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Abstract

This master thesis investigates different power and energy management system
(PEMS) algorithms on a zero-emission hybrid ship, primarily using methods from
the field of reinforcement learning, a branch of machine learning.

The International Maritime Organization (IMO) has proposed stringent regulations
in order to reduce emissions from shipping. Complying with IMO regulations as
a step towards the long term goal of zero-emission shipping has spiked interest in
ships powered by fuel cells and batteries in both academia and industry.

Batteries have been a huge success in the automotive industry. However, the in-
sufficient energy density disqualifies it as a standalone energy source for deep-sea
shipping. Therefore, hydrogen powered fuel cells are proposed to complement the
battery. Fuel cells offer both high efficiency and high energy density, and are well
suited for supplying steady power over long periods. On the other hand, batteries
are capable of providing excellent power density and responsiveness, ensuring high
performance and safety in maritime operations. Despite their promising outlook,
fuel cells and batteries still have challenges to overcome. Health-aware control
is required as improper usage can lead to a severe reduction in lifetime. Both
systems are expensive, and the costs related to degradation and replacement are
substantial when compared to the conventional internal combustion engine (ICE).
Moreover, the characteristics of fuel cells and batteries change significantly as they
undergo degradation. This makes it desirable to design an intelligent PEMS that
can update the load sharing policy to ensure optimality despite the changing char-
acteristics.

A health-aware PEMS, that aims to minimize both fuel consumption and compo-
nent degradation costs, is essential for making zero-emission shipping competitive
with ICEs. Traditional methods range from simple, rule-based control strategies,
designed using the knowledge of domain experts, to more advanced optimization
methods. Reinforcement Learning (RL), a branch of machine learning (ML), has
the potential of outperforming traditional methods as it can adapt and learn con-
tinuously from changes in the environment. Optimization based methods rely on
a predicted load, which is inaccurate due to the random stochastic nature of the
ocean. RL is model free, and does not rely on predicting future loads to control
the system.

A comprehensive literature review on costs related to fuel cell and battery degra-
dation is conducted. The results are combined in a cost function, which serves as
the objective function for learning the optimal power split between fuel cell and
battery. Mathematical models for proton exchange membrane fuel cell (PEMFC)
stacks and lithium-ion batteries are explored thoroughly. After careful evaluation of
the trade-off between accuracy and computational requirement, linearized models
for fuel cells and batteries are implemented for online PEMS.

The RL algorithms Q-learning, deep Q-learning and soft actor-critic are imple-
mented. In addition, a rule-based algorithm and dynamic programming are imple-
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mented to serve as a benchmark for the RL algorithms. All models and algorithms
are programmed in Python by the authors. Simulation of the models was con-
ducted on a load profile from a real ship, and the performances of the algorithms
were evaluated and compared. The deep Q-learning algorithm was able to decrease
the cost of fuel cell degradation with 53 %, compared with the best performing
benchmark algorithm. The soft actor-critic algorithm managed to reduce the fuel
cost by 31 % and the battery degradation cost by 0.1 %, when compared to the
rule-based algorithm.

The simulation results indicate that learning algorithms can reduce the total oper-
ating costs of ship power systems. Nonetheless, the learning based PEMS has room
for improvement, as the field is still immature. Challenges such as complexity in
reward function, continuous action and state space, overfitting training data and
reliability issues have to be addressed to make it a viable competitor to the existing
methods. All these issues are subject to further work.
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Sammendrag

Denne masteroppgaven undersøker ulike algoritmer for kraft- og energistyrings-
systemer (PEMS, eng: power and energy management system) p̊a et nullutslipp
hybridskip. Det er hovedsakelig lagt vekt p̊a metoder fra forsterkende læring, en
gren av maskinlæring.

Den internasjonale sjøfartsorganisasjonen (IMO, eng: International Maritime Or-
ganisation) setter stadig strengere regulereringer for å redusere utslippene fra ship-
pingindustrien. Med et m̊al om å tilfredsstille retningslinjene til IMO, samt over-
holde de langsiktige m̊alene om nullutslipp shipping, har miljøvennlige skip med
brenselceller og batterier som fremdriftssystemer, tiltrukket seg stor forskningsin-
teresse fra industrien og akademia de senere årene.

Batterier har vært en stor suksess i bilindustrien. Til tross for dette mangler dagens
batteriteknologi energitettheten som kreves for å benyttes alene som fremdriftssys-
tem til langdistanseskipsfart. Derfor har brenselsceller, med hydrogen som driv-
stoff, f̊att økt oppmerksomhet for bruk sammen med batteri i skip. Brenselsceller
har b̊ade høy virkningsgrad og energitetthet, og kan tilføre gjevn kraft over lengre
perioder. Batterier har derimot høy krafttetthet og kan h̊andtere store umiddelbare
kraftendringer, noe som kreves for å gjennomføre trygge, maritime operasjoner med
høy presisjon. Til tross for deres lovende utsikter er det flere utfordringer knyttet
til bruken av brenselceller og batterier. Kontrollsystemer som inkluderer slitasje i
beregningene er essensielt, da uforsiktig bruk kan resultere i drastisk kortere levetid
b̊ade for brenselsceller og batterier. De er ogs̊a dyre, og kostnadene knyttet til sli-
tasje og utskiftning er betraktelig høyere enn for tradisjonelle forbrenningsmotorer.
I tillegg endres karakteristikken til batterier og brenselsceller n̊ar betydelig slitasje
p̊aføres. Dermed er det nødvendig med et intelligent kraft- og energistyringssys-
tem, som kan oppdatere kraftdelingsplanen til kontrolleren kontinuerlig for å sikre
optimalitet uavhengig av karakterendringer.

Et slitasjebevisst PEMS med m̊al å minimere b̊ade drivstoff- og slitasjekostnader
er vitalt for å gjøre skipsfart med nullutslipp konkurransedyktig med forbrennings-
motorer. Enkle regelbaserte algoritmer og optimeringsmetoder er tpyiske strategier
for PEMS kontroll. Forsterkende læring (RL, eng: Reinforcement learning) er en
undergren av maskinlæring (ML, eng: Machine learning) som potensielt kan ut-
fordre tradisjonelle kontrollmetoder, da slike algoritmer kan tilpasse seg og lære
fra endringer i omgivelsene. De optimeringsbaserte metodene tar utgangspunkt i
en predikert last, som vil være unøyaktig grunnet tilfeldige lastp̊akjenninger som
bølger og vind. RL benytter seg ikke av en modell, og trenger heller ikke å predikere
fremtidige laster for å kontrollere PEMS.

En omfattende litteraturstudie p̊a kostnader relatert til slitasje av batterier og bren-
selceller som følge av bruksmønstre er utført. Resultatene er samlet i en kostnads-
funksjon for å finne den optimale kraftfordelingen mellom batteri og brenselscelle.
Matematiske modeller for begge komponentene er ogs̊a grundig undersøkt. Etter
kritiske evalueringer av fordeler og ulemper knyttet til nøyaktighet og beregnings-
hastighet, ble to lineariserte modeller for brenselsceller og batteri implementert for

III



simuleringer av en online PEMS.

RL algoritmene Q-læring, dyp Q-læring og soft actor-critic algoritme er implemen-
tert for PEMS kontroll. I tillegg har dynamisk programmering og en regelbasert
algoritme blitt implementert for sammenligningsgrunnlag for prestasjonen til RL
algoritmene. Alle modeller og algoritmer har blitt implementert i Python av forfat-
terne. Modellsimuleringer ble gjennomført p̊a lastprofilen fra et ekte skip, og pre-
stasjonen til algoritmene ble evaluert og sammenlignet. Dyp Q-læringsalgoritmen
klarte å minke slitasjekostnader p̊a brenselscellen med 53 % og soft actor-critic
algoritmen reduserte drivstoffkostnader med 31 % og batterislitasjekostnader med
0.1 % sammenlignet med den regelbaserte algoritmen.

Simuleringsresultatene indikerer at læringsalgoritmene kan redusere de operasjo-
nelle kostnadene knyttet til kraftsystemet p̊a skip. Til tross for dette har lærings-
basert PEMS stort forbedringspotensial, da forskningsfeltet er nytt. Det er flere
utfordringer knyttet til b̊ade belønningsfunksjon, kontinuerlige handlings- og til-
standsverdier, overtilpasning av treningsdata og p̊alitelighet som m̊a adresseres før
de kan bli en reell konkurrent til de eksisterende metodene for PEMS kontroll. Disse
utfordringene er anbefalt som videre arbeid.
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Preface

This paper is the result of a master thesis at the Department of Marine Technology
at the Norwegian University of Science and Technology (NTNU) in Trondheim.
The work is a continuation of our project thesis from the fall of 2019, written on
the same subject. It marks the end of our Master of Science (MSc) degrees, both
with a specialization in Marine Cybernetics.

The thesis is motivated by the demand for adopting advanced computational tools
and utilize them for marine applications. The marine industry, although conser-
vative, has lately picked up the pace in terms of digitalization. At the same time,
we have eagerly pursued computer technology as well as cybernetics with the hope
to participate in the ongoing transformation towards an increasingly digitalized
industry. We aim to combine the domains of marine control systems with com-
puter science. The main focus of this of this thesis has been to explore the use of
reinforcement learning to optimize marine control systems.
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1
Introduction

1.1 Background and motivation

During the last couple of decades the attention towards the environmental impact
from the maritime industry has increased. Although shipping is considered a con-
servative sector, most actors have by now set clear goals on how to cut greenhouse
gas emissions and other pollutants. Governments and academia are mobilizing
to prepare both regulations and technology to reduce emissions, further pushing
corporations in the same direction.

Together with the rise of an increasing environmental conscience, autonomy is
gaining traction within the global maritime sector. The International Maritime
Organization (IMO) is trying to keep pace with the accelerated momentum the area
has gained by instituting regulations on ”Maritime Autonomous Surface Ships”
(MASS) [1]. As the field matures, not only legitimate code of conduct and decrees
are of importance. The technical aspect is equally eminent. Before autonomous
vessels can be viewed as a viable alternative to ordinary ships, high standards
in safety, security and emissions need to be in place. Strict requirements on the
reliability and durability of ship systems, together with lower maintenance needs,
are paramount in order to make autonomy economically feasible.

Conventional diesel-electric propulsion systems operate together with generators
to deliver the required power load. Dynamic loads causes power fluctuations that
increase the peak demand the engine has to provide for, which results in the need
of additional generators. The power fluctuations reduce the overall efficiency along
with an increased maintenance need [2]. Electrifying the ship propulsion system is
a way of bypassing these obstacles. Besides, it’s by now clear that fossil fuels cannot
account for the future energy demand in the maritime sector, electric alternatives
must be examined.

The automotive industry has had tremendous commercial success in its introduc-
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tion of electric vehicles. Although the appetite for hybrid electric vehicles (HEV)
has been more subtle, the technical maturity of hybridization greatly exceeds the
maturity of such matters in the maritime sector. In spite of the many similari-
ties, the industries differ on several important aspects. The electrification of the
automotive industry is heavily based on the advancements in battery technology.
Nevertheless, the inadequate energy density compared to liquid fuels like diesel,
the low gravimetric density (high weight), and the enormous power demand of
marine vessels makes batteries not suitable as a main energy source. The sheer
size of on-board vessel propulsion systems for deep-sea shipping vessels renders the
exclusive use of batteries pointless. Another supplemental energy source need to
be considered.

Enter the fuel cell (FC). This promising technology can run on hydrogen and pro-
duce only water and heat as by-products. Fuel cells generally have a higher ef-
ficiency than combustion engines, are reliable and silent as there are few moving
parts, and are not polluting. Their higher energy density compliments the lack of
such in batteries. Fuel cells are a suitable alternative to the conventional generator
set in marine vessels, as they can deliver the slowly varying power to meet the
demand. They do, however, suffer from limitations such as high system price as
and short life span. Despite these challenges, the additional untapped potential
of fuel cells have secured monumental funds for research and development in the
hopes of establishing it as the energy source of choice in the near future.

Undeterred by the current high cost levels, all-electric marine vessels brings forth
several advantages compared to conventional vessels. A FC-battery system is an
example of a hybrid power system, which is explored throughout this thesis. Bat-
teries compensate for transient loads that are too fast for the fuel cell’s dynamic
response. Furthermore, excess power produced in the FC can be re-captured and
used to charge the battery. Proper load management decreases the fuel consump-
tion and can help curb component degradation by ensuring health-aware load de-
mands from the components. A more sophisticated energy management system
can achieve even better results by utilizing each power source at, or close to, their
maximum efficiency. Ultimately, hybridization adds flexibility across the opera-
tional spectrum of a marine vessel as the system can meet demands from more
diverse loads.

Two pilot projects, Yara Birkeland and the NTNU Autoferry, highlights many of
the aforementioned topics. Yara Birkeland, launched in 2020 and fully autonomous
by 2022, will be the world’s first zero-emission, autonomous container ship. It will
replace 40 000 truck trips along the Norwegian coast every year, contributing to the
reduction of greenhouse gas emissions and improving road safety [3]. The Autoferry
at NTNU is a concept that introduce a more flexible and environmentally-friendly
passenger ferry for urban water transport. It is located in Trondheim, is all-electric,
and will operate autonomously as an on-demand ferry. Norway is a pioneer in
the ”autonomatization” at sea, with many ongoing government-backed projects.
Hybridization of ships will play an important role in the development towards full
autonomy at sea. All-electric ships can either be fully battery-powered or combined
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Chapter 1. Introduction

with another all-electric energy source like fuel cells.

The utilization of autonomy in shipping can also lead to economic advantages.
As regulations on pollutants continue to increase, it is easy to envision a near
future where emission taxes make hybrid alternatives economically viable. Fully
autonomous ships can plan with only the mission in mind, not restrained by the
needs of on-board crew. For autonomy to be successful in the maritime industry,
the control system must outperform human operators. The ability to optimize for
all system variables is therefore essential. The power flow should be distributed
among the hybrid power sources such that each source is optimally used, resulting
in lower costs related to fuel and degradation of components [4].

1.2 Objectives

The work done in this thesis aim to find the costs related to the use of various
control strategies on a FC-battery hybrid system on a ship. Zero-emission tech-
nology is not yet competitive with ICEs mainly due to cost. One of the dominant
contributions to the high cost of fuel cells is the short life span. Ill-conceived use of
FC-battery hybrid systems accelerate the aging process of components, leading to
a higher replacement rate. Therefore, to narrow the price gap between FC-battery
hybrid systems and ICEs, component degradation should be included in the cost
optimization.

Thus, fuel consumption and several degradation processes of the fuel cell and bat-
tery is considered. In order to model this, different aging mechanism needs to be
mapped. The literature that considers both the fuel cost and wear and tear of com-
ponents is limited as the control problem is highly nonlinear. Degradation rates
vary across the system’s lifetime and ought to be managed in such a way that the
demanded power yields minimal strain on the components.

Several control strategies are explored and their performance compared. To get
an accurate representation of the power dynamics of marine vessels, data on the
required power from real-life ships are essential. Hence, the proposed algorithms
use load profiles from the industry to manage the distribution of power in order to
minimize the running costs.

The final objective is to investigate whether the more sophisticated control strate-
gies yield a lower running costs than conventional rule-based methods used in
the industry. The trade-off between complexity and computational efficiency is
also of interest in order to enable intelligent energy management on autonomous
ships.

The main objectives if the thesis can be summarized as follows:

1. Modeling of the fuel cell and battery components and a power and energy
management system. The models account for the costs of hydrogen fuel and
the internal aging processes related to the use of each component.
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2. Formulate a cost function that translates the degradation into U.S. dollars.

3. Implement various intelligent algorithms to control the PEMS.

4. Run simulations with the control strategies on load profiles from a real vessel
to compare the costs of the respective algorithms.

5. Discuss the validity of the results rooted in the assumptions and limitations
of the model.

1.3 Scope and limitations

This paper researches control strategies for a power and energy management system
that includes a proton-exchange membrane fuel cell (PEMFC) and battery. Other
zero-emission energy sources, like the supercapacitor, are principally omitted in
the model due to the additional complexity they would add. Supercapacitors have
an even quicker dynamic response than batteries and can be used in combination
for hybrid FC-batter-supercapacitor power systems. As the model presented in the
paper does not include such a hybrid arrangement, it is assumed that the battery
acts instantly, and can thus efficiently deal transient loads.

The whole electric power system is based on a DC grid with a constant bus voltage.
With the running costs of a ship as the main focus, component sizing is deemed out
of scope. The results presented are solely a study derived from offline simulations
of ship load profiles and are thus not based on real ship experiments.

Several aging mechanism behave nonlinear and are unfeasible to implement in a
power and energy management system. Multiple approaches, including lineariza-
tion of characteristics and limiting the operational range of the components are ex-
plored to overcome this challenge. Additionally, some parameters like temperature
does indeed affect the aging of FCs and batteries, but are not considered.

1.4 Thesis structure

The thesis expands the work of our project thesis submitted in the fall of 2019. Es-
pecially the first chapters are based on theory accumulated in the literature review.
The organization of the ensuing report is divided into the following chapters:

Chapter 2 presents the working principles and characteristics of fuel cells and
batteries. In addition, it provides the proposed topology of the shipboard power
system.

Chapter 3 explains the importance of a PEMS and investigates how different
control methods increases the performance of hybrid power systems.

Chapter 4 discusses costs related to usage of zero-emission energy sources. Both
fuel and component degradation are considered, and a complete cost function for
a FC-battery energy system is proposed.
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Chapter 1. Introduction

Chapter 5 describes the FC and battery models, in addition to the power and
energy management system. It also discusses and elaborates on the underlying
assumptions and simplifications.

Chapter 6 gives a thorough introduction and discussion on the theory of the
control strategies used in the simulations.

Chapter 7 explains how the algorithms described in the previous chapter are im-
plemented and how the simulations are carried out, before presenting and discussing
the corresponding results.

Chapter 8 conclude the results of the study. In addition, suggestions for further
work is presented.
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2
Zero Emission Energy Sources for Marine

Applications

In this chapter the arrangement of an all-electric hybrid power system and its com-
ponents are presented. A fuel cell-battery hybrid propulsion solution is outlined.
The following sections identify and describe the fundamental working principles
and characteristics of a PEM fuel cell and a lithium-ion battery. Strengths and
weaknesses of the technologies, mostly explored in the project thesis this paper is
based on, are recapitulated and discussed. Especially mechanisms related to the ag-
ing and degradation of components are comprehensively reviewed as these greatly
alters lifetime of components and ultimately the vessels operation costs.

Furthermore, a short recap of key component features is presented. Table 2.1
summarize the most important characteristics and the current status of fuel cells
and lithium-ion batteries, including their costs.

The chapter is rounded off by a short discussion on how and why the aforementioned
components can be used together to take advantage of their strengths. A system
architecture for a marine vessel is outlined to give an overview of the energy flow
of a vessel.

2.1 Fuel cell

Fuel cells (FC) generate electrical power through a chemical reaction. Whereas
combustion engines release heat energy, FCs produce electrical energy. The fuel
cells studied in this paper operate on hydrogen gas, which is the most common
fuel used in fuel cells. We will exclusively investigate the proton exchange mem-
brane fuel cell (PEMFC), the most common fuel cell for transport applications [5].
In general, they are efficient compared to combustion engines, with a practical
efficiency in the range of 50-60 %.
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The main loss factors are activation losses, Ohmic losses and mass transport losses,
also known as concentration losses [6]. The only by-products are heat and water,
which makes fuel cells inherently clean as they do not emit any environmentally
dangerous pollutants.

PEM fuel cells require a constant flow of oxygen (O2) and pure hydrogen (H2)
to operate. All fuel cells are made up of an anode, a cathode, and an electrolyte
membrane. The membrane has important functions in the fuel cell such as proton
exchange between electrodes and separating the cathode and anode environments.
In a PEMFC, a stream of hydrogen passes through the anode where it splits into
electrons and protons (hydrogen ions) by a catalyst, usually made of platinum. The
protons permeate through the electrolyte membrane while the electrons are forced
through a circuit, generating electricity and heat. It is critical that the membrane
only permits hydrogen ions as the contrary would lead to a short-circuit. At the
cathode side, water is formed as oxygen molecules are reacting to the protons that
have permeated through the membrane and the electrons arriving from the external
circuit. Figure 2.1 illustrates the working principle of a PEMFC.

Figure 2.1: Fundamental PEMFC operation [7]

To deliver a larger amount of energy, fuel cells can either be placed in series to
yield higher voltage or in parallel to allow higher current to be supplied. Such a
design is called a fuel cell stack and shown in Figure 2.2.

2.1.1 Characteristics

Unlike internal combustion engines (ICE) that convert chemical energy into heat
by combustion, the efficiency of fuel cells are not related to the maximum operating
temperature. Hence, they are not restricted by the Carnot efficiency limit [9]. The
efficiency depends on the chemical reaction inside the fuel cell, which results in
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Figure 2.2: Overview of a fuel cell stack [8]

a significantly higher theoretical value than traditional ICEs [10]. The efficiency
of each cell is calculated by dividing the actual voltage, Vc, with the open circuit
voltage with reference to the low-heat value (LHV) [5]:

efficiency =
Vc

LHV
· 100 % =

Vc
1.25

· 100 % (2.1.1)

In any case, it should be noted that the practical efficiency is around 60 % over a
wide range of the power spectrum [11].

PEMFCs use a humidified polymer-based membrane as an electric insulator. The
operating temperature ranges from 50 to 100 ◦C. Higher temperatures are not
feasible as the membrane needs to be humid under operation [12]. Given the low
operation temperature, little excess heat is generated and therefore heat recovery
is not an option. However, the low temperature allows for a swifter startup time
compared to other fuel cell types.

The dynamic response of fuel cells is inadequate when handling rapid load changes
which marine vessels are subject to. This is a result of their relatively low specific
power density. It is recognized as a major weakness of fuel cell systems [6]. If the
fuel cell is unable to provide the required instantaneous power output demand from
accelerations, it will deteriorate the electric dynamic responses [13]. To counter this
time-delayed response and limited power output, auxiliary power devices such as
batteries and supercapacitors should be combined to make a hybrid propulsion
system.

PEMFCs are suitable as a main source of power in marine vessels due to their
high efficiency, low operation noise, low temperature, vibration levels, and their
low environmental impact. There are, however, various obstacles the fuel cell tech-
nology has to overcome for it to be the go-to power source choice in the maritime
industry. One of the main issues today is the cost. The platinum catalyst needed
in a PEMFC is expensive, leading to high unit costs [12]. According to the U.S.
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Department of Energy, the PEMFC cost was in 2015 at $53/kWnet. The target
price set for 2020 is $40/kWnet [14]. In the last 10 years, the price has dropped
substantially from $69/kWnet in 2009 [15]. The reduction in fuel cell prices is
displayed in Figure 2.3. Please note that it looks at the fabrication of 100–500
thousand units manufactured each year.

Figure 2.3: Price development for fuel cells [14]

Improvement in fuel cell technology is the main driver behind the growth in the
hydrogen economy [16]. Hydrogen has great energy density characteristics with
respect to mass, which makes it a lightweight option compared to other fuel al-
ternatives, and fuel cells are thus considered high-energy systems. However, it
has a poor energy density on a volumetric basis, resulting in an increased space
demand.

Storing hydrogen is also a key obstacle for the commercialization of fuel cell tech-
nology. For hydrogen to become a feasible power source for marine vessels, there
are requirements of safety, compactness and cost-efficient storage solutions that
need to be addressed. As hydrogen transport is an expensive process, the argu-
ments for distributed production are well founded [17]. Hydrogen can be stored
as compressed gas, liquid or in solid phase [18]. Transporting hydrogen as a com-
pressed gas is a viable option for short distances. To reduce the distribution costs
and make it easier to transport, an option is to cool the hydrogen down through a
cryogenic liquefaction process.

2.1.2 Degradation and lifetime

One of the main challenges that hinder fuel cell technology to enter the industry
is their short life span. FC lifetimes, currently in the range of 2000–4000 hours,
are not yet within the U.S. Department of Energy’s durability targets of 5000
running hours [14]. Measures to boost fuel cell lifetimes include among others
material composition, reduction of degradation causes and enhancing the stack
design [19]. Reducing the costs related to wear and tear is one of the main objectives
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of this thesis, and some of the most significant FC degradation mechanism will be
elaborated below.

Fuel starvation is one of the main contributors to PEMFC degradation and aging.
The starvation takes place when reactants are used faster than they are supplied to
the cell, resulting in a reversing of fuel cell voltage which further leads to corrosion.
Fuel starvation causes permanent damage to the cell as well as a reduction in its
performance [6]. Thus, fuel starvation should be avoided, even for brief moments.
FCs are especially prone to starvation during transients as the fuel delivery system
has slow dynamics due to the mechanical equipment such as valves, which are slow
in adjusting their setting based on the reference value. Fuel starvation is more likely
to happen in the oxygen supply system due to the time delay of mechanical valves
and the compressor motor that supplies the air. To help avoid fuel starvation, the
oxygen excess ratio can be adjusted by changing the mass flow into the cathode
such that minimum fuel cell stress is inflicted. In practice, this is achieved by
setting constraints on the fuel cell’s power slope. Experiments have proven that
this improves overall fuel cell performance and lifetime [20]. Furthermore, effects
such as high transient loading, start/stop cycles, and high/low power contribute to
starvation.

The list below summarizes some of the most common FC degradation methods [21]:

1. Catalyst degradation is one of the most well-known causes of decay in FC
performance. Platinum on the surface of the catalyst is initially spread evenly
over the surface, but over time the molecules have a tendency to agglomerate,
decreasing the surface area covered by platinum. This leads to a reduced cell
voltage. Fuel starvation and running at low current densities are some of the
major contributors to this phenomenon.

2. Membrane degradation causes degradation in the form of thermal, me-
chanical or chemical stress on the membrane, and reduces the membrane
quality. Avoiding high temperature in the engine will help prevent this.

3. Gas diffusion layer degradation (GDL) possesses many of the same degra-
dation methods as catalyst degradation. The same materials are often used
in both, and the result can be a lack of sufficient reactant supply locally in
the fuel cell. GDL degradation is caused by fuel starvation, high transient
loading or start/stop cycles.

To represent aging effects it is beneficial to define the end-of-life (EOL) of the
fuel cell. The term indicates when the FC is at the end of its life-cycle and can
be used to estimate the remaining useful life of the system. EOL thresholds can
be set based on mission conformity or as a definitive limit that renders the fuel
cell not fit for further use [19]. The U.S. Department of Energy defines fuel cell
end-of-life when it reaches a 10 % voltage drop [22]. However, this threshold
may not provide a conclusive representation of FC durability when the loads are
varying. Alternative EOL definitions includes using the cumulative energy of the
FC, but introduces complexity to the overall approach. Chen et al. [23] accounts
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for hydrogen consumption, PEMFC stack price and system efficiency to propose
an economical lifetime threshold. This results in an estimated fuel cell lifetime
that is cost-effective, but assumes the degradation rates are known. The focus of
this thesis is on the costs related to the usage of the hybrid power system. Less
emphasis has been put on the replacement of components, as this is just a cost
obtained from the manufacturer.

Calculating the cost of fuel cell degradation is a complex process, involving multiple
features. A fuel cell stack consists of multiple fuel cells in series, as displayed
earlier in Figure 2.2. Each cell consists of different components, including the
membrane, the electrodes, the gas diffusion layers and the bipolar plates. Different
degradation processes occur on each component. In addition, for each cell in the
stack, degradation transpire at different rates. For instance, the cells on the edges
of the stack tend to degrade faster than cells in the middle of the stack [19]. These
effects, however, are difficult to model and is outside the scope of this thesis.

Multiple chemical effects contribute to fuel cell degradation. Usage of the FC
stack substantially determines how much, and where, degradation occurs. The
following list summarizes important measures that can significantly reduce fuel cell
degradation:

• Avoid running the FC at high power as it causes reactant starvation [24], [6].

• Prevent running the fuel cell in an idle state, i.e. low power, as it will cause
electrochemical active surface area reduction [21].

• Avoid needless transient loading to preserve humidity and temperature as
well as preventing local fuel starvation [25]

• Prevent start/stop cycles as it contributes drastically to degradation as a
result of carbon corrosion in the cell [26].

• Avoid high power load cycles in order to prevent humidity changes that causes
holes in the membrane [27].

• Reduce the fuel cell load if the temperature is too high [21].

2.2 Battery

In contrast to the previously mentioned main energy sources, ICE and FC, energy
storage devices serve as auxiliaries to give the energy system desirable character-
istics. A battery is an example of a energy storage device used in zero-emission
ships. Supercapacitors are frequently used as part of an all-electric marine power
system, but are not considered here. Auxiliary energy sources are added in or-
der to provide higher responsiveness and power density, in addition to increased
reliability and safety. This section covers an introduction of batteries and their
properties.

A battery is an electrochemical device that can store, charge and discharge energy.
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Batteries consist of one or more electrochemical cells that are built on three com-
ponents; an anode, a cathode, and the electrolyte. Figure 2.4 illustrates a basic
lithium-ion battery layout. The purpose of a cell is to convert chemical energy into
electrical energy. This happens through two different reactions; one at the cathode
and one the anode. At the anode, electrons are released through an oxidation re-
action between the metal atoms of the anode and the electrolyte. At the cathode,
electrons are released to the electrolyte through a reduction reaction. The anode
and the cathode are coupled together through an electrical leading material. Due
to the difference in charge, negative at the anode and positive at the cathode, the
electrons travel from the anode to the cathode, generating electric voltage. When
charging the battery, a current is used to reverse the process. This way the bat-
tery can efficiently convert electric energy to chemical energy, store it, and then
discharge it back as electric energy.

Figure 2.4: Fundamental lithium-ion battery operation

2.2.1 Characteristics

Batteries have several characteristics that are important for ships. The energy
density is a function of the voltage and capacity of the cells, which depends on
the chemical properties of the system like anode and cathode materials. Typically,
the energy density of batteries are too low for marine application due to the linear
increase in cost with battery size. For applications such as deep-sea shipping, a
huge amount of energy is required. A battery’s insufficient energy density makes
them unfit as a primary energy source for such operations.

The power density is a function of the voltage and is mainly determined by the
surface area of the anode and cathode, which is important for the speed of the
redox reactions in the cell. In general, batteries have a high power density, as they
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can deliver high amounts of power in a short time [28]. This is important for ships
to provide the required maneuvering and acceleration abilities.

The state of charge (SOC) is the percentage of energy remaining for use in the
battery. As an example, a SOC of 100 % indicates that the battery is fully charged,
whereas the battery is depleted when the SOC is 0 %. Monitoring the SOC of
a battery is a complex task that includes measuring voltage, current flow, and
temperature of the battery. Monitoring and adapting battery usage to the SOC is
important, as the state of health (SOH) is heavily influenced by the SOC.

The SOH describes the general condition of the battery. It is a measurement of
how well the battery performs, compared to a similar, brand-new battery. Over
time, the voltage delivered, energy density and general performance, all related to
the SOH, decrease. For lithium-ion batteries, the battery is considered to fail when
the SOH is less than 80 % of its initial value [29]. The SOH is determined by the
age of the battery and how it’s used. Since batteries for transport applications are
expensive, they should not be used carelessly to prevent avoidable economic losses
related to the replacement of the battery [30]–[32].

2.2.2 Degradation and lifetime

Battery degradation refers to the process where battery performance decreases with
time and usage. The process accounts for most of the cost related to battery usage
and is therefore important to take into consideration when using the battery. It is
a very complex process, which varies with different battery parameters. Some of
the most relevant degradation mechanisms are discussed in this section.

Aging factors that contribute to battery degradation in lithium-ion batteries are
discussed thoroughly by Harting et al. [33]. Figure 2.5 summarizes some of the
most prominent aging factors in lithium-ion batteries.

According to Xu et al. [28], degradation of lithium-ion batteries can be split into two
main components; a linear and nonlinear effect. The degradation rate is reliant on
the battery’s current state of life, which can accelerate the degradation from other
processes. The linear process can be divided into two separate effects. Calendar
aging is related to the battery’s inherent degradation. This happens over time,
regardless of how the battery is used, and is a function of time only. Cycle aging
depends on the operational temperature and SOC of the battery and describes
the life lost between one cycle of charging and discharging. In addition to the
average temperature and SOC of the cycle, the depth of discharge (DOD), which
denotes how much energy is cycled in and out of the battery in the given cycle,
also contributes to loss of battery life [34].

Experiments with lithium-ion batteries have shown that the battery degradation
rate is significantly higher in the early stages of battery life. Then the degradation
rate is low for most of the battery lifetime, before it increases rapidly as the battery
approaches its EOL. Therefore, the degradation process is highly nonlinear with
respect to the battery lifetime and the number of charge-discharge cycles. Several
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Figure 2.5: Fishbone diagram of battery aging processes due to operational factors.
Excerpt from Harting et al. [33]

effects cause this, but one of the most prominent is the formation of solid electrolyte
interphase (SEI) film. The SEI film typically forms during charging and causes loss
of lithium on the negative electrode, which negatively influences the capacity of the
battery cell [35].

Battery aging can be modeled as an internal resistance model, as the internal
resistance of the battery tends to increase with battery aging. This makes the
internal resistance a good indicator of the remaining expected battery life. A
capacity degradation model is also commonly applied. When the capacity of a
battery is reduced by 20 % of its original value, batteries have reached EOL and
should be replaced. As a result, it is the most common indicator of battery SOH.
There have been many attempts to calculate the battery capacity in the literature,
experimentally and theoretically, which have proved to be a challenge [8].

Koller et al. [34] suggests a way of incorporating battery degradation in a battery
energy storage system (BESS) based on model predictive control. The battery was
modeled as a linear time-invariant system to make the optimization computation-
ally feasible. Degradation of the battery, however, is a highly nonlinear process,
and the resulting optimization is not convex. The paper lists four major causes
of battery degradation, of which the last three are considered in the resulting cost
function:

1. High operation temperature.
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2. High and low SOC.

3. High DOD.

4. High current-rate/high power-rate.

The use of batteries in combination with FCs has several benefits. Batteries have
successfully been deployed in a wide range of different transport segments, and have
been through extensive research and testing. Auxiliary power sources for marine
applications such as batteries increase system performance and fuel efficiency. It
also supports the FC by providing high currents during rapid load changes that
otherwise would induce stress on the FC [36].

2.3 Fuel cell and battery comparison

Figure 2.6 and Figure 2.7 outlines the energy and power densities as well as the
dynamic response time of fuel cells and batteries. The Ragone plot is redrawn from
Kötz et al. [37] with a logarithmic scale and the dynamic response of the FC and
battery is redrawn from Thounthong et al. [38]. Note that the power unit in the
latter figure is normalized and given per unit.

Figure 2.6: Energy density Ragone
plot redrawn from Kötz et al. [37]

Figure 2.7: Dynamic response time re-
drawn from Thounthong et al. [38]

The specific power density of an energy source indicates the power output it can
provide per unit of mass. A high power density means that the system can release
energy abruptly. Batteries generally enjoy a high specific power density, and are
capable of managing large fluctuations in energy output. PEMFCs does not have
the same dynamic capabilities, and can thus not control large power transients. On
the other hand, the specific energy (gravimetric) density is a measure of capacity.
It indicates how much energy a system contains per unit of mass. The high energy
density of hydrogen justifies the use of fuel cells as a primary energy source.

The high power density of batteries together with the high energy density of fuel
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cells provide a desirable foundation for a power system. With PEMFCs which
are an order of magnitude slower than batteries, the combination of the two are
progressively becoming a more feasible alternative for all-electric ship power sys-
tems. Table 2.1 summarize the key characteristics of PEMFCs and lithium-ion
batteries.

Table 2.1: Key characteristics of FC and battery [14], [39]–[42]

Fuel cell and battery characteristics

Feature PEMFC Li-ion battery

Cost 45 $/kW 176 $/kWh
Lifetime 2000–4000 hours 5–10 years / 5000 cycles

Energy density 800–10 000 Wh/kg 120–240 Wh/kg
Power density 1–10 W/kg 50–2500 W/kg

2.4 Hybrid power systems

Due to shortcomings in fuel cell dynamics and their limited resilience to voltage
fluctuations, fuel cells are not suitable as a single energy source in marine applica-
tions. Hybrid power systems consisting of both FC and battery provides a solution
to this problem [43]. Hybridization with FCs as the primary power source works by
connecting secondary energy storage units, like a battery, to the complete system.
This allows the system to split the power between the components to achieve a
greater system efficiency. The process of determining the share of power to each
component is governed by the control strategy of the system level controller. Chap-
ter 3 explains how this power balance is chosen and what benefits the system gains
from this procedure.

2.4.1 Power system architecture

The power system architecture highlights how the components of the power system
are connected. The energy sources and energy storage devices for marine appli-
cations are usually delivering current through a grid system. Traditionally, AC
(alternating current) grid systems have been used for ships. In this setting, the fre-
quency of current generators connected to the grid needs to match both the system
voltage and frequency. With the introduction of multiple energy sources in hybrid
energy systems, this is a huge drawback. As a result, a DC (direct current) grid
provides several advantages, and is becoming increasingly popular. First of all, it
enables variable engine speeds. This means that the speed of the engines and gen-
erators can be optimized to the system load situation, which is a huge benefit when
controlling it with a PEMS as it can significantly increase the operating efficiency.
Moreover, the main engines can operate at their optimal efficiency. It also enables
the integration of an energy storage, which gives dynamic flexibility, better safety
and increased efficiency to the energy system. Thirdly, a DC bus makes it easier to
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integrate multiple energy sources, as they don’t need synchronization, and removes
the need for multiple conversion and transformation stages. These components also
lead to efficiency loss and increased fuel consumption. Additionally, DC grids are
simpler than AC grids, which has the benefit of increased safety and better fault
prediction utilities. An example of a DC grid system with the proposed FC-battery
power system is shown as a single line diagram in Figure 2.8.

Figure 2.8: Single line diagram displaying a FC-battery hybrid propulsion sys-
tem [44]
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3
Power and Energy Management System

Power and energy management systems (PEMS) are computer-aided tools that
are used to control and optimize the performance of power systems. The overall
objective of the system is to regulate the power on the DC bus to cover the demand
for energy at any given time. The energy management system (EMS) governs the
high-level system control, determining the amount of energy to use from each power
source to meet the energy demand. The EMS controls the flow of energy from the
FC and from/to the energy storage systems (ESS). Additionally, the EMS manage
the load sharing between energy sources and is thus controlling the charging and
discharging of the battery. An advanced EMS is able to learn from historical data
to predict future usage.

The power management system (PMS) ensures that the calculated electrical power
from the EMS is properly transmitted to the energy sources. Another crucial task
of the PMS is to override decisions from the EMS if the demand is outside the
energy source’s safety boundaries. Figure 3.1 illustrates the modeled control level
topology on a marine vessel with a fuel cell and battery. For the rest of the report,
both the EMS and PMS are considered as one integrated unit called PEMS as both
terms are used interchangeably in the industry.

For a system with more than one energy source, energy management is essential.
By utilizing the strengths of each source, the PEMS can have a positive influ-
ence on fuel consumption, lifetime of the energy sources, and overall performance.
As discussed in Chapter 2, the energy sources presented in this paper have dif-
ferent strengths and weaknesses. These characteristics play a major role in how
the PEMS should operate to reduce costs, which will be discussed further in this
chapter.
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Figure 3.1: Block diagram of a complete FC-battery control system

3.1 Control objectives

The general aim of a PEMS is to utilize a minimum of energy to operate the
system at the lowest cost possible, while staying well within regulations and safety
constraints. According to A. Sørensen [45], the primary objectives of a PEMS
consist of three main functions; the generation and management of power, load
management, and power distribution.

• Power generation and management encompass monitoring the energy
flow of the vessel and it’s frequencies. Supervision of load sharing functions
and control logic is employed to coordinate energy sources as needed.

• Load management addresses monitoring of the required load as well as the
limitations of the power manage

• Distribution management manage the sequence of power configuration.
This includes allocating loads to always meet the energy demand.

An energy and emission management system (EEMS) is an extension of a PEMS
as it is a high-level controller that also includes the emissions from the system [4].
The main objectives of an EEMS are shown in Figure 3.2.

Additional PEMS functions include maneuvering capabilities, dynamic positioning
and blackout restoration. The primary objective, however, is to deliver the required
power to the engine in a stable manner.
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Figure 3.2: Overview of energy and emission management system objectives [4]

3.1.1 Load management

Load management is the process of adjusting the electricity supply while main-
taining the same power output. Balancing the supply of electricity helps reduce
the need for electricity at peak demand by clever load management. The process
usually involves utilizing stored power from the ESS units when the demand is
high, and use any excess power when the demand is low to recharge these units.
Chapaloglou et al. [46] integrated load forecasting by an artificial neural network
into the EMS and achieved an optimal operating level for the diesel generators by
handling peak demands with a battery storage system.

Peak shaving is a load management method that aims to reduce the peak demand
for highly variable loads. On vessels that use FCs as the main energy source, peak
shaving can be accomplished by supporting the FC with other energy sources such
as batteries. ESSs have faster dynamic responses and can thus reduce the peak
power the FC needs to generate. To support peak shaving for multiple instances,
the energy storage systems must be recharged. During low power demand, the FC
can be run at close to optimal efficiency and use excess electricity to charge the
ESSs. Figure 3.3 illustrates how peak shaving can reduce the peak load provided
by the main power source, i.e. the FC, during an operation.

Figure 3.3: Peak shaving on a generic load profile
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Another load management method, often used in combination with peak shaving
methods, is load leveling. By load leveling, the ESS delivers the fluctuating loads,
while the main power source produces slowly varying power to meet the average
power demand. Bø et al. [2] suggests a control hierarchy where the battery dynam-
ically removes power variations depending on variations and battery temperature
to achieve a more stable load for the main power source. Figure 3.4 shows the
concept of load smoothing.

Figure 3.4: Load smoothing on a generic load profile

Excessive fluctuations leads to a series of negative consequences. For mechanical
systems, torque and power fluctuations increase wear and tear from mechanical
stress. Electrical systems are also negatively influenced as fluctuations reduce ef-
ficiency and power quality. Supercapacitors are proposed as a short-term energy
source to supply pulse power loads in Y. Tang and A. Khaligh [47]. The combina-
tion of battery and supercapacitor is called a hybrid energy storage system (HESS)
and is beneficial when controlling ships to mitigate thrust and torque fluctuation
effects in the propulsion system. The benefit of the dynamic response from a FC-
battery-supercapacitor hybrid system is crucial as neither the FC nor the battery
can in real life handle the most abrupt load changes. However, as a simplification,
this advantage is incorporated in our model by assuming the battery can react to
sudden load fluctuations.

J. Hou and J. Sun [48] describes how land-based hybrid electric vehicles (HEV)
deviate from ship propulsion systems by underlining three challenges unique to
marine vessels:

• Larger scale power systems. Marine propulsion systems generally have a
higher power rating, leading to differences in the optimal control configura-
tions.

• Multi-frequency. Ships experience both slowly varying loads from wave-
induced motion and rapidly varying loads and motions corresponding to the
1st-order wave loads which induce oscillatory motions.
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Chapter 3. Power and Energy Management System

• Environmental influence. Environmental disturbances such as waves, cur-
rents, and wind have a much greater effect on ships compared to land-based
vehicles. These disturbances also vary considerably, requiring ships to scale
their systems thereafter.

When designing a shipboard power system, the effects of proper load management
must be considered to determine the size of the power sources. As the power system
assessed in this thesis consists of components with parameters from the industry,
such sizing considerations are not investigated further.
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4
Control problem formulation

The objective of the PEMS is to distribute the power demand from the operator
to the different power sources. To optimize the performance, it is important to
create a measure of how well the PEMS is performing, which is the purpose of the
cost function. In this section, we will give an overview of suitable cost functions
for the PEMS, which are used to formulate the objective function for the learning
algorithms.

The cost function serves as an objective to minimize for the PEMS optimization.
The costs are economically motivated. Environmental emissions can be included,
but since a zero-emission ship with fuel cells and battery is studied, they are non-
existent and will not be considered when formulating cost functions. The cost
associated with a FC-battery system can be split into two groups; fuel consump-
tion, which is the direct and immediate cost, and degradation cost, which shortens
component lifetimes. The cost related to fuel consumption is relatively straight
forward to calculate as it mainly depend on the fuel cell current.

The costs related to degradation are complex and requires significant computational
power. The degradation process, which is a dominating cost factor for both FCs
and batteries, consists of multiple intricate processes related to various components
within the fuel cell and battery. As a result, an exact solution to the degradation
impact is yet to be found.

Most of the research in this field only considers fuel consumption due to its sim-
plicity compared to degradation issues. Fletcher et al. [49] argues that degradation
significantly contributes to the operational running costs and should hence be in-
cluded in the cost function. Other studies, by Li et al. [50] and Martel et al. [51],
have taken degradation of energy sources into account by setting boundaries to the
battery’s SOC and the operational dynamics of the FC. This is not optimal, as it
excludes real-time degradation effects [8].
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The main factors of operational costs of hybrid energy systems boil down to how
much energy it consumes and how properly each component is run. To minimize
running costs the aim is therefore to use each system component close to its max-
imal efficiency, but within the range that does not accelerate degradation. The
following sections describes a cost function that takes fuel consumption and com-
ponent degradation into account and discusses each of the influential factors.

4.1 General cost function

A general cost function for the hybrid FC-battery system is proposed. The total
cost function encapsulates costs related to fuel consumption and degradation of the
battery and fuel cell, and is on the following form:

Ctotal = −(Cfuel + CFC,deg + Cbat,deg) (4.1.1)

4.2 Fuel cost

The cost related to fuel consumption is split between the hydrogen used by the
FC and amount of hydrogen the FC uses to cover the internal power loss in the
battery. The cost can be defined as:

Cfuel = CFC,fuel + Cbat,loss (4.2.1)

FC fuel consumption

Fuel cost is the most immediate cost and is relatively simple to calculate. The
fuel cell uses hydrogen to directly power the propulsion system and to charge the
battery. The total cost of hydrogen consumption can be calculated by multiplying
the cost of hydrogen with the amount of hydrogen used. [52]:

CFC,fuel = CH2
·H2cons = CH2

· N
F
· IFC dt (4.2.2)

where CH2 is the price of fuel per kg, with unit $/kg, H2cons is the total consumed
hydrogen mass, N is the number of cells in the stack, F is the Faraday constant,
IFC is the FC current and dt is the time step used for the simulation. The total
hydrogen consumption can be calculated by integrating the FC current over the
entire driving cycle.

Today, several production methods are able to produce hydrogen to a cost of less
than $2/kg [53]. Furthermore, this production cost is expected to decrease in the
years to come due to development in zero-emission technology. Nonetheless, the
price of hydrogen, CH2 , is assumed to be $2/kg in further calculations.
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Chapter 4. Control problem formulation

Internal battery power loss

The battery’s internal power loss can be translated to a cost by calculating how
much fuel the FC uses to cover the loss. When the battery is running, some of the
energy is lost in the process of charging/discharging. To account for this power
loss, it is included in the cost function. This can be done using the following steps.
First the the voltage drop in the battery is found. This is calculated as a product
of the current running through the battery and the internal resistance. The loss of
power in the battery can then be calculated as:

Vbat,drop = Rbat · Ibat → ∆Pbat = Rbat · I2
bat

In order to calculate the cost of this loss, we have to calculate how much H2 the
fuel cell would have used in order to generate the power. Therefore, we consider
this power loss as if it was generated by the fuel cell.

Pbat ∼= PFC

The FC current is needed to calculate the fuel consumption. This is easily found by
dividing the FC power with the nominal FC voltage. The voltage of the FC varies,
but in the long run, the nominal voltage should be close to the average operating
power. This will be somewhat inaccurate, but is considered the most suitable way
of translating the battery power into fuel consumption.

IFC =
PFC

VFC,nom

The equivalent fuel consumption is finally derived with the same logic as in Equa-
tion (4.2.2). Hence, the cost corresponding to the battery loss is:

Cbat,loss = CH2
· N
F
· Rbat · I

2
bat

VFC,nom
dt (4.2.3)

4.3 Fuel cell cost

PEMS behavior influences the degradation of the fuel cell significantly, and the pol-
icy should therefore consider both fuel consumption and degradation costs. The
PEMFC temperature is assumed to be within its operation limits, hence the effects
from temperature variations are disregarded. According to Fletcher et al. [25], the
FC operating conditions lead to considerable degradation effects include; low power
operations (idling), high power operations, high power transients and start/stop cy-
cles. By assuming independent degradation mechanisms, the total fuel cell degra-
dation cost can be summarized and included in the total fuel cell cost:
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CFC,deg = CFC(Dpower,low +Dpower,high +Dtransients +Dcycle) (4.3.1)

CFC is the fuel cell price, Dpower,low is the degradation due to low power, Dpower,high

is the degradation due to high power, Dtransients is the degradation from change in
FC power and Dcycle is the degradation from shutting down the FC. By assuming
that the FC is always on during operation, and resorting to the FC running idle
when the power demand is low, cycle degradation can be omitted. Seeing that
the FC starts and stops once each operation, this degradation can be considered
inevitable and is therefore excluded in the optimization. It should, however, be in-
cluded for longer operations where shutting the engine on and off is an alternative,
as the impact of each start/stop cycle heavily shortens the FC lifespan [54].

The terms Dpower,low and Dpower,high are the degradation costs as a result of idling
and high power operation, respectively. If the power is below 10 % or above 80 %
of the max FC power, Pmax, the corresponding degradation is [25], [49]:

Dpower,low =

{
αlow · 0.1Pmax−PFC

0.1Pmax
dt, if PFC < 0.1 · Pmax

0, otherwise
(4.3.2)

Dpower,high =

{
αhigh · PFC−0.8Pmax

0.2Pmax
dt, if PFC > 0.8 · Pmax

0, otherwise
(4.3.3)

αlow and αhigh are the degradation rates for low and high operation condition, sum-
marized in Table 4.1. dt is the time step used in the simulations. Equation (4.3.2)
and (4.3.3) shows that the degradation cost is applied when above or below the set
thresholds and increase linearly. αlow and αhigh are in Fletcher et al. [25] applied as
a constant value for the entire high and low power area. To make the penalty more
realistic, we use a linear penalty. The average penalty of the linearized penalty is
desired to equal the constant penalty, and therefore αlow and αhigh is multiplied
by a factor of 2.

Dtransients covers the FC degradation caused by transient loading. The degradation
is modeled as a function of the power delivered by the FC:

Dtransients = f

(
dPFC

dt

)
= β ·

∣∣∣∣dPFCdt

∣∣∣∣ dt = β · |dPFC | (4.3.4)

β is the degradation rate from Table 4.1. The transient degradation is modeled as
proportional to the rate of change in the power provided by the fuel cell. Since the
penalty is applied every time step, it has to be weighted by the time increment,
and the penalty thus becomes only a function of the change in power. Avoiding
high transients is important for maintaining a stable temperature and humidity in
the cell, which prevents local fuel starvation.

28



Chapter 4. Control problem formulation

Table 4.1: Scaled PEMFC degradation rates [25]

PEM fuel cell degradation rates (per cell)

Symbol Operating condition Degradation rate

αlow Low power operation 20.34 µV/h
αhigh High power operation 23.48 µV/h
β Transient loading 0.0441 µV/∆kw

The degradation factors are summarized in Table 4.1. The values are given per
cell, and the fuel cell considered has 900 cells. Therefore the values are scaled up
with a factor of 900. The nominal voltage of our fuel cell is defined at 50 % of
maximum power, where the voltage is 629 V. EOL for the fuel cell is defined as
when the voltage drops by 10 %. Thus, the voltage causing the fuel cell to reach
EOL is:

629 V · 10 % = 62.9 V (4.3.5)

This means that the cost of a voltage drop of 62.9 V imply the same operating cost
as the entire fuel cell.

In order to translate the degradation rate values into actual costs in dollar, the
total cost of the FC is needed. The FC used in our experiments has a rated power
of 120 kW. Using the fuel cell cost of $45 /kW, seen in Table 2.1, the total cost
can be calculated.

CFC = $45/kW · 120 kW = $5400 (4.3.6)

The degradation rates in dollar values can now be calculated. This is done by first
scaling up the cell degradation rates by 900, the number of cells, before dividing all
the numbers by 62.9 V. This gives the fraction of total degradation they contributes
to. Then, the result is multiplied by the fuel cell cost of $5400 in order to get the
actual costs. The resulting degradation cost rates are as follows:

Table 4.2: PEMFC degradation rates scaled to U.S. dollars [25]

PEM fuel cell degradation cost rates (per cell)

Symbol Operating condition Degradation rate

αlow,$ Low power operation 1.57 $/h
αhigh,$ High power operation 1.81 $/h
β$ Transient loading 0.0034 $/∆kW
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4.4 Battery cost

Battery costs primarily consist of the price of degradation and the energy it con-
sumes. By constraining state variables, accelerated aging can be limited. Mainte-
nance costs are not included and considered to be outside the scope of this work.
Both time degradation and usage contributes to battery degradation, both of which
are comprehensively described below.

Degradation cost of batteries are studied in depth, and there has been conducted
a vast amount of research in the field. Generally, the rate of deterioration for
a battery can be divided into two components; cycle-life and calendar-life [55].
Cycle-life is reduction in battery performance due to cycling processes, whereas
calendar-life deterioration is the inherent battery aging and a function of time
only. Hence, the cost related to calendar aging is not included in the model, as it
adds unnecessary complexity.

The total cost of running the battery can be modeled as:

Cbat,deg = Cbat(DSOC +DDOD) (4.4.1)

where Cbat is the price of the lithium-ion battery, DSOC is the degradation from
SOC wear and DDOD is the degradation related to the depth of discharge stress
which will be defined later.

4.4.1 State of charge

There have been multiple efforts of implementing a health-aware PEMS that ac-
counts for the cost of battery degradation, without the usage of a chemical model.
Note that these methods will indirectly affect the chemical degradation reactions in
the cell. A common strategy is to put bounds on the SOC in both ends, as operating
above or below these levels are a major cause of battery degradation. However, this
is very simplified, and will not yield any optimal behavior concerning battery life-
time. Another common, more sophisticated way of considering battery lifetime, is
to incorporate a cost proportional to the quadratic deviation in SOC from SOCref ,
where SOCref is the operating SOC level that minimizes degradation. Thus, de-
viation from the SOC reference point is penalized for both low and high values,
with a penalty that increase with the distance from the reference SOC. The SOC
related degradation DSOC,quadratic is commonly written as a penalty proportional
to the following expression:

DSOC,quadratic = γ · (SOCref − SOC(t))2 dt (4.4.2)

where γ is the degradation rate given in $/s. The issue with this penalty is that, to
the authors knowledge, γ has yet to be estimated in a precise way. Most likely, this
is because battery degradation is a lot more complex than this equation suggest.
There are a lot of research on battery degradation in the literature. Most of the
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used models are complex, incorporating degradation factors such as cycle depth,
temperature, current rate and average state of charge [28]. Complex battery degra-
dation models are considered outside the scope of this work. However, there is a
clear consensus in the literature that high and low SOC is damaging the battery
health. As a result, we have applied a significant penalty if the SOC goes above
0.7 or below 0.3. This leads to the battery avoiding high and low SOC whenever
possible, thus acting as a soft constraint on the SOC. The implementation of this
penalty does not significantly hinder the functionality of the battery.

DSOC =


1 · dt, if SOC < 0.3

1 · dt, if SOC > 0.7

0, otherwise

(4.4.3)

The number 1 is arbitrarily, but its magnitude is sufficient to serve its purpose
when applied at each time step.

Depth of discharge

Depth of discharge is defined as how deep a continuous cycle where the battery
charges/discharges is. It consists of two parameters, DODcharge and DODdischarge,
that define how much the battery has charged or discharged without interruption.
The evolution of DODcharge and DODdischarge under an example battery load is
visualized in Figure 4.1. Calculating the battery cost related to depth of discharge is
non-trivial. Koller et al. [34] suggested a model for battery degradation from DOD
stress. The stress models are obtained either empirically or derived theoretically.
The degradation has a nonlinear impact on the battery, which can be challenging
to estimate. Xu et al. [28] argues that the models used in the literature do not give
an adequate representation of the battery degradation.

Figure 4.1: Evolution of depth of discharge for an arbitrarily load profile [34]

In recent years, however, there have been more focus on developing good battery
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degradation models for PEMS optimization. Wang et al. [56] performs test on
LiFePO4, a popular type of lithium-ion battery, under different temperatures,
DOD and fixed C-rates in order find a function that estimates the battery degra-
dation from such parameters. The authors experimented with cyclic behavior on
the batteries until EOL, while testing the capacity of the batteries at fixed time
intervals to measure the SOC. The study, in contrast to many other studies, con-
cluded that the battery DOD had only a minor impact on battery degradation for
low C-rates. In addition, instead of using time as a parameter, they switched it to
Ah-throughput Ahth. Ahth is the total amount of current that has left or entered
the battery, and is therefore directly proportional to the time at a fixed C-rate.
C-rate is a metric for how quick a battery is charged or discharged, relative to it’s
maximum capacity. As an example, a C-rate of 1 indicates that the battery will
fully discharge in 1 hour given that the battery current stays the same. After sev-
eral experiments and curve fitting for the parameters, the following capacity loss
estimate was found [56]:

Qloss = A · exp

[
−Ea +B · Crate

RT

]
· (Ahth)z (4.4.4)

where A is the pre-exponential factor, Ea is the activation energy of the LiFePO4

battery examined, B is the exponential factor weighting C-rate properly, and z is
a factor for how much to emphasis the effect from the Ah-throughput.

In an attempt to quantify the effect from DOD and C-rate on battery degradation,
Chen et al. [57] uses the result in Equation (4.4.4) to model the capacity loss in
the battery as a function of DOD and C-rate. First, they utilize the fact that Ahth
can be calculated in the following way:

Ahth = Qfull ·DOD ·N (4.4.5)

where N is the amount of cycles. This way, the number of cycles the battery can
sustain before EOL, with a given DOD and C-rate, is quantified by rearranging
and combining Equation (4.4.4) and Equation (4.4.5).

N(DOD,Crate) =

[
Qloss

A · e(
−Ea+B·Crate

RT )

] 1
z

· 1

Qfull ·DOD
(4.4.6)

Qloss is the amount of capacity allowed before the battery is considered to have
reached EOL. It should be commented that two simplifications have been made to
use this equation. The original formula from Chen et al. [57] assumes a constant
Crate. This will rarely be the case for an online PEMS where a varying power
demand will cause the C-rate to fluctuate. As a result, we have applied the average
C-rate in a given charge/discharge cycle in the equation above. Furthermore, the
pre-exponential factor A varies to some degree with different C-rates. A is set
equal to the C-rate corresponding to 2 C, which is considered a typical C-rate for
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the battery in our application. The relevant constants in the equation are given in
Table 4.3, and the log of Equation (4.4.6) is plotted in Figure 4.2.

Table 4.3: DOD degradation parameters

Lithium-ion battery DOD degradation parameters

Symbol Description Value

Qloss Maximum allowed capacity loss 2.355 kWh
Qfull Maximum capacity 17.748 kWh
Ea Activation energy 31.500 J/mol
A Pre-exponential factor 19.300 kWh
B Exponential effect of Crate 370.3 J/(A · mol)
z Power law factor 0.55
R The gas constant 8.314 J/(K · mol)
T Battery cell temperature 298.15 K

Figure 4.2: DOD and C-rate’s effect on total remaining battery cycles

As Figure 4.2 displays, the remaining number of cycles of the battery decreases
significantly with higher C-rates and DOD. Also, both the C-rate and DOD have
an distinct impact on the battery life. Therefore, the intuition is that the battery
lifetime is extended when it is operated at lower DOD and C-rate levels.

To calculate the actual cost of using the battery, we have to know the total battery
cost. When at 50 % SOC, the battery has a voltage of 493 V, and the battery
capacity is set to 36 Ah for our simulations. Thus, the maximum amount of kWh
delivered can be estimated to:

Qfull =
493 V · 36 Ah

1000
= 17.748 kWh (4.4.7)
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The price for lithium-ion batteries was in 2018 estimated to be $176/kWh by
Bloomberg, a research firm that covers the clean energy industry [41]. As a result,
the total battery cost can be calculated as follows:

Cbat = 17.748 kWh · $176

kWh
= $3124 (4.4.8)

The cost of half a charge/discharge cycle, given an average C-rate is then calculated
by dividing Cbat with the total number of cycles the battery could perform before
EOL. The battery degradation cost related to DOD and C-rate becomes:

DDOD =
1

2 ·N(DOD,Crate)
(4.4.9)

This cost is applied whenever the depth of discharge resets. The C-rate is the
average discharge/charge current for the given cycle, and DOD is the depth of the
cycle. The reason for dividing with 2 is that the penalty is applied for every half
cycle. As a result, is has to be divided by two to give the cost as if it was an entire
cycle.

4.5 Cost Optimization

Control strategies are compared on total the calculated cost during testing. A
complete cost function containing the factors introduced above can be derived
from the general cost function. Equation (4.5.1) again presents the form of the
total cost function.

Ctotal = −(Cfuel + CFC,deg + Cbat,deg) (4.5.1)

Equations (4.5.2) to (4.5.4) shows the finalized cost terms.

Cfuel = CFC,fuel + Cbat,loss (4.5.2)

CFC,deg = CFC(Dpower,low +Dpower,high +Dtransients) (4.5.3)

Cbat,deg = Cbat(DSOC +DDOD) (4.5.4)

Table 4.4 presents each addend of the finalized cost function applied in the simu-
lations:
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Table 4.4: Cost function

Complete cost function breakdown

Notation Equations

CFC,fuel = CH2
· NF · IFC dt

Cbat,loss = CH2
· NF ·

Rbat·I2bat
VFC,nom

dt

Dpower,low = CFC(αlow,$ · 0.1Pmax−PFC
0.1Pmax

dt), if PFC < 0.1 · Pmax

Dpower,high = CFC(αhigh,$ · PFC−0.8Pmax
0.2Pmax

dt), if PFC > 0.8 · Pmax

Dtransients = CFC · β$ |dPFC |

DSOC = Cbat · 1
Cbat
· dt, if SOC < 0.3 ∨ SOC > 0.7

DDOD = Cbat ·
(

2 ·N(DOD,Crate)
)−1
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5
Ship Power System Model

There are multiple ways of representing both the fuel cell, battery and PEMS math-
ematically. A substantial number of models have been proposed in the literature,
varying from simple to extremely complex. The latter is obviously more precise.
For our purposes, generating massive amount of data is crucial for the algorithms
to learn patterns. Therefore, decreasing computation time has been a priority.
Furthermore, in-depth knowledge in electrochemical modeling is required in order
to investigate the more complex models. On the other hand, an inaccurate model
is essentially useless. Thus, modeling the system components is a trade-off that
has to be considered carefully by the control designer.

In the following sections the implemented fuel cell and battery model are presented,
including the equations and relevant graphs describing how energy is drained and
how power is produced. The aim is also to describe the basic internal characteristics
of both the fuel cell and battery. Subsequently the PEMS including its system
architecture is described. The models for battery, fuel cell and PEMS are all
implemented from scratch by the authors in Python.

5.1 Fuel cell model

The PEMFC model is based on the generic model created by Motapon et al. [58].
A simplified version of the model is shown in Figure 5.1 and depicts a fuel cell
stack as a controlled voltage source, E, in series with an internal FC resistance,
Rohm.

The output FC power is calculated by modifying Ohm’s law:

PFC = iFC · VFC (5.1.1)
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Figure 5.1: A simplified fuel cell model [58]

In order to formulate a fuel cell model, it is useful to make some assumptions to sim-
plify. In the model to be described, the following is assumed to be true [11]:

• The stack temperature and humidity are constant during operation.

• Hydrogen and air supplied to the stack are considered ideal.

• The only losses are activation losses, which are linear.

• Pressure drops inside the stack are not considered.

A polarization curve is a common tool to describe fuel cell characteristics. It is a
graph showing the relation between current density and voltage output of the FC.
In order to find the relevant parameters for our model, the fuel cell’s polarization
curve is used.

Figure 5.2 displays a generic polarization curve. The plot shows three distinct
areas based on the FC current density. In the activation and mass transport re-
gion the cell voltage drops nonlinearly, whereas the Ohmic region experiences a
roughly linear drop. The regional differences come from internal losses that orig-
inates from activation losses, Ohmic losses, and concentration losses, respectively.
Modeling each of the losses separately is considered irrelevant for this work, as
it would add too much complexity to the model. The fuel cell parameters deter-
mine the size of each region, and the polarization curve can be obtained from the
manufacturer.

The controlled voltage source of the fuel cell is described as follows [11], [58]:
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Figure 5.2: A generic PEMFC polarization curve [59]

E = EOC − NA ln

(
iFC
i0

)Activation loss

(5.1.2)

where EOC is the open circuit voltage, N is the number of cells, A is the Tafel
slope, iFC is the FC current and i0 is the exchange current.

The open circuit voltage is obtained by the Nernst equation, and is affected by the
temperature, partial pressures of hydrogen and air, as well as their concentrations.
Furthermore, the remaining values are found [58]:

NA =
(V1 − Vnom)(imax − 1)− (V1 − Vmin)(inom − 1)

ln (inom)(imax − 1)− ln (imax)(inom − 1)

Rohm =
V1 − Vnom −NA ln (inom)

inom − 1

i0 = exp

(
V1 − EOC +Rohm

NA

)
(5.1.3)

Rohm is the internal fuel cell resistance. EOC is the voltage at 0 A, while V1

equals the voltage at 1 A. Vnom and inom are the voltage and current at nominal
operation point. Vmin and imax are the voltage and current at maximum operation.
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The values can be found by examining four points on the polarization curve in
Figure 5.2 as described by Motapon et al. [58]. The FC output voltage, VFC , can
then be calculated as:

VFC = E − Rohm · iFC

Ohmic loss

(5.1.4)

A simplified version of the generic polarization curve can be created by linearizing
it. Both the activation and Ohmic region are piecewise linearized. The mass
transport area is neglected by constraining the max FC current density at Imax.
This is considered a valid constraint, as the FC efficiency drops drastically in the
region and degradation rates are high. Thus, an intelligent controller would rarely
command the fuel cell to operate at a such high current. The resulting linearized
polarization curve is displayed in Figure 5.3.

Figure 5.3: Linearized PEMFC polarization curve

From the polarization curve of a the PEMFC given in the Simulink documentation,
the following parameters are collected in Table 5.1 [59]:

An alternative to using Nernst equation to calculate the controlled cell potential
by using Equation (5.1.2), is graphically using the slope from Figure 5.3, kstart
and knom.
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Table 5.1: FC parameters from polarization curve [59]

PEMFC

Parameter Value Description

EOC 900 V Open circuit voltage
Vstart 800 V Voltage at start of Ohmic region
Vend 430 V Voltage at end of Ohmic region
Istart 20 A Current at start of Ohmic region
Iend 280 A Current at end of Ohmic region

kstart =
EOC − Vend

Istart
(5.1.5)

knom =
Vstart − Vend
Imax − Istart

(5.1.6)

The current cell voltage, VFC , is then determined by the current, I, the following
way:

VFC =

{
Vstart − knom · (I − Istart), if I > Istart

EOC − kstart · I, otherwise
(5.1.7)

The output FC power is finally calculated the same way as in Equation (5.1.1):

PFC = IFC · VFC (5.1.8)

Thus, the power produced from the fuel cell can be plotted against the current, as
seen in Figure 5.4.

It is important to consider the efficiency when operating an FC. Higher efficiency
means that more energy is converted from hydrogen to power. Therefore, oper-
ating at higher efficiency implies less fuel consumption. Fuel cells have an overall
efficiency superior to conventional engines due to their direct energy conversion
without combustion [11], [60]. However, the efficiency varies a lot with respect to
the operating power of the fuel cell.

In the FC model, the fuel consumption is calculated using Equation (4.2.2). Be-
cause fuel consumption is proportional to the FC current, the efficiency of the
model is highest at lower currents, since more power is produced per unit of cur-
rent. This, however, is not an entirely correct representation of a real fuel cell.
Typically, the FC efficiency is low at low current, before it quickly increases with
increased current. As a result, the model we use is not entirely accurate for low
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Figure 5.4: FC current vs. power Figure 5.5: FC current vs. efficiency [11]

current levels. The modeled efficiency (Model) vs. the actual efficiency of a typical
PEM fuel cell system (FCS) is plotted in Figure 5.5 [11].

To model the internal FC delay, the rate of change in current is constrained to 10 %
of Iend per second. Essentially this constraint encapsulates the dynamic capabilities
of the FC. The hydrogen flow cannot instantaneously increase more than a given
amount. By limiting the rate of current, the model is able to account for the rather
slow FC dynamics.

|∆IFC | ≤ 0.1 IFC,max · dt (5.1.9)

5.2 Battery model

The battery model we have implemented is a simplified version of the one proposed
by Tremblay and Dessaint [61], which is also applied by MATLAB in its example
battery model [62].

In Figure 5.6 the battery characteristics from Tremblay and Dessaint are visualized
by plotting the battery voltage as a function of capacity. In the exponential zone,
the battery has high state of charge, and the battery voltage grows exponentially as
the battery is charged. In the nominal zone, the voltage is decreasing slowly as the
battery is discharged. This is where the battery thrives, and is the best range to
operate the battery in order to prolong lifetime. When the SOC falls below Qnom
the battery voltage decreases exponentially as the charge approaches 0, where the
battery is completely discharged.

The model includes several assumptions [62]:

• The internal resistance is constant for both charge and discharge cycles. It is
not affected by current variations.

• Charge and discharge characteristics are assumed to be identical.
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Figure 5.6: Battery characteristics

• The battery capacity is not dependent on the current amplitude (Peukert
effect is neglected).

• There is no internal memory effect in the battery.

• The behavior of the battery is independent of internal temperature.

• Battery self-discharge is neglected.

All assumptions aim to simplify the model computationally. Two of the limitations
that follows, in addition to reduced model accuracy, are that the battery is unable
to overcharge and the minimum no-load voltage is 0 V. In tests performed on real
batteries, the proposed model was almost identical for steady state validation for
several C-rates. Accuracy tests for dynamic models, where both the SOC and the
current varies, the model proves to give the SOC with an error margin of±5 % of the
actual SOC for relevant values (SOC ≥ 20 %) in all the test conducted [62].

As discussed, computational efficiency is key in order to generate sufficient data for
training the machine learning algorithms. Therefore, the model we have applied
for training the algorithm is a simplified version of the one described above. The
battery is assumed to exclusively operate in the nominal zone, and thus linearize
voltage as a function of the state of charge. The linearized battery characteristics
is shown in Figure 5.7.

The linearization introduces new limitations in the battery model. Namely that the
SOC is unable to fall below Qmin and rise above Qmax. This is considered fair, as
batteries should not be operated at very high or very low SOC, due to the significant
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Figure 5.7: Linearized battery characteristics

battery degradation it causes. The relation between SOC and open circuit voltage,
E0, is found from the linearized battery characteristics curve. Figure 5.7.

E0 = Vexp −
Vexp − Vnom
Qmax −Qmin

· (Q−Qmin) (5.2.1)

The battery output voltage is calculated by subtracting the battery current with
the internal resistance. Thus, the output battery voltage is modeled in the following
way:

Vbat = E0 −Rinternal · ibat (5.2.2)

Then, the output power from the battery is calculated as follows:

Pbat = Vbat · ibat (5.2.3)

The variation in SOC is based on simple calculation on how much current enters or
leaves the battery. The resulting model for change in capacityQ is as follows:

Q(t) = Q(0)−
∫ t

0

ibatdt (5.2.4)

The capacity Q of the battery is given in Ah, and as a result, the SOC is updated
in the following way at each time step of model simulation:
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SOC(t+ dt) = SOC(t)− i(t) · dt
3600 ·Qfull

(5.2.5)

The relevant parameter values for the battery model used for training is given in
Table 5.2.

Table 5.2: Battery model parameters

Lithium-ion battery

Parameter Value Description

Qmin 6.6 Ah Minimal battery capacity
Qmax 32 Ah Maximal battery capacity
Vexp 545 V Voltage at end of exponential zone
Vnom 430 V Voltage at end of nominal zone
SOC(0) 0.5 Initial SOC level

5.3 Power and energy management system

The energy management system serves the task of splitting the required power
between the battery and the fuel cell. This can be done using a huge variety of
algorithms, some of which are implemented and described in depth in the following
chapter. The general purpose of the algorithms is to reduce the combined cost of
the fuel cell, battery and fuel cost, as described in the previous subsections.

There are multiple ways of designing the PEMS, all having their advantages and
disadvantages. The PEMS can take in different state variables in order to decide the
action, and the actions made to control the system can also vary. As an example,
the action can either be to control the current of the FC or the power of the FC.
There is no right way of designing the controller output/input. What matters is
the result in terms of minimizing the operating cost.

Figure 5.8 shows how the energy management system for our machine learning
based algorithms work. The input to the energy management system is the Battery
SOC, the FC current and the load currently required from the ship. One of the
algorithms (SAC, discussed in Chapter 6), also has DOD variables as input. After
calculations executed depending on the algorithm, the PEMS outputs the change
in FC current demanded. The power and loss of the FC is then calculated, before
it outputs the updated current and the power it produces. The current is used as
input for the PEMS and the power signal from the FC is subtracted from the total
power required. The remaining power requirement is served by the battery, which
is assumed to be able to instantaneously serve the remaining load required. When
the demanded battery power is negative, the surplus power is used to charge the
battery. In the end, the battery SOC, and DOD variables are sent back to the
PEMS for new calculations, and the process repeats until termination.
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Figure 5.8: Power and energy management system
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6
Control strategies

This section presents the relevant theory and discusses the PEMS algorithms im-
plemented in Python by the authors.

6.1 Benchmark methods

In this section, the benchmark control algorithms implemented in code by the au-
thors will be covered in depth. A literature review on both rule based control
algorithm and dynamic programming is conducted, together with the relevant the-
ory for both algorithms is presented along the way. The expected performance, as
well as the strengths and weaknesses of both algorithms will be assessed.

6.1.1 Rule-based

Rule-based control of the PEMS is widely applied in the industry due to its ro-
bustness and stability. The strategy is based on a group of if-then statements
considering PEMS input parameters, forming a decision tree. If the if-statement
holds, then that part of the rule refers to a corresponding output policy of the con-
troller. This applies to all if-statements in the algorithm. The output of the tree is
usually the power set-point of the different energy sources. The implementation of
such rules is straightforward. It is easy to understand and can be expressed in nat-
ural language. Furthermore, it doesn’t need any model to perform well, and is very
efficient computationally. However, to design a system that performs well, human
domain expertise is required. The knowledge of effects such as the engine com-
ponents operating efficiency and degradation factors should be utilized to design
a PEMS with satisfying performance. It is also possible to combine it with other
sophisticated control strategies for better functionality. Rule-based energy man-
agement is also referred to as fuzzy logic (FL) control EMS in the literature.
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Table 6.1 shows a simple example of how a rule-based PEMS algorithm works. The
HEV proposed in Zhu et al. [63] consists of an ICE and a battery. Based on the
SOC of the battery and the power demand from the operator, the distribution in
power between the ICE and battery is determined. The report splits the decision
into five different operating modes on the battery; positive large, positive small,
zero, negative small and negative large. Negative battery power means that the
battery is charging. The remaining load is provided by the ICE.

Table 6.1: Rule-based control strategy [63]

Rule-based control strategy for a HEV

Premise Consequence
Requested power Battery SOC Battery power

Large High Positive large
Large Medium Positive small
Large Low Zero

Medium High Positive small
Medium Medium Zero
Medium Low Negative small

Small High Zero
Small Medium Negative small
Small Low Negative large

Despite the advantages of rule-based control, it has several limitations. Firstly,
there is no optimization or intelligence built into the system. If the system compo-
nent’s performance is changed due to factors as wear and tear, the optimal policy
might change significantly. For fuzzy logic systems, the logic is programmed into
the PEMS and remains unaltered until changed by a human operator. Thus it is
unable to adapt to changes in the performance of system components. Furthermore,
the discretization of action space implies that the actions will be suboptimal for
major parts of the continuous state space. As a result, there are often other control
techniques that yield better results in terms of optimal cost-efficiency.

6.1.2 Dynamic programming

Finite Markov decision process

The basis of the dynamic programming (DP) is that the environment you operate in
is modeled as a Markov decision process (MDP). A MDP consists of functions that
models the dynamics of how an agent interacts with an environment. The agent is
the decision maker and performs actions in the environment. The environment is
what the agent interacts with, and consist of everything except for the agent. MDP
also contributes with rewards to the agent; special numeric values that the agent
aims to maximize in the long run by clever action choices. The agent is always in
a state of the environment. A state can be thought of as a signal the agent has
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access to, which influences the next action to be taken by the agent. When the
agent performs an action At, the state St of the agent changes to a new state St+1

and the agent receives a reward Rt+1. Then, being in the next state, the process
is repeated, until the agent ends up in a terminal state. Thus, the agent and MDP
gives a sequence of states, actions, and rewards in the following way:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ..., St−1, At−1, Rt, St [64] (6.1.1)

Figure 6.1: The agent-environment interaction in a Markov decision process [64]

Figure 6.1 illustrates the described agent-environment interaction. When perform-
ing action At in state St, the next state St+1 is determined by a function p, which
describes the environment and the dynamics of the MDP. The function p defines
the probability that being in state s and performing a will result in next state s′

and reward r. This probability is defined for ∀ s, s′ ∈ S , ∀ r ∈ R and ∀ a ∈ A(s),
where S is the set of all states in the MDP, R is the set of all rewards and A(s) is
the set of all possible actions in state s. Formally, p can be written in the following
way:

p(s′, r | s, a) = Pr(St+1 = s′, Rt+1 = r | St = s,At = a) (6.1.2)

where Pr is the conditional probability of going to state s′ and receiving reward r
when being in state s and performing action a. Thus p describes the probability
distribution of the outcome of performing action a in state s, which means that
the total probability of all possible outcomes equals one:

∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, ∀s ∈ S,∀a ∈ A(s) (6.1.3)

Optimal policy and optimal policy value function

As previously stated, the agent aims to maximize the total accumulated reward. If
you have access to the finite MDP of a process, the optimal policy can be deter-
mined.

A policy π is defined as a mapping from state to action, meaning that if you are
in state s, you will follow action a with probability π(a | s). An optimal policy
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π∗ is a policy which maximizes the expected reward the agent receives over time.
Note that there might be multiple optimal policies, as different optimal policies
may yield the same expected accumulated reward over time. A value function vπ
is a mapping from state to the expected value of all future rewards, when following
a policy π. The value function can thus be interpreted as a performance metric for
a corresponding policy, and is defined as follows:

vπ(s) = Eπ

[ ∞∑
n=0

γnRt+n+1 | St = s

]
(6.1.4)

In the equation above Rt+n+1 are the instantaneous rewards at step n when fol-
lowing policy π. The optimal policy π∗ will have a value function that is larger or
equal to the value functions of all other policies. The value function of the optimal
policy is given as [64]:

v∗(s) = max
π

vπ(s),∀s ∈ S (6.1.5)

Dynamic programming is a group of algorithms that can be applied to find the
optimal policy, given an MDP. The core equation of the algorithm is the Bellman
equation [65]. It states that the value of a state, given an optimal policy, must be
equal to the expected return for best action from that state, and can be formalized
in the following way.

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a)[r + γv∗(s′)] (6.1.6)

This means that the optimal value of a state is the value corresponding to the
action that yields the highest reward and future values, weighted with the transition
probability p. The emphasis put on future rewards is determined by the discount
factor γ, where γ = 1 means that future rewards are weighted equally as immediate
rewards. DP builds on the principle of optimality: An optimal policy has the
property that whatever the initial state and initial decisions (actions) are, the
remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decisions. This means that the optimal policy in a state
s is built on other optimal policies as well, which implies that solution to the
problem consist of solutions to subproblems and can be solved recursively. This is
the fundamental principle of dynamic programming [65].

Dynamic programming for PEMS control

There are several examples of dynamic programming as a PEMS algorithm. Given
a known driving cycle and a predefined reward function that reflects the actual cost
of fuel and other cost related to degradation, the dynamic programming PEMS is
guaranteed to obtain optimal control for the system. Because of this guaranteed
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optimal control policy, dynamic programming is often used as benchmark for other
PEMS algorithms to evaluate their performance [66].

However, DP PEMS has several limitations. First of all, the requirement of the
known driving cycle in advance is very limiting for real-time control. For marine
applications, this is never the case due to the stochastic nature of the ocean. Even
though predefined routes could give an estimate of the driving cycle, knowing the
exact power demand in advance is simply impossible. On the contrary, dynamic
programming on a tramway PEMS have proved to yield good results as the driving
cycle is somewhat known in advance [67]. The second primary limitation that comes
with DP PEMS is computational time. For longer driving cycles and big state
spaces, it can be computationally infeasible in some cases. Dynamic programming
suffers from the curse of dimensionality, which states that the computational time
that is required to estimate a function grows exponentially with the number of
states [68]. As a result, the number of parameters included in such an optimization
is limited, which can affect the accuracy.

In Kalikatzarakis et al. [69], dynamic programming is used as a benchmark for the
real-time PEMS strategies on a ship. It has access to the a priori knowledge of the
operating profile of the ship, and thus the global optimum solution is obtained. Two
equivalent cost minimization strategies (ECMS) and a rule-based control strategy
are compared with the dynamic programming approach. The report concludes
that DP is great for analyzing the dynamic performance and determining whether
hybrid propulsion and power generation can reduce the wear on engine due to
thermal loading and improve acceleration times.

Moura et al. [70] suggests a stochastic dynamic programming approach for a PEMS
on a hybrid electrical vehicle with a lithium-ion battery pack. It considers both the
SOH of the battery through electrochemical modeling and energy consumption cost
with the aim of obtaining the optimal trade-off between the two. A Markov chain
with a terminal state is identified from real world data to model the distribution
of daily trip lengths. As a result, the need for the predetermined driving cycle
is removed, as the probability distribution of previous driving cycles is applied
instead. The input to the controller is the state of the HEV, and it is mapped to the
engine torque input. They test the algorithm for two different degradation models,
where the results contradict each other; one depletes the battery quickly, whereas
the other is conservative in the rationing. The complexity of battery degradation
makes it hard to create a simple enough model that is able to overcome the curse
of dimensionality. The concluding remark, which is highly relevant for this paper,
is that an accurate model of engine component degradation is crucial in order to
achieve good performance of the trade-offs between fuel consumption and lifetime
of components.
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6.2 Learning based methods

Machine learning (ML) is a branch within artificial intelligence (AI) that has re-
ceived a lot of attention the last decade. Simply put, ML aims to program a
computer to learn from experience and be able to perform tasks humans would
classify as intelligent, without explicitly being programmed. Machine learning is
generally split into three main categories; supervised learning, unsupervised learn-
ing and reinforcement learning. Supervised learning relies on labeled data to train
the algorithm. After training, the algorithm aims to predict correct values for new,
unlabeled data. Unsupervised learning aims to find hidden structure or patterns
in data that is unlabeled. This is typically applied on huge amounts of data as
prepossessing, while it’s not common as a direct control technique. Reinforcement
learning does not require any data for training, where instead an agent interacts
with an environment while continuously learning how to behave to maximize a
reward signal in the long run. It is closely related to how we as humans learn, and
many algorithms within the field are inspired by brain research on living creatures.
Reinforcement learning is the branch of machine learning that is best suited for op-
timal control problems. It will be covered extensively in the following subsections,
as the majority of our implemented algorithms falls within the category.

The three main branches of machine learning include a huge amount of literature.
An overview of the three methods is visualized in Figure 6.2.

Figure 6.2: Branches of machine learning

In this section, we will explain the theory behind several learning algorithms that we
have implemented in Python. Central concepts that are both relevant for the algo-
rithms and reinforcement learning in general will be presented along the way.

6.2.1 Tabular Q-learning

Tabular Q-learning is one of the first algorithms developed in the field of rein-
forcement learning. Despite being a learning algorithm, it is closely related to the
dynamic programming algorithm explained in the previous section. The goal of
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the algorithm is to learn the Q-function of a policy, which gives the expected total
discounted reward for being in state s and performing action a, and then following
the policy until a terminal state. It can be formalized in the following way:

qπ(s, a) = Eπ

[ ∞∑
n=0

γnRt+n+1 | St = s,At = a

]
(6.2.1)

It is very similar to the value function described in the dynamic programming
section, but there are some significant distinctions between the two. First off all, it
uses the Q-function instead of the value function to predict the best action. This
has the advantage that it doesn’t need a model to estimate the value of each action.
Given the value function, you have the optimal value of each state if you follow
the optimal policy. However, if the transition function is unknown (which is one
of the main reasons for using reinforcement learning on optimal control problems),
the value function itself is useless for choosing an action as you can’t know which
action gives the best value in the next state. Therefore, the Q-function is usually
applied to estimate the value of state action pairs in reinforcement learning.

Furthermore, while dynamic programming iteratively solves the entire state space
in sweeps, Q-learning learns online through episodes from a starting point to a ter-
minal state. This makes Q-learning able to learn online, and continuously improve
its actions through experience from the environment, while dynamic programming
has to be calculated in advance. However, while dynamic programming yields the
optimal global solution given a correct model, there is no guarantee that Q-learning
is able to find the best policy.

In it’s basic form, Q-learning uses a table that links state action pairs to values.
Therefore, like dynamic programming, it suffers from the curse of dimensionality
when the state or action space grow large. During training, Q-learning uses the
following update rule to learn:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(6.2.2)

There are some interesting points to note here. First off all, temporal difference
(TD), one of the most central concepts in reinforcement learning, is used. It is
based on the idea that the optimal Q-value in a state should be equal to the re-
ward from the optimal action, plus the Q-value of the resulting state. This is true
when an optimal policy is found, but not necessarily before the Q-table has con-
verged. Despite being related to the principles of DP, Q-learning is able to learn
from it’s own experience, without knowledge about the underlying dynamics or
model. The learning rate, denoted α, describes how much emphasis new informa-
tion gets when the model is learning. Typically, with a higher learning rate, you
will learn faster in the initial stages of learning, but convergence will be slower or
impossible. Therefore, you have to tune the learning rate in order to achieve both
efficient training and convergence of the algorithm. A properly tuned learning rate
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is sufficiently low to ensure that the algorithm converges to reveal valuable infor-
mation without overlooking important patterns. The full Q-learning algorithm is
described in Algorithm 1.

Algorithm 1 The Q-learning algorithm [64]

Initialize Q(s, a) arbitrarily
repeat

(for each episode):
Initialize s
repeat (for each step of episode):

Choose a from s using policy derived from Q
Take action a, observe r, s′

Update
Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]

s← s′;
until s is terminal

Explore-exploit dilemma

Another central theme in reinforcement learning that Q-learning highlights is the
trade-off between exploration and exploitation. When the algorithm is exploiting,
it performs the action that has the highest estimated return, and follows the policy
that is best given the current information. However, there might be parts of the
state space that is not yet visited, and thus might yield a better total reward.
As a result, there is a conflict between exploring and exploiting, which has been
the basis for massive research effort. For Q-learning, the most applied technique
to address the issues is the epsilon-greedy function. A random action is selected
with probability ε, or the highest value action is selected with probability (1− ε).
By tuning epsilon properly, this can achieve satisfactory results for the Q-learning
algorithm.

On-policy vs. off-policy

This leads us to one more very relevant feature of all reinforcement learning algo-
rithms. They are described as either on-policy or off-policy. On-policy means that
the algorithm uses the same policy it tries to learn while exploring. In contrast, off-
policy algorithms uses two different policies: One to generate behavior and gather
data with, and one policy that is continuously improved using the generated data.
Q-learning is an off-policy algorithm, as it uses epsilon greedy strategy to generate
data, while the policy that is learned is based on a purely greedy policy which value
is based on the maximum Q-value of the next state. This is in contrast SARSA,
which is a similar algorithm but learns the optimal policy given that epsilon-greedy
is used both for generating behavior and policy learning. The differences in learned
behavior by the two algorithms are summarized in Figure 6.3.

The agent start in state S and G is the only terminal state. For each step, the
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Figure 6.3: On-policy vs. off-policy [64]

agents receives a reward of −1, but if the agent walks off the cliff, the agent gets
a reward of −100, and continues the episode in state S. As the figure shows, the
optimal path is along the cliff, as the reward from that path is the highest. Q-
learning is off-policy and tries to learn the greedy policy, it will choose the path
along the cliff. SARSA, however, is learning the epsilon-greedy policy, and will
thus risk taking a random move off the cliff in the next step if walking along the
cliff. It will therefore prefer the safer path. One of the most significant implications
of this is that off-policy algorithms can learn from previous data gathered, while
on-policy algorithms can only learn from new experience.

Limitations

Despite its popularity, the Q-learning algorithm has several drawbacks. First of
all, both Q-learning and dynamic programming suffers badly from the curse of
dimensionality. As the computational burden grows exponentially as the number
of states increases, it is rarely possible to apply the techniques to environments
with more than 6–7 states. For real world applications with high dimensional action
space this is a heavier burden for Q-learning, as each state has many corresponding
actions, which leads to an exponential growth in the table size. This makes the
agent unable to choose the optimal actions without immense amount of training,
as huge parts of the state action space will not be visited. As an example, imagine
a robot arm with 8 joints, and a course discretization of 3 possible actions per joint
(−1, 0, 1). That results in a huge state space of 38 = 6561 actions, which in many
cases is computationally infeasible.

Q-learning also has the issue that it requires both a discrete state and action
space. This is problematic for real world applications because most robots has
both continuous actions and states, not discrete. As an example, driving a car
with 5 different speeds as possible actions is completely unimaginable. In addition,
with discrete state and action space, there will be rounding errors as a result of the
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system being in a slightly different state than the algorithm thinks. This leads to
inaccuracies that reduce performance.

6.2.2 Deep Q-learning

In order to overcome the issue of discrete state space in Q-learning, a function
approximation is needed. Solving for each possible state and action for continuous
problems will require an infinite amount of both time and storage. Instead of
estimating the value function or the Q-function as a table, it can be estimated as
a function with weight parameters w. The function approximation aims to find
a generalized pattern that maps state or state action pairs to value. Thus, the
estimated Q-function for some given weights w can be written as follows:

q̂(w, s, a) ≈ qπ(s, a) (6.2.3)

There are several ways of designing the function approximation. One of the simpler
ways is in the form of a linear function, where w is the weights of the features
represented. However, in recent years, artificial neural networks (ANN) has become
increasingly popular for approximating functions. And for reinforcement learning
purposes, it has become the go-to method for solving the issue of discrete states
and actions.

Artificial neural network

Artificial neural networks (ANNs) consist of several weights, symbolized by w. The
number of weights in the network will typically be way less than the actual number
of possible states. This leads to the fact that changing one weight changes the
value of many state action pairs, and thus the function approximation aims to find
a general pattern that can map state action pairs to values. ANNs are in many
ways designed the same way some parts of the brain works. It is an interconnected
network of neurons, that usually requires a given signal strength in order to send
signals to the neurons it is connected to. Artificial neural networks can be used in
very sophisticated functions and has been central in recent breakthroughs in the
image and speech recognition. Their success in these fields derive from their ability
to finding patterns in huge sets of data. Furthermore, ANNs have been used for
interesting reinforcement learning tasks such as learning to play the games of chess
or Go.

A simple artificial neural network is visualized in Figure 6.4. It has four inputs,
one hidden layer with four neurons and one output neuron that returns an output
value. Therefore, this can be used as a value function, by mapping the states to
a value calculated by the ANN. The number of hidden layers and neurons in each
layer can vary significantly, as more complex data sets might need more neurons
to model patterns accurately. The connections between the neurons has different
weights w that amplifies or decreases the signals that is sent between them. During
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learning, algorithms using neural networks aim to tune w in order to give more
desirable output.

Figure 6.4: Artificial Neural Network

Usually, the neurons in the ANN are semi-linear units, meaning they compute
a weighted sum of the input signals before they apply an activation function to
produce the output. This is typically a nonlinear function, this enables the network
to learn nonlinear patterns. Typically, the activation function is continuous and
has a derivative, as this simplifies the learning process significantly. Commonly
applied activation functions are the rectified linear unit (relu) function and the
sigmoid function given in Equation (6.2.4), respectively.

f(x) = max(0, x)

f(x) =
1

1 + e−x
(6.2.4)

To learn mapping input to desired outputs, the network uses a loss function, L(x).
It evaluates the quality of a predicted output versus the actual output. The aim
is to minimize the loss for new, unseen examples, where the network is able to
serve as a general mapping from state to correct output values. An example of
loss functions typically used for linear output function is the mean squared error
(MSE):

L(x) =
1

n

n∑
i=1

(xactual − x)2 (6.2.5)

57



To minimize the loss during training, a technique called backpropagation is applied
to adjust the weights in the network. Briefly explained, backpropagation calculates
the contribution to the loss from each weight in the network by derivation and using
the chain rule, and then adjusts the weights slightly in a direction that decreases
the loss most. The process of taking an incremental step in the direction that
decreases the loss mostly for all weights is called gradient descent. This process is
performed for every data point in the batch of training data.

Estimating the Q-value

The aim of Deep Q-learning (DQL) is to train a deep artificial neural network to
map state action pair to Q-values. The neural network, called the deep Q-network
(DQN), takes in the action and state as input, and gives the corresponding Q-value.
Figure 6.5 illustrates a deep Q-network.

Figure 6.5: Deep Q-network

The only significant difference between tabular Q-learning and DQL is the function
that approximates the Q-value. As the aim of the DQN is to predict the Q-value,
the bellman temporal difference error should be minimized. The agent trains using
(s, a, r, s′) pairs generated from exploration in the environment. Then, it aims to
minimize the TD-error using data from environment interaction.

TDerror =
∣∣∣r + γ ·max

a′
Q(w, s′, a′)−Q(w, s, a)

∣∣∣ (6.2.6)

The loss function that the network aims to minimize is the TD-error squared.
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Li(w, s, a) =
(
r + γ ·max

a′
Q(w, s′, a′)−Q(w, s, a)

)2

(6.2.7)

Minimizing this loss function is done by performing gradient descent on the DQN.
The weights are changed incrementally, such that the loss on the training example
is reduced. The gradients of the loss, with respect to the weight, can simply
be computed by the chain rule and is denoted as ∆wQ(w, s, a). The gradients
symbolize how much a small change in each of the weights will affect the loss of the
Q-network. Using this, the update rule of the network can be formulated.

w← w + α
(
r + γ ·max

a′
Q(w, s′, a′)−Q(w, s, a)

)
·∆wQ(w, s, a) (6.2.8)

α is the learning rate, which is an important parameter for ensuring convergence.
Too small learning rate results in slow learning that might lead to local optimums,
whereas a too big learning rate will cause the algorithm to never converge. The
learning rate is typically the most influential hyperparameter, and tuning it is both
time-consuming and important in order to achieve desired performance.

Issues and limitations

There are some issues with using a neural network for predicting the Q-value that
has to be overcome. Firstly, the weight update on one training sample might
affect the predicted Q-value on other training samples negatively. As a result,
huge amount of data is needed to give precise predictions. Furthermore, this effect
becomes distinct in reinforcement learning, as the state distribution of consecutive
samples is correlated. This might lead to the Q-network training entirely on one
specific part of the state space, and not being able to predict good Q-values for the
rest of the state space. To address this, all transitions, (s, a, r, s′), during training
are stored in an experience buffer. Then, when training the network, samples from
this buffer are chosen randomly, in order to ensure a more uniform distribution
of states. Another advantage is that it provides greater data efficiency, as data
points during training can be used multiple times, which can speed up the training
process. This process is called experience replay and is commonly applied in the
field of reinforcement learning [71].

Another issue is related to the same network calculating both the target value and
the predicted value. This causes both values to update simultaneously each time
the network trains, and have proved to cause divergence and instability during
training [72]. To address this, two networks is used, one for making the predic-
tions of the Q-value, and one for producing the target. The prediction network is
continuously trained, while the target network is only updated every n iteration,
by copying the weights of the prediction network. This leads to a generally more
stable training and increases the chance of converging. This process is visualized
in Figure 6.6. w−i is the weights of the target network at time i.

59



Figure 6.6: Prediction and target network in DQL

L(wi, s, a) =
(
r + γ ·max

a′
Q(w−i , s

′, a′)−Q(wi, s, a)
)2

(6.2.9)

Furthermore, in order to evaluate the best possible action to make, the network has
to perform a prediction of a state and action value(s). As a result, it is only possible
to evaluate a limited amount of actions, which means that the action space has
to be discrete. The disadvantages that comes with discrete actions are highlighted
in Section 6.2.1.

6.2.3 Soft actor-critic

Soft actor-critic is one of the later breakthroughs within the field of reinforcement
learning. After it was published in 2018, it has gained reputation as one of the
most stable off-policy methods for continuous control problems [73]. For our appli-
cation, this is crucial, as using continuous action and state representation are by
far favorable when controlling a real ship.

There are several interesting aspects of this algorithm. First of all, it uses the actor-
critic framework, which is shared among many RL algorithms. It is based on the
general policy iteration algorithm, which incrementally improves the value function
and policy in a known environment, by alternating between policy evaluation and
policy improvement. This algorithm is not RL as it requires a known environment.
However, several actor-critic algorithms are based on the same idea. Generally,

60



Chapter 6. Control strategies

this implies that it aims to learn at least two functions. One is a value function
for estimating the value of a state or a state action pair. This is called the critic.
The actor however, is a policy function, that aims to learn the optimal policy. The
former is used to update the latter, and both functions improve when gaining new
experience. The learning process is visualized in Figure 6.7.

Figure 6.7: Actor-critic architecture

In the soft actor-critic algorithm, an artificial neural net is used both for the actor
and the critics. The actor typically gives the probability of taking the different
possible actions.

π(a | s,w) = Pr [at = a|st = s,wt = w] (6.2.10)

The equation above states that the policy gives the probability of taking action at,
given that you are in state st with network weights wt. There is one significant
difference that separates soft actor-critic from standard RL methods. Commonly,
RL algorithms aim find the policy that maximizes the reward accumulated.

π∗(s) = argmax
a

∑
s′,r

(s′, r | s, a) [r + γv∗(s′)] (6.2.11)

This however, is convenient for algorithms that learns a deterministic policy. This
means that a given state will always result in the same action until the policy is
updated. This enforces the algorithm to have some kind of exploration built in order
to gather more diversified data points. Typically, it is done through some noise
added to the policy, with strategies such as epsilon-greedy. However, soft actor-
critic learns a stochastic policy. For stochastic policies, the aim is to maximize the
objective function J(π), which for a given policy π is the sum of the probability of
visiting all states times the reward it yields.

J(π) =

T∑
t=0

E(s,a)∼ρπ
[
γt · r(s, a)

]
(6.2.12)
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In the objective function in Equation (6.2.12), the of expected discounted rewards
given a probability distribution for visiting each state, ρπ, should be maximized in
the long term. However, this has the potential drawback that it does not reward
exploration, and therefore it might end up with suboptimal policies as a result of
biasing towards exploitation. In order to deal with this, soft actor-critic maximizes
both the reward and the entropy of the policy. The entropy indicates how random
the policy is, and therefore, more deterministic policy will yield lower entropy. This
ensures that the policy trained has sufficient exploration in the stochastic policy it
learns. The objective function to be maximized is as follows:

J(π) =

T∑
t=0

E(s,a)∼ρπ [r(s, a) + αH(π(· | s))] (6.2.13)

where H(π(· | s)) denotes the entropy of the policy π in state s is [74].

Characteristics

Maximizing the objective function using the actor-critic framework ensures a stable
algorithm that is able to handle both continuous states and actions. It gives better
convergence properties than similar popular algorithms such as deep deterministic
policy gradient (DDPG), which is typically brittle and often requires extensive work
of tuning parameters. Furthermore, as an off-policy algorithm, it has the ability to
learn from previous gathered data, which makes it more data-efficient than popular
continuous space on-policy algorithms such as proximal policy optimization (PPO)
and SQL. In addition, it is effective in high dimensional spaces, which makes it able
to learn good policies in complex environments. Despite this, it has the possible
disadvantage that there is no guarantee on converging to the optimal policy, as it
might be stuck in an local optimum. This is also the case for most RL algorithms
that perform well in continuous environments.
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7
Simulation and Discussion

In this chapter, the simulation setup is described and discussed. The load pro-
files applied in the simulations will be presented and the performances of several
algorithms are given. The simulation results will be covered in detail, before the
results are discussed. The chapter is rounded off by a quantitative and qualitative
discussion, comparing the fuel consumption, distribution of costs and aging effects
of the different control strategies.

7.1 Load profile

For the machine learning algorithms to learn, huge amounts of data is required. To
learn how to operate and split the power between battery and fuel cell properly,
training on this data is required for satisfying results. The training data used in the
simulations consist of real ship data from a harbor tugboat operating in Singapore.
The vessel is equipped with two gensets and batteries. Note that despite the fact
that the ship does not have the same power system as the one considered in this
paper. This does not matter as only a real load profile is needed for our simulations.
It should be mentioned that the ship’s modes of operation are transit, idle and ship
assist [75]. Table 7.1 shows the tugboat’s system parameters [76].

The data represents the load demanded by the ship operator, in transit between
two locations. The PEMS has the task of split the power between the fuel cell
and the battery in the most cost efficient manner. One thing to note is that the
optimal PEMS policy might be significantly different in separate operation modes.
For example, it is far easier for the PEMS to predict the future load during deep
sea shipping, as compared to loads during maintenance work for offshore wind
farms. As a result, the controller can in one case keep the FC at a steady level,
reducing wear and tear related to transient loading in one case, while it may be
challenging to maintain a steady load in the other situation. It should, however,
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Table 7.1: Harbor tugboat parameters [76]

Symbol Value Description

Pload,max 3800 kW Maximum propulsion power
Pgen,1max, Pgen,2max 1200 kW Generator rated power
VOC 1000 V Open circuit voltage
Q 520 Ah Battery capacity
Pbat,min 2 C Maximum charging
Pbat,max 3 C Maximum discharging
ngen,1, ngen,2 96.5 % Generator efficiency
nDC 94.5 % Drivetrain efficiency

be possible to train the PEMS to perform well for several different operations
if sufficient amounts of data becomes available. This means that the results for
the different PEMS strategies presented in the following section are trained for
this particular load profile. Figure 7.1 displays the two load profiles used in the
simulations. It consist of two slightly different plots; a training load profile and a
test load profile.

Figure 7.1: Load profiles for training and testing

The training load profile is used to train the algorithms. It consists of one load
cycle of approximately 700 seconds, which is repeated three times. This is to allow
more variations in the battery SOC, as it takes several hundred seconds for it to
change significantly during heavy battery charging/discharging.

The testing load profile is used for the soft actor-critic algorithm, in order to test
it’s performance on another load profile. In practice, it is important that the PEMS
doesn’t overfit, meaning that it is able to perform well on new data, not just the
training data. This is especially true for marine applications, where the stochastic
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nature of the ocean causes randomness in the load demand. The testing load profile
is not, however, used for the tabular methods. Since the tabular methods are not
able to generalize, they can only indicate what to do in exact states that it has
seen before. In other words, they are not able to predict actions that are optimal
unless the state has previously been explored. To combat this, huge amount of real
ship data is required to ensure that all or most states are visited by the tabular
algorithm. This a feature that makes tabular algorithms a weak choice for both
marine and general purpose energy management systems.

7.2 Results

Simulations for all the algorithms introduced in Chapter 6 were performed. In the
following subsections, a basic description of the implementation of the algorithms
will be presented. This includes discussion of the algorithm design choices, the pros
and cons of the algorithm as well as the relevant parameters used. Then, the results
from each simulation are described and presented. Simulations were performed on
both the load profiles described in the previous section. The power delivered from
the battery and FC will be presented for all algorithms, as well as the SOC and
all the costs. The sections also includes a discussion how the results reflects what
was expected, and how to improve the results. All the algorithms and models are
developed by the authors, and the relevant code is attached.

7.2.1 Rule-based

Implementation

The rule-based control algorithm is implemented as a benchmark for evaluating
the performance of the learning based algorithms. The set points are based on
the algorithm proposed in Han et al. [11]. It is simplistic, and considers only two
variables: The battery’s state of charge and the load required. All operation states
for the rule-based algorithm is given in Table 7.2 while Table 7.3 explains the used
terms.

PFC,min is set to 10 % of the maximum FC power. Reducing the FC power further
will result in terrible efficiency on real fuel cells. PFC,max is set to 90 % of the max-
imum FC power, as exceeding this will result in bad efficiency as well as significant
FC degradation. PFC,opt is set to 50 % of the maximum fuel cell power, as the FC
efficiency is good and degradation is generally low at this operating point. Pbat,opt,
Poptdis and Poptchar is set to the charge/discharge rate of 1C. This is considered
sensible, as the battery we use in the simulations has relatively small capacity com-
pared with the operating voltage. Note that these values are by no means the best
possible (which obviously will be different from different battery/fuel cells), but
they are in line with the general principles in operating FC and battery, and are
therefore considered sufficient as a benchmark.
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Table 7.2: Rule-based control algorithm [11]

Rule-based operating states

SOC State Load power Reference power of FC

SOC > 70 %

1 Pload ≤ PFC,min PFC,min

2 Pload ≤ PFC,min + Poptdis PFC,min

3 Pload ≤ PFC,max + Poptdis PFC = Pload − Poptdis

4 PFC,max + Poptdis < Pload PFC,max

30 % ≤ SOC ≤ 70 %

5 Pload ≤ PFC,min PFC,min

6 Pload ≤ PFC,opt − Pbat,opt Pload

7 Pload ≤ PFC,opt + Pbat,opt PFC,opt

8 Pload ≤ PFC,max Pload

SOC < 30 %

9 Pload > PFC,max PFC,max

10 Pload ≤ PFC,max − Poptchar Pload + Poptchar

11 Pload > PFC,max − Poptchar PFC,max

Table 7.3: Terms and values from the rule-based algorithm

Name Value Description

Pload Varying Load required
PFC Varying FC power

PFC,min 12 kW Minimum operating FC power
PFC,max 108 kW Maximum operating FC power
PFC,opt 60 kW Optimal Fuel Cell power
Pbat,opt 19.62 kW Optimal battery power
Poptdis 19.62 kW Optimal battery charging power
Poptchar 19.62 kW Optimal battery discharge power

The algorithm mainly have three purposes. The first is keeping the state of charge
of the battery in a desired region, between 30 % and 70 % of the maximum SOC.
This is considered the operating region that is best for the battery SOH. Second,
it aims to keep the battery as close to the optimal battery charge and discharge
rates. Third, it aims to avoid the low power region of the fuel cell, where it
typically has very low efficiency. The result is a robust controller, that is designed
both for reducing emission and fuel costs by avoiding inefficient operating powers
for the battery and FC. However, it is by no means an optimal controller, and the
degradation effects it aims to limit is just limiting the battery SOC and the power
of FC and battery. Thus, the performance of the controller can be expected to be
stable and reliable, but far from optimal.

Simulation Results

The algorithm was simulated on the train load profile. There is no reason for using
two load profiles, as the rule-based algorithm does not learn from experience, and
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will not cause it to overfit. This is obviously unless the parameters are tuned to
give exceptional results on one specific load profile, which is not the case in this
study. The resulting power split between the fuel cell and battery is given in the
Figure 7.2.

Figure 7.2: Power split and SOC for RB control

In the simulation, the FC primarily operates in two power regions, at 12 kW, 10 %
of max FC power, and at 60 kW, which is the optimal power set point for the
FC. The FC provides a little more power than what is demanded, which causes
the battery to charge slowly for the entire simulation, despite the change in load
required.

Figure 7.3: FC cost for RB control

The FC costs from the simulation is given in Figure 7.3. The FC costs are primarily
related to transients in the load, and fuel costs. The power split shows that the FC
power is generally stable, except for when the algorithm switches between PFC,min
and PFC,opt. At these points, the fuel cell increases at maximum rate. This causes
significant degradation due to transient loading at these instances. The fuel cost is
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increasing at a significantly lower rate where the fuel cell is providing low power,
which is expected. The costs due to low and high power is negligible and zero
respectively.

The battery related costs are displayed in Figure 7.4. The SOC is always in the non-
penalty zone, and the penalty is thus zero. DOD costs are increasing steadily, which
means that between the battery charging, there are minor intervals of discharging.
This is good for the battery health, as from experience, the DOD related cost tend
to increase more severely when the cycles are deeper. The cost of power loss, which
is proportional to i2batt, is low for the entire cycle. This is expected, as the charge
and discharge rates are small for the entire simulation.

Figure 7.4: Battery cost for RB control

The total costs of the rule-based control strategy are given in the Figure 7.5.

Figure 7.5: Operating costs for RB control

For the total time of 2181 s of simulations, the total cost of the vessel is estimated
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to be $7.04. This is considered to be a fairly good result, which will be clear when
comparing to the other algorithms. Of the degradation costs, the two dominating
factors is battery DOD and fuel cell transients. The other factors are considered
negligible. The fuel cost accounts for approximately a quarter of the total costs.
Despite the inaccuracies that certainly exist in the models and the cost functions,
this proves the point that considering degradation is essential in order to design a
PEMS that is cost efficient.

In the first simulation for RB control, the performance seems good. The controller
only operates in the region where 30 % ≤ SOC ≤ 70 %. However, in order to
know how the controller performs in all settings, it has to be tested. Therefore, a
simulation with an initial SOC of 65 % was conducted. The results for the power
sharing, battery SOC and costs are given in the figures below.

Figure 7.6: Power split and SOC for RB control. High initial SOC

Figure 7.7: Fuel Cell costs for RB control. High initial SOC
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We can see that it occur significant power oscillations when the battery reaches 70 %
of maximum SOC. This causes the algorithm to fluctuate between two operating
modes, causing massive load fluctuations in both the battery and the FC.

The massive power fluctuations leads to significant cost due to transient loading.
Other costs for fuel cell remain low.

Figure 7.8: Battery costs for RB control. High initial SOC

When the SOC increases past 70 %, the penalty for SOC starts ticking, and the SOC
cost is becomes a significant cost factor. Also, due to the heavy load fluctuations,
the DOD cost increases in magnitude.

Figure 7.9: Total costs for RB control. High initial SOC

The result is a total cost of $54.8. This is 778 % higher than the case where
initial SOC was equal to 0.5, meaning that the controller performs immensely worse
when operating out of the defined desirable SOC range. This is the controller
implemented and discussed in a well cited paper, though there might be some
differences in the parameters used. Rule-based control strategies might work well
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in some cases, but this proves a significant weakness that they generally possess.
They are not adaptive and their performance vary to a great extent in some cases
compared to other.

7.2.2 Dynamic Programming

The dynamic programming algorithm was implemented, but not used in simula-
tions. As the algorithm is very time intensive, the use of DP was dismissed based on
the time scope of this thesis. When running dynamic programming, every possible
state is explored, making it vulnerable to the curse of dimensionality.

To achieve satisfactory results with dynamic programming, the state space needs
a sufficiently fine grid distribution. As an example, the battery’s SOC should at
least be divided into 100 different states. Ideally, this number should be an order
of magnitude greater to represent the real change in SOC. Nevertheless, this is not
feasible as the training time would be far too long. Curbed by the timeline of this
master thesis, only a lower state space could be considered.

A low state space does, however, contribute to a major drawback of dynamic pro-
gramming. Several actions will get mapped to the same state, greatly reducing the
usefulness. Let’s say we have a course SOC grid size of 11, meaning that the SOC
can have the values from 0 to 10. Actions, in the form of a change in fuel cell power,
gives a corresponding battery power and a resulting SOC. When the grid is small,
several action map to the same SOC state. The algorithm can not distinguish
between those actions as their impact on the system is ambiguous.

The reason the control problem needs a fine grid is to properly differentiate between
actions that are beneficial to the cost optimization. As we have seen, this requires
such a high state space which renders DP too time-consuming. Thus, it is concluded
that this strategy is out of scope.

7.2.3 Tabular Q-Learning

Implementation

The tabular Q-learning algorithm uses three discrete states, the battery SOC, the
fuel cell current and the load demanded. During training simulations, the values
are rounded to a grid with a finite set of states. For our simulations, we used a grid
discretization of [101, 41, 51] states for [SOC, IFC , Pload] respectively, resulting
in a total of 211191 states. This is a huge amount of states that has to be visited
before the algorithm is able to yield a good result. Generally, a finer grid leads to a
more exact result, but it increases the training time. Therefore, this is a trade-off
that has to be considered carefully. We tested with different grid sizes, and landed
on a good compromise between speed and performance.
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One interesting thing to note is that the SOC grid needs to be quite fine. The
reason for this is that the SOC changes more slowly than the other states. If
the grid is coarse, cases where regardless of what action you perform, the SOC
doesn’t change might occur. This leads to even more training time needed before
the algorithm converges, and some times it is even not possible. As an example, if
the SOC grid only consists of 21 points, with the continuous state being rounded
to the nearest 5 %. Here, depending on the battery capacity,it might take several
hundred time steps of aggressive actions before the the battery SOC changes. For
the algorithm, it will then be hard to know exactly what actions contributed to
the change in SOC, and what actions contributed in the other direction.

The action choices are 9 different discrete values, which represents the change in
the value of IFC . The rate of change of the FC is limited to 28 A/s, which is
10 % of the maximum FC current. This rate constraint goes for both increasing
and decreasing the current. With a time step of 1 second, the resulting action
possibilities a are as follows:

a = [−28, −21, −14, −7, 0, 7, 14, 21, 28] (7.2.1)

The size of the resulting Q-table is the number of actions times the number of
states. The relevant size parameters are given in Table 7.4.

Table 7.4: Q-table parameters

Parameter Value

State 211191
Action 9
Q-table size 1900719

In order to balance exploration and exploitation, a decaying epsilon greedy strategy
have been applied during training. This has the effect that during early stages of
training, when the agent has little knowledge of what actions to prefer, it explores.
Then, during later stages of training, it will tend to explore the promising strategies
instead as the probability of taking the greedy action increases. For the simulations
epsilon started at 0.5, and decayed exponentially by a factor of −0.00002 for each
episode. The lower limit of epsilon during training was set to be 0.05, in order
to ensure some exploration. If there is zero exploration, the agent will experience
minimal learning. The development of epsilon during the episodes simulated is
visualized in Figure 7.10.
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Figure 7.10: Evolution of epsilon during training of Q-learning

The reward function for the tabular Q-learning algorithm during training was de-
fined as follows:

RQL = −(Cfuel + CFC,deg + Cbat ·DSOC) (7.2.2)

Where equations and values for the coefficients are given in Table 4.4. The algo-
rithm aims to minimize the cost of operation. The degradation related to DOD
was not included in the reward function, as the DOD was not included in the state
space. The reason this cost is excluded is that it requires at least one more state to
represent the depth of discharge. This will cause the simulation time to increase by
a factor of number of DOD possible DOD states, which was considered too heavy
computationally for our purposes. However, the authors strongly believe that the
algorithm also could give good results with DOD included in the state space, given
sufficient time.

The learning rate, describing how much you emphasize new observations vs old
observations was set to 0.5 during the simulations. This is quite high compared
to what is usual, but considering that the only random factor in the underlying
Markov decision process is the load of the next state, it should be a feasible learning
rate.

The discount factor, which essentially determines how much you weight future
rewards, is an interesting topic of discussion. In the reward function, some of the
rewards are instantaneous, whereas some are delayed. As an example, the penalty
for high transient loading and fuel usage is instant, whereas the penalty for SOC
is delayed. The SOC might be close to the area where it enters the penalty zone,
defined as above 70 % or below 30 % of maximum SOC. But it doesn’t get a
negative reward until you actually enter the penalty zone. However, the actions
that took the battery very close to the penalty zone should also be given some
responsibility for the penalties that occur once it actually enter the penalty zone
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for SOC. As a result, high discount factor is needed to highly emphasize the future
rewards that you can expect to get from taking an action in a given state. The
discount factor for our simulations is set to 0.999.

Simulation Results

The Q-learning algorithm was both trained and tested on the training load profile.
This had to be done, as many of the required loads in the testing load profile
was not present in the training load profile. This highlights one of the biggest
weaknesses that comes with tabular methods. They do not generalize, and can
only give a hint on what action to take in the states that are visited before. In
order to obtain a tabular Q-learning algorithm that is able to perform on any load
profile, vast amount of data is needed, and thus even more training. However,
testing the performance on the training load profile is considered sufficient in order
to get an overall picture of how the tabular Q-learning algorithm learns, and in
addition to it’s strengths and weaknesses.

The algorithm simulated for 200 000 episodes, where each episode is a complete sim-
ulation through the entire load profile. In Figure 7.11, the evolution of the rewards
achieved is given. It is represented as a moving average of 100 rewards in order to
avoid a noise in the display. It can be seen that the algorithm learns steadily, de-
creasing the cost over the simulations, until convergence at approximately 150 000
simulations. It should be noted that there is a close relation between this graph and
the epsilon decay in Figure 7.10. As epsilon decays, the performance will improve
as a result of the agent choosing the action representing the highest Q-value with a
higher probability. However, it can be seen that the rewards improves at a steeper
rate prior to 100 000 simulations, which is a clear indication that the agent learns
during training.

Figure 7.11: Rewards during training of Q-learning

The power split between battery and fuel cell, as well as the evolution of the battery
SOC is given in Figure 7.12.

74



Chapter 7. Simulation and Discussion

Figure 7.12: Power split and SOC for tabular Q-learning control

It can be seen that the FC usually keeps a steady profile, which avoids extensive
transient loading. For most of the simulation time, it also avoids both high and
low power, which also is good for reducing FC cost. The algorithm is able to
contain the battery SOC in the desired region, between 30 % and 70 % for the
entire simulation, which avoids cost due to low SOC.

The costs due to operating the FC is given in Figure 7.13. It can be seen that
costs due to transient loading and fuel dominate, whereas the low power cost is
negligible and the high power cost is equal to zero. This is as expected, considering
the FC power profile, and reflects that the algorithm is able to operate the fuel cell
in an economic sensible way.

Figure 7.13: Fuel cell costs for tabular Q-learning control

The battery costs related to SOC and power loss are zero and negligible, respec-

75



tively. The cost due to depth of discharge, however, is significant. This is because
it is not included in the reward function for tabular Q-learning. Therefore, the per-
formance of the algorithm can not be evaluated based on the DOD. It is included
for the purposes of providing a complete picture of all the costs.

Figure 7.14: Battery costs for tabular Q-learning control

The total costs, DOD excluded are given in Figure 7.15. The Q-learning algorithm
successfully achieves low cost on the metrics it is evaluated on, and yields a good
overall performance. However, the lack of continuous states and actions makes it
very hard to generalize the algorithm for online applications without vast amount
of data.

Figure 7.15: Total costs of tabular Q-learning control
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7.2.4 Deep Q-learning

Implementation

The deep Q-learning algorithm aims to predict the Q-value of a state, and uses
this to choose the best possible action among a discrete set of actions. The state of
the system consist of 3 parameters: The battery SOC, the fuel cell current and the
load demanded. These are, in contrast to tabular Q-learning, continuous values,
which helps DQL overcome the curse of dimensionality. In order to stabilize and
make the training process more efficient, the state s is normalized, such that it
always is in the interval [0, 1]. The input state can thus be written in the following
way:

s =

[
SOC

SOCmax
,

IFC
IFC,max

,
Pload

Pload,max

]
(7.2.3)

where SOCmax = 100, IFC,max = 280 A and Pload,max is the maximum load of
the training load profile. It should be commented that for testing load profile,
the maximum load might exceed the maximum load during testing, and thus the
value of Pload

Pload,max
might exceed 1. However, if the algorithm generalizes well, it

should not have a huge effect on the performance. This is obviously unless Pload
in the testing data is significantly higher than Pload,max from the testing data.
However, in this case, the issue is insufficient training data, which would be prob-
lematic if the values were not normalized as well. DOD was not considered, as
the algorithms performance when considering only three states was unsatisfying.
Therefore, adding more complexity to the state space and reward function was
determined to be waste of time.

The action discretization are the same as for Q-table, given in Equation (7.2.1). The
actions are represented as input to the neural network as a one-hot encoded vector,
which is a common way of representing categorical features in neural networks. The
first index of the one-hot encoded actions represents a decrease in FC current by
28, whereas the last index represents an increase in FC current by 28. Representing
the action as the correct numeric value is also a possibility, but the result should
in theory be the same. The one-hot representation of taking action 0 is given in
Equation (7.2.4).

a0,one−hot = [0, 0, 0, 0, 1, 0, 0, 0, 0] (7.2.4)

The normalized state vector and the action vector is concatenated and fed into the
neural network as a single vector of size 12. The ANN architecture for the DQL
implemented is visualized in Figure 7.16.
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Figure 7.16: The ANN architecture of the DQL algorithm

The reward function for the DQL training was given as follows:

RDQL = −(Cfuel + CFC,deg + Cbat ·DSOC) (7.2.5)

where equations and values for the coefficients are given in Table 4.4. The algorithm
aims to minimize the cost of operation. The degradation related to DOD was
not included in the reward function as the DOD was not included in the state
space.

Like the tabular Q-learning algorithm, DQL uses a decaying epsilon greedy strategy
to combine the concepts of exploration and exploitation. Epsilon starts at 0.5, and
decays to 0.1 over the span of the simulations, with a more aggressive decay than
the one proposed in tabular Q-learning. This is justified by the long simulation
times for each period due to calculations using the neural network instead of a
lookup table. The learning rate of the neural network was tested with different
values, and ended up as 5 · 10−4. The network consists of 4 hidden layers, where
the number of neurons are 128, 256, 256 and 128 in the respective layer. There is no
exact science in setting the hyperparameters of a neural network. There are some
guidelines, such that the learning rate commonly is between 0 and 1, and is typically
way closer to 0 for functions that are more complex in nature. Furthermore, the
amount of hidden layers, and the number of neurons in each layer is also a matter
of trial and error. A neural network with a single hidden layer could potentially
represent any function. However, selecting a feasible network dimension might
significantly increase the probability of successfully training the network to achieve
the desired performance.

The discount factor is set to be 0.999, which is considered relatively high. This
is essential for good performance of the algorithms, as many of the rewards are
significantly delayed, while some are instant.
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Simulation results

The algorithm was trained on the training load profile, and tested on the testing
load profile. This is already an improvement compared to the tabular Q-learning.
Contrary to the tabular algorithm, it is able to generalize, and potentially give
good predictions on states that have not been explored.

The algorithm takes a significantly longer time to simulate than the tabular Q-
learning version, as a result of the vast amount of computation needed to calculate
the predictions from the neural network. Also, training the network is very time-
consuming, as it was trained for 5 epochs on a mini-batch of 1000 (s, a, r, s′) samples
after each episode. There were thus performed 1000 episodes of simulation on the
training load profile before testing the algorithm. However, the observed change in
behavior after about 100 episodes is very limited.

Figure 7.17: Power split and SOC for DQL control

Figure 7.17 shows the simulation results for the FC and battery power, as well as
the battery SOC. The fuel cell power is very stable during the simulation, which
should result in low transient costs. The power seems stable, and increases when
the SOC of the battery goes low. However, the algorithm is not able to keep the
battery SOC above 30 %, which leads to big additional costs. This was the case for
all simulations performed using DQL, and is the main reason that it’s performance
is suboptimal. Still, it seems like that the algorithm learns to avoid charging the
battery over 70 %, bypassing costs related to overcharging. The reason might be
reflected in one of the weaknesses of using a Q-function. Even minuscule differences
in Q-values will result in the agent picking the higher one. Therefore, in some
cases, there might be very small differences causing the agent to pick a suboptimal
action over an optimal one. Nonetheless, the reason might also be an unknown
factor. This is one of the significant drawbacks using neural networks. They serve
as function approximators that can approximate almost any function. They are

79



complex in nature, and it is impossible to know how they learned what results to
give. Despite the huge advances in machine learning the last couple of years, the
field is still immature when it comes to understanding how the algorithms arrive
at their results.

Figure 7.18: Fuel cell costs for DQL control

Figure 7.18 shows the fuel cell costs during the testing of the DQL algorithm.
The overall costs are low compared to other methods. Low power costs are quite
large, compared to what other algorithms yield, however the transient loading
costs are the best among the algorithms tested. This is well reflected in the power
chart.

Figure 7.19: Battery costs for DQL control

The costs of operating the battery are given in Figure 7.19. The SOC costs increase
significantly in the interval where the SOC is below 30 %. The power loss is
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negligible, which is generally the case for all algorithms, as a result of the low
battery internal resistance. The battery has few cycles, which makes the DOD costs
seldom occur. Nonetheless, the figure shows that when it occurs, it has a massive
effect on the cost. This indicate that operating the battery using smaller cycles
might be beneficial in terms of cost. However, the DOD costs is not considered by
the algorithm due to it’s limited performance without DOD as discussed previously
in this section. Therefore, the DOD cost performance is random and does not give
any indication on the actual algorithmic performance.

The total cost of operating the system with DQL, DOD excluded, is given in
Figure 7.20. The costs sum to $11.582, where the huge majority is the SOC costs.
It should be noted that the SOC cost was intended as a soft constrain on the SOC.
The fact that the DQL algorithm was not able to learn this makes it’s performance
seem worse than it actually is, since the SOC cost is the only penalty with an
arbitrary value. However, there is a significant weakness of the algorithm that it
is not able to learn such simple soft constraints. It might be that the algorithm is
able to learn it if it is the only penalty, but in combination with other penalties
it struggles with learning a good behavior that limits the SOC change. Tuning
of hyperparameters or changing the numbers of hidden units or layers in the NN
might improve the performance, but the effect of these changes are hard to predict
and multiple simulations of trial and error is required to success.

Figure 7.20: Total costs of DQL control

7.2.5 Soft actor-critic

Implementation

The soft actor-critic algorithm, in contrast to the Q-value algorithms, trains a
policy network that is used for selecting actions. The code is based on the spinning
up open AI code [73], [74]. It takes in the state of the system, and outputs an
action in the range of [−28 A, 28 A], which represent the change in current over
a time step of 1 second. One of the main advantages of using this algorithm is
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that it is able, unlike the other algorithms discussed, to learn both continuous
action and state values. SAC performed well using the three same input states as
DQL. Because of the promising results, DOD was included in the state variables
and the reward function. The state variables were normalized, while the DOD
is by definition between 0 and 1. The state for the actor-critic model is thus as
follows:

s =

[
SOC

SOCmax
,

IFC
IFC,max

,
Pload

Pload,max
, DODcharge, DODdischarge

]
(7.2.6)

The resulting ANN architecture for the SAC implemented is visualized in Fig-
ure 7.21.

Figure 7.21: The ANN architecture of the SAC algorithm

The soft actor-critic algorithm is the only algorithm of those tested that was able
to perform well using five states and including costs in the reward function. One
of the advantages using SAC is that it is not very dependent on hyperparameter
tuning. This is a huge advantage as this typically is very time-consuming for many
RL applications. As an example, we implemented DDPG, another actor-critic al-
gorithm with continuous state and action space, but after a days of hyperparameter
tuning without good result, we ended up implementing SAC instead. Despite the
comparatively low influence of hyperparameters, the reward function needs the
correct tuning for the network to learn properly. It is inverse correlated with how
stochastic the optimal policy is. Therefore, at lower rewards, the probability of
different action choices becomes uniform, but for too high rewards, the policy is
nearly deterministic [74]. As a result, we had to tune the reward function, and
ended up scaling it up by a factor of 50. The total reward function used for SAC
can thus be written in the following way:

RSAC = −50 · (Cfuel + Cbat,deg + CFC,deg) (7.2.7)
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The network dimensions was the same as for the DQL, with 4 hidden layers of 128,
256, 256 and 128 neurons respectively. The learning rate used for the algorithm
was set to 1 · 10−4. As the SAC algorithm includes DOD related costs, the issue
of delayed rewards should be addressed. The DOD penalty is received by the
algorithm the moment the battery goes from charging to discharging or vice versa.
For high C-rates, when DOD grows, you get a massive penalty as Figure 4.2 shows.
The actions leading up to the point where you go from one battery mode to another
is the actions that essentially creates this penalty, whereas the action that makes the
shift from charging to discharging is just what triggers the inevitable. Therefore,
the discount factor was set to 0.9995 in order to put high emphasis on future
rewards.

SAC was trained on the training load profile, and tested on both the training
and testing load profile to validate the performance. The algorithm ran for 2000
episodes, but it converged successfully after approximately 300 episodes. The power
split between the fuel cell and battery, as well as battery SOC from the simulation
on the test load profile is given in Figure 7.22.

Figure 7.22: Power split and SOC of SAC control on test load profile

The algorithm delegates more FC power in the areas where the required power
is high, while the FC delivers no power in low power demand areas. The control
strategy gives substantial FC power oscillations for large parts of the simulation.
This might be a result of overfitting on the training data. We can see in Figure 7.1
that there are some differences in the load profiles. The training load profile’s
high power demand regions lies at approximately 50 kW whereas the testing load
profile’s high power demand region lies slightly above 40 kW.
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Figure 7.23: Power split and SOC of SAC control on training load profile

In the training data, a load demand of 40 kW always means that the imminent
demand is either growing or decaying at a high rate. This means that the optimal
next action (change in FC power) is always either the maximum if the required
load is growing, or the minimum if the demand is decaying. Since this is what the
algorithm trains on, rapid changes in FC power gives good results. As a result,
when the test load profile is about 40 kW, the algorithm expects that the load
demand goes up or down, since this was the case for the training data. This might
have misled the algorithm and be a reason behind the oscillations seen in the fuel
cell power delivered. This is also reflected in the simulation on the training data,
given in Figure 7.23, where the oscillations in FC power are significantly lower. In
order to improve this, a more varied training load profile is required.

For both the training load profile and the the testing load profile, the SOC is kept
within the desired range, which proves that the algorithm is able to learn important
patterns from the reward function.

The costs of operating the fuel cell with on the testing and training load profile is
given in Figure 7.24 and Figure 7.25, respectively. It can be seen that the transient
costs are relatively large for both load profiles. They are, however, significantly
lower for the training load profile. The testing load profile uses less fuel, as the
magnitude of the load peaks are lower than in the training load profile. High
power is zero for both, but the low power costs are comparatively large to the
other algorithms as the FC power is zero for large parts of the simulation.
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Figure 7.24: FC costs of SAC control on testing load profile

Figure 7.25: FC costs of SAC control on training load profile

The battery related costs from simulation on the test load profile are given in Fig-
ure 7.26. The SOC costs and the costs due to power loss are negligible. The DOD
related cost, however, is the lowest among all the algorithms. This is expected, as
SAC is the only algorithm that includes DOD in the cost calculations. It is able
to reduce the battery degradation costs by 0.1 % compared with the best result
from rule-based algorithm. Finding an optimal policy for reducing the DOD costs
is nontrivial. The cost is calculated using a complex function, involving the C-rate
and DOD, where both factors are important. High cycle depth is penalized heav-
ily, as seen in Figure 7.19, but small DOD cycles can also lead to significant costs,
which Figure 7.8 proves. The SAC algorithm manages to balance the DOD cycles
at a suitable level while keeping the C-rates at a reasonable level. The DOD cycles
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for the simulation on the testing load profile is visualized in Figure 7.27. It can be
seen that the cycle depths are low, at a magnitude of maximum 3 % of SOC, and
the battery is discharging more than it is charging. This is reflected in the SOC at
the end of the simulation, which is significantly lower than at the beginning.

Figure 7.26: Battery costs of SAC control on testing load profile

Figure 7.27: Battery DOD during SAC control on testing load profile

The total costs of the SAC algorithm on the testing load profile is given in Fig-
ure 7.28. Like discussed, the fuel cell transients costs are dominating because of
the lack of more varied training data. Other than that, the performance is on par
with or better than the other algorithms. The costs of both fuel and DOD is the
best for all algorithms tested. The total cost for operating the system with SAC is
$14.199.
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Figure 7.28: Total costs for SAC control on testing load profile

7.3 Performance and cost comparison

7.3.1 Quantitative discussion

A summary of the operating cost with the different algorithms is given in Ta-
ble 7.5.

Table 7.5: Qualitative cost table

Cost comparison of control strategies

Algorithm
Fuel
cost

FC
cost

Battery
cost

Total cost

without DOD

Total cost

with DOD

Rule-based
$1.663 $1.661 $3.715 $3.325 $7.040

50 % initial SOC

Rule-based
$1.510 $25.944 $27.364 $47.195 $54.819

65 % initial SOC

Q-learning $1.158 $1.698 $6.002 $2.858 $8.858

Deep Q-learning $1.653 $0.782 $26.503 $11.582 $28.938

Soft actor-critic $1.040 $9.448 $3.710 $10.489 $14.199

The Q-learning and SAC algorithms perform best in terms of fuel costs. They
manage to reduce fuel costs by 23.3 % and 31.1 %, respectively. This indicates
that they operate the fuel cell and battery at an efficient level. However, there
are two things to be noted here. Firstly, SAC and DQL were evaluated based
on the testing load profile, whereas the rest of the algorithms were tested on the
training load profile. Despite the fact that these load profiles are quite similar,
there are some differences that can result in some percentages difference in the
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fuel consumption. Secondly, the costs of using energy stored in the battery is not
included. The reason for this is that the FC charges the battery, and that cost is
taken into consideration. That way, the cost will not be counted for twice. However,
in the cases where SOCfinal is below SOCinit, the battery has used some power
that the FC did not provide. This cost is not accounted for in our simulations.
In order to account for this, a cost could be included on the deviation between
SOCinit and SOCfinal. In the cases where SOCfinal > SOCinit this should be
given as a reward to the system, as the net power from the fuel cell is higher then
the power consumed by the system.

The fuel cell costs are for all algorithms dominated by the cost of transient loading
and the algorithms that manage to keep transients low are performing best in this
area. The high power cost is never applied for any of the algorithms. This is
because the magnitude of the load is significantly less than the maximum power
of the fuel cell, causing it to operate in lower power regions. The cost of low
power is present, but is being dominated by the huge transient costs. The DQL
is the most FC cautious of the algorithms evaluated, with a operating cost related
to degradation of mere $0.782, which is 53 % lower than the performance of the
rule-based benchmark algorithm. This is reflected well in Figure 7.17, where the
FC power is constant for the majority of the simulation. SAC and rule-based
control with 65 % SOCinit comes out worst in terms of FC costs. The rule-based
control algorithm switches between two control strategies when the SOC reaches
70 %, causing huge fluctuations in the FC power. For the SAC, the overfitting on
the training data causes large fluctuations in the high power regions of the load
profile.

Battery costs are dominated by DOD and SOC costs, while the costs due to power
loss is negligible as a result of low internal resistance in the battery model. It
should be commented that the SOC cost is not necessarily as big as the value
indicates. It was intended as a soft constraint on the SOC value. However, DQL
was not able to keep SOC in the desired range, and as a result, the battery cost
grew very large. SAC is the only algorithm that includes DOD costs in the reward
function. Accordingly, the quality of the DQL and Q-learning algorithms can not
be judged based on that cost. Anyhow, the fact that it was considered not feasible
to include the DOD cost in the reward functions is definitely a drawback. For
DQL, the performance with three states was not good enough that adding more
complexity was a legitimate option. As for Q-learning, the state space grows such
that computation times of simulations that are more than one week is deemed out
of the scope.

Looking at the total costs, we see that Q-learning has the best performance when
looking at costs without DOD. There is one factor that has a significantly influence
on this result. Q-learning is the only algorithm that is tested on the training load
profile. The lack of training data gives a sparse Q-table that cannot predict the
action values from several states as a result of them never being visited during
training. With DOD included, the rule-based when starting at 50 % SOC performs
best, but as discussed previously, it’s brittle since the initial SOC vastly affects it’s
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performance. Among DQL and SAC, which both were tested on the testing load
profile, SAC yields the best performance. SAC is bad at keeping transient fuel costs
low, whereas DQL results in huge costs related to both SOC and DOD.

7.3.2 Qualitative discussion

There are several aspects of the algorithms and the training process that needs
more attention. First of all, despite its mediocre performance, the SAC algorithms
is evaluated to have the best potential of the RL algorithms. It is the only algorithm
that was considered capable of including DOD in the state space. Furthermore, it
is the only algorithm that operates in both continuous action and state space. For
real applications, this is a huge advantage as it increases both the flexibility and
the potential performance of the algorithms — imagine a car only able to operate
at four different speeds!

There is also a huge difference in performing tests on the same load profile used for
training, versus performing on an independent load profile. Real ships are not able
to predict the future load, as a result of the stochastic nature of the environment
it operates in Currents, waves, wind and other factors constantly influences the
ships motion in unpredictable ways. The ability to learn a policy that generalizes
well for unseen load profiles is therefore crucial for satisfying performance. Even
so, a sufficient quantity of data is a requirement for machine learning algorithms
to learn complex patterns. With more training data, the results would most likely
have improved significantly.

Using RL to control PEMS of real ships is an immature field. The methods used
in this paper, with using the estimated actual cost of energy system components
to learn the optimal policy, is to the authors knowledge not tested before. Subse-
quently, there is a huge potential of improvement. The reward function that the
agent tries to maximize over time is a complex RL task. It consists of seven sepa-
rate functions applying costs to actions, some of which are conflicting in nature. As
an example, the agent aims to minimize transients and fuel costs, while keeping the
SOC above 30 %. The two former would suggest that the agent should just keep
the fuel costs at zero. But this would lead to the SOC decreasing below quickly,
resulting in huge SOC costs. The balance between these costs is hard to learn, and
the agent is prone to being stuck in a local minimum.

The challenge of delayed rewards is also something that has to be addressed. Costs
of DOD are applied only when the agent goes from charging to discharging, or
vice versa, while the actions taken prior to this determines the magnitude of the
cost given. It is important that the agent learns that the actions prior to the
reward is essential to generating that reward. We have handled this problem by
using high discount factors. However, this is probably not the best option to deal
with this problem as it is time consuming, and actual value of two different states
become very similar. Thus, small inaccuracies might lead to different policies. RL
methods that might be applied to deal with this is Monte Carlo simulations, where
you simulate for an entire episode before you update all states visited with the
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accumulated rewards. Another solution is to include eligibility traces, which is a
technique that combines the principles of Monte Carlo simulations and temporal-
difference, the technique for learning applied in Q-learning and DQL.

The algorithms implemented and tested proved promising results. All algorithms
are able to learn sensible control policies that work well for some parts of the
PEMS. However, the results indicate that none of the algorithms are able to yield
a global optimal policy for the entire optimization. Therefore, the authors conclude
that there is definitely a potential for improvement on the results presented in this
chapter.

90



8
Conclusion

This thesis has investigated the viability of different reinforcement learning algo-
rithms for controlling the power and energy management system of a zero-emission
hybrid ship. The algorithms aim to estimate and minimize the ship’s operating
costs when fuel consumption and degradation of both the battery and fuel cell are
taken into consideration.

The increased attention towards harmful emissions has accelerated the pursuit for
zero-emission solutions in the shipping industry. Fuel cell and battery technologies
are promising environmentally friendly energy sources, complimenting each other
well for maritime applications. The battery has great power density and response
time attributes, making it an excellent power source for load fluctuations. These
qualities are inadequate in fuel cells, but their excellent energy density makes them
a suitable candidate as main power source. The insufficient energy density in
batteries is the main reason why they are not feasible as a primary energy source
in deep-sea shipping.

To distribute the demanded load between the fuel cell and battery, a PEMS is
required. Several considerations must be assessed when implementing a PEMS.
In addition to the reliability and safety required, the cost of operating the system
should be optimized. This includes the fuel and degradation costs, caused by
operating the fuel cell and battery. Fuel costs are simple to calculate, whereas
degradation costs are complex and time-consuming to estimate. When evaluating
the performance of different PEMS strategies, a reward function for estimating
all operational costs was established. Models for fuel cells and batteries, along
with different PEMS strategies, were implemented in Python to evaluate their
performance.

The thesis presents several reinforcement learning algorithms for PEMS control,
aiming to minimize the operating costs. Research on learning based PEMS is
still immature. Despite this, the learning algorithms are able to outperform the
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benchmark rule-based control method on several metrics. The deep Q-learning
algorithm was able to decrease the cost of fuel cell degradation with 53 %, compared
with the best performing benchmark algorithm. Soft actor-critic managed to reduce
fuel cost by 31 % and the battery degradation cost by 1 %, when compared to the
rule-based algorithm. The field of learning based algorithms for PEMS control
definitely has a huge potential for improvement and can become the go-to method
for power distribution in hybrid power systems in the years to come.

8.1 Further work

The work in this thesis revolve around the models developed by the authors, and
the strategies used to control these models. As discussed in Chapter 5, both the
fuel cell and battery model are based on several assumptions. Thoughts on how to
improve the quality of the work is briefly discussed below.

The first suggestion is to expand the existing models. The fuel cell model only
considers the voltage drop from the Ohmic region. Including varying pressures,
temperatures and flow rates would result in a more sophisticated model, accurately
representing a real-life fuel cell. Likewise, the battery model can be extended by
including temperature effects, differentiating between charge and discharge char-
acteristics, and introducing nonlinear effects. An improved, more precise reward
function should accordingly be developed. Effects incorporated into the model
should be translated to rewards that the PEMS can effectively include in its opti-
mization.

The simulation results enlightened the drawbacks of having insufficient or uniformly
distributed training data. This contributes to the problem of finding a generalized
policy, providing close to optimal control when tested on new load data. It is
proposed to train on several diversified load profiles, and increase the training
simulations to enhance the PEMS’ performance. The amount and diversity of
training data is paramount for machine learning methods, in order to generalize to
an approximate global optimal policy.

An alternative approach is to perform online simulations on a real ship. Although
complex and resource intensive, this would yield important results. Simulation
results are highly uncertain due to model inaccuracies. Testing on a real ship
can validate the actual performance of the algorithms, and whether the chosen
actions cohere with offline simulations. Accessing the actual power system of a
specific marine vessel would also eliminate any guesswork related to component
characteristics, and states could be monitored continuously.

To improve the performance of the PEMS, further work on the learning based algo-
rithms should be conducted. The algorithms implemented show promising results,
but they are not optimal. There is limited research in the field of learning based
PEMS, and the potential of improvement is significant. Algorithmic challenges
that should be addressed include delayed rewards, improved reliability and, testing
of on-policy algorithms such as proximal policy optimization.
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Recommended further work also includes extending the horizon of operations. In
order to run simulations spanning several years, the model needs to be time-varying.
The characteristics of all power components change during their lifetime. Such ef-
fects are negligible when looking at short time series. However, if the objective is
to control the power sources for their entire lifetime, the change in characteristics
should be included. By considering state of health in the optimization, optimal
performance for the entire life-cycle could be achieved. Degradation effects pro-
posed in this thesis is only included in the reward function. A time-variant model
should incorporate these effects in the model itself.

These ideas can further be enlarged by envisioning a future ship with the proposed
fuel cell-battery hybrid power system. Sensors enable the algorithms access to
huge amounts of system data. The effects from every action and the corresponding
degradation is available instantaneously, allowing the model to learn continuously.
As degradation effects are somewhat uncertain, substantial amounts of data are
needed to accurately model their impact on the system.

Although learning based methods in marine control systems are still in its infancy,
there are many indicators that advertise its potential. Some of the untapped po-
tential can be further explored by acquiring vast amounts of data from the power
system. Data based learning methods can contribute to increase the demand for
zero-autonomous vessels in the shipping industry.
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