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Preface

This thesis is the final part of my Master of Science degree within Marine Hydrodynamics
at the Department of Marine Technology, Norwegian University of Science and Technol-
ogy (NTNU), Trondheim, Norway. The work is carried out during the spring semester of
2020, with a workload corresponding to 30 ECTS.

The motivation behind the work is related to the sparse amount of coupled moonpool
and vessel responses in the literature, and the fact that findings would contribute both in
an academic and practical manner.

Even though concepts often are explained from a fundamental point-of-view, the reader
of this thesis should be familiar with basic hydrodynamic and moonpool theory.

Trondheim, June 10, 2020, Jonas Ravndal Kildal
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Abstract

The present work investigates coupled moonpool and vessel responses. This is done
through experiments and numerical simulations. A parameter study on the moonpool
width-to-vessel beam ratio is also conducted. An analytical model is developed to investi-
gate distinct moonpool piston mode periods arising from forced heave and pitch motions
in configurations of two and three moonpools.

A literature study is provided, with an emphasis on relevant literature for this thesis. Rel-
evant and fundamental theory regarding moonpools are linear potential flow theory and
domain decomposition, which both are outlined in the present work.

The model experiments are conducted with three different moonpool configurations in a
model resembling a real ship. The first configuration is of a single moonpool half the
model length and half its beam, while the second consist of two square moonpools. The
third configuration is of three square moonpools. The experiments were conducted in the
laboratory Lilletanken (Small Towing Tank) in head-sea conditions of regular constant-
steepness waves. Results, mainly Response Amplitude Operators (RAOs), are compared
with numerical simulations. Good agreement is found comparing experiments to numeri-
cal simulations and published literature on the single-moonpool configuration. Discrepan-
cies are mainly argued to be non-uniform response time series and coupling between the
rigid body motions and moonpool responses.

The presence of sloshing in the single-moonpool configuration distinguishes it’s surge
response compared to the other two configurations. Relative phases between moonpools
in the two- and three-moonpool configuration and the flow separation arising from their
piston mode response are argued to be main candidates to explain an observed cancellation
in heave.

The potential flow theory solver WAMIT is used in the numerical simulations to replicate
the experiments and to conduct the parametric study. WAMIT is also used to verify the
presently developed analytical model; whose results show fair agreement compared to
numerical simulations.

The parametric study investigates the sensitivity of rigid body motions and moonpool
responses with varying moonpool width-to-vessel beam ratio in operational conditions.
Four sea states of different peak period and significant wave heights are chosen, based on
JONSWAP wave spectra.

Results from the parametric study show sensitivity particularly of the heave motion and
moonpool responses with varying moonpool width-to-vessel ratio. A main candidate
to explain this behaviour is the increase in wave radiation, due to larger moonpool-to-
submerged vessel volume ratio. Apart from the single-moonpool configuration in surge, all
three moonpool configurations are relatively unaffected by the varying moonpool width-
to-vessel ratio in surge and pitch.
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Sammendrag

Denne oppgaven tar for seg den gjensidige koblingen mellom moonpoolrespons og skips-
bevegelser, ved gjennomføring av eksperiment og numeriske simuleringer. Et parame-
terstudie på forholdet mellom moonpoolbredde og skipsbredde er også gjennomført. En
analytisk modell er utviklet for å undersøke distinkte piston-mode-perioder som kommer
fra tvungne hiv- og stamp-bevegelser i moonpool-konfigurasjoner med henholdsvis to og
tre moonpooler.

Et litteraturstudie er gjennomført, med denne oppgaven som bakgrunn. Grunnleggende
og relevant teori om moonpooler er lineær potensialteori og domenedekomposisjon, som
begge er presentert i denne oppgaven.

Modellforsøkene er gjennomført med tre forskjellige moonpool-konfigurasjoner i en mod-
ell som liker et ekte skip. Den første er med én stor moonpool, som er halve lengden
og bredden til modellen, mens den andre består av to kvadratiske moonpooler. Den
tredje består av tre kvadratiske moonpooler. Eksperimentene er gjennomført i Lilletanken
i motsjø som består av regulære bølger med konstant steilhet. Resultat, hovedsakelig
RAOer, er sammenlignet med numeriske simuleringer. Gode samsvar ved å sammen-
ligne eksperimentelle resultat med numeriske simuleringer og publisert litteratur på den
store moonpoolen er funnet. Avvik er hovedsakelig argumentert til å være ikke-uniforme
respons-tidsserier og kobling mellom skipsbevegelsene og moonpoolrespons.

Tilstedeværelsen av sloshing i den store moonpoolen adskiller responsen i jag sammen-
lignet med konfigurasjonene med to og tre moonpooler. Relative faser mellom moon-
poolrespons i konfigurasjonene med to og tre moonpooler og strømnings-separasjon, som
kommer fra piston-moden i disse konfigurasjonene, er argumentert å være viktige faktorer
som forklarer kansellering i hiv.

Den numeriske potensialteori-løseren WAMIT er brukt til å reprodusere eksperiment og
til å gjennomføre parameterstudiet. WAMIT er også brukt til å verifisere den analytiske
modellen. Resultat fra denne verifiseringen viser noenlunde gode samsvar mellom den
analytiske modellen og numeriske simuleringer.

Parameterstudiet undersøker sensitiviteten til skipsbevegelser og moonpoolrespons med
varierende forhold mellom moonpoolbredde og skipsbredde i operasjonelle sjøtilstander.
Fire sjøtilstander er valgt; alle basert på JONSWAP-bølgespekter.

Resultat fra parameterstudiet viser særlig sensitivitet i hiv og for moonpoolrespons med
varierende forhold mellom moonpoolbredde og skipsbredde. Denne oppførselen kan i
stor grad skyldes økende bølgeradiasjon, som forekommer ved økende forhold mellom
moonpool-volum og neddykket skipsvolum. Foruten konfigurasjonen med én moonpool,
så er alle tre moonpool-konfigurasjoner relativt lite påvirket av forholdet mellom moon-
poolbredde og skipsbredde i jag og stamp.
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Chapter 1
Introduction

A moonpool is a vertical opening down to the free-surface in the ship structure. The idea
behind moonpools is quite simple: sheltered from environmental loads, for example wind
and waves, the moonpool provides safe conditions during marine operations. Current
usage of moonpools include offloading of objects such as remotely operated vehicles and
diving bells, or to lower risers and umbilicals into the sea.

A problem encountered when using moonpools is the exhibition of resonant modes.
These are of importance and can be of concern to both crew and equipment during marine
operations. The resonant modes are referred to as piston or sloshing modes, that is, a
near-uniform vertical oscillation of the free-surface and standing waves, respectively.

In recent years, the amount of research towards moonpool dynamics have been increas-
ing, but the literature on the mutual interaction between vessel and moonpool responses
remain rather sparse. An attempt is thus made to further highlight the importance of un-
derstanding these phenomena as well.

1.1 Literature Review
This section will outline published research on moonpools and moonpool dynamics, with
an emphasis on applicability towards this thesis. A selection of these will be presented in
Chapter 2.

One of the earliest research on moonpools is conducted by Albers (1984), which de-
scribed the water column inside the moonpool analogously with a damped mass-spring
system. He found that the equation of motion ”appeared to be very useful for understand-
ing the behaviour of the water column in the moonpool”. The results are validated by
experiments, with very good agreement. The author highlights the importance of applying
empirical values for the quadratic damping if one is to simulate the moonpool motion. This
is seen in the numerical simulations in this thesis. Damping plates at the moonpool inlet
are also discussed, but is of no interest for this thesis, and will not be discussed further.

Molin (2001) used linearized potential theory and domain decomposition to find ana-
lytical expressions of the natural sloshing frequencies and their mode shapes in rectangular

1



Chapter 1. Introduction

moonpools. Decomposition of the fluid domain into two sub-domains is done; the moon-
pool and the semi-infinite domain below the keel of the idealized barge, which in the
analysis is assumed of infinite length and beam. The water depth is assumed to be infinite.
These constraints are all later relaxed by Molin et al. (2018) to finite length and beam of
the barge, as well as finite water depth.

Miles (2002) formulated an approach to the eigenvalue problem for slow oscillations
in a set of N cylindrical wells. Here, the depth of the wells are assumed large relative
to their width, such that the piston mode is assumed the only occurring mode, or, the
dominating mode. Comparison with Molin (2001) showed good results in terms of the
natural frequencies in a single circular well of the same cross-sectional area, as long as the
rectangular moonpool has a moderate aspect ratio.

Several numerical studies, often compared with experiments, are conducted on ves-
sels with single moonpools. Faltinsen et al. (2007) applied vortex-tracking and domain
decomposition to the piston mode motion formed by two rectangular hulls. The scheme,
though applying linear potential flow, captures the singular behaviour of the velocity po-
tential at the moonpool inlet corners, which in linear potential flow theory isn’t captured.
Discrepancies between the numerical scheme and dedicated experiments were believed
to be free-surface non-linearities, which later was supported by Faltinsen et al. (2015).
Fredriksen et al. (2015) used two numerical methods, both a combination of potential and
viscous flow. The results compares well with experimental data, where the numerical
scheme applying fully non-linear free-surface and body-boundary conditions shows better
results than the scheme using linear boundary conditions.

The Master’s thesis of Reiersen (2016) aimed to investigate the effect of pitch can-
cellation in a body consisting of two moonpools. Two-dimensional experiments were
conducted with a single moonpool, arguing that the flow fields are similar around the sym-
metry line in-between the two moonpools. It was found to be cancellation both in heave
and in pitch.

Ravinthrakumar et al. (2019) conducted experiments on a quasi three-dimensional
body with a single mooonpool, and compared the results with linear potential flow solvers
as well as a Navier-Stokes solver. Over-prediction of the response was found using linear
potential flow solvers, but the results from the Navier-Stokes solver compared well with
experiments. Coupling between the heave, pitch and moonpool responses is observed,
with a shift in the piston mode period in freely floating condition compared to forced
heave.

(Ravinthrakumar et al., 2020) investigated the hydrodynamic coupling between ship
and moonpool, by conducting dedicated three-dimensional experiments with different
moonpool sizes. The coupling is found strongest with larger moonpool volume to sub-
merged ship volume ratio.

1.2 Scope of Work and Objectives

The scope in this thesis is to investigate the coupled moonpool and vessel responses on
different moonpool configurations. In this respect, one large and two configurations of
two and three smaller moonpools are designed.

2



1.3 Limitations

To further define the scope of the current work, the following objectives are decided
upon:

1. Get acquainted with and understand relevant theory on moonpools and moonpool
dynamics.

2. Experimentally investigate the coupling of moonpool responses and rigid body mo-
tions for the different moonpool configurations.

3. Carry out a numerical study in the moonpool width-to-vessel beam ratio in terms of
moonpool responses and rigid-body motions in operational conditions.

4. Develop an analytical model to predict the coupled piston mode periods for the two-
and three-moonpool configuration.

5. Make use of numerical simulations as a verification tool in the experimental and
analytical work.

1.3 Limitations
This section list relevant limitations and, if applicable, justifications.

• Moonpools using baffles and recess are not considered. The effects of these are
available in the literature, and it would be difficult to sort out phenomena directly
connected to the scope of this thesis.

• Head sea and freely-floating conditions are applied in the experimental work. That
is, the rigid body motions of interest are surge, heave and pitch.

• As a consequence of the head sea conditions (and later obtained experimental re-
sults), only longitudinal sloshing modes will be/are present, referred to only as
sloshing modes in the thesis.

• Due to small time frame in the experiments, no parametric experimental study is
carried out.

• Secondary resonance is not considered, that is, not included in the post-processing
and the results.

• Though included in the results, M0 (the none-moonpool comparable vessel) is in-
cluded for the reader to compare, and is rarely mentioned in the findings of the
thesis.

3



Chapter 1. Introduction

1.4 Approach
The work in relation to this thesis started in the autumn semester of 2019, with a prepara-
tory project report. The model was designed and finalised in the first weeks of 2020, when
the almost eight-week long experimental study were conducted. A great amount of time
in the beginning was spent to prepare and test the newly-installed wavemaker.

After the experiments, effort was put into post-processing of the results, while also
preparing and conducting numerical simulations. Then, time and effort was put into the
analytical model and the parametric study.

1.5 Structure of the Thesis
Chapter 2 describe relevant theory in relation to this thesis.

Chapter 3 describe the development of the analytical model. Results, applied on the
two- and three-moonpool configuration, are therein included, and not in Chapter 7.

Chapter 4 outline the usage of WAMIT in relation to this thesis. A brief description of
WAMIT is given, and different limitations are mentioned.

Chapter 5 present the model experiments and post-processing methodology, including
an error source discussion.

Chapter 6 describe the parametric study and the methodology behind it.
Chapter 7 present the experimental and parametric study results, divided in distinct

sections and discussed thereafter.
Chapter 8 provide a summarising conclusion and recommendations for further work.
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Chapter 2
Theory

This chapter will give important theoretical background in the context of this thesis. Some
of this theory is also presented in Kildal (2019), the project thesis connected to this thesis.

Section 2.1 presents theory on linear potential flow theory applicable to this thesis.
Section 2.2 outline the procedure of Molin (2001) and the use of domain decomposition
to find the natural piston mode period. Section 2.3 briefly present theory on the constant-
steepness regular waves used in this thesis’ experiments. Section 2.4 present basic sloshing
modes. Section 2.5 present a theoretical study on the influence of the surface tension on
the natural sloshing modes applicable to this thesis’ moonpools.

2.1 Potential Flow Theory
This section will give a brief overview of potential flow theory, because, as drawn from
Section 1.1, it is the preferred numerical solution method working on moonpool problems,
either by itself or coupled with viscid solvers. Figure 2.1 provides a two-dimensional
sketch of the boundary value problem (BVP) used to solve linear (and if desirable - higher
order) potential flow problems, illustrating the problem regarding a barge with a moonpool.
The theory on potential theory follows the deduction given in Faltinsen (1990).
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Chapter 2. Theory

Ω

SB

SD

x

z

SF

n

Figure 2.1: Potential flow theory fluid domain. The fluid domain Ω is bounded by the boundaries
SD , free-surface boundary SF and body boundaries SB . n is the normal vector on the boundaries.

In potential flow theory, the fluid is assumed incompressible and inviscid, i.e. no
change in it’s density and no shear forces acting on the fluid elements, respectively. The
fluid motion is also assumed irrotational, that is, the flow has zero vorticity. The velocity
potential ϕ is then connected to the fluid velocity vector u through u = ∇ϕ, where ∇ is
the nabla operator. Since the fluid is assumed incompressible, the velocity potential has to
satisfy the Laplace equation

∇2ϕ = 0 in Ω (2.1)

To obtain the free-surface elevation or the forces acting on the body, for instance, we
have to know ϕ. This is done by solving Equation (2.1) subject to boundary conditions
applying on the boundaries shown in Figure 2.1.

Kinematic boundary condition

On the boundaries SB , SD and SF we have the kinematic boundary condition, that is, that
no fluid is to enter or leave through the solid boundaries (SB and SD) or a fluid particle on
the free-surface stays on the free-surface (SF ). The kinematic boundary conditions on the
solid boundaries can be generalized to

∂ϕ

∂n
= u · n (2.2)

where n is the normal vector on the boundary, normally positively defined into the
fluid.

If we are to define the free-surface as

z = ζ(x, t) (2.3)

where ζ is the wave elevation, and subsequently define

6



2.1 Potential Flow Theory

F (x, z, t) = z − ζ(x, t) = 0 (2.4)

we can write the kinematic boundary condition on the free-surface as

∂ζ

∂t
+
∂ϕ

∂x

∂ζ

∂x
− ∂ϕ

∂z
= 0 on SF (2.5)

Dynamic boundary condition

On the free-surface, we also have the dynamic boundary condition, stating that the water
pressure is equal to the atmospheric pressure on the free-surface. The pressure in the fluid
is given by Bernoulli’s equation,

p+ ρgz + ρ
∂ϕ

∂t
+
ρ

2

[(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
]

= C (2.6)

where p is the pressure in the fluid, ρ is the density of the fluid and z is the vertical
coordinate of the fluid particle according to Figure 2.1. C is an arbitrary function of
time, but is regarded an constant as we include it’s time dependency in ϕ. Evaluating
Equation (2.6) at z = 0, dividing all terms by ρ and assuming zero fluid motion, we get
p/ρ = C. Thus, by choosing the constant C = p0/ρ, p0 being the atmospheric pressure,
the dynamic boundary condition can be written as

gζ +
∂φ

∂t
+

1

2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)

= 0 on SF (2.7)

Linearization of the BVP

As they are written now, the kinematic and dynamic free-surface boundary conditions,
Equations (2.5) and (2.7), are non-linear, and would require large amounts of computa-
tional power to solve. They are therefore Taylor-expanded from the instantaneous free-
surface position at SF , z = ζ(x, t), to the mean free-surface at z = 0. The meaning of
linearized potential theory is only to keep the linear terms of the expansion and disregard
the higher-order ones. The kinematic and dynamic free-surface condition is then given
from

∂ζ

∂t
=
∂ϕ

∂z
on z = 0 (2.8)

and

gζ +
∂ϕ

∂t
= 0 on z = 0, (2.9)

respectively. They are further combined to give

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 on z = 0, (2.10)

7



Chapter 2. Theory

and, if we are to assume that ϕ is oscillating harmonically in time with circular fre-
quency ω, the combined free-surface condition, Equation (2.10), can be written as

− ω2ϕ+ g
∂ϕ

∂z
= 0 on z = 0 (2.11)

Thus, the goal of the (linearized) BVP being to find the velocity potential ϕ, Equa-
tions (2.1), (2.2) and (2.10) has to be solved. If there is a body present, then the kinetic
boundary condition on the body, Equation (2.2) must also be Taylor-expanded.

2.2 Domain Decomposition
The approach on finding the natural frequency in a two-dimensional moonpool by Molin
(2001) is herein presented, with an emphasis on the domain decomposition. Domain de-
composition is the concept of dividing a given problem domain into smaller sub-domains,
which are independently solved while matched at the boundaries between sub-domains.

Molin decomposes the fluid domain into two sub-domains. A sketch of the fluid do-
main is provided in Figure 2.2.

b
2

b
2

φ−(x, y, t)

φ+(x, y, t)h
y

x

SD
Ω+

SF

S0

Ω−

Figure 2.2: Two-dimensional domain decomposition in Molin (2001). The moonpool sub-domain
is in |x| ≤ b

2
, 0 ≤ y ≤ h, where b is the moonpool width, and the semi-infinite half-plane below

the moonpool opening, i.e. on y ≤ 0. S0 is the common boundary between the sub-domains on
|x| ≤ b

2
, y = 0. The upper and lower sub-domain are assigned the velocity potentials φ+(x, y, t)

and φ−(x, y, t), respectively.

The procedure in the domain decomposition is to match the velocity potentials and
their normal velocity, i.e. a Neumann boundary condition, on S0,

φ+(x, 0, t) =φ−(x, 0, t) (2.12)

φ+y (x, 0, t) =φ−y (x, 0, t) (2.13)

where φ±y (x, 0, t) = ∂
∂yφ

±(x, y, t)
∣∣∣
y=0

, the vertical velocity on the boundary. The

complex velocity potential in the lower sub-domain is then given by
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2.2 Domain Decomposition

f−(z, t) = − 1

π

∫ b/2

−b/2
φ−y (ζ, 0, t) ln(z − ζ)dζ, (2.14)

implying a distributed source with source density equal to the vertical velocity on
S0. Equation (2.14) is singular at infinity, as it does not account for any wave radiation,
which is physically bound to happen. To compensate for this, Molin placed two sinks
a distance ±λB/2, where λ is somewhat larger than 1 and B is the beam of the barge.
Equation (2.14) is then rewritten to

f−(z, t) = − 1

π

∫ b/2

−b/2
φ−y (ζ, 0, t)

ln(z − ζ)− 1

2
ln(z − λB/2)︸ ︷︷ ︸

sink

− 1

2
ln(z + λB/2)︸ ︷︷ ︸

sink

 dζ
(2.15)

By allowing for an error O
(
b2/(λB)2

)
, the velocity potential on S0 becomes

φ+(x, 0, t) = − 1

π

∫ b/2

−b/2
φ+y (ζ, 0, t) ln

|x− ζ|
λB/2

dζ (2.16)

by the use of Equations (2.12) and (2.13). By utilizing this, the attention is then turned
towards the BVP

∇2ϕ= 0 in Ω+; (2.17a)

∂ϕ

∂x
= 0 in SD; (2.17b)

gϕy − ω2ϕ = 0 on SF ; (2.17c)

ϕ+(x, 0) = − 1

π

∫
S0

ϕ+
y (ζ, 0) ln

|x− ζ|
λB/2

dζ on S0; (2.17d)

where it is assumed that the solution is oscillating harmonically in time, i.e. φ+(x, y, t) =
Re{ϕ(x, y) exp(iωt)}. The BVP (2.17) is then solved to give the natural frequency of the
piston mode, given by

ω0 '
√

g

h+ (b/π)
(
3
2 + ln(λB/2b)

) (2.18)

The procedure is also repeated to yield the piston and sloshing mode natural frequen-
cies in three dimensions. Molin et al. (2018) extended this work to a barge of finite spatial
extension and finite depth. An adaptation of the piston mode and first to third sloshing
mode, adapted to this thesis’ geometry, is presented in Table 7.2.
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2.3 Regular Waves of Constant Steepness
Regular waves in the present thesis are given by wave steepness and period T . The wave
steepness is given by the wave height-to-wave length ratio, H/λ. A regular wave is given
by

ζ(x, t) =
H

2
sin(ωt− kx) (2.19)

where k is the wave number, λ = 2π/k the wave length and ω = 2π/T the angular
frequency. H is the wave height, subject to the wave period and steepness through

H =

(
H

λ

)∗
λ =

(
H

λ

)∗
2π

k
, (2.20)

where (H/λ)∗ denotes the value of the wave steepness, e.g. (H/λ)∗ = 1/60 and the
wave number k is given by the dispersion relation

ω2

g
= k tanh(kh), (2.21)

assuming finite depth.

2.4 Sloshing Modes
During sloshing, the oscillating free surface will exist in various forms, or modes. The
different natural modes can be idealised as standing waves in a tank, as presented in Fig-
ure 2.3.

Figure 2.3: Two-dimensional natural sloshing modes in a rectangular tank. Figure inspired by
Faltinsen et al. (2009).
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A standing wave can be described by nodes and antinodes. A node is the horizontal
position of which a fluid particle only has a horizontal motion, and an antinode is the hor-
izontal position of which a fluid particle only has a vertical motion. Further, the sloshing
mode can then be odd or even, depending on the symmetry about the center line of the
tank.

This can also be extende to three dimensions, as seen in Figure 2.4. Here, the natural
sloshing modes i and j are along the x- and y-axis, respectively.

Figure 2.4: Three-dimensional natural sloshing modes.

It is seen that when the product ij = 0, the surface elevations will take the form of
those in Figure 2.3. These modes are called a Stokes freestanding wave.

2.5 Surface Tension
This section presents a theoretical study on the effect of the surface tension on propagating
waves, with applicability to this thesis. As the moonpool dimensions (Table C.1) are
relatively small, it could be useful to investigate whether some sloshing modes will be
affected by the surface tension.

According to Myshkis et al. (1987), the surface tension have a non-neglible effect on
the lower natural frequencies when the Bond number,

Bo =
gl2∆ρ

Ts
(2.22)
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is small. Here, g is the gravitational acceleration, ∆ρ is the density density differ-
ence between the two given states, Ts the surface tension and l the tank breadth for two-
dimensional cases and the larger of the tank breadth and tank width for three-dimensional
cases. According to Faltinsen et al. (2009), a representative value for the air-water in-
terface is Ts = 0.073 Nm−1. Values of Bo for the current moonpool configurations are
provided in Table 2.1.

Table 2.1: Bond number for the different moonpool configurations, cf. Table C.1. For M2 and M3,
Bo is given for a single moonpool.

Configuration l × b Bo

M1 0.50 m × 0.10 m 33595.9
M2,M3 0.10 m × 0.10 m 1343.8

There is no defined lower bound for when the Bond number affects the sloshing mode,
but an approach could be to look at when the surface tension is non-neglible for two-
dimensional propagating waves. It can be shown, see Appendix A.1.1, that the surface
tension can be neglected for wave lengths larger than ∼0.05 m.

As an example, consider an arbitrary two-dimensional sloshing tank and the first slosh-
ing mode, which is a standing wave with a wave length twice the width of the tank. Now,
for the surface tension to have an effect, the width of the tank needs to be ≤ 0.025 m,
which corresponds to a Bond number of 84.

Table 2.1 corresponds to the second sloshing mode, as this is a standing wave where
it’s length is equal to the width of the tank. Thus, according to the reasoned lower bound
of Bo = 84, the surface tension does not affect the second sloshing mode for the current
moonpool configuration.

Developing the idea further, by looking at the implied wave lengths for various slosh-
ing modes in the present moonpool configurations, we can investigate whether the theoret-
ical wave lengths become sufficiently small so that the surface tension can’t be neglected,
as per the reasoned lower bound. Table 2.2 present the theoretical sloshing mode wave
lengths as a function of the sloshing mode and moonpool configuration.

Table 2.2: Theoretical wave lengths λ for natural sloshing modes n for the different moonpool
configurations. For M2 and M3, results are given for a single moonpool.

Mode 0 1 2 3 4

M1 - 1.0 m 0.5 m 0.333 m 0.25 m
M2/M3 - 0.2 m 0.1 m 0.067 m 0.05 m

In Table 2.2, mode 0 corresponds to the piston mode, which by definition doesn’t have
a wave length. The wave length is equal to 0.05 m in M2/M3 for mode 4. The conclusion
is then drawn that the surface effect overall can be neglected, as it is not expected that
mode 4 is the dominant mode, or will be apparent at all, see Ravinthrakumar et al. (2020,
MP2 results).
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Chapter 3
Analytical Model

This chapter describes the developed analytical model to obtain the piston mode natural
periods of the two- and three-moonpool configuration in this thesis. The model is inspired
by Molin (2001) and, in particular, Miles (2002).

Reiersen et al. (2018, in review) determined the two-dimensional piston mode periods
for a two-moonpool configuration analogously with Molin (2001) by adding two sinks
outside the hull. They investigated their locations by comparing with experimental results.
The representation in terms of the lower fluid domain and matching of potentials are also
done in a simpler manner than what is presented in the developed analytical model.

The motivation behind the analytical model is to obtain the natural periods of the pis-
ton modes arising from the heave and pitch motion. For example, for a two-moonpool
configuration, there will be one symmetric mode, connected to the heave motion, and one
anti-symmetric mode, connected to the pitch motion.

3.1 Assumptions and Limitations
The developed model is analogous with the one in Molin (2001), in the meaning that
the water depth is assumed infinite, and the barge is infinitely large, i.e. the moonpools
are not interacting with outer fluid domain. Linear potential flow is assumed. Only the
lowest order representation is considered, i.e. only vertical fluid motion in the moonpool.
Harmonic motion is assumed, which means that relative phases of the moonpools can be
determined from the sign of the vertical velocity w in the moonpool.
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3.2 Problem Definition
The overview of the problem for M2, the two-moonpool configuration, is presented in
Figures 3.1 and 3.2.

SI SIII

x

z
h >> d

φIV = 0

φIV = 0

φI φIII

φIV

d
IIII

b bc− b

Figure 3.1: Transverse view of the M2 problem. The two moonpools I and III , of width b and
spaced apart by c, are described by velocity potentials ϕI and ϕIII and corresponding boundaries
SI and SIII . The semi-infinite lower fluid domain is described by ϕIV . ϕIV = 0 at the boundaries
implies the spatial extent of the barge, of draft d, to be infinite in the x-direction. h >> d denotes
infinite depth.

b

x

y

φIV = 0

φIV = 0

b bc− b

IIII

Figure 3.2: Bird’s eye view of the M2 problem. The two square moonpools I and III of width b is
spaced apart a distance of c. ϕIV = 0 at the boundaries implies the spatial extent of the barge to be
infinite.

Unlike Section 2.2, we now have two moonpools, and the description of ϕIV is not
only described by the source-like behaviour of the two moonpools. The effect of moonpool
III on moonpool I , and vice versa, is intrusively incorporated in the model. This is herein
referred to as cross-moonpool couplings.
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3.3 The Boundary Value Problem
As the piston mode is the only assumed mode, i.e. only vertical fluid motion, the boundary
value problem in moonpool I can be written as

∇2ϕI = 0 in I; (3.1a)

∂ϕI
∂z

= w1 on z = 0; (3.1b)

gϕz − ω2ϕI = 0 on z = d; (3.1c)

where w1 is the vertical fluid velocity in moonpool I , harmonically oscillating with
frequency ω. Exploiting the fact that the Laplace equation, Equation (3.1a), is linear and
homogeneous, it’s solution is the sum of the solutions on both boundaries, i.e.

ϕI = ϕI |z=d + ϕI |z=0 (3.2)

On z = d, the combination of Equations (3.1b) and (3.1c) gives

ϕI |z=d =
g

ω2
w1 (3.3)

On z = 0, we solve wrt. the Laplace equation,

∇2ϕI |z=0 = 0 ⇒ ϕI |z=0 =Az +B

=w1z − w1d
(3.4)

where Equation (3.1b) is applied to findA, andB is found by demanding the boundary
condition (3.1c) on Equation (3.2). The solution of the BVP, Equation (3.1), is thus given
by

ϕI = w1

(
z − d+

g

ω2

)
, 0 ≤ z ≤ d (3.5)

Now, for ϕIV , due to the cross-moonpool couplings, we can write

ϕIV = ϕIV,I + ϕIV,III , (3.6)

that is, the velocity potential in the lower fluid domain is the sum of the velocity po-
tentials originating from moonpools I and III . Remembering that a three-dimensional
source can be written as 1/R, where the radial distance from the point (x, y, z) = (θ, τ, γ)
is R =

√
(x− θ)2 + (y − τ)2 + (z − γ)2, we can write

ϕIV,I(x, y, z = 0) =
w1

2π

∫∫
SI

1√
(x− ζ)2 + (y − η)2

dζdη,

{
0 ≤ ζ ≤ b
0 ≤ η ≤ b

+
w2

2π

∫∫
SIII

1√
(x− θ)2 + (y − τ)2

dθdτ,

{
c ≤ θ ≤ c+ b

0 ≤ τ ≤ b

(3.7)
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which shows the cross-moonpool coupling through the velocities w1 and w2. The
opposite also holds for ϕIV,III .

3.4 General Solution
The procedure shown in Equation (3.7) can be generalized to N moonpools, given by

ϕIV (r) =

N∑
n=1

wn
2π

∫∫
Sn

dS (ρn)

|r − ρn|
, z < 0, (3.8)

where ρn is the spatial coordinates of moonpool n with vertical velocity wn in relation
to the spatial coordinate system r. Now, as the Neumann condition is implied in Equa-
tion (3.8) (through wn), we only need to match ϕIV to the N moonpool openings. It can
be shown (Miles, 2002) that

N∑
n=1

[
δmn

(
d− g

ω2
0,n

)
+Amn

]
bnwn = 0, (m = 1, . . . , N) (3.9)

where

Amn ≡
1

2πb2nb
2
m

∫∫
dS (rn)

∫∫
dS (ρn)

|r − ρn|
= Anm (3.10)

δmn is the Kronecker delta and bn and bm is the width of moonpool n and m, re-
spectively. The function of the Kronecker delta is to keep track if one is subject to a
cross-moonpool coupling (m 6= n) or not (m = n).

The non-cross-moonpool terms, which is the integration of the idealized moonpool
source over it’s domain, is given in Molin (2001) and can be found in Appendix B.1.1,
Equation (B.1.5).

The cross-moonpool coupling terms is, by e.g. Miles (2002), Newman (2003) or Vries
et al. (2014), all working with circular moonpools, estimated to

B =
a2

c
=

b2

2πc
(3.11)

where a is the moonpool radius, b =
√
πa2 as the equivalent square moonpool width

and c the distance between two moonpools, which should be applicable to moderate moon-
pool aspect ratios, as recommended by Prof. Bernard Molin in private communications.
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3.5 Two Moonpool Configuration
Here, we apply the geometry in Figures 3.1 and 3.2. Two moonpools will, assuming
waves propagating along the x-axis in, have two natural piston mode frequencies. The
first is connected to the heave motion of the barge, where the moonpool free-surfaces will
oscillate in-phase with each other. The second is connected to the pitch motion of the
barge, where the moonpool responses are expected to be 180 degrees out-of-phase with
each other, intuitively ”pushing” and ”pulling” on (partly) the same fluid.

Now, Equation (3.9) gives us the two equations

(
d− g

ω2
0,1

+A

)
w1 +B12w2 =0 (3.12)

B21w1 +

(
d− g

ω2
0,2

+A

)
w2 =0 (3.13)

where A11 = A22 ≡ A = 1
2πb3 I0000 and B12 = B21 ≡ B. I0000 is given in

Appendix B.1.1, and B is as given in Equation (3.11). Equations (3.12) and (3.13) can be
written on matrix form,[

θ B
B θ

]
wn = 0, θ ≡

(
d− g

ω2
0,n

+A

)
, (3.14)

where n = 1, 2 andwn = [w1, w2]T . Non-trivial solutions to Equation (3.14) is given
when the determinant of the matrix,

det

[
θ B
B θ

]
=
(
θ2 −B2

)
(3.15)

is equal to zero. Equation (3.15) has the roots λ = {−B,B} and we are able to solve
for the natural frequency ω0,n from

θ =λi

⇒ d− g

ω2
0,n

+A =λi

⇒ ω0,n =

√
g

h+A− λi
, i = n = 1, 2

(3.16)

Thus, the two solutions are obtained from

ω0,1 =

√
g

h+A+B
(3.17)

ω0,2 =

√
g

h+A−B
(3.18)
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The phases connected to the heave and pitch motion is formally shown by introducing
the two solutions θ = ±B back into Equation (3.14).

For θ = λ2 = −B, Equation (3.17), this yields[
B B
B B

] [
w1

w2

]
= 0 ⇒ w1 = w2 (3.19)

and for θ = λ1 = B, Equation (3.18), we get[
−B B
B −B

] [
w1

w2

]
= 0 ⇒ w1 = −w2 (3.20)

This shows, that the moonpool modes are in phase at the mode arising from the heave
motion of the barge, and 180 degrees out-of-phase at the mode arising from the pitch
motion of the barge.

3.6 Three Moonpool Configuration

Extending the idea in the previous section to three moonpools, each spaced apart the dis-
tance c/2 in a linear array, we can assume that the cross-moonpool coupling is in terms of
their relative position to each other, which is

Amn ≡ B|m−n| (m 6= n) (3.21)

Ann = A is as previously defined, and Equation (3.9) is then, as shown by Miles
(2002), re-written to

N∑
n=1

[
δmn

(
d+A− g

ω2
0,n

)
+ (1− δmn)B|m−n|

]
wn = 0, (3.22)

which with N = 3 reduces to the matrix equation θ B1 B2

B1 θ B1
B2 B1 θ

wn = 0, θ ≡

(
d− g

ω2
0,n

+A

)
, (3.23)

where n = 1, 2, 3 and wn = [w1, w2, w3]T . The procedure is similar, but more
tedious than in Section 3.5, and can be found in Appendix B.1.2. Equation (3.23) yields
three solutions, given by

ω0,n =

√
g

h+A− λi
, i = n = 1, 2, 3 (3.24)

where λi is shown in Appendix B.1.2, Equation (B.1.12). Thus, three modes are ap-
parent, which in terms of the moonpool vertical velocities, connected to the roots λ, are
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λ1 : w =

−wk0
wk


λ2 : w =

−wjwk
−wj


λ3 : w =

wlwk
wl


where the subscripts j, k, l represents similar velocity for a given mode, and the sign

represents the relative direction, i.e. phase, in the same mode.
Thus, ω0,1 is connected to the pitch motion with the middle moonpool ”at rest”. In-

terestingly, ω0,2 predicts the outer moonpools of similar velocity and 180 degrees out-of-
phase with the middle one. Both ω0,2 and ω0,3 arises from the heave motion, and the latter
one represents the intuitive mode where all three moonpools are in phase.
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3.7 Results
To verify the analytical model, simulations are conducted in WAMIT. See Chapter 4 for a
overview of the use of WAMIT in this thesis.

The geometry b = 0.10 m, c = 0.40 m and d = 0.05 m are applied, similar to the
experimental setup (Table C.1). The outer moonpools are situated c/2 from the origin
of the global coordinate system. The inclusion of the middle moonpool, centred at the
origin, facilitates the three-moonpool configuration. Similar to the analytical model, the
simulations assumes infinite water depth.

Three numerical wave probes, one in the centre of each moonpool, are placed in order
to measure the free-surface elevation. To minimize the coupling of the moonpool free-
surface response with the outer fluid domain, the barge is extended to a length and width
of 1 m, Figure 3.3. WAMIT was not able to run simulations on a larger barge, as error
messages indicated WAMIT not being able to carry out the analytical Rankine integrals.
Large, local values of the potential due to the small moonpool diameter-to-barge width
ratio is expected to be the reason.

(a) M2 (b) M3

Figure 3.3: Mesh for the analytical model. The figures present a course mesh (N ≈ 700), while the
mesh size used is N = 2858 for M2 and N = 2871 for M3, N being the number of panels over the
half-body. Waves are propagating along the negative x-axis.

As WAMIT separately solves the velocity potential for each rigid body mode, we can
look at the heave and pitch modes separately. For each mode i = 1, 2, · · · , 6, WAMIT
outputs the real, <i, and imaginary part, =i, of the free-surface elevation RAO, ¯ζi,p at the
probe p at each incident wave period. The absolute value and the phase are then calculated
through | ¯ζi,p| =

√
<2
i + =2

i and εi,p = arctan(=i/<i), respectively.

3.7.1 Two Moonpools
The free-surface RAO for the two-moonpool case at wave probes 1 and 3 are presented
in Figure 3.4 for both the forced heave and pitch motion. The results from the analytical
method applied on the two-moonpool configuration and from WAMIT are provided in
Table 3.1.
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(a) Forced heave (b) Forced pitch

Figure 3.4: WAMIT results for the analytical two-moonpool configuration. Numerical wave probe
1 is placed at (x, y, z) = (0.2, 0, 0) and probe 3 at (x, y, z) = (−0.2, 0, 0), cf. Figure 3.3. The
vertical axes shows body-fixed RAOs at the numerical wave probes, while the horizontal axes shows
the period of oscillation.

Table 3.1: Comparison of the analytical two-moonpool model to WAMIT. The phase angles εp for
the probes p = 1, 3 are relative to the phase of an incident wave in the origin of the coordinate
system, cf. Figure 3.3.

Analytical model WAMIT

Period [s] Period [s] ε1 [deg] ε3 [deg] Mode

T = 0.612889 T = 0.610000 118.3328 -61.6661 Pitch
T = 0.638481 T = 0.623125 -102.0471 -102.0292 Heave

As seen in Figure 3.4, the free-surface RAOs shows one unique piston mode period,
both in forced heave and pitch. There is a fair agreement between our analytical model and
WAMIT; the analytically predicted piston mode period due to forced heave, Table 3.1, is
2.47% higher compared to the period predicted by WAMIT, while the analytical predicted
pitch period is 0.47% higher. The value of the RAOs, seemingly equal in each mode,
indicates that the moonpool elevation in each moonpool are the same. This agrees with
Equations (3.19) and (3.20); that the moonpool velocities are of equal magnitude in each
mode.

The relative phase angles between the moonpools, Table 3.1, are virtually 0 and 180
degrees in/out-of-phase for the heave and pitch motion, respectively. Strictly,with a pre-
cision of four decimals, they are 0.0179 and 179.9989 degrees for the heave and pitch,
respectively. The reason could be coupling with the outer fluid domain, as the results seem
sensitive to the barge size, or numerical errors. As seen in Appendix B.1.3, WAMIT sim-
ulations with the width of the barge equal to 0.5 m, i.e. half of what herein is presented,
the natural piston mode periods differ compared to the WAMIT results in Table 3.1, being
1.2% and 0.4% lower in heave and pitch, respectively

If one is to increase c, the spacing of the moonpools, while keeping b constant, the
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Chapter 3. Analytical Model

cross-moonpool couplings are expected to decay, and the moonpools will then act as single
moonpools, each with a piston mode period agreeing with Molin (2001). The result of
applying this to the analytical model can be seen in Figure 3.5, which shows that this is in
fact the case.

Figure 3.5: Comparison of the analytical two-moonpool model to Molin (2001). Keeping b constant
and increasing c, each moonpool are approaching the natural period from Molin (2001) of T =
0.6258 s, both in forced heave and pitch. The current geometry are given by b/c = 0.25, or,
according to the figure, (b/c)−1 = 4.
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3.7.2 Three Moonpools
The free-surface RAO at wave probes 1, 2 and 3 are presented in Figure 3.6 for both the
forced heave and pitch motion. The results from the analytical method applied on the
two-moonpool configuration and from WAMIT are provided in Table 3.2.

(a) Forced heave

(b) Forced pitch

Figure 3.6: WAMIT results for the analytical three-moonpool configuration. Numerical wave probe
1 is placed at (x, y, z) = (0.2, 0, 0), probe 2 at (x, y, z) = (0, 0, 0) and probe 3 at (x, y, z) =
(−0.2, 0, 0), cf. Figure 3.3. The vertical axes shows body-fixed RAOs at the numerical wave probes,
while the horizontal axes shows the period of oscillation.

Table 3.2: Comparison of the analytical two-moonpool model to WAMIT. The phase angles εp for
the probes p = 1, 2, 3 are relative to the phase of an incident wave in the origin of the coordinate
system, cf. Figure 3.3.

Analytical model WAMIT

Period [s] Period [s] ε1 [deg] ε2 [deg] ε3 [deg] Mode

T = 0.594693 T = 0.591875 -137.3617 43.4711 -137.3627 Heave
T = 0.612889 T = 0.609375 54.5122 - -125.4908 Pitch
T = 0.667565 T = 0.647500 -98.9259 -98.6331 -98.9191 Heave
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As seen in Figure 3.6, the free-surface RAOs show two unique piston mode periods
for forced heave, and one unique period for forced pitch. The analytically predicted heave
periods, Table 3.2, are 0.49% and 3.10% (lower and higher period, respectively) higher
compared to the period predicted by WAMIT, while the analytically predicted pitch period
is 0.58% higher. Given the approximations in our model, we consider this to serve as a
first verification.

Agreeing with Section 3.6, Table 3.2 shows two unique heave mode natural periods;
one where the two outer moonpools are 180 degrees out-of-phase with the middle moon-
pool and one where all three moonpools are in-phase. The deviation from ”perfectly” 0
-and 180-degrees in/out-of-phase is in order similar as for the two-moonpool simulation,
and again it is believed to originate form the finite spatial extension of the barge, or nu-
merical errors.

The value of the RAOs, seemingly not equal for the three moonpools in forced heave,
agrees with the result in Appendix B.1.2; that the middle moonpool has a larger velocity
than the two outer ones. The physical meaning of this is that, all three moonpools har-
monically oscillating with the same frequency ω0, the middle moonpool will have a larger
free-surface displacement. The pitch mode piston natural period is analogous with the
two-moonpool configuration, with the middle moonpool at rest.

Similar to the two-moonpool configuration, increasing c while keeping b constant, all
piston mode periods are expected to agree with Molin (2001), which, as seen in Figure 3.7,
is the case.

Figure 3.7: Comparison of the analytical three-moonpool model to (Molin, 2001). Keeping b con-
stant and increasing c, each moonpool are approaching the natural period from Molin (2001) of
T = 0.6258 s, both in forced heave and pitch. The current geometry are given by b/c = 0.25, or,
according to the figure, (b/c)−1 = 4.
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Chapter 4
Numerical Simulations

This chapter covers the use of the linear potential flow theory solver WAMIT. One of the
objectives was to carry out numerical replications of the experiments, which, if carried out
successfully, would coincide with the experimental results.

WAMIT, specifially version 6.4, is also used in the analytical and parametric studies,
and this chapter will work as a background for these.

In addition the the three moonpool configurations, cf. Table C.1, a fourth geometry is
included, denoted M0. This is a vessel of similar main properties, but with no moonpools.
M0 acts as a tool for comparing vessel responses with and without moonpol(s), to further
study the effect of moonpools on the vessel response.

First, a brief overview of WAMIT and important particulars of WAMIT in relation to
this thesis is given. Then, an overview of the solution procedure is provided, before some
limitations on the use of WAMIT is briefly discussed. Lastly, input geometry and results
from the mesh sensitivity study is presented.

4.1 Overview of WAMIT
WAMIT is a linear potential flow theory solver (see Section 2.1 for an outline of poten-
tial flow theory), solving the radiation and diffraction problem, along with the rigid body
motions. WAMIT makes use of the Boundary Element Method (BEM). A fundamen-
tal assumption is that the solution is harmonically dependent, which facilitates the use
of Green’s second identity; transforming volume integrals to surface integrals. Thus, one
only need to solve for the given boundary conditions. Further, free-surface Green functions
take care of the free-surface boundary condition, and only the body boundary condition
and domain boundary conditions (vertical domain boundaries and seabed) is to be consid-
ered. Hence, the only discretisation demanded by the user is the discretisation of the body
boundary in terms of panels.
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4.1.1 WAMIT Particulars in this Thesis
WAMIT, developed as a linear potential flow solver, also provides a higher-order method,
where the body panels can be represented using other techniques than just flat panels. The
velocity potential on the body is represented by a continuous B-spline, rather than ap-
proximating the velocity potential constant over each panel. In the numerical simulations
carried out, the lowest-order method is used.

Version 6.4 only facilitates the inclusion of a single vertical wall, while in version 7.2,
two vertical walls can be present, which could be used to further replicate the experiments
in this thesis. All simulations in this thesis are done in open-sea conditions.

WAMIT also have the option to include external damping. This is most commonly
done in roll, for example by using the work of Ikeda et al. (1993), as WAMIT often will
over-predict roll motion (and further influence the sway motion). As the present study is
concerned with a vessel in head-sea, no external damping is provided.

As a consequence of the solution procedure using Green functions, an infinitely num-
ber of non-physical resonant modes can be excited, solely coming from a mathematical
point-of-view. To remove these irregular frequencies, WAMIT provides the possibility to
mesh the interior (dry) surface of the body (Lee et al., 2006). Hence, all simulations are
run with an interior ”free-surface” to remove these frequencies.

4.1.2 Solution Procedure
A brief overview of the solution procedure is provided in the following.

1. The mesh is input, and symmetry planes is exploited, facilitating faster CPU time.

2. Based on the input COG, stiffness coefficients are calculated. The input inertia
matrix is also input along with the geometry, fundamental for the roll, pitch and yaw
responses. External system stiffness, e.g. from mooring lines, are also input, along
with the mass matrix. Any external damping is also input here.

3. WAMIT then solves for the radiation potentials for specified modes, analogous with
forced motion of the geometry.

4. The diffraction potentials are then solved to get the wave excitation loads.

5. WAMIT then used the result from 3) and 4), to compute the rigid body motion
RAOs. Specified field point values (pressure on the body, fluid velocity or free-
surface elevation) are also output.

4.2 Limitations on Linear Potential Flow Solvers
In the use of any numerical method approximating the ”real world”, one need to be aware
of and cautious with the given method’s limitations.

Concerning linear potential flow theory solvers, the assumption of inviscid flow is
the limitation often of biggest concern. Applied to the present case, with a moonpool
vessel, flow will separate and vortices will be shed at sharp corners, for example in the
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moonpool opening or at the bilge keels in roll motion (thus often the need to include
external damping). Potential flow theory are not capable of capturing these phenomena.
As vortices will act as damping on the vessel, physically by transferring energy away from
the system, responses may be over-predicted in proximity of resonance.

Analogously, radiated waves, captured by the radiation velocity potentials, will remove
energy from the system, and thus act as a damping mechanism. As WAMIT captures this,
we can compare experimental results and numerical simulations to get an idea of the effect
of, in our case flow separation, of various responses. This can be done as flow separation
and wave radiation are the two main contributors to the damping of the vessel.

Another worth-to-mention limitation of linear potential flow theory is that the free-
surface is linearized, and higher-order free-surface elevation, for instance secondary reso-
nance in the moonpools, are not captured.

4.3 Mesh and Mesh Convergence Study
Prior to carrying out the simulations, a mesh sensitivity analysis needed to be conducted.
The input meshed geometry, based on a developed code in Ravinthrakumar et al. (2020)
and further developed in the present work, is presented in Figure 4.1.
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(a) M0 (b) M1

(c) M2 (d) M3

Figure 4.1: Example of mesh for M0, M1, M2 and M3. The mesh of M0 and M1 present no interior
free-surface and the symmetry plane at y = 0, which is exploited to run the simulations only on
the half-body. The presented mesh, for clarity quite coarse, have N ∼ 300, N being the number of
panels over the half-body.

The mesh sensitivity study was carried out by investigating the moonpool, heave and
pitch responses for a selection of wave periods, cf. Section 5.2.1. Results showed large
sensitivity in the proximity of resonance, as is expected. Satisfactory convergence is
achieved at N ≥ 250, where N is the number of panels over the half-body. The present
simulations are run with N ∼ 1100 panels over the half-body. Results for the mesh sensi-
tivity study for M1 and M3 are presented in Figure 4.2.
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(a) M1 WP2 (b) M1 heave (c) M1 pitch

(d) M3 WP2 (e) M3 heave (f) M3 pitch

Figure 4.2: Mesh sensitivity analysis of moonpool, heave and pitch responses for M1 and M3 for
selected wave periods. Satisfactory convergence is achieved for N ≥ 250. Numerical wave probe
WP2 is used, analogous with experimental wave probe WP2, cf. Figure C.1.

4.4 Coordinate System
For the free-surface elevation at numerical wave probes, WAMIT outputs this in an Earth-
fixed coordinate system. In order to directly compare this with experimental body-fixed
results, we need to convert the WAMIT result to a body-fixed coordinate system. A prag-
matic way of doing this, given a numerical wave probe situated at (x, y), cf. Figure C.1, is
to create time series of the local heave motion and wave probe free-surface elevation,

s3 =|H3(ω)| sin(ωit+ ε3)− x|H5(ω)| sin(ωit+ ε5) (4.1)
ζWP,EP =|HWP (ω)| sin(ωit+ εWP,EF ) (4.2)

where |Hj(ω)| and εj respectively is the RAO and phase angle (relative to the phase
of an incident wave in (x, y) = (0, 0)), for the response j at wave period Ti = 2π/ωi. The
subscripts WP and EF denote wave probe and Earth-fixed, respectively. The time series
t should be covering at least one wave period Ti. The body-fixed RAO is then found from

|HWP,BF (ω)| = max (s3 − ζWP,EP ) (4.3)

due to the orientation of the coordinate system.
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Chapter 5
Experiments

This chapter describes the model tests and post-processing carried out in relation to this
thesis. The experimental setup is provided and possible error sources are further discussed,
before preparation of the experiments and the post-processing is presented.

The model tests were carried out in January and February 2020 at the experimental
laboratory Lilletanken (Small Towing Tank) at NTNU, with the aim to obtain vessel and
moonpool responses for the different geometries. The vessel geometry is based on the
one in Ravinthrakumar et al. (2020) and Ravinthrakumar (2020), where one of the moon-
pool configurations also is based upon. The remaining two are developed for this thesis.
The different moonpool configurations are obtained by adding or removing boxes in the
moonpool section of the model. A photo of M3 is presented in Figure 5.2. The experimen-
tal water depth was 0.8 m, and constant-steepness waves are generated by a piston-mode
wavemaker, between the periods 0.4 s to 1.0 s.

5.1 Experimental Setup
The model has a length of 1 m, and a scale of 1:138 is imagined, cf. Ravinthrakumar
et al. (2020) and Ravinthrakumar (2020). The three different moonpool configurations are
named M1, M2 and M3, as seen in the principal model layout, Figure 5.1. Main properties
can be found in Table C.1.
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Lpp

D

B

H

M1 M2 M3

0.1 m

0.1 m 0.1 m

0.1 m

0.1 m

0.1 m

0.1 m

0.3 m

0.1 m

0.5 m

Figure 5.1: Principal model layout. The main dimensions are Lpp = 1 m, B = 0.20 m, D = 0.05
m and H = 0.15 m.

Figure 5.2: M3 model. The model is equipped with six body-fixed wave probes, two in each
moonpool, and four marker spheres in order to measure six degree-of-freedom motions using the
Oqus software. The model is moored with four horizontal mooring lines. The distance between the
horizontal markings on the hull is 0.025 m. Weights are placed in the removable boxes between
moonpools to obtain the specified deplacement.
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5.1.1 Instrumentation
A sketch of the experimental setup can be seen in Figure 5.3.
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Figure 5.3: Sketch of the experimental setup. The mooring lines are not shown. All measurements
are relative to COG of the model, cf. Table C.1. Two wave probes were installed in front of the
vessel, denoted WP7 and WP8. The six body-fixed wave probes, WP1-WP6, are placed and num-
bered in increasing order from starboard to port and from fore to aft. The slotted parabolic beach
is positioned a couple of cm below the free surface, suggested by prof. Trygve Kristiansen, as tests
have shown good wave removal capabilities compared to having it flush with the free surface, or
rising above it. The wave dampers are provisionally made up of chicken wire.

Wave probes
Six body-fixed wave probes, WP1-WP6, whose layout is given in Figure C.1, as well as
two movable wave probes, WP7 and WP8, are used. WP7 and WP8 are used to calibrate
the wavemaker (described below) as well as to measure the incident waves in each test.

The wave probes was calibrated each day, to ensure correct readings. The wave probe
will give a linear relation between the surface elevation ζ and output voltage E, subject to
the linear system

E(ζ) = aζ + b (5.1)

where a is the calibration factor and b relates to the still water level. b is disregarded, as
the mean of a given time series is subtracted from the series itself to obtain the oscillation
around the mean free-surface. The probes are then mounted in a jig, and at each relative
submergence to the starting point the output voltage is measured. The data points are then
plotted and linearly interpolated to find the calibration factor, see Figure 5.4.
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Figure 5.4: Example of the procedure in the wave probe calibration. The R2-value indicates linearity
in the measurements.

Before the wave probe calibrations, the probes were cleaned to remove debris and
dirt that potentially could corrupt the readings. Wave probes are sensitive to potential
temperature changes in the water, but this was not measured.

With the mass of the model relatively small, it was important to diminish the effect of
the wave probe wiring. This was achieved by routing the wiring as seen in Figure 5.5.

Figure 5.5: M1 model. Photo of the routing of wave probe wiring. The wiring are given some slack
above the model, and is then routed directly above the model, as the red arrows indicate, and then to
the amplifier (not pictured).
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Mooring Lines

The model was moored with four horizontal mooring lines, each in an angle of 45◦ relative
to the model, routed through a pulley and connected to a spring with stiffness k = 29.19
Nm−1 (essentially the mooring line stiffness). The pulley and spring was mounted to the
piece of wood seen directly below the left arrow in Figure 5.5. The mooring lines was
constructed so they were parallel with VCG, the vertical centre of gravity, see Figure 5.6.

xy 45◦

k

k1

k

k

k1

k
k2

xz

k2

Figure 5.6: Layout of the mooring lines, each with stiffness k = 29.19 Nm−1. k1 and k2 is the
components of the mooring in the x -and y-direction, respectively.

The mooring component not shown in Figure 5.6 is the pretension, Fpre, due to the fact
that the mooring springs are extent, applying a force on the model through the mooring
lines. The pretension are measured by dividing the mean spring extension by the spring
stiffness.

To replicate the experiments in the numerical simulations, the external system stiffness
needs to be accounted for. As the mooring forces are acting through VCG, the only non-
zero entries into the external stiffness matrix is

K11 =k1 (5.2)
K22 =k2 (5.3)
K55 =BFpre (5.4)

where k1 = k2 due to symmetry and Fpre is the component of the pretension in the
x-direction.

To investigate whether the sloshing modes will influence the surge motion by being in
proximity of it’s resonance period, first and foremost for M1, we can look at the natural
period in surge of the moored system, given by

ω0,η1 =

√
k1

M +A11
(5.5)
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where k1 = 2k cos(π/2) = 41.28 Nm−1 is the spring stiffness’ component in x-
direction, M = 5.839 kg the model mass (cf. Table C.1) and A11

∼= 1.1M the approxi-
mated added mass in surge. The natural frequency is then

ω0,η1 =

√
41.28

2.1 · 5.839
= 1.8348 rad/s

T0,η1 =
2π

ω0,η1

= 3.4244 s
(5.6)

which is far from the first longitudinal sloshing mode at 0.5845 s (as predicted by
(Molin et al., 2018)) and well outside the tested wave periods.

The procedure above works as an initial investigation on the system stiffness. Results
from the decay test (Table 7.3) and simulations in WAMIT (Figure C.2) gives a natural pe-
riod in surge of 2.15 s and 2.27 s, respectively, which is lower than the initial approximated
of 3.43 s (Equation (5.6))

Thus, the surge natural period’s interference with the sloshing modes for M1, due to
the mooring lines, is a possible bias error that now can be disregarded.

Parabolic Beach and Wave Dampers
The parabolic beach is made up of a slotted plate, and it removes wave energy by trig-
gering wave breaking. It’s efficiency will decrease with shallow-water-waves, due to the
hyperbolic decay of the waves’ velocity components. Faltinsen (2006, Tab. 3.2) argues
that the shallow-water approximation can be applied for λ/h > 20. In the present exper-
iment, wave periods of 1.0 s yields λ = 1.56 m and further λ/h = 1.95, which indicates
that the parabolic beach should function as expected.

The wave dampers, situated behind the parabolic beach, aims to calm down the now-
irregular free-surface as much as possible.

Oqus
Oqus is used to measure the six degree-of-freedom motions by using four cameras which
monitor the four marker spheres pictured in Figure 5.2. Oqus were set up so that the body
motions were measured relative to the COG of M1.

5.1.2 Error Sources
A short discussion on possible error sources follows next. Due to small time frame, no rep-
etition tests were conducted, and precision errors can’t therefore be accounted for and/or
quantified. Thus, a list of possible bias errors follow.

Tank wall effects between runs

The experiments are performed in a closed tank, resulting in noise propagation on the free-
surface from waves being reflected by the walls for each run. The waiting time between
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each run is chosen such that the free-surface was visually calm, that is, in O([mm]). Tank
wall effects may still be present, as the smallest waves (H/λ = 1/100, T = 0.40 s) have
an amplitude of 1.25 mm, cf. Section 2.3.

It is believed that the parabolic beach and wave dampers’ efficiency increase with the
wave amplitude, as the relative ratio between reflections, visually observed, and waves
become smaller.

Tank wall effects during runs

During runs, waves will be reflected from the model to the tank walls and back to the
model again, interfering with the incident waves. Model responses may be increased, de-
creased or not affected by the reflected waves. During post-processing, time-series are
consequently chosen before it is believed that reflected waves will interfere with the inci-
dent waves and model response.

Incident waves

Measurements with WP7 and WP8 during tests showed that waves did not always obtain
the correct steepness, i.e. the wave amplitude were different than the prescribed one. This
is accounted for in terms that the wave amplitudes measured during the runs are used in the
post-processing. In general, the wave amplitudes were between ±10% to the prescribed,
often with largest deviation for small wave amplitudes.

Mooring lines fastening

As stated, the mooring lines were fastened so that their resulting forces on the acted
through VCG corresponding to M1. M2 and M3 have a VCG of 3 mm and 1 mm lower,
respectively. This is not accounted for in the numerical replications, as it is assumed their
contribution to be neglectable.

Pretension measurements

The pretension was measured based on the extension of the mooring springs. Here is an
underlying bias error; the fact that springs in general have an ”actuation” length before the
springs will obey Hooke’s law. This was not accounted for. Force transducers during the
experiment was chosen to not be included, as these would, due to the small dimensions,
contain noise in the same order as the measured quantities.

Submergence of the mooring lines

The mooring lines, if becoming submerged at some point during the tests, would induce
non-quantifiable added inertia on the system. The mooring lines were observed during the
largest waves and at the heave and pitch resonance periods, and were found to not being
submerged during the tests.
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Leakage behind the wavemaker

Leakage behind the wavemaker was noticed from the start of the experiments. The reason
was that the wavemaker was newly installed, and the gaskets between the wavemaker and
the tank walls did not work optimally. The lab staff believed, based on experience, that
the Teflon railing between the wavemaker and the tank walls/bottom would degrade and
further seal around the wavemaker. The experiments did not go on long enough to reveal
if this was in fact the case.

To counteract the leakage, three pumps were installed, running in a cycle of two-on-
one-off, based on the water level behind the wavemaker, leading to a non-uniform flow of
water back to the tank, especially during wavemaker operation. A water depth between
0.79 m and 0.82 m was experienced.

Signal faults

A ”spike”, a large non-physical value, in the time series for various responses were some-
time encountered, but never became an issue in the post-processing. One should neverthe-
less be aware of this, as it could provide non-physical results in the post-processing.

Wire routing of the wave probe wiring

As shown in Figure 5.5, the routing of the wave probe wiring needed to be carefully done.
A concern was that it would induce a roll motion of the model. The roll motion was,
by observing the Oqus output during the runs, small relative to for example pitch. Even
though, the small roll amplitude could also arise from the model not being perfectly run in
head sea.

Wave probe fastening

Figure 5.7 present a close-up photo of the terminal clamp used too fasten the wave probes
to the body-fixed bracket. If fastened to tightly, the clamp may deform and alter the relative
position of the two wave probe conductive cylinders and corrupt the results. As the wave
probes were removed and calibrated each day, it was ensured that the screws were not
overly tightened.
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Figure 5.7: Close-up of the wave probe fastening by the use of an terminal clamp. The upper clamp
connects the wiring to the conductive wave probe cylinders, while the lower connects the wave probe
to the model.

5.2 Preparation and Analysis

5.2.1 Experiment Design
Before carrying out experiments, they have to be designed in a way that we are able to
capture the wanted phenomena. In this case, we are interested in the piston and sloshing
modes in the moonpools. For example, cf. Molin et al. (2018), the piston mode for a
moonpool the same size as the moonpools in M2 and M3, the natural period is at T = 0.59
s, and the first sloshing mode for M1 is at T = 0.58 s. Thus, the periods T = 0.40
s to T = 1.0 s were chosen to run, which is in concordance with the periods used by
Ravinthrakumar et al. (2020).

One test are made up of several runs, each run being regular waves of a given steepness
and periods. To refine wanted sections, and to easier being able to throw away corrupted
results, each test are split into three sub-tests, see Table 5.1.

Table 5.1: Overview of the tested periods. In total, each test consist of 45 runs with different period
and same wave steepness, where there is an overlap at T = 0.60 s and T = 0.70 s. ∆T is the
increment in wave period between each run.

Tmin [s] Tmax [s] ∆T [s]

Sub-test 1 0.4 0.6 0.010
Sub-test 2 0.6 0.7 0.010
Sub-test 3 0.7 1.0 0.025

39



Chapter 5. Experiments

Three wave steepnesses are tested, see Section 2.3, chosen to beH/λ = 1/100, 1/60 and 1/30.
This results in 27 distinct runs, as there are 3 different moonpool configurations, and each
test is split into three.

Through pre-testing, it was found that a waiting time between runs for sub-tests 1 and
3 of 180 s was sufficient, while it was extended to 300 s for sub-test 2. In each run, 150
waves are created for sub-tests 1 and 2, while 100 are created for sub-test 3. In order to
have reference measurements for the surge, sway and heave response, each test was run
for 10 s before the wavemaker started to oscillate.

5.2.2 Wave Maker Calibration
As the wavemaker was newly installed, it needed to be calibrated. The wavemaker oscil-
lates in a piston-motion with a prescribed amplitude and period (equal to the prescribed
wave period). The wavemaker stroke-to-wave amplitude ratio is found from a mechanical
transfer function subject to the relative water depth kh, k the wave number (and inher-
ently the prescribed wave period) and h the water depth. Please refer to Hughes (1993) for
further information.

Using the mechanical transfer function, readings of the wavemaker oscillation ampli-
tude showed it’s amplitude to be lower than the prescribed. This is partly due to 3D- and
inertia effects: that the wave maker is accelerating water, both in the tank and the leaked
water behind it.

Thus, a second mechanical transfer function was made, to ensure correct wavemaker
amplitude. This was done by iteration: prescribe a set of wave amplitudes and periods,
measure the wavemaker amplitude and compare it with the prescribed (theoretical) ampli-
tude, until the results converged between successive iterations.

With the wavemaker now having correct amplitude, we turn towards the waves it gen-
erate. Wave measurements at the mean model position (15.11 m from the wavemaker,
cf. Figure 5.3) showed discrepancies in the experienced wave amplitudes compared to the
theoretical. This is believed to be mostly tank-wall effects. A third mechanical transfer
function was then constructed, to further alter the wavemaker amplitude, so that the wave
amplitudes in the mean model position were according to the prescribed.

The procedure above was carried out for all steepnesses, and the transfer functions for
H/λ = 1/60 is presented in Figure 5.8
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Figure 5.8: Mechanical transfer functions as a function of the wavemaker frequency for H/λ =
1/60. The legend denotes the transfer functions for the wavemaker and wave amplitude, which
further increase the wavemaker amplitude.

5.2.3 Filtering
During the experiments, signals were sampled at 200 Hz and passed through a 20 Hz
Butterworth-filter, which is designed to give as flat frequency response in the passband as
possible, thus minimizing it’s effect on the signals in the passband.

5.2.4 Decay Test
During the experiments, decay tests for all six DOFs were performed. The motivation to
perform the decay tests was to find the natural period in the given DOF and configuration.
The damping coefficients can also be found, following the procedure of e.g. Faltinsen
(1990), and used as input in WAMIT, but this is not done.

A single DOF were isolated, e.g. in heave the model was forced to a larger draft and
then released. This was repeated for three or four times for each configuration and DOF.
The natural period are found by taking the time between successive peaks (or troughs) in
the time signal after the model is released. Time series for the decay tests are provided in
Appendix C.1.4, and the results for all six DOFs are presented in Table 7.3.

5.3 Post-processing
Most of the post-processing was spent to obtain response amplitudes, with the following
methodology:

1. Reset the surge, sway and heave position using the measured 10 s window run at the
start each test by subtracting the mean.

2. Measure the waves using WP7 and WP8 and use the mean of these as the incident
wave amplitude, in case of any discrepancies, in later processing. Waves are mea-
sured from when steady-state waves are present at WP7 and WP8 until reflected
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waves from the model are expected to interfere with the wave probes. Measured
waves during the M3 tests are presented in Figure 5.10 and in Figures C.14 and C.15
for M1 and M2, respectively.

3. For each run, obtain the whole signal, i.e. the response from the 100 or 150 waves, as
well as half the waiting time between runs on either side. The signal, ranging from
either 90 or 150 s before the waves reach the model and until 90 or 150 seconds
after the last wave reached the model, is then band-passed with cut-off frequencies
±20% of it’s first harmonic, being the incident wave frequency. The ”padding” on
either side of the response signal ensure that the band-pass functions optimally.

4. Each run is then plotted, as well as a vertical line indicating where reflections may
occur. An interval to calculate the response amplitude is then manually chosen,
see Figure 5.9. Figures C.12 and C.13 are examples of time series which haven’t
reached steady-state conditions, and the interval had to be qualitatively chosen.

- As WAMIT obtain the rigid body motions at the origin of it’s global coordinate
system, being at the mean free-surface, and experimental results are obtained at
the COG of M1, corrections are made following the procedure in Section 5.3.1.

5. Using the chosen interval, each peak and through is found, and the response am-
plitude is found from averaging half the distance between successive peaks and
troughs.

- It was considered to use a Fast Fourier transform (FFT) on this interval, but
this was not done, as the uniformity in the signal, e.g. comparing Figure 5.9
and Figures C.12 and C.13, largely will influence the output of the FFT.

6. Having both the response amplitude and the incident wave amplitude, the RAO is
then found, see Section 5.3.2.
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Figure 5.9: Time series of the pitch response of M3 for T = 0.725 s. The line indicating expected
reflections are calculated using the incident wave group speed, and taken from when the first fully
built-up wave (the wavemaker’s stroke length are linearly ramped for five wave periods) hit the
model and until the reflected wave (of the same group speed) hit the tank wall and returned back to
the model. Assuming the origin of this wave to be at the model COG, this wave has travelled 2.5 m
(the tank width), cf. Figure 5.3.

Figure 5.10: Measured and theoretical wave amplitudes at each wave period during the M3 tests. A
interval of ±10% to the specified wave amplitude is shown. In general, most waves are inside this
interval.

5.3.1 Coordinate System

The experimental wave probe signals are measured relative to a body-fixed coordinate sys-
tem, meaning the free-surface elevation an observer standing at the moonpool will observe.
These signals inherently contain the local heave motion of the model, s3,local, given by
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s3,local = η3 + yη4 + xη5 (5.7)

where x and y is the position of the wave probe and η3, η4 and η5 is the heave, roll
and pitch motion of the model, cf. the coordinate system in Figure 5.3 and probe layout in
Figure C.1. The earth-fixed wave probe signal ζwp,EF can then be found from

ζwp,EF = ζwp,BF − s3,local (5.8)

where the subscripts EF and BF denote earth-fixed and body-fixed surface elevation
at the wave probe, respectively.

Corrections to match experimental and numerical results (according to WAMIT’s co-
ordinate system) is, exemplified in surge, to find the local contribution in surge due to
pitch,

η1,local = zη5 (5.9)

where z is equal to VCG of M1 and subtract this from the surge time series.

5.3.2 RAO Calculation
When the incident wave and response amplitude is obtained, the Response Amplitude Op-
erator (RAO) can be calculated. The RAO describes a linear relation between the response
amplitude and the incident wave amplitude, and is commonly denoted H(ω), where ω
is the angular frequency of the incident wave. In general, the RAO for a given response
amplitude ηj,a and incident wave amplitude ζa is given by

Hj(ω) =
ηj,a
ζa

(5.10)

The pitch amplitude, experimentally given in degrees, are converted to radians and
non-dimensionalised with the wave number k,

H5(ω) =
η5,a
kζa

(5.11)

The remaining responses follow Equation (5.10), i.e.

Hwp,EF (ω) =
ζwp,EF,a

ζa
(5.12a)

Hwp,BF (ω) =
ζwp,BF,a

ζa
(5.12b)

H1(ω) =
η1,a
ζa

(5.12c)

H3(ω) =
η3,a
ζa

(5.12d)

for the earth-fixed moonpool free-surface elevation, body-fixed moonpool free-surface
elevation, surge response and heave response. As the wave probes are transversely coupled
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two-by-two (WP1-WP2, WP3-WP4 and WP5-WP6), it is expected that the free-surface
elevation will be approximately the same, given that their spacing is 0.033 m (Figure C.1),
and it is assumed that no transverse sloshing is present. This is presented in Figure 5.11.

Figure 5.11: RAOs for WP1 and WP2 for M1 in incident waves of steepness H/λ = 1/30. A
discrepancy can be seen around ω = 11 rad/s (given in model scale), as well as for large ω, assumed
to arise from problems similar to Figures C.12 and C.13.
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Chapter 6
Parametric Study

This chapter describes the methodology of the parametric study that is carried out. The
motivation for the study is to study the effect of the moonpool width-to-vessel beam ratio
in operational conditions, in terms of the response. Six moonpool width-to-vessel beam
ratios are tested.

6.1 Assumptions and Limitations
The parametric study is carried out assuming freely-floating conditions and finite water
depth, similar to the experimental water depth. In an attempt to compare the experimental
results with the ones obtained in this study, a quasi-experimental RAO is constructed,
consisting of the experimental RAO and extended with the RAO from the parametric study
at low frequencies. The reason is to be able to include the selected range of sea states. A
change is thus made from moored to freely-floating conditions, and it is thus assumed that
the vessel will follow the surface elevation at small wave frequencies if we neglect the
effect from the mooring.

We are extending the study to full-scale, assuming a scale of 1:138. The dimensions
of the vessel is thus a length of 138 meters, beam of 27.6 meters, and the water depth is
110.4 meters, cf. Table C.1.
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6.2 Geometry
The setup are as in terms of moonpool width b to vessel beam B ratio,

b

B
= 0.250, 0.375, 0.500, 0.625, 0.750, or 0.875

For M1, the moonpool length is kept constant. For M2 and M3, the moonpools are kept
square. The geometries for M1 and M3 can be seen in Figures 6.1 and 6.2, respectively.
The mesh size are kept similar to the mesh size found from the mesh convergence study in
Section 4.3.

Figure 6.1: M1 parametric setups

Figure 6.2: M3 parametric setups

6.3 Sea States
The applied sea states are chosen based on representative data of the joint significant wave
height, HS , and spectral peak period, Tp, in the northern North Sea from Faltinsen (1990),
reproduced in Table D.1. The methodology for choosing the sea states was to choose the
most probable HS based on the selected peak periods. The selected sea states are meant to
cover a wide range of operational conditions one can encounter in the northern North Sea.
The sea states can be seen in Table 6.1.

Table 6.1: Sea states with most probable significant wave height Hs at the given spectral peak
periods, Tp.

Sea state no. 1 2 3 4

Hs 2 m 2 m 3 m 3 m
Tp 6 s 8 s 10 s 12 s

The sea states in Table 6.1, obtained from the northern North Sea, are thus subject to
to JONSWAP (Joint North Sea Wave Project) wave spectrum (DNV GL, 2018), given by
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Sζ(ω) = AγSPM (ω)γ
exp

(
−0.5

(
ω−ωp
σωp

)2
)

(6.1)

where

SPM (ω) =
5

16
·H2

Sω
4
p · ω−5 exp

(
−5

4

(
ω

ωp

)−4)

σ =

{
0.07, if ω ≤ ωp
0.09, if ω > ωp

Aγ =1− 0.287 ln γ,

where SPM denotes the well-known Pierson–Moskowitz wave spectrum. ωp = 2π/Tp
is the peak frequency, γ is the peak shape parameter and Aγ is a normalizing factor. An
average value for data obtained on JONSWAP-described waves can be taken as γ = 3.3
(DNV GL, 2018). Note that with γ = 1, the JONSWAP spectrum is equivalent with the
Pierson–Moskowitz spectrum. The spectra is presented in Figure 6.3.

Figure 6.3: JONSWAP spectra for the selected sea states. The peak shape parameter γ = 3.3. Axes
values are for the full-scale representation.

6.4 Response Calculation
The relation between an arbitrary wave spectrum Sζ(ω) and the resulting wave amplitude
ζai at the frequency ωi is given by

Sζ(ωi)∆ω =
1

2
ζ2ai (6.2)

where ∆ω is the difference between successive frequencies ωi.
Assuming a linear system, an arbitrary response amplitude ηai(ωi) can be found from

ηai(ωi) = Hη(ωi)ζai(ωi) (6.3)
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where Hη(ωi) is the linear transfer function between the wave amplitudes ζa and re-
sponse ηa. Now, as all terms in Equation (6.3) are real and positive, they can be squared,
and if multiplied by 1

2 , we get

1

2
η2ai (ωi) = H2

η (ωi) ·
1

2
ζ2ai (ωi) = H2

η (ωi) · Sζ (ωi) ∆ω (6.4)

Using the same analogy as for the wave spectrum, the response spectrum can be de-
fined as Sη(ωi)∆ω = 1

2η
2
ai, and thus the relation between the wave spectrum and response

spectrum is obtained as

Sη(ω) = H2
η (ω)Sζ(ω) (6.5)

where the transfer function for the response η is the RAO for the same η. Thus, we are
able to calculate the response spectrum for in a given sea state for a given response.

The standard deviation of the response, ση , is given from

σ2
η =

∞∫
0

Sη(ω)dω (6.6)

An example of the relation in Equation (6.5) can be seen in Figure 6.4 for the pitch
response of M1. Differing from the presented pitch RAOs in this thesis, the units are herein
given as degrees per incident wave amplitude, in order to obtain the standard deviation in
degrees. For the body and moonpool responses, the units are still response amplitude per
incident wave amplitude.

Figure 6.4: Example of response spectrum calculation for M1 and the pitch motion. The JONSWAP
wave spectrum (upper) is multiplied with the square of the RAO (solid line in the middle) to obtain
the response spectrum (lower). Note that the large pitch motions at small frequencies, due to the
vessel ”following” the wave, are not present in the response spectrum, as the wave spectrum have
practically zero energy at these frequencies. The prominent responses are around ω ∼= 0.94 rad/s,
where the pitch resonance frequency and the wave spectrum partly coincides.
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For wave spectra, a well-known and used approximation (Faltinsen, 1990) is

H1/3 = 4
√
σ2
ζ (6.7)

where H1/3 ≡ HS is the mean of the one third highest waves. In the literature, H1/3

often refers to the mathematical relation while HS refers to measurements, though they
often are used interchangeably. σ2

ζ is commonly denoted m0; the zeroth moment of the
wave spectra.

Similarly as outlined in Equation (6.7), the variance σ2
η of a given response η, following

the procedure in Figure 6.4, may be used to obtain the significant response,

ηS = 4
√
σ2
η = 4ση, (6.8)

thus relating the standard deviation of the response to a quantifiable order.

6.5 Scaling of the Experimental RAOs
As the experimental RAOs are based on regular, constant-steepness waves, they are not
directly comparable with the waves of an irregular, in our case JONSWAP, wave spectrum.
In an attempt to match these, we can calculate the mean wave steepness in a sea state, given
the spectral peak period and the mean HS , denoted H̄S , both given in and calculated from
the scatter diagram in Table D.1, respectively.

The spectral peak period is used to find the wave length λp of its corresponding wave
through

λp =
g

2π
T 2
p tanh

2π

λp
h, (6.9)

where g is the gravitational acceleration and h is the finite water depth. The significant
wave steepness is then simply found from H̄S/λp. The significant wave steepnesses are
tabulated in Table D.2. In-between our peak periods of interest, from 6 to 12 seconds,
the significant wave steepness is approximately a linear function of the peak period, see
Figure D.1.

Thus, in order to match the experimental RAO to the given wave spectrum, we choose
the experimental peak period, Tp,exp, as the point of interpolation. The ”new” value of the
RAO is then found based on the significant wave steepness for the spectrum, see Figure 6.5.

It is chosen to use a linear interpolation, even though the decay in RAO as a function
of increasing steepness is expected to be a follow the trend of 1/x, as the damping is
quadratic as a function of the wave amplitude. Thus, the RAO is expected to have this
behaviour, but the sparse amount of data points (3) and the fact that we are interpolating
(and not extrapolating) made linear interpolation the best option. The trend is seen in
Figure 6.5, but was not always the case for other RAOs.
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Figure 6.5: Interpolated RAO for the pitch motion of M1, assuming linear relation between the
RAO and wave steepness at the peak period, cf. Figure D.1. Note that the unit of the RAO at the
experimental peak period of Tp,exp = 0.56 s, is in degrees per incident wave amplitude, while
the units are non-dimensionalised for the RAO presented in this thesis, see Figure 7.13(a). The
experimental peak period corresponds to non-dimensional experimental frequency ω∗ = 1.6.

We then take the interpolated value of the RAO (at Tp,exp = 0.56 s) given in Figure 6.5
and scale down the experimental RAO of steepness H/λ = 1/60. Note that the scaled
RAO, which now relates to the given JONSWAP wave spectrum, always is scaled down, as
the smallest significant wave steepness in our sea states is H̄S/λp = 1/56.30 (Table D.2).
The experimental RAO is scaled down based on the ratio of the interpolated value and the
value of the RAO of H/λ = 1/60. This is illustrated in Figure 6.6.

Figure 6.6: Scaled RAO for the pitch motion of M1. Vertical axis units are degrees-per-incident
wave amplitude. Full-scale values for the wave frequency ω is provided. The scaling is based on the
ratio at ω = 0.94 rad/s, cf. Figure 6.5. (Tp,exp = 0.56 s therein).

The experimental RAOs are only obtained for full-scale wave frequencies of 0.53 ≤
ω ≤ 1.34 rad/s. Figure 6.3, the sea state spectra, demands the RAO to be extended down
to ω = 0.27 rad/s. The experimental RAO is then joined with the RAO obtained from
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WAMIT for ω < 0.53 rad/s for all modes except surge, where the WAMIT RAO is taken
from ω < 0.71 rad/s for M1 and ω < 0.67 rad/s for M2 and M3. This is to remove
the effect of the mooring lines, as seen from Figure C.2 to yield resonance periods when
moored. All adapted RAOs can be seen in Appendix D.1.2.
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Chapter 7
Results

This chapter present the findings and results of this thesis. A summarising conclusion and
recommendation for further work are found in Chapter 8.

Non-dimensional RAOs
Throughout this chapter, RAOs are given on the non-dimensional form

ω∗ = ω

√
B

g
[-] (7.1)

where B is the beam of the vessel, cf. Table C.1 and g is the gravitational acceleration.
Throughout this chapter, when reading the RAO figures, Table 7.1 can be used to quickly
convert to incident wave period or full-scale angular frequency. The reason is that snap-
shots of the moonpool response are described using the incident wave period. Throughout
this chapter, the non-dimensional frequency and wave period are simultaneously given if
the latter is given. Table 7.1 may then work as a tool for the reader to study non-mentioned
phenomena in another time-frame than the provided.

Table 7.1: Conversion from selected model wave periods T to non-dimensional frequencies ω∗ and
full-scale angular frequencies ωFS . A scale of 1:138 is imagined.

T [s] 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65
ω∗ [-] 1.79 1.76 1.73 1.69 1.66 1.63 1.60 1.57 1.55 1.52 1.50 1.47 1.45 1.42 1.40 1.38
ωFS [-] 1.07 1.05 1.03 1.01 0.99 0.97 0.96 0.94 0.92 0.91 0.89 0.88 0.86 0.85 0.84 0.82
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7.1 Piston and Sloshing Modes for the Present Geometry
Table 7.2 present the piston and first to third sloshing mode for the present geometry, cf.
Table C.1. The modes are according to the theory of Molin et al. (2018) in finite water
depth of 0.8 m.

Table 7.2: Piston and first to third sloshing mode for the present geometry, cf. Table C.1. The modes
are according to the theory of Molin et al. (2018).

Model scale period, T Non-dimensional frequency, ω∗

M1 M2,M3 M1 M2,M3

Piston mode 0.6344 s 0.5881 s 1.4140 1.5255
1st sloshing mode 0.5845 s 0.3540 s 1.5348 2.5341
2nd sloshing mode 0.5122 s 0.2530 s 1.7515 3.5457
3rd sloshing mode 0.4458 s 0.2066 s 2.0125 4.3416

7.2 Decay Test
Table 7.3 present the results from the decay tests for all six rigid-body motions for M1, M2
and M3. Appendix C.1.4 present all non-filtered time series used to determine the natural
periods.

Table 7.3: Result from decay test, given in model scale period T and non-dimensional frequency
ω∗.

Model scale period, T Non-dimensional frequency, ω∗

Mode Surge Sway Heave Roll Pitch Yaw Surge Sway Heave Roll Pitch Yaw

M1 2.27 s 4.21 s 0.62 s 1.32 s 0.64 s 1.28 s 0.40 0.21 1.45 0.68 1.41 0.70
M2 2.55 s 4.17 s 0.72 s 1.07 s 0.70 s 1.85 s 0.35 0.22 1.25 0.84 1.28 0.48
M3 2.48 s 4.69 s 0.67 s 1.09 s 0.68 s 1.33 s 0.36 0.19 1.35 0.83 1.33 0.68

I general, both decay tests for heave and pitch seems to give a larger natural period than
experiments and numerical simulations. For example, Figure 7.13, the pitch RAOs for M1
and M2, predicts natural periods of ω∗ ∼= 1.60 and ω∗ ∼= 1.57, respectively. The decay
tests yield thus a 11.88% and 18.47% lower frequency ω∗ for M1 and M2, respectively,
compared to numerical and experimental results.

The reason seems to be coupling between the rigid-body motions during the decay
tests. Appendix C.1.5 presents the decay tests of M1 in surge, heave and pitch and re-
maining signals of the five other rigid-body motions. It is found that coupling between
rigid-body motions during the decay tests is a main candidate to explain these discrepan-
cies.
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7.3 Experimental Results

7.3.1 Earth-fixed Moonpool Response
The presentation of body-fixed and Earth-fixed moonpool response RAOs is herein dis-
cussed. The difference is that the body-fixed representation is relative to a coordinate
system following the rigid body motion(s), and is what an observer would experience if
present at the moonpool, while the Earth-fixed representation is relative to a coordinate
system at rest.

Figures 7.1 and 7.2 present body-fixed and Earth-fixed moonpool response RAOs at
the fore and middle wave probes, respectively.

(a) Body-fixed (b) Earth-fixed

Figure 7.1: Body- and Earth-fixed RAO for fore wave probes in M1.

(a) Body-fixed (b) Earth-fixed

Figure 7.2: Body- and Earth-fixed RAO for middle wave probes in M1.

Relative differences between wave steepnesses around ω∗ = 1.55 at the fore wave
probes, Figure 7.1, are assumed to be caused by non uniform time series, discussed in
Figures 5.9, C.12 and C.13. Due to the post-processing methodology, the time intervals
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for the body- and Earth-fixed over which the given response amplitude is found are not
equal, and the results around ω∗ = 1.55 can’t be directly compared.

Both the body-fixed and Earth-fixed representations successfully captures the piston
mode and first to third sloshing modes. It is unclear whether the piston and first sloshing
mode appear as a joint coupled mode; as is what WAMIT predicts, given by the peak at
ω∗ ∼= 1.57 (Figures 7.1 and 7.2). It is further unclear whether the experimental results at
the vertical line denoting the piston mode frequency are cancellations or wall effects.

As expected, the middle wave probes fail to detect the third sloshing mode as the mode
has a node in the middle of the moonpool.

As Figures 7.1 and 7.2 shows, both body-fixed and Earth-fixed representations suc-
cessfully captures the predicted modes. It is therefore concluded to present remaining
moonpool response results using body-fixed representations, as this provides a more intu-
itive and physical representation of the moonpool resonance problem in terms of marine
operations. This is shown by the denotation BF in relevant legend entries.

7.3.2 Post-processing After the Occurence of Reflections
Results from processing response time series are herein presented. Two methods is used:
obtaining the response amplitude before or after one expect reflected waves from the model
to reach the model and thus interfere with the rigid-body motions. Figures 7.3 and 7.4
present comparisons of the two methods for M1 in heave and pitch, respectively. Figure 7.5
present RAOs obtained by processing moonpool responses for M1 after reflected waves
have reached the model.

(a) Deep into time series (b) Before reflections

Figure 7.3: Comparison of the heave RAO for M1; processing of results before (b) or after (a)
reflected waves have reached the model.
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(a) Deep into time series (b) Before reflections

Figure 7.4: Comparison of the pitch RAO for M1; processing of results before (b) or after (a)
reflected waves have reached the model.

The heave response, Figure 7.3, is clearly influenced by reflected waves at small ω∗.
There is also not a distinct peak in the natural frequency around ω∗ ∼= 1.55 when pro-
cessing after reflections, Figure 7.3(a), which indicate that the heave response is damped
by the reflective waves. Comparing the sub-figures at ω∗ ∼= 1.70, the WAMIT-predicted
cancellation is captured only when processing before reflective waves reach the model.

In pitch, Figure 7.4, there is good agreement between the methods at large ω∗, but the
effect of reflective waves become more apparent at small ω∗.

(a) Fore wave probes, deep in time series (b) Middle wave probes, deep in time series

Figure 7.5: Moonpool RAO for M1 for fore and middle wave probes. Aft is given in Figure E.1,
and is similar to the fore wave probes.

The moonpool responses processed after reflections, Figure 7.5, differ from the rigid
body motions. By comparing Figure 7.5 with Figure 7.8 (aft and middle moonpool RAO
for M1 processed before reflections) , we obtain more distinct peaks at the combined peak
and first sloshing mode, second sloshing mode and third sloshing mode, when processing
the results after reflected waves interferes with the model. This is clearly seen at the sec-
ond sloshing mode comparing Figures 7.5(a) and 7.8(a), which represent better agreement
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between WAMIT (and as theoretically predicted by Molin et al. (2018), Table 7.2) and
experimental results when the response is obtained after reflections are present.

A reason for this may be, even though the rigid body motions are affected by reflective
waves, that the moonpool response have reached steady-state behaviour, cf. Figure C.13.
However, we must be careful when using this. Even if this method agrees better with
the numerically obtained natural frequency, the reflective waves’ phase, in the mentioned
example at the second sloshing mode, seems to be (partly) in-phase with the moonpool
response, which is seen from the larger value of the RAO between Figures 7.5 and 7.8 and
the larger response amplitude in Figure C.13.

7.3.3 M1
Results from M1 is herein presented, starting with results from accessible literature on a
geometry equal to M1 that is briefly compared with the present work. Sloshing modes
and surge response are then further discussed. Secondary resonance is mentioned, but not
investigated.

Results from Ravinthrakumar et al. (2020)

Ravinthrakumar et al. (2020) and Ravinthrakumar (2020) (the latter is a PhD thesis, the
former is work included in this), carried out numerical and experimental simulations on a
vessel of equal geometry to M1. The scale to the present geometry is 4:1, i.e. the present
geometry is 1/4

th the spatial dimensions and the mass is 1/64
th the mass of the comparable

vessel, by the use of Froude scaling.
Figures 7.6 and 7.7 present the comparison between the results of Ravinthrakumar et

al. (2020) and the presently obtained results in heave and pitch, respectively.

(a) Comparable vessel (b) Present vessel

Figure 7.6: Comparison of heave RAOs for M1, given by the incident wave period T . Periods from
Ravinthrakumar et al. (2020) are directly scalable by a factor 1/2, due to the fact that the scale is 4:1
and Froude scaling is used. The legend of sub-figure (a) is seen in Figure 7.7.
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(a) Comparable vessel (b) Present vessel

Figure 7.7: Comparison of pitch RAOs for M1, given by the incident wave period T . Periods from
Ravinthrakumar et al. (2020) are directly scalable by a factor 1/2, due to the fact that the scale is 4:1
and Froude scaling is used. Solid lines in sub-figure (a) denotes a therein-developed spectra based
on constant-steepness regular waves, markers are regular waves similar to the presently-used regular
waves.

From comparison of heave RAOs, Figure 7.6, good agreement is found for T < 0.65 s
(in the scale of the present study) in terms of agreement between experimental results and
WAMIT simulations. Discrepancies is found for 0.65 < T < 0.9 s, which is believed to
be caused by a non-steady state signal (as we process data before reflective waves reach
the model), e.g. similar to Figure C.13.

Figure 7.7, the pitch RAOs, shows good agreement for all periods in terms of RAO
value and comparison to numerical results. A difference is the natural pitch period at
T ∼= 0.57 s (for the present study) compared to the one of Ravinthrakumar et al. (2020).
The reason is that they used the same mooring layout as in the present study with springs
of stiffness 90 Nm−1. By the use of Froude scaling, this yields 5.63 Nm−1 for the present
study (dimensional study of scaling factor λ = 4: [ N

m ] = [ kg
s2 ] = λ3

λ = λ2), while the
mooring springs in the present study have a stiffness of 29.19 Nm−1. This affect mostly
the pitch peak period and the simulations of M0 (MP0 for the comparable vessel) when
comparing Figures 7.7(a) and 7.7(b).

Sloshing Modes

The moonpool response for M1 is herein further discussed. The appearance of the com-
bined piston and first sloshing mode, which also is discovered by Ravinthrakumar et al.
(2020), and the second and third sloshing mode is already mentioned in Sections 7.3.1
and 7.3.2. Figure 7.8 present the moonpool response for M1 at the fore and middle wave
probes.

Figures 7.9 to 7.11 present snapshots of the first, second and third sloshing mode of
M1, respectively.
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(a) Fore wave probes (b) Middle wave probes

Figure 7.8: Moonpool RAO for M1 for fore and middle wave probes. Aft is given in Figure E.1,
and is similar to the fore wave probes.

Figure 7.9: Snapshot for the first sloshing mode in M1 at T = 0.57 s (ω∗ = 1.57). The peak is
shown with the blue arrow, the trough with burgundy, and the mean free-surface as the dashed black
line. The vertical distance between the horizontal markings on the hull is 0.025 m.
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Figure 7.10: Snapshot for the second sloshing mode in M1 at T = 0.51 s (ω∗ = 1.76). The peak
is shown with a blue arrow, troughs in burgundy, and the mean free-surface as the dashed black line.
The vertical distance between the horizontal markings on the hull is 0.025 m.

Figure 7.11: Snapshot for the third sloshing mode in M1 at T = 0.44 s (ω∗ = 2.04). Peaks are
shown with blue arrows, troughs in burgundy, and the mean free-surface as the dashed black line.
The vertical distance between the horizontal markings on the hull is 0.025 m.

As Figure 7.8 present, especially the combined piston and first sloshing mode and
third sloshing mode natural frequencies are somewhat shifted when comparing experimen-
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tal/numerical to theoretical (cf. Table 7.2) natural frequencies. This is due to the hydro-
dynamic interaction. In reality, hydrodynamic interaction depicts the pressure an arbitrary
floating object A ”feels” through the fluid from floating object B when B is for instance
accelerated. The term is adapted to the present case when talking about the coupled vessel
and moonpool response. Theoretical models, like the one of Molin et al. (2018), does not
account for this interaction.

Secondary Resonance

For the present study, secondary resonance is not investigated. This could be done by
processing the moonpool response around it’s higher-order harmonics and following the
procedure described in Section 5.3.

Secondary resonance is observed in the M1-equivalent model in Ravinthrakumar et al.
(2020), and is expected to be observed at the present study as well.

7.3.4 Surge Response

The effect of the sloshing modes on the surge response of the vessel is herein presented.
The surge response RAO for M1 and M2 are presented in Figure 7.12. The presence of
sloshing modes in M1 and the presence of only the piston mode in M2 is already described,
and won’t be repeated here.

(a) M1 (b) M2

Figure 7.12: Surge RAO for M1 and M2. M3 is given in Figure E.6, and is similar to M2.

Comparing Figures 7.12(a) and 7.12(b), the surge response of M2 is approximately
twice as low compared to M1 at 1.20 . ω∗ . 1.55. This interval coincides partly with
the joint piston mode and first sloshing mode frequency apparent in M1, see Figure 7.1(a).
Thus, the appearance of sloshing, especially the first mode, seems to influence the surge
response of the vessel. This is seen for M2, Figure 7.12(b), where no sloshing is apparent,
that the surge response is lower than for M1 in the same interval. M2 (and M3) is in fact
close to M0, the vessel with no moonpools.

64



7.3 Experimental Results

The large peak in numerical simulations (at ω∗ ∼= 2.05) in Figure 7.12(a) coincides
with the third sloshing mode (see Figure 7.1(a)), and is largely over-predicted as the wave
radiation damping is small.
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7.3.5 Pitch Response
The pitch response RAOs for M1 and M2 are presented in Figure 7.13.

(a) M1 (b) M2

Figure 7.13: Pitch RAO for M1 and M2. M3 is given in Figure E.5, and is similar to M2.

Figure 7.13(a) show better accordance between experimental and numerical results,
compared to Figure 7.13(b).

According to Section 3.7.1, the two moonpools in M2 (Figure 7.13(b)) are 180 degrees
out-of-phase in the forced pitch motion at the natural piston mode period. Though, hav-
ing freely-floating conditions, hydrodynamic interaction and an assumed moonpool and
outer fluid-domain coupling during the experiments, we can’t draw the conclusion that the
moonpools are exactly 180 degrees out-of-phase, but it seems fair to assume that they are
to some extent out-of-phase. This then explains the large peak in numerical simulations
at the pitch natural frequency, ω∗ ∼= 1.57 in Figure 7.13(b). The difference in experimen-
tal results and numerical simulations around the pitch peak frequency is thus explained
by flow separation at the moonpool inlets, an effect not captured by WAMIT. Though, in
pitch for M2, flow separation originating from the moonpool piston modes is thus seen as
a larger dampening mechanism than wave radiation.

Comparing Figures 7.13(a) and 7.13(b), the flow separation at the moonpool inlets
seem to account for a larger part of the damping in pitch for M2 compared to M1, as
argued above.

WAMIT predict a smaller peak in numerical simulations at the pitch natural frequency
for M3, Figure E.5, compared to M2, Figure 7.13(b). The reason may be a larger extent
of coupling of the three moonpools in M3, hydrodynamic interaction and an assumed
moonpool and outer fluid-domain coupling, as the numerical simulations are run in freely-
floating conditions (replicating the experiments).
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7.3.6 Moonpool Response Cancellation for M3

An observed cancellation in moonpool response for the aft moonpool for M3 is herein
presented. The moonpool response RAOs for all three moonpools in M3 are presented
in Figures 7.14 to 7.16. Figures 7.17 and 7.18 present photos during the experiments
capturing the mentioned cancellation. The photos are taken in waves of steepness H/λ =
1/30.

Figure 7.14: Fore moonpool RAO for M3.

Figure 7.15: Middle moonpoool RAO for M3.
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Figure 7.16: Aft moonpool RAO for M3.

Figures 7.14 to 7.16 indicate a cancellation effect in the aft moonpool at T = 0.59
s (ω∗ = 1.52). At T = 0.60 s (ω∗ = 1.50), there is less indication of cancellation, as
seen by comparing the RAO values(Figure 7.16): approximately 0.75 at T = 0.59 s and
approximately 1.0 at T = 0.60 s.
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(a) t = 7.61 s

(b) t = 7.61 + 1
4
T s
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(c) t = 7.61 + 2
4
T

(d) t = 7.61 + 3
4
T s

Figure 7.17: Video snapshots taken from starboard side during experiments for M3 at T = 0.59
s (ω∗ = 1.52) in waves of steepness H/λ = 1/30. The drawn red triangles and lines show the
instantaneous moonpool free-surface elevation. The wave period T is used in the instantaneous time
at each snapshot to show the harmonic motion of the moonpool free-surface. The vertical distance
between the horizontal markings on the hull is 0.025 m.
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(a) t = 11.54 s

(b) t = 11.54 + 1
4
T s
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(c) t = 11.54 + 2
4
T

(d) t = 11.54 + 3
4
T s

Figure 7.18: Video snapshots taken from starboard side during experiments for M3 at T = 0.60
s (ω∗ = 1.50) in waves of steepness H/λ = 1/30. The drawn red triangles and lines show the
instantaneous moonpool free-surface elevation. The wave period T is used in the instantaneous time
at each snapshot to show the harmonic motion of the moonpool free-surface. The vertical distance
between the horizontal markings on the hull is 0.025 m.

Figures 7.17 and 7.18 prove that there indeed is cancellation, as shown through the
comparison of the aft moonpool response in the two figures. Table 7.4 present the direction
of the free-surface elevation between time instants in Figure 7.18.
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Table 7.4: Instantaneous moonpool free-surface elevation in Figure 7.18. The arrows depict the
free-surface’s movement along the positively upwards z-axis from each time instant to the next. The
relation (d)→(a) follows because the snapshots are divided in four time-instants by 1/4th the wave
period T .

Time instant Aft Middle Fore

(a)→(b) ↓ ↑ ↓
(b)→(c) ↑ ↓ ↓
(c)→(d) ↑ ↓ ↑
(d)→(a) ↓ ↑ ↑

We are in proximity to the piston mode natural frequency, see Table 7.2, which excites
large moonpool responses. The reason for the cancellation is mainly that the moonpools
are out-of-phase, especially the middle and aft, as seen in Table 7.4, where the two free-
surfaces always are moving in the opposite direction, indicating a 180 degrees relative
phase difference.

The fore and middle moonpool seem to be somewhat in-phase, see Table 7.4. They
are in-phase at time instants (b)→(c) and (d)→(a), indicating a 90 degrees relative phase
difference.

There is also indication on cancellation in M2, cf. the fore and aft moonpool response
in Figures E.3 and E.4, but there is not taken video of this.

7.3.7 Coupled Moonpool and Vessel Responses
The coupled moonpool and vessel responses in terms of the heave response of the vessel
is herein presented and discussed.

In Section 7.3.3, hydrodynamic interaction is argued as a reason for the shift in moon-
pool response resonance frequency for M1.

For the configurations M2 and M3, similar effects, though not as strong, is observed.
Molin et al. (2018), not accounting for the hydrodynamic interaction or cross-moonpool
interactions, predicts a natural non-dimensional frequency of ω∗ = 1.5255 (cf. Table 7.2)
for the piston mode in each of the moonpools of M2 and M3. Figures E.3 and E.4, the
moonpool response RAOs for M2, predict a somewhat larger natural frequency. It is as-
sumed that the irregularities around ω∗ ∼= 1.3 and ω∗ ∼= 1.5 in Figure E.4 is due to
cancellations or non-steady state behaviour in the time series.
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Heave Cancellation

Figure 7.19 presents the heave RAOs for M1 and M3.

(a) M1 (b) M3

Figure 7.19: Heave RAO for M1 and M3. M2 is given in Figure E.2, and is similar to M3. The
discrepancies for H/λ = 1/30 for M3 at ω∗ ∼= 1.65 is believed to be caused by non-uniform time
series.

Figure 7.19 indicates a clear difference in the heave RAO between M1 and M3 at
ω∗ = 1.5255; in proximity of the theoretical piston mode frequency for M2 and M3. The
main difference between the M1 moonpool response and the one of M2/M3 is that the M1
moonpool response is a combination of the piston mode and first sloshing mode, while the
response of M2/M3 is originating from the piston mode, see Figure 7.8(a) and Figures 7.14
to 7.16.

The reason is believed partly to be the different dynamics of the moonpool responses.
As argued in Section 7.3.5, flow separation at the moonpool inlets is an important damp-
ening mechanism for M2 (and herein also M3), which will act as an ”effective” tool to
remove energy from the system, thus dampening the heave motion (in this example).

Flow separation is also an important dampening mechanism for M1, but due to the
larger moonpool volume (as may be described by the moonpool volume-to vessel volume),
the moonpool response couples easily with the outer fluid domain, which is then described
by wave radiation.

Though hard to quantify and describe the difference in heave cancellation between M1
and M3 in Figure 7.19, we believe that the extent of flow separation and relative moonpool
phases as described in Section 7.3.6 may be main candidates to explain these phenomena.
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7.4 Parametric Study
Results from the parametric study outlined in Chapter 6 are herein presented.

As argued in Chapter 6, the motivation to perform the parametric study was to study the
effect of the moonpool width-to-vessel beam ratio, b/B, in various operational sea states.
This is quantified by the standard deviation of the given response amplitude, following the
procedure in Section 6.4. As argued therein, the standard deviation is a measure of the
response, and these will be used interchangeably throughout this section.

Results are presented using full-scale values, with the imagined scale 1:138. The spec-
tral peak periods, Tp, of the wave spectra are referred to in seconds, while results the
spectra are plotted over use the angular frequency ω. These are also to some extent used
interchangeably and compared, but always in the presence of explanatory figures.

Results for the moonpool responses are given in a body-fixed coordinate system.
Results for M0 are also included in the results, but are not further discussed due to the

focus being on the b/B-ratio.
Throughout this section, experimental response spectra are for relevant cases referred

to and provided in the Appendix. Presented in the all result figures of the parametric study
(e.g. Figure 7.20), the remaining non-referred experimental response spectra are provided
in Appendix F.1.9. The quasi-experimental RAOs in Appendix D.1.2 are applied in all
experimental response spectra.

7.4.1 Piston and Sloshing Natural Periods
Table 7.5 provides full-scale values of the piston mode and selected sloshing modes for
the present b/B-ratios.

Table 7.5: Piston and selected sloshing mode periods for the imagined full-scale of the present
parametric geometry. The modes are according to the theory of Molin et al. (2018) in finite depth
corresponding to the experimental water depth of 0.8 m (110.4 m in full-scale).

b/B 0.25 0.375 0.50 0.625 0.75 0.875

M1

Piston mode 6.91 s 7.24 s 7.45 s 7.58 s 7.63 s 7.59 s
1st sloshing mode 6.49 s 6.72 s 6.87 s 6.95 s 6.99 s 6.96 s
2nd sloshing mode 5.81 s 5.94 s 6.02 s 6.06 s 6.08 s 6.07 s
3rd sloshing mode 5.14 s 5.20 s 5.24 s 5.26 s 5.26 s 5.26 s

M2/M3 Piston mode 6.27 s 6.63 s 6.91 s 7.11 s 7.24 s 7.29 s
1st sloshing mode 2.97 s 3.63 s 4.16 s 4.60 s 4.98 s 5.29 s

According to Table 7.5, the piston mode and first and second sloshing mode for M1
and the piston mode for M2 and M3 is expected to be sensitive to the sea states of Tp = 6
s and Tp = 8 s, as these modes coincide with or are between the respective peak periods.
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7.4.2 Surge Response
The sensitivity of the surge responses of M1 and M2 to different b/B-ratios and sea states
are herein compared, with an emphasis on the effect of the sloshing in M1.

Figures 7.20 and 7.21 present the results of the parametric study in surge for M1 and
M2, respectively. The results for M3 are similar to M2, and are presented in Figure F.5.

Figure 7.20: The standard deviation of the surge amplitude, ση1a , of M1 for a set of moonpool
width-to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included
for comparison.

Figure 7.21: The standard deviation of the surge amplitude, ση1a , of M2 for a set of moonpool
width-to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included
for comparison.

Comparing Figures 7.20 and 7.21, the surge response in M1 is sensitive to both differ-
ent sea states and b/B-ratios, increasing with increasing b/B-ratio for all sea states except
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the largest (HS , Tp = 3 m, 12 s), while M2 is unaffected by the b/B-ratio.
As argued in Section 7.3.4, the sloshing in M1 affect it’s surge response, and as argued

in Section 7.4.1, the sloshing modes are expected to have the largest impact during the sea
states of peak periods Tp = 6 s and Tp = 8 s. This is what is seen in Figure 7.20.

Figure 7.22 present the M1 surge response spectra for b/B = 0.25 and b/B = 0.875,
and shows that a larger b/B-ratio yields a larger transfer function (RAO), cf. the middle
sub-figures. This explain the increase in the surge standard deviation with increasing b/B-
ratio in Figure 7.20 for the sea state HS , Tp = 2 m, 8 s, and expected to be similar for
HS , Tp = 2 m, 6 s.

(a) b/B = 0.25 (b) b/B = 0.875

Figure 7.22: Response spectra for the surge response of M1 at Hs, Tp = 2 m, 8 s.

7.4.3 Heave Response
The sensitivity of the heave responses of M1 and M2 to different b/B-ratios and sea states
is herein compared, with an emphasis on the sea state peak period and heave resonance
period.

Figures 7.23 and 7.24 present the results of the parametric study in heave for M1 and
M2, respectively. The results for M3 are similar to M2, and are presented in Figure F.6.

Figure 7.25 present the present wave spectra and transfer functions for selected b/B-
ratios.
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Figure 7.23: The standard deviation of the heave amplitude of M1 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison. The experimental response spectra are provided in Figure F.12.

Figure 7.24: The standard deviation of the heave amplitude of M2 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison. The experimental response spectra are provided in Figure F.16.

As Figure 7.23 present, the heave response is especially sensitive to increasing b/B-
ratio at HS , Tp = 2 m, 8 s. This is evident in Figure 7.25(a), where an increase in b/B-
ratio shifts (and increases) the heave resonance frequency towards lower ω, coinciding
more with the peak period of the sea state HS , Tp = 2 m, 8 s. This effect is to some extent
also captured by the sea state HS , Tp = 2 m, 6 s, hence the increase in heave response
standard deviation with increasing b/B-ratio, Figure 7.23.

The increase in heave response standard deviation with increasing b/B-ratio, espe-
cially at the two sea states above, may also be described by the increase in moonpool
volume-to-vessel volume. The increase in the b/B-ratio yields less vessel mass and a
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smaller water-plane area (relevant for the restoring force in heave) and larger moonpool
coupling with the outer fluid domain. The larger extent of coupling with the outer fluid
domain yields more wave radiation and a more ”disturbed” pressure field, which is inte-
grated over the (mean) wetted surface of the vessel to obtain the forces acting on it. These
factors together may thus also explain the trend (increase in heave) we see in Figures 7.23
and 7.24 for the two smallest sea states with increasing b/B-ratio.

Comparing Figures 7.25(a) and 7.25(b) , the shift in the heave resonance frequency is
less for M2 than for M1 when increasing the b/B-ratio. There is still the same trend for
both M1 and M2; with increasing b/B-ratio, the heave resonance period shifts towards
lower ω and larger values of the transfer function (and also larger area under it’s curve -
suggesting a larger response). This is captured for M2 by the sea states HS , Tp = 2 m, 6 s
and 2 m, 8 s, as the heave standard deviation in Figure 7.24 is increasing with increasing
b/B-ratio.

The behaviour of the standard deviation for the two larger sea states is largely based
on the transfer functions at ω ≤ 0.8, as this is where the spectral peak periods are located
(i.e. largest amount of energy), cf. Figure 7.25. This is why Figure 7.23 shows a large
standard deviation for HS , Tp = 3 m, 10 s and b/B = 0.875; Figure 7.25(a) shows that
the wave spectrum and heave resonance frequency partly coincides. In general, all transfer
functions for the different b/B-ratios coincides at low ω, thus making the response almost
b/B-independent, as seen for HS , Tp = 3 m, 12 s in Figures 7.23 and 7.24 .

(a) M1 (b) M2

Figure 7.25: Wave spectra (upper) and transfer functions (the square of the RAOs) (lower) of the
M1 and M2 heave response for b/B-ratios 0.25, 0.50 and 0.875. The results for M3 are similar to
M2. Response spectra on the relevant sea states and b/B-ratios are provided in Appendices F.1.4
and F.1.5 for M1 and M2, respectively.

Figure 7.26 present the experimental and numerical response spectra of M1 for the
heave response at the sea state HS , Tp = 2 m, 8 s. The experimental transfer function, see
Figure 7.26(a) is lower than the numerical, see Figure 7.26(b), which explain the difference
in the heave response standard deviation in Figure 7.23 for this sea state.
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(a) Experimental (b) Numerical

Figure 7.26: Experimental and parametric b/B = 0.50 for the heave response spectra for the same
sea state. Experimental data present a smaller standard deviation compared to numerical simula-
tions, partly due to flow separation experienced during experiments, a phenomenon the numerical
simulations doesn’t include.

7.4.4 Pitch Response
The sensitivity of the pitch response of M3 to different b/B-ratios and sea states is herein
compared, with an emphasis on the sea state peak period and pitch resonance period.

Figure 7.27 present the results of the parametric study in pitch for M3. The results for
M1 and M2 are similar to M3, and are presented in Figures F.1 and F.3, respectively

Figure 7.28 present the present wave spectra and transfer functions for selected b/B-
ratios.

Figure 7.27: The standard deviation of the pitch amplitude, ση5a , of M3 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison. The experimental response spectra are provided in Figure F.20.
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Figure 7.28: Wave spectra (upper) and transfer functions (the square of the RAOs) (lower) of the
M3 pitch response for b/B-ratios 0.25, 0.50 and 0.875. Response spectra on the relevant sea states
and b/B-ratios are provided in Appendix F.1.6.

As Figure 7.27 presents, the results most sensitive to increasing b/B-ratio are for the
sea states HS , Tp = 3 m, 10 s and 3 m, 12 s. This is due to their spectral peaks coin-
ciding with the interval ω ≤ 0.8, where the value of the transfer functions decrease with
increasing b/B-ratio, see Figure 7.28.

The shift in peak frequency towards lower ω in Figure 7.28 (for pitch) is not as promi-
nent as in Figure 7.25 (for heave), which explain the relatively low sensitivity of pitch
response with increasing b/B-ratio of the lowest two sea states in Figure 7.27. Both their
spectral peak periods seems to not capture the pitch resonant behaviour at 0.8 ≤ ω ≤ 1.0.
Hence, the two smallest sea states are relatively unaffected by the increasing b/B-ratio.

7.4.5 Moonpool Response
The sensitivity of the moonpool responses of M1 and M2 to different b/B-ratios and sea
states is herein compared, with an emphasis on the sea state peak period and moonpool
resonance periods.

M1

Figures 7.29 and 7.30 present results of the parametric study of M1 for the fore and middle
moonpool response, respectively.

Figure 7.31 present the present wave spectra and transfer functions for selected b/B-
ratios for the fore and middle moonpool responses.
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Figure 7.29: The standard deviation of the moonpool response amplitude at the fore part of the
moonpool, σζa,mp,fore , of M1 for a set of moonpool width-to-vessel beam ratios and operational
sea states. Experimental data is included for comparison. The results are similar for the aft part of the
moonpool, presented in Figure F.2. The experimental response spectra are provided in Figure F.24.

Figure 7.30: The standard deviation of the moonpool response amplitude at the middle of the moon-
pool, σζa,mp,mid , of M1 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison. The experimental response spectra are provided in
Figure F.28.

In the fore part of the moonpool, Figure 7.29, the results in sea state HS , Tp = 2 m,
6 s are decreasing the most with increasing b/B-ratio. Figure 7.31(a) shows a decrease in
the response peak frequency (and also the area under the curve) for increasing b/B-ratio,
coinciding with the spectral period for this sea state. At low ω, the transfer functions for the
two b/B-ratios are approximately the same, and the response for the three largest sea states
are thus dominated by the decrease in the response peak frequency at 0.9 . ω . 1.25,
explaining why these results also decrease in Figure 7.29.
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In the middle of the moonpool, Figure 7.30, the trend for HS , Tp = 2 m, 6 s is similar
to as argued above; the result is dominated by the decrease in response peak frequency.
Figure 7.31(b) shows a larger increase in the transfer function with increasing b/B-ratio
for ω . 0.9. Since this increase is more prominent than what is seen in Figure 7.31(a), the
results at the three largest sea states all increase with increasing b/B-ratio, as their spectral
peak periods ”capture” the increase in the transfer functions at ω . 0.9.

(a) Fore (b) Middle

Figure 7.31: Wave spectra (upper) and transfer functions (the square of the RAOs) (lower) at the
fore and in the middle of the moonpool for M1 for b/B-ratios 0.25 and 0.875. Response spectra on
the relevant sea states and b/B-ratios are provided in Appendices F.1.7 and F.1.8 for the fore and
middle part of the moonpool, respectively.

M2

Figure 7.32 present results of the parametric study of M2 for the fore moonpool response,
respectively. The result in the aft moonpool is similar, and is presented in Figure F.4.

Figure 7.33 present the response spectra of the fore moonpool for selected b/B-ratios
in the sea state HS , Tp = 2 m, 6 s.
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Figure 7.32: The standard deviation of the moonpool response amplitude at the fore moonpool,
σζa,mp,fore , of M2 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison.

(a) b/B = 0.25 (b) b/B = 0.87

Figure 7.33: Response spectra for the fore moonpool response of M2 at Hs, Tp =2 m, 6 s.

From Figure 7.32, the sea state HS , Tp = 2 m, 6 s is the sea state which affect the
moonpool response the most, argued in Section 7.4.1, as this is the spectral peak period
closest to the piston mode natural frequencies. Both Table 7.5 and Figure 7.33 indicate a
decrease in the piston mode natural frequency with increasing b/B-ratio, thus a shift of the
peak frequency towards lower ω. Also, the value (and area under the curve) of the transfer
functions in Figure 7.33 decrease with increasing b/B-ratio, indicating a lower response
in the fore moonpool, which is confirmed by Figure 7.32.

The increase in the b/B-ratio means that the moonpool opening is closer to the outer
fluid domain, and thus coupling between the moonpool response and the outer fluid domain
may be a reason to why we see the decrease in the fore moonpool response for HS , Tp =
2 m, 6 s. The larger extent of the coupling with the outer fluid domain for increasing b/B-
ratios makes wave radiation more prominent; working as a dampening mechanism on the
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moonpool response, explaining the decrease we see of the moonpool response in this sea
state for increasing b/B-ratio.

In Figure 7.32, there is a large difference between the numerical and experimental
results, mainly caused by the flow separation at the moonpool inlet as argued in Sec-
tion 7.4.4. Figure 7.34 present the experimental and numerical response spectra at b/B =
0.50 for HS , Tp = 2 m, 8 s. Comparing the values of the transfer functions, we can con-
clude that flow separation is indeed an important contributor on the dampening mechanism
for the moonpool piston modes, in this case for the fore moonpool in M2.

(a) Experimental (b) Numerical

Figure 7.34: Experimental and numerical response spectra for the fore moonpool response of M2
at Hs, Tp =2 m, 8 s. Note the large difference in the transfer function (middle sub-figures) between
the experimental and numerical results.

M3

The results of the fore moonpool for M3, presented in Figure F.7, are similar to the one of
M2 covered above, and won’t be covered here. We turn the attention towards the observed
moonpool cancellation described in Section 7.3.6.

Figure 7.35 present results of the parametric study of the aft moonpool of M3. Similar
results are obtained at the middle moonpool, which is presented in Figure F.8.
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Chapter 7. Results

Figure 7.35: The standard deviation of the moonpool response amplitude at the aft moonpool,
σζa,mp,aft , of M3 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison.

In Figure 7.35, similar mechanisms as described for the fore moonpool response of
M2 apply: the sea state HS , Tp = 2 m, 6 s is affecting the piston-mode-only described
moonpool response in the aft moonpool of M3. With the observed cancellation present,
the decrease in moonpool response is larger in Figure 7.35 (aft moonpool of M3) compared
to Figure 7.35 (fore moonpool of M2) for the sea state HS , Tp = 2 m, 6 s, which is the sea
state exciting the piston mode the most (compared with the chosen sea states).
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Chapter 8
Summarising Conclusion and
Further Work
In the present work, the coupled moonpool and vessel responses are investigated by various
means. A vessel of three different moonpool configurations is designed; one large moon-
pool and two and three smaller, in this thesis referred to as M1, M2 and M3. A relevant
theoretical background is provided, and an analytical model to predict the piston-mode
periods on the two- and three-moonpool configurations is developed. Experiments on all
three configurations are carried out in head sea and freely-floating conditions. Numerical
simulations assuming linearized potential flow theory are applied both on the analytical
and the experimental results. A parametric study on the sensitivity of the rigid body mo-
tions and moonpool responses with varying moonpool width-to-vessel beam (b/B) ratio
in operational conditions is conducted. The parametric study is done using numerical sim-
ulations and is coupled with experimental results, where applicable.

8.1 Summarising Conclusion
Overall, good satisfaction between experiments and numerical simulations are found. Dis-
crepancies are mainly due to viscous effects and the tank width. The latter implies that
some responses, for example the heave response of M3, have not reached steady-state con-
ditions before reflective waves is expected to interfere with the model. Good concordance
is also found with published literature on geometry similar to M1. Discrepancies, when
compared with numerical and theoretical models, indicate that hydrodynamic interaction
between the moonpool and vessel (herein coupled) responses are present and important.

Compared to M2 and M3, the presence of sloshing in M1 is a main contributor to a
almost twice as large surge response in proximity of the sloshing mode natural periods, as
no sloshing is observed in M2 and M3.

For M1, the piston mode and first longitudinal sloshing mode seem to appear as a joint
mode. In M2 and M3, only the piston mode is found to be present, and observed rela-
tive phase differences between these moonpool responses seems to be a main candidate
to explain an observed cancellation in heave for M2 and M3 around the piston mode pe-
riod. This cancellation is not as prominent for M1, and the larger extent of wave radiation
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damping, due to a larger moonpool-and-outer fluid domain coupling, is believed to be the
reason.

The herein-developed analytical model provide fair agreement with numerical results,
and work as a first verification, given it’s assumptions. The model predict the moonpools
to be in-phase and 180 degrees out-of-phase for the M2 forced heave and pitch motions,
respectively. For M3, the model yields the same result in pitch, but the forced heave
motion contain two distinct modes: one where all three moonpool are in-phase and one
where the middle moonpool is 180 degrees out-of-phase with the outer two. This agree
with the experimentally observed relative phase difference between moonpool responses
in M3.

In the parametric study, findings show sensitivity of the M1 surge response with vary-
ing b/B-ratios in sea states that is expected to excite sloshing modes. M2 and M3 are
practically unaffected, as no sloshing is present. The pitch response of all three configura-
tions is relatively unaffected in all sea states.

The coupling with the outer fluid domain, more prominent with increasing b/B-ratio,
is found to be important, due to increased wave radiation damping. For M1 in particular,
the heave response is increased with increasing b/B-ratio in sea states whose peak period
is in proximity of the heave resonance period. The increase in coupling between the moon-
pools and the outer fluid domain is also found important for M2 and M3, whose moonpool
response decrease with increased coupling, even in sea states that are expected to excite
the moonpool piston mode.

Comparison of results from the parametric study and experimental results indicate that
viscous damping is important, both for rigid-body motions and moonpool response.

8.2 Further Work
In this thesis, a large amount of work is spent to investigate various aspects of coupled
moonpool and vessel responses. Naturally not being able to investigate findings, found
specifically interesting, in a more in-depth manner due to the extent of the work and time
frame, proposals on further studies follows.

As mentioned, the tank width limited the obtainable results to some extent. Further
work could consist of conducting experiments in an environment representing the open sea
condition better, to further investigate interesting findings from this thesis, for example the
moonpool response cancellation observed in M3.

Experiments should also be conducted on the b/B-ratio to further investigate the effect
of the coupling with the outer fluid domain. The heave response would also be interesting
to conduct an experimental parameter study upon.

The analytical model should be further developed to account for finite spatial dimen-
sion of both the barge and water depth. In this relation, forced heave and pitch experiments
could be conducted to further verify the herein- or then-developed model.

The as-of-now newest version of WAMIT, version 7.3, include the possibility to anal-
yse bodies where two parallel walls are present - a utility that could be useful wrt. the
experiments carried out in the present thesis. WAMIT now also include the possibility to
represent damping on the free-surface, a feature that should be investigated in any further
work where WAMIT is used in relation to moonpools.
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Appendix A: Surface Tension on
Propagating Waves

A.1.1 Surface Tension on Propagating Waves
The surface tension’s effect on the free surface is considered for two-dimensional propa-
gating waves. It can be shown by the use of the free surface boundary condition (Faltinsen
et al., 2009), that

ω2 = kg + k3Ts/ρ (A.1.1)

where ω is the wave frequency, k = 2π
λ the wave number with λ the wave length, Ts

the surface tension and ρ the water density.
Now, taking the phase speed of a dispersive wave, cp = ω

k and inserting the relation
above, one obtain

cp,st =
λ

2π

√
g

2π

λ
+

(
2π

λ

)3
Ts
ρ

(A.1.2)

where the subscript st denotes surface tension affected waves. The phase speed of a
dispersive wave (where surface tension is neglected) is

cp,dw =
ω

k
=

λ

2π

√
2π

λ
g (A.1.3)

where the subscript dw denotes regular waves in deep water.
Now, plotting the relation between the two against the wave length λ, we get

which indicates that surface tension can be neglected for wave lengths λ & 0.05 m.
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Appendix B: Analytical Model
B.1.1 Result from Molin (2001)
The integral

I0000 =

∫∫∫∫
Sn

1√
(x− ζ)2 + (y − η)2

dSn (B.1.4)

needs to be evaluated. For a moonpool of length l and width b, spanning the domain
Sn, the solution is

I0000 = 2b2l sinh−1
(
l

b

)
+ 2bl2 sinh−1

(
b

l

)
+

2

3

(
b3 + l3

)
− 2

3

(
b2 + l2

)3/2
(B.1.5)

For a thorough deduction, please refer to Appendix A.2.1 in (Molin, 2001).

B.1.2 Solution of the Three-Moonpool Configuration
Following the procedure in Section 3.5, we want to find the non-trivial solutions of the
equation system  θ B1 B2

B1 θ B1
B2 B1 θ

wn = 0, θ ≡

(
d− g

ω2
0,n

+A

)
(B.1.6)

The determinant of the matrix is

det

 θ B1 B2

B1 θ B1
B2 B1 θ

 = 2B2
1B2 − 2B2

1θ −B2
2θ + θ3 (B.1.7)

which has the roots λ, given by

λ1 =B2 (B.1.8)

λ2 =
1

2

(
−B2 +

√
8B2

1 +B2
2

)
(B.1.9)

λ3 =
1

2

(
−B2 −

√
8B2

1 +B2
2

)
(B.1.10)

To find w, we solveλi B1 B2

B1 λi B1
B2 B1 λi

w1

w2

w3

 = 0, i = 1, 2, 3, (B.1.11)
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which, for each root λi, is

λ1 : w =

−1
0
1

 (B.1.12)

λ2 : w =


1

4B1

(
B2 −

√
8B2

1 +B2
2

)
1

1
4B1

(
B2 −

√
8B2

1 +B2
2

)
 =

−0.5931
1

−0.5931

 (B.1.13)

λ3 : w =


1

4B1

(
B2 +

√
8B2

1 +B2
2

)
1

1
4B1

(
B2 +

√
8B2

1 +B2
2

)
 =

0.8431
1

0.8431

 (B.1.14)

where the geometry of the problem, b = 0.10 and c = 0.40 is applied. Remember-
ing the geometry of each moonpool spaced apart c/2, the cross terms, Equation (3.11),
becomes

B1 =
b2

2π c2
=
b2

πc

B2 =
b2

2πc
,

implying that the cross-moonpool couplings are stronger for adjacent moonpools, de-
noted by B1, which intuitively is physically correct.
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B.1.3 WAMIT Result for the Narrow Two-Moonpool Configuration

(a) Forced heave (b) Forced pitch

Figure B.1: WAMIT results for the analytical two-moonpool configuration for a width of 0.5 m.
Numerical wave probe 1 is placed at (x, y, z) = (0.2, 0, 0) and probe 3 at (x, y, z) = (−0.2, 0, 0),
cf. Figure 3.3. The vertical axes shows body-fixed RAO’s at the numerical wave probes, while the
horizontal axes shows the period of oscillation.
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Appendix C: Experiments

C.1.1 Model Properties

Table C.1: Main properties of the vessel and different moonpool configurations. The calculations
are done in the CAD software Rhino and in the Excel program elmass, written at MARINTEK. The
center of the coordinate system is placed at the mean waterline a distanceLpp/2 from the stern along
the center line.

Model scale Full scale

Length (Lpp) 1.0 m 138 m
Beam (B) 0.2 m 27.6 m
Draft (D) 0.05 m 6.9 m

M1

Moonpool length (l) 0.5 m 69 m
Moonpool width (b) 0.1 m 13.8 m
Moonpool center ((cx, cy, cz)) (-0.0375 m, 0 m, 0 m) (-5.175 m, 0 m, 0 m)
Vessel mass (m) 5.839 kg 15345.3 t
Center of gravity (COG) (-0.018 m, 0 m, 0.023 m) (-2.5 m, 0 m, 3.2 m)
Radius of gyration ((r44, r55, r66)) (0.088 m, 0.280 m, 0.278 m) (12.1 m, 38.6 m, 38.4 m)

M2

Moonpool length (l) 0.1 m 13.8 m
Moonpool width (b) 0.1 m 13.8 m
Fore moonpool center ((cx, cy, cz)) (0.1625 m, 0 m, 0 m) (22.425 m, 0 m, 0 m)
Aft moonpool center ((cx, cy, cz)) (-0.2375 m, 0 m, 0 m) (-32.775 m, 0 m, 0 m)
Vessel mass (m) 7.339 kg 19287.4 t
Center of gravity (COG) (-0.022 m, 0 m, 0.020 m) (-3.0 m, 0 m, 2.8 m)
Radius of gyration ((r44, r55, r66)) (0.082 m, 0.254 m, 0.250 m) (11.3 m, 35.0 m, 34.5 m)

M3

Moonpool length (l) 0.1 m 13.8 m
Moonpool width (b) 0.1 m 13.8 m
Fore moonpool center ((cx, cy, cz)) (0.1625 m, 0 m, 0 m) (22.425 m, 0 m, 0 m)
Middle moonpool center ((cx, cy, cz)) (-0.0375 m, 0 m, 0 m) (-5.175 m, 0 m, 0 m)
Aft moonpool center ((cx, cy, cz)) (-0.2375 m, 0 m, 0 m) (-32.775 m, 0 m, 0 m)
Vessel mass (m) 6.839 kg 17973.4 t
Center of gravity (COG) (-0.021 m, 0 m, 0.022 m) (-2.9 m, 0 m, 3.0 m)
Radius of gyration ((r44, r55, r66)) (0.084 m, 0.262 m, 0.260 m) (11.6 m, 36.1 m, 35.9 m)
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C.1.2 Wave Probe Layout
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Figure C.1: Layout of the body-fixed wave probes wave probes, in increasing numbering starboard
to port and from fore to aft. The probes are centred in the square moonpools, see Table C.1.

C.1.3 Natural Period in Surge

Figure C.2: The natural period in surge for M1, M2 and M3, as predicted by WAMIT.
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C.1.4 Decay Test Time Series

Figure C.3: Surge time series for the decay test

Figure C.4: Sway time series for the decay test

Figure C.5: Heave time series for the decay test
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Figure C.6: Roll time series for the decay test

Figure C.7: Pitch time series for the decay test

Figure C.8: Yaw time series for the decay test. The irregularities for M2 are not used in the post-
processing.
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C.1.5 Decay Test Coupled Modes for M1

Figure C.9: Surge time series for the M1 decay test (upper). The lower sub-figures show the cou-
pling between modes experienced in the given decay test.

Figure C.10: Heave time series for the M1 decay test (upper). The lower sub-figures show the
coupling between modes experienced in the given decay test.
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Figure C.11: Pitch time series for the M1 decay test (upper). The lower sub-figures show the
coupling between modes experienced in the given decay test.

C.1.6 Non-Uniform Time Series

Figure C.12: Time series of the moonpool response of M1 withH/λ = 1/100 for T = 0.42 s. The
interval is qualitatively chosen, based on values into the time series. Note the small dimensions on
the vertical axis.
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Figure C.13: Time series of the moonpool response of M1 withH/λ = 1/100 for T = 0.51 s. The
interval is qualitatively chosen, as the slope in the response seems to decay before the reflection line.

C.1.7 Measured Wave Amplitude for M1 and M2

Figure C.14: Measured and theoretical wave amplitudes at each wave period during the M1 tests.
A interval of±10% to the specified wave amplitude is shown. In general, most waves are inside this
interval.
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Figure C.15: Measured and theoretical wave amplitudes at each wave period during the M2 tests.
A interval of±10% to the specified wave amplitude is shown. In general, most waves are inside this
interval.
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D.1.1 Wave Steepness

Table D.1: Representative joint peak frequency of significant wave height and spectral peak period in the northern North Sea (Faltinsen, 1990).

PPPPPPPPHS

Tp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 Sum

1 59 403 1061 1569 1634 1362 982 643 395 232 132 74 41 22 12 7 4 2 2 8636
2 9 212 1233 3223 5106 5814 5284 4102 2846 1821 1098 634 355 194 105 56 30 16 17 32155
3 0 8 146 831 2295 3896 4707 4456 3531 2452 1543 901 497 263 135 67 33 16 15 25792
4 0 0 6 85 481 1371 2406 2960 2796 2163 1437 849 458 231 110 50 22 10 7 15442
5 0 0 0 4 57 315 898 1564 1879 1696 1228 748 398 191 84 35 13 5 3 9118
6 0 0 0 0 3 39 207 571 950 1069 885 575 309 142 58 21 7 2 1 4839
7 0 0 0 0 0 2 27 136 347 528 533 387 217 98 37 12 4 1 0 2329
8 0 0 0 0 0 0 2 20 88 197 261 226 138 64 23 7 2 0 0 1028
9 0 0 0 0 0 0 0 2 15 54 101 111 78 39 14 4 1 0 0 419
10 0 0 0 0 0 0 0 0 2 11 30 45 39 22 8 2 1 0 0 160
11 0 0 0 0 0 0 0 0 0 2 7 15 16 11 5 1 0 0 0 57
12 0 0 0 0 0 0 0 0 0 0 1 4 6 5 2 1 0 0 0 19
13 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 0 0 0 0 6
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 68 623 2446 5712 9576 12799 14513 14454 12849 10225 7256 4570 2554 1285 594 263 117 52 45 100001

The mean HS , H̄S , wave length λp (based on the spectral peak period), assuming finite water depth of 110.40 m, and significant steepness
is given in Table D.2.

Table D.2: Mean HS , λp (based on the spectral peak period) and the significant wave steepness.

Tp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22

H̄S [m] 1.13 1.37 1.63 1.90 2.19 2.50 2.84 3.21 3.60 3.98 4.31 4.56 4.66 4.61 4.34 3.95 3.60 3.19 2.89
λp [m] 14.05 24.98 39.03 56.21 76.50 99.92 126.46 156.09 188.68 223.91 261.27 300.07 339.66 379.55 419.37 458.92 498.11 575.23 613.19
H̄S/λ 0.0806 0.0547 0.0418 0.0339 0.0286 0.0250 0.0225 0.0206 0.0191 0.0178 0.0165 0.0152 0.0137 0.0121 0.0103 0.0086 0.0072 0.0055 0.0047

λ/H̄S 12.41 18.29 23.93 29.54 34.96 39.99 44.51 48.59 52.42 56.30 60.62 65.86 72.86 82.38 96.70 116.05 138.43 180.19 212.26
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Figure D.1: Significant steepness versus peak period.
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D.1.2 Adapted Experimental RAOs for the Parametric Study

(a) Surge (b) Heave (c) Pitch

(d) Fore moonpool (e) Middle moonpool (f) Aft moonopool

Figure D.2: Adapted M1 RAOs for the parametric study

(a) Surge (b) Heave (c) Pitch

(d) Fore moonpool (e) Aft moonpool

Figure D.3: Adapted M2 RAOs for the parametric study
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(a) Surge (b) Heave (c) Pitch

(d) Fore moonpool (e) Middle moonpool (f) Aft moonopool

Figure D.4: Adapted M3 RAOs for the parametric study
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Appendix E: Experimental
Results

E.1.1 M1 RAOs

Figure E.1: M1 aft wave probe RAO
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E.1.2 M2 RAOs

Figure E.2: M2 heave RAO

Figure E.3: M2 fore moonpool RAO
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Figure E.4: M2 aft moonpool RAO

E.1.3 M3 RAOs

Figure E.5: M3 pitch RAO
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Figure E.6: M3 surge RAO
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Appendix F: Parametric Study
Results

F.1.1 M1

Figure F.1: The standard deviation of the pitch amplitude, ση5a , of M1 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison.

Figure F.2: The standard deviation of the moonpool response amplitude at the aft of the moonpool,
σζa,mp,aft , of M1 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison.
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F.1.2 M2

Figure F.3: The standard deviation of the pitch amplitude, ση5a , of M2 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison.

Figure F.4: The standard deviation of the moonpool response amplitude at the aft moonpool,
σζa,mp,aft , of M2 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison.
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F.1.3 M3

Figure F.5: The standard deviation of the surge amplitude, ση1a , of M3 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison.

Figure F.6: The standard deviation of the heave amplitude, ση3a , of M3 for a set of moonpool width-
to-vessel beam ratios and operational sea states. Experimental data and data for M0 is included for
comparison.
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Figure F.7: The standard deviation of the moonpool response amplitude at the aft moonpool,
σζa,mp,fore , of M3 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison.

Figure F.8: The standard deviation of the moonpool response amplitude at the middle moonpool,
σζa,mp,mid , of M3 for a set of moonpool width-to-vessel beam ratios and operational sea states.
Experimental data is included for comparison.
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F.1.4 M1 Heave Response Spectra

(a) (b)

(c) (d)

Figure F.9: M1 heave response spectra for b/B = 0.25.
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(a) (b)

(c) (d)

Figure F.10: M1 heave response spectra for b/B = 0.50.
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(a) (b)

(c) (d)

Figure F.11: M1 heave response spectra for b/B = 8750.
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(a) (b)

(c) (d)

Figure F.12: M1 experimental heave response spectra.
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F.1.5 M2 Heave Response Spectra

(a) (b)

(c) (d)

Figure F.13: M2 heave response spectra for b/B = 0.25.

xxxix



(a) (b)

(c) (d)

Figure F.14: M2 heave response spectra for b/B = 0.50.
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(a) (b)

(c) (d)

Figure F.15: M2 heave response spectra for b/B = 8750.
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(a) (b)

(c) (d)

Figure F.16: M2 experimental heave response spectra.
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F.1.6 M3 Pitch Response Spectra

(a) (b)

(c) (d)

Figure F.17: M3 pitch response spectra for b/B = 0.25.
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(a) (b)

(c) (d)

Figure F.18: M3 pitch response spectra for b/B = 0.50.
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(a) (b)

(c) (d)

Figure F.19: M3 pitch response spectra for b/B = 8750.
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(a) (b)

(c) (d)

Figure F.20: M3 experimental pitch response spectra.
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F.1.7 M1 Response Spectra, Fore Part of the Moonpool

(a) (b)

(c) (d)

Figure F.21: M1 fore moonpool response spectra for b/B = 0.25.
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(a) (b)

(c) (d)

Figure F.22: M1 fore moonpool response spectra for b/B = 0.50.
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(a) (b)

(c) (d)

Figure F.23: M1 fore moonpool response spectra for b/B = 8750.
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(a) (b)

(c) (d)

Figure F.24: M1 experimental fore moonpool response spectra.
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F.1.8 M1 Response Spectra, Middle Part of the Moonpool

(a) (b)

(c) (d)

Figure F.25: M1 response spectra in the middle of the moonpool for b/B = 0.25.
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(a) (b)

(c) (d)

Figure F.26: M1 response spectra in the middle of the moonpool for b/B = 0.50.
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(a) (b)

(c) (d)

Figure F.27: M1 response spectra in the middle of the moonpool for b/B = 8750.
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(a) (b)

(c) (d)

Figure F.28: M1 experimental response spectra in the middle of the moonpool.
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F.1.9 Non-referred Experimental Response Spectra
Non-referred experimental response spectra for the four sea states in the parametric study
follows. The quasi-experimental RAOs in Appendix D.1.2 are used.

M1 Surge

(a) (b)

(c) (d)

Figure F.29: M1 experimental surge response spectra.
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M1 Pitch

(a) (b)

(c) (d)

Figure F.30: M1 experimental pitch response spectra.
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M1, Aft Part of the Moonpool

(a) (b)

(c) (d)

Figure F.31: M1 experimental response spectra for the aft part of the moonpool.
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M2 Surge

(a) (b)

(c) (d)

Figure F.32: M2 experimental surge response spectra.
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M2 Pitch

(a) (b)

(c) (d)

Figure F.33: M2 experimental pitch response spectra.
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M2, Fore Moonpool

(a) (b)

(c) (d)

Figure F.34: M2 experimental response spectra for the fore moonpool.
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M2, Aft Moonpool

(a) (b)

(c) (d)

Figure F.35: M2 experimental response spectra for the aft moonpool.
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M3 Surge

(a) (b)

(c) (d)

Figure F.36: M3 experimental surge response spectra.
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M3 Heave

(a) (b)

(c) (d)

Figure F.37: M3 experimental heave response spectra.
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M3, Fore Moonpool

(a) (b)

(c) (d)

Figure F.38: M3 experimental response spectra for the fore moonpool.
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M3, Middle Moonpool

(a) (b)

(c) (d)

Figure F.39: M3 experimental response spectra for the middle moonpool.
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M3, Aft Moonpool

(a) (b)

(c) (d)

Figure F.40: M3 experimental response spectra for the aft moonpool.
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