients by constant values. In fact, when stabilizing motions in surge,
sway, and yaw through feedback control, the natural frequencies will be about 100 − 200s
corresponding to 0.03 − 0.10rad/s (Fossen, 2020, p. 131). Being close to the zero wave
excitation frequency, the coefficients can be approximated at the single frequency ω = 0.
Thus, since this study is limited to surface vessel (ref. Section 2.2.4), a 3DOF maneuvering
model is used as the simulation model.

3.1.2 3DOF nonlinear maneuvering model

Considering a surface vessel, as described in Chapter 2, the maneuvering model (3.1.1) can
be reduced to the nonlinear model in surge, sway, and yaw given by (Fossen, 2020, p. 146)

η̇ = R(ψ)ν, (3.1.5a)
Mν̇ +C(ν)ν +D(ν)ν = τ . (3.1.5b)

When comparing (3.1.5) with (3.1.1), it is evident that environmental forces are assumed to
be negligible, that is νc = 0 and τwind = τwave = 0. Modeling of environmental forces is
beyond the scope of this thesis, and the interested reader is referred to e.g. Fossen (2020,
ch. 10). The kinematic relationship (3.1.5a), describing the geometrical aspects of motion, is
recognized as a compact vector notation of (2.1.1).

3.2 Control design model

The control design model, being a simplified version of the simulation model (3.1.5), is used
in the design of the motion control system. Only the main physical properties are captured
in this low-fidelity representation, so as to simplify the control design and respect on-board
hardware limitations and time constraints. Control design models may also be used in theo-
retical analyses of system stability and limitations (Sørensen, 2018, p. 102).

Consistent with maneuvering theory, presuming that the ASV operates at constant speed U
in calm waters, a linear control model in 3DOFs is given by (Fossen, 2020, p. 168)

η̇ = R(t)ν, (3.2.1a)

Mν̇ = −Dν +R(t)Tb+ τ , (3.2.1b)

ḃ = 0. (3.2.1c)

The nonlinear Coriolis-centripetal and damping forces of (3.1.5) are linearized about the
sway and yaw velocities v = r = 0 and the cruise speed u ≈ U . Linear damping is a good
assumption for low-speed applications, and the model (3.2.1) is valid for stationkeeping and
low-speed maneuvering up to approximately 2m/s (Fossen, 2020, p. 163). The linear model
(3.2.1) is derived under the assumption that measurements of the heading angle ψ = ψ(t)
are accurate, so that

R(ψ(t)) := R(t), (3.2.2)

2A term capturing the fact that waves on the free surface due to vessel motions will persist at all subsequent
times (Fossen, 2020, p. 115).
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thereby removing the kinematic nonlinearity introduced by the rotation matrix in (3.1.5a).
Furthermore, a linear relationship between the generalized control force vector τ and control
inputs u is assumed, so that

τ = TKu = Bu, (3.2.3)

where B = TK is the input matrix and the thrust configuration matrix T = T (α0) is
constant. If the vessel has any rotatable actuators, an extended input vector ue and the
corresponding extended input matrix Be is used to satisfy the linear relationship (3.2.3) (see
Fossen, 2011, pp. 402-403).

3.3 Observer design model

Similar to the control design model, the observer design model is a simplified version of
the simulation model (Fossen, 2020, p. 6). However, the observer design model is different
from the control design model in that emphasis is put on the additional dynamics of sensors
and navigation systems and disturbances. In particular, filtering of measurement noise, dead-
reckoning3 in failure situations, and motion prediction are tasks for the observer. Model-based
observers typically include a disturbance model, responsible of estimating wind, waves and
ocean current forces by treating these as colored noise.

A 3DOF stochastic observer design model for low-speed applications is given by (Fossen,
2011, p. 306)

ξ̇ = Awξ +Ewωw, (3.3.1a)
η̇ = R(ψ)ν, (3.3.1b)

ḃ = ωb, (3.3.1c)

Mν̇ = −Dν +R(ψ)Tb+ τ + τwind + ων , (3.3.1d)
y = η +Cwξ + vy, (3.3.1e)

where ωw, ωb, and ων denote white process noise, and vy is white measurement noise.
GNSS and compass measurements are denoted y, and include both low-frequency and wave-
frequency components. Effects of surface currents and nonlinear dynamics are lumped into
a slowly varying bias b, typically modeled by an integration of white noise (3.3.1c) known
as a Wiener process or a random walk. Oscillatory wave responses due to 1st order force
components, mentioned in Section 3.1, are removed by the wave filter (3.3.1a), with Aw,
Ew, and Cw being constant matrices describing the sea state (Fossen, 2020, p. 254). If
environmental forces and system noise is ignored or captured by a constant bias, ḃ = 0, as
assumed in Section 2.2.4, the observer design model (3.3.1) reduces to (3.2.1). Therefore, the
control design model and observer design model will be equivalent in this study.

3Observer estimates are used for feedback if measurement signals are lost (Sørensen, 2018, p. 75).
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Chapter 4

Path-planning

Autonomy of mobile robots, in general, is enabled by (Petereit et al., 2012):

• The use of sensors for the robot to locate itself and process its environment,

• the construction and update of a map of its environment, and

• the planning of future motions towards a particular target.

In other words, autonomous sailing relies on an intelligent and interconnected GNC system.
This chapter is dedicated to the path-planning unit: First, a theoretical background on the
chosen methods is provided, followed by details on the design and implementation. As stated
in Chapter 1, path-planning is the task of tracing out a feasible and optimal path for the
ASV from a starting point, typically its current position, to a desired final destination. The
path search techniques examined here were selected for their compatibility with grid maps,
and hence with the BINN guidance model, as well as their capability of finding WPs in a
continuous space. A drawback of a path definition based on WPs is the discontinuity of the
first derivative at the WPs when linked together by straight line segments. However, it will
be the task of the path generator (see Section 5.2) to post-process the planned sequence of
WPs and generate a smooth and feasible trajectory for the vessel.

4.1 Theoretical background

The path-planning problem has been subject to research across industries for several decades,
as briefly covered in Sections 1.2 and 1.3. In the following, the BINN guidance model of
Yang and Meng (2001) is presented, as well as the hybrid-state A* search algorithm from
Richards, Sharma, and Ward (2004). The latter is an enhancement of the established and
widely applied A* search algorithm by Hart, Nilsson, and Raphael (1968). Furthermore,
applications of and theory behind MPC and mathematical programming is explored. It is
based on the compendium written by Foss and Heirung (2016) as well as the work in, among
others, Schouwenaars et al. (2001) and Chen, Hopman, and Negenborn (2018). In Section 1.3
compliance with rules and regulations is emphasized as a way to obtain predictable actions.
Therefore, a brief presentation of rules applicable to ASVs, although still in their infancy,
concludes this section.
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4.1.1 BINN as a guidance model

A dynamic guidance model, containing information about the external environment, is a
prerequisite for ASVs to reactively plan and replan a path to follow during maneuvering
and voyaging. The BINN derived in Yang and Meng (2001) can be such a model. It is a
topologically organized map within a finite dimensional state space, such as the Cartesian
grid. A position in the grid is related to a specific neuron in the map. Each neuron is
connected to a set of neighboring neurons which constitutes its receptive field Ri, and it
responds to stimulus within Ri only. Targets and obstacles can be recognized as peaks and
valleys in the neural activity landscape by properly defining external inputs and internal
neural connections. Yang and Meng (2001) proved stability and convergence of the BINN
with Lyapunov stability theory. That is, the dynamics of the network will eventually arrive
at an equilibrium state.

The dynamic neural activity landscape is based on the biophysical model of current flow
through a nerve fiber membrane in Hodgkin and Huxley (1952). Neural activity zi of the ith
neuron with k neighboring neurons is calculated according to

dzi
dt

= −Azi + (B − zi)
(

[Ii]
+ +

k∑
j=1

wij [zj ]
+
)
− (D + zi)[Ii]

−. (4.1.1)

Here, A denotes the passive decay rate, B and D are the upper and lower bounds on neu-
ral activity, and [a]± = max{±a, 0} specify excitatory and inhibitory inputs, respectively.
Furthermore, external inputs to the ith neuron are given according to

Ii =


κ, if there is a target
−κ, if there is an obstacle
0, otherwise

(4.1.2)

with κ � B being a very large positive constant. The strength of the connection between
two neurons i and j is captured by the weight

wij = f(dij), (4.1.3)

where dij is the distance, or metric in mathematical terms (see e.g. Weisstein (n.d.[a])),
between two neurons i and j, and f is a monotonically decreasing function

f(a) =

{
µ/a, if 0 < a < r0,

0, if a ≥ r0.
(4.1.4)

Activity propagation among neurons is determined by a constant µ, and r0 denotes the
radius of Ri. The target is rendered globally attractive as positive neural activity propagates
through the entire state space over neural connections. Conversely, obstacles repel only locally
to prevent collision (Yang and Meng, 2001). This is evident from (4.1.1), as excitatory inputs
stem from both targets, [Ii]

+, and lateral connections to neighboring neurons,
∑k

j=1wij [xj ]
+,

whereas the inhibitory inputs exclusively come from obstacles via [Ii]
−.

A path can be obtained by climbing the BINN landscape according to the steepest ascent rule.
Then each move will be in the direction along which the neural activity increases the most.
Equivalently, if formulated as a minimization problem with targets identified as minima of
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the landscape, the next move would be along the steepest descent direction (Nocedal and
Wright, 2006). Following the definition given by Yang and Meng (2001), with targets as
peaks in the BINN landscape, the next vehicle position in R2 is determined from

pn ⇐ zn = max{zj , j = 1, 2, . . . , k}. (4.1.5)

When arriving at the next position pn, this becomes the current position pc. If the neural
activity of all neighboring neurons is not larger than that of the current position, the vehicle
will not move. An example of a BINN landscape and the corresponding path of steepest
ascent (4.1.5) is displayed in Figure 4.1.1.

Figure 4.1.1: BINN landscape and the paths found by traversing the landscape according to
the steepest ascent rule and the method in Scibilia, Jørgensen, and Skjetne (2012).

An enhanced method for traversing the neural activity landscape is formulated in Scibilia,
Jørgensen, and Skjetne (2012). The steepest ascent rule (4.1.5) is augmented with a penalty
term on changes in navigation direction to eliminate unnecessary turns in the path. Mathe-
matically, the next position pn is determined by evaluating the weighted dynamic activity of
neighboring neurons,

pn ⇐ zn = max
zj :pj∈A(c,j)

{(
1− λdiff(ψc − ψj)

π

)
zj

}
. (4.1.6)

The navigation direction is represented by the vehicle heading ψ with the operator diff : [0, 2π)×
[0, 2π)→ [0, π] returning the smallest angle difference, and λ > 0 is a tuning parameter defin-
ing the magnitude of penalty on heading change. If the heading at a neighboring position
ψj is equal to the current heading ψc, there will be no reduction in the corresponding neural
activity zj , and thereby (4.1.6) favors neighbors straight ahead. Neighboring neurons j to the
present position pc are provided by an adjacency matrix A(c, j) as defined in the following
section.

Graph theory for efficient computations on neural networks

A graph is a suitable data structure to represent the network of neurons in a BINN model.
Planning a path through the BINN requires for a systematic definition of the set of neighbors
that are within reach. Formally, a graph can be represented by the pair (Trudeau, 1993):

G = (V,E), (4.1.7)
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where V is the node – or vertex – set of graph G, and E is its set of edges. A node can exist
without incident edges, whereas an edge must have one node at each end. Applied to the
path planning problem, a node represents a geometric location in space (e.g. a position in
the Cartesian grid), and an edge connects two nodes if a node is visible and approachable
from the other. Thus, two nodes connected by an edge form a pair of neighbors.

A graph can be depicted as a diagram. Yet, according to Trudeau (1993), the diagram has
properties beyond those related the graph, and the fact that it is a plane surface is such an
incidental feature. In a diagram, nodes are typically identified as dots, whereas an edge is a
line connecting two nodes. By evaluating which nodes that are directly coupled together by
an edge, one may establish an adjacency matrix indicating the pairs of neighboring nodes in
the graph. An element (i, j) in this matrix takes the value 1 if node i and node j are adjacent,
otherwise 0. Figure 4.1.2 displays a graph to the left and the corresponding adjacency matrix
to the right. Since the graph is undirected in this case, the resulting adjacency matrix is
symmetric.

Costs can be assigned to both nodes and edges in the graph. These represent a penalty
on visiting or approaching a node, respectively. For instance, there is a cost in the form
of neural activity assigned to each node in the BINN model described in Section 4.1.1. A
path is obtained by traversing the graph along edges that give the minimum or maximum
total cost, depending on whether the path-planning problem is formulated as a minimization
or maximization problem. Thus, for the particular landscape in Figure 4.1.1 where minima
indicate the locations of obstacles and maxima represent targets, the optimal path has the
maximum total cost. In graph theory, the ordered sequence of adjacent nodes that define the
path is termed a walk.

1 2

3 4

0 0

1 0 1

0 1

0 1 1 0

1 1

1

1 1

Figure 4.1.2: A graph and its adjacency matrix. Adapted from Nordstoga (2019).

4.1.2 Hybrid A*

A popular method for path-planning in a grid is the A* search algorithm proposed by Hart,
Nilsson, and Raphael (1968). It is an informed search algorithm that finds the optimal path
– if one exists – by use of heuristics. Heuristics can be seen as a “rule of thumb”, or a strategy
based on experience, to shorten the search time. It relies on a priori knowledge about the
problem domain, and is used by the A* algorithm to systematically explore nodes in the grid
to obtain a minimum cost path. This way, a heuristic approach is incorporated into a formal
mathematical graph search strategy. According to Hart, Nilsson, and Raphael (1968), A* is
an optimal algorithm in the sense that the least number of nodes are expanded in order to
guarantee that the path is minimum cost.
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Although the A* algorithm produces a minimum cost path, it is rarely the true optimal so-
lution in a continuous workspace. The traditional A* algorithm is constrained to grid edges
and allows for the vehicle to turn on the spot – thereby violating nonholonmic constraints,
if any. Moreover, the resulting paths are generally non-smooth. There have been several
efforts to circumvent these shortcomings, and real-world implementations commonly support
any-angle pathing. Any-angle algorithms interleave the A* search and path smoothing, and
include Block A*, Field D*, and Theta* (see Nash and Koenig, 2013). Another method
taking the continuous nature of the search space into account is the hybrid-state A* algo-
rithm in Richards, Sharma, and Ward (2004), hereinafter referred to as hybrid A*. It was
demonstrated in obstacle avoidance problems for aircraft, and has been adopted by Dolgov
et al. (2008) and Petereit et al. (2012), among others, to plan paths for nonholonomic mobile
outdoor robots.

Hybrid A* is constructed similarly as the traditional A* algorithm. Both algorithms require
that the workspace is discretized into connected, and often equisized, cells. The key difference
between traditional A* and the hybrid version is how nodes are expanded in the search for
a feasible path: A* is restricted to search among nodes located at the cell centers, whereas
hybrid A* utilizes predefined motion primitives to obtain nodes, or WPs, in continuous space.
Motion primitives are the smallest entities of a path, defined such that (Petereit et al., 2012):

• The traveled distance is sufficient to leave the current grid cell,

• the curvature does not violate a maximum turning angle, and

• the change in heading is a multiple of the discretization size in the heading dimension.

Figure 4.1.3 illustrates the difference between the traditional A* and the hybrid A* methods
in terms of possible moves and position of nodes within a cell.

(a) conventional A* (b) hybrid A*

Figure 4.1.3: Possible moves for the A* search methods. Adopted from Petereit et al. (2012).

Nodes are organized in two sets named CLOSED and OPEN. In a hybrid A* path search,
each node, or end position of a motion primitive, is stored alongside the grid cell in which the
node is located. The closed set contains all grid cells with nodes that have been expanded, or
those occupied by obstacles. Motion primitives from expansions of different nodes may end in
the same cell. Therefore, the grid cells are separately closed for each possible heading. In the
special case of obstacles, the obstructed nodes are closed for all headings in the discrete set.
The open set contains all nodes that have been encountered but not yet expanded. At each
iteration, a node from the open set is examined and expanded with the predefined motion
primitives. Resulting child nodes nc that are clear of obstacles are added to the open set,
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and the parent node is moved to the closed set. The procedure is repeated until the target is
within a radius of acceptance. Due to the definition of motion primitives, a hybrid A* search
will generally not end at the exact target state.

As for the A* algorithm, nodes in the open set are expanded based on their cost. The cost
of all nodes in the open set is evaluated, and the node n of the least cost is expanded and
moved to the closed set. The total cost of the path from n to the goal is given by

f(n) = g(n) + h(n), (4.1.8)

where g(n) and h(n) denote the actual cost along an optimal path from the start node ns to n
and from n to the target nt, respectively. An estimate of the former is typically the smallest
cost so far discovered to node n, whereas information from the problem domain is needed to
accurately estimate the latter. When expanding a node, a pointer links the child nodes to
its parent. Eventually, as the target is reached, the path can be reconstructed by tracking
parent nodes – starting at the node evaluated last and ending at the initial node. The general
procedure is given in Algorithm 4.1.1. Note that the hybrid A* yields a suboptimal path
by definition, as it searches the continuous space using predefined motion primitives, but
according to Richards, Sharma, and Ward (2004) it will be close to the optimum.

Algorithm 4.1.1: General A* search algorithm
initialize: CLOSED ← ∅, f(ns)← h(ns), OPEN ← ns

1 while OPEN 6= ∅ do
2 n← getMinCost(OPEN) // Find node with lowest f(n)
3 if targetReached(nt, n) then
4 return getPath(n) // Extract the shortest path
5 end
6 for nc ← getChild(n) do
7 cost← g(n) + dist(n, nc) // Distance from ns to nc
8 if cost < g(nc) then
9 g(nc)← cost

10 h(nc)← dist(nc, nt) // Estimated distance to nt
11 np ← n // Pointer to parent node
12 if nc /∈ OPEN then
13 OPEN ← nc
14 end
15 end
16 end
17 CLOSED ← n

18 end

Search time is minimized by selecting proper heuristics. The special case with zero heuristic
cost, h(n) = 0, is equivalent to Dijkstra’s (1959) algorithm. Then, any node is assumed to
be equally far away from the target as only g(n) is decisive in the path search. In general,
considerably fewer nodes are expanded by using an admissible heuristic function, such as the
Euclidean distance,

h(n) =
√

(xnt − xn)2 + (ynt − yn)2 =
√

∆x2 + ∆y2, (4.1.9)
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between the position of node n denoted by (xn, yn) and the target position (xnt , ynt). A
heuristic function is said to be admissible if it is optimistic and never overestimates the
path cost to the target, or, in other words, if the estimated heuristics is any lower bound
of the true h(n). The computational effort in calculating a nonlinear cost, such as (4.1.9),
can be significant compared to the cost of expanding some extra nodes. An alternative is
1
2(∆x + ∆y), which is strictly less than (4.1.9) and hence admissible, but at the expense
of using less knowledge about the problem domain. Thus, the choice of h(n) will be a
compromise between admissibility, heuristic effectiveness, and computational efficiency (Hart,
Nilsson, and Raphael, 1968).

4.1.3 Mathematical optimization and MPC

There are several applications of MPC to the control problem of a GNC system. For in-
stance, Oh and Sun (2010) presents an MPC design that merges line-of-sight (LOS) guidance
and path-following control for surface vessels, Li et al. (2016) proposes an MPC scheme
incorporating neural-dynamic optimization for trajectory tracking of nonholonomic mobile
robots, and in Chen, Hopman, and Negenborn (2018) an MPC-based approach is applied
to coordinate and control a train formation of ASVs. Yet, MPC seems less explored for
path-planning, but there are some applications to COLAV problems. Bousson (2008), as an
example, presents an MPC-based method to compute collision-free trajectories for aircraft
in a given control area. Optimization is performed according to priority indices, favoring
aircraft closest to their destination. Recent maritime applications of MPC are found in Erik-
sen and Breivik (2017) and Hagen et al. (2018). The proposed MPC-based anti-collision
algorithm is a supplement to already existing GNC systems on ASVs, and is shown to han-
dle both static and dynamic obstacles. The inherent design flexibility of the mathematical
programming framework, accepting both dynamic models and a diverse set of operational
constraints, makes it advantageous to other COLAV methods. Moreover, Chen, Hopman,
and Negenborn (2018) argues that the receding horizon scheme facilitates early detection of
conflicts. Nevertheless, if the set of constraints gets large and with a nonlinear model, MPC
may become computationally inefficient for the purpose of path-planning.

Mathematical programming

A mathematical program is, in general, composed of three elements (Foss and Heirung, 2016):

• A scalar objective function, f( · ), to be minimized or maximized,

• decision variables denoted by a vector x, and

• equality and inequality constraints, ci( · ).

The program can be formulated in terms of these three components as

min
x
f(x) (4.1.10a)

subject to ci(x) = 0, i ∈ E (4.1.10b)
ci(x) ≥ 0, i ∈ I, (4.1.10c)

where E and I are the index sets for the equality and inequality constraints, respectively.
A maximization problem max−f(x) is equivalent to (4.1.10), and yields the exact same
solution apart from the opposite sign in the objective function value. All feasible solutions
to (4.1.10) can be expressed in terms of a set Ω given by

Ω = {x ∈ Rn | (ci(x) = 0, i ∈ E) ∧ (ci(x) ≥ 0, i ∈ I)}. (4.1.11)
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The objective is to find the global minimum x∗ within (4.1.11), according to

x∗ ∈ Ω, if f(x∗) ≤ f(x) ∀x ∈ Ω. (4.1.12)

Yet, no solution (4.1.12) to a program (4.1.10) will be universally optimal, but is conditional
on the objective function. Hence, f( · ) must be carefully selected. Moreover, in the search
for a solution one might get trapped in a local optimum. A local minimum x′ is defined by

f(x′) ≤ f(x), x ∈
∣∣x− x′∣∣ < ε, (4.1.13)

that is, a minimum within some neighborhood of radius ε. It is generally easier to search
for a local rather than a global optimum. The former coincides with the latter in convex
problems, and for this reason mathematical programs are preferred to be convex. Problem
(4.1.10) is said to be convex if both of the following conditions are satisfied:

• The objective function f( · ) is a convex function, and

• the feasible set Ω is a convex set.

A set is said to be convex if any straight line connecting two arbitrary points in the set is
exclusively inside the set, and a function is said to be convex if its epigraph is convex (Nocedal
and Wright, 2006, p. 8). The two conditions are illustrated in Figure 4.1.4.

x1 x2

x1

x1 x1

x2

x2 x2

f(x) f(x)

(b) A nonconvex set (c) A convex function (d) A nonconvex function(a) A convex set

Figure 4.1.4: A comparison of convex and nonconvex sets and functions. Adopted from Foss
and Heirung (2016).

Linear programs (LPs) are a special class of convex optimization problems. They are char-
acterized by a linear objective function and linear constraints:

min
z∈Rn

d>x (4.1.14a)

subject to a>i x− b = 0, i ∈ E (4.1.14b)

a>i x− b ≥ 0, i ∈ I. (4.1.14c)

LPs are often preferred over nonlinear programs since they are generally easier to solve, for
instance by the well-known simplex method (Nocedal and Wright, 2006, p. 355), and they
have an intuitive graphical interpretation. Nevertheless, quadratic programs (QPs) seem to
be more widely employed. They differ from the LP formulation (4.1.14) in that the objective
function (4.1.14a) is replaced by a quadratic cost x>Qx+d>x. A QP is convex if the Hessian
matrix Q is positive semidefinite (i.e. Q � 0), and will then typically be similar in difficulty
to an LP (Nocedal and Wright, 2006, p. 449).
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Model predictive control

Dynamic optimization is required for systems characterized by frequent changes over time.
MPC merges dynamic optimization and control through the explicit use of a model to predict
future system outputs and by solving a program (4.1.10) to obtain optimal input commands.
As illustrated in Figure 4.1.5, open-loop optimization is combined with a feedback loop to
account for model errors and dynamics occurring in between two time instants. The open-
loop optimization program is initialized to the current state of the system xt and solved at
each sampling instant within a finite horizon Nh. Thus, an optimal sequence of inputs is
obtained for the entire horizon, but only the first input ut is applied to the system. The
steps of state feedback MPC are outlined in Algorithm 4.1.2. In practice, only an estimate x̂t
of the current state will be available, and the procedure is then referred to as output feedback
MPC. The estimate is based on measured data (ut,yt) up until time t.

Figure 4.1.5: Visualization of the MPC procedure with input blocking. Adopted from Foss
and Heirung (2016).

Computers operate at discrete time instants, and hence require discrete-time optimization
programs. Therefore, the system model is sampled at equidistant points in time:

xt+1 = g(xt,ut), xt ∈ Rnx , ut ∈ Rnu . (4.1.15)

The discrete-time model (4.1.15), together with initial conditions of the system, are intro-
duced as equality constraints to the MPC optimization program (4.1.10). Limits on actuators
and states constitute the inequality constraints.
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In an MPC scheme, the frequently used quadratic objective function is typically on the form

f =

N−1∑
t=0

(xt+1 − xreft+1)
>Qt+1(xt+1 − xreft+1) + utRtut, (4.1.16)

where Qt and Rt are positive semi-definite weighting matrices and xreft is the reference
trajectory. Alternatives to the quadratic cost (4.1.16) include the use of first norms, that is
the sum of absolute values. A program with a 1-norm objective function, subject to linear
constraints, can be transformed into a linear program by adding binary decision variables.
Then, being a linear program with both real and integer decision variables, it is referred to as
a mixed-integer linear program (MILP). MIPs, in general, seem suitable for waypoint path-
planning, and especially if the search space is discontinuous. Therefore, a brief introduction
to MIPs and some applications to the path-planning problem are presented next.

Algorithm 4.1.2: State feedback MPC. Courtesy of Foss and Heirung (2016).
1 for t′ = 0, 1, 2, . . . do
2 Get the current state xt.
3 Solve the dynamic optimization problem, initialized to xt, over a horizon Nh.
4 Apply the first control move ut from the solution above.
5 end

Mixed-integer programming

The general formulation of a MIP is obtained by altering (4.1.10) to include integer variables
y. The resulting program is then given by

min
x∈Rn, y∈Zq

f(x,y) (4.1.17a)

subject to ci(x,y) = 0, i ∈ E (4.1.17b)
ci(x,y) ≥ 0, i ∈ I. (4.1.17c)

Integer variables are defined in terms of a vector y ∈ Zq, where q denotes its dimension.
Since the domain Zq is disconnected, (4.1.17) will always be a non-convex problem (Foss and
Heirung, 2016). Nevertheless, discrete variables are convenient to describe discrete decisions
variables such as a sequence of waypoints.

There are some applications of MILP, the linear version of (4.1.17), to path-planning prob-
lems. In Schouwenaars et al. (2001) and Richards, Feron, et al. (2002), a program (4.1.17)
with a 1-norm objective function is transformed it into a MILP by introducing slack vari-
ables and additional constraints. The objective is to generate fuel-optimal paths for multiple
vehicles, avoiding both static and moving obstacles. To solve the MILP, it is implemented in
the framework of the mathematical programming language AMPL and passed to the CPLEX
solver. CPLEX is applicable to LPs and QPs, as well as their equivalents in terms of MIPs.
In the case of large, nonlinear programs, Knitro is a suitable solver. Both solvers utilize a
branch-and-bound1 approach to obtain a solution.

1A technique for solving integer programming problems, by successive evaluation of “relaxations” in which
integer variables are fixed or integrality constraints are temporarily ignored (Nocedal and Wright, 2006, p. 6).
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4.1.4 Rules-compliant collision avoidance

As mentioned in Section 1.3, predictable behavior of an autonomous system may be achieved
by complying with rules and regulations. In fact, rules are the core of a decisive system. IMO,
being an organization under the United Nations responsible for the regulatory framework for
international shipping, has lead the way in establishing regulations for ASVs. As part of
the 98th through 101st sessions of the Maritime Safety Committee (MSC) there has been
conducted a regulatory scoping exercise to identify regulations that already apply and areas
that might require new regulations. At the latest session, the Committee approved interim
guidelines for ASV trials that treat the authorization of participating ships, qualifications of
personnel involved, and the risk associated with the trials, among others (IMO, 2019). The
IMO scoping exercise was expected to be concluded at the MSC in May 2020 (IMO, n.d.).

To accommodate the introduction of autonomous technologies on national and regional lev-
els, classification societies2 have established guidelines for such novel systems and operational
concepts. The directions in DNV GL (2018), among others, were developed to support both
actors in the industry and regulatory bodies in documenting and assuring safe implemen-
tations. These are founded on the requirement for autonomous systems and functions to
be at least as safe as operations of conventional vessels. In that regard, a minimum risk
condition (MRC) to maintain a safe state is defined: When experiencing situations beyond
normal operation, either due to deteriorating weather conditions or by system failures such
as loss of propulsion, the vessel shall enter a state posing the least risk to life, property and
the environment (DNV GL, 2018, pp.18-21). Included in the guidelines are methods, tech-
nical requirements, principles and acceptance criteria related to autonomous and remotely
operated ships.

COLREGs apply to all vessels on high seas and connected waters, even vessels confined to
waters under the jurisdiction of one coastal state. Although COLREGs were developed for
manned ships, several rules can be adopted by an autonomous collision avoidance systems
(Johansen, Perez, and Cristofaro, 2016), including those listed in Section 2.1. Yet, as pointed
out in Porathe (2017), the ambiguities of COLREGs constitute a challenge when it comes to
implementation of the rules in anti-collision algorithms. For instance, there are no precise
definitions of the terms “safe speed” and “safe distance” in Rule 6 and 8, respectively. The
former is simply declared a speed at which the vessel is able to deviate from the planned
path or to stop in time to avoid collision, whereas no interpretation is given for the latter
term. Obedience to COLREGs demands for a SA system that analyzes the traffic situation,
environmental conditions, and area of navigation in relation to maneuvering characteristics
of the vessel and hazards along the planned path (DNV GL, 2018, p.64). Robust processing
of information from navigational sensors is critical to provide anti-collision algorithms with
accurate data. Specifically, decision support systems required by DNV GL (2018, pp.105-107)
on board an ASV include:

• A combination of detection technologies for safe maneuvering, such as video surveil-
lance, radar, and laser-based systems, as well as a sound reception system.

• An approved system for accurate reading of electronic navigational charts to plan
and execute a safe voyage, such as electronic chart display and information systems
(ECDIS).

2Classification societies establish technical standards for the design, construction and maintenance of ships,
and certify that a vessel and its systems are in accordance with the rules (DNV GL, 2018, p. 11).
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• An automatic identification system (AIS) interconnected with radar(s) and ECDIS to
assist in obstacle detection and classification.

• A system for observing local weather and vessel monitoring in terms of ship movements
and hull stress.

• Speed logs to continuously measure the speed and distance through water as well as
speed over ground in both longitudinal and transversal directions.

• A minimum of two separate systems for continuous determination of the vessel heading
relative to the geographic north.

In line with the delimitation and assumptions in Section 2.2.4, it is beyond the scope of this
thesis to go into further details about such systems.

With regard to the planning of a safe voyage, DNV GL (2018, pp. 53, 60–63) considers both
the route plan and the replanning of a path. A route plan shall be based on all pertinent
information, including adequate charts and up-to-date nautical publications concerning nav-
igational limitations and hazards, and be validated against general grounding avoidance cri-
teria and feasibility with regard to environmental conditions and expected traffic. The route
plan includes specifications of the demands for fuel, water, lubricants, chemicals, supplies,
and other. The execution of substantial deviations from the planned route while underway
shall be succeeded by the planning and validation of an amended route. Furthermore, actions
to avoid collision must be compliant with COLREGs. Particularly relevant to the develop-
ment of anti-collision algorithms, in addition to incorporating COLREGs, is the instruction
to immediately bring the vessel to an MRC if the navigation situation exceeds the level of
complexity the system can handle. According to DNV GL (2018, p. 63), parameters impor-
tant to navigational systems include the number of objects to relate to, the transparency of
planned actions, as well as the robustness of COLREGs-compliant algorithms.

In the literature, there are several approaches to COLREGs-compliant collision avoidance.
Methods of extending bounding boxes around obstacles (Chiang and Tapia, 2018; Song et al.,
2019), or based on vector algebra (Johansen, Perez, and Cristofaro, 2016; Zaccone, Martelli,
and Figari, 2019) are mentioned in Section 1.3. The strategy in Thyri et al. (2020), about
to be published, is instead to divide the NE-plane in two domains by a straight line based
on the type of encounter as defined by COLREGs. A control barrier function is applied to
ensure that the domain of the encountered ship is not entered, and to obtain predictable
and effective maneuvers by the vessel under control. Thyri et al. (2020), and several others
including Eriksen, Bitar, et al. (2020), use a geometrical interpretation scheme proposed in
Tam and Bucknall (2010) to determine COLREGs-compliant actions. Therein, encounter
types are categorized based on relative position and heading between the obstacle and the
vessel under control. The scheme is adapted in the design of a COLREGs-compliant anti-
collision strategy in this thesis as well.
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4.2 Design and implementation

The path planner is composed of several units: A guidance model, an anti-collsion strategy,
and a path search algorithm. The former provides a representation of the environment and
is in the form of a BINN. External inputs to the BINN are associated with the presence
of obstacles and a target, and define the shape of the neural activity landscape. Neural
activities are adjusted according to the anti-collision strategy to stimulate for COLREGs-
compliant behavior. The strategy is based on the scheme in Tam and Bucknall (2010) to
identify the encounter type and the appropriate actions. Thereafter, paths are obtained by
applying either a hybrid A* algorithm or a MIP in an iterative manner. The repetitive call to
the path-planning algorithm enables replanning of the path based on updates of the BINN.
Implementation details related to each unit and the modeling of dynamic obstacles is treated
in the following. Also, measures to evaluate the performance of the path-planning algorithms
are presented.

Figure 4.2.1: BINN landscape and the path obtained by traversing the landscape according
to the steepest descent rule.

4.2.1 The BINN guidance model

A keystone of the path-planning algorithms presented in this thesis is a dynamic guidance
model for stepwise path-planning. The BINN in Yang and Meng (2001) is explored for this
purpose. Contrary to the case presented in Section 4.1.1, a minimization rather than a
maximization problem is considered. This implies that targets and obstacles are recognized
as minima and maxima, respectively. Thus, the vessel will traverse the landscape analogous
to a ball rolling down a hill, before coming to rest at the bottom of a valley and thereby
minimizing its potential energy. A minimization formulation can be obtained by modifying
the shunting model (4.1.1) according to

dzi
dt

= −Azi − (D + zi)
(

[Ii]
+ +

k∑
j=1

wij [zj ]
+
)

+ (B − zi)[Ii]−, (4.2.1)

with external inputs defined as

Ii =


κ, if there is an obstacle
−κ, if there is a target
0, otherwise.

(4.2.2)
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The equivalent BINN landscape to the example in Figure 4.1.1 in terms of the minimization
formulation (4.2.1), and the path found by traversing the landscape according to a steepest
descent rule are depicted in Figure 4.2.1. As anticipated, the resulting path is identical
for both the minimization and maximization problem. Since the former is convention in
mathematical optimization and due to the intuitive rolling ball analogy, the minimization
formulation (4.2.1) is used. This implies that a feasible solution of minimum neural activity
will be the optimum.

The neurons forming the BINN are structured in a graph. As argued in Section 4.1.1, this
structure allows for a systematic definition of neighboring neurons in terms of an adjacency
matrix. Moreover, the graph can be depicted in a diagram, which is easily linked to the
Cartesian plane. Since the transit phase of an operation is considered, the grid partitioning
was set to be of an order of magnitude similar to the vessel length. A downside of using
such a coarse partitioning is that obstacles that are clearly smaller than the area covered
by the grid cell, mark the entire cell as occupied. That said, the environment is typically
more spacious in transit than, for instance, in harbors, and hence one may get away with a
coarser partitioning. A coarse partitioning is also computationally less demanding, but at
the expense of poorer reactive abilities.

|pi − pj |∞

|pi − pj |2

r0

j

i

|pi − p|2 = r0

|pi − p|∞ = r0

Figure 4.2.2: Neighbors to neuron i and the distance between neuron i and j according to
the second and infinity norms.

In Yang and Meng (2001) the Euclidean, or second, vector norm is used to describe the
distance dij between two neurons i and j. Here, another valid metric is applied: The infinity
norm is generally defined by (Weisstein, n.d.[c])

|x|∞ := lim
p→∞

(∑
i

|xi|p
) 1

p

= max
i
|xi| (4.2.3)

for an n-dimensional vector x ∈ Rn. Applied to the Cartesian plane, the distance function
can thence be calculated as

dij =
∣∣pi − pj∣∣∞ , (4.2.4)
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with pi and pj denoting the positions of the two neurons. Figure 4.2.2 illustrates the difference
between the two distance functions based on the 2-norm and the ∞-norm. Furthermore, the
receptive fields Ri of neuron i when the ∞-norm versus the 2-norm is applied with the same
radius r0 are delineated in Figure 4.2.2. Note that in order to enclose all connections to
neurons in the closest vicinity of neuron i, the radius of Ri must satisfy r0 ≥ max{dX, dY }
with the ∞-norm, as against the larger radius r0 ≥

√
dX2 + dY 2 when using the 2-norm.

Here, dX and dY represent the grid cell dimensions along the x- and y-axis, respectively.
In relation with the connection weights defined by (4.1.3) and (4.1.4), it is apparent from
Figure 4.2.2 that the ∞-norm distance function will weight all neighboring neurons equally,
whereas the 2-norm yields a larger distance dij for diagonal connections and hence weight
these less than horizontal and vertical ones. In other words, the choice of distance function
will influence how neural activity propagates through the landscape.

Different search strategies are applied to the neural activity landscape in order to establish
feasible paths. One such strategy is the hybrid A* algorithm presented in Section 4.2.2.
Contrary to the simple steepest descent method, nonholonomic constraints are accounted for
with this a strategy. Furthermore, a MIP was designed to minimize neural activity as well as
heading changes. Proper weighting of the two objectives should stimulate the construction
of a path that circumvents obstacles while respecting turn constraints of the vessel. The
BINN parameters were tuned to obtain a suitable shape of the neural activity landscape and
ease the search for a feasible path, with values given in Yang and Meng (2001) and Scibilia,
Jørgensen, and Skjetne (2012) as a starting point. As noted in Yang and Meng (2001), the
shape of the BINN landscape is almost solely determined by the passive decay rate A and the
neural connection weight µ. BINN parameter values used throughout this thesis are listed in
Table 4.2.1, and the path search strategies are explained in detail in Sections 4.2.2 and 4.2.3.

Table 4.2.1: BINN parameters

Parameter Value [-]
κ 10
r0 2 max (dX, dY )
A 10
B 1.0
D 1.0
µ 10
εss 1e−10

Serving as a dynamic model, the BINN is updated with external inputs on regular basis. The
termination criterion when evolving the BINN is based on the fact that the BINN converges
to an equilibrium state (see Section 4.1.1). If the neural activity of all neurons in the network
change less in absolute value than a small constant εss between iterations, the BINN is
considered to have reached steady-state and the iterative process is terminated. The BINN
is not updated continuously, but rather at discrete points in time. To simplify the path-
planning process, the environment is considered quasi-static during each search for the next
WP. In a quasi-static system, dynamic effects are negligible, so that the system is evaluated
as if it was static. As a consequence, the time step between each update of the BINN must
be sufficiently small so that changes in the environment are properly captured by the BINN.
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4.2.2 Hybrid A* implementation

The development of a hybrid A* algorithm was based on the A* implementation by Premaku-
mar (2016) found on the MathWorks File Exchange and the theory presented in Section 4.1.2.
A traversability graph is generated by evaluating the current quasi-static neural activity land-
scape: Peaks in the landscape are identified as obstacles and the node with the lowest neural
activity is set as the target. Specifically, the target position is given by

pnt
⇐ min {zj , j = 1, 2, . . . , Nn}, (4.2.5)

where Nn is the total number of cells in the search space, and obstructed cells are defined by
the discrete nodes satisfying

nj ⇐ {j ∈ {1, 2, . . . , Nn} : zj > 0} . (4.2.6)

The latter set is closed for all possible discrete headings, as explained in Section 4.1.2. Re-
maining nodes represent free space. Nodes in the free space are expanded with motion primi-
tives based on their total cost (4.1.8). Two different heuristic cost estimates were tested, and
two methods of generating motion primitives were implemented. These are presented in the
following.

Heuristics based on the Euclidean distance and a modification, taking the neural activities
into account, are applied. First, the heuristic cost h(n) is estimated by calculating the
distance (4.1.9) from the current expanded node to the target. This choice will undoubtedly
be an underestimate of the true h(n) since it ignores the presence of obstacles and does
not reflect nonholonomic constraints. Hence, this estimate of h(n) provides an admissible
heuristic as explained in Section 4.1.2. Second, (4.1.9) was augmented with a factor based
on the neural activity associated with the cell in which the currently expanded node and the
target node are located. Since the neural activity zi of neuron i is bounded by −1 and 1 (see
Table 4.2.1), the factor was set to 1

2(1 + zi). Adding unity makes sure that the factor will
always be positive, whereas dividing by 2 ensures that the heuristic will never be greater than
(4.1.9), and hence still yield an admissible algorithm. Note that the neurons are associated
with the cells, so that several nodes defined in the continuous space may share the same
neural activity but their cost differ in the distance to the target. To shorten the search time,
nonholonomic constraints are taken into consideration by adding a cost on direction changes
along the path and the progression towards the target. However, the introduction of such
costs must be made with caution since it may come at the expense of heuristic admissibility,
as discussed in Section 4.1.2.

Motion primitives are either chosen to be straight line segments, or computed based on
kinematic considerations. In either case the motion primitives have to satisfy the conditions
stated in Section 4.1.2. A total of three motion primitives are generated at each node,
spanning a feasible region that the vessel is able to reach. One of the motion primitives is
directed straight ahead, whereas the remaining two are tilted to the port and starboard side.
For the straight-line motion primitives, their length d is set to be slightly larger than the cell
diagonal, that is

d =
√
dX2 + dY 2 + 1e−5. (4.2.7)

Thus, the the motion primitive is guaranteed to leave the current cell. A strategy is needed to
check whether the straight-line motion primitive crosses an obstructed cell. The implemented
strategy is based on the Bresenham algorithm (see Flanagan, n.d.), which is typically used
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to determine the pixels indicating a slanted line on a computer screen. First the slope of the
line segment is computed according to

a =
xc − xp
yc − yp

, (4.2.8)

where the subscripts p and c denote parent and child, respectively. If |a| ≥ 1, then x increases
the most and is said to be the major dimension, and vice versa. With x being the major
dimension, a point on the line segment lying within a neighboring cell will be given by

xm = xc − sign(xc − xp)dX, (4.2.9a)

ym = −1

a
(xc − xm) + yc, (4.2.9b)

and similarly for y, but with the inverse of the slope (i.e 1
a). By checking whether the cell

within which (xm, ym) lies is obstructed or not, one can either validate the feasibility of
the motion primitive or discard it. The angle of a straight-line motion primitive relative to
another is set to be a multiple of the heading discretization step and denoted by an angle β.
Constraints on path curvature can be handled through a proper choice for β.

θ

Rmin

d

1st expasion

2nd expansion

3rd expansion

d

β

Figure 4.2.3: Motion primitives in the form of straight-line segments (left) and based on
kinematic considerations (right).

On the contrary, kinematics-based motion primitives are constructed so that the turning
ability of the vessel is considered in the first place. An arc based on the vessel’s minimum
turning radius Rmin is drawn by incrementally increasing the central angle θ until an adjacent
cell is encountered. The endpoint of a kinematic motion primitive is obtained from

pend = pcenter +Rmin

[
cos θ
sin θ

]
, (4.2.10)

where pcenter ∈ R2 is the center of the turn circle determined by

pcenter = p0 +Rmin

[
cos (ψ + π

2 )
sin (ψ + π

2 )

]
. (4.2.11)

Here, p0 denotes the position of the node being expanded. The motion primitive going
straight ahead is also calculated from (4.2.10) and (4.2.11) by assigning a sufficiently large
value to the turn radius R. Since R is either given by the vessel’s minimum turn radius or a
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very large value for constructing the straight-line motion primitive, it is important to choose
an appropriate increment of θ so that the corresponding increase in the length d is not too
large. Therefore, the implemented increment of θ depends on R and is given by

dθ =
dX

12 |R|
. (4.2.12)

The total length of the kinematic-based motion primitives will generally vary, and can be
calculated from (Barile and Weisstein, n.d.)

d = Rminθ, (4.2.13)

given that θ is measured in radians. Since the endpoints (4.2.10) of all motion primitives are
equally feasible, two successive WPs that are sufficiently close to another are merged together.
Otherwise, undesired behavior might occur if the vessel is commanded towards a WP in its
close vicinity. The heading along the kinematic motion primitive is related to θ according to
ψ = θ+ π

2 . It will not necessarily be within the discrete set of heading angles, and is therefore
rounded to its nearest discrete value. The difference between the two methods of generating
motion primitives is illustrated in Figure 4.2.3.

4.2.3 A mixed-integer program for path-planning

An attempt was made in formulating a MIP for the purpose of planning a path for an
ASV from its current position to a target. The path was supposed to avoid obstacles and
take inherent limitations of the vessel into account. The optimization program is based on
the kinematic equations (2.1.2), which can be rewritten in terms of the unit velocity vector
zψ := [cosψ, sinψ]> as

ṗ = Uzψ, (4.2.14a)

żψ = rSzψ, S =

[
0 −1
1 0

]
. (4.2.14b)

Properties related to zψ being a unit vector include

zψi ∈ [−1, 1], i = 1, 2, (4.2.15a)∣∣∣zψ∣∣∣ = 1, (4.2.15b)

and it is hence given by the unit circle. The second norm (4.2.15b) poses a nonlinear constraint
on zψ, but linear bounds can be established by using the 1st norm, generally given by
(Weisstein, n.d.[c])

|x|1 :=
∑
i

|xi| , (4.2.16)

and the infinity norm (4.2.3). Linear constraints on zψ on zψ in terms of (4.2.16) and (4.2.3)
can then be derived as

−zψ1 − z
ψ
2 ≤ −1 +My1, (4.2.17a)

−zψ1 + zψ2 ≤ −1 +My2, (4.2.17b)

zψ1 + zψ2 ≤ −1 +My3, (4.2.17c)

zψ1 − z
ψ
2 ≤ −1 +My4, (4.2.17d)∑

i

yi ≤ 3, yi ∈ {0, 1} (4.2.17e)

−1 ≤ zψi ≤ 1, i = 1, 2, (4.2.17f)
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whereM � 1 and together with (4.2.17e) ensures that at least one of the constraints (4.2.17a)
through (4.2.17d) is satisfied. A graphical interpretation of the constraints (4.2.17) is the
shaded area in Figure 4.2.4, and it can be easily verified that the unit circle constraint is
relaxed to become 0.7 ≤

∣∣zψ∣∣ ≤ 1.4.

The MIP is hence formulated as

min
∑
nk∈V

y(k, nk)Z(k, nk) +

Nh∑
k=1

λ∆ψk (4.2.18a)

subject to xk = xk−1 + dzψ1,k−1, (4.2.18b)

yk = yk−1 + dzψ1,k−1, (4.2.18c)

nk ⇐ pnk
= (dxke, dyke) , (4.2.18d)

∆zψ2,k ≤ ∆zψ1,k, (4.2.18e)

and (4.2.17).

in which the objective is to minimize neural activity, thereby searching for a path that
circumvents obstacles and proceeds towards the target, and to avoid unnecessary changes in
heading along the path similar to the heading penalty in Scibilia, Jørgensen, and Skjetne
(2012). Proper weighting of the two objectives should thus stimulate the construction of a
path that progresses towards the target, while circumventing obstacles and respecting turn
constraints of the vessel. The ∆ in front of a variable indicates the absolute difference in
time for that variable, i.e. for the heading it is defined as ∆ψk := |ψk − ψk−1|. Note that the
ceil functions d · e can be reformulated as linear constraints. Nevertheless, the neural activity
matrix Z( · , · ) imposes a nonlinearity to the program and hence increases the difficulty to
find a solution, as discussed in Section 4.1.3.

∞-norm

Figure 4.2.4: The first, second, and infinity unit norms.
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4.2.4 Obstacle modeling

In addition to stationary obstacles, a virtual obstacle with forward speed is introduced to
simulate a dynamic environment. In literature, a moving obstacles is typically referred to as
a target ship (TS) (Huang et al., 2020). Here, the TS is conservatively modeled as a disk
defined by a radius and center coordinates, similar to the definition in Wiig, Pettersen, and
Savkin (2017). It is primarily assumed to move along a straight path at a constant speed,
although this might be a poor and potentially dangerous assumption in some cases (Johansen,
Perez, and Cristofaro, 2016). Therefore, to test the robustness of the COLREGs-compliant
path-planning algorithms, random motions of the TS are simulated as well. The random and
highly oscillating motions can be thought to represent position data from detection sensors,
such as radars, being contaminated by noise. To circumvent inevitable collision states, two
prerequisites for the simulations are adopted from Chen, Hopman, and Negenborn (2018)
consistent with the assumptions in Section 2.2.4:

• The initial state of the ASV is feasible, and

• the first time an obstacle is detected, it will be avoidable.

In other words, an obstacle will be detected in ample time to take appropriate action to avoid
collision.

4.2.5 Collision avoidance compliant with COLREGs

Actions by the ship under control, commonly named the ownship (OS) (Huang et al., 2020),
are determined based on the type of encounter. As stated in Section 4.1.4, COLREGs apply
to all vessels and are supported by guidelines for ASVs. Therefore, relevant rules from
COLREGs will be the core of the anti-collision algorithm. Five situations are identified from
the COLREGs rules listed in Section 2.1, namely:

• stand-on (SO),

• give-way (GW),

• head-on (HO), and

• overtaking on port (OTp) or starboard side (OTs).

In a crossing situation, the SO vessel is expected to keep its course and speed, whereas the
GW vessel shall steer clear, and preferably in back, of the other vessel. If two vessels are
approaching each other HO, both are obliged to alter course to their starboard side. Lastly,
in an OT situation, the vessel coming up from behind of another vessel shall keep out of the
way, and, accordingly, pass either on port or starboard side. Actions pertinent to the five
encounter situations are illustrated in Figure 2.1.3. The type of encounter can be determined
from the relative angle between the two ships,

ψrel = ψ2 − ψ1, (4.2.19)

given that ψ1 is the heading of the OS. With ψrel being calculated, the corresponding en-
counter type can be read off the pie diagram in Figure 4.2.5. Adopted from Tam and Bucknall
(2010), and in analogy with the COLREGs definition of an OT situation, a HO scenario is
considered if the TS is approaching the fore of the OS at an angle less than 22.5◦ = π

8 [rad].
Such a wide HO-region was recommended in order to enhance the robustness of the geomet-
rical COLREGs interpretation scheme.
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Figure 4.2.5: COLREGs-compliant action by the ownship when encountering another power-
driven vessels at relative angle ψrel. Adapted from Tam and Bucknall (2010).

An adaptive avoidance region is generated in order to realize the appropriate actions by the
OS. For instance, in a HO situation, it will cover an area in front of the TS and be extended
to its starboard side. As the name suggests, the avoidance region should ideally neither be
entered nor crossed by the OS. “Adaptive” indicates that the region is adjusted according to
the sensed velocity of the approaching TS and the distance between the two vessels relative
to the OS body-fixed frame. The latter is given by

∆p1 = R(ψ1)
>∆p, (4.2.20)

where the distance between the vessels in {n}, ∆p = [x2 − x1, y2 − y1]> ∈ R2, is rotated
to the OS frame by its heading ψ1 through the transformation matrix R(ψ1). Similar to
the approach in Chiang and Tapia (2018), the avoidance region will be considered a virtual
obstacle of rectangular shape. Nodes located within the avoidance region are classified as
obstacles, even if no physical obstacle is present, and the associated neurons receive a large
positive external input κ consistent with (4.2.2). Consequently, the OS is repelled from
moving into the avoidance region, and an appropriate definition of the region should trigger
maneuvers compliant with COLREGs.

Once an encounter type is identified as active and appropriate actions are initiated, the OS
should adhere to the rules that apply to that type of encounter until past and clear of the TS.
In other words, subsequent changes in bearing between the two vessels should not change the
encounter type. In that regard, evaluation of ψrel alone might be insufficient. Particularly,
if the relative angle is close to a borderline between two encounter types there might be a
rapid and constant change of the active encounter type, with inconsistent actions by the OS
as a result. A possible solution is a state machine as presented in Eriksen, Bitar, et al. (2020,
ch. 4.2.1): Transitions between encounter types have to go through a safe state, that is a
state where COLREGs does not enforce any rules with respect to the TS. However, it is
also pointed out in Eriksen, Bitar, et al. (2020, ch. 4.2.1), that a direct transition between
encounter types might be appropriate in some cases. For instance, a direct transition from
HO to an emergency state, that is a state covering situations in which the TS behaves
unpredictably or is in proximity of the OS, could be effective to reduce the risk of collision
and proceed to an MRC. The problem of adhering to one encounter type is not explored
further in this thesis, but is left to future work.
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4.2.6 Key performance indicators

Comparison of the different path-planning algorithms requires for some performance mea-
sures. KPIs are quantifiable measures that can demonstrate the effectiveness of the path-
planning algorithms with respect to both the objectives and constraints of the problem. How-
ever, the choice of KPIs will influence the evaluation of the algorithms, and therefore the met-
rics should be chosen so that important aspects and requirements of the path-planning prob-
lem are evaluated. Here, three evaluation criteria were used in assessing the path-planning
output: efficiency, optimality, and feasibility.

Efficiency is measured in terms of computation time. There are two options: Either assessing
the CPU time or the elapsed time. The former is the amount of time a central processing
unit (CPU) needs to execute a program, whereas the latter is the total duration of a task and
includes waiting for input/output, etc. Although the planning algorithms have to respect the
onboard processing capacity, as argued in Section 1.3, the elapsed time will probably be the
bottleneck and is assessed here. In a dynamic environment, the ASV will acquire information
through its sensors, and the path planning algorithm is executed on regular basis to adjust
the path to the new knowledge. Therefore, it is important that the execution of the algorithm
is relatively fast.

As well as being efficient, the algorithm should produce a path that is optimal according
to some measure. Path length is a widely used criteria and is straightforward to calculate.
Other evaluation criteria could be energy demands or work, and success rate in terms of
avoiding obstacles or the distance to obstacles. The former criterion would depend on the fuel-
consumption characteristics of the specific vessel, whereas path length is an vessel independent
measure. The success rate, that is the fraction of collision-free voyages among a number
of attempts, was deemed redundant since the resulting paths steered clear of obstacles in
the environments simulated here. Moreover, assuming that obstacles are modeled with an
additional margin, every unobstructed node will be equally traversable. Therefore the path
length was deemed the most suitable measure of optimality.

Last, but not least, the planned path must necessarily be feasible. For a marine vehicle,
changes in heading are undesired due to its large inertia, as discussed throughout Chapter 1.
Contrary to a vacuum cleaner robot, a vessel moves in a fluid of significantly higher density
and is not capable of turning on the spot. It has restrictions on turn radius and turn rate.
Here, feasibility is evaluated based on changes in heading along the path, since it is included
as an objective to be minimized in the proposed path-planning algorithms. The feasibility
measure was quantified by computing the accumulated changes in heading

∑
|∆ψ| along the

final path.
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Observer and path-following designs

The path-planning subsystem will be integrated and tested as part of a GNC system, as
defined in Section 2.2. Herein, guidance comprises both path-planning and the generation of
a continuous path from the planned WPs, of which the latter subsystem has not yet been
addressed. In addition to guidance, a navigation system, in the form of an observer that
estimates the vessel position, velocity, and the bias, as well as a control system for path-
following is needed. This chapter provides a description of the design and implementation of
a nonlinear passive observer, a path generator based on Bézier curves, and a DP backstepping
controller. A simple LOS path-following law, used to quickly test and verify the path-planning
algorithms, is also presented. Since the university and its laboratories were closed after the
outbreak of COVID-19 in Norway and no physical experiments could be conducted, details
on control allocation are left to Appendix C.

5.1 Observer

A nonlinear passive observer is introduced to reconstruct the state of the vessel [η,ν, b]> from
measurements. Passivity arguments simplify the tuning process significantly compared to
the tuning of relatively large sets of parameters when using observer backstepping or Kalman
filter-based designs. Moreover, the nonlinear passive observer guarantees global convergence
of estimation errors – including bias terms – to zero (Fossen, 2011, p. 311), thereby solving
the observer problem (2.2.2). Therefore, a passive observer design is applied to provide the
state estimates [η̂, ν̂, b̂]>.

According to Fossen (2011, p. 311), a passive observer is derived under the following two
conditions:

1. Zero-mean Gaussian white noise terms are omitted, w = 0 and v = 0. Otherwise, the
error dynamics will be uniformly ultimately bounded rather than globally converging
according to Lyapunov function analysis.

2. Heading measurements are assumed to be accurate, so that R(y3) = R(ψ) and hence
the heading measurement satisfies y3 = ψ + ψw ≈ ψ. The assumption is acceptable
since the magnitude of wave-induced yaw disturbances will typically be less than 5◦ in
extreme weather conditions and less than 1◦ in normal conditions.
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Simulations reported in Fossen (2011, p. 319) demonstrate that all state estimates converge
to their true values also with nonzero stochastic noise terms v and w. Moreover, the second
condition is equivalent to (3.2.2), and hence consistent with the linear maneuvering model
(3.2.1).

The observer equations are obtained by copying the dynamics of the maneuvering model
(3.2.1) and adding injection terms according to (Værnø and Skjetne, 2017)

˙̂η = R(ψ)ν̂ +L1η̄, (5.1.1a)

M ˙̂ν = −Dν̂ +R(ψ)>b̂+R(ψ)>L2η̄ + τ , (5.1.1b)
˙̂
b = L3η̄, (5.1.1c)

and the corresponding error dynamics are given by

˙̄η = R(ψ)ν̄ −L1η̄, (5.1.2a)

M ˙̄ν = −Dν̄ +R(ψ)>b̄−R(ψ)>L2η̄, (5.1.2b)
˙̄b = −L3η̄. (5.1.2c)

Here, the estimation errors are defined by η̄ := η − η̂, ν̄ := ν − ν̂, and b̄ := b − b̂. The
injection gains are given as matrices L1, L2, and L3, and are determined through a tuning
process.

Stability of (5.1.2) can be evaluated by Lyapunov analysis. The equilibrium [η̄, ν̄, b̄]> = 0 of
(5.1.2) will be uniformly globally asymptotically stable provided that the following conditions
on the injection gains and damping matrix are satisfied (Værnø and Skjetne, 2017):

• D +D> ≥ 0

• L1, L2 and L3 are symmetric and positive definite,

• L1 and L1 are commutative, i.e. L1L3 = L3L1, and

• the symmetric matrices (L1L2 +L2L1−2L3) and (L−13 L1−L−12 ) are positive definite.

The conditions on the injection gains will be met if they are diagonal with strictly positive
entries. Then, each entry represents a weight on the corresponding DOF – either surge, sway,
or yaw. Moreover, the condition on the damping matrix is generally true for a vessel in calm
waters, since energy will be transferred to the water as waves are generated by vessel motions.
For proofs of the stability properties of the observer (5.1.1) the reader is referred to Værnø
and Skjetne (2017).

The bias terms b are included to account for unmodeled dynamics and slowly varying en-
vironmental forces, as mentioned in Chapter 3. Hence, b̂ will be nonphysical as it covers
several components (Fossen, 2011, p. 306). In the special case of no bias, the equilibrium
(η̄, ν̄)> = 0 can be proven uniformly globally exponentially stable. Exponential stability can
also be accomplished if the estimate of the bias dynamics (5.1.1c) includes low-pass filtering,
that is b̂ = −T−1b̂ + L3, T > 0, and D + D> is strictly positive (Fossen, 2011, p. 318).
Although exponential stability is preferred, since the rate of convergence will be quantified,
it is beyond the scope of this thesis to explore these alternatives.
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5.2. Path generator

5.2 Path generator

Given an ordered sequence of WPs from the path planner, VP = {p1,p2, . . . ,pN}, where
pi = (xn, yn)> represents the NE-coordinates of each waypoint. Then, path-generation is the
problem of determining a continuous and feasible path that passes through each waypoint
in VP , as defined in Section 2.2.2. The problem can be relaxed by introducing a circle of
acceptance around each waypoint. This relaxation implies that the path does not have to
pass directly through each waypoint, but inside a region in its vicinity. The format of the
generated path has to be compatible with the path-following controller in use, which in this
work is the maneuvering controller presented in Section 5.3.

In the literature, there are several approaches to post-processing the planned WPs in order
to obtain a feasible path for path-following. Post-smoothing, also known as the shortcut
algorithm, is one such method, in which nodes are successively erased in between two vertices
that are visible to one another (Nash and Koenig, 2013). This generally removes superfluous
changes in heading along the planned path, but will not change the path topology in how
obstacles are circumnavigated. A method for smoothing a path produced by a hybrid A*
algorithm is proposed in Dolgov et al. (2008). It is a two-stage optimization procedure: The
first step involves a nonlinear optimization program on the WPs, and improves both length
and smoothness of the path. In the second step, non-parametric interpolation based on the
conjugate gradient method (see e.g. Nocedal and Wright, 2006, ch. 5) is performed. Here,
effort has been put into exploring a method based on Bézier curves presented in Knædal
(2019). In the following, the design and implementation of the Bézier-based path generator
is presented, but first a brief introduction to the Bézier curve is given.

5.2.1 The Bézier curve

In the early 1960s, the automotive industry put effort into deriving mathematical descriptions
of free-form shapes. The aim was to accurately specify the geometry of car bodies, and thereby
eliminate inaccuracies and ambiguities when interpreting paper drawings and sculpted clay
models. As a result, Pierre Étienne Bézier, an engineer at Renault manufacturer, patented
and popularized the Bézier curve. At Citröen, Paul de Casteljau finished similar work.
However, his findings were kept internal to the company, and therefore Bézier’s name is
associated with the curve. The possibility of representing complex shapes with smooth curves
proved to be an indispensable tool in computer-aided design (Farouki, 2012). More recently,
the potential of using Bézier curves in path-planning and path-generation has been explored.
Among others, Choi, Curry, and Elkaim (2008) presented two path-planning algorithms
based on Bézier curves for an autonomous vehicle with waypoints and corridor constraints,
and Jolly, Kumar, and Vijayakumar (2009) proposed a path-planning technique based on
Bézier curves in a multi-agent system. A maritime application is found in Hassani and Lande
(2018), where Bézier curves are exploited as basis for generating paths for an ASV similar to
the method in Knædal (2019).

A Bézier curve is a planar parametrization, B(θ) = [x(θ), y(θ)]> ∈ R2. It is defined by a set
of control points P i, i ∈ {0, . . . , n}, where n represents the degree of the curve. The first and
last control points are endpoints of the curve, whereas intermediate ones do not necessarily
lie on the curve. A general formulation of the Bézier curve is given by (Hassani and Lande,
2018; Knædal, 2019)
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B(θ) =

n∑
i=0

bni (θ)P i, θ ∈ [0, 1]. (5.2.1)

Although neither Bézier nor Casteljau explicitly formulated the curves in terms of Bernstein
polynomials,

bni (θ) =

(
n
i

)
θi(1− θ)n−i, i = 0, 1, . . . , n, (5.2.2)

these polynomials are now considered the core of the Bézier curve (Farouki, 2012) and serve
as blending functions. A matrix formulation of the Bézier curve, given by (Joy, 2000)

B(θ) =
[
1 θ θ2 . . . θn

]

b0,0 0 0 . . . 0
b1,0 b1,1 0 . . . 0
b2,0 b2,1 b2,2 . . . 0
...

...
...

. . . 0
bn,0 bn,1 bn,2 . . . bn,n



P 0

P 1
...
P n

 (5.2.3a)

bi,j = (−1)i−j
(
n
i

)(
i
j

)
, i, j ∈ {0, . . . , n}, (5.2.3b)

is convenient for computer implementation. Only the first vector in (5.2.3a) is dependent on
the path parameter θ, which simplifies the process of finding derivatives. Note that control
points are constant, and hence the derivative of a Bézier curve is determined by computing
the derivative of the Bernstein polynomials (5.2.2). The derivative of an arbitrary Bézier
curve of degree n will be a Bézier curve of degree n − 1, and hence defined by n control
points.

5.2.2 Design and implementation

Methods proposed in Knædal (2019) and code available on GitHub1 formed the basis for the
design and implementation of the Bézier-based path generator. Two methods, referred to
as the pragmatic and the optimization approach, were explored. The methods differ in how
intermediate control points are defined. Both methods are briefly presented in Sections 5.2.3
and 5.2.4. For further details on the two approaches see Knædal (2019).

Both methods are derived under the assumptions that (Knædal, 2019)

• there exists a straight corridor of breadth ζk+1 > 0, defined such that it is free of static
obstacles and encloses the last visited and the next WP, and that

• initially, only the current position of the ASV and the next WP is known. Thereafter,
all previous WPs and the next WP will be known.

The collision-free corridor is ideally defined by the path planner, based on information about
the environment. It can be computed as the shortest distance to any static obstacle along
a straight line connecting two WPs, illustrated in Figure 5.2.1. Note that in the quasi-
static environment (see Sections 4.2.1 and 4.2.2) in which a path is planned and generated, a
dynamic obstacle and the associated avoidance region will be treated as if they were static.

1path_generator codebase: https://github.com/magnuok/path_generator.
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1

2
ζk+1

p
k

p
k+1

Figure 5.2.1: A straight corridor enclosing two WPs, k and k+ 1, with breadth given by the
shortest distance from the straight line between pk and pk+1 to an obstructed cell.

Two WPs will be provided by the path planner at any time instant, being the previous and
the WP ahead. The path generator computes a Bézier curve (5.2.1) for the pair of WPs, such
as the curved path segment in Figure 5.2.1. There will be one WP at each end of the curve
(i.e. P 0 = pk and P n = pk+1), and each path segment will be linked to the previous one in a
WP to produce the entire path. Therefore, the parametric continuity at the endpoints of the
Bézier curves determine the degree of continuity along the entire path. As argued in Knædal
(2019), the septic Bézier curve is of the lowest degree to freely set the change in curvature at
endpoints. Continuity in curvature is required when defining the desired heading angle along
the path by the path-tangential angle

ψd(s) = arctan 2(ysd(s), x
s
d(s)), (5.2.4)

with the 1st and 2nd order derivatives with respect to the path parameter s given by

ψsd =
xsdy

2s
d − x2sd ysd∣∣psd∣∣2 , (5.2.5a)

ψ2s
d =

xsdy
3s
d − x3sd ysd∣∣psd∣∣2 − 2

(
xsdy

2s
d − x2sd ysd

)(
xsdx

2s
d + ysdy

2s
d

)∣∣psd∣∣4 . (5.2.5b)

It is seen that path derivatives with respect to s up to order three, denoted by a super script
3s, are needed to compute the derivatives of the desired heading (5.2.5) up to order two.
Every curve of order higher than 7 would also provide the required parametric continuity,
but additional control points increase the computational complexity. Therefore, the septic
Bézier curve with a total of 8 control points, of which two are the current and the next WPs,
is used.

Since only one WP ahead is assumed to be known at a time, the desired heading of the vessel
when approaching this WP is set to

ψd,k = arctan 2(xk+1 − xk, yk+1 − yk). (5.2.6)
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Here, subscripts k and k + 1 indicate the WP visited last and the WP ahead. The desired
heading at the next WP (5.2.6) equals to the orientation of the straight line between the two
WPs. It might neither be the most practical nor a feasible departure angle if the next line
segment forms a sharp angle to the current line segment. However, unless the vessel has to
perform an avoidance maneuver, the change in angle between line segments will be kept at a
minimum by the path planner (see Section 4.2).

Control points specify the shape of the Bézier curve. The placements of the three first
intermediate control points, P i,k+1, i = 1, 2, 3, are constrained by the requirement of C3-
continuity along the path. These constraints can be expressed in terms of a system of linear
equations (Knædal, 2019) 1 0 0

−2 1 0
3 −3 1

P 1,k+1

P 2,k+1

P 3,k+1

 =

 2P n,k − P n−1,k
−2P n−1,k + P n−2,k

2P n,k − 3P n−1,k − 3P n−2,k − P n−3,k

 (5.2.7)

by evaluating the derivatives of the Bézier curve (5.2.1). The matrix in (5.2.7) is full rank, and
hence the placements of P i,k+1, i = 1, 2, 3 are uniquely determined by P i,k, i = 4, . . . , 7 for
n = 8. Given the desired heading at the last visited WP (5.2.6), the former three points will lie
on a straight line inclined at this angle. Since the Bézier curve is completely contained inside
the convex hull2 of its control points, the curve will be within the collision-free corridor if all
control points are bounded by the corridor. Consequently, the following corridor constraints
are imposed on the 4th through 7th control points (Knædal, 2019):

|P 7,k − P 6,k| ≤
1

2
ζk+1, (5.2.8a)

|3P 7,k − 4P 6,k + P 5,k| ≤
1

2
ζk+1, (5.2.8b)

|7P 7,k − 12P 6,k + 6P 5,k − P 4,k| ≤
1

2
ζk+1. (5.2.8c)

However, by assumption, the corridor breadth of the next curve segment ζk+1 will not be
known in advance since only one WP ahead is known at a time. Therefore, a constant corridor
of minimum breath ζ = ζmin will be used for the present. As mentioned, the last control
point P 7,k coincides with the WP in position pk. Thus, only control points 4 through 6 are
not fixed and need to be placed by an appropriate strategy.

5.2.3 Pragmatic approach

The placements of the control points P i,k, i = 4, 5, 6 are ultimately determined under the
proposition that a reasonable path for a low-speed ASV minimizes traveled distance and
respects nonholonomic constraints (see Section 1.3) at all times. The strategy is to place
P 4,k a distance δ away from the next WP in position pk+1, and P i,k, i = 5, 6 close to this
WP according to

P 4,k = pk+1 − δ
[
cos (ψd,k+1), sin (ψd,k+1)

]> (5.2.9a)

P 5,k = pk+1 −
δ

µ

[
cos (ψd,k+1), sin (ψd,k+1)

]> (5.2.9b)

P 6,k = pk+1 −
δ

2µ

[
cos (ψd,k+1), sin (ψd,k+1)

]> (5.2.9c)

2The smallest convex polygon enclosing all control points (for a definition of convexity, see Figure 4.1.4).
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5.2. Path generator

By proper tuning of a scaling factor µ, this will keep both the curve length and the curvature
low. The distance δ determined from (Knædal, 2019)

δ = min

{
1

2

∣∣pk+1 − pk
∣∣ , δc(κmax, Uref (t))

}
, (5.2.10)

in which the former parameter is to avoid maneuvers leading the ASV further away from the
next WP and δc assures that the upper bound on curvature κmax at the prevailing reference
speed Uref (t) is not violated. The pragmatic approach to placing the control points is not
optimal, but it is computationally efficient and yields good results if tuned properly (Knædal,
2019).

5.2.4 Optimization approach

For each path segment, an optimization program (4.1.10) with the objective to minimize path
length, or energy consumption, and subject to boundary and curvature constraints is solved.
The unfixed control points P i,k, i = 4, 5, 6 constitute the decision variables. An optimal
placement of these three control points for a path segment k is given by

min
P i,k, i=4,5,6

∫ 1

0

√
xθ(θ)2 + yθ(θ)2dθ (5.2.11a)

subject to P i,k ≤ P i+1,k, i = 0, . . . , 6, (5.2.11b)
κk(θ) ≤ κmax, (5.2.11c)
κk+1(θ) ≤ κmax, (5.2.11d)
(5.2.7) and (5.2.8).

Since P i,k, i = 4, 5, 6 define the shape of the curve, the objective function will indeed be a
function of the decision variables. The constraints (5.2.11b) ensure that the decision variables
are in correct order, e.g. P 4,k does not appear before P 6,k, and that P i,k, i = 4, 5, 6 are
in between the last visited and the next WP. Curvature constraints are imposed through
(5.2.11c) and (5.2.11d). The former considers feasibility of the current path segment with
respect to an upper bound on path curvature, κmax. Feasibility of the next path segment in a
worst-case scenario, defined as a ±90◦ turn, is evaluated by the latter curvature constraint. It
is computed based on knowledge of control points 0 through 4 from (5.2.7) and by generating
four artificial points to create the largest curvature one can expect.

Being a nonlinear problem, (5.2.11) is intrinsically hard to solve. However, having only a
number of three decision variables, the search space (4.1.11) is relatively small. Therefore,
(5.2.11) is solved by a brute-force technique: A discrete set of Nss feasible solutions is con-
structed, of which the candidate yielding the smallest cost (5.2.11a) is selected. Advantages
of this strategy include robustness, in that the minimum will be identified if one exists, and,
further, it will not get stuck in local minima. The selected candidate will converge to the real
optimum with an increasing size of the set of feasible solutions, but at the cost of increased
run-time.
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5.3 Maneuvering controller

Path-following is achieved through an appropriate maneuvering controller. The maneuver-
ing problem comprises the task of following the path provided by the path generator from
Section 5.2.2 at a desired speed, as presented in Section 2.2.3. Here, the maneuvering con-
troller is designed according to a backstepping approach, and the speed assignment is given
by a unit-tangent gradient update law. Alternatives to the backstepping controller include a
sliding-mode controller, as presented in e.g. Fossen (2011, p. 519) and Skjetne (2005), or the
enhanced version in Skjetne (2020) based on cascade-backstepping. The former is a robust
nonlinear design technique that handles model uncertainty, and the latter has fewer tuning
parameters and exponential stability properties. However, these control methods were not
explored further as the guidance system, comprising the path planner and path generator,
was the focus of attention here. In this section, the controller design is presented. A gener-
alized inverse control allocation scheme was derived, but since no physical experiments could
be conducted, details on the allocation scheme is left to Appendix C.

5.3.1 Backstepping control design

The control law is established by a backstepping design technique. Backstepping refers to
a recursive construction of the feedback control law τ by determining stabilizing controls
for cascaded subsystems through Lyapunov analysis (Fossen, 2011, p. 457). Two steps are
needed to obtain τ for the maneuvering control model (3.2.1). These steps are presented in
the following, as well as the update law on the path parameter s.

Step 1

The 1st step state variable is defined as the deviation in position and heading from the desired
path in {b}, that is z1 := R(ψ)> (η − ηd(s)). A control Lyapunov function (CLF) candidate
for the z1-subsystem is

V1 =
1

2
z>1 z1, (5.3.1a)

V̇1 = z>1

(
ν −R(ψ)>ηsd(s)ṡ

)
. (5.3.1b)

The virtual control is defined as ν := α1 + z2, where z2 is the 2nd step state variable and
the stabilizing function is a feedback controller

α1(η, s, t) = −K1z1 +R(ψ)>ηsd(s)vd(s, t), K1 = K>1 > 0 (5.3.2)

with a unit-tangent gradient update law on the path parameter s. The update law is given
by

ṡ = vd(s, t)−
µ∣∣ηsd(s)∣∣V s

1 (η, s) = vd(s, t) + µ
ηsd(s)

>∣∣ηsd(s)∣∣ (η − ηd(s)) , µ ≥ 0, (5.3.3)

and avoids a varying gain from V s
1 (η, s) along the path by normalizing the tangent vector

ηsd(s). Moreover, the second term in (5.3.3), that is the speed assignment error

ω = ṡ− vd(s, t) = − µ∣∣ηsd(s)∣∣V s
1 , (5.3.4)
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provides some elasticity in solving the dynamic task (2.2.8) as opposed to a pure tracking
update law (i.e. ω = µ = 0). If the scaling factor µ is large, the path parameter s will be
driven rapidly to minimize s→ V1(η, s). By defining a tuning function

ρ := −z1
>R(ψ)>ηsd(s) = V s

1 , (5.3.5)

a bound on the time derivative of the 1st step CLF (5.3.1b) is given by

V̇1 ≤ −λmin(K1) |z1|2 + ρω + z>1 z2, (5.3.6)

where λmin(K1) denotes the minimum eigenvalue of the control gain K1 and ρω ≤ 0 for the
update law (5.3.3). The 2nd step state variable z2 is disregarded in this step, and thus the
stabilizing control (5.3.2) with (5.3.3) renders z1 = 0 uniformly globally exponentially stable
and solves the dynamic task (2.2.8) in the limit as z1 → 0 (Skjetne, 2005; Skjetne, 2019).

Step 2

The 2nd step state variable is defined in step 1 as the deviation in vessel velocities ν and the
virtual control α1, that is z2 := ν −α1(η, s, t). A CLF candidate for the 2nd step is

V2 = V1 +
1

2
z>2Mz2, (5.3.7a)

V̇2 = −z>1 K1z1 + ρω − 1

2
z>2

(
D +D>

)
z2

+ z>2

(
z1 −Dα1 +R(ψ)>b+ τ −Mα̇1

)
. (5.3.7b)

To obtain the time derivative of the 2nd step CLF (5.3.7b), the maneuvering control model
(3.2.1) has been applied. A backstepping control law that renders (5.3.7b) negative definite,
and hence the equilibrium [z1, z2]

> = 0 uniformly globally exponentially stable, is given by

τ = −z1 −K2z2 +Dα1(η, s, t)−R(ψ)>b̂+Mα̇1(η, s, t), K2 = K>2 > 0, (5.3.8)

where b̂ denote bias estimates provided by the observer (see Section 5.1). The gain matrices
K1 and K2, as well as the scaling factor µ, are determined by tuning. Figure 5.3.1 illus-
trates how the z1- and z2-subsystem are interconnected. For the complete set of equations
describing the maneuvering controller, see Appendix B.

z1z2τ ν η

M
−1 R(ψ)

f(z1)

α1(η, s, t)

−α̇1(η, s, t)

−D ηd(s)

R(ψ)⊤b

Figure 5.3.1: The backstepping control system, in which stabilization of the z1-subsystem is
achieved through a virtual control α1(η, s, t). Note that f(z1) = −S(r)z1 + zs1ṡ.
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5.4 LOS path-following control

To quickly test and assess the outputs of the path-planning algorithms, a simple LOS path-
following law is used. According to the lookahead-based steering principle in Fossen (2011,
p. 258–262), and in absence of current, the desired heading can be set to

ψd(e) = ψp + ψr(e), with (5.4.1a)
ψp = arctan 2(yk+1 − yk, xk+1 − xk), (5.4.1b)

ψr(e) = arctan
(−e

∆

)
= arctan(−kpe). (5.4.1c)

Herein, the first term (5.4.1b) is the path-tangential angle, whereas the second term (5.4.1c)
is interpreted as a saturating control with a proportional gain kp > 0. The latter directs the
vessel’s velocity vector towards a point on the path, determined by a lookahead distance ∆.
The aim is to drive the cross-track error e(t) towards zero, which is the distance from the
vessel normal to the straight line between the last visited and the next WPs. It is determined
together with the along-track distance s(t) to the next WP from

[s(t), e(t)]> = Rp(ψp)
>(p(t)− pk). (5.4.2)

Lookahead-based steering comes with the advantage of being valid for any e(t). A circle of
acceptance with radius rk+1 around each WP defines when the WP is considered reached,
and is given by Fossen (2011, p. 265)

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ r2k+1. (5.4.3)

According to Fossen (2011), a suitable value for rk+1 is twice the vessel length. Figure 5.4.1
illustrates the lookahead-based principle and its parameters.

Figure 5.4.1: Illustration of the LOS guidance principle with desired course angle χd. Cour-
tesy of Fossen (2011).
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Simulation studies

The performance of the guidance system, and the path-planning subsystem in particular, is
demonstrated through simulations. First, the path-planning algorithms are combined with
the simple LOS path-following law presented in Section 5.4 to examine the search trees,
evaluate the KPIs from Section 4.2.6, and demonstrate how different encounter situations
are handled. Thereafter, the path planner is evaluated as a part of a GNC system (see
Figure 2.2.1); comprising the nonlinear passive observer presented in Section 5.1, the Bézier-
based path generator from Section 5.2, and the maneuvering controller derived in Section 5.3.
Both the pragmatic and optimal path-generation methods are tested and evaluated in rela-
tionship with the path planner. The hybrid A* path search with two different expansion
strategies, as presented in Section 4.2.2, was used for the path planner, whereas the MIP
given in Section 4.2.3 was discarded as it produced impracticable WPs. A brief discussion on
the MIP is included in this chapter. Before looking into different simulation scenarios and
discussing results therefrom, the ASV model, to which the GNC system is applied, and the
software environment is presented.

Figure 6.0.1: The CSEI model vessel.
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6.1 Software and hardware

The path-planning algorithms are implemented in the MATLAB R2018b programming en-
vironment. MATLAB comes with a high-level programming language that expresses ma-
trix and array mathematics directly, and is therefore particularly suitable for implementing
the matrix-vector models in Chapter 3. Moreover, MATLAB supports model-based design
through Simulink, which is a block diagram environment for simulating dynamic nonlinear
systems. Here, Simulink is used for the implementation of the modular GNC system including
the ASV model. Furthermore, MATLAB is interfaced with Java classes and objects. Hence,
by using the Java-based AMPL application programming interface, the MIP in Section 4.2.3
can be invoked directly from MATLAB. Last, but not least, MATLAB provides tools for
visualization of results and has commands for graphics in both two and three dimensions.
For these reasons, MATLAB was considered suitable for the simulation and evaluation of the
path-planning algorithms and the GNC system as a whole. Evaluation of the path-planning
algorithms included calculations of computation times (see Section 4.2.6), and therefore spec-
ifications of the machine running the simulations are provided in Table 6.1.1.

Table 6.1.1: Computer specifications.

Processor Intel R© Core i5TM-2520M
Clock speed 2.50 GHz
Memory 4.00 GB RAM
Operating system Windows 7 Professional x64

6.2 CyberShip Enterprise I

A simulation model of CyberShip Enterprise I (CSEI), depicted in Figure 6.0.1, serves as the
platform for testing the GNC system. CSEI is a 1 : 50 scale model of a tug boat, fitted with
two Voith-Schneider propellers astern and a bow thruster. The main dimensions of CSEI are
given in Table 6.2.1a, and Table 6.2.1b and Figure 6.2.1 specify its thruster configuration.
System identification of CSEI through towing tests conducted by former master’s students
has resulted in a 3DOF maneuvering model (3.1.5). The coefficients and model matrices
are attached in Appendix A. For more information regarding the model boat, the reader is
referred to NTNU (2020) and references therein.

BT

y

x
V SP1

V SP2

LyV SP

LxBT
LxV SP

Figure 6.2.1: Arrangement of actuators on CSE1. Adapted from Valle (2015).
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6.2.1 Froude scaling of velocity

Since CSEI is a 1:50 scale model, the length of the real tug boat is 50L = 55.25[m]. In
order to find an appropriate velocity for CSEI along the desired path, the Froude number
is evaluated. In naval architecture, this is a dimensionless quantity used to determine the
resistance of a partially submerged body moving through water. Vessels with equal Froude
number produce a similar wake, even if their geometry and size are different. The Froude
number is defined by (Fossen, 2020, p. 2)

Fr =
U√
gL

, (6.2.1)

in which L is the length of the vessel at the water line level, g is the gravitational acceleration,
and U is the speed of the vessel. Thus, in order for two geometrically similar vessels to produce
the same wave pattern, the smaller model has to run at slower speeds than the larger ship,
according to

Umodel =

√
Lmodel
Lship

Uship. (6.2.2)

A speed of Umodel = 0.2[m/s] was used in the simulations, which gives Uship ≈ 4[kn]. The
choice of speed was limited by the validity of the maneuvering model (3.2.1). Although 4
knots is a rather slow speed for the transit phase, it may indeed be appropriate in congested
and complex environments.

Table 6.2.1: CSEI data.

(a) Main dimensions

Parameter Unit Symbol Value
Length over all [m] L 1.105
Breadth [m] B 0.248
Weight displacement [kg] ∆ 14.11

(b) Position of actuators

Actuator x [m] y [m]
VSP1 -0.4574 -0.055
VSP2 -0.4574 0.055
BT 0.3875 0

6.3 The MIP path-planning scheme

The MIP as presented in Section 4.2.3 did not produce practicable WPs. As seen in Fig-
ure 6.3.1, obstacles are not circumvented and sequence of WPs do not lead the vessel to the
target. That is, the MIP fails even in this rather simple environment of limited size and
with static obstacles only. The aim was to formulate an MILP, and therefore the kinematic
model (4.2.14) was employed. However, as mentioned in Section 4.2.3, the matrix of neural
activities introduces nonlinearities to the objective function. Furthermore, the solver seems
to struggle in finding a solution due to the minimal differences in neural activity associated
with nodes in the free space. Thus, altering the BINN or using another guidance model with
a landscape of less steepness could possibly help. Another issue is probably the size of the
search space: The MIP (4.2.18) is not restricted to discrete nodes and theoretically evaluates
any position in the continuous search space.
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Figure 6.3.1: An example of how the MIP (4.2.18) fails to find a feasible path in a relatively
simple environment, even when relaxing the constraints on zψ.

Even though the MIP did not work as intended, the receding horizon approach was adopted
in the hybrid A* implementation in order for the system to be reactive: Only the first WP
in the planned sequence of WPs to the target, which is optimal in the current quasi-static
environment, is forwarded to the path generator and the planning process is repeated as this
WP is reached. Note that the hybrid A* search plans a path all the way to the target, whereas
the MIP in an MPC scheme would plan only a certain number of WPs ahead restricted by the
time horizon. Thus, the planned path will not only be suboptimal, but potentially misguide
the vessel if neural activities do not monotonically decrease towards the target. A solution
could be to add a terminal cost minimizing the distance to the target, but such a cost ignores
the presence of obstacles. For these reasons, the hybrid A* path search was deemed more
promising, and the work on the MIP was aborted.

6.4 Simulations with LOS path-following control

The LOS path-following control law presented in Section 5.4 is utilized in the first step
of testing and evaluating the path-planning algorithms. First the performance of the two
hybrid A* path search strategies is assessed based on the selected KPIs in Section 4.2.6.
Thereafter follow simulations of different encounter situations, demonstrating the influence
of the avoidance region on how the path progresses and how this, in turn, enforces the OS
to act in compliance with COLREGs. A test of the robustness of the path planner is also
carried out by introducing random changes in the heading of the TS. Values for the simulation
parameters were retained for all simulations and are given in Table 6.4.1. Note that the radius
of the detection region is a guesstimate based on the OS length, and the radius of acceptance
is stricter than the value suggested by Fossen (2011) (ref. Section 5.4) which results in sharper
turns. Legends of the NE-plots from simulations are given in Figure 6.4.1, and specify the
colors, markers and line styles used to indicated the different elements.
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Table 6.4.1: Parameter values for simulations.

Parameter Unit Symbol Value
Time step [s] h 0.01
Workspace dimensions [m] Lx, Ly 42.0
Cell dimensions [m] dX, dY 3.0
Vessel initial position [m] p0 (1.5, 40.5)
Vessel initial heading [rad] ψ0 0
Vessel speed [m/s] U 0.2
Radius of acceptance [m] r 0.5
Radius of Rd [m] rd 20

Figure 6.4.1: Legends
of the NE-plots.

6.4.1 Evaluation of the hybrid A* path search strategies

The two hybrid A* path search strategies using either straight-line or kinematics-based mo-
tion primitives, as described in Section 4.2.2, are evaluated in an environment with both
static obstacles and a moving object. The 1st step search trees for both strategies with the
two different heuristics – the Euclidean distance to the target, or the modification based on
neural activity and with penalty on changes in search direction – are depicted in Figure 6.4.2
and Figure 6.4.3. With straight-line motion primitives, the resulting piecewise linear path
will be continuous, in that the endpoint of a motion primitive is the starting point of a sub-
sequent one, but the path tangential angle in a joint between two motion primitives will not
be continuous. Conversely, and by definition, the kinematics-based motion primitives form
a path that has continuous first derivatives. Neither path will have continuity in curvature.
However, as part of the GNC system illustrated in Figure 2.2.1, the path planner is only
required to produce a set of feasible WPs while the smooth parametric path definition is the
responsibility of a path generator.

(a) Euclidean heuristics (b) Heuristics adjusted for neural activity

Figure 6.4.2: First step straight-line hybrid A* search trees with the resulting paths in bold.
The relative angle between motion primitives is ±30◦.
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It is evident from Figure 6.4.2 that the Euclidean heuristics is far more efficient than the
heuristics adjusted for neural activity. This is seen in the number of expansions, but it is
also reflected in the computation times in Table 6.4.2. The heuristic function adjusted for
neural activity is slightly slower than the Euclidean distance. This substantiates the claim in
Section 4.2.2 that the latter heuristics is an underestimate of the former, and hence admissible.
Yet, one does not want the A* algorithm to spend too much time on expanding nodes that
seem promising according to the heuristics but eventually turn out to be misleading. When
evaluating the resulting paths, it is however seen that the heuristics adjusted for neural
activity result in a path with less turns due to the added cost on changes in search direction.
Both of the resulting paths are composed of 13 line segments, and thus of the same length
since each line segment is equisized. Hence the choice of heuristics will be a compromise
between efficiency and path quality. An alternative to the two heuristics applied here could
be to use the maximum h = maxi{hi}, i = 1, 2, . . . of several admissible heuristics h1, h2, . . . ,
that is the underestimate closest to the true path cost.

(a) Euclidean heuristics (b) Heuristics adjusted for neural activity

Figure 6.4.3: First step kinematics-based hybrid A* search trees with the final piecewise
linear WP path in bold. The turn rate defining the arcs is set to 0.7rmax with rmax = 3

2L.

When comparing the straight-line and kinematics-based hybrid A* search trees in Figure 6.4.2
and Figure 6.4.3, it is evident that the latter generally expands more nodes. This can probably
be imputed to the variable length of the kinematics-based motion primitives, which sometimes
yields quite short line segments and thus a larger set of nodes to evaluate and possibly
expand further. Another issue is the restriction on the search direction at a node, which
is ignored by the Euclidean distance heuristics. This does also apply to the straight-line
search, but since the kinematics-based motion primitives may bend and yield an instant turn
away from the target, such expansions are more prone to the underestimated distance from
the endpoint to the target. Furthermore, kinematics-based motion primitives are created by
increasing the central angle in an iterative manner until a neighboring cell is encountered,
which is necessarily more demanding than a simple straight-line expansion calculated in one
turn. The computation time of the kinematics-based search tree using Euclidean heuristics
is about twice the time needed to compute the straight-line expansion trees. At the same
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time the iterative construction of kinematics-based motion primitives guarantees that the
resulting paths are feasible. The process of increasing the central angle ends immediately
when encountering a neighboring cell. On the contrary, the strategy to prevent the straight-
line motion primitives from crossing obstructed cells, inspired by the Bresenham algorithm
(ref. Section 4.1.2), is seen to fail in Figure 6.4.2b. To summarize, the straight-line path
search is superior to the kinematics-based one when it comes to computation time, but falls
short when feasibility is concerned.

Table 6.4.2: KPIs of the two hybrid A* path search methods with heuristics given by the
Euclidean distance and the version adjusted for neural activity.

KPI Unit Straight-line Kinematics-based
Euclidean neural Euclidean neural

Path length [m] 81.50 81.50 61.62 60.07
Computation time [s] 2.59 · 10−5 3.55 · 10−5 6.34 · 10−5 3.29 · 10−4

Accumulated turns [rad] 5.58 5.58 5.42 5.35

6.4.2 Different encounter situations

The potential of the path planner presented in Section 4.2 to handle different encounter situa-
tions is demonstrated with the straight-line hybrid A* path search algorithm. Similar results
are achieved with the kinematics-based search strategy and are attached in Appendix D.
Five different scenarios, one for each encounter type as defined in Section 2.1, were simulated
with an object moving in a straight line. The situations are correctly classified by the path
planner, and COLREGs compliant maneuvers are initiated. Note that the presented scenar-
ios are rather simplistic, with a single TS moving in a straight line, but they exemplify how
the path planner handles encounters of different types. Further testing must be performed
to validate the algorithms, in which environmental impacts from waves, wind, and ocean
currents should be included. Since there is no quantitative definition of the safe distance at
which the OS should pass another vessel (ref. Section 4.1.4), it is adjusted to the identified
situation and defined as a factor times the OS length. The initial conditions on the object
as well as the chosen safe distance are stated together with plots of the respective encounter
scenarios. Videos of the encounters are attached in the digital submission of the thesis. Note
that the path sometimes changes even when the object is out of sight and one would expect
the WPs to remain in place. The reason is that the path search takes the current vessel state
as the starting point, which does not necessarily coincide with the WP considered reached.

Head on

An HO encounter scenario is simulated with the object in initial position p0,obj = (38, 9),
heading ψobj = 3

4π and speed 0.9U . Figure 6.4.4a shows how the avoidance region impels the
OS to take a starboard turn and stay clear of the object, as seen in Figure 6.4.4b. The OS is
forced to keep a safe distance of at least 2 times its ship length to the object. If the object
would comply with the rules itself and turn to its starboard side, the safe distance between
the two vessels would obviously be larger. As the OS detects and steers clear of the object
with the COLREGs-compliant maneuver, the path is completely replanned. Therefore, the
vessel is guided directly towards the target as the object is passed, rather than driving it back
on the initially planned path – which would have lead to an unnecessary turn and probably
a longer travel distance. The final path is displayed in Figure 6.4.4c.
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(a) Object detected (b) Maneuver to starboard (c) Target reached

Figure 6.4.4: An HO situation.

Give way

A crossing situation in which the OS is obliged by COLREGs to GW is simulated with
the object in initial position p0,obj = (38, 33), heading ψobj = −4

5π and speed 0.9U . An
avoidance region that forces the OS to pass behind the object is created instantly as the
object is detected. The OS has to stay clear of the object by a margin of 5 times the OS
length, as seen in Figure 6.4.5a and Figure 6.4.5c. Consequently, the resulting behavior of
the OS is in line with rule 15 in COLREGs as stated in Section 2.1. Figure 6.4.5c displays
the resulting path after the target eventually is reached.

(a) Object detected (b) Passing behind the TS (c) Target reached

Figure 6.4.5: A GW situation.

Overtaking

Recall that there are two distinct options when the OS is overtaking another vessel: Either
passing with the TS on starboard or on port side. The appropriate actions are given by
the relative angle between the two vessels. Therefore, two OT scenarios are simulated. The
initial conditions on the moving object are set to η0,obj = (9, 36, −1

5π)> and η0,obj =

(8, 36, −1
8π) to incite port and starboard turns, respectively. Furthermore, its speed is

reduced to 0.4U so that the OS is able to actually overtake the TS. The avoidance regions
seen in Figure 6.4.6a and Figure 6.4.7a spur the OS to take actions compliant with COLREGs.
They are shifted slightly ahead of the object to take its progression into account. A downside
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with such a forward shift of the avoidance region is that the OS is allowed to come close
to the object before initiating an evasive maneuver, which contradicts rule 8 in COLREGs
(ref. Section 2.1). Furthermore, the OS is observed to pass the object by a relatively small
margin in the OTp situation depicted in Figure 6.4.6c as it is heavily attracted by the target.
Nevertheless, the OS stays clear of the object in both OT scenarios, and a desired safe distance
should be achievable by adjusting the parameter values defining the avoidance region.

(a) Object detected (b) Maneuver to starboard (c) Target reached

Figure 6.4.6: An OTp situation.

(a) Object detected (b) Maneuver to port (c) Target reached

Figure 6.4.7: An OTs situation.

Stand on

An SO encounter scenario is simulated with the object in initial position p0,obj = (4, 18),
with heading ψobj = 2

7π, and speed 0.9U . Note that in any situation where the OS detects
a moving object but is not obliged to take action, the encounter type is here classified as
SO. Therefore, the status ‘SO’ is seen in some snapshots of the above presented encounter
situations after the OS has initiated the appropriate action. However, there are crossing
situations, defined by rule 15 in COLREGs, where the OS is requested to keep its course and
speed in the first instance and the TS is obliged to GW. Figure 6.4.8a demonstrates such
a scenario. Since the moving object does not take action, the OS enters a DP mode and
waits for the object to pass in Figure 6.4.8b. The strategy to enter a DP mode might be
questionable considering the large inertia of vessels and the corresponding stopping distance,
and other MRCs should be evaluated. Assuming that the OS is able to stop in time, collision
with the object is avoided and the OS arrives safely at the target in Figure 6.4.8c.
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(a) Object detected (b) DP mode (c) Target reached

Figure 6.4.8: An SO situation. The OS enters DP mode as the TS takes no action.

6.4.3 Random motions of the TS

A test of the robustness of the path planner and the adaptive avoidance region method to
obtain COLREGs-compliant behavior is performed by simulating random object motions.
The heading of the object is allowed to vary within ±1.0 degrees at each time step, and
the actual heading change is determined by MATLAB’s rand function for random number
generation. A physical interpretation of such random motions can be that signals from the
detection sensors are uncertain and contaminated by noise. Figure 6.4.9 presents snapshots of
a GW scenario from a simulation with random object motions. The OS safely circumvents the
object and follows the same path as in Figure 6.4.5. Another simulation, which demonstrates
a pitfall of the avoidance region method, follows in Figure 6.4.10. In the latter simulation, the
OS is trapped inside the avoidance region, as seen in Figure 6.4.10b. Consequently, as no path
to the target can be established, the OS enters DP mode leading to a potentially hazardous
situation. Fortunately, the object steers away from the OS so that the OS is released from
the avoidance region and can safely navigate towards the target again. Nevertheless, collision
avoidance should not be a matter of luck, and therefore the risk that the OS gets trapped
inside the avoidance region is a topic for future work.

(a) Object detected (b) Passing behind (c) Target reached

Figure 6.4.9: A GW encounter with a randomly moving object.
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(a) Object detected (b) OS is trapped (c) Target reached

Figure 6.4.10: A HO encounter with a randomly moving object where the OS gets trapped
in the avoidance region, leading to a potentially hazardous situation.

6.5 Simulations with the GNC system

The path planner is integrated as a part of a GNC system, including the path generator, the
motion controller and the observer from Chapter 5. A dynamic environment with a moving
object in addition to static obstacles was simulated to demonstrate the GNC system. The
environment, together with the generated Bézier-based paths and vessel tracks, is depicted
in Figure 6.5.3. In the following, outputs from the observer and the controller are assessed,
and the path generator with both the pragmatic and optimization approach are evaluated
in relationship with the path planner. For the path search, straight-line expansions with
neural heuristics was primarily used, but the path generator was also tested together with
the kinematics-based hybrid A*.

6.5.1 Observer and motion controller

The GNC system was simulated with a constant, nonzero bias, and with measurement signals
corrupted by white noise. The bias was set to b = [0.3, 0.1, 0.02]> with units of forces and
moment, that is [N] and [Nm]. The values were selected by considering the thrust generating
limits of the vessel. Zero-mean white Gaussian noise was added to the measurement signals
through Simulink’s Band-Limited White Noise block. The noise power was calculated to
obtain a standard deviation σ on the GNSS position signals of 0.2[m], and of 0.5[deg] on the
heading signal, according to

σ2tc, with tc =
1

100
· 2π

ωmax
. (6.5.1)

With a correlation time tc = 0.005[s], corresponding to a system bandwidth of ωmax =
0.08[rad/s], the noise power was calculated to be [16, 16, 0.04] · 10−5, with units [m2/Hz] and
[rad2/Hz]. The resulting measurement signals and the respective observer estimates from a
simulation case with both static obstacles and a moving object are displayed in Figure 6.5.1.
Observer gains of L1 = I, L2 = diag([0.1, 0.1, 0.02]), and L3 = diag([0.1, 0.1, 0.05]) were
applied.
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As seen in Figure 6.5.1a, estimates of position and heading are quite accurate, and the
observer clearly solves the task (2.2.2) with respect to η(t). These are the estimates relevant
for the path-planner, and hence WPs were correctly placed. In contrast, the velocity and bias
estimates in surge and sway are rather poor. On closer inspection, the surge and sway velocity
estimates are seen to mirror the true signals. The reason is probably that the coordinate
axis are inverted in the NE-frame, whereas the path-generator was originally defined with a
horizontal x-axis and a vertical y-axis. Thus, the desired setpoints, and more specifically the
along-path derivatives ηs, η2s, and η3s, should be inverted. However, this requires for the
Bernstein polynomials (5.2.2) to be inverted, which turned out to be a nontrivial task. In
fact, with the desired along-path speed profile (2.2.6a) set to zero, the estimated velocity in
surge converges to the true value, which substantiates the suspicion that ηs and η2s might
be erroneous.

(a) Desired, estimated and
measured η(t)

(b) True and estimated ν(t) (c) True and estimated b

Figure 6.5.1: Observer estimates of vessel position, heading and velocities, as well as the bias.

From Figure 6.5.2a, it is seen that the commanded τ exceeds the thrust generating capabilities
of CSEI in sway and slightly in yaw. Limits are indicated by the upper and lower orange lines.
The saturating controls are probably related to the poor velocity and bias estimates in surge
and sway, and are expected to diminish with accurate estimates. In surge, the control input
is seen to be almost constant, which is consistent with the vessel forward motion at constant
speed. In addition to violate the thruster limits, the control commands oscillate, which is
undesired as it may result in wear on the actuators. This can probably be reduced by proper
tuning of the control gains K1 and K2. The control gains used here were K1 = 0.01I and
K2 = 20I.

Time series of the path parameter s′ are plotted in Figure 6.5.2b. In accordance with the
hybrid parametric path definition in (2.2.4), s′ goes from 0 to 1 for each of the 14 line
segments. In other words, the vessel is immediately directed along a new line segment as
a WP is reached. This implies that replanning of the current path is only considered upon
reaching a WP. However, the criterion for when to replan the path should rather be related
to changes in the operational environment. In the simulation studies presented here, this
means that replanning should be initiated the instant new objects and obstacles are detected
or move.
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(a) Commanded τ (b) Path parameter

Figure 6.5.2: Commanded control forces and moment, and the path parameter s′.

6.5.2 The pragmatic versus the optimal path generator

The pragmatic and optimal path generators based on Bézier curves, presented in Section 5.2.2,
were tested together with the straight-line hybrid A* path planner. The resulting paths and
the environment in which the path generators were tested are displayed in Figure 6.5.3.
Parameter values associated to the two path-generation approaches are listed in Table 6.5.1.
Some parameter values were adjusted compared to the values in Knædal (2019) to better fit
with the discretization of the external environment and the path planner. For instance, the
upper bound on the distance between two WPs, ∆max, was set to two times the discretization
size, dX. Note that the corridor breadth, ζ, is fixed, although ζ as function of the distance
to the closest obstacle, as proposed in Section 5.2, would probably be more appropriate and
promote consistency between the path planner and the path generator. However, due to time
constraints this possibility was not explored further.

Table 6.5.1: Parameters of the pragmatic and optimal path generators.

(a) Pragmatic

Parameter Value
κmax 3
ζ 1

2dX
µ 6
δmin 2

(b) Optimal

Parameter Value
κmax 3
ζ 1

2dX
Nss 40
∆max 2dX

The visual appearance of the two paths in Figure 6.5.3 is quite similar. Initially, both paths
are attracted straight towards the target. However, as the OS detects the moving object on
its starboard side, the course is altered to starboard and the OS passes behind the object
in compliance with Rule 15 in COLREGs (see Section 2.1). Although the two generated
paths seem quite alike and both are closely followed by the OS, there are some differences
when evaluating the selected KPIs. In addition to the KPIs used for the path planner (see
Section 4.2.6), two quantitative measures of how well the OS is able to follow the generated
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path are evaluated:

1

Ndat

Ndat∑
k

∣∣pd,k − pk∣∣ , and (6.5.2a)

max
k∈Ndat

∣∣pd,k − pk∣∣ . (6.5.2b)

The former is the average deviation from the path and the latter specifies the maximum
deviation between the OS position and the path, with Ndat being the number of data points.
Given the parameter values in Table 6.5.1 and the environment illustrated in Figure 6.5.3,
the optimal approach yields a path that the OS is less capable of following compared to
the pragmatic Bézier-based path. However, the difference in maximal deviation (6.5.2b) of
1mm is negligible considering the OS length L and discretization of the environment dX, dY .
Furthermore, the average deviation (6.5.2a) from the path is identical. Hence, when it comes
to generating a path that the OS is able to follow, both the pragmatic and the optimal
approach can be regarded equally feasible.

(a) Pragmatic (b) Optimal

Figure 6.5.3: Bézier-based paths given WPs from the straight-line hybrid A* path planner
in a dynamic landscape with a moving object and static obstacles. The smaller axes display
a zoomed cut of the paths and the OS tracks.

Even if the deviations between the OS tracks and the paths are negligible, the slight differ-
ence between the two path-generation approaches can probably be imputed to the curvature
along the path. Table 6.5.2 reveals that the pragmatic Bézier-based path has a maximum
curvature below the assumed limit of 1

Rmin
with Rmin = 3

2L, whereas the maximum curvature
along the optimal path is 20 percent above and corresponds to a steady-state turn radius of
approximately R = 5

4L. In fact the parameter value for maximum curvature, κmax, had to
be relaxed to 3[m−1] to obtain a path at all, and even 2[m−1] was too restrictive. Neverthe-
less, since the OS is able to follow the optimal path closely, a minimum turning radius of
Rmin = 3

2L is apparently a conservative choice.

Path length is a measure adopted from the evaluation of the path planners, but it is also
relevant for the path generator as it is responsible for producing the actual path to be followed.
Similar to the deviations between the OS tracks and the path, one can hardly distinguish
between the path-generation approaches based on path length relative to L and dX. The
difference in path length is 10cm, but contrary to the deviations between the OS tracks and
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the generated paths, it is in favor of the optimal approach. The difference can probably
also be imputed to the curvature along the paths: Since the curvature along the optimal
Bézier-based path is higher, it will take sharper turns and thereby yield a shorter path.

Table 6.5.2: KPIs of the pragmatic and optimal Bézier path generators.

KPI Unit Pragmatic Optimal
Path length [m] 59.4 59.3
Computation time [s] 7.9 · 10−5 2.7 · 10−4

Max curvature [m-1] 0.45 0.72
Average deviation [m] 0.065 0.065
Max deviation [m] 0.21 0.22

Lastly, the generation of a desired parametric path definition is timed. As mentioned in
Section 1.3, the path planner is subject to onboard computer limitations. The associated
time constraints do necessarily also apply to the path generator. Therefore, execution times
of the path-generation algorithms are important to assess. The path generator is called at
each time step in order to constantly extend the path as the OS moves forward. Therefore the
computation time is given as the average time for the path generator to produce the current
desired pose ηd and its derivatives. The first call to the path generator is excluded from the
average value since start-up times are generally longer than the times of subsequent calls to
a program. Furthermore, the time given in Table 6.5.2 is the mean value of 5 completed
simulations, as the elapsed times differ slightly for each simulation. Both path-generation
approaches seem efficient, considering that the simulation step is fixed to 1e−3s. However, the
pragmatic approach is on average 3.4 times faster than the optimal approach. Considering
the computational efficiency of a well-tuned pragmatic Bézier-based path generator along
with its relatively simple design compared to the optimal approach, it seems promising in
solving the path-generation problem given in Section 2.2.2.

There are several thinkable improvements of the Bézier-based path generators. An enhance-
ment already mentioned is to utilize information from the path planner and use a variable
corridor breadth ζ that depends on the distance between the straight-line segment connecting
two succeeding WPs and the nearest obstructed cell, as illustrated in Figure 5.2.1. Further-
more, if several WPs ahead would be provided by the path planner, one could reconsider if
the path necessarily has to pass through all WPs and hence relax constraints on the path
generator. Even if all WPs must be included in the path, the knowledge of two or three
WPs ahead would potentially result in a more convenient heading at the next WP than the
prevailing desired heading that is aligned with the straight line between the previous and the
next WP. The latter choice is indeed practical when only one WP ahead is known, since it
yields zero curvature at that WP and hence makes a turn towards starboard and port side
equally feasible. However, if the second next WP is known, curved path segments, as ob-
served in Figure 6.5.3, could potentially be smoothed. In short, more information possessed
by the path planner should be utilized by the path generator.
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6.5.3 Interaction between the path planner and the path generator

It seems like the Bézier-based path generator works the best for paths defined by equispaced
WPs. If two WPs are close to each others, as might happen with the kinematics-based hybrid
A*, the generated path can become difficult for the vessel to follow. An example is illustrated
in Figure 6.5.4, where two WPs in the zoomed plot to the right are about a vessel length L
apart from each other and issue a winding path given the parameter values in Table 6.5.1a.
Decreasing the minimum distance δmin between control points 4 and 7 seems to help. In other
words, path-generating parameters adjusted to the length of the current motion primitive
length would probably benefit the kinematics-based hybrid A*. Nevertheless, closely placed
WPs leave little room for the path generator to trace out a path. With these considerations
in mind, the Bézier-based path-generation methods are probably best suited for WPs placed
by the straight-line hybrid A* path search.

Figure 6.5.4: Path generated with the pragmatic approach given WPs from the kinematics-
based hybrid A* path planner. Tight and uneven spacing between WPs complicates the task
of generating a feasible path.
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Conclusions and further work

7.1 Conclusions

A path planner for an autonomous surface vehicle – composed of a guidance model, an anti-
collision strategy, and a path search algorithm – was developed. The bio-inspired neural
network landscape in Yang and Meng (2001) served as the guidance model, and effectively
provided a hybrid-state A* path search algorithm with information about the locations of
the target, obstructed cells, and free space. Two methods for expanding the hybrid A* search
tree were proposed, of which expansions by straight-line segments of constant length together
with a heuristic cost based on the Euclidean distance to the target finished the path search
in the shortest time.

Simulations of different encounter situations demonstrated that the anti-collision scheme
yielded paths compliant with COLREGs. An adaptive avoidance region of rectangular shape,
that the vessel under control ought to steer clear of, was defined according to the relative
distance and angle between the two encountering vessels. A pitfall of the method is that
the ownship might get trapped inside the region, which may lead to potentially hazardous
situations. Therefore a redefinition of the avoidance region is required, allowing the vessel to
escape or at least to enter a state of minimum risk.

The path planner was integrated into a guidance, navigation, and control system with a path
generator based on Bézier curves, a backstepping maneuvering controller and a nonlinear
passive observer. Simulations indicated that the WPs provided by the path planner were
suitable for path-generation, and the hybrid A* path search with straight-line expansions
together with a pragmatic approach of generating a Bézier path yielded particularly promising
results. Further testing is needed to validate the path planner, in which environmental
impacts from waves, winds and ocean currents should be included and with several ships
present.
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Chapter 7. Conclusions and further work

7.2 Recommendations for further work

Suggestions for a way forward include:

• Conduct more realistic simulations by considering effects of ocean currents, wind and
waves, as well as traffic separation schemes.

• Investigate the performance of the path planner in congested waters with multi-ship
encounters, and how communication between vessels can enhance the replanning of a
path including situations where there initially is no risk of collision.

• The planner should immediately replan the path when changes in the environment are
detected, rather than waiting until the next WP is reached.

• Experimental testing on an ASV scale model.

• Reconsider the discretization of the environment and, for instance, test if Voronoi fields
more elegantly can produce paths that adhere to a safety distance to obstacles.

• The proposed path planner is intended for an ASV in transit mode, and, in order to
enable a complete voyage, it should be merged together with planners for in-harbor
maneuvering and docking, as addressed by fellow master students Jakob S. Jensen and
Elias Gauslaa, respectively.

• Assess if other parameters than the turn rate and minimum turning circle of the vessel
should be considered when path feasibility is concerned.

• Explore alternative shapes of the avoidance region, and how to omit that the vessel
gets trapped inside the region. Define feasible safe states, in addition to a DP mode,
that the vessel can enter when the complexity exceeds the capability of the autonomous
system, referred to as MRCs in DNV GL (2018).

• Forward two or several of the planned waypoints to the Bézier-based path generator,
and thereby utilize more of the information possessed by the path planner. A suggestion
for a path generation strategy when two waypoints ahead are known is illustrated in
Figure 7.2.1. Here, straight lines connecting the current and the two waypoints ahead
define the boundaries of the control polygon.

control points

p
k

p
k+1

p
k+2

waypoints

Bézier curve

control polygon

Figure 7.2.1: Suggestion for a Bézier-based path-generation strategy if two WPs ahead are
given by the path planner: Let the straight lines connecting the WPs be the control polygon.
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Appendix

Together with this report follows a folder with figures, videos, and the MATLAB/Simulink
code files.

A Vessel specific matrices and coefficients for CSE1

Vessel specific matrices for the maneuvering model (3.1.5) of CSEI are given in NTNU (2020).
These include the inertia and added mass matrix

M = MRB +MA =

m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ

 = M> > 0, (A.1)

the Coriolis-centripetal matrix

C(ν) = CRB(ν) +CA(ν) (A.2)

=

 0 0 (−mxg + Yṙ)r + (−m+ Yv̇)v
0 0 (m−Xu̇)u

(mxg − Yṙ)r + (m− Yv̇)v (−m+Xu̇)u 0

 .
and the hydrodynamic damping matrix

D(ν) = D +Dn(ν) =

d11(u) 0 0
0 d22(v, r) d23(v, r)
0 d32(v, r) d33(v, r)

 . (A.3)

The two former system matrices are composed of rigid-body and added mass components,
denoted with a subscript RB and A respectively, and the latter is the sum of a linear D and
a nonlinear Dn(ν) damping matrix. The hydrodynamic damping components are given by

d11(u) = −Xu −X|u|u|u| −Xuuuu
2, (A.4a)

d22(v, r) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv2, (A.4b)

d23(v, r) = −Yr − Y|v|r|v| − Y|r|r|r| − Yrrrr2, (A.4c)

d32(v, r) = −Nv −N|v|v|v| −N|r|v|r| −Nvvvv
2, (A.4d)

d33(v, r) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr
2. (A.4e)

The values of the parameters entering the model matrices are given in Table A.1 and Ta-
ble A.2. Furthermore, the 3DOF rotation matrix transferring the generalized coordinates
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from {b} into {n} is given by

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , (A.5)

where ψ is the heading of the vessel. Properties of the rotation matrix (A.5) include

R(ψ)>R(ψ) = I, (A.6a)

Ṙ(ψ) = R(ψ)S(r), (A.6b)

S(r) = −S(r)> (A.6c)

where I is the identity matrix, r = ψ̇ is the yaw rate, and S(r) is a skew-symmetric matrix
given by

S(r) =

0 −r 0
r 0 0
0 0 0

 . (A.7)

Table A.1: CSEI rigid body and added mass parameters. Adopted from NTNU (2020).

Rigid body Added mass
Parameter Value Parameter Value

m 14.11 Xu̇ -2.0
Iz 1.760 Yv̇ -10.0
xg 0.0375 Yṙ,Nv̇ -0.0
yg 0.0 Nṙ -1.0

Table A.2: CSEI hydrodynamic damping parameters. Adopted from NTNU (2020).

Surge Sway Yaw
Parameter Value Parameter Value Parameter Value

Xu -0.6555 Yv -1.33 Nv 0.0
X|u|u 0.3545 Y|v|v -2.776 N|v|v -2.088
Xuuu -3.787 Yvvv -64.91 Nvvv 0.0
Xv 0.0 Yr -7.25 Nr -1.9
X|v|v -2.443 Y|r|r -3.45 N|r|r -0.75
Xvvv 0.0 Yrrr 0.0 Nrrr 0.0
- - Y|r|v -0.805 N|r|v 0.130
- - Y|v|r -0.845 N|v|r 0.080
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B. Maneuvering controller equations

B Maneuvering controller equations

In the following, the compact set of equations describing the backstepping maneuvering
controller presented in Section 5.3 is listed.

Backstepping state variables

The 1st step state variable in the backstepping design is given by

z1 = R(ψ)> (η − ηd(s)) , (B.1a)
ż1 = −S(r)z1 + ν + zs1ṡ, (B.1b)

zs1 = −R(ψ)>ηsd(s), (B.1c)

and the 2nd step state variable is defined such that

z2 = ν −α1(η, s, t), (B.2a)

ż2 = M−1
(
−Dν +R(ψ)>b+ τ

)
− α̇1(η, s, t). (B.2b)

Stabilizing virtual control

A stabilizing function for the z1-subsystem is

α1(η, s, t) = −K1z1 +R(ψ)>ηsd(s)vd(s, t), K1 = K>1 > 0 (B.3a)

α̇1(η, s, t) = −K1ż1 + S(r)zs1vd(s, t) +R(ψ)>η2sd (s)vd(s, t)ṡ− zs1v̇d(s, t). (B.3b)

Unit-tangent gradient update law

Following from a unit-tanget update law on the path parameter s, the speed assignment error
and a tuning function are respectively given by

ω = ṡ− vd(s, t) = − µ∣∣ηsd(s)∣∣V s
1 , (B.4a)

ρ = V s
1 . (B.4b)

Control Lyapunov functions

The 1st step CLF is defined such that

V1 =
1

2
z>1 z1, (B.5a)

V̇1 = −z>1K1z1 + ρω + z>1 z2 (B.5b)

≤ −λmin(K1) |z1|2 + z>1 z2,

V s
1 = −ηsd(s)> (η − ηd(s)) , (B.5c)

and the 2nd step CLF is given by

V2 = V1 +
1

2
z>2Mz2, (B.6a)

V̇2 = −z>1K1z1 + ρω − 1

2
z>2

(
D +D>

)
z2 − z>2K2z2 (B.6b)

≤ −λmin(K1) |z1|2 − λmin(K2) |z2|2 .

III



Appendix

Feedback control law

The resulting feedback control law, rendering [z1, z2]
> = 0 uniformly globally exponentially

stable and hence solves the maneuvering problem given by (2.2.7) and (2.2.8), is

τ = −z1 −K2z2 +Dα1(η, s, t)−R(ψ)>b̂+Mα̇1(η, s, t), K2 = K>2 > 0. (B.7)

C Control allocation

The control law (5.3.8) solves the maneuvering problem (2.2.7) and (2.2.8). However, in
order to realize the commanded thrust forces and moment τ , these must be transformed into
setpoints u for each actuator according to (2.2.9). The control model (3.2.1) is derived under
the assumption of a linear relationship between τ and u given by (3.2.3). Hence, an explicit
solution to the control allocation problem (2.2.9) is obtained from the generalized inverse
allocation scheme (Fossen, 2011, pp. 403-405):

u = K−1T †Wτ , (C.1a)

T †W = W−1T>
(
TW−1T

)−1
. (C.1b)

The generalized inverse T †W exists for an arbitrary matrix T , including nonsquare matrices.
If control forces are equally weighted W = I, (C.1b) reduces to the Moore-Penrose pseudo-
inverse,

T † = T> (TT )−1 . (C.2)

Although the solution (C.1) is valid for all thruster angles α0, it is not optimal if α0 varies
in time. In the case of rotatable thrusters, a solution (C.1) is obtained by using the extended
thrust configuration and coefficient matrices, T e and Ke. The contribution from a rotatable
thruster i acting in the horizontal plane can be decomposed into two forces,

Xi = Kiui cosαi = Kiui,x, (C.3a)
Yi = Kiui sinαi = Kiui,y, (C.3b)

yielding two elements, ui,x and ui,y, in the extended control vector ue. Setpoints for rotatable
thrusters can then be derived from the elements in ue through the mapping given by

ui =
√
u2i,x + u2i,y, (C.4a)

αi = arctan 2(ui,y, ui,x). (C.4b)

Accordingly, given the data in Table 6.2.1b, the combined extended thrust configuration and
coefficient matrix for CSEI can be derived as

Be = T eKe =

 1 0 1 0 0
0 1 0 1 1

yV SP1 xV SP1 yV SP2 xV SP2 xBT

 (C.5)

with extended input vector ue = [uV SP1,x, uV SP1,y, uV SP2,x, uV SP2,y, uBT ]>. The allocation
problem (2.2.9) is unconstrained, implying that bounds on f , α, and u are disregarded.
Thus, a shortcoming of the solution (C.1) is that it may contain inappropriate setpoints for
the actuators. A rotatable thruster may, for instance, end up in the wake flow of another.
A constrained control allocation program for rotatable thrusters is given in Fossen (2011,
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D. Simulations of encounter situations with kinematics-based hybrid A* path search

pp. 408-411). However, being a nonconvex nonlinear optimization problem, the search for
a solution entails a significant computational effort. Therefore, despite of ignoring actuator
constraints, the simpler generalized inverse method (C.1) is considered adequate for the
purpose of demonstrating the path-planning module.

D Simulations of encounter situations with kinematics-based
hybrid A* path search

The path planners capability of handling several encounter situations in a COLREGs-compliant
manner was demonstrated with the straight-line hybrid A* path search in Section 6.4.2.
Similar results were achieved with the kinematics-based strategy. Plots of the five different
encounter scenarios, under the exact same conditions as in Section 6.4.2, are presented in
the following. The kinematics-based hybrid A* generally yields smoother paths than the
straight-line alternative without a path generator. This is due to the variable length of the
kinematics-based motion primitives (see Figure 4.2.3), which is typically small when the path
turns, whereas the straight-line motion primitives have a constant length. Nevertheless, the
overall behavior of the OS is quite similar with both the straight-line and kinematics-based
strategy.

(a) Object detected (b) Maneuver to starboard (c) Target reached

Figure D.1: An HO situation with kinematics-based hybrid A* path search.

(a) Object detected (b) Passing behind the TS (c) Target reached

Figure D.2: A GW situation with kinematics-based hybrid A* path search.
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(a) Object detected (b) Maneuver to starboard (c) Target reached

Figure D.3: An OTp situation with kinematics-based hybrid A* path search.

(a) Object detected (b) Maneuver to port (c) Target reached

Figure D.4: An OTs situation with kinematics-based hybrid A* path search.

(a) Object detected (b) DP mode (c) Target reached

Figure D.5: An SO situation with kinematics-based hybrid A* path search. The OS enters
DP mode as the TS takes no action, and thereafter passes in back of the TS.

VI



Caroline Fleischer
O

ptim
al Path-Planning on a Bio-Inspired N

eural N
etw

ork G
uidance M

odel for Autonom
ous Surface Vessels

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e 
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Caroline Fleischer

Optimal Path-Planning on a Bio-
Inspired Neural Network Guidance
Model for Autonomous Surface Vessels

Master’s thesis in Marine Technology

Supervisor: Roger Skjetne

June 2020


	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	State of the art in the industry and academia
	Literature review
	Objectives
	Contribution
	Outline

	Problem formulation
	System description
	Problem statement
	Navigation system
	Guidance system
	Control system
	Assumptions and delimitation


	Vessel modeling
	Simulation model
	6DOF nonlinear maneuvering model
	3DOF nonlinear maneuvering model

	Control design model
	Observer design model

	Path-planning
	Theoretical background
	BINN as a guidance model
	Hybrid A*
	Mathematical optimization and MPC
	Rules-compliant collision avoidance

	Design and implementation
	The BINN guidance model
	Hybrid A* implementation
	A mixed-integer program for path-planning
	Obstacle modeling
	Collision avoidance compliant with COLREGs
	Key performance indicators


	Observer and path-following designs
	Observer
	Path generator
	The Bézier curve
	Design and implementation
	Pragmatic approach
	Optimization approach

	Maneuvering controller
	Backstepping control design

	LOS path-following control

	Simulation studies
	Software and hardware
	CyberShip Enterprise I
	Froude scaling of velocity

	The MIP path-planning scheme
	Simulations with LOS path-following control
	Evaluation of the hybrid A* path search strategies
	Different encounter situations
	Random motions of the TS

	Simulations with the GNC system
	Observer and motion controller
	The pragmatic versus the optimal path generator
	Interaction between the path planner and the path generator


	Conclusions and further work
	Conclusions
	Recommendations for further work

	Bibliography
	Appendix
	Vessel specific matrices and coefficients for CSE1
	Maneuvering controller equations
	Control allocation
	Simulations of encounter situations with kinematics-based hybrid A* path search


