Gustav Svensson

Fatigue prediction models of Dynamic Power Cables by laboratory testing and FE analysis

Master's thesis in Nordic Master in Maritime Engineering Supervisor: Svein Saevik, Jonas Ringsberg June 2020

Norwegian University of Science and Technology Faculty of Engineering Department of Marine Technology

Fatigue prediction models of Dynamic Power Cables by laboratory testing and FE analysis

By Gustav Svensson

Master's thesis in Maritime Engineering

Submission: 10th June 2020. Supervisors: Prof. Svein Saevik, Prof. Jonas Ringsberg.

Department of Marine Technology Facility of Engineering Norwegian University of Science and Technology

Department of Mechanics and Maritime Sciences. Division of Marine Technology Chalmers University of Technology

MASTER THESIS SPRING 2020

for

Stud. Tech. Gustav Svensson

Fatigue prediction models of Dynamic Power Cables by laboratory testing and FE analysis

Utmattingsmodeller for kraftkabler basert på kombinert testing og elementanalyse

Power cables used as dynamic risers connecting floating offshore wind turbines to the seabed infrastructure will be exposed to loads related to current, waves and associated floater motion. Full scale fatigue tests of copper conductors have been performed and are still ongoing. Meanwhile, small scale fatigue tests of each wire of the conductor have also been performed.

The master thesis work is to be carried out as a continuation of the project work performed during Fall 2019 where the major objective is to combine small scale test fatigue data with FE analysis to investigate the correlation with full scale test results. The work is to be carried out as follows:

- 1. Continue literature review into power cables, fatigue of copper conductors, relevant rules and standards, methods for structural analysis of cabled structures.
- 2. Establish models of the full-scale test set-up at different curvature radii and perform FE stress analyses.
- 3. Perform stress sensitivity analyses with respect to element mesh, contact stiffness by considering axial stiffness test data, modelling procedure and friction coefficient.
- 4. Perform fatigue analysis and compare to full scale test data.
- 5. Conclusions and recommendations for further work

The work scope may prove to be larger than initially anticipated. Subject to approval from the supervisors, topics may be deleted from the list above or reduced in extent.

In the report, the candidate shall present her personal contribution to the resolution of problems within the scope of the thesis work

Theories and conclusions should be based on mathematical derivations and/or logic reasoning identifying the various steps in the deduction.

The candidate should utilise the existing possibilities for obtaining relevant literature.

Thesis report format

The report should be organised in a rational manner to give a clear exposition of results, assessments, and conclusions. The text should be brief and to the point, with a clear language. Telegraphic language should be avoided.

The report shall contain the following elements: A text defining the scope, preface, list of contents, summary, main body of thesis, conclusions with recommendations for further work, list of symbols and acronyms, references and (optional) appendices. All figures, tables and equations shall be numerated.

The supervisors may require that the candidate, in an early stage of the work, presents a written plan for the completion of the work.

The original contribution of the candidate and material taken from other sources shall be clearly defined. Work from other sources shall be properly referenced using an acknowledged referencing system.

The report shall be submitted in electronic format (.pdf):

- Signed by the candidate
- The text defining the scope shall be included (this document)
- Drawings and/or computer models that are not suited to be part of the report in terms of appendices shall be provided on separate (.zip) files.

Ownership

NTNU has according to the present rules the ownership of the thesis reports. Any use of the report has to be approved by NTNU (or external partner when this applies). The department has the right to use the report as if the work was carried out by a NTNU employee, if nothing else has been agreed in advance.

Thesis supervisors:

Prof. Svein Sævik, NTNU, Dr. Naiquan Ye, SINTEF Ocean and Prof. Jonas Ringsberg, Chalmers.

Deadline: 10th of June, 2020

Trondheim, January 7, 2020

Svein Sævik

Candidate - date and signature: 9 June Gustar Svenson

Table of contents:

Preface		VI
Acknow	ledgement	VII
Abstrac	t	VIII
Summa	ry	IX
List of f	gures	XI
List of t	ables	XII
Nomeno	clature	XIII
1. Int	roduction	1
1.1	Background	1
1.2	Motivation	3
1.3	Objectives	3
1.4	Laboratory test data	4
1.5	Limitations	4
2. Sul	osea Power Cables	5
2.1	General design of subsea power cables	5
2.2	Conductors	6
2.3	Terminology	8
2.4	Fatigue of copper conductors	
2.5	Standards and Guidelines	
2.6	Stick and Slip behaviour	
3. Fat	igue	15
3.1	Introduction	15
3.2	Mean stress correction	16
3.3	The SN-Approach (Whöler curves)	
3.4	Cumulative damage – Miner sum	
3.5	Analytical calculation of stress ranges	
4. Fre	tting	21
4.1	Introduction	21
4.2	Contact theory	21
4.3	Fretting maps	
5. Fin	ite Element Analysis	25
5.1	Overview of the Finite Element method	25
5.2	BFLEX	26
5.3	Principle of virtual displacement	27
5.4	Nonlinear analysis	

5.	5	Material Modell	.29
5.0	6	Solution procedure	.30
	5.6.	.1 Static analysis	.30
	5.6.	.2 Dynamic analysis	.31
	5.6.	.3 Convergence criteria	.33
5.	7	Elements formulation	.33
	5.7.	.1 PIPE31	.33
	5.7.	.2 HSHEAR363	.34
	5.7.	.3 HSHEAR353	.34
	5.7.	.4 HCONT463	.37
	5.7.	.5 HCONT454	.37
6.	Мо	delling	.39
6.	1	Procedure	.39
6.2	2	Cross-section definition	.41
6.	3	Material data	.41
6.4	4	Boundary conditions	.42
6.	5	Mesh Sensitivity & Length optimization	.42
6.	6	Fatigue set up	.43
7.	Res	sults	.44
7.	1	Analytical model	.44
7.	2	Friction coefficient	.44
7.	3	Shear stiffness of contact elements	.45
7.4	4	Friction forces	.46
7.	5	Ultimate strength and mean stress correction	.46
7.	6	Predicted FE results vs laboratory tests	.47
7.	7	Indications of Fretting	.48
8.	Dise	cussion	.51
8.	1	General	.51
8.2	2	Mean stress effect	.52
8.	3	Fretting	.53
9.	Con	nclusions	.54
10.	Sı	uggestions for future work	.55
11.	R	eference List	.56
12.	A	ppendix	.59

Preface

This master thesis presents the final work of the Joint Nordic Master's degree programme in Maritime Engineering with specialisation in offshore structures. The Joint programme takes place on two universities and the student receives one MSc diploma from each university. The work has been conducted at the Norwegian University of Science and Engineering during the spring semester of 2020. The scope of the work was suggested by Professor Svein Saevik who is also the main supervisor of this work. The work builds on a project work course (7.5 ECTS) conducted in the Autumn semester of 2019.

This work was written during the outbreak and under the restrictions of the Covid-19 pandemic. This forced me to work from home and to spend most of the days in a small student apartment, something that indeed affected my spirit and motivation. I am grateful for the relative mild restrictions in Norway. Being allowed to go running and clear my mind in the beautiful nature, now seems like a key factor for dealing with this time.

During the modelling phase, quite a lot of results had to be scrapped, this was quite stressful since one simulation takes roughly two weeks. The reason for this is mistakes done by me, but as well due to some bugs that were found in the software. Unfortunately, this delayed my work but since the bugs were fixed, a side effect of this work is an improved software.

Gustav Svensson

Gustar Svensson

Acknowledgement

This master thesis is written for two universities, but the work has been carried out at Norwegian University of Science and Technology under the supervision of Professor Svein Saevik. His guidance, support, advice and time during this work are gratefully acknowledged. My secondary supervisor Professor Jonas Ringsberg at Chalmers is also acknowledged for his help and support.

I would also like to express my gratitude for all the support and love from my family and friends.

Abstract

Floating wind turbines are becoming more popular and is likely to be a major source of energy in the future. These floating turbines relies on dynamic subsea power cables for the transportation of electricity which are exposed to fatigue loading. It is desirable to be able to model these power cable for e.g. lifetime predictions. This work focusses on the conductor in the power cable. A FEM model was developed, and reversed bending was simulated. The results were compared to laboratory tests of the same kind and shows that the model overestimates fatigue life. This suggest that the fatigue damage process might be induced by fretting. The study also discusses the influence of mean stress effect and whether fretting is likely to occur based on a simplistic analysis.

Summary

In these days there are an increasing demand for carbon dioxide free energy. Many countries and EU have set goals to reach a carbon dioxide free energy supply in the near future. Wind power is one technique that plays an important role in reaching these goals. In the past, wind turbines have been built mostly onshore and to some extent offshore but in shallow waters. Because suitable land area is limited and increasing public complains, it is desirable to build further away from the shore and therefore in regions of deeper water. This also comes with the benefit of increased efficiency because wind speed tends to increase with distance from shore.

Floating wind turbines are a relatively new technique that allows the constructions to move into regions of deeper waters. Previously, offshore wind turbines have been built on fixed foundations which are limited to depths of 50-60 meters. Floating turbines thereby takes wind power into a new phase of its development because they can be installed at greater depths.

These floating turbines relies on dynamic subsea power cables for the transport of electricity from the turbine to the seabed. These cables are exposed to dynamic loads such as tides, waves and movement of the floating turbine, the fatigue life of the power cable must therefore be considered with regards to these loads.

Dynamic power cables have a complex mechanical behaviour involving several parts. This master thesis work focused on a conductor which is the part of the power cable that carries the electricity. A dynamic power cable needs to be flexible. This property comes from the mechanical behaviour of stick and slip domains. Initially, with none and little bending the cable behaves as a rigid beam. But as bending continues, sliding occurs between the layers in the cable which gives the cable its flexibility.

BFLEX FE software developed by Sintef was employed for modelling and simulation of the conductor. The conductor was simulated in tension-bending mode where it was bent over a bellmouth with two different radii of curvature. The intention was to represent the loading of a conductor hanging from a floater trough a bend stiffener (bellmouth) and exposed to the loads from motions of the floating turbine. The model was developed with the basis that fatigue life is mainly governed by longitudinal stress ranges. The fatigue life estimation was based on stresses from the model and SN-data from individual wires.

The result shows that when comparing to laboratory tests of the same setup, that the model overestimates fatigue life. This suggest that something more is going on and that

the fatigue life is not mainly governed by longitudinal stress ranges, in this test setup. It is likely that the fatigue damage process is induced by fretting. A simplistic fretting analysis was done based on displacement amplitude and contact pressure. This analysis shows that the conditions for fretting fatigue are sufficient to reduce the fatigue life. This is more likely to occur in the larger radius model which fits well with assumptions and the predicted life of the two models.

The study also shows that the friction coefficient and the shear stiffness of the contact elements has a strong influence on the result. Stresses due to friction comes from contact between the layers and hoop contact within the layer. It was found that the friction forces from the hoop contacts are small compare to inter layer contacts. This validates the analytical model which assumes no friction forces from hoop contact.

It is suggested for future work to further study whether fretting is present and also investigate the effect mean stress has on copper conductors.

List of figures

Figure 1.1: Different types of foundation structures [3]	2
Figure 1.2: Grid network. Reproduced from [3]	2
Figure 2.1: Typical three-core power cable [10]	5
Figure 2.2: Different conductor designs [5]	7
Figure 2.3: Motions on power cable [7]	7
Figure 2.4: Forces on a conductor [7]	8
Figure 2.5: Cross section of conductor including contact forces. Red arrows show inl	ine
contact and black arrows show point (trellis) contact	9
Figure 2.6: Inline and trellis contact.	.10
Figure 2.7: Surface irregularities of a wire [20].	.12
Figure 2.8: Stick (I) and Slip (II) zones of a cross-section. Reproduced from [23]	.14
Figure 3.1: Stress ranges. Reproduced from [24]	.15
Figure 3.2: Haig's Diagram [23]	.17
Figure 3.3: SN- Curve. Reproduced from [24].	.18
Figure 3.4: A simple conductor model [6]	.20
Figure 4.1: Slip and stick regions in a contact zone. Reproduced from [28]	.22
Figure 4.2: Tangential force vs displacement. (a) Stick regime, (b) Mixed stick-s	slip
regime, (c) Gross slip regime	.23
Figure 4.3: Fretting map [33]	.24
Figure 5.1: BFLEX system architecture	.27
Figure 5.2: Co-rotational formulation [23]	.28
Figure 5.3: Hardening rules [36]	.30
Figure 5.4: Newton-Raphson iteration [34]	.31
Figure 5.5: HSHEAR363 Element	.34
Figure 5.6: HSHEAR353 Element	.35
Figure 5.7: Kinematics of helix element	.36
Figure 5.8: HCONT463 Element	.37
Figure 5.9: HCONT454 Element	.38
Figure 6.1: Model	.39
Figure 6.2: Axial force histories at end beams due to reversed bending	.40
Figure 6.3: Bending curvature along the model at maximum deformation	.43
Figure 7.1: Contact forces vs time of an element	.46
Figure 7.2: Influence of ultimate stress when using Goodman mean stress correction	.47
Figure 7.3: Cycles until failure of the laboratory tests vs predicted stress ranges	.48

List of tables

Table 1: Results of tension-bending test of the conductor	4
Table 2: Example of typical conductors for subsea applications [4]	6
Table 3: Material data of structural elements	41
Table 4: Material data of contact elements	42
Table 5: Summary of stress contribution predicted by the analytical model	44
Table 6: Sensitivity study of friction coefficient	45
Table 7: Shear stiffness sensitivity	45
Table 8: Results no hoop contact elements	46
Table 9: Displacement amplitude	49
Table 10: Estimated pressure	50

Nomenclature

FEA	Finite element analysis
SCF	Stress concentration factor
DFF	Design fatigue factor
FEM	Finite element method
TL	Total Lagrange
UL	Updated Lagrange
MSC	Mean stress correction
\overline{T}	Mean global tension
\overline{M}_T	Mean global moment
ΔT	Dynamic tensile load
ΔM_T	Dynamic torque
Δβ	Dynamic curvature
\overline{F}_{x}	Mean axial force
ΔF_x	Dynamic axial force in wire
ΔM_x	Dynamic torque moment around the helix tangential x-direction.
ΔM_{v}	Dynamic bending moment around the bi-normal y-direction.
ΔM_z	Dynamic bending moment around the surface normal z-direction
μ	Friction coefficient
α	Lay angle
θ	Angle trellis contact is formed at
М	Bending moment
Ε	Elastic modulus
Ι	Area moment of inertia
κ	Curvature
Q_1	Axial force in a single wire before slip.
Ā	Area
R	Radius of a layer
ψ	Polar coordinate of a cross-section
X^1	Local length coordinate along the helix
τ	Shear force
σ	Stress
$\Delta \sigma$	Stress range
σ_m	Mean stress
σ_a	Stress amplitude
R	Stress ratio (R-ratio)
σ_U	Ultimate strength
σ_y	Yield strength
Ν	Number of cycles until failure
m	Exponent in crack grow relation in the Basquin equation.
С	Constant in the Basquin equation
D	Damage
$\Delta \sigma_T$	Stress range from dynamic tension
$\Delta \sigma_{tc}$	Stress range from transverse curvature
$\Delta \sigma_{nc}$	Stress range from normal curvature
$\Delta \sigma_{f}$	Stress range from friction

EA _{full}	Axial stiffness of the conductor
Δκ	Curvature range
ε _c	Strain caused by mean static tension
р	Normal pressure
Q	Tangential force
а	Semi width of contact zone
Р	Normal force
S	Generalized modal point forces
k	Element stiffness matrix
v	Nodal point displacements
S^0	Equivalent nodal point forces due to element loads.
R	System nodal point forces of the structure
K	System stiffness matrix
r	Global displacement vector
R^0	System equivalent nodal point forces due to element loads
ρ	Material density
ü	Acceleration field
f	Volume force vector
σ	Cauchy stress tensor
3	Natural strain
t	Surface traction
u	Displacement vector
М	Global mass matrix
С	Global damping matrix
Q	Global load vector
ν	Poisson's ratio
ε	Strain
γ	Shear strain
θ	Rotation
u _{i,j}	the differentiation of the displacement components u_i along X^i with respect to the curvilinear coordinate X^J .
ε ₁	First order axial strain
ε2	Centreline rotations about X ³ axis
ε ₃	Centreline rotations about X ² axis
ω_1	Centreline torsion
ω_2	Curvature about X ² axis
ω_3	Curvature about X ³ axis
ω_{ip}	The quantities represent the prescribed torsion and curvature
	quantities from bending.
κ_1	Initial total accumulated torsion of the cross-section centreline
κ ₂	Initial accumulated curvature in the X^1 - X^3 plane
κ_3	Initial accumulated curvature in the X^1 - X^2 plane
κ _t	Transverse curvature

Cross-section

L1 = Core layer L2 = First helical layer T1 = First Tape layer L3 = Second helical layer T2 = Second tape layer L4 = Third helical layer T3 = Third tape layer

1. Introduction

This chapter presents a background, motivation and specifies the objectives of this master thesis. It also gives an introduction to some test data that is developed by others and used for comparison in this work.

1.1 Background

In these days there are an increasing demand for carbon dioxide free energy and wind power is one of the currently available techniques that meets this demand. Wind power is not a new technique, in fact, it has been an important source of energy to mankind throughout the history. The power of the wind was first used to power ships with the help of sails and later on wind was also used to pump water and to grind grains. Modern use of wind power uses turbines to convert mechanical energy into electrical energy.

Wind turbines are mostly built onshore but due to limited suitable land and public complaints about e.g. noise, the percentage of windfarms built offshore are increasing [1]. In the year of 2018, wind power was installed with a total capacity of 51.3 GW, were offshore installations correspond to about 8 percent or 4.5 GW. The offshore market is expected to continue grow in the near future, in the years of 2020-2023 a capacity of 4.9, 8.3, 9.9 and 10.1 GW is expected to be install, respectively [1].

Existing offshore wind turbines are mostly built on fixed seabed foundations, installations of this kind are restricted by a water depth of 50-60 meters. Many regions with the highest available energy have greater depths than this. Also, many coastal countries do not even have the opportunity to install offshore wind power with fixed foundations. The reason for this is the continental shelf, which drops away quickly and steeply, making the regions not suitable [2].

Floating wind turbines is a relatively new technique that allows installations to move into regions with deeper water. Another benefit that comes with this is that wind speed tends to increase with distance from shore. Some examples of different types of foundation structures are given in Figure 1.1. As floating wind turbines opens new markets and possibilities for a larger offshore energy capacity one might say that wind energy is entering a new phase of its development.

Chapter 1 | Introduction - Background

Figure 1.1: Different types of foundation structures [3].

As the demand for floating turbines increases so does it for subsea power cables. The power cable industry has experienced significant growth over the recent years and the demand is growing steadily. The grid network of a wind farm consist of different types of power cables which allows the electricity to flow from the turbines to the shore, an overview of a grid network is shown in Figure 1.2 [4].

Figure 1.2: Grid network. Reproduced from [3].

The inter-array cable connects the floating turbine to the seabed. This cable, also referred to as a dynamic subsea power cable, is exposed to fatigue loading from waves, currents and from movements of the floating platform [4]. A typical dynamic power cable has voltage of 10-36 kV and consists of three copper conductors [5]. The cable can either hang freely from the platform down to the seabed or buoyant modules can be attached to the cable, a common configuration of such modules is what creates the "s-shape" shown in Figure 2.3. The purpose of distributing modules in this way is to minimize dynamic responses by decoupling the platform motion from the seabed connection point [4]. The turbines can also be connected between each other instead of to the seabed. This work represents the situation and loading of a conductor hanging from a floater trough a bend stiffener (bellmouth) being exposed to loads from motions of a floating turbine.

1.2 Motivation

Many countries and EU have set up goals to achieve a carbon dioxide free energy production in the near future. The trends seen today suggest that floating wind power will play an important role in reaching these goals. Therefore, it is of interest to use numerical models to predict stresses in power cables used for these applications.

The main goal of this master thesis is to combine small scale test fatigue data with FE analysis to investigate the correlation with full scale test results. This is done in order to reduce the gap between observed test data and finite element analysis.

1.3 Objectives

The main objectives of this master thesis are:

- 1. Continue literature review into power cables fatigue of copper conductors, relevant rules and standards, methods for structural analysis of cabled structures.
- 2. Establish models of the full-scale test set-up at different curvature radii and perform FE stress analyses.
- 3. Perform stress sensitivity analyses with respect to element mesh, contact stiffness by considering axial stiffness test data, modelling procedure and friction coefficient.
- 4. Perform fatigue analysis and compare to full scale test data.
- 5. Conclusions and recommendations for further work.

1.4 Laboratory test data

The results of this master thesis are based on and compared to experimental tests done by Nasution et al. [6, 7]. The fatigue life prediction is based on a SN-curve developed by single wire test data and the results of the model are compared to test data of the full cross-section conductor.

The single wire tests were done in tension-tension mode until failure. The full crosssection conductor tests were done in tension-bending mode in a test rig. The bending was applied in one plane and the procedure was monitored by extensive instrumentation. The failure criteria for the full cross-section tests was taken as when a rapid change of the conductor length was measured. The fracture was investigated with a scanning electron microscope and no signs of fretting was found. The results of the full cross-section tests are show in Table 1.

Table 1: Results of tension-bending test of the conductor				
Radius of curvature [m]	No. of cycles to failure	Remark	Failure position (Layers)	
3	212 644	Unlubricated	2 nd – 3 rd	
3	225 244	Unlubricated	2 nd – 3 rd	
3	262 394	Unlubricated	2 nd – 3 rd	
6.5	617 474	Unlubricated	2 nd – 3 rd	
6.5	951 059	Unlubricated	2 nd – 3 rd	
6.5	980 782	Unlubricated	2 nd – 3 rd	
3	387 178	Lubricated	2 nd	
3	372 636	Lubricated	2 nd	
3	434 643	Lubricated	2 nd	

1.5 Limitations

The progress of this work resulted in a move towards theory of fretting and mean stress effect on copper. When studying these fields, one often faces material science such as microstructures, grain sizes etc. This has been noted but not studied in depth since it is beyond the scope of this work.

2. Subsea Power Cables

This chapter introduces subsea power cables. Several topics are covered in order to understand the mechanics and to design them.

2.1 General design of subsea power cables

Several different designs and configurations of power cables exists. Thies et al. [8, 9] describes the main 7 components that a typical subsea power cable consists of as:

- *Conductor core.* The core carries the electrical current and consists of several layers of wires.
- *Electrical insulation*. The conductor is insulated by the possible use of three different design/materials types: traditional oil-impregnated paper, cross-linked polyethylene or ethylene propylene rubber.
- *Screen.* A semiconducting layer around the core that reduces the electric field strength and avoids field concentration zones.
- *Sheath*. A metal layer around the core that acts as a water barrier and protects the cable against fault currents.
- *Armature.* An outer metal armature that provides the cable with mechanical strength and impact protection. Usually made of galvanized steel wires.
- Optic fibre. Optional, used for data transmission and monitoring.
- *Protecting sheath.* An outer layer that consists of polypropylene for abrasion resistance.

Figure 2.1: Typical three-core power cable [10].

The cable is designed by combining the components in a cylindrical and/or helical configuration and with different sizes. Cable design is commonly tailored by the manufacturer for a specific application and standardized cables does not exist [9]. A typical subsea power cable is shown in Figure 2.1.

The vast majority of existing subsea power cables are used in static applications. This means that they are connected to a fixed structure and not exposed to any significant fatigue loading. Floating wind turbines requires cables that are not fixed and thus exposed to fatigue loading. Static cables are too vulnerable for fatigue loads and therefore are dynamic power cables required for these load applications [9].

2.2 Conductors

The main purpose of a power cable is to transport electricity and the conductor(s) is the responsible component for this. Conductors are usually made of copper or aluminium. The choice of material depends on price and application. Copper is more expensive than aluminium. However, power cables with copper conductors are less expensive since copper allows a smaller cross-section of the conductor and thus are less lead and steel needed for the outer layers [5]. Some example of data for typical conductors for subsea power cables are given in Table 2.

Nominal cross-section area of copper conductor [mm] 95 120 185				240
Outer diameter [mm]	104	106	114	119
Weight [kg/m]	16	18	21	23

Table 2. Europeulo of temical conductors for subcost o

Conductors can be designed in many ways and some common designs are shown in Figure 2.2. Conductors in subsea power cables are mostly stranded from round wires. In the manufacturing process of these, single wires are laid up in layers and placed in a stranding machine. The conductor is then compressed either layer by layer or at the end of the stranding machine. The compression is done by dies or roller sets and reduces the gaps between the wires of the conductor. A filling factor of 92 percent is achievable for round wires [5].

Figure 2.2: Different conductor designs [5]

Figure 2.3: Motions on a power cable [7].

2.3 Terminology

The terminology in this section is taken from Nasution et al. [7] and shown in Figure 2.4.

Figure 2.4: Forces on a conductor [7].

The power cable is exposed to several forces such as gravity, waves, and movement of the connecting point. Gravity causes:

- A mean global tension, \overline{T} .
- A mean global moment, \overline{M}_T .

Heave and surge motion of the connection point causes:

- A dynamic tensile load, ΔT .
- A dynamic torque, ΔM_T .

Pitch and roll motions cause dynamic curvatures, $\Delta\beta$, acting on the conductor. The most heavily loaded section of the conductor is close to the connection point. Each individual wire is subjected to a mean axial force, $\overline{F_x}$, which is a function of the mean global tension and the mean global moment. Each wire is also subjected to a dynamic axial force, ΔF_x , which is a function of dynamic tensile load and torque, dynamic curvatures and the coefficient of friction, μ , between the layers. The dynamic curvature causes local bendings in each wire:

- ΔM_x , a dynamic torque moment around the helix tangential x-direction.
- ΔM_{γ} , a dynamic bending moment around the bi-normal y-direction.
- ΔM_{ν} a dynamic bending moment around the surface normal z-direction.

Figure 2.5: Cross section of conductor including contact forces. Red arrows show inline contact and black arrows show point (trellis) contact.

A typical stranded round conductor consists of several wires that are stranded helically into layers, as shown in Figure 2.4 b. This stranding leads to both inline- and point (trellis) contact. Inline (hoop) contact occurs between the core layer and the first helical layer, and within the helical layers. Point (trellis) contact occurs between two helical layers. Figure 2.5 illustrates inline and trellis contact on a conductor cross-section. The global axial force causes longitudinal and transverse forces in each layer of the conductor, the transverse forces causes a reduction of the conductor diameter.

If wires are pressed together, they deform, and a small contact area occur at the trellis point as illustrated in Figure 2.6 B. The trellis contact is formed at an angle θ given by the lay angle α . This is a result of the manufacturing of the conductor.

Figure 2.6: Inline and trellis contact.

2.4 Fatigue of copper conductors

A literature research of fatigue and contact stresses of cabled structures was conducted in the prior project work to this master thesis. The following section is based on that research but have been customized and continued for this work. Cable structures includes ropes and strands. The main difference between a rope and a strand is that individual wires in a strand follows a simple helical path, while as wires in a rope follows a more complex helical path in strands, where the strands themselves are formed into helices. In this work is the considered conductor designed like a strand.

Johnson [11] described the Hertz contact stresses due to a normal load occurring between two solid bodies. A contact theory was developed, predicting the geometry of the contact area and how the size changes with increasing load. The theory also predicts magnitude and distribution of surface tractions and more.

Hobbs and Ghavami [12] investigated fatigue of socketed structural wire strands. They concluded that failure behaviour was governed by different failure mechanisms related to the contacts conditions near the socket.

Alani and Raoof [13] investigated the effect of mean axial load on axial fatigue life of spiral strands. They found that due to the wire flattening at the trellis points of the interlayer contacts, the fatigue life increases with increasing levels of mean stress for a given lay angle. They also concluded that fatigue life decreases with increasing lay angle

The fatigue life of a multilayer stranded steel wire or rope is considered to be governed mainly by fretting fatigue, which is due to stress concentration in the trellis contact point [14, 15]. Hobbs and Raoof [14] further reports that lubrication is an important factor in fatigue strength. They also suggest that due to the complexity of fretting fatigue

in stranded objects, fatigue tests should be representative of the actual inter-wire movements in the cable. This means that whole cables should be tested.

Raoof [16] used single wire data to develop a theoretical model that, for a constant load amplitude, predicts axial fatigue of the full cross-section. The model correlates well with experimental data. Raoof [17] concluded that the model provides upper bounds for the fatigue life of cables that fails at the end termination, and also that the observed fatigue life is significantly affected by the termination type.

A model for predicting fretting fatigue due to inter-wire contact stress was introduced by Hobbs and Raoof [18]. The model considers inline and trellis contact stresses, also frictional effects were considered. Both tension and bending load cases are included in the model.

Copper conductors in power cables are surrounded by an outer armour of steel wires and bend stiffeners, this reduces forces and curvatures in the conductor. Stranded conductors are similar to stranded steel wires in design, however, the materials copper and steel behaves differently. This master thesis focuses on copper conductors and the rest of this section is dedicated to literature research concerning them.

Karlsen [19] investigated fatigue of copper conductors for dynamic subsea power cables. A test method for simulating strain range fatigue was presented, including effects from friction, fretting, creep properties of copper and high tension at deep waters.

Nasution et al. [7] investigated fatigue performance by experimental tests and by finite element analysis (FEA) of a 95 mm² copper conductor. The experimental tests were performed both on individual wires and on full cross-section conductors, FEA was performed on an individual wire. The individual wire tests were done in tension-tension loading and the full cross-section tests in tension-bending loading. The experiments showed that fatigue strength of full cross-section conductors is lower than for individual wires. The reason for this is cracks arising from the vulnerable trellis point. This point is a result of the manufacturing of the conductor and causes surface irregularities in the wire, as shown in Figure 2.7.

The same study also shown that fatigue strength of individual wires taken from the outer layer is less than wires taken from the inner layer, this is due to larger surface irregularities. Fractures were investigated with a scanning electron microscopy. This showed, for single wires, that fatigue initiation arises from cracks close to the thinnest section of the wire. For the full cross-section, all failures occurred in the inner layer and fractography showed fatigue initiation from the outside of the wire, at the trellis contact with the outer layer.

Figure 2.7: Surface irregularities of a wire [20].

A similar study was performed by Nasution et al. [21] investigating a 95 mm² full crosssection conductor in tension-tension and tension-bending modes with FEA. The models were based on beam and beam contact elements and concluded to be valid as long as longitudinal stresses governs fatigue performance. The FEA model predicts first failure in the outer layer for tension-tension and in the inner layer for tension-bending, all in accordance with experiments. The tension-tension tests indicate that fatigue failures were govern by local stress concentration factors (SCFs). The tension-bending tests indicate that the effect of friction between the layers plays an important role in fatigue life.

Nasution et al. [6] investigated fatigue strength of a 300 mm² copper conductor experimentally and by FEA. The study concludes that wires from 95 mm² and 300 mm² conductors tested in tension-tension loading falls in a common scatter band when maximum stress due to SCFs are considered. It supports previous conclusions that fatigue initiations arise from cracks at the trellis point. The study also showed that lubricated conductors have a longer fatigue life than unlubricated conductors. FEA based on fatigue strength of individual wires predicted that the second layer had the shortest fatigue life, full scale tests showed failures in either the second or third layer. Fatigue failure occurs in the inner layers because the contribution from friction forces is largest there. Also, in this study, an analytical method for calculating stress variation of individual wires of the conductor was developed.

2.5 Standards and Guidelines

In the progress of designing subsea power cables, different standards can be used as guidelines. Since applications of dynamic power cables are relatively new, there is a lack of standards for them. However, DNV-GL has two standards that can be used, DNV-GL-ST-0119 and GL-ST-0359. Certification of a cable design requires that these two standards are applied and that their requirements are fulfilled.

DNVGL-ST-0359 (subsea power cables for wind power plants) provides an overview of standards for subsea power cables. DNVGL-ST-0119 (floating wind turbine structures) has a section dedicated for power cables.

IEC 60228 is an international standard for conductors of insulated cables. It includes, among other things, requirements for numbers and sizes of wires. Solid and stranded conductors made out of both copper and aluminium is included. Also, fixed installations and dynamic applications are included. IEC 60502 concerns cables with extruded insulation.

2.6 Stick and Slip behaviour

The conductor consists of helical layers that are free to move and subjected to friction forces. Initially and for small curvatures, the shear force is less than the available friction force. In this state, the wires are restrained by the friction and the conductor behaves as a rigid body with constant bending stiffness. For this state, the plane surfaces remain plane assumptions holds true and the following relationship from standard beam theory between bending moment and curvature is valid.

$$M = EI\kappa \tag{2.1}$$

As the shear force increase it eventually overcomes the friction force and the wires starts to slip. This slip results in a decrease of bending stiffness, this is due to the movement of the wires, as they move, they cannot contribute to the bending stiffness as much as they could in the rigid body behaviour. It is due to the reduction of bending stiffness that the cable gets its desirable flexible properties.

It is known from standard beam theory that in bending, the shear stress distribution follows a parabola with maximum value at the neutral axis. Therefore, the slip process of the wires does not start at the same time. By considering a cross-section of the conductor, wires at the neutral axis starts to slip first and the wires with the greatest distance from the neutral axis will be last to slip. A conductor with three helical layers has therefore three critical curvatures values describing where the slip process starts for each layer.

At what curvature slip begins for a layer can be estimated analytically. The Axial force before slip in a single wire is given by:

$$Q_1 = EA\cos^2 \alpha R \kappa \cos \Psi \tag{2.2}$$

where *EA* is the axial stiffness, α is the lay angle, κ is the curvature, *R* is the helix radius. With the relation for the circumferential coordinate:

Chapter 2 | Subsea Power Cables - Stick and Slip behaviour

$$\Psi = \frac{\sin \alpha}{R} X^1 \tag{2.3}$$

where X^1 is the local length coordinate along the helix. Differentiation of the axial force with respect to the local length coordinate gives the maximum shear force:

$$\frac{dQ_1}{dX^1} = EA\cos^2\alpha\kappa\sin\Psi\sin\alpha = \tau_{max}$$
(2.4)

The maximum shear force is found at the neutral axis and the following expression gives the critical curvature where slip begins:

$$\kappa_{cr} > \frac{\tau_{max}}{EA\cos^2 \alpha \, \sin \alpha} \tag{2.5}$$

This means that until full slip is reached, one part of the cross section will be in stick and one part will be in slip as shown in Figure 2.8. Full slip is reached at a curvature with a factor of $\frac{\pi}{2}$ larger than the critical curvature where slip begins [22]. Because of the stick and slip effect, the relationship between stress and curvature results in a hysteresis loop that corresponds to the work done by the friction force at the contact interfaces after slip.

Figure 2.8: Stick (1) and Slip (11) zones of a cross-section. Reproduced from [23].

3. Fatigue

This chapter introduces the fatigue phenomenon of metallic structures. A general overview is given together with an analytical model specifically developed for calculating stress ranges in a copper conductor.

3.1 Introduction

Fatigue is a phenomenon that weakens a material and occurs when the material is exposed to repeated cyclic loading, usually with loads corresponding to stresses significantly lower than yield stress. The fatigue damage per cycle may be insignificant and not even detectable, however fatigue failure is a result of a cumulative damage process. The process contains the following three stages.

- 1. Crack initiation, *N*_i
- 2. Crack growth, N_a
- 3. Final failure

The total fatigue life, N, can be calculated by:

$$N = N_i + N_g \tag{3.1}$$

For a sinusoidal load variation as shown in Figure 3.1 some basic parameters are introduced to describe cyclic stress loading [24]:

Figure 3.1: Stress ranges. Reproduced from [24]

 σ_{max} is the maximum stress in a cycle, σ_{min} is the minimum stress in a cycle and σ_m is the mean stress in a cycle. The stress range is established from the figure as:

Chapter 3 | Fatigue - Mean stress correction

$$\Delta \sigma = \sigma_{max} - \sigma_{min} \tag{3.2}$$

The stress ratio (R-ratio) is defined as:

$$R = \frac{\sigma_{min}}{\sigma_{max}} \tag{3.3}$$

Fully reversed loading, zero-tension loading, and static loading corresponds to R-ratios of -1, 0 and 1, respectively. The stress range can be related to R-ratio by:

$$\Delta \sigma = 2\sigma_m \frac{1-R}{1+R} \tag{3.4}$$

Fatigue can be divided into low cycle fatigue (LCF) and high cycle fatigue (HCF). High cycle fatigue has a life of more than 10^5 cycles. Offshore structures are mainly in the high cycle range and this is also what is used in standards [24].

3.2 Mean stress correction

A mean stress value not equal to zero affects the fatigue life and must be considered. An increase of mean stress normally decreases the fatigue life. SN-curves (see next section) are used with stress amplitude but are produced with and depends on a certain level of mean stress. Constant life diagrams can represent the effect of mean stress. The two most common are the modified Goodman- and Gerber relation. Some experiments for steel have shown that the truth lies somewhere in this range depending on material where Goodman is the conservative. The relations are shown in Figure 3.2, known as a Haig's diagram and are given by:

Modified Goodman relation:
$$\sigma_a = \sigma_a|_{\sigma_m=0} \left\{ 1 - \frac{\sigma_m}{\sigma_U} \right\}$$
 (3.5)

Gerber relation:

$$\sigma_a = \sigma_a|_{\sigma_m = 0} \left\{ 1 - \left(\frac{\sigma_m}{\sigma_U}\right)^2 \right\}$$
(3.6)

where σ_a is the stress amplitude for a nonzero mean stress, $\sigma_a|_{\sigma_m=0}$ is the stress amplitude for fully reversed loading i.e. when $\sigma_m = 0$, σ_y is the tensile stress and σ_U is the ultimate strength of the material [25].

It should be noted that this theory is based on steel and there are therefore uncertainties when applying this theory on copper. However, there are more methods that can be considered, see for e.g. Dowling [26]. Dowling also states that the sensitivity to mean stress seems to increase for higher strength metals. Mean stress effect that differs from

the traditional approach described above, is referred to as anomalous mean stress sensitivity (AMSS).

Figure 3.2: Haig's Diagram [23]

3.3 The SN-Approach (Whöler curves)

This approach is based on experimental data from fatigue tests. The stress-life diagram or SN-diagram shows how many stress cycles that a material can withstand for a given stress range. The fatigue life is only related to the stress range until a certain threshold, at lower range, the fatigue life may become infinite. The concept of infinite life only applies in a none-corrosive environment and where all the cycles are below the threshold. Also, this work is based on copper, which is generally considered not having a fatigue limit. The SN-curve is typically plotted on log-log format since fatigue life normally spans over a large number of cycles. A SN-curve is shown in Figure 3.3 and the mathematical relationship is given by:

$$N \cdot (\Delta \sigma)^m = C \tag{3.7}$$

where *C* is a constant, *m* is an exponent in crack growth relation and *N* is the number of cycles until failure [24]. The SN-curve has by definition a failure probability of 50 percent. Big margins are common in fatigue, in a design curve are often 2 standard deviations used as a safety margin, resulting in a 97.6 percent probability of survival.

Karlsen [19] points out that for copper conductors, it may be more suitable to use a strain-based approach. The reasons for this are the poor creep properties and nonlinear stress-strain relationship of the copper. However, in this work is a stress-based approach used for simplicity.

Figure 3.3: SN- Curve. Reproduced from [24].

3.4 Cumulative damage – Miner sum

SN-curves are based on data from stress ranges with constant amplitudes and are therefore only relevant for constant amplitude fatigue loading. In reality, structures are exposed to environments that causes irregular: amplitudes, mean stress levels and frequencies on the structures. E.g. loads from waves and tides on marine structures. The Miner-Palmgren cumulative damage rule is a simple approach that considers irregular loading. The rule assumes linear damage, this assumption should be taken with care since sequence and interaction of events may influence the fatigue life. For *i* number of different stress ranges the damage or Miner sum is given by:

$$D = \sum_{i} \frac{n_i}{N_i} \tag{3.8}$$

where n_i is the number of cycles for a constant stress range and N_i is the number of cycles that the given stress range can survive, fracture normally occurs once D = 1.

Cycle counting methods are often used to reduce the load history into series of constant stress amplitude. There are many methods on how to do this, general consensus is that the *Rainflow counting method* is the best. In standards a design fatigue factor (DFF) is used so that it satisfies:

Chapter 3 | Fatigue - Analytical calculation of stress ranges

$$D \cdot \text{DFF} \le 1.0 \tag{3.9}$$

Different DFFs are recommended depending on safety class.

3.5 Analytical calculation of stress ranges

Nasutian et al. [21] developed an analytical model for calculating stress ranges of individual wires in a stranded conductor cross-section. The longitudinal stress range can be calculated by:

$$\Delta \sigma = \Delta \sigma_T + \Delta \sigma_{tc} + \Delta \sigma_{nc} + \Delta \sigma_f \tag{3.10}$$

where $\Delta \sigma_T$ is the stress ranges from dynamic tension, $\Delta \sigma_{tc}$ is the stress ranges from transverse curvature, $\Delta \sigma_{nc}$ is the stress ranges from normal curvature and $\Delta \sigma_f$ is the stress ranges from friction.

Stress ranges from dynamic tension

The axial stiffness of the conductor can be calculated by:

$$EA_{full} = EA\left(1 + \sum_{i=1}^{m} n_i \cos^3 \alpha_i\right)$$
(3.11)

where *EA* is the axial stiffness of each wire, n_i is the number of wires in helical layer *i* and α_i is the lay angle of layer *i*. Dynamic tension causes a stress variation in each wire according to:

$$\Delta \sigma_T^i = E \cos^2 \alpha_i \frac{\Delta T}{E A_{full}} \tag{3.12}$$

Elastic bending stresses

For the bending moment about the helix bi-normal axis, the corresponding stress range can be approximately determined for small lay angles by:

$$\Delta \sigma_{nc} = R_{nominal} E \cos^2 \alpha_i \cos 2 \alpha_i \Delta \kappa \cos \Psi \approx R_{nominal} E \Delta \kappa \cos \Psi$$
(3.13)

where $\Delta \kappa$ is the curvature range and Ψ is the polar coordinate angle defining the helix position as shown in Figure 3.4.

Figure 3.4: A simple conductor model [6]

Friction stress

The friction stress range can be calculated as the smallest stress range that is obtained from either the plane surfaces remain plain solution or the maximum allowed due to the friction between the interfaces, given by:

$$\Delta \sigma_f^i = \min\left(E\cos^2\alpha_i R_i \Delta \kappa, \frac{\pi R_i \tau_i}{\sin\alpha_i A_i}\right)$$
(3.14)

The expression for the maximum allowed due to friction is a result of integrating the available friction force per unit length τ_i along a quarter pitch length multiplied by 2 and divided by the area of the wire A_i . The friction force pert unit length is calculated by:

$$\tau_i \cong E\varepsilon_c \mu\left(\sum_{j=i+1}^m \frac{n_j A_j \cos^2 \alpha_j \sin^2 \alpha_j}{n_i R_j} + \sum_{j=i}^m \frac{n_j A_j \cos^2 \alpha_j \sin^2 \alpha_j}{n_i R_j}\right)$$
(3.15)

where μ is the coefficient of friction, ε_c is the strain resulting from the mean static tension *T*, given by:

$$\varepsilon_C = \frac{T}{EA_{\text{full}}} \tag{3.16}$$

4. Fretting

This chapter introduces the phenomenon of fretting. This is done in order to gain a better understanding of fretting, which may or may not contribute to a reduction of fatigue life of the conductor.

4.1 Introduction

According to [27] fretting is referred to as:

"A surface wear phenomenon occurring between two contacting surfaces having oscillating relative motion of small amplitude."

Fretting fatigue is the combined effect of fretting and fatigue and often also include corrosion effects. The phenomenon can occur with less than 10 μ m of relative motion between the mating surfaces. Major factors governing fretting fatigue are normal contact pressure between the mating surfaces, amplitude of the relative motion, frictional shear stresses between the mating surfaces, residual stresses, environment, material properties, load, frequency and the number of cycles [27].

4.2 Contact theory

The contact surfaces can behave in two ways:

- 1. The whole contact area slides (gross slip).
- 2. Some region of the contact area slides (partial slip).

In practise, most fretting problems do not involve gross sliding, here is the issue of wear often under control. It is therefore important to consider contacts where the shear force is less than the limiting frictional value [28].

If two bodies with curved surfaces are pressed together, they connect at a point or along a line. This results in an elastic or plastic flattening of the mating surfaces and this kind of contact is referred to as a Hertzian contact. The material close under the surface experiences tri-axial stress state and can due to this withstand higher stresses than yield stress [29].

The partial slip phenomenon is explained here with the example of two elastically similar cylinders. The cylinders are pressed together with a normal force *P*, which creates a Hertzian contact zone of semi width *a*. This zone has an elliptical distribution of normal pressure given by [28]:

$$p(x) = -p_0 \sqrt{1 - (x/a)^2}$$
(4.1)

If an increasing tangential force Q is applied so that it is less than the limiting factor of gross slip, $Q < \mu P$. The non-uniform pressure distribution causes a division of the contact zone into a slip and stick region as shown in Figure 4.1 [28].

Figure 4.1: Slip and stick regions in a contact zone. Reproduced from [28]

Two slip zones will always be present at the ends, even if the shear force is small. The reason for this is as the normal pressure drops to zero, the required coefficient of friction must be infinite. A mathematical derivation proving this is given in [28] and by Johnson in [11], Johnson further noted that this is not surprising since the assumption of no slip requires two bodies to behave as one. For the case of two elastically dissimilar bodies, fretting can arise from a pure normal force only. This is due to different tangential displacement of the bodies which causes shear tractions [28].

Repeated sliding in the slip region leads to oxidation of the fretted surface, this causes wear debris formation and cracking. By investigation this region, a more worn out look compare to the rest of the contact area can be noticed [25]. Resistance to fretting fatigue generally decreases with higher hardness, and thereby with higher strength materials. Failures due to fretting fatigue results from micro cracks that arises in the fretting region and grows with cyclic stresses until fracture [27].

4.3 Fretting maps

It is practical to be able to determine the fretting regime based on experimental conditions. Vingsbo and Söderberg [30] suggested a fretting map model based on two variables with regime boundaries representing the critical transition values. Examples of fretting map variables are displacement amplitude, normal and tangential force and frequency of vibration. The model consists of four different regimes:

- Stick regime
- Mixed stick-slip regime

- Gross slip regime
- Reciprocating sliding regime

The *stick regime* has very limited surface damage by corrosion and wear. No fatigue crack growth is observed (up to 10⁶ cycles) and low fretting damage is experienced. In the *mixed stick-slip regime*, wear and oxidation is noticeable but the effects are small. Accelerated crack growth may cause a strongly reduced fatigue life. Damage caused by this regime is referred to as fretting fatigue. The *gross slip regime* has severe surface damage, but crack formation is limited. This regime is often referred to as fretting wear and the surfaces can be in full sliding across each other. As the displacement amplitude increases, the gross slip approaches the *reciprocating sliding regime*. This leads to sliding wear.

The regime can be illustrated by a hysteresis loop in tangential force vs displacement diagram as shown in Figure 4.2. The stick regime is characterised in (a), it can be seen that for a low amplitude, the displacement is directly proportional to the tangential force. In the mixed stick-slip regime (b) a hysteresis loop is created where a small area between the lines represents the partial slip. For higher displacements, a larger area with a sudden drop of tangential force can be observed. This represents the gross slip regime (c).

Figure 4.2: Tangential force vs displacement. (a) Stick regime, (b) Mixed stick-slip regime, (c) Gross slip regime

The study combined data from several other studies and a fretting map was suggested, see Figure 4.3. It can be seen that for low amplitudes in the mixed stick and slip regime, the wear rate is low. As the gross slip regime is entered, the wear rate increases until its levels of in the reciprocating sliding regime. The study also points out and shows in the figure that the fatigue life decreases with an increasing slip amplitude until a certain value. The reason for this is according to Novell and Hills [31] debatable, their study points out two possible reasons for this. 1. The increase in wear rate wears out embryo cracks before they can propagate. 2. A study [32] suggest that wear debris itself forms a solid lubricant layers, and thereby reduces stresses.

Chapter 4 | Fretting - Fretting maps

Figure 4.3: Fretting map [33]

5. Finite Element Analysis

This chapter introduces an overview of the finite element method, which is used in this work for solving structural problems. This is done by the use of BFLEX software which is described together with its methods.

5.1 Overview of the Finite Element method

The finite element method (FEM) is a numerical method to solve partial differential equations. The method is widely used in engineering for solving problems which are too complex to solve analytically. The basic concept is to discretize a system or a structure into a finite number of elements, where each element consists of a number of nodes. This is known as meshing. The unknow displacement field of a structure is thereby an approximation and described by the nodes. The displacements field between the nodes are interpolated, usually by linear, quadratic or cubic interpolation.

A stiffness relationship is established for each element using the principle of virtual displacement and the assumed displacement field. This yields an equilibrium between element forces, moments and displacements on the following form:

$$S = k\nu + S^0 \tag{5.1}$$

where **S** is the generalized nodal point forces, **k** is the element stiffness matrix, **v** is the nodal point displacements and S^0 is the equivalent nodal point forces due to element loads.

A system stiffness relationship is then established by demanding equilibrium of all nodal points in the structure, the relationship is given by:

$$\boldsymbol{R} = \boldsymbol{K}\boldsymbol{r} + \boldsymbol{R}^0 \tag{5.2}$$

where R is a vector containing all the nodal point forces of the structure. The system stiffness matrix K is established by the sum of the element stiffness matrices and r is the unknown global displacements vector. The system nodal force vector R^0 is obtained from the equivalent element nodal point forces.

Once the system relationship is established, boundary conditions are introduced, which allows the global displacement vector to be solved for. The displacements are then used to calculate stresses in the structure by material laws.

Finite Element Analysis is solved by computers, accuracy depends on the number of elements which is a cost of computer time.

5.2 BFLEX

In this work, the BFLEX2010 FEA software has been used to model and solve for stresses in the conductor with finite element analysis. The software is based on the principle of virtual displacements, kinematic compatibility, material law and displacement interpolation. Also, nonlinear behaviour is considered. BFLEX was developed by the department of structural engineering at SINTEF Ocean with the purpose to:

- "provide a tool for stress and fatigue analysis of flexible pipes that both covers the cases where longitudinal stresses are insignificant and cases where such effect are important."
- "provide a tool for local buckling analysis of flexible pipes armour wires by building a model for all layers and allow for arbitrary motion of the wires."

The system architecture of BFLEX2010 is given by Figure 5.1 and the modules are:

- BFLEX2010. Analysis module.
- BFLEX2010POST. Postprocessing module.
- PLEX. Beam stress analysis of pressure spirals.
- BOUNDARY. Transverse stress analysis of pressure spirals.
- LIFETIME. Fatigue analysis.
- BPOST. The local model postprocessing module.
- XPOST. Graphical user interface for result visualization.

Figure 5.1: BFLEX system architecture

5.3 Principle of virtual displacement

The principle of virtual displacement or principle of virtual work basically states that the sum of internal work equals the sum of external work of the system. The general formula excludes volume forces and is given by [23]:

$$\int_{V} (\rho \ddot{\boldsymbol{u}} - \boldsymbol{f}) \cdot \delta \boldsymbol{u} dV + \int_{V} \boldsymbol{\sigma} \cdot \delta \boldsymbol{\varepsilon} dV - \int_{S} \boldsymbol{t} \cdot \delta \boldsymbol{u} dS = 0$$
(5.3)

where ρ is the material density, \ddot{u} is the acceleration field, f is the volume force vector, σ is the Cauchy stress tensor, ε is the natural strain, t is the surface traction and u is the displacement vector. The first term in the equation is related to the inertial force, the second term is work done by internal forces and the last term corresponds to work done by external forces for the assumed displacement. BFLEX uses 2nd Piola Kirchhoff stress and the green strain tensor.

To solve problems with large deformation and with none-linarites, principle of virtual displacement has to be done on incremental form. Two common formulations are used, total Lagrange (TL) and updated Lagrange (UL), the difference between them is the choice of reference configuration. Total Lagrange refers to the initial configuration (C_o) and updated Lagrange refers to last obtained equilibrium configuration (C_n).

BFLEX uses a co-rotational formulation (CTL), this is a mixture of the total and the updated Lagrange formulation. This formulation separates rigid body motion from local or relative deformation of the element. To achieve this, a local coordinate system is attached to the element that continuously translates and rotates with the element during the deformation. This formulation is shown in Figure 5.2. The initial configuration C_o is the reference point, each element has C_{on} as its local coordinate system and C_n describes the deformation of the element.

Figure 5.2: Co-rotational formulation [23]

The following three points are needed to implement the principle of virtual displacement into a numerical code.

- 1. Kinematic description. A relation between the displacement and rotations and the strains at a material point.
- 2. A material law connecting the strain with resulting stresses.
- 3. Displacement interpolation, describing the displacement and rotation fields by a number of unknowns on matrix format.

5.4 Nonlinear analysis

Nonlinear analysis is used when the displacement cannot be expressed as a linear function of the external load. This analysis has to be solved incrementally where the stiffness matrix is updated for each load step. There are generally three sources of nonlinearities [34, 35]:

- *Geometric nonlinearities.* This nonlinear effect is due to the change geometry as the structure deforms under a load. This is also referred to as large displacement analysis.
- *Material nonlinearities.* The relationship between strains and stresses is only linear until a certain limit, referred to as the yield strength of the material. Once stresses of this limit are exceeded, the material law changes from linear to non-linear. This is further explained in the next section.
- *Boundary conditions/contact.* Boundary nonlinearity occurs when displacement of the structure leads two surfaces into or out of contact. Stresses and displacements of bodies in contact are usually not linear dependent on the applied loads. This may occur even for small displacements and were the material behaviour is assumed to be linear, due to the fact that the contact area is usually not linear dependent on the applied loads. Friction effects causes a stick and slip behaviour of the contact areas and adds a further nonlinear complexity.

5.5 Material Model

As the stresses exceeds the elastic limit of the material an elastic-plastic formulation is required. There are three major features that governs the plasticity and are described here for a one-dimensional stress case [35]:

- *A yield condition or yield surface.* The condition defines which combinations of multi-axial stresses causing the material to be plastic.
- *A flow rule.* A relation between stress increment history to the plastic strain and the stress rate.
- *A hardening rule.* Describes how the yielding changes by historical plastic flow.

The *yield condition* states that yielding begins when the stress reaches its tensile yield strength. However, the level of stress needed to continue yielding, changes as the material yields and exceeds the initial level.

The *flow rule* can be written in multidimensional problems. For a one-dimensional stress case it leads to the relation $d\sigma = E_T(\varepsilon)d\varepsilon$.

The *hardening rule* describes how the yield condition changes by historic plastic flow. The two common methods used are kinematic and isotropic hardening. In kinematic hardening the yielding occurs after unloading of $2\sigma_y$ whereas in isotropic hardening, the material remembers the hardening that already has occurred. For common metals, kinematic hardening model has better results. The two methods are shown in Figure 5.3.

Figure 5.3: Hardening rules [36]

5.6 Solution procedure

BFLEX solves nonlinear problems by load incrementation with Newton-Raphson iteration. This is a common method is engineering and works well until one is dealing with extreme nonlinear problems where other methods such as the arc-length methods is needed.

5.6.1 Static analysis

The static solution procedure is based on Newton-Raphson iteration at each load step, the iteration procedure is according to:

$$\Delta r_{k+1}^{i} = K_{T,k+1}^{-1i} \Delta R_{k+1}^{i}$$
(5.4)

where **K** is the global stiffness matrix, $\Delta \mathbf{R}$ is the load increments and $\Delta \mathbf{r}$ is the displacement increments. The load vector and the stiffness matrix are updated at each load step and the procedure is repeated until convergence is obtained. Newton-Raphson iteration for a system with 1 degree of freedom is shown in Figure 5.4 [23].

Figure 5.4: Newton-Raphson iteration [34]

5.6.2 Dynamic analysis

The dynamic solution procedure works in the same way as the static but is time dependent and considers inertia forces and damping in the structure. A step by step approach is used and the time interval is divided into smaller sub-intervals. At the beginning of a sub-interval are the displacement, velocity and acceleration known. By assuming the acceleration over the time step, the solution can be calculated for the end of the interval. The equilibrium equation of forced motion is defined as:

$$\boldsymbol{M}\ddot{\boldsymbol{r}} + \boldsymbol{C}\dot{\boldsymbol{r}} + \boldsymbol{K}\boldsymbol{r} = \boldsymbol{Q}(t) \tag{5.5}$$

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness matrix and Q is the global load vector. To perform dynamic analysis, direct time integration is needed, this can be done by either explicit or implicit methods. Explicit methods are typically expressed as:

$$\boldsymbol{r}_{k+1} = \boldsymbol{f}(\ddot{\boldsymbol{r}}_k, \dot{\boldsymbol{r}}_k, \boldsymbol{r}_k, \boldsymbol{r}_{k-1}, \dots)$$
(5.6)

For explicit methods, the displacement at the next time step will be determined by the information of the current and previous time steps. The explicit method is conditionally stable and small time-steps are therefore required. This method is suitable for impulse analysis where small time steps are needed.

For implicit methods, the displacement at the next time step depends on quantities of the current and next time step, expressed as:

$$\boldsymbol{r}_{k+1} = \boldsymbol{f}(\ddot{\boldsymbol{r}}_{k+1}, \ddot{\boldsymbol{r}}_k, \dot{\boldsymbol{r}}_{k+1}, \dot{\boldsymbol{r}}_k, \boldsymbol{r}_k \dots)$$
(5.7)

Since information of the next time step is used, the acceleration of the system must be assumed between the time steps. Using information of the next step also results in a better numerical stability than for the explicit methods. The acceleration is assumed by different methods and some basic examples are the methods of constant acceleration, linear acceleration and constant initial acceleration. The Newmark β method is often used with different λ and β values to represent these different methods [37].

Newmark's β

The following equations describes the Newmark β -family, including the Wilson θ -method considering a constant time step in the analysis. The methods relate the displacement, velocity and acceleration vectors at time t and t + $\Delta \tau$.

$$\dot{\boldsymbol{r}}_{t+\Delta\tau} = \boldsymbol{r}_t + (1-\gamma)\ddot{\boldsymbol{r}}_t\Delta\tau + \ddot{\boldsymbol{r}}_{t+\Delta\tau}$$
(5.8)

$$\boldsymbol{r}_{t+\Delta\tau} = \boldsymbol{r}_t + \dot{\boldsymbol{r}}_t \Delta \boldsymbol{\tau} + \left(\frac{1}{2} - \beta\right) \ddot{\boldsymbol{r}}_t (\Delta \boldsymbol{\tau})^2 + \beta \ddot{\boldsymbol{r}}_{t+\Delta\tau} (\Delta \boldsymbol{\tau})^2$$
(5.9)

Where $\Delta \tau = \theta \Delta t$, $\theta \geq 1$.

The parameters γ , β and θ defines the functional change in displacement, velocity and acceleration vectors over the time step Δt . For the Newmark β -family, $\theta = 1$, this gives by change of parameters γ and β the different methods within the Newmark β -family [38, 39].

Dynamic analysis results in a series of modes with different frequencies. Usually are only the modes with low frequency of interest and it is therefore desirable to remove the other modes. The medium modes are eliminated by increasing the damping ratio or introducing Rayleigh-damping to the Newmark β method, leaving the lower and the higher modes unaffected. The higher modes can be damped out by numerical damping, this will reduce the accuracy in the Newmark β method.

Modified Hilbert-Hughes-Taylor method

The modified Hilbert-Hughes-Taylor method (HHT- α method) is used in BFLEX and does not suffer from reduced accuracy when the high modes are damped out. The modified equilibrium equation is given by [39]:

$$\begin{aligned} \boldsymbol{M}\ddot{\boldsymbol{r}}_{k+1} + (1+\alpha_H)\boldsymbol{C}\dot{\boldsymbol{r}}_{k+1} - \alpha_H\boldsymbol{C}\dot{\boldsymbol{r}}_k + (1+\alpha_H)\boldsymbol{R}_{k+1}^I - \alpha_H\boldsymbol{R}_k^I \\ &= (1+\alpha_H)\boldsymbol{R}_{k+1}^E - \alpha_H\boldsymbol{R}_k^E \end{aligned} \tag{5.10}$$

where **M** is the mass matrix, **C** is the damping matrix \mathbf{R}^{I} is the internal force vector, \mathbf{R}^{E} is the external force vector and α is a constant. The damping matrix **C** includes both Rayleigh and diagonal damping. The method is unconditionally stable when [23]:

•
$$-\frac{1}{3} \le \alpha_H \le 0$$

•
$$\gamma = \frac{1}{2}(1-2\alpha_H)$$

•
$$\beta = \frac{1}{4}(1 - \alpha_H)^2$$

5.6.3 Convergence criteria

The iteration algorithm stops when equilibrium of a certain tolerance level is reached, this is achieved by a vector norm, which is a measure of the size of the vector. Norms based on displacement, energy and forces can be used.

BFLEX runs on a predefined number of iterations and divisions. If no convergence is reached for the first iterations cycle, it divides the time-step and starts a new trial. This process repeats until convergence is reached or stops after the specified number of divisions is reached.

5.7 Elements formulation

In the model are different types of elements used depending on what degrees of freedom that is needed. The elements used in this model are presented in the following and the theory is taken from the BFLEX theory manual [23].

5.7.1 PIPE31

The PIPE31 element is a standard 3D beam element. It has two nodes and 6 degrees of freedom in each node, 3 translational and 3 rotational. The stresses under plane stress are according to Hooke's law:

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \tau \end{bmatrix} = \left(\frac{E}{1 - \nu^2}\right) \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu^2}{2(1 + \nu)} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma \end{bmatrix}$$
(5.11)

The displacement of an arbitrary point is given by:

$$u_1(x, y, z) = u_{1,0} - yu_{2,0} - zu_{3,0}$$
(5.12)

$$u_2(x, y, z) = u_{2,0} - z\theta_x$$
(5.13)

$$u_3(x, y, z) = u_{3,0} - y\theta_x$$
(5.14)

Where $\sigma_{i,j}$ is the stress in the *i*, *j* direction, *v* is the Poisson's ratio, $\varepsilon_{i,j}$ is the strain in the *i*, *j* direction, γ is the shear strain, u_i is the displacement in *i* direction and θ is the rotation.

5.7.2 HSHEAR363

The HSHEAR363 element is similar to a standard beam element (PIPE31). Compare to a standard beam element, one additional node is included to describe radial motion of the layer. The additional node includes 3 degrees of freedom, but since only the radial DOF is used the other two has to be supressed. The purpose of the element is to handle plastic layers, pressure armour layers and tape layers.

Figure 5.5: HSHEAR363 Element

5.7.3 HSHEAR353

The HSHEAR353 element is a curved beam element with 26 degrees of freedom and 4 nodes that it is used to model helices. In addition to the 12 standard DOFs at the centreline used to model global strain quantities, 12 are used to describe the local displacement of the wire relative to the core and 2 are used to describe the longitudinal slip process. However, the torsion DOF at the helix nodes has to be suppressed due to kinematic constraints and thereby are only 24 DOFs active.

Chapter 5 | Finite Element Analysis - Elements formulation

Figure 5.6: HSHEAR353 Element

The kinematics of the element is described in the following with respect to Figure 5.7. The strains can be described by:

$$\varepsilon_1 = u_{1,1} - \kappa_3 u_2 + \kappa_2 u_3 \tag{5.15}$$

$$\varepsilon_2 = u_{2,1} - \kappa_3 u_1 + \kappa_1 u_3 \tag{5.16}$$

$$\varepsilon_3 = u_{3,1} - \kappa_2 u_1 + \kappa_1 u_2 \tag{5.17}$$

Rotations can be described by:

$$\omega_1 = \kappa_1 u_{1,1} - \kappa_t u_{2,1} + \kappa_3 (u_{3,1} + \kappa_1 u_2) + \kappa_2 (u_{2,1} - \kappa_1 u_3) + \omega_{1p}$$
(5.18)

$$\omega_2 = u_{3,11} - \kappa_2 u_{1,1} - 2\kappa_1 u_{2,1} - \kappa_3 \kappa_t u_2 + \kappa_1 \kappa_1 u_3 + \omega_{2p}$$
(5.19)

$$\omega_3 = u_{2,11} - \kappa_3 u_{1,1} - 2\kappa_1 u_{3,1} + \kappa_2 \kappa_t u_2 - \kappa_1 \kappa_1 u_2 + \omega_{3p}$$
(5.20)

where:

- the differentiation of the displacement components u_i along X^{*i*} with respect to the u_{i.i}: curvilinear coordinate X^J.
- First order axial strain ε1:
- Centreline rotations about X³ axis Centreline rotations about X² axis ε₂:
- ε₃:
- Centreline torsion ω_1 :
- Curvature about X² axis ω_2 :

- ω_3 : Curvature about X³ axis
- ω_{ip} : The quantities represent the prescribed torsion and curvature quantities from bending.
- κ_1 : Initial total accumulated torsion of the cross-section centreline
- κ_2 : Initial accumulated curvature in the X¹- X³ plane
- κ_3 : Initial accumulated curvature in the X¹- X² plane

In the initial state of the helix, from which ω_i and ε_i are measured:

$$\omega_i$$
, ε_i , $\kappa_1 = \frac{\sin \alpha \cos \alpha}{R}$, $\kappa_2 = \frac{\sin^2 \alpha}{R}$, $\kappa_3 = 0$ (5.21)

The kinematic constraint describing the torsion rotation is given by:

$$\theta_1 = \kappa_1 u_1 - \kappa_t u_2 \tag{5.22}$$

which assumes that the wire follows the supporting surface with varying transverse curvature given by:

$$\kappa_{t} = \frac{\cos^{2} \alpha}{R} + \sin^{2} \alpha \left(\frac{-\omega_{2,11} \sin \psi}{1 - R\omega_{2,11} \sin \psi} + \frac{\omega_{3,11} \cos \psi}{1 + R\omega_{3,11} \cos \psi} \right)$$
(5.23)

where ω_i is the global displacement along the global axis Z^i .

Figure 5.7: Kinematics of helix element

5.7.4 HCONT463

The HCONT463 element is a contact element with 13 degrees of freedom and 3 nodes, it is used to model contact between a cylindrical layer and a helix layer, i.e. between a HSHEAR363 and a HSHEAR353. Figure 5.8 illustrates how the HCONT463 element connects a HSHEAR363 (body A) element with a HSHEAR353 (body B) element. The HSHEAR353 element includes 3 translation directions and the HSHEAR363 includes only the radial displacement.

Figure 5.8: HCONT463 Element

5.7.5 HCONT454

The HCONT454 element is a contact element with 36 degrees of freedom and 6 nodes. It is used to model contact in the hoop direction within helical layers i.e. between HSHEAR353 elements.

Chapter 5 | Finite Element Analysis - Elements formulation

Figure 5.9: HCONT454 Element

6. Modelling and Simulation

In this chapter are the main parts of the modelling procedure and the simulation described.

6.1 Procedure

The conductor was modelled in with a full length of 3.24 meter, but due to computer limitations, it was truncated into a detailed part of the midsection. The detailed part was meshed with 100 elements per wire in the longitudinal direction. The two remaining parts, the ends, was modelled with 30 standard beam elements for each end.

Figure 6.1: Illustration of the model

A tensile load of 30 kN was applied gradually by initial strain during the first second and then held constant. The conductor was then bent back and forward by the movement of a bellmouth with a prescribed displacement in order to simulate tension-bending loading. Figure 6.1 shows an illustration of the conductor inside the bellmouth. This was done for two radii of curvature, 3 and 6.5 meters. This results in an axial force history at the end beams as shown in Figure 6.2. The maximum dynamic forces are 32.2 kN and 30.4 kN for the 3 and 6.5-meter bellmouth, respectively. The stress ranges due to dynamic tension are based on these forces.

Figure 6.2: Axial force histories at end beams due to reversed bending.

Dynamic analysis was used with a time step of 0.001 seconds. Displacement, energy, and force norms of $1 \cdot 10^{-5}$ was used when possible and only the displacement norm when convergence was hard to reach.

The model is based on beam and beam contact elements with the idea that fatigue strength is mainly governed by longitudinal stresses. The local longitudinal stress is given by:

$$\sigma_{XX} = \sigma_{XX-AX} + \sigma_{XX-MY} + \sigma_{XX-MZ} \tag{6.1}$$

where σ_{XX-AX} is axial stress, σ_{XX-MY} is stress due to bending about the y-axis (weak axis) and σ_{XX-MZ} is stress due to bending about the z-axis (strong axis). SCFs due to the geometrical irregularities are applied in the fatigue set up.

The model and the simulation consist of three input files or codes, one for the model, one for the fatigue set up and one for post processing. The input file of the 3-meter radii model is given in appendix B, this is identical with the 6.5-meter model except for the radii of the bellmouth and the movement of it.

6.2 Cross-section definition

The conductor consists of 4 layers. Layer 1 is the core and consist of 1 wire, layer 2, 3 and 4 are helical layers and consist of 6, 12 and 18 wires, respectively. In order to model the conductor with the chosen elements, artificial tape layers have to be introduced between layer 2 and 3, 3 and 4, and outside layer 3. This means that the trellis contact is not modelled as a point contact, instead, it is a smooth distributed contact. The helical layers have a lay angle of 4.33°, -8.03° and 11.56° for the 2nd, 3rd and 4th layer, respectively.

The core and the tape layers are modelled with HSHEAR363 and the helical layers with HSHEAR353 elements. Inline contact is modelled with HSHEAR454. Contact between the core and layer 2 and contact between helical layers and tape layers are modelled with HCONT463.

6.3 Material data

The copper material is defined in BFLEX for the cross-section of a wire. There are 37 wires and each wire have a cross section of 8.11 mm². The material data is presented in Table 3 and Table 4.

Table 3: Material data of structural elements			
Property	Copper	Plastic	
Туре	Linear	Elastic	
Young's modulus [GPa]	115	0.7	
Shear modulus [GPa]	0.42	-	
Poison's number [-]	0.355	0.35	
Axial stiffness [N]	932650	-	
Bending stiffness [Nm ²]	0.6	-	
Bending stiffness [Nm ²]	0.6	-	
Torsional stiffness [Nm ²]	0.44	-	

The shear stiffness of the axial contact elements has to be set with sufficient stiffness to reflect the plane surfaces remain plane condition. The minimum value recommended for a helix element is given by [40]:

$$10\frac{EA}{R_i^2}\sin^2\alpha_i \tag{6.2}$$

where R_i and α_i is the radius and the lay angle of the layer, respectively. The results of this is shown for each layer in Table 4.

Chapter 6 | Modelling and Simulation - Boundary conditions

Property	Contact01		
Туре	Coulomb friction		
Static friction coefficient [-]	0.2		
Dynamic friction coefficient [-]	0.2		
Elastic stiffness in axial direction [MN/m ²]			
-Layer 2	5159		
-Layer 3	1298		
-Layer 4	577		

Table 4: Material data of contact elements

6.4 Boundary conditions

The degrees of freedom of the conductor's ends are fixed in all translation directions and in rotation about the x-axis. All the nodes of the helical layers are fixed in rotations about the x and y axis, and the end nodes are fixed in x and y translation as well. The nodes of the core and the tape layers are fixed in y and z translation.

It should be noted that the degrees of freedom do not reflect the displacement of the nodes. The elements are free to deform. The restriction is not in space, but relative to the supporting surface, this means that surfaces/elements instead sticks to each other.

6.5 Mesh Sensitivity & Length optimization

The initial length of the truncated conductor was 1.5 meter. By investigating the of curvature along the length of the conductor, it was found that this length was longer than needed. A length corresponding to a curvature of zero close to the ends is a better choice taking computational cost into account, this length was found to be 1.2 meter. Figure 6.3 shows the bending curvature along the length of the conductor at maximum deformed formation.

Figure 6.3: Bending curvature along the model at maximum deformation

Shortening of the conductor and keeping 100 elements per wire in the length direction servers as a mesh sensitivity study, doing so resulted in no significant different. To further validate this, the initial 1.5 m conductor was simulated with 150 elements to make sure no effects of changing the length was involved.

6.6 Fatigue set up

The SN-curve for single wires produced by Nasution et. al [7] was imported into to BFLEX. This curve is given by equation 3.7 and with the parameters of m = 8.424 and $c = 2.88 \cdot 10^{25}$.

The stress concentration factors for each layer was specified, SCF = 1.08 for layer 4 and SCF = 1 for the other layers. When mean stress correction is considered it is handled by BFLEX with the given ultimate stress for copper as 315 MPa, taken from [6].

The fatigue life prediction is based on the maximum stress range found from when the conductor has reached maximum deformation and then one full bending cycle from there.

7. Results

This chapter presents the results.

7.1 Analytical model

The stress ranges were predicted with the analytical model presented in section 3.5 and given in Table 5.

		-	
Contribution	Analytical	Layer 3	Layer 4
Radius of curvature $\rho = 3$ m			
Dynamic tension	7	7	7
Friction	105	45	6
Bending stress in the y-direction	121	116	108
Total	232	167	121
Radius of curvature $\rho = 6.5$ m			
Dynamic tension	1	1	1
Friction	105	45	6
Bending stress in the y-direction	56	53	50
Total	162	99	57

Table 5: Summary of stress contribution predicted by the analytical model

7.2 Friction coefficient

The influence of the friction coefficient was investigated by performing several simulations. The results are shown in Table 6. It should be noted that this sensitivity study was performed with and axial stiffness of 400 MN/m² which is not used in the final results. The dry and lubricated friction coefficient corresponds to $\mu = 0.2$ and $\mu = 0.02$ respectively. It is clear that the friction coefficient has a strong influence on the stress and thereby the predicted life. All failures were found in the second layer except for the two cases with the lowest friction coefficient where they occurred in the fourth layer and the third layer with Goodman correction.

Table 6: Sensitivity study of friction coefficient				
μ	$\Delta\sigma_{xx}$ [MPa]	No mean stress correction	Gerber	Goodman
]	Bellmouth with radii of	3 meter:	
0.01	159 (L4)	8 276 227	8 562 303	7 337 134
0.02	158 (L4)	8 705 948	8 717 180	7 081 601
0.10	185	2 267 713	2 424 560	2 484 793
0.20	226	432 333	704 449	891 409
0.30	265	109 751	297 629	423 610
0.40	289	52 804	180 877	275 584
0.50	296	43 420	160 462	254 125
Bellmouth with radii of 6.5 meter:				
0.2	134	35 058 196	25 732 408	19 544 305
0.5	171	4 371 203	3 967 482	3 760 049

Chapter 7 | Results - Shear stiffness of contact elements

7.3 Shear stiffness of contact elements

The shear stiffness of the contact element must be set with sufficient stiffness to reflect the plane surface remain plane condition. The simulation was first done with shear stiffness of 400 and 600 MN/m². These values are far less than the minimum recommended given by equation 7.2. At first, values from this formula resulted in no convergence, this was solved by only using the displacement norm. The result shows that the change of shear stiffness have some minor influence on the 3-meter radii model and a significant influence on the 6.5-meter radii model. The reason for this is that the 6.5-meter radii model is more in the stick domain which is governed by the parameter.

Table 7: Shear stiffness sensitivity				
Shear stiffness MN/m ²	$\Delta\sigma_{xx}$ [MPa]	No mean stress correction	Gerber	Goodman
Bellmouth with radii of 3 meter:				
400	226	432 333	704 449	891 409
600	229	385 405	652 468	838 490
Eq. 7.2	231	354 481	619 306	806 517
Bellmouth with radii of 6.5 meter:				
400	134	35 058 196	25 732 408	19 544 305
600	141	22 239 865	17 393 694	14 227 543
Eq. 7.2	159	8 424 528	7 747 793	7 278 603

7.4 Friction forces

The friction force starts to develop as the conductor is being bent, it comes from contact between the different layers and hoop contacts within the layer. By plotting the forces (Figure 7.1) of a contact element vs time it can be seen that the contribution from hoop contact is small. This was done for different elements and it should be noted that for one element, "spikes" was found at certain time steps resulting in big jumps of the otherwise smooth curve. This is assumed to be due to some numerical error meaning the model is not totally stable.

Figure 7.1: Contact forces vs time of an element

Removing the contact elements results in a higher stress range and thus a better prediction, as shown in Table 8. However, this result is not considered valid.

Table 8: Results with no hoop contact elements

$\Delta \sigma_{xx}$	No mean stress correction	Gerber	Goodman
245	211 933	435 974	576 897

7.5 Ultimate strength and mean stress correction

The ultimate strength of copper varies, values of 315 MPa and 250 MPa was investigated. The fatigue life of using the higher ultimate strength gives a shorter life for

the model with 3-meter radii bellmouth and longer life for the 6.5-meter model, using Goodman mean stress correction. This is because the correction depends on if the results of the stresses lies above or beneath the R-ratio of the SN-curve. As can be seen in Figure 7.2, the influence of ultimate stress and mean stress correction is small but significant for the model with 3 meter radii and almost non existing for the model with 6.5 meter radii. How the ultimate strength affects fatigue life with other or no mean stress correction is unknown.

Figure 7.2: Influence of ultimate stress and Goodman mean stress correction

7.6 Predicted results vs laboratory tests

Considering the friction coefficient of $\mu = 0.2$, all predicted failures took place in the second layer inside the bellmouth (some distance off-centre) and was in good agreement with the analytical model. The predicted stress range was 231 and 159 MPa for the 3-meter radii and 6.5-meter radii, respectively and without mean stress correction. Figure 7.3 shows the predicted stress ranges compared with the results of the laboratory tests, it is clear that the model overestimates the fatigue life or underestimates the stress range. The latter implies that fatigue life is mainly governed by longitudinal stress range which is not necessarily true. In fact, the result suggests that the fatigue damage is induced by fretting.

Figure 7.3: Cycles until failure of the laboratory tests vs predicted stress ranges

7.7 Indications of Fretting

The displacement amplitude is one major parameter governing fretting. In BFLEX this parameter corresponds to the relative displacement between wires. The displacement differs between layers, cross-section position and length coordinate. As a reference for the results presented in this section, the displacement amplitude is taken at the midsection of the conductor, and at the highest amplitude for each of the mating surfaces. Table 9 shows the results of the two models. Comparing these results with the fretting map (Figure 7.4) developed by Vingsbo and Söderberg, it can be seen that the displacements of the 6.5 meter radii bellmouth model, generally falls within in the range of decreasing fatigue life better than the 3 meter radii bellmouth model. This is very speculative since the fretting map is not based on copper, but it still serves as an indication that the 6.5-meter radii model is more prone to fretting fatigue than the 3-meter model.

Chapter 7 | Results - Indications of Fretting

Table 9: Displacement amplitudes			
Location	Bellmouth with radii of 3 m	Bellmouth with radii of 6.5 m	
	[µm]	[µm]	
Core – Layer 2	39	8	
Layer 2 – Layer 3	130	53	
Layer3 – Layer 4	190	93	
Within Layer 2	33	12	
Within Layer 3	64	25	
Within Layer 4	68	30	

Figure 7.4: Fretting map with displacement amplitudes

The other major parameter governing fretting is the contact pressure. The contact pressure is not explicitly given by the model, and what pressure causing fretting on copper is not found in literature. However, a scatter band of the contact pressure was estimated from the contact line force by division of a lower and upper assumption of a deformed cylinder. The lower assumption was taken as the diameter length and the upper assumption was taken as 10 percent of the diameter. The contact pressure varies as the conductor is being bent. The inline contact pressure fluctuates and reaches zero in the neutral position. The interlayer contacts also fluctuate but remains more or less the same, at maximum the pressure is reduced by 4.6 MPa. The results are shown in Table 10.

Chapter 7 | Results - Indications of Fretting

Table 10: Estimated contact pressure			
Location	Bellmouth with radii of 3 m [MPa]	Bellmouth with radii of 6.5 m [MPa]	
Core – Layer 2	4.7 – 47.2	4.9 – 49.8	
Layer 2 – Layer 3	2.2 – 22.4	2.19 – 21.9	
Layer3 – Layer 4	1-10.4	0.93- 9.37	
Within Layer 2	0.2 – 2	0.089 - 0.89	
Within Layer 3	0.53- 5.38	0.23 2.38	
Within Layer 4	0.7 - 7	0.3 – 3	

No data of contact pressure regarding fretting fatigue of copper was found in literature. However, it was found that an aluminium alloy on steel experience fretting fatigue at 20 MPa and beyond [41]. For stainless steel fretting fatigue is present at 15 MPa [42]. For aluminium fretting fatigue is present at 5 and 20 MPa for two different setups [43].

This data of contact pressure falls within some of the estimated scatter bands of the contact pressures in the conductor. There is a better fit for inter layer contact than for the inline contacts. This suggest that the contact pressure is sufficient to cause fretting fatigue damage also on copper.

8. Discussion

This chapter includes a general discussion and also discussion about mean stress effect and fretting.

8.1 General

All models are an attempt to describe reality, some are useful, and some are not. In this work, a finite element model was developed with the underlying basis that the fatigue life is mainly govern by longitudinal stress ranges. The result shows that the model over predicts the fatigue life when the conductor is subjected to reversed bending in one plane. However, neglecting mean stress correction, the result of the 3-meter radii bellmouth falls within the scatter band of \pm two standard deviations from the SN-curve of individual wires. The results from the analytical model are in good agreement with the finite element model prediction.

The predicted life is compared to the laboratory tests, in these tests are all the effects contributing to the fatigue life included by the nature of the test. This comparison (Figure 7.3) suggests that the underlying basis of the model, that the fatigue life is mainly governed by longitudinal stress ranges, may or may not be valid. This depends on whether fretting and the effect of mean stress are present or not.

As already stated, both models overpredicts the fatigue life when comparing to the laboratory tests. However, the amount of overprediction differs between the two models. Assuming the effect of mean stress is negligible, the fatigue life is overestimated by a factor of 1.52 and 9.91 for 3- and 6.5-meters radii bellmouth models, respectively. This means that laboratory tests, especially the longer lives test with the larger radius, fails earlier than what the model predicts. It is normal with large margins in fatigue, and the first factor is indeed predicting life within the scatter band of the SN-curve. Moreover, regarding fretting, the difference of the factors suggests that some fatigue damage comes from fretting.

The influence of the friction coefficient was investigated. It was shown in Table 6 that the predicted fatigue life is very sensitive to the choice of friction coefficient. The coefficient of $\mu = 0.2$ was used and based on the measurement done by Nasution et. al [6]. However, there are some uncertainties regarding this. The friction coefficient may differ from the full-scale tests to the test where the friction coefficient was established. Also, even a change in the second decimal place will affect the predicted life significantly. The friction coefficient may increase during the test as well. Comparing $\mu = 0.2$ to general values of dry copper-copper friction coefficient found in literature, it is quite low.

It was found that the contribution of hoop friction forces was small compare to interlayer friction forces. This servers as a validation of the analytical model that excludes hoop friction forces. The hoop contact elements were removed, this saved computational time but resulted in a higher stress range and thus not considered valid. The reason for this is assumed to be due to a "hugging" effect increasing interlayer friction force, which comes from the lack of support in the radial direction which the hoop contacts also contributed to.

For the case of the lubricated conductor, there are no final results. However, from the analysis done it can be seen that they are likely not near the scatter band of the SN-curve. It is assumed that the fatigue life of lubricated conductors cannot be explained by friction and therefore not predicted by this model. The fatigue life is governed by other phenomena and perhaps on microscopic level. So, generally low stress ranges do not go well with the model because other phenomena take control over the fatigue life.

8.2 Mean stress effect

There are uncertainties regarding mean stress correction of copper conductors since there have been no research studying this. Dowling stated that the sensitivity of mean stress increases for higher strength metals, since copper has a low strength it is expected to have a low sensitivity. However, for this study, a traditional approach using Goodman correction was used in order to check its influence on the results.

Goodman correction was investigated together with the ultimate strength of copper conductors. A Haig's diagram was constructed by equation 3.5 using the mean stress and the stress range from BFLEX. As can be seen in Figure 7.2 the effects of ultimate strength and Goodman correction is small or for the larger radius possibly even neglectable. The reason for this is that the results from the finite element prediction are close to the R-ratio line of the SN-curve.

Normally, using a lower ultimate strength or a Söderberg relation (same relation as Goodman but with yield stress), adds conservatives. But since the results are both above and beneath the R-ratio line, the mean stress correction is both conservative and unconservative. The predicted life of the 3-meter radii bellmouth model increases and the life of the 6.5-meter model decreases (or stays more or less the same because the results are almost on the R-ratio line). This reduces the difference of the overestimation but moves at the same time the predicted life of the 3-meter radii bellmouth model out of the scatter band. Also, further decreasing the ultimate strength causes an issue as it becomes less than the maximum stress of 226 MPa.

As already stated, the effect of mean stress on copper conductors is not known and the developed model benefits if the sensitivity is low. Since this cannot be concluded in this study, a literature research was done for discussion purposes.

For a study with aluminium, it was found that traditional mean stress sensitivity theory can lead to non-conservative fatigue design [44]. Another study showed, among other things, that the fatigue life on copper is weakly dependent on mean stress [45]. A study on titanium alloy showed that the Goodman relation can lead to significantly over-conservative as well as non-conservative estimations depending on the considered cycles to failure [46]. One study [47] found showed that copper is sensitive to the mean stress effect, but for low stress ranges and relatively low mean stress. However, sensitivity is usually weaker for higher mean stress [48].

So, it is clear that the traditional theories may not be applicable. The sensitivity is dependent on at least what material being used, mean stress and load amplitude, and it seems likely that the sensitivity for copper is low.

8.3 Fretting

The fretting phenomenon is known to be a complex problem to analyse. Little research has been done on fretting related to copper conductors. A literature study was done in order to gain a better understanding of the phenomenon. Even though Nasution et al. found no signs of fretting when investigating fractured wires with a Scanning Electron Microscope, it cannot be ruled out as a possibility. The result of the simulations clearly suggests fretting since the lifetime of the predictions differs significantly. Generally, fretting suffers from the large number of parameters governing the phenomenon, this makes comparisons between studies difficult. Anyhow, contact pressure and displacement amplitude are two parameters that can be used for analysis. With regards to these parameters, the result shows or indicates that fretting is possible. However, these indications of fretting should be taken very briefly as the tribological effects are limited. E.g. the trellis contact is not modelled as a point contact and partial slip phenomenon in fretting is not considered. Also, the contact pressure had to be estimated.

In this study, only the midsection of the conductor and the maximum displacement for each mating surfaces was studied with regards to displacement amplitude and the contact pressure. The displacement amplitude and contact pressure varies from here in location and the contact pressure also varies with time. The contact pressure increases slightly off center and then decreases out to the ends. The interlayer contact force remains sufficiently large over time but the contact within the layers goes to zero when the beam is strait. A more complete analysis would consider all locations in all time steps.

Perhaps the most interesting in this analysis is the displacement and contact pressure between the core and the second layer of the 6.5-meter radii bellmouth model. This fits the reduced fatigue life of Vingsbo's and Söderberg's map well and has likely sufficient pressure to cause fretting fatigue. If this is the case, the fracture also due to fretting would occur in the second layer which is in line with the laboratory tests. The 3-meter radii bellmouth model also shows decreased fatigue life for its displacement amplitude between the core and the second layer. However, since it has a shorter life, it is less exposed to fretting and assumed to be more governed by the stress variation.

As no data on contact pressure on copper was found in literature, data of steel and aluminium was used instead. It is realistic to assume that fretting on copper may occur at the same or even lower levels of contact pressure. The studies found does not investigate a lower threshold for when fretting fatigue is present, which would be of more interest for this study. However, values are taken as the lowest contact pressure when fretting fatigue is present in those studies.

9. Conclusions

The fatigue strength of stranded copper conductors was investigated. A finite element model based on the assumption that fatigue life is mainly governed by longitudinal stress ranges was developed. The predicted life of the model was compared to laboratory tests. The conductor was subjected to static tension and reversed bending in one plane. The main conclusion of this work is that the finite element model overpredicts the fatigue life, by a large factor for the 6.5-meter radius model and by a smaller factor within the scatter band of the SN-curve for the 3.5-meter radius model. The reasons for this are unclear but fretting seems to be a likely explanation. Hence, the model cannot be used for fatigue life prediction of stranded copper conductors. However, some conclusions are drawn from the study.

- 1. The predicted life is very sensitive to the choice of friction coefficient.
- 2. The shear stiffness of the contact elements has a significant influence on the predicted life, especially for the 6.5-meter radii bellmouth model.
- 3. The predicted failure of the unlubricated conductor occurs in the second layer inside the bellmouth. This is in line with the laboratory tests where they occurred in the second or third layer.
- 4. The analytical model is in good agreement with the finite element model.
- 5. The contribution of friction forces within a layer is small compare to interlayer friction forces.
- 6. Traditional use of mean stress correction theory both increases and decreases the predicted life. However, this is uncertain since it is not known how copper conductors respond to the effect of mean stress. A literature study suggests that the sensitivity of mean stress correction is likely low.
- 7. A simplistic fretting analyses suggest that failure due to fretting damage is most likely to occur in the second layer of the larger radius model.

10. Suggestions for future work

A natural continuation of this work is to further investigate the fretting phenomenon. One can consider performing tests of longer fatigue life in order to capture fretting effects. It is also possible to compare reversed bending tests as done in this work with rotational bending tests. Rotational bending tests should suffer less from fretting because all of the wires are affected. With regards to finite element modelling the next step is to use volume elements, this may or may not improve the results but at a significantly increased computational cost.

No studies where found in literature regarding the mean stress effect of copper conductors. As mentioned in the discussion, the effect of mean stress depends on several parameters and the sensitivity is most likely low. It would therefore be of interest to further investigate and possibly confirm this. This can be done by producing more SN-curves at several different stress amplitudes and R-ratios.

Finally, it is possible to produce SN-curves of whole copper conductors. This would include the possible effects of fretting but makes the SN-curve dependent on the load case.
11. Reference List

- 1. Council, G.W.E., *Global Wind Report 2018*. 2019.
- 2. Castro-Santos, L. and V. Diaz-Casas, *Floating Offshore Wind Farms*. 1st ed. 2016 ed. Green Energy and Technology. 2016, Cham: Cham: Springer International Publishing.
- 3. <u>www.aquaret.com</u>. 2020.
- 4. Srinil, N., *Cabling to connect offshore wind turbines to onshore facilities.* 2016. 419-440.
- 5. Worzyk, T., *Submarine Power Cables: Design, Installation, Repair, Environmental Aspects.* Design, Installation, Repair, Environmental Aspects. 2009, Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg.
- Nasution, F.P., S. Sævik, and S. Berge, *Experimental and finite element analysis of fatigue strength for 300 mm2 copper power conductor*. Marine Structures, 2014. **39**(C): p. 225-254.
- 7. Nasution, F.P., et al., *Experimental and finite element analysis of fatigue performance of copper power conductors.(Report).* International Journal of Fatigue, 2013. **47**: p. 244.
- 8. de Alegría, I.M., et al., *Transmission alternatives for offshore electrical power*. Renewable and Sustainable Energy Reviews, 2009. **13**(5): p. 1027-1038.
- 9. Thies, P., L. Johanning, and G. Smith, *Assessing mechanical loading regimes and fatigue life of marine power cables in marine energy applications.* Proceedings of the Institution of Mechanical Engineers, 2012. **226**(1): p. 18.
- 10. DNVGL-ST-0359, Subsea power cables for wind power plants.
- 11. Johnson, K.L., *Contact mechanics*. 1985: CAMBRIDGE UNIVERISTY PRESS.
- 12. Hobbs, R.E. and K. Ghavani, *The fatigue of structural wire strands.* International Journal of Fatigue, 1982. **4**(2): p. 69-72.
- 13. Alani, M. and M. Raoof, *Effect of mean axial load on axial fatigue life of spiral strands.* International Journal of Fatigue, 1997. **19**(1): p. 1-11.
- 14. Hobbs, R.E. and M. Raoof, *Behaviour of cables under dynamic or repeated loading.* Journal of Constructional Steel Research, 1996. **39**(1): p. 31-50.
- 15. Suh, J.-I. and S.P. Chang, *Experimental study on fatigue behaviour of wire ropes*. International Journal of Fatigue, 2000. **22**(4): p. 339-347.
- 16. Raoof, M., *Axial Fatigue of Multilayered Strands.* Journal of Engineering Mechanics, 1990. **116**(10): p. 2083-2099.
- 17. Raoof, M., *AXIAL FATIGUE LIFE PREDICTION OF STRUCTURAL CABLES FROM FIRST PRINCIPLES.* Proceedings of the Institution of Civil Engineers, 1991. **91**(1): p. 19-38.
- 18. Hobbs, R.E. and M. Raoof, *Mechanism of fretting fatigue in steel cables.* International Journal of Fatigue, 1994. **16**(4): p. 273-280.
- 19. Karlsen, S., *Fatigue of copper conductors for dynamic subsea power cables.* 2010. p. 275-281.
- 20. Nasution, F.P., S. Sævik, and J.K.Ø. Gjøsteen, *Fatigue Analysis of Copper Conductor* for Offshore Wind Turbines by Experimental and FE Method. Energy Procedia, 2012. **24**(C): p. 271-280.

- 21. Nasution, F.P., S. Saevik, and J.K.O. Gjosteen, *Finite element analysis of the fatigue strength of copper power conductors exposed to tension and bending loads.* International Journal of Fatigue, 2014. **59**: p. 114.
- 22. Kraincanic, I. and E. Kebadze, *Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behaviour.* The Journal of Strain Analysis for Engineering Design, 2001. **36**(3): p. 265-275.
- 23. BFLEX Theory Manual, SINTEF, Editor. 2019.
- 24. Stig Berge, S.K.Å., *Fatigue and Fracture Design of Marine Structures, Compendium* 2017.
- 25. Suresh, S., Fatigue of Materials. 1998: CAMBRIDGE UNIVERSITY PRESS.
- 26. Lewinsohn, C.A., *Mechanical Behavior of Materials by Norman E. Dowling*. 2000. p. 775-776.
- 27. Ralph I. Stephens, A.F., Robert R. Stephens, Henry O. Fuchs, *Metal Fatigue in Engineering*. JOHN WILEY & SONS, INC.
- 28. D. A.HILLS, D.N., *Mechanics of Fretting Fatigue* ed. G.M.L. GLADWELL. SPRINGER.
- 29. Björk, K., Formler och tabeller för mekanisk konstruktion. Karl Björks Förlag HB.
- 30. Vingsbo, O. and S. Söderberg, *On fretting maps.* Wear, 1988. **126**(2): p. 131-147.
- 31. Nowell, D., D. Dini, and D.A. Hills, *Recent developments in the understanding of fretting fatigue.* Engineering Fracture Mechanics, 2006. **73**(2): p. 207-222.
- 32. *Fretting fatigue: Waterhouse, R.B. Int. Mater. Rev.* 1992 37, (2), 77–97. International Journal of Fatigue, 1993. **15**(4): p. 347-347.
- 33. Edvardsen, A.V., Numerical and Experimental Fretting Fatigue Testing Using a New Test Rig. 2019.
- 34. Moan, T., *Finite element modelling and analysis of marine structures*. Kompendium (Norges teknisk-naturvitenskapelige universitet. Institutt for marin teknikk). Vol. UK-03-98. 2003, Trondheim: Department of Marine Technology, Norwegian University of Science and Technology.
- 35. Sævik, S., Lecture Notes, Advanced Analysis of Marine Structures
- 36. Sigmund, O., Notes and Exercises for the Course: FEM-Heavy.
- 37. Ivar Langen, R.S., *Dynamisk Analyse Av konstruktioner*.
- 38. *RIFLEX Theory Manual*, SINTEF, Editor. 1995.
- 39. Mathisen, K.M., Large Displacement Analysis of Flexible and Rigid Systems Considering Displacement-dependent Loads and Nonelinear Constraints, in Structural Engineering. 1990, NTH.
- 40. Sævik, S.
- 41. Sadeler, R., *Influence of contact pressure on fretting fatigue behaviour of AA 2014 alloy with dissimilar mating material.* Fatigue & Fracture of Engineering Materials & Structures, 2006. **29**(12): p. 1039-1044.
- 42. Nakazawa, K., et al., *Effect of contact pressure on fretting fatigue of austenitic stainless steel.* Elsevier Science Publishing Co., Inc., Tribology International (USA), 2003. **36**(2): p. 79-85.
- 43. Adibnazari, S. and D.W. Hoeppner, *A fretting fatigue normal pressure threshold concept.* Wear, 1993. **160**(1): p. 33-35.
- 44. Aigner, R., M. Leitner, and M. Stoschka, *On the mean stress sensitivity of cast aluminium considering imperfections.* Materials Science & Engineering A, 2019. **758**: p. 172-184.
- 45. Eckert, R., C. Laird, and J. Bassani, *Mechanism of fracture produced by fatigue cycling with a positive mean stress in copper.* Materials Science and Engineering, 1987. **91**(C): p. 81-88.

- 46. Oberwinkler, B., On the anomalous mean stress sensitivity of Ti-6Al-4V and its consideration in high cycle fatigue lifetime analysis. International Journal of Fatigue, 2016. **92**(P1): p. 368-381.
- 47. Lukas, P., et al., *EFFECT OF MEAN STRESS ON THE LOW-AMPLITUDE CYCLIC STRESS-STRAIN CURVE OF POLYCRYSTALLINE COPPER.* Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1989. **118**: p. L1-L4.
- 48. Yung-Li Lee, J.P., Richard Hathaway, Mark Barkey *Fatigue Testing and Analysis. Theory and Practice-Butterworth-Heinemann.* 2004: ELSAVIER.

12. Appendix

- A) Stress distribution of the conductors in fully bent position.
- B) BFLEX input file of the 3-meter radii model.

Stress distribution 6.5-meter radii model att fully bent position.

61

2020-06-04 10:49 C:\Users\Gustav\OneDrive - NTNU\MasterThesis\Models\M50.2bif HEAD M50, BELLMOUTH Length 0.8 RADIUS 3, ELEMENTS = 100 Model Lenght = 1.2 Met 1 er 2 HEAD Contact01, 3 HEAD FATIGUE INK. 4 HEAD Units: m, N, Pa, s 5 6 # Control parameters. 7 ISOLVR NPOINT IPRINT CONR # MAXIT NDIM GAC ISTRES 0 stressfree # str 8 CONTROL 200 3 2 8 11 10E-05 essfree / restart # 9 10 VISRES INTEGRATION 1 SIGMA-XX SIGMA-XX-AX SIGMA-XX-MY SIGMA-XX-MZ V CONFOR-Z FATIGUE 11 12 MSTAT ALPHA 1 ALPHA 2 ALPHA # 13 DYNCONT 1 0.0 0.05 -0.05 14 15 # Time control data for dynamic iteration 16 Т DT DTVI DTO Type STEPTYPE ITERCO ITCRIT MAXIT MAX # DIV CONR 17 TIMECO 1.0 0.01 0.5 100.0 20 DYNAMIC AUTO NONE disp 1 1.0E-04 0 18 TIMECO 13.0 0.001 0.5 100.0 DYNAMIC AUTO NONE disp 16 1 0 1.0E-05 19 20 POISSON TALFA 21 NAME TYPE TECOND HEATC BETA ΕA EIY # EIZ GIT ΕM GM MATERIAL copper1 LINEAR 0.355 1.1E-5 50 800 0.59 22 0.0 932650 936 0.59936 0.442332 1.15E11 0.42435E11 23 MATERIAL copper2 LINEAR 0.355 1.1E-5 50 800 0.0 932650 0.59 936 0.59936 0.442332 1.15E11 0.42435E11 MATERIAL copper3 LINEAR 0.355 1.1E-5 50 24 800 0.0 932650 0.59 936 0.59936 0.442332 1.15E11 0.42435E11 1.1E-5 50 25 MATERIAL copper4 LINEAR 0.355 800 0.0 932650 0.59 936 0.59936 0.442332 1.15E11 0.42435E11 26 27 FATPROP copper1 copperfatigue1 28 FATPROP copper2 copperfatigue2 29 FATPROP copper3 copperfatigue3 30 FATPROP copper4 copperfatigue4 31 32 MATERIAL plastic ELASTIC 0.35 33 1000.0 1.1E-5 0.0 0.0 700E6 34 MATERIAL endmat1 LINEAR 0.35 1.1E-5 50 800 0.0 220640.994 823.6 823.6 607.8 1.15e11 0.42435E11 35 # 36 KEL1 KEL2 FRAC # TYPE MUS MUD KDYNC1 C1 C2 DIM KSURF 37 MATERIAL contact01R2 FRICONTACT 6 0.2 0.2 5159e6 5159e6 2 0.0 1.0 1.0 -1.0 1e10 38 MATERIAL contact01R3 FRICONTACT 6 0.2 0.2 1298e6 1298e6 2 0.0 1.0 1.0 -1.0 1e10 39 MATERIAL contact01R4 FRICONTACT 6 0.2 0.2 577e6 577e6 2 0.0 1.0 1.0 -1.0 1e10 40 # The attachecement beams 41 42 NOCOOR coordinates 5001 0 0 0.00 43 5011 0 0 0 51 44 5031 0 0 1.02 #-----Conductor-45 _ _ _ ---# 5032 0 2.22 46 0.0 5052 47 0.0 0 2.73 48 5062 0.0 0 3.24 49 50 50001 0 NOCOOR coordinates 0 1.62 51 52 ID nl 53 # qroup elty material n2 54 ELCON 5001 5001 5002 end1 pipe31 endmat1

B)

C:\Users\Gustav\OneDrive - NTNU\MasterThesis\Models\M50.2bif 2020-06-04 10:49 55 REPEAT 30 1 1 56 ELCON end2 pipe31 endmat1 5031 5032 5033 REPEAT 30 1 1 57 58 ELORIENT COORDINATES 5001 0.0 1000.0 59 0.0000 REPEAT 60 1 0 0 0 60 61 # name type
 ODw rks
ELPROP end1 pipe 62 radius th CDr Cdt CMr CMt wd WS ODp rks 0.025 0.005 0.8 0.1 2.0 0.2 63 0.80 0.80 0.012 pipe 5 0.01250 0.5 64 ELPROP end2 0.025 0.005 0.8 0.1 2.0 0.2 0.80 0.80 0.012 pipe 5 0.01250 0.5 65 # BELLMOUTH BODY AND CONTACT. 66 67 68 bellmouth body502 none 90001 50001 ELCON ELORIENT EULERANGLE 90001 0 0 0 ELPROP bellmouth body geol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 69 70 thetanvislendiamradius0.0200.80.0303.0 71 # 72 GEOM geol 1 dTrumpet 73 74 # Contact between bellmouth and conductor ELCON bscontact cont152 rollmat2 90101 50001 75 76 REPEAT 101 1 0 77 ELORIENT EULERANGLE 90101 0 0 0 78 90201 0 0 0 79 # name type diameter ELPROP bscontact bellmouth 0.029 80 inside 81 1 CONTINT bscontact bellmouth TAPE3 0.0 60 1 82 13001 13100 500 500 83 type mmyx xname zname contact 0.2 0.2 rollmat1_x rollmat1_z 84 # name MATERIAL rollmat2 85 86 87 # name type alfa eps sig MATERIAL rollmat1 x epcurve 1 88 0 0 0.005 1 89 90 100.00 2 91 type eps sig name MATERIAL rollmat1_z hycurve -1.0e7 -3.0e15 92 93 1.0e7 3.0e15 94 # BOUNDARY CONDITIONS 95 96 97 BONCON GLOBAL 5001 1 98 BONCON GLOBAL 5001 2 99 BONCON GLOBAL 5001 3 100 BONCON GLOBAL 5001 4 101 102 BONCON GLOBAL 5062 1 BONCON GLOBAL 5062 2 103 BONCON GLOBAL 5062 3 104 105 BONCON GLOBAL 5062 4 106 107 CONSTR CONEQ global 10001 1 0.0 5031 1 1.0 CONSTR CONEQ global 10001 2 0.0 5031 2 1.0 108 CONSTR CONEQ global10001 3 0.0 5031 3 1.0CONSTR CONEQ global10001 4 0.0 5031 4 1.0CONSTR CONEQ global10001 5 0.0 5031 5 1.0CONSTR CONEQ global10001 6 0.0 5031 6 1.0 109 110 111 112 113 114 CONSTR CONEQ global 10101 1 0.0 5032 1 1.0 CONSTR CONEQ global 10101 2 0.0 5032 2 1.0 115

 CONSTR CONEQ global
 10101 3 0.0 5032 3 1.0

 CONSTR CONEQ global
 10101 4 0.0 5032 4 1.0

 CONSTR CONEQ global
 10101 5 0.0 5032 5 1.0

 CONSTR CONEQ global
 10101 6 0.0 5032 6 1.0

 116 117 118 119

120 121 122 123 124 125 126	BONCON (BONCON (#BONCON (BONCON (BONCON (BONCON (GLOB GLOB GLOB GLOB GLOB GLOB	AL 5(AL 5(BAL 5 AL 5(AL 5(AL 5(0001 0001 50001 0001 0001 0001	L	1 2 3 4 5 6								
127 128 129 130	# ROTATI NOCOOR F	ION Z ROTDI	AND SH ISP 0	HIFT .0 1	OF X L.570	COOI 79632	RDINA 2 0.0	ΓΕ Ο -Ξ	L.02 0	.0 0.	0			
131 132	# DEFINI	ING I	NODAT.	COOF	RDTNA	TES (OF COI	NDUCT	DR.					
133	# LAYER	1		0001			01 001							
134 135 136	NOCOOR (COORI	DINATI	ES	1000	1 1	0.0 1.20	().0).0	0. 0.	0 0			
137 138 139	NOCOOR	C001	RDINA	FES	1100: 1110	1 0	0.00 1.20	(0.00	0. 0.	00000			
140 141 142	# TAPES NOCOOR	C001	RDINA	res	1200: 1210	1 0	0.00 1.20	().00).00	0. 0.	0000			
143 144 145	NOCOOR	C001	RDINA	FES	1300: 1310	1 0	0.00	(0.00	0. 0.	0000			
146 147 148 149	NOCOOR	C001	RDINA	res	1400 1410	1 0	0.00 1.20	(0.00	0. 0.	00000			
150 151	# LAYER	2												
152 153 154	• # r NOCOOR Po	no lar	0.0	0.0	у0 0.0	z0 0.0	b1 0.0	b2 0.0	b3 0.003	R 321	200010.	node .00 0 20101	xcor 1.20	theta 23.7101
155 156 157	*1.2 # Repeat		N 6	NOI 101	DINC L	2	XINC D.O	ТНІ 6.2	ETAINC 283185	307/6				
158	# LAYER	3												
159 160	NOCOOR Po	lar	0.0	0.0	0.0	0.0	0.0	0.0	0.00	642	300010.	.00 0 30101	1.20	-22.046
	26*1.2													
161 162 163	# Repeat		N 12	NC 1(DDINC DDINC		XINC 0.0	TI 6	HETAIN 28318	C 5307/	12			
164	# LAYER	4												
165 166	NOCOOR Po	lar	0.0	0.0	0.0	0.0	0.0	0.0	0.00	963	400010.	.00 0 40101	1.20	21.2989
167 168 169 170	*1.2 # Repeat		N 18	NC 1(DDINC	X: 0	INC .0	THE: 6.28	FAINC 331853	07/18	3			
171 172 173	# Defini # Elemer	ing e nt co	elemen onnect	nt gi tivit	coups cy and	d pro	opert	ies						
174 175 176 177	# ELCON REPEAT	ELGI LAYI 100	R ER1 1 1	ELTY HSHI	Z ZAR36:	1 3 (MATNAI COPPEI	ME R1	ELI 100	D 01	NOD1 10001	NOD2 10002	NOD3 2 1100	1
178 179 180	ELCON REPEAT	TAP1 100	E1 1 1	HSHI	EAR36	3 1	PLAST	IC	110	01	10001	1000:	2 1200	1
181 182 183 184	ELCON REPEAT	TAP1 100	E2 1 1	HSHI	EAR36	3 1	PLAST	IC	120	01	10001	1000:	2 1300	1

C:\Use	<u>rs\Gus</u> t	av\OneDr:	ive – N	TNU\Ma	<u>sterThes</u> is	s\Models\	M50.2bi	f	202	20-06-0	4 10 : 49
185 186 187	ELCON REPEAT	TAPE3 100 1 1	HSHE2	AR363	PLASTIC	130	01 10	0001 1	0002 1	4001	
187 188 189 190 191 192 193 194	# ELCON	ELGR LAYER2	ELTY HSHEA	AR353	MATNAME COPPER2	ELID 20001 20002 20003 20004 20005 20006	NOD1 10001 10001 10001 10001 10001 10001	NOD2 10002 10002 10002 10002 10002 10002	NOD3 20001 20102 20203 20304 20405 20506	NOD4 20103 20204 20305 20406 20507	
195	REPEAT	100 6 1									
196 197	# I	ELGR	ELTY		MATNAME	ELID	NOD1	NOD2	NOD3	NOD4	
198 199 200 201 202 203 204 205 206 207 208 209 210	ELCON 1	LAYER3	HSHEAR:	353	COPPER3	30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012	10001 10001 10001 10001 10001 10001 10001 10001 10001 10001	10002 10002 10002 10002 10002 10002 10002 10002 10002 10002 10002	30001 30102 30203 30304 30405 30506 30607 30708 30809 30910 31011 31112	30002 30103 30204 30305 30406 30507 30608 30709 30810 30911 31012 31113	
210 211	REPEAT	100 12 1									
212 213 214 215	# Elcon 1	ELGR LAYER4	EL: HSHEAR	TY 353	MATNAME COPPER4	ELID 40001 40002 40003	NOD1 10001 10001 10001	NOD2 10002 10002 10002	NOD3 40001 40102 40203	NOD4 40002 40103 40204	·
217 218 219 220 221 222 223 224 225						40005 40006 40007 40008 40009 40010 40011 40012 40013	10001 10001 10001 10001 10001 10001 10001 10001	10002 10002 10002 10002 10002 10002 10002 10002 10002	40405 40506 40607 40708 40809 40910 41011 41112 41213	40406 40507 40608 40709 40810 40911 41012 41113 41214	
226 227 228 229 230		100 10 1				40014 40015 40016 40017 40018	10001 10001 10001 10001 10001	10002 10002 10002 10002 10002	41314 41415 41516 41617 41718	41315 41416 41517 41618 41719	
231 232	REPEAT	100 18 1									
233 234	# CONT#	ACT ELEME ELGR	NTS:	ELTY	Z MA	TNAME	ELID	NOD1	NO	D2 1	10D3
235 236 237 238 239	ELCON	LAYER1-L	AYER2	hcont4	163 cont	act01R2	51001 51002 51003 51004 51005	11001 11001 11001 11001 11001	20 20 20 20 20	001 2 102 2 203 2 304 2 405 2	20002 20103 20204 20305 20406
240 241	repeat	100 6 1					91000	TIOOT	20	U0 2	20307
242 243 244 245 246 247	ELCON	LAYER2-T	APE1	hcont4	163 cont	act01R2	52001 52002 52003 52004 52005	20001 20102 20203 20304 20405	20 20 20 20 20	002 103 204 305 406	12001 12001 12001 12001 12001
248	repeat	100 6 1					52006	20506	20	507	12001
∠50 251 252 253	ELCON	TAPE1-LA	YER3	hcont4	163 cont	act01R3	53001 53002 53003	12001 12001 12001	30 30 30	001 102 203	30002 30103 30204

224 225 \$3004 12001 30404 30405 225 \$3005 12001 30405 30406 225 \$3005 12001 30405 30406 225 \$3005 12001 30506 30507 2257 \$3007 12001 30607 30708 30708 2257 \$5006 12001 30807 30101 30111 30111 2261 \$5001 30001 30002 13001 30101 30111 30111 2262 \$5001 30001 30002 13001 30001 30002 13001 2263 \$5005 30406 3001 30001 30002 13001 2264 \$5005 30406 3001 3001 3001 3001 2270 \$5006 30406 3001 3001 3001 3001 2271 \$5006 30406 3001 3001 3001 3001 3001 3001 3001 30	C:\Use	ers\Gust	av\OneDrive -	NTNU\Master	Thesis\Models	\M50.2bi:	f	2020-06	-04 10:49
225 SUUUS 12001 19405 30406 256 SUUUS 12001 30607 30607 258 SUUUS 12001 30637 30608 259 SUUUS 12001 30709 30719 259 SUUUS 12001 30617 30607 261 SUUUS 12001 30617 30618 30112 262 Frepeat 100 12 1 SUUUS 30112 30112 30112 262 SUUUS 30001 SUUUS 30001 SUUUS 30001 30002 13001 264 SUUUS 30001 SUUUS 30001 SUUUS 13001 270 SUUUS 30010 SUUUS 30010 SUUUS 13001 271 SUUUS 30010 SUUUS 30010 SUUUS 13001 272 SUUUS 30101 SUUUS 30010 SUUUS 13001 272 SUUUS 30101 SUUUS <td< th=""><th>254</th><th></th><th></th><th></th><th></th><th>53004</th><th>12001</th><th>30304</th><th>30305</th></td<>	254					53004	12001	30304	30305
25.6 5.3006 12001 30506 30517 25.7 5.3007 12001 30607 30708 30708 25.9 5.3005 12001 30607 30708 30708 25.9 5.3005 12001 30607 30710 30810 25.9 5.3005 12001 30110 30111 31112 25.9 5.3005 12001 30010 30210 30211 25.9 5.5001 30002 13001 30002 13001 26.9 5.5003 30204 13001 55001 30046 13001 27.9 5.5005 30806 30507 13001 55005 30808 30691 13001 27.9 5.5005 30808 30607 13001 3001 13001 27.9 5.5005 30808 30607 13001 3001 13001 27.9 5.5005 30808 30607 13001 13001 13001 27.	255					53005	12001	30405	30406
257 259 259 250 250 250 250 250 250 250 250 250 250	256					53006	12001	30506	30507
258 53008 12001 30709 30709 260 53010 12001 30810 30810 260 53011 12001 30810 30810 260 53012 12001 30810 30810 260 53012 12001 31011 31012 261 repest 100 12 1 5001 30001 30001 30001 266 55003 30203 32004 13001 267 55003 30203 32004 13001 268 55003 30203 32004 13001 270 55003 30405 30405 30401 13001 271 55007 30405 30405 30401 13001 272 55003 30203 30201 13001 13001 273 55007 30809 30810 13001 13001 274 55007 30803 30810 13001 13001 275 57005 30801 30801 13001 13001 40002 2760 <td>257</td> <td></td> <td></td> <td></td> <td></td> <td>53007</td> <td>12001</td> <td>30607</td> <td>30608</td>	257					53007	12001	30607	30608
259 53009 12001 30800 30810 261 53010 12001 31011 31011 31012 261 53011 12001 31112 31112 31112 261 53011 12001 31011 31011 31011 263 repeat 100 12 1 12011 31011 31011 264 55002 30102 30001 30001 30011 266 55004 30334 30301 30011 30012 31001 267 55005 30405 30001 3001	258					53008	12001	30708	30709
260 53010 12001 30910 30911 262 53012 12001 31012 31012 263 repeat 100 12 1 55001 30001 30002 31003 13001 264 55002 30002 30103 13001 30003 13001 265 55004 30405 30004 30004 13001 30012 266 55005 30405 30004 13001 30012 13001 267 55007 30607 30607 13001 13001 13001 271 55007 30607 30607 13001 13001 13001 272 55007 30609 30609 13001 13001 13001 273 55011 31011 31012 13001 40002 13001 274 55010 30910 40001 40002 40002 57003 13001 40002 40003 40024 40024 40024 40024 40024 40024 40035 57005 13001 40004 40355 57005	259					53009	12001	30809	30810
261 53011 12001 31011 31012 263 53012 12001 31112 31112 31112 264 53012 12001 30002 13001 30002 13001 265 ELCON LAYER3-TAFE2 hcont463 contact01R3 55001 300102 30003 13001 266 55002 30103 30001 30001 13001 30011 13001 267 55003 30405 30405 30405 30405 13001 13001 268 55003 30405 30405 30405 13001 13001 271 55006 30708 30991 30011 13001 2001 13001 13001 13001 13001 13001 13001 13001 13001 13001 13001 40024 40033 13001 40024 40033 4024 4033 4024 4033 4024 4033 4024 4034 4034 4034 4034 4034 4034 4034 4034 4034 4034 40404 4066	260					53010	12001	30910	30911
262 repeat 100 12 1 53012 12001 31112 31113 264 266 266 266 266 266 266 266 267 267 268 267 268 269 270 269 270 270 270 270 270 270 270 270 270 271 270 271 270 270 271 271 270 271 271 271 271 271 271 271 271 271 271	261					53011	12001	31011	31012
264 265 LAYER3-TAFE2 hcont463 contact01R3 55001 30001 30002 13001 266 55002 30102 30102 30103 13001 268 55004 30204 13001 30012 30102 30101 30012 30101 30011	262 263	repeat	100 12 1			53012	12001	31112	31113
ZES LLCON LAYER3-TAFE2 hcont463 contact01R3 55001 30001 30002 13001 Zer 55003 30103 30203 30224 13001 Zer 55004 30203 30224 13001 Zer 55004 30305 30406 13001 Zer 55007 30607 36608 13001 Zer 55008 30708 3001 30012 13001 Zer 55007 30607 36608 13001 30012 13001 Zer 55008 30709 13001 30012 13001 30012 13001 Zer 55010 30110 13001 40002 2000 2000 2000 2001 13001 40001 40002 Zer 57007 13001 40045 40005 57007 13001 4024 40035 Zer 57007 13001 40607 40608 57007 13001 40756 40001	264								
226 55002 30102 3103 13001 228 55003 30204 13001 229 55004 30304 30305 13001 270 55006 30406 13001 13001 271 55008 30708 30709 13001 272 55008 30708 30709 13001 273 55009 30810 30911 31012 274 55013 3011 31012 3101 275 55011 3011 31012 3001 276 55012 31112 31113 13001 277 repeat 100 12 1 57001 13001 40001 40002 270 13001 40031 40204 40204 281 57007 13001 40304 40304 282 57006 13001 40405 40406 284 57011 13001 40405 40406 57010 13001	265	ELCON	LAYER3-TAPE2	hcont463	contact01R3	55001	30001	30002	13001
267 55003 30203 30204 13001 269 55004 30305 13001 270 55006 30405 30406 13001 271 55007 30607 36608 13001 272 55008 30709 13001 30012 13001 273 55007 30607 36608 13001 2001 273 55008 30709 13001 30012 13001 273 ELCON TAPE2-LAYER4 hcont463 contact01R4 57001 13001 40002 40038 274 2300 23006 13001 40034 40055 40406 274 2300 57007 13001 40607 40608 281 57005 13001 40607 40608 282 57007 13001 40607 40608 283 57007 13001 40607 40608 284 57006 13001 40607 40608	266					55002	30102	30103	13001
268 55004 30304 30305 13001 270 55005 30405 30405 13001 271 55005 30405 30405 13001 272 55005 30405 30405 13001 272 55007 30607 30607 30610 13001 273 55008 30708 30811 13001 13001 274 55010 30910 30810 13001 13001 276 55011 31011 31012 13001 40002 40002 279 ELCON TAPE2-LAYER4 hcont463 contact01R4 57001 13001 40002 40002 280 57006 13001 40001 40002 40001 40006 40506 40506 281 57006 13001 40010 40010 40010 40010 40010 40102 40010 40102 40011 40112 40113 41114 41113 41112 <td< td=""><td>267</td><td></td><td></td><td></td><td></td><td>55003</td><td>30203</td><td>30204</td><td>13001</td></td<>	267					55003	30203	30204	13001
289 55005 30405 30405 13001 271 55006 30506 30506 30608 13001 272 55008 30708 30708 30708 30701 13001 273 55010 30809 30810 13001 13001 274 55010 30810 30311 13001 275 repeat 100 12 1 31112 31113 13001 276 55010 3001 40001 40002 40002 278 200 57003 13001 40001 40002 40002 281 57005 13001 40405 44066 57006 13001 40406 40506 284 57006 13001 40405 40406 40506 40506 40506 285 57007 13001 40607 40608 57001 13001 40114 4112 286 570107 13001 40101 40011 4011 4011 4111 4111 4111 4111 4111 4111 4111 4111<	268					55004	30304	30305	13001
210 55006 30506 30507 30607 3	269					55005	30405	30406	13001
211 53007 30607 30708 13001 272 55008 30709 30708 13001 273 55010 30910 30910 13001 275 55011 31011 31012 13001 276 55011 31011 31012 13001 277 repeat 100 12 1 1 13001 40002 40002 278 57005 13001 40001 40002 40002 281 57005 13001 40104 40002 40103 281 57005 13001 40405 40406 40507 284 57006 13001 40607 40608 40709 284 57007 13001 40607 40608 40709 284 57010 13001 40114 4011 4011 284 57010 13001 40141 4011 4011 284 57010 13001 4011 4011 4011 4011 4011 4011 4011 40111 4011 4011 <	270					55006	30506	30507	13001
2/2 50009 30/09 30/09 13001 273 55009 30809 30809 30801 13001 274 55010 30809 30811 13001 13001 274 55011 30101 31012 13001 50012 31112 13001 276 repeat 10012 1 1001 40001 40002 40024 279 ELCON TAPE2-LAYER4 bcont463 contact0184 57001 13001 40001 40002 280 57004 13001 40056 40406 281 57006 13001 40605 40406 282 57007 13001 40607 40608 283 57010 13001 40809 40810 284 57011 13001 40114 40114 285 57007 13001 40607 40608 57010 13001 41111 41012 41113 41214 290 57011 13001 41011 41012 291 57012	271					55007	30607	30608	13001
273 30810 30810 30810 13001 275 55010 30910 30810 13001 275 55012 31112 31001 30010 40002 276 55012 30011 13001 40002 40002 277 repeat 100 12 1 57001 13001 40002 40002 278 57003 13001 40002 40002 40002 281 57003 13001 40007 40008 40006 282 57005 13001 40607 40608 57006 13001 40607 40608 284 57009 13001 40607 40608 57009 13001 40810 40911 285 57007 13001 40607 40608 57011 13001 41011 41012 286 57008 13001 410810 40810 40810 40810 40810 40810 40810 40810 40810 40810 41113 41213 41213 41213 41213 41213 41214 41315 <td>272</td> <td></td> <td></td> <td></td> <td></td> <td>55008</td> <td>30708</td> <td>30709</td> <td>13001</td>	272					55008	30708	30709	13001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273					55009	30809	30810 20011	13001
213 31011 31012 31012 13001 277 repeat 100 12 1 31012 31011 31011 31001 278 ELCON TAPE2-LAYER4 hcont463 contact01R4 57001 13001 40002 40002 280 57003 13001 40204 40204 57003 13001 40305 281 57004 13001 40304 40305 57006 13001 40607 40608 284 57005 13001 40607 40608 40708 40709 285 57007 13001 40607 40608 57004 13001 40101 286 57008 13001 40708 40709 40810 40911 287 57011 13001 41011 41112 41113 41315 288 57015 13001 411415 41416 41416 290 57018 13001 411415 41416 291 57017 13001 411415 41416 292 57017 13001 41001	274					55010 55011	30910 21011	30911 21012	13001
270 repeat 100 12 1 51112 51112 51113 15011 278 ELCON TAPE2-LAYER4 hcont463 contact01R4 57001 13001 40001 40002 280 57002 13001 40123 40204 57003 13001 40304 40305 281 57003 13001 40607 40608 282 57006 13001 40607 40608 283 57006 13001 40607 40608 284 57001 13001 40607 40608 285 57007 13001 40607 40608 286 57008 13001 40101 4012 287 57011 13001 401101 41012 289 57011 13001 41112 41112 291 57014 13001 41112 41114 292 57015 13001 41141 41141 293 57016 13001 4001 40001 294 57016 13001 40001 40001 </td <td>275</td> <td></td> <td></td> <td></td> <td></td> <td>55011</td> <td>31011 21112</td> <td>3101Z 21112</td> <td>13001</td>	275					55011	31011 21112	3101Z 21112	13001
278 ELCON TAPE2-LAYER4 hcont463 contact01R4 57001 13001 40001 40002 280 57002 13001 40103 40203 40204 281 57003 13001 40203 40204 282 57006 13001 40304 40305 283 57006 13001 40607 40608 284 57007 13001 40607 40608 285 57007 13001 40607 40608 286 57008 13001 40607 40608 287 57010 13001 40910 40911 289 57011 13001 40111 41012 290 57013 13001 41213 41214 291 57014 13001 41114 41113 292 57017 13001 41617 41618 293 ELCON LAYER4-TAPE3 hcont463 contact01R4 59001 40001 40002 14001 301 41018 59004 400001 40002 14001 3001 </td <td>276 277</td> <td>repeat</td> <td>100 12 1</td> <td></td> <td></td> <td>55012</td> <td>31112</td> <td>31113</td> <td>13001</td>	276 277	repeat	100 12 1			55012	31112	31113	13001
2/9 ELCON TAFE2-LATER4 ACONT4653 CONTACTURA 5/001 13001 40001 40001 281 57003 13001 40203 40203 282 57004 13001 40056 40305 283 57006 13001 40667 40608 284 57006 13001 40667 40608 285 57006 13001 40607 40608 286 57007 13001 40809 40810 287 57009 13001 40809 40810 288 57010 13001 40111 41012 290 57011 13001 41011 41012 291 57013 13001 41213 41214 292 57014 13001 41314 41315 293 57018 13001 41617 41618 294 57018 13001 40001 40002 14001 301 59002 40102 40001 40002 14001 302 57018 130	278	DI CON		harry 400			1 2 4 4 1	40001	40000
220 57002 13001 40102 40103 281 57004 13001 40203 40204 282 57005 13001 40304 40305 283 57006 13001 40607 40608 284 57007 13001 40607 40608 284 57007 13001 40607 40608 285 57007 13001 40708 40709 286 57007 13001 40607 40608 286 57007 13001 40114 40112 287 57010 13001 40104 40709 288 57011 13001 41011 41012 290 57012 13001 41112 41113 291 57013 13001 41112 41113 292 57017 13001 41617 41618 294 57016 13001 41011 41011 295 57017 13001 40002 14001 301 59002 40102 40	279	ELCON	TAPEZ-LAYER4	hcont463	CONTACTUIR4	57001	13001	40001	40002
221 57003 13001 40203 40203 222 57004 13001 40305 40406 283 57005 13001 40607 40608 284 57007 13001 40607 40608 285 57008 13001 40607 40608 286 57008 13001 40809 40810 287 57008 13001 40111 40112 288 57010 13001 40011 40112 290 57012 13001 41011 41012 291 57014 13001 41011 41012 292 57015 13001 41617 41618 293 57017 13001 41617 41618 294 57018 13001 40001 40002 14001 301 59003 40203 40204 14001 300 1401 4001 300 14001 300 14001 300 14001 300 14001 300 14001 300 14001 300 <td>280</td> <td></td> <td></td> <td></td> <td></td> <td>57002</td> <td>13001</td> <td>40102</td> <td>40103</td>	280					57002	13001	40102	40103
223 37004 13001 400304 40305 224 57005 13001 40056 40466 284 57006 13001 40607 40606 285 57007 13001 40607 40608 286 57008 13001 40708 40709 287 57010 13001 40809 40810 288 57010 13001 40809 40810 289 57011 13001 41011 41012 290 57013 13001 41112 41113 291 57014 13001 41145 41416 292 57016 13001 41617 41618 293 57016 13001 41617 41618 294 57016 13001 41617 41618 295 57017 13001 41011 4001 302 59002 40102 40001 40002 14001 303 59003 40204 40001 40002 14001 304 59	201					57003	12001	40203	40204
233 37003 13001 40403 40403 284 57006 13001 40507 40507 285 57007 13001 40607 40608 286 57008 13001 40809 40810 287 57009 13001 40809 40810 288 57010 13001 40809 40810 289 57011 13001 41011 41012 290 57012 13001 41113 41213 291 57015 13001 41145 41416 292 57016 13001 41516 41517 293 57017 13001 41617 41618 294 57018 13001 41011 41011 295 57017 13001 41617 41618 296 57018 13001 41014 41011 301 59001 40001 40002 14001 302 59003 40203 40204 14001 303 59004 40304 40	202 202					57004	12001	40304	40305
285 57007 13001 40607 40608 286 57008 13001 40709 40709 287 57009 13001 40809 40810 289 57010 13001 40809 40810 289 57011 13001 41011 41012 290 57012 13001 41112 41113 291 57013 13001 41124 41133 292 57016 13001 41154 41416 293 57016 13001 41617 41618 294 57016 13001 41617 41618 294 57017 13001 41017 4101 295 57018 13001 41617 41618 296 ELCON LAYER4-TAPE3 contact01R4 59002 40001 40001 40001 301 59005 40405 40401 59006 40204 14001 303 59006 40304 40305 14001 59006 40406 14001 303 5	284					57005	13001	40405	40400
223 57007 13001 40007 40008 286 57008 13001 40007 40008 287 57009 13001 40809 40810 289 57010 13001 40809 40810 289 57011 13001 41011 41012 290 57012 13001 41112 41113 291 57014 13001 41314 41315 293 57016 13001 41516 41517 294 57017 13001 41617 41618 295 57017 13001 40002 14001 300 59003 40001 40002 14001 301 41617 41618 41719 41001 302 57018 13001 41001 41001 303 59003 40002 14001 40013 14001 304 59003 40005 40013 14001 300 40013 14001 303 59006 40305 400405 14001 <td< td=""><td>20E</td><td></td><td></td><td></td><td></td><td>E 7 0 0 7</td><td>12001</td><td>40007</td><td>4000</td></td<>	20E					E 7 0 0 7	12001	40007	4000
226 37003 13001 40703 40709 287 57009 13001 40809 4010 288 57010 13001 40809 40801 289 57011 13001 41011 41012 280 57013 13001 41213 41214 281 57014 13001 41112 41113 281 57015 13001 41213 41214 282 57016 13001 41617 41616 283 57016 13001 41617 41618 284 57016 13001 41017 40011 4001 40001 40002 14001 286 57018 13001 41017 41617 286 57018 13001 40002 14001 300 59002 40102 40103 14001 301 59004 40304 40305 14001 302 59005 40405 40406 14001 303 59006 40306 40307 14	283					57007	12001	40607	40608
27 57000 13001 40090 40010 28 57010 13001 40011 40011 290 57012 13001 41011 41012 291 57013 13001 41112 41113 291 57014 13001 41314 41315 293 57016 13001 41314 41315 293 57016 13001 41617 41618 294 57016 13001 41617 41618 295 57017 13001 4001 40002 14001 300 59003 40202 40001 40002 14001 301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40401 40013 304 59006 40708 40701 4001 305 59007 40607 40601 4001 306 59008 40708 40701 14001 306 59010 </td <td>200</td> <td></td> <td></td> <td></td> <td></td> <td>57008</td> <td>12001</td> <td>40700</td> <td>40709</td>	200					57008	12001	40700	40709
289 57011 13001 40910 40911 290 57012 13001 41011 41012 291 57013 13001 41112 41113 291 57014 13001 41213 41214 292 57016 13001 41314 41314 293 57016 13001 41415 41416 294 57016 13001 41617 41618 295 57017 13001 41617 41618 296 57018 13001 40002 14001 3001 59002 40102 40001 40002 14001 301 59002 40102 40013 14001 302 59003 40203 40204 14001 303 59004 40304 40305 14001 304 59005 40405 40406 14001 305 59007 40607 40001 4001 306 59006 40506 40507 14001 307 59008 40	201 200					57009	12001	40609	40010
20 57012 13001 41012 41113 291 57013 13001 41213 41214 292 57014 13001 41314 41315 293 57015 13001 41415 41416 294 57016 13001 41617 41618 295 57017 13001 41617 41618 296 Fepeat 100 18 1 59001 40001 40002 14001 200 59002 40102 40001 40002 14001 300 59003 40203 40204 14001 301 59004 40304 40305 14001 302 59006 40506 40507 14001 303 59006 40506 40507 14001 304 59006 40507 40001 4001 305 59007 40607 40601 14001 306 59007 40607 40601 14001 306 59010 40910 40911 14001 307	200 289					57010	13001	40910	40911
201 57012 13001 41112 41113 221 57013 13001 41213 41214 222 57014 13001 41314 41315 233 57015 13001 41415 41416 244 57016 13001 41415 41416 294 57017 13001 41617 41618 295 57017 13001 41617 41618 296 57018 13001 40002 14001 300 59002 40001 40002 14001 301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40401 14001 304 59006 40507 14001 306 14001 305 59007 40607 40608 14001 306 59010 40910 40911 14001 307 59018 40708 40709 14001 308 59011 4101	200					57012	13001	41011	41012
222 57014 13001 41314 41315 233 57015 13001 41314 41315 234 57015 13001 41415 41416 294 57016 13001 41617 41618 295 57018 13001 41617 41618 296 57018 13001 40001 40002 14001 297 repeat 100 18 1 59002 40102 40103 14001 300 59003 40203 40204 14001 301 59004 40304 40305 14001 303 59006 40506 40507 14001 304 59007 40607 40608 14001 305 59008 40708 40709 14001 306 59010 40910 40911 14001 307 59010 40910 40911 14001 308 59010 40910 40911 14001 310 59013 41213 41214 14001 316	290					57013	13001	41213	41214
233 57015 13001 41415 41416 294 57016 13001 41516 41517 295 57017 13001 41617 41618 296 57018 13001 41017 41618 297 repeat 100 18 1 57018 13001 40002 14001 298 57018 13001 40002 14001 300 59002 40102 40103 14001 301 59003 40203 40204 14001 302 59005 40405 40406 14001 303 59006 40506 40507 14001 304 59008 40708 40709 14001 305 59001 40807 40607 14001 306 59010 40910 40911 14001 308 59014 41314 41315 14001 310 59014 41314 41315 14001 311 59014 41314 41315 14001 313 59014	292					57014	13001	41314	41315
224 57016 13001 41516 41517 295 57017 13001 41617 41618 296 57018 13001 41617 41618 297 repeat 100 18 1 57018 13001 40001 40002 14001 298 ELCON LAYER4-TAPE3 hcont463 contact01R4 59001 40001 40002 14001 300 59003 40203 40204 14001 3001 3001 3001 3001 3001 3001 3001 3001 40001 40002 14001 3001 3001 3001 3001 40001 40002 14001 3001 3001 3001 3001 40001 40001 40001 3	293					57015	13001	41415	41416
225 57017 13001 41617 41618 296 57018 13001 41718 41719 297 repeat 100 18 1 298 299 2001 40001 40002 14001 298 299 ELCON LAYER4-TAPE3 hcont463 contact01R4 59001 40001 40002 14001 300 59002 40102 40103 14001 59003 40203 40204 14001 302 59004 40304 40305 14001 59005 40406 14001 303 59005 40405 40406 14001 59007 14001 14011 304 59007 40607 40608 14001 59009 40809 40810 14001 305 59009 40809 40810 14001 59014 14101 14001 306 59013 41213 41214 14001 14001 14001 310 59015 41415 14001 59015 41415 14001 311 59016 41516 <td< td=""><td>294</td><td></td><td></td><td></td><td></td><td>57016</td><td>13001</td><td>41516</td><td>41.51.7</td></td<>	294					57016	13001	41516	41.51.7
296 57018 13001 41718 41719 297 repeat 100 18 1 298 ELCON LAYER4-TAPE3 hcont463 contact01R4 59001 40001 40002 14001 300 59002 40102 40103 14001 301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40406 14001 304 59007 40607 40608 14001 305 59007 40607 40608 14001 306 59009 40809 40810 14001 307 59010 40910 40911 14001 308 59012 41112 41113 14001 309 59013 41213 41214 14001 310 59014 41314 41315 14001 311 59016 41516 41517 14001 313 59017 41617 41618 14001 313 59016	295					57017	13001	41617	41618
repeat 100 18 1 ELCON LAYER4-TAPE3 hcont463 contact01R4 59001 40001 40002 14001 59002 40102 40103 14001 59003 40203 40204 14001 59004 40304 40305 14001 59005 40405 40406 14001 59006 40506 40507 14001 59007 40607 40608 14001 59008 40708 40709 14001 306 59009 40809 40810 14001 59010 40910 40911 14001 59012 41112 41113 14001 59012 41112 41113 14001 59013 41213 41214 14001 59014 41314 41315 14001 59015 41415 41416 14001 59016 41516 41517 14001 59018 41718 41719 14001 59018 41718 41719 14001 59018 41718 41719 14001 59018 41718 41719 14001	296					57018	13001	41718	41719
298 - 299 ELCON LAYER4-TAFE3 hcont463 contact01R4 59001 40001 40002 14001 300 59002 40102 40103 14001 301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40406 14001 304 59006 40506 40507 14001 305 59007 40607 40608 14001 306 59009 40809 40810 14001 307 59000 40910 40911 14001 308 59010 40910 40911 14001 309 59011 41011 41012 14001 310 59013 41213 41214 14001 311 59015 41415 41416 14001 312 59016 41516 41517 14001 313 59016 41516 41517 14001 314 59017 41617 41618 14001 315 59018 41718 41719 14001 316 59018 41718 41719 14001 317 repeat 100 18 1	297	repeat	100 18 1						
299 ELCON LAYER4-TAPE3 ncont463 contact01R4 59001 40001 40002 14001 300 59002 40102 40103 14001 301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40406 14001 304 59006 40506 40507 14001 305 59007 40607 40608 14001 306 59009 40809 40810 14001 307 59009 40809 40810 14001 308 59010 40910 40911 14001 309 59012 41112 41113 14001 310 59013 41213 41214 14001 311 59014 41314 41315 14001 312 59015 41415 41416 14001 313 59017 41617 41618 14001 316 59018 41718 41719 140	298	1		1		F 0 0 0 1	40001		1 4 0 0 1
300 59002 40102 40103 14001 301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40406 14001 304 59006 40506 40507 14001 305 59007 40607 40608 14001 306 59009 40809 40810 14001 307 59010 40910 40911 14001 308 59010 40910 40911 14001 309 59011 41011 41012 14001 310 59013 41213 41214 14001 311 59015 41415 14161 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 316 59017 41617 41601 14001 317 repeat 100 18 1 1318 319 41718 41719 14001	299	ELCON	LAYER4-TAPE3	ncont463	contact01R4	59001	40001	40002	14001
301 59003 40203 40204 14001 302 59004 40304 40305 14001 303 59005 40405 40406 14001 304 59006 40506 40507 14001 305 59007 40607 40608 14001 306 59007 40607 40608 14001 306 59009 40809 40810 14001 307 59010 40910 40911 14001 308 59010 40910 40911 14001 309 59012 41112 41113 14001 310 59013 41213 41214 14001 311 59014 41314 41315 14001 312 59013 41213 41401 14001 314 59016 41516 41517 14001 314 59017 41617 41618 14001 316 59018 41718 41719 14001 318 190 59018 4171	3UU 201					59002	40102	40103	14001
302 3904 40304 40303 14001 303 59005 40405 40406 14001 304 59006 40506 40507 14001 305 59007 40607 40608 14001 306 59008 40708 40709 14001 307 59009 40809 40810 14001 308 59010 40910 40911 14001 309 59011 41011 41012 14001 310 59013 41213 41214 14001 312 59013 41213 41214 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1313 319 319 319	301 202					59003	40203	40204	14001
303 59003 404003 40400 14001 304 59006 40506 40507 14001 305 59007 40607 40608 14001 306 59008 40708 40709 14001 307 59009 40809 40810 14001 308 59010 40910 40911 14001 309 59010 40910 40911 14001 310 59012 41112 41113 14001 311 59013 41213 41214 14001 312 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1313 319 319 319	202 202					59004	40304	40303	14001
305 59000 40500 40500 40601 305 59007 40607 40608 14001 306 59008 40708 40709 14001 307 59009 40809 40810 14001 308 59010 40910 40911 14001 309 59011 41011 41012 14001 310 59012 41112 41113 14001 312 59013 41213 41214 14001 312 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 318 319 319	303					59005	40405	40400	14001
306 59007 40007 40007 40007 40001 306 59008 40709 14001 307 59009 40809 40810 14001 308 59010 40910 40911 14001 309 59011 41011 41012 14001 310 59012 41112 41113 14001 311 59013 41213 41214 14001 312 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 1 1 1 319 1400 18 1 1 1 1	304					59000	40500	40507	14001
307 59000 40700 40700 40700 308 59009 40809 40810 14001 309 59010 40910 40911 14001 309 59011 41011 41012 14001 310 59012 41112 41113 14001 311 59013 41213 41214 14001 312 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 14001 14001 318 319 1 14001 14001	305					59007	40007	40000	14001
308 59010 40010 40911 14001 309 59010 40910 40911 14001 310 59011 41011 41012 14001 311 59012 41112 41113 14001 312 59013 41213 41214 14001 313 59014 41314 41315 14001 314 59015 41415 41416 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 18 14001 318 319 1400 18 1	307					59000 59000	-0700 40209	40709 40810	14001
309 59010 40010 14001 310 59011 41011 41012 14001 311 59012 41112 41113 14001 312 59013 41213 41214 14001 313 59014 41314 41315 14001 314 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 18 18 318 319 1 18 18	308					59010	40910	40911	14001
310 59011 41011 41012 14001 311 59012 41112 41113 14001 312 59013 41213 41214 14001 313 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 18 18 18 319 18 18 18 18 18	309					59011	41011	41012	14001
311 59013 41213 41214 14001 312 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 18 18 319 10 18 1 18	310					59012	41112	41113	14001
312 59013 41213 41214 14001 312 59014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 1 18 18 319 19 10 18 1	211					59013	41212	<u>1101</u>	14001
312 53014 41314 41315 14001 313 59015 41415 41416 14001 314 59016 41516 41517 14001 315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 18 14001 18	312					59013	41 21 <i>/</i>	41215	14001
314 59016 41415 41410 14001 315 59016 41516 41517 14001 316 59017 41617 41618 14001 317 repeat 100 18 1 59018 41718 41719 14001 318 319 319 14001 14001 14001	J⊥∠ 313					59015	41415	41416	14001
315 59017 41617 41618 14001 316 59018 41718 41719 14001 317 repeat 100 18 1 318 319 319 14 14	314					59016	41516	41517	14001
316 59018 41718 41719 14001 317 repeat 100 18 1 318 319	315					59017	41617	41618	14001
317 repeat 100 18 1 318 319	316					59018	41718	41719	14001
318 319	317	repeat	100 18 1						
	318 319								

:\Us	ers\Gustav # זאיידסא	V\OneDr:	ive - NTNU\Maste:	rThesis\Models\ ms•	M50.2bi	f	2020-06	-04 10:49
520	# INIERN	AL LAIL	R CONTACT ELEMEN	115.				
321 322	ELCON LA	YER2Int	Cont hcont454	contact01R2	85001	10001	10002	20001
323	20002	20102	20103		85002	10001	10002	20102
324	20103	20203	20204		85003	10001	10002	20203
325	20204	20304	20305		85004	10001	10002	20304
326	20305	20405	20406		85005	10001	10002	20405
327	20406	20506	20507		85006	10001	10002	20506
328	20507 repeat 1	20001 00 6 1	20002					
329 330	ELCON LA 30002	YER3Int 30102	Cont hcont454 30103	contact01R3	86001	10001	10002	30001
31	30103	30203	30204		86002	10001	10002	30102
32	30204	30304	30305		86003	10001	10002	30203
33	30305	30405	30406		86004	10001	10002	30304
34	30406	30506	30507		86005	10001	10002	30405
35	30507	30607	30608		86006	10001	10002	30506
36	30608	30708	30709		86007	10001	10002	30607
37	20700	20000	30910		86008	10001	10002	30708
38	20010	20010	20011		86009	10001	10002	30809
39	30810	30910	30911		86010	10001	10002	30910
40	30911	31011	31012		86011	10001	10002	31011
41	31012	31112	31113		86012	10001	10002	31112
42	31113 repeat 1	30001 00 12 1	30002					
43 44	ELCON LA	YER4Int	Cont hcont454	contact01R4	88001	10001	10002	40001
45	40002	40102	40103		88002	10001	10002	40102
46	40103	40203	40204		88003	10001	10002	40203
47	40204	40304	40305		88004	10001	10002	40304
48	40305	40405	40406		88005	10001	10002	40405
49	40406	40506	40507		88006	10001	10002	40506
50	40507	40607	40608		88007	10001	10002	40607
51	40608	40708	40709		88008	10001	10002	40708
52	40709	40809	40810		88009	10001	10002	40809
53	40810	40910	40911		88010	10001	10002	40910
54	40911	41011	41012		88011	10001	10002	41011
55	41012	41112	41113		88012	10001	10002	41112
56	41113	41213	41214		00012	10001	10002	41010
סנ	41214	41314	41315		00014	10001	10002	41213
с /	41315	41415	41416		88014	10001	10002	41314

C:\Use	rs\Gusta	.v\OneDr	ive - N	TNU\Maste	rThes	is\Models	\M50.2bif		2020-	06-04	10:49
358	11116	11516	11517				88015	10001	10002	2 41	L415
359	41410	41 01 7	41.010				88016	10001	10002	2 41	L516
360	41517	4161/	41618				88017	10001	10002	2 41	L617
361	41618	41/18	41/19				88018	10001	10002	2 41	L718
362 363	41719 repeat 1	40001 100 18 1	40002 1								
364 365	#	BOUNDAE	RY COND	FIONS							
266	#										
367	# IAFES	GLOBAL	11001 3	2 REPEAT	100 -	1					
368	BONCON	GLOBAL	11001 2	3 REPEAT	100 1	1					
369						_					
370	BONCON	GLOBAL	12001 2	2 REPEAT	100 1	1					
371	BONCON	GLOBAL	12001 3	3 repeat	100 1	1					
372											
373	BONCON	GLOBAL	13001 2	2 REPEAT	100 1	1					
374	BONCON	GLOBAL	13001 3	3 REPEAT	100 1	1					
375											
376	BONCON	GLOBAL	14001 2	2 REPEAT	100 1	1					
377	BONCON	GLOBAL	14001 3	3 REPEAT	100 1	L					
3/8											
380	#I AVEDC										
381	BONCON	GLOBAL	20001 -	1 REPEAT	6 10'	1					
382	BONCON	GLOBAL	20101 1	1 REPEAT	6 10	1					
383	BONCON	GLOBAL	20001 2	2 REPEAT	6 10	1					
384	BONCON	GLOBAL	20101 2	2 REPEAT	6 10	1					
385	BONCON	GLOBAL	20001 4	4 REPEAT	606	1					
386	BONCON	GLOBAL	20001 5	5 REPEAT	606	1					
387											
388	BONCON	GLOBAL	30001 1	l repeat	12 10	01					
389	BONCON	GLOBAL	30101 1	l repeat	12 10	01					
390	BONCON	GLOBAL	30001 2	2 REPEAT	12 10	01					
391	BONCON	GLOBAL	30101 2	2 REPEAT	12 10	01					
392	BONCON	GLOBAL	30001 4	4 REPEAT	1212	1					
393	BONCON	GLOBAL	30001 5	5 REPEAT	1212	1					
394											
395				_							
396	BONCON	GLOBAL	40001	L REPEAT	18 10)1					
397	BONCON	GLOBAL	40101	L REPEAT	18 10)1					
398	BONCON	GLOBAL	40001 2	Z REPEAT	10 10						
399	BONCON	GLOBAL	40101 2	Z REPEAT	1010	J L 1					
400	BONCON	GLOBAL	40001 40001 40001	5 DEDENT	1818	1					
402	DOINCOIN	GIODAI	40001 .	JINDIDAI	1010	T					
403	# Elemen	nt prope	erties.								
404	#	ELGRP	SHI	EARHELIX	(GEOTYPE	W	TH	V	٧D	WS
	SC	ALEFACT	[PHIST	GHIST AX	ISYM]						
405	ELPROP	Layer1	she	earhelix		tube	0.001605	0.001	.605 (0.1	0.
	1	1	50	50	10						
406	ELPROP	Layer2	she	earhelix		tube	0.001605	0.001	.605 (0.1	0.
407		1	50	50	10	1 h .	0 001 005	0 001		2 1	0
40/	⊾⊔РКОР 1	Layer3	She 50	sarnellx	1.0	eupe	0.001605	0.001	.ουο (⊥	υ.
108		L	50 ch	5U Sarboliy	10	tubo	0 001605	0 001	605 () 1	0
400	LLPROP	Layer4	50	50	10	Lube	0.001003	0.001	.605 ().⊥	0.
409	-	1	50	50	± 0						
410	ELPROP '	TAPE 1	she	earhelix		tube	0.004815	0.001	.605 ().1	0.
	1	1	50	50	10		0.001010	0.001		• •	~ •
411	ELPROP 1	TAPE 2	she	earhelix		tube	0.008025	0.001	.605 (0.1	Ο.
	1	1	50	50	10						
412	ELPROP '	FAPE 3	she	earhelix		tube	0.011235	0.001	.605 (0.1	0.
	1	1	50	50	10						
413											
414	# ELPRO	P ELGRP		LAYERCO	NTACT	GAP0	TTIME	CNTR1	CNTR2	SCALE	EFAC
	.Т.										

C•\IIso	rs\Custav	\OneDrive - NT	MIL MasterThe	sis\Mode	1s\M50	2hif		2020-0	6-04 10:49
41 F	IS (GUSLAV	VED1 LAVED2			113 (1130	-2DII	D	0	1 0
415	ELPROP LA	AYERI-LAYERZ	Layercontact	: D		D	D	0	1.0
416	ELPROP LA	AYER2-TAPE1	Layercontact	E D		D	D	0	1.0
417	ELPROP TA	APE1-LAYER3	layercontact	E D		D	D	0	1.0
418	ELPROP LA	AYER3-TAPE2	layercontact	D D		D	D	0	1.0
419	ELPROP TA	APE2-LAYER4	layercontact	: D		D	D	0	1.0
420	ELPROP LA	AYER4-TAPE3	lavercontact	D D		D	D	0	1.0
421		-							
122	FIDDOD I	VEP2IntCont	lavercontact	- D		Л	П	\cap	1 0
100		VED2TatCoat	laveragetact			D	D	0	1.0
423	ELPROP LA	ATERSTITCOIL	layercontact	- D		D	D	0	1.0
424	ELPROP LA	AYER4IntCont	Layercontact	E D		D	D	0	1.0
425									
426	# Contact	CS							
427	CONTINT I	LAYER1-LAYER2	LAYER1	LAYER2	1	3	0.0	0.0	0
	60	2							
428	CONTINT I	AYER2-TAPE1	LAYER2	TAPE1	1	3	0.0	0.0	0
120	60	2	2112210		-	Ū.		0.0	Ũ
120	CONTRANT		1 הית גיי	TAVEDO	1	2	0 0	0 0	0
429	CONTINT	APEI-LAIERS	IAPEL	LAIERS	T	5	0.0	0.0	0
400	60	2			-	2	0 0	0.0	0
430	CONTINT I	LAYER3-TAPE2	LAYER3	TAPE2	1	3	0.0	0.0	0
	60	2							
431	CONTINT 7	TAPE2-LAYER4	TAPE2	LAYER4	1	3	0.0	0.0	0
	60	2							
432	CONTINT I	LAYER4-TAPE3	LAYER4	TAPE3	1	3	0.0	0.0	0
	60	2				-			
133	00	2							
433		AVED 2 To + Coon+			1	2	0 0	0 0	0
434	CONTINE	AIERZINCCONC	LAIEKZ	LAIERZ	T	3	0.0	0.0	0
	60	2	_	_		_			
435	CONTINT I	LAYER3IntCont	LAYER3	LAYER3	1	3	0.0	0.0	0
	60	2							
436	CONTINT I	LAYER4IntCont	LAYER4	LAYER4	1	3	0.0	0.0	0
	60	2							
437									
130									
430									
439									
440	# ELEMEN'	ORIENTATION.	_						
441	#	TYPE	ElementII	X C	Y	Z			
442									
443	ELORIENT	COORDINATES	10001	0.0	1.0	0.0			
444			10100	0.0	1.0	0.0			
445			10100	0.0					
110	FIORTENT	COOPDINATES	11001	0 0	1 0	0 0			
440	ETOKIENI	COORDINATES	111001	0.0	1.0	0.0			
447			11100	0.0	1.0	0.0			
448									
449	ELORIENT	COORDINATES	12001	0.0	1.0	0.0			
450			12100	0.0	1.0	0.0			
451									
452	ELORIENT	COORDINATES	13001	0.0	1.0	0.0			
453			13100	0.0	1.0	0.0			
454									
155									
155	FIODIFNE	COODDINAMES	20001	0 0	1 0	0 0			
400	ETOKTEN.L	COORDINALES	20001	0.0	1.0	0.0			
457			20600	0.0	1.0	0.0			
458									
459	ELORIENT	COORDINATES	30001	0.0	1.0	0.0			
460			31200	0.0	1.0	0.0			
461									
462	ELORIENT	COORDINATES	40001	0.0	1.0	0.0			
463		00012111120	41800	0 0	1 0	0 0			
161			11000	0.0	T • O	0.0			
404		COODDINATEC	05001	0 0	1 0	0 0			
400	ETOKIEN.I.	COORDINATES	LUUCO	0.0	1.0	0.0			
466			85600	0.0	1.0	0.0			
467									
468	ELORIENT	COORDINATES	86001	0.0	1.0	0.0			
469			87200	0.0	1.0	0.0			
470									
471	ELORTENT	COORDINATES	88001	0 0	1 0	0.0			
472			89800	0 0	1 0	0 0			
ユ / ム / フ つ			0,000	0.0	T • O	0.0			
113 171									
4/4	Ш				3.7	_			
4/5	#	TYPE	ElementID	X	Y O O	Ц С С			
4/6	ELORIENT	eu⊥erangle	TUUTC	0.0	0.0	0.0			

C:\Use	rs\Gusta	v\OneD	rive - NTN	U\MasterThe:	sis\Mode	els\M50	.2bif
477				51600	0.0	0.0	0.0
478 479	ELORIENT	'euler	angle	52001	0.0	0.0	0.0
480				52600	0.0	0.0	0.0
481 482	ELORIENT	'euler	angle	53001	0.0	0.0	0.0
483		04101		54200	0.0	0.0	0.0
484 485	FIOPTEN	' oulor	angle	55001	0 0	0 0	0 0
486	ETOKIENI	eurer	angre	56200	0.0	0.0	0.0
487				E 7 0 0 1	0 0	0 0	0 0
488 489	ELORIEN.	euler	angle	58800	0.0	0.0	0.0
490			-	50001	0 0		0 0
491 492	ELORIENI	'euler	angle	59001 60800	0.0	0.0	0.0
493							
494	# Extern	al pre	ssure and	gravity(=0)	•		
496	THIST	50 50					
497		0.0 1	.0				
498 499		1.0 1	0				
500		10.0 1	• •				
501	# manai]						
502 503	# Tensil INISTR	.e 10ac 110	1 5001	0.135967	5060	0.1359	67
504	THIST	110	0 0.0				
505 506			0.1 0.00)1			
507			10 1.0				
508		3	60 1.0				
509 510							
511	# Moveme	ent of	bellmouth				
512 513	CONSTR H	DISP	GLOBAL 500	001 3 -0.18	300		
514	INISI_K	500	4.0 7.0 ra	ampcos -1.0			
515			7.0 10.0 1	campcos 1.0			
516 517			10.0 13.0	rampcos -1.	00		
518							
519							

2020-06-04 10:49

