
M
agnus Knæ

dal
Autonom

ous Path Planning and M
aneuvering of a Surface Vessel

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Magnus Knædal

Autonomous Path Planning and
Maneuvering of a Surface Vessel

Master’s thesis in Engineering & ICT, Marine Cybernetics

Supervisor: Roger Skjetne

June 2020

The ReVolt model scale ship. Photo: Simen Sem Øvereng (2019).

Magnus Knædal

Autonomous Path Planning and
Maneuvering of a Surface Vessel

Master thesis
Trondheim, June 8, 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Supervisor: Professor Roger Skjetne
Co-advisors: PhD Tom Arne Pedersen

Preface

This thesis constitutes my master’s degree in Marine Cybernetics at the Norwegian
University of Science and Technology (NTNU), during spring 2020. It is a sum-
mary of my findings and proposal of how stepwise planning can be performed for an
autonomous surface vessel. The thesis is mainly inspired by the work done on ma-
neuvering control design and stepwise path generation by Professor Roger Skjetne at
NTNU.

The work has mainly consisted of theoretical design and development, where
the findings have been implemented and tested using the Robotics Operating System
(ROS) and the ReVolt model scale ship by DNV GL as a test case. The reader is
assumed to have prior knowledge in nonlinear systems and how to solve these kinds
of systems numerically, as well as knowledge in mathematical optimization. Knowl-
edge about graph and curve theory, path planning, and in particular, sampling-based
planning is beneficial, but the necessary knowledge will be represented.

As for the majority of people, the spring of 2020 has been a weird and chal-
lenging one in many ways. COVID-19 has had a significant impact on our everyday
life and also led to uncertainty and limitations related to my master’s degree. The
original plan was to perform extensive testing through both simulations and physical
experiments on ReVolt. However, due to the circumstances, most of the work has
been limited to simulation, except for a last-minute experiment conducted on the real
ReVolt.

i

Acknowledgments

Research is never a solitary task. I want to thank my supervisor Roger Skjetne for
valuable guidance whenever needed. Also, I would like to thank my co-supervisor,
Tom Arne Pedersen, at DNV GL for assisting me with ReVolt, providing necessary
equipment, and answering any questions I would have in mind. Further, I want to
thank Knut Turøy and Simen Sem Øvereng for helping me carry out the experiment.
Thanks to my dearest friends Magnus Kunnas and Jonas Åsnes Sagild for help with
structuring and proofreading of the thesis.

I would like to thank fellow students for providing both a stimulating work envi-
ronment and excellent social surroundings through my whole degree. I am left with
invaluable knowledge and fantastic friends that I am deeply grateful for. Last but not
least, I would like to thank my mother, Ragnhild Oanes, grandfather Eivind Oanes,
and Carl Fredrik Wendt for endless love and support. They have provided me with
the freedom to choose my own way in life, and I would like to dedicate this thesis
partially as a token of my gratitude.

Magnus Knædal,
Trondheim, June 8, 2020

ii

Abstract

This thesis proposes an intelligent guidance concept for a surface vessel moving from
initial to target waypoint. The problem is faced in a stepwise manner to facilitate real-
time execution and the ability to replan online. For convenience, we propose to divide
the complete system into four submodules: the guidance, navigation, measurement,
and control system.

A new way to generate a stepwise, smooth, and continuous path in the horizontal
plane using the Bézier curve and quadratic optimization is developed. Also, a prag-
matic approach is proposed. It is shown how the path generators, together with a
dynamic assignment (which makes up the guidance system), can produce the neces-
sary signals for the maneuvering controller in use. A control law is designed using
a nonlinear adaptive backstepping technique that continuously produces the desired
forces to be applied to the vessel. The forces are then distributed to the actuators by
a thrust allocation algorithm provided by DNV GL.

The navigation system consists of a global low-resolution path planner working
together with a local dynamic high-resolution path planner. The A* algorithm oper-
ating on a Voronoi roadmap constitutes the global planner. It generates a safe path
efficiently. A rapidly exploring random tree (RRT) algorithm combining useful as-
pects of different RRT variants proposed in the literature serves as the local planner.
It is shown how RRT can be used to avoid dynamical obstacles and gradually re-
plan in a stepwise manner. However, a question is raised if the current solution is
computationally efficient enough to tackle real-life situations.

The ReVolt model scale ship by DNV GL is used as a test case. A considerable
amount of simulations are done to verify the performance of each designed subsys-
tem. The simulations provide a sound basis for experimental testing, resulting in a
sea trial where the guidance and control systems are tested on the real ReVolt.

iii

Sammendrag

Denne oppgaven tar for seg et intelligent veiledningskonsept for en overflatefarkost
som beveger seg fra start- til endelig veipunkt. Problemet blir løst stegvis for å
legge til rette for utførelse i sanntid og for å kunne planlegge på nytt underveis.
For enkelhets skyld foreslår vi å dele inn systemet i fire undermoduler: veiledning-,
navigasjon-, måling- og kontrollsystem.

En ny måte å generere en stegvis, jevn og kontinuerlig bane i horisontalplanet ved
bruk av Bézier-kurven og kvadratisk optimering er utviklet. En pragmatisk løsning er
også foreslått. Det vises hvordan banegeneratorene sammen med en dynamisk opp-
gave (som utgjør veiledningssystemet), kan produsere de nødvendige signalene for
regulatoren i bruk. En regulator designet ved bruk av en ikke-lineær adaptiv backstep-
ping-teknikk, beregner kontinuerlig kreftene som skal påføres farkosten. De ønskede
kreftene blir deretter fordelt til aktuatorene ved hjelp av en allokeringsalgoritme lev-
ert av DNV GL.

Navigasjonssystemet består av en global baneplanlegger av lav oppløsning som
jobber sammen med en lokal dynamisk baneplanlegger av høy oppløsning. Den glob-
ale baneplanleggeren består av A*-algoritmen som opererer på et Voronoi-veikart
som deler opp arbeidsområdet. Den lokale planleggeren er en rapidly exploring ran-
dom tree (RRT)-algoritme som kombinerer nyttige aspekter av ulike RRT-varianter
foreslått i litteraturen. Det er vist hvordan RRT kan brukes for å unngå dynamiske
hindringer og stegvis planlegge en ny bane. Det stilles spørsmålstegn til om den
nåværende løsningen er effektiv nok til å takle virkelige situasjoner.

Modellbåten ReVolt, laget av DNV GL, brukes som casestudie. Flere simu-
leringer blir gjort for å verifisere prestasjonen til hvert delsystem. Simuleringene
gir et godt grunnlag for eksperimentell testing og resulterer i et eksperiment hvor
veilednings- og kontrollsystemene testes på den virkelige ReVolt.

iv

Table of Contents

Preface i

Acknowledgments ii

Abstract iii

Sammendrag iv

Table of Contents viii

List of Tables ix

List of Figures xii

Preliminaries xiii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives . 2
1.3 Scope of Work . 3
1.4 Contributions . 4
1.5 Outline of Thesis . 4

2 Background Knowledge and Literature Review 5
2.1 Vessel Model and Description . 5

2.1.1 Notation and Reference Frames 5
2.1.2 Vessel Model . 6
2.1.3 Maneuverability and Vehicle Characteristics 7

2.2 Curve Theory . 8
2.2.1 Path Parameterization . 8
2.2.2 Path Evaluation Criteria 10

2.3 The Bézier Curve . 13
2.3.1 Definition . 14
2.3.2 Derivatives . 16

v

2.3.3 Properties . 17
2.4 The Path Planning Problem . 19
2.5 Map Representation and Partitioning 22

2.5.1 Cost Maps . 23
2.5.2 Voronoi Partitioning . 24

2.6 The Maneuvering Problem . 25
2.7 The Concept Vessel ReVolt by DNV GL 27

3 Problem Formulation 29
3.1 Control System for a Stepwise Maneuvering Problem 29
3.2 Navigation system for a Stepwise Maneuvering Problem 30
3.3 Guidance System for a Stepwise Maneuvering Problem 31
3.4 Problem Statement . 32
3.5 Assumptions and Delimitations . 32

4 Guidance System 34
4.1 Analysis of the Bézier Curve . 34

4.1.1 Cubic and Quintic Bézier Spline 35
4.1.2 Septic Bézier Spline . 36

4.2 The Path Generator . 36
4.2.1 Strategy on the Next Waypoint 37
4.2.2 Corridor . 40
4.2.3 Replanning . 41
4.2.4 Pragmatic Approach . 42
4.2.5 Optimization Approach . 45

4.3 Speed Assignment . 51

5 Navigation System 53
5.1 Local Planner - Rapidly Exploring Random Trees 53

5.1.1 Constraints . 54
5.1.2 Cost Function . 57
5.1.3 Informed RRT* . 59
5.1.4 Real-Time RRT* . 60

5.2 Global Planner - A* Algorithm on a Voronoi Roadmap 65
5.2.1 The A* Algorithm . 66
5.2.2 Clearance Constraints . 67
5.2.3 Pruning of Waypoints . 67

6 Control System 69
6.1 Maneuvering Control Design . 69

6.1.1 Adaptive Backstepping - Step 1 69

vi

6.1.2 Dynamic Update Law Acting in Output Space: 71
6.1.3 Adaptive Backstepping - Step 2 72
6.1.4 Maneuvering Control Law 74

6.2 Thrust Allocation . 74
6.2.1 Extended Thrust Formulation for the Concept Vessel ReVolt 76

6.3 Saturating Element . 77

7 Experimental Platform and Implementation 78
7.1 The ReVolt Test Platform . 78
7.2 Simulator . 79
7.3 Software . 80
7.4 Implementation . 81

8 Simulations 84
8.1 Guidance System . 84

8.1.1 Pragmatic Approach . 85
8.1.2 Optimization Approach . 87
8.1.3 Results . 89

8.2 Control System . 89
8.2.1 Simulation 1: Straight-line Maneuver 90
8.2.2 Simulation 2: S-shaped Maneuver 92
8.2.3 Results . 95

8.3 Navigation System: Global Planner 95
8.3.1 Simulation 1 . 95
8.3.2 Simulation 2 . 96
8.3.3 Results . 97

8.4 Navigation System: Local Planner 98
8.4.1 Simulation 1: Tree growth 99
8.4.2 Simulation 2: Informed Sampling 101
8.4.3 Simulation 3: Blocking Branches by Dynamic Obstacles . . 102
8.4.4 Simulation 4: Rewiring and Planning “On the Fly” 103
8.4.5 Results . 105

8.5 A Complete Simulation . 107
8.5.1 Results . 110

9 Experiment 111
9.1 Experimental Setup . 111
9.2 Problems . 114
9.3 Results . 115

10 A Critical Assessment 120

vii

11 Conclusion 123
11.1 Recommendations for Further Work 124

Bibliography 125

A Parameter Values for ReVolt 134

B Control Points and Plot of Derivatives from Example 4.1 135

C Primitive Procedures for RRT 137

D Waypoints for Simulations and Experiment 138

E Plot of Position, Speed, and Forces for the Complete Simulation 139

viii

List of Tables

1 Mathematical abbreviations. xiii
2 Linguistic abbreviations and acronyms. xiv

2.1 Notation of SNAME (1950) for marine vessels. 5

4.1 Bézier curve of different orders and desired properties. 36

7.1 Thruster placements and their force contributions on ReVolt. 79

8.1 Guidance system: parameters and results for S-shaped simulation. . 84
8.2 Tuning parameters for the local planner. 99

B.1 Control points from Example 4.1. 135

ix

List of Figures

1.1 A closed loop GNMC system for a marine craft. 2

2.1 Heading, course, and sideslip. 8
2.2 The osculating circle at a point s on the curve p(s). 11
2.3 A Bézier curve with its control polygon and convex hull. 15
2.4 A configuration space . 20
2.5 An occupancy grid map. 22
2.6 Cost map layers. 23
2.7 A cost map. 24
2.8 A Voronoi diagram. 25
2.9 The ReVolt model scale ship by DNV GL. 28

3.1 A control system block diagram. 30

4.1 A visualization of continuity constraints in the joints of a Bézier spline. 35
4.2 Strategy on next waypoint. 37
4.3 A cubic, quartic, and a septic Bézier spline. 39
4.4 A path and its corridor. 40
4.5 A 90◦ turn for a marine craft and its corridor. 41
4.6 Replanning using the Bézier curve. 42
4.7 A visualization of different placement of control points for a Bézier

curve. 44
4.8 A path-fixed reference frame. 46
4.9 One-dimensional constraints for the optimization approach. 49

5.1 A visualization of RRT. 54
5.2 An RRT tree with obstacles. 56
5.3 The heuristic sampling domain of Informed RRT*. 59
5.4 Informed RRT*. 60
5.5 Grid-based subsets for RT-RRT*. 62
5.6 Blocking nodes by dynamic obstacles. 64
5.7 Waypoints to be pruned by global planner 68

x

7.1 Dimensions of the ReVolt model scale ship. Courtesy: Alfheim and
Muggerud (2017). 79

7.2 Open simulation platform’s GUI. 80
7.3 The GUI for the control system. 81
7.4 ROS computation graph. 83

8.1 Guidance system, pragmatic approach: A xy-plot of desired path of
S-shaped simulation. 85

8.2 Guidance system, pragmatic approach: Direction, curvature, rate of
change in curvature, and the speed profile and its respective deriva-
tives of S-shaped simulation. 86

8.3 Guidance system, optimization approach: A xy-plot of desired path
of S-shaped simulation. 87

8.4 Guidance system, optimization approach: Direction, curvature, rate
of change in curvature, and the speed profile and its respective deriva-
tives of S-shaped simulation. 88

8.5 Control system, simulation 1: Position in horizontal plane for the
straight line simulation. 90

8.6 Control system, simulation 1: Position versus time for each DOF for
straight line simulation. 91

8.7 Control system, simulation 1: Speed versus time for each DOF for
the straight line simulation. 91

8.8 Control system, simulation 1: Forces versus time for each DOF for
the straight line simulation. 92

8.9 Control system, simulation 2: Position in horizontal plane for the
straight line simulation. 93

8.10 Control system, simulation 2: Position versus time for each DOF for
straight line simulation. 93

8.11 Control system, simulation 2: Speed versus time for each DOF for
the straight line simulation. 94

8.12 Control system, simulation 2: Forces versus time for each DOF for
the straight line simulation. 94

8.13 Global planner, Simulation 1. 96
8.14 Global planner, Simulation 2. 98
8.15 Local planner, Simulation 1: Tree Growth. 100
8.16 Local planner, Simulation 2: Informed Sampling. 101
8.17 Local planner, Simulation 3: Blocking branches by dynamic obstacles. 103
8.18 Local planner, Simulation 4: Rewiring and Planning “On the Fly”. . 105
8.19 A complete simulation: Global planner. 108
8.20 A complete simulation: Guidance and control system. 108

xi

8.21 A complete simulation: Local planner. 110

9.1 Pictures from the experiment. 112
9.2 The ROS computation graph of the control system running on the

onboard computer during the experiment. 113
9.3 Experiment: Environmental forces. 114
9.4 Experiment: A xy-plot of desired path. 116
9.5 Experiment: Direction, curvature, rate of change in curvature, and

the speed profile and its respective derivatives. 117
9.6 Experiment: Position in horizontal plane for the straight line simulation.118
9.7 Experiment: Position versus time for each DOF for straight line sim-

ulation. 118
9.8 Experiment: Speed versus time for each DOF for the straight line

simulation. 119
9.9 Experiment: Forces versus time for each DOF for the straight line

simulation. 119

B.1 Plot of Derivatives from Example 4.1. 136

E.1 A complete simulation: Position versus time for each DOF. 139
E.2 A complete simulation: Speed versus time for each DOF. 140
E.3 A complete simulation: Forces versus time for each DOF. 140

xii

Preliminaries
Mathematical Definitions, Notations, and Abbreviations

Table 1: Mathematical abbreviations.

Symbol Meaning

∈ element of
∀ for all
, defined as
� component wise inequalities
⊂ is a proper subset of
∪ set union
\ set minus
∅ the empty set
∧ logical and

=⇒ implies
← set to
→ goes to or converge to

• All vectors are written in boldface, for example x,y and p, while scalars are
not.

• Total time derivatives of a function x(t) are denoted ẋ, ẍ, x(3), . . . , x(n). A
superscript with an argument variable will denote partial differentiation with
respect to that argument, that is αt(x, θ, t) , ∂α

∂t , αx
2
(x, θ, t) , ∂α

∂x2
, and

αθ
n
(x, θ, t) , ∂α

∂θn , etc.

• An index set of positive natural numbers, N>0, from 1 to n is denoted In =
{1, 2, 3, . . . , n}.

• The p-norm of a vector is defined as:

|x|p ,
(i=1∑

n

|xi|p
)1/p

,

where the most commonly used is the 2-norm, or the Euclidean norm, denoted
|x| , |x|2 = (x>x)1/2. For a scalar, the 2-norm reduces to the absolute value.

xiii

• A diagonal matrix is often written as diag(a, b, c, . . .), and the identity matrix
is simply written I where its dimension should be clear from the context.

• A matrixR ∈ SO(n), is part of a special orthogonal group of order n:

SO(n) = {R|R ∈ Rn×n, R is orthogonal and det(R) = 1}.

A matrixR ∈ SO(n) satisfies:

RR> = I, R−1 = R>, det(R) = 1.

• An n-dimensional body in Rn, which can translate and rotate is part of the
special Euclidean group SE(n) = Rn × SO(n).

• A matrix S ∈ SS(n), that is the set of skew-symmetric matrices of order n, is
said to be skew-symmetric if:

S = −S>.

This implies that the off-diagonal elements of S satisfy sij = −sji for i 6= j
while the diagonal elements are zero (Fossen, 2011d).

• In control design, the subscript ‘d’ as in xd(t) or yd(t) means ‘desired’. It will
always be used for a varying desired function.

• A uniform sample x from a domain X is denoted x ∼ U(X).

Linguistic Abbreviations

Table 2: Linguistic abbreviations and acronyms.

Symbol Meaning

GNMC Guidance, Navigation, Measurement, and Control
DOF Degree Of Freedom
CO Common Origin
CG Center of Gravity

ASV Autonomous Surface Vessel
PC Parametric Continuity

NED North East Down
UAV Unmanned Aerial Vehicle
DP Dynamic Positioning

xiv

OGM Occupancy Grid Map
RRT Rapidly exploring Random Tree

RT-RRT Real-Time RRT
PRM Probabilistic RoadMap
VD Voronoi Diagram

UGES Uniformly Globally Exponentially Stable
CLF Control Lyapunov Function
OSP Open Simulation Platform
OS Operating System

CPU Central Processing Unit
GPS Global Positioning System
OS Operating System
AIS Automatic Identification System
IMU Inertial Measurement Unit
EKF Extended Kalman Filter
ROS Robotic Operating System
GUI Graphical User Interface

COLREG The international regulations for preventing collisions at sea
NTNU Norwegian University of Science and Technology

s.t. subject to or such that
e.g. exempli gratia (“for example”)
i.e. id est (“in other words”)
etc. et cetera (“and so on”)

Q.E.D Quod Erat Demonstrandum (“which was to be demonstrated”)

xv

Chapter 1
Introduction

1.1 Background and Motivation

The purpose of a vessel is to maneuver from one place to another, except for station-
keeping. To be able to maneuver, the appropriate planning and signals for where to
go next need to be produced. For centuries, humans have served as the guidance, nav-
igation, and control system for the vessel. However, as the digital revolution emerged
during the second half of the 20th century, computers have gradually prevailed. As
for all sectors, including the maritime one, the need for AI and autonomy for the
industry to remain relevant is growing. Consequently, the development of highly
sophisticated software modules is a necessity (Liu et al., 2016).

In the marine control research community, the complete motion control system
is traditionally divided into subsystems working in cascade (see Fossen (2011b) for
an overview). The cascaded structure simplifies the stability analysis and makes it
easier to verify the performance of each subsystem. For an autonomous surface vessel
(ASV), we propose to divide the complete motion control system into:

• The guidance system: -used to continuously compute the reference position,
velocity, and attitude of the marine craft to be used by the control system.

• The navigation system: -used to determine the waypoints as well as the desired
speed in the operating region.

• The measurement system: -used to determine the vessel’s position, course, dis-
tance traveled, and in some cases, velocity and acceleration.

• The control system: -used to continuously determine the necessary control
forces and moments to be applied to the vessel to satisfy the given control
objective.

A visualization of the closed-loop guidance, navigation, measurement, and con-
trol (GNMC) system is given in Figure 1.1. In recent years, there has been devoted a
tremendous amount of research, driven by the economic benefits of autonomy at sea,

1

Chapter 1. Introduction

in developing different parts of the GNMC system. However, there are still many
challenges to be solved. The system must be able to perform safe maneuvering in
real-time in case of unexpected obstacles appearing on the way. This situation sets
some common essential requirements for each subsystem in the GNMC system; they
must be computationally efficient, reliable, and robust.

Figure 1.1: A closed loop GNMC system for a marine craft.

1.2 Objectives

The objective of this thesis is to develop and implement an intelligent guidance con-
cept for an ASV, moving from an initial to a target point. In order to handle dynamic
obstacles, the problem is faced in a stepwise manner. The planner should facili-
tate real-time system performance; it must be computationally efficient. A global
low-resolution planner is combined with a local dynamic method to achieve a high-
resolution reactive path planner sensitive to local ambient conditions. The overall
objective includes:

• Consideration of global and local mapping and partitioning of the operation
area.

• Design of a global and a local path planner, and the integration between them.

• Propose how to generate a feasible and smooth path online, efficiently.

• Design of a motion control system, including high-level control and control
allocation.

2

1.3 Scope of Work

1.3 Scope of Work

The scope of work in this thesis includes:

• Perform a background and literature review to provide information and relevant
references on:

– The concept vessel ReVolt by DNV GL.

– Autonomy for marine control systems.

– Maneuvering-based control methods, including the hybrid path parame-
terization method.

– Curve theory, especially theory for generating Bézier curves.

– Guidance models applicable for sampling-based path planning, e.g. cost
maps.

– Sampling-based path planning, especially Rapidly Exploring Random.

– Waypoint-based path generation and iterative (stepwise) path generation.

• Establish a simplified dynamic vessel model for the ReVolt to use as a case
when considering constraints and physical properties in the path planning and
generation problem.

• Formulate the guidance and control problem, including the definition of a case
study, description of the setup, vessel model/descriptions, operation workspace,
and specific assumptions and delimitations.

• Define a relevant discrete topologically organized map of the workspace for the
marine vessel by selecting an appropriate method. Investigate and propose an
algorithm/method to generate waypoint candidates in the map, using sampling-
based path planning according to the defined guidance and control problem.

• Investigate and propose an algorithm/method to generate a path in the horizon-
tal plane for a marine vessel, using Bézier curves as basis functions. Assume a
collision-free straight-line corridor between consecutive waypoints, as well as
constraints on maximum curvature (in physical space).

• Design and implement a maneuvering-based control law for following a path.
Implement and verify it in simulations.

• Integrate the guidance model, path planner, path generation, and maneuver-
ing controller in a seamless manner so that autonomous guidance and control
can be achieved. Perform simulation or experimentation studies to verify the
resulting performance. Critically analyze and discuss the results.

3

Chapter 1. Introduction

1.4 Contributions

To the best of the author’s knowledge, this thesis has contributed with a new way to
generate a stepwise, smooth, and continuous path in the horizontal plane using the
Bézier curve and quadratic optimization. A modified established method for global
path planning is integrated with a proposed real-time RRT-algorithm serving as a
local planner. The RRT-algorithm is optimized towards an ASV operating on occu-
pancy grid maps. Together with existing methods, a complete and computationally
efficient system for an autonomous guidance concept for an ASV has been proposed.
The system has been implemented using the Robotic Operating System (ROS) and
contributed to an additional control mode being added to the concept vessel ReVolt’s
control system. A GUI using a Qt-based framework, together with RViz, has been
made to control the system easily.

1.5 Outline of Thesis

The thesis is divided into ten main chapters. In Chapter 2, the necessary theoretical
background knowledge, as well as important concepts, are represented. In Chapter 3,
the problem to be solved is formulated, including functional inputs/outputs and ob-
jectives of the different subsystems treated. Here we also state the simplifications
and assumptions made when approaching the problem. In Chapters 4 to 6, the design
and proposal answering the objectives are done. The experimental platform used and
implementation details are given in Chapter 7. In Chapters 8 and 9, we represent the
main results, and at last, a critical assessment and conclusion are given in Chapters 10
and 11.

4

Chapter 2
Background Knowledge and
Literature Review

In this chapter, the necessary theoretical background knowledge, as well as important
concepts for this thesis, are represented. Sections 2.1 to 2.3 is heavily based on the
theory represented in the author’s specialization project (Knædal, 2019).

2.1 Vessel Model and Description

2.1.1 Notation and Reference Frames

The notation in Table 2.1, defined by SNAME (1950) will be used. The geographi-
cal reference frame North-East-Down (NED) and the body-fixed reference frame are
used for analysis. NED is chosen as a tangent plane to the surface of the earth, and
positions within the frame are denoted {n} = (xn, yn, zn), where the xn-axis points
towards true north, the yn-axis points east, and the zn-axis points downwards. The
body-fixed reference frame is denoted {b} = (xb, yb, zb), where the xb-axis points in
the longitudinal direction of the vessel, the yb-axis in the transverse direction of the
vessel, and the zb-axis points in the direction normal to the xb-yb plane. See Fossen
(2011d) for a closer explanation on kinematics and notation.

Table 2.1: Notation of SNAME (1950) for marine vessels.

Degree of
freedom

Position in
Euler

coordinates

Linear and
angular

velocities

Forces and
moments

Surge x u X
Sway y v Y
Yaw ψ r N

5

Chapter 2. Background Knowledge and Literature Review

2.1.2 Vessel Model

A simplified control design model, based on the ReVolt model scale ship, is used as a
case when considering dynamic constraints and physical properties. A fully actuated
three degrees-of-freedom (DOF) model operating in the horizontal plane will be used,
thus neglecting motion in roll, pitch, and heave. According to Fossen (2011e), a 3
DOF equation of motion of a marine vessel can be represented as:

η̇ = R(ψ)ν

Mν̇ = −C(ν)ν −D(ν)ν + τ +R(ψ)>b,
(2.1)

where ν = [u, v, r]> is the generalized velocity of the vessel in {b} and η =
[p, ψ]> = [x, y, ψ]> is the generalized position in {n}. Further, M is the inertia
matrix,C(ν) is the Coriolis and centripetal matrix,D(ν) is the damping matrix and
τ is the forces acting on the vessel. The vector b = [b1, b1, b3]>, is an unknown con-
stant (or slowly varying) bias expressed in {n}, accounting for model uncertainties.

R(ψ) ∈ SO(3) is the 3 DOF rotation matrix with the property that Ṙ(ψ) =
R(ψ)S(r) where S(r) ∈ SS(3) is skew-symmetric. Thus:

R(ψ) ,

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , S(r) ,

0 −r 0
r 0 0
0 0 0

 . (2.2)

The force vector τ contains the thrust forces acting on the vessel:

τ =

τXτY
τN

 =

 FX
FY

lxFY − lyFx

 , (2.3)

where FX and FY are the forces in the respective indexed directions and lx and ly are
the arms from which τN are acting on.

Further, we assume that the ship is symmetric and has homogeneous mass distri-
bution about the xb-zb plane. This results in a decoupling of the surge motion from
sway and yaw and implies that the products of inertia Ixy = Iyz = 0. By further
assuming that the common origin (CO) of {b} coincides with the ships’ center of
gravity (CG), results in xg = yg = 0, where xg and yg are the distance from CO to
CG in respective directions. The system inertia matrixM = M> > 0 includes both
rigid-body and added mass terms, and can then be expressed as:

M = MRB +MA =

m−Xu̇ 0 0
0 m− Yv̇ −Yṙ
0 −Yṙ Iz −Nṙ

 , (2.4)

6

2.1 Vessel Model and Description

where m is the mass of the vessel, Iz is the moment of inertia around the zb-axis,
and the rest of the terms comes from the added mass contributions caused by the
acceleration indicated by the subscripts. The skew-symmetric Coriolis-centripetal
matrix also includes both rigid-body and added mass terms, and can then be expressed
as:

C(ν) = CRB(ν) +CA(ν) =

 0 0
0 0

mv − Yv̇v − Yṙr −mu+Xu̇u

−mv + Yv̇v + Yṙr
mu−Xu̇u

0

 . (2.5)

The damping matrixD(ν) is constructed by one linear and one nonlinear part. For a
low-speed vessel such as ReVolt, the linear damping terms is dominating, such that:

D(ν) = DL = −

Xu 0 0
0 Yv Yr
0 Nv Nr

 > 0, (2.6)

where each term represents hydrodynamic damping forces caused by the velocity
indicated by the subscripts.

2.1.3 Maneuverability and Vehicle Characteristics

Maneuverability is defined as the capability of the craft to carry out specific maneu-
vers (Fossen, 2011f). The maneuverability of the ship depends on several factors,
such as water depth, environmental forces, hydrodynamic derivatives, and, most im-
portantly, the dynamical constraints of the vessel. For maneuvering of a marine craft,
the relationship between heading, course, and sideslip, depicted in Figure 2.1, is im-
portant. The velocity vector is given as:

U =
√
u2 + v2. (2.7)

For a marine craft moving around, the velocity vector is not necessarily pointing
in the same direction as the ship’s heading. The course angle χ is the angle from the
xn-axis to the velocity vector of the craft. The heading ψ is defined to be the angle
between the xn-axis in {n} to the xb-axis in {b}. The difference between them is the
sideslip angle β. Thus, we have the relation:

χ = ψ + β. (2.8)

7

Chapter 2. Background Knowledge and Literature Review

xn

yn

(x, y)

xb

yb

Uψ
u

β

χ

v

Figure 2.1: The relationship be-
tween ψ, χ, and β.

When designing a path for the vessel to fol-
low, one needs to take into account that the mag-
nitude and orientation of the velocity vector can-
not change arbitrarily fast. For a certain velocity U ,
there is a limitation on the maximum angular veloc-
ity the vessel can perform. The lower the speed, the
sharper turns the vessel can perform. The maximum
angular speed ωmax can be estimated as a function
of the vehicle speed U : ωmax(U) ≥ 0. The angular
speed of the velocity vector is given as χ̇ = ω. We
know that the inequality:

|χ̇| ≤ ωmax(U), (2.9)

must hold to not violate the angular speed con-
straint. Having the relation U = ωR, where R is
the steady-state turning radius, and the inequality
in Equation (2.9), we obtain the relation:

U ≤ ωmax(U)R. (2.10)

This is an implicit relation between U and ωmax. By further using the relation from
Equation (2.20), we get:

U ≤ ωmax(U)

κmax
. (2.11)

The steady-state turning radius represents the smallest turn the vessel can perform
at a constant surge speed. A maneuvering test such as the Turning Circle Trial can
be used to obtain the steady-state turning radius. See Gertler and Hagen (1960) for
a detailed explanation of the test. The turning radius then gives the curvature κ, by
Equation (2.20).

2.2 Curve Theory

2.2.1 Path Parameterization

A curve is the image of a continuous function from an interval to a topological space.
The function that defines the curve is called a parameterization, and the curve is a
parametric curve. In this thesis, we look at planar curves and important properties
for them concerning path planning and -generation. A planar parametrized curve is
a path generated in a two-dimensional plane that is traced out by a point (x(s), y(s))
as the parameter s ∈ R, ranges over an interval I = [a, b]. The position of a point on

8

2.2 Curve Theory

the path can be represented as pd(s) = [xd(s), yd(s)]
>, where subscript d denotes

“desired”. Thus, the path is a one dimensional manifold that can be defined as in
Skjetne (2005) by the set:

P , {p ∈ R2 : ∃s ∈ R s.t. p = pd(s)}. (2.12)

The path parameter s is usually restricted to a specific interval s ∈ [s0, s1].
For path planning, it is often desired to generate complex shapes due to, e.g.,

collision avoidance. To do this, it is common practice to implement pd(s) as a piece-
wise parametric curve achieved by stitching together several curve segments. This
is referred to as hybrid path parameterization. From Skjetne (2005), a planar path
containing several curve segments in a one-dimensional manifold can be defined as:

P , {p ∈ R2 : ∃i ∈ I and θ ∈ [0, 1) s.t. p = pd(i, θ)}, (2.13)

where Im = {1, 2 . . . ,m} is the the set of m segment indices, and each point along
the path is uniquely determined by a pair (i, θ) ∈ Im × [0, 1). As stated in Lekkas
(2014), this is convenient because it reduces the functional complexity of the curve,
and, in turn, the computational effort for generating it. However, in return, one needs
to consider the transition between the subpaths. In this thesis, the hybrid parameteri-
zation that is used to express a two-dimensional planar curve is expressed as:

pd(i, θ) =

[
xd(i, θ)
yd(i, θ)

]
, θ ∈ [0, 1], i ∈ Im, (2.14)

with the path tangential angle defined as:

γd(i, θ) = atan2(yθd(i, θ), x
θ
d(i, θ)). (2.15)

where atan2(y, x) is the four-quadrant version of arctan(y/x).
The pair (i, θ) ∈ Im × [0, 1) does not conform to a continuous parameterization

of a parameter s ∈ R. However, this can be achieved by the following mapping:

i = g(s) , bsc+ 1,

θ = h(s) , s− bsc,
(2.16)

where b·c is the floor operation. Then we achieve:

pd(s) = pd(g(s), h(s)) = pd(i, θ). (2.17)

Reparameterization

A curve can have indefinitely many reparameterizations. Let us consider a reparame-
terization. Let I ⊂ R and J ⊂ R be two intervals, and p be parametrized by I 7→ R2.

9

Chapter 2. Background Knowledge and Literature Review

Let h be a continuous function that maps I to J . Then p̄ , p ◦ h is a reparameter-
ization of p by h. That is, for s = h(φ) we get the reparametrized curve (Skjetne,
2019):

p̄(φ) = p(h(φ)). (2.18)

Further assume that h is differentiable and monotonically increasing, such that
hφ(φ) > 0 for all φ ∈ J , where h(J) = I . Then it follows that p̄ and p traces out
the same path, but at different path speeds. Since h is bijective, the inverse mapping
s = h−1(φ) , g(s) will also exist.

An especially interesting reparameterization is done by using the arc length. A
continuously differentiable curve p arbitrarily parametrized by a variable s, can be
reparametrized by s = h(l), where l is defined by Equation (2.19). Then we say that
the curve is arc length parametrized. Arc length parameterization have the property
of having unit speed in the direction of the tangent ps(h(l)).

2.2.2 Path Evaluation Criteria

To evaluate what constitutes a “better” path for a path-following motion control sce-
nario, it is necessary to introduce a set of evaluation criteria. These criteria can help
the designer in making a qualified decision when it comes to deciding what the better
one is. These criteria are based on Lekkas (2014).

Arc Length

The arc length between two points a and b on a curve in the plane is the distance a
parameter has to travel along the curve moving from one point to the other. Deducted
from Pythagoras’ theorem, the arc length is given by:

L =

∫ b

a
|psd(τ)| dτ =

∫ b

a

√
xsd(τ)2 + ysd(τ)2 dτ. (2.19)

For many path-following scenarios, the goal is to minimize the traveling distance
between two points with respect to a set of constraints, e.g., clearance constraint for
obstacles.

Path Curvature

Given a planar curve pd and a value s, there exists a unique circle which approximates
the curve near the point pd(s). This circle is named the osculating circle at that point.
See Figure 2.2 for a visualization. The radiusR(s) of the osculating circle at the given
point pd(s) is then defined to be the reciprocal of the curvature, such that:

R(s) ,
1

κ(s)
, (2.20)

10

2.2 Curve Theory

where κ(s) is the curvature at s along the path. Note that κ(s) and R(s) is de-
fined with respect to arc length parameterization, such that the curvature has SI unit
m−1. See Section 2.2.1. In short, the curvature is a measure of how quickly the
path changes direction at the point s. For an arbitrary general parameterization, the
curvature can be found as (Goldman, 2005):

κ(s) =

∣∣∣psd(s)× ps2d (s)
∣∣∣∣∣psd(s)∣∣3 =

∣∣∣xsd(s)ys2d (s)− xs2d (s)ysd(s)
∣∣∣(

xsd(s)
2 + ysd(s)

2
)3/2

. (2.21)

It can be useful to know in which direction the path is turning/curving. A signed
version of the curvature is given by:

H(s) =
psd(s)× ps

2

d (s)∣∣psd(s)∣∣3 =
xsd(s)y

s2

d (s)− xs2d (s)ysd(s)(
xsd(s)

2 + ysd(s)
2
)3/2

. (2.22)

The sign will indicate the turning direction. It will rotate counter-clockwise if it is
positive and rotate clockwise when it is negative.

s

R

p(s)

Figure 2.2: The osculating circle at a point s on the curve p(s).

Rate of Change in Curvature

If the third derivative exists at a point, we may also calculate the rate of change in
curvature, τ(s)1. This corresponds to the rate of change of the curve’s osculating
circle. The rate of change in curvature is a measure of how rapidly the curvature

1Note that τ is often used as symbol for “torsion” of a 3D space curve, sometimes also called the
“second curvature” (Kreyszig et al., 2011). The rate of change in curvature for a 2D curve is not the
same as torsion.

11

Chapter 2. Background Knowledge and Literature Review

changes at a given point s. By differentiating Equation (2.22) one gets:

τ(s) =
xsd(s)y

s3

d (s)− xs3d (s)ysd(s)(
xsd(s)

2 + ysd(s)
2
)3/2

(2.23)

−
3
(
xsd(s)y

s2

d (s)− xs2d (s)ysd(s)
)(

2xsd(s)x
s2

d (s) + ys
2

d (s)ysd(s)
)

2
(
xsd(s)

2 + ysd(s)
2
)5/2

.

Both curvature and rate of change in curvature are independent of the parameter-
ization of the curve and are Euclidean invariants, i.e., they do not change under rigid
body motions of the curve.

Smoothness & Parametric Continuity

For a vehicle that needs to follow a path, two of the most fundamental requirements
for the curve is continuity and smoothness. These criteria are directly related to the
vehicle’s dynamic constraints. A real function that can be represented by a curve
in the Cartesian plane is continuous on an interval [a, b] if, roughly speaking, the
graph is a single unbroken curve and is defined at every point on that interval (Speck,
2014). In the context of smoothness for a planar parameterization, there are two
different notions to describe the path smoothness, namely geometric and parametric
continuity. In this thesis, only parametric continuity is exploited. For a review of
geometric continuity, refer to Barsky and DeRose (1984).

Parametric continuity (PC) is a form of continuity that imposes restrictions on the
derivatives of the parameterization. PC does not reflect the smoothness of the geo-
metrical view of the curve, but rather the parameterization. This means that the curve
may appear continuous, but does not necessarily have the property of being paramet-
ric continuous. For the topic studied here, there is often, if not always, restrictions on
the level of PC for a path to be valid. PC is denoted Cn, where n is the degree of PC
smoothness.

Definition 2.1. Parametric continuity Cn and regularity (Barsky and DeRose, 1984).
A parameterization pd(s) = [xd(s), yd(s)]

> is said to belong to the class Cn on the
interval [s0, s1] if the coordinate functions xd(s) and yd(s), are n times continuously
differentiable on [s0, s1]. It is regular if:

psd(s) 6= 0, ∀s ∈ [s0, s1]. (2.24)

A regular parameterization means that the path never degenerate into a single point.

Definition 2.2. Parametric continuity up to n = 2.

12

2.3 The Bézier Curve

• C0: requires all subpaths to be connected. That is:

pd(i, sub) = pd(i+ 1, slb), i ∈ Im\{m}, (2.25)

where lb and ub denotes lower and upper bound, respectively.

• C1: states that the velocity vector magnitude and orientation are continuous.
Thus, C1 requires C0 and:

psd(i, sub) = psd(i+ 1, slb), i ∈ Im\{m}. (2.26)

• C2: states that the acceleration vector magnitude and orientation are continu-
ous. Thus, C2 requires C1 and:

ps
2

d (i, sub) = ps
2

d (i+ 1, slb), i ∈ Im\{m}. (2.27)

When it comes to path-following motion control for a vehicle, it is desired with
continuity of a certain degree to ensure bumpless transfers in the joints between seg-
ments of a piecewise parametric curve. C1 continuity entails continuity in course
angle, C2 continuity entails continuity in curvature, and furthermore, C3 entails con-
tinuity in the rate of change in curvature.

2.3 The Bézier Curve

In the 1950s and ’60s, there was a need in the automobile and aircraft industries to
define free-form shapes accurately. The motivation behind was the ability to design
cars in other shapes than basic lines, circles, and parabolas that could be brought from
the drawing board with an accurate description, to the pattern shop. To solve this
problem, the French mechanical engineer Pierre Étienne Bézier working at Renault
car manufacturer, started a lead in transforming how design and manufacturing were
done, through mathematical parametrized curves. He started using parametrically
defined surfaces expressed with polynomials exhibiting special characteristics.

The primary outcome of Bézier’s work is named after himself: The Bézier curve.
Bézier took patent and popularized the Bézier curve, but unbeknownst to Bézier ,
another French engineer, Paul de Casteljau, working for Citroën, had just finished
similar work. Since Casteljau’s work was not formally published before Bézier had
popularized his findings, Bézier’s name is associated with the curves. As an acknowl-
edgment to Casteljau’s work, the numerically stable method to evaluate polynomials
in Bézier curves is named after Casteljau.

The basis of the Bézier curve is called the Bernstein polynomial, named after the
Russian mathematician Sergei Natanovich Bernstein. It was first used to prove the

13

Chapter 2. Background Knowledge and Literature Review

Stone-Weierstrass theorem2 in 1911. Because of the slow convergence rate of ap-
proximating continuous functions, the Bernstein polynomial was deemed not useful.
It languished in obscurity in the advent of digital computers. Casteljau’s and Bézier’s
initial formulation did not explicitly use the Bernstein polynomial, but their work is
unmistakably linked to it. Today, the Bernstein Polynomial is seen as the foundation
of the Bézier curve (Farouki, 2012).

Bézier and Casteljau’s insight on how to mathematically use special polynomials
to represent complex curves has had a significant impact on computer-aided design.
It is used to represent complex shapes with smooth curves that can be scaled indef-
initely. For more historical details on the Bézier curve, see Casselman (2008) and
references therein.

With several useful properties, the Bézier curve shows great potential when it
comes to path planning and generation, and will be used as a basis function in this
thesis.

2.3.1 Definition

A Bézier curve is defined by a set of control pointsPi = [xi, yi] where i ∈ [0, 1, . . . , n],
and n is called the degree or order of the curve. This implies that a Bézier curve of de-
gree n has n+1 control points. The first and the last control points are the end points
of the curve. The intermediate control points, if any, generally do not lie on the curve
itself. The Bézier is a planar parameterization, denoted B1×2(θ) = [x(θ), y(θ)]>.
An explicit formulation expressed as an affine3 combination is given by:

B1×2(θ) =
n∑
i=0

bn,i(θ)Pi, θ ∈ [0, 1]. (2.28)

The variable θ is the normalized time variable and bn,i(θ) is the Bernstein basis poly-
nomial of degree n, commonly referred to as the blending function and given by:

bn,i(θ) =

(
n

i

)
θi(1− θ)n−i, i = 0, 1, . . . , n. (2.29)

The first term is the binomial coefficient:(
n

i

)
=

n!

i! (n− i)! . (2.30)

2In mathematical analysis, the Weierstrass approximation theorem states that every continuous func-
tion defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a poly-
nomial function.

3An affine combination of vectors x1, . . . ,xn is a vector of linear combination of x1, . . . ,xn,
where the sum of the coefficients is 1.

14

2.3 The Bézier Curve

By connecting the Bézier points with lines, starting with P0 and finishing with
Pn, the control polygon is obtained. See Figure 2.3 for a visualization. The Bézier
curve is a set of convex combinations, which is important for the numerical stability
of the Bézier curve (Lyche and Mørken, 2008).

Figure 2.3: A fifth order Bézier curve drawn in red. The control polygon is obtained by
connecting the control points P0 to P5 by straight lines. The convex hull, formed by the
control polygon, is shaded in gray.

Matrix Formulation

For computational purposes, it is convenient to formulate the Bézier curve by a matrix
representation. By recognizing that the Bézier curve is as a linear combination of the
control points and the Bernstein basis functions:

B1×2(θ) = bn,0(θ)P0 + bn,1(θ)P1 + . . .+ bn,n(θ)Pn, (2.31)

it is easy to see that this can be written as the dot product between two vectors, such
that:

B1×2(θ) =
[
bn,0(θ) bn,1(θ) . . . bn,n(θ)

]

P0

P1
...
Pn


n×2

, (2.32)

15

Chapter 2. Background Knowledge and Literature Review

which again can be converted to:

B1×2(θ) =
[
1 θ . . . θn

]

b0,0 0 . . . 0
b1,0 b1,1 . . . 0

...
...

. . .
...

bn,0 bn,1 . . . bn,n



P0

P1
...
Pn


n×2

. (2.33)

The coefficients in the matrix are given by (Joy, 2000b):

bi,j = (−1)i−j
(
n

i

)(
i

j

)
. (2.34)

This is convenient when calculating derivatives since only the first vector is depen-
dent on the parameter θ. Note that subscript denoting the order n in Equations (2.33)
and (2.34) are left out for clarity. In a compact notation this can be written as:

B1×2(θ) = a>n×1(θ)Mn×nPn×2, (2.35)

where a>n×1 is the monomial basis vector,Mn×n is the spline matrix, and the product
of them is known as the blending function.

Example 2.1. For a septic Bézier curve consisting of eight control points, the mono-
mial basis vector is given as:

a>8×1(θ) =
[
1 θ θ2 θ3 θ4 θ5 θ6 θ7

]
,

and the spline matrix as:

M8×8 =



1 0 0 0 0 0 0 0
−7 7 0 0 0 0 0 0
21 −42 21 0 0 0 0 0
−35 105 −105 35 0 0 0 0
35 −140 120 −140 35 0 0 0
−21 105 −210 210 −105 21 0 0

7 −42 105 −140 105 −42 7 0
−1 7 −21 35 −35 21 −7 1


.

2.3.2 Derivatives

The derivative of an n-th order Bézier curve is a Bézier curve of order n−1. Since the
control points in a Bézier curve are independent of the parametrized variable θ, the
derivative of a Bézier curve is found by computing the derivative of the Bernstein ba-
sis function. Using the definition of the Bernstein basis polynomial in Equation (2.29)
and taking the derivative, it can be shown that (Joy, 2000a):

bθn,i(θ) = n(bn−1,i−1(θ)− bn−1,i(θ)), 0 ≤ i ≤ n. (2.36)

16

2.3 The Bézier Curve

This shows that the derivative of a Bernstein polynomial can be given as a linear
combination of Bernstein polynomials. Taking the derivative of Equation (2.28) and
plugging in the result of Equation (2.36), the derivative of a Bézier curve can be
written as:

Bθ
1×2(θ) = n

n−1∑
i=0

bn−1,i(θ)(Pi+1 − Pi), θ ∈ [0, 1]. (2.37)

The first derivative of the Bézier curve is known as a hodograph. The second
derivative becomes the second hodograph, etc. From Equation (2.37), one can see
that the derivative is defined by the difference between the control points in the orig-
inal curve. By definingQi = Pi+1 − Pi, Equation (2.37) is simplified to:

Bθ
1×2(θ) = n

n−1∑
i=0

bn−1,i(θ)Qi, θ ∈ [0, 1]. (2.38)

By using Equations (2.28) and (2.38), one can find any higher-order degree of deriva-
tives. However, to find a given higher-order derivative, one has to find the control
points of every lower degree derivative.

Example 2.2. Given an n-th order Bézier curve. The Bézier curve itself and its
derivatives up to order three, evaluated at the endpoints (θ = 0 and θ = 1), is given
as:

B1×2(0) = P0

B1×2(1) = Pn

Bθ
1×2(0) = n(P1 − P0)

Bθ
1×2(1) = n(Pn − Pn−1)

Bθ2

1×2(0) = n(n− 1)(P2 − 2P1 + P0)

Bθ2

1×2(1) = n(n− 1)(Pn − 2Pn−1 + Pn−2)

Bθ3

1×2(0) = n(n− 1)(n− 2)(P3 − 3P2 + 3P1 − P0)

Bθ3

1×2(1) = n(n− 1)(n− 2)(Pn − 3Pn−1 + 3Pn−2 − Pn−3)

2.3.3 Properties

The Bézier curve possesses several interesting properties valuable for different fields
of study. An overview of the most important properties when it comes to path gen-
eration is stated in the following section. See MiT (2009) for a more comprehensive
list of useful properties the Bézier curve exhibits.

17

Chapter 2. Background Knowledge and Literature Review

Variation Diminishing Property

The Bézier curve exhibit the variation diminishing property: A straight line will
intersect the “legs” (the lines going between the control points) of the control polygon
at least as many times as it crosses the Bézier curve itself. More intuitively, this means
that the Bézier curve oscillates less than its control polygon. This property is essential
in the context of path generation because it implies that the Bézier curve is always
smoother than the polygon formed by its control points. Furthermore, it tends to
reduce the shape variations in the control polygon rather than enlarge it. See Sarfraz
et al. (2018) for a visualization.

The Convex Hull Property

Closely related to the variation diminishing property is the convex hull property. It
states that the Bézier curve is always completely contained inside the convex hull,
formed by the control polygon. The convex hull of a set of control points is the
smallest convex set that contains all control points. See Figure 2.3 for an example.
In the case of path generation, this property is important because it guarantees that if
the control points are placed within a small region, the curve will not “blow up” arbi-
trarily. See Runge’s phenomenon (Runge, 1901). Closely related to this property is
the fact that adjusting one control point changes the curve in a “predictable manner”.
The curve, practically speaking, follows the adjusted control point.

The Endpoint Interpolation Property

The Bézier curve inhibits the property that it always passes through the first and the
last control point, meaning that the first and the last control point are the endpoints:

B1×2(0) = P0 andB1×2(1) = Pn. (2.39)

This can easily be derived from the explicit formulation of the Bézier curve in Equa-
tion (2.28). Further, it is possible to freely specify higher-order derivatives in the
endpoints by the placement of the control points. This property is known as the end-
point interpolation property and is very convenient when studying the smoothness of
the concatenation point between two Bézier curves.

Definition 2.3. A planar curve will belong to the class Dn if it is possible to freely
specify the derivatives of order n in both endpoints4 .

4Note that Definition 2.3 will entail that Cn-continuity is possible in the joints.

18

2.4 The Path Planning Problem

Shape Control

Shape control of a path investigates what happens when there is a change in the
position of a waypoint, or another one is added. There are three possible scenarios
for what can happen (Lekkas, 2014):

1) Global control: changes will be made on the entire path.

2) Local control: possible to add or change a waypoint without affecting the rest
of the path.

3) Partial control: local changes possible in some cases.

If a path is constructed with a single Bézier curve, where the waypoints are con-
sidered to be control points, it exhibits the property of global control. Thus, moving
a control point alters the shape of the whole curve. It means that moving or adding
a control point affects what happens with the vehicle’s current position and heading.
This is undesired behavior, but will be handled by the stepwise approach, explained
in Chapter 3. This is because we are only facing one segment at a time, with a prede-
fined number of control points to be used.

2.4 The Path Planning Problem

Some basic definitions and concepts are needed to introduce our 2D path planning
problem. See Figure 2.4 for a visualization.

• Configuration space: The ASV can be considered as a 2D shape that can
translate and rotate, and thus be represented using three parameters (x, y, ψ).
The configuration spaceX ∈ SE(2), represents the workspace where planning
is done.

• Obstacle space: The space that the agent cannot move to is known as the
obstacle space Xobs (X . The obstacles may be static or dynamic. We assume
that the obstacle space is known.

• Free space: The free space is denoted Xfree = X \ Xobs.

• Goal region: The space that we want the agent to move to is known as the goal
region Xgoal ⊂ X .

We define the feasible path planning problem as: “Find a collision-free motion
of connecting waypoints between initial state x0 and a goal state xgoal within a spec-
ified workspace”. An algorithm that addresses the problem is said to be complete
if it terminates in finite time and returns a solution if one exists or failure otherwise

19

Chapter 2. Background Knowledge and Literature Review

X

Xfree

Xobs

Xgoal
x0 xgoal

Figure 2.4: A configuration space X where the white area is Xfree, the gray area is Xobs,
and the transparent circle containing xgoal is the goal region Xgoal.

(Karaman and Frazzoli, 2011). Usually, in path planning, we are not only interested
in a feasible path, but an optimal one as well. Given a cost function, which assigns a
non-negative cost to all nontrivial collision-free paths, the optimality problem of path
planning is to find a feasible path with minimal cost (Karaman and Frazzoli, 2010).

Problem 2.1. The Optimal Path Planning Problem (Karaman and Frazzoli, 2010).
Let σ : [0, s] 7→ Xfree be a sequence of states (a path) and Σ be the set of all non-
trivial paths. Given a bounded connected configuration space X , an obstacle space
Xobs, an initial state x0, a goal state xgoal ∈ Xgoal, and a specified cost function
c : Σ 7→ R≥0. Find a path σ∗, that minimizes the cost function, while connecting x0

to xgoal through Xfree:

σ∗ = arg min
σ∈Σ

{c(σ) | σ(0) = x0, σ(1) = xgoal, ∀s ∈ [0, 1], σ(s) ∈ Xfree}, (2.40)

where R≥0 is the set of non-negative real numbers.

Problem 2.1 is the fundamental problem we want to solve when designing our
path planner. Difficulties arise when the structure of the agent and the environment
gets more sophisticated (Russell and Norvig, 2009). The problem plays a vital role in
several applications, such as robotics, transportation, information systems (message
routing), and video games. Much research has been devoted to the problem, and the
first complete algorithms were introduced in the 1970s (Reif, 1979).

As of today, path planning algorithms are widely divided into three main cate-
gories, according to the methodologies used to generate the path, namely:

1) Combinatorial algorithms.

20

2.4 The Path Planning Problem

2) Sampling-based algorithms.

3) Potential field algorithms.

Combinatorial algorithms characterize Xfree by capturing the connectivity of
Xfree into a graph/roadmap and finds a path using a typical shortest-path algorithm,
such as the A* algorithm. Well-known techniques include cell decomposition, visi-
bility graphs, and Voronoi roadmaps. Several combinatorial methods are proven to
be optimal, but only up to the resolution of the partitioned configuration space. Com-
binatorial algorithms can effectively solve low-dimensional problems. Nevertheless,
for high-dimensional configuration spaces, the category of algorithms becomes com-
putationally intractable (Yu, 2016), because their running time exponentially depends
on the dimension of X .

Instead of characterizing the whole configuration space, sampling-based algo-
rithms take random samples from X , declare them as vertices if in Xfree, and try
to connect nearby vertices with local planners. Sampling-based algorithms avoid
local minima and solve several path planning problems quickly. A drawback with
sampling-based algorithms is that they are unable to determine if no path exists at all,
but as time goes, the probability of failure decreases to zero. For a detailed overview
see e.g. Gasparetto et al. (2015) and Souissi et al. (2013).

Both combinatorial and sampling-based algorithms intend to capture the connec-
tivity of Xfree into a graph/roadmap. In contrast, potential field methods represent
the agent as a particle in Xfree influenced by an artificial potential field, where ob-
stacles induce repulsive forces and the goal attractive ones. Potential field methods
are efficient, but besides harmonic potential field methods (Panati et al., 2015), the
category is prone to get stuck in local minima. See Elia Nadira et al. (2016) for a
reference on potential field algorithms used for path planning. Note that there are
several hybrid variants between these three approaches.

Today, sampling-based methods are, in many ways, considered state-of-the-art in
high-dimensional path planning problems, because they have been proven to work
well in practice and possess theoretical guarantees such as probabilistic complete-
ness (Karaman and Frazzoli, 2011). Arguably, the most influential sampling-based
algorithms today, includes Rapidly-exploring Random Tree (RRT) (LaValle, 1998;
LaValle and Kuffner, 2000) and Probabilistic RoadMap (PRM) (Kavraki et al., 1996,
1998).

For a comparative study of different path planning and collision avoidance algo-
rithms applied on ASVs, refer to recently published surveys by Vagale et al. (2020a,b).
In this thesis, we will investigate and design one global planner using a combinato-
rial algorithm, the A* algorithm, where Xfree is partitioned using a Voronoi diagram.
Working together with the global planner, a local planner using the sampling-based
RRT method will be used.

21

Chapter 2. Background Knowledge and Literature Review

2.5 Map Representation and Partitioning

Obtaining and representing information of the environment, is formally known as
mapping in the robotics and AI community. Mapping is one of the core features
required to make mobile robots truly autonomous, and has been a highly active re-
search area since the 1980s. It has since been divided into two main approaches;
metric and topological. Topological maps typically represent environments through
graphs where vertices represent significant places and arcs contain information on
how to navigate between them. See Thrun (2003) for an overview on relevant re-
search. These maps usually lack precise details on scaling and distances and direction
is subject to change and variation. Thus they are not suited for maintaining precise
details needed for accurate maneuvering of an ASV, as studied in this thesis. Metric
maps, on the other hand, capture detailed geometric properties of the environment,
and is therefore more suited for the objectives stated in this thesis. One of the most
popular algorithms and representations for obtaining metric maps is occupancy grid
map algorithms, first introduced by Elfes (1989). Occupancy grid maps (OGMs) rep-
resents the environment by fine-grained binary grids representing occupied and free
space. See Figure 2.5. Of course, high resolution comes with a computational cost,
but it gives a more precise representation of the environment.

Figure 2.5: An occupancy grid map of a floor obtained from raw odometry and laser range
data using a Pioneer 3DX robot and a Hokuyo URG-04LX laser range finder. The gray-
scale indicates the posterior probability of each grid cell: white corresponds to free with high
certainty, black to occupied with high certainty. The gray area represents the prior (unknown
area). The map has been generated by Knædal et al. (2018).

Due to ambiguities in perception and actuation, the field of localization and map-

22

2.5 Map Representation and Partitioning

ping has been dominated by probabilistic techniques. See Thrun (2003) for references
on statistical framework used. Acquiring maps is known as a “chicken-and-egg”
problem commonly referred to has simultaneous localization and mapping (SLAM)
(Thrun et al., 2005). In this thesis, OGMs will serve as a foundation when designing
our navigation system. We will further assume that the map is known in advance,
which omits the SLAM problem.

2.5.1 Cost Maps

Figure 2.6: A stack of cost map layers,
showcasing the different contextual behaviors
achievable with the layered cost map approach.
Courtesy: Lu et al. (2014).

As mentioned in Section 2.4, a path
planner should find a collision-free mo-
tion of connecting waypoints between
an initial point x0 and a goal point
xgoal within the specified workspace.
Combined with the right guidance sys-
tem, they can navigate agents around
in the configuration space with great
skill. However, these algorithms op-
timize based on an oversimplified bi-
nary constraint (occupied space or not)
of finding efficient collision-free paths.
For example, an ASV driving a few
meters away from known piers is per-
fectly acceptable in most cases. How-
ever, driving too close to other vessels
is undesirable. The shortest collision-
free path may not always be optimal
if a longer one avoiding hazardous ar-
eas can be chosen. By introducing cost
maps addressing this problem, more so-
phisticated path planners can be de-
signed.

Cost maps can incorporate information about different obstacles and constraints.
Lu et al. (2014), introduces the notion of layered cost maps that work by separating
the processing of cost map data into semantically separated layers. Each layer tracks
one type of obstacle or constraint and then modifies a master cost map, which is
used for path planning. Examples of different obstacles and constraints and their
respective layer are given in Figure 2.6. In Figure 2.7b a cost map is visualized.

23

Chapter 2. Background Knowledge and Literature Review

0 2 4 6 8 10 12 14 16

East [m]

0

2

4

6

8

10

12

14

16

N
o

rt
h

 [
m

]

Occupancy grid m ap

(a)

0 2 4 6 8 10 12 14 16

East [m]

0

2

4

6

8

10

12

14

16

N
o

rt
h

 [
m

]

Cost m ap

0

20

40

60

80

100

(b)

Figure 2.7: A cost map with static obstacles and their inflation radius set to 1 meter. Fig-
ure (a) depicts an occupancy grid map. Figure (b) shows a cost map generated from the
occupancy grid map in (a). The cost map is created using the ROS package costmap_2d5.

2.5.2 Voronoi Partitioning

A Voronoi diagram (VD) is a tool to divide a configuration space into regions de-
termined by, in our case, the obstacles presented in the space. The VD produces a
roadmap that can be traversed by a combinatorial algorithm. They have been widely
applied in different applications since the beginning of the 20th century. See Au-
renhammer (1991) for a survey. Especially within the field of path planning, VDs
has received much attention. This is true mainly due the to following three reasons
(Candeloro et al., 2013):

1) The VD divides the configuration space in a way such that the borders of the
regions have maximum distance from all the obstacles in the cluttered environ-
ment.

2) Construction of VDs has O(n) complexity, while the majority of other mathe-
matical tools solve the same problem with O(n2) complexity.

3) Kinematics of mobile robots allow them to change heading without affecting
the other degrees of freedom, so they can easily run a path composed by a
sequence of straight lines.

Mathematical Formulation and Metric Definition

Given a set of generator points P = {p1, . . . , pn}, contained in the configuration
space X (here X ∈ SE(2)), where a metric function d(·) is defined. The method

5http://wiki.ros.org/costmap_2d

24

http://wiki.ros.org/costmap_2d

2.6 The Maneuvering Problem

Figure 2.8: A VD constructed from a occupancy grid map. Map created by Binder (2017).

associates what is called a Voronoi region Ri defined by the set of points xi ∈ X
such that the distance to pi is lower than the distance from xi to any other point in P .
In mathematical terms, if:

d(x, p) = inf{d(x, p)|p ∈ P}, (2.41)

the Voronoi region is defined as (Candeloro et al., 2013):

Rk , {x ∈ X |d(x,Pk) ≤ d(x,Pj) ∀j 6= k}. (2.42)

The VD V(pi) will then be the set of the Voronoi region borders, that is the intersec-
tion of the tuple of cells (Rk)k∈K : V(pi) =

∑
iRi, where K is a set of indices.

From the definition it is clear that the shape V(pi) will depend on the definition of the
metric function d(·). In this thesis we will use the Euclidean distance as the metric
function:

d
(

(x1, y1), (x2, y2)
)

=
√

(x2 − x1)2 + (y2 − y1)2. (2.43)

If the obstacles are polygon-shaped and the edges are considered to be generator
points, the metric will generate Voronoi regions with straight-line borders.

By using the obstacles in the configuration space as generator points, it is evi-
dent that the borders of the Voronoi regions maximize the distance to the obstacles.
Thus, we achieve a raw obstacle-free roadmap consisting of waypoints connected by
straight-line paths. See Figure 2.8 for a visualization of a VD constructed from an
OGM.

2.6 The Maneuvering Problem

In several control applications, the main goal is to steer an object to achieve a certain
control objective. The different control objectives are typically classified into setpoint

25

Chapter 2. Background Knowledge and Literature Review

regulation, trajectory tracking, path following, or maneuvering. In this thesis, we will
address the last two. Path following is following a predefined path independent of
time. No restrictions are placed on the temporal propagation along the path (Fossen,
2011a). In maneuvering, the first and most crucial task is path following. The second
and less important task is to satisfy a desired dynamic behavior along the path, for
example, a specified desired speed. For the ASV treated in this thesis, this means that
we want to follow the predefined path at the desired speed. However, if we encounter
a place in time where it is not achievable to satisfy both tasks (e.g., a sharp turn), we
should sacrifice the speed to achieve a more accurate path following.

The following is based on Chapter 2 from Skjetne (2005). The system out-
put from the navigation system depicted in Figure 1.1, will be the ship pose η =
[p, ψ]> ∈ R2 × [−π, π), and the body-fixed linear and angular velocity vector
ν = [u, v, r]> ∈ R3. The desired pose for an ASV is represented by:

P , {η ∈ R2 × [−π, π) : ∃s ∈ R s.t. η = ηd(s)}, (2.44)

where ηd is parametrized by the continuous variables s.

Problem 2.2. The Maneuvering Problem for an ASV.
The Maneuvering Problem for an ASV is comprised of two tasks:

1. Geometric task: Given a desired pose ηd(s(t)), force the vessels pose η(t) to
converge to the desired path:

lim
t→∞

[η(t)− ηd(s(t))] = 0. (2.45)

2. Dynamic task: Satisfy one or more of the following assignments:

2.1. Speed assignment: Force the path speed ṡ(t) to converge to the desired
speed vs(t, s(t)):

lim
t→∞

[ṡ(t)− vs(t, s(t))] = 0. (2.46)

2.2. Time assignment: Force the path variable s to converge to a desired time
signal vt(t):

lim
t→∞

[s(t)− vt(t, s(t))] = 0. (2.47)

The maneuvering problem, as stated above, only highlights the superior goal of
convergence to the path and to fulfill the dynamic assignment. For a path-following
motion control scenario for a marine craft, the speed assignment is considered the
most suitable dynamic assignment and is the one considered in this thesis. However,
note that a time scheduling along the path could also be important, especially for

26

2.7 The Concept Vessel ReVolt by DNV GL

short sea shipping. Other dynamic tasks are also possible. See Skjetne (2005) for
details.

Combining the generated path with a dynamic assignment along the path ensures
that dynamic and temporal requirements are satisfied. The maneuvering problem
states that the geometry of the path and the dynamical behavior along the path can
be defined and controlled separately. This means that a path can be generated, and
the speed can be controlled without having to regenerate a new path. This approach
becomes handy when analyzing the vessel feasibility, considering the combination of
the generated path and speed assignment along the path.

2.7 The Concept Vessel ReVolt by DNV GL

DNV GL is one of the leading providers of quality assurance services and risk man-
agement in the maritime industry. Due to the increasing integration of autonomy in
the sector, a set of standards concerning safety, quality, and integrity of these sys-
tems must be made. The concept vessel ReVolt serves as a research and development
platform for this purpose.

ReVolt is a crewless and fully battery-powered ship, intended to serve as cargo
ship along the Norwegian coast. It is a low-speed vessel operating at 6 knots, with a
range of 100 nautical miles and a cargo capacity of 100 twenty-foot containers. As
well as contributing to increased profit margin in short sea shipping, ReVolt is set
to reduce the number of accidents in the industry, contributing to a safer maritime
industry (Tvete, 2020).

A 1:20 scale model of the ReVolt concept vessel has been built and is shown
in Figure 2.9. It is 3 m long and fully battery-powered, with a maximum speed of
approximately 1.5 m/s during transit operation. Contributions through masters thesis
have been made to ReVolt already. This thesis depends on several of them. Alfheim
and Muggerud (2017) made several sensor improvements and implemented a DP
system for the real vessel. Abrahamsen (2019) improved the DP system and made
it work with a pseudoinverse thrust allocation algorithm developed by DNV GL. In
May 2020, Andreas Bell Martinsen implemented the current nonlinear observer, an
Extended Kalman Filter (EKF). Kamsvåg (2018) mounted and worked on sensor
fusion between the Ladybug Camera and the Velodyne lidar. Further work on sensor
fusion has been done by Norbye (2019).

27

Chapter 2. Background Knowledge and Literature Review

Figure 2.9: The ReVolt model scale ship. Photo: Simen Sem Øvereng (2019).

28

Chapter 3
Problem Formulation

The process of planning and executing a collision-free, feasible path for an agent
moving around in an environment has been extensively studied in different fields of
study, e.g., the AI and robotics community. The AI community distinguishes between
different task environments based on a set of different properties. For a detailed
explanation of different types of environments, refer to Russell and Norvig (2009).

For the case of an ASV studied in this thesis, we are facing a partially observable,
multi-agent, stochastic, continuous, and dynamic environment (in some cases, an
unknown environment as well). Each property makes it a more complex problem to
solve. A common thread for the GNMC system in these types of environments is
the necessity of replanning to handle real-time constraints. For example, somewhere
along the way from the start to the end location, the agent has to replan its route and
desired speed in the presence of new obstacles discovered along the way. For this
reason, we face the path planning problem in a stepwise manner. That is, for each
step in time where new relevant information is available, the agent can replan its path
and speed according to the new information. Intuitively, this coincides with how we
humans and various animals solve similar problems. We put up a global plan of how
to reach the destination, which we divide into smaller tasks and then conquer. If
something happens during the execution, we replan “on the go” to solve the problem.

The stepwise approach sets up a framework and will serve as a foundation for this
thesis. Keeping Figure 1.1 in mind, the following sections formulate the objective and
functional inputs and outputs for each subsystem investigated in this thesis. Finally,
an overall problem statement for the thesis is given.

3.1 Control System for a Stepwise Maneuvering Problem

The control system of an ASV consists of three main submodules: the high-level
control, the control allocation, and the low-level control. See Figure 3.1. Given
the reference signals from the guidance system, the task of the high-level controller
is to calculate the desired generalized thrust forces τd ∈ Rn to be applied to the
vessel. The marine craft treated in this thesis is a 3 DOF system such that n = 3.

29

Chapter 3. Problem Formulation

The generalized forces are then fed into the control allocation, which distributes the
control forces to the actuators in terms of control input u ∈ Rr, where r denotes the
number of control inputs. The low-level controller relates the desired thrust given by
the thrust allocation to the commanded motor torque. In this thesis, we will focus on
high-level control and thrust allocation.

Figure 3.1: A control system block diagram. The control law produces the generalized
forces τ ∈ Rn. The control allocation distributes the control forces to the actuators in terms
of control input u ∈ Rr.

The high-level controller, together with the thurst allocation, is a dynamic algo-
rithm that continuously calculates the forces that must be applied to achieve a certain
control objective. The high-level controller will usually consist of a feedforward term
provided by the guidance system and a feedback term from the system states provided
by the measurement system. As stated in Section 2.6, we will focus on path follow-
ing and maneuvering. The maneuvering objective for the ASV is to follow a desired
pose ηd(s(t)) given by Equation (2.44) with a speed assignment vs(t, s(t)) along the
path. The control objective is then to design a controller τ for our 3 DOF equation
of motion given by Equation (2.1), such that:

η(t)→ ηd(s(t))

ṡ(t)→ vs(t, s(t))

}
as t→∞. (3.1)

Since the vessel is assumed to be fully actuated, both tasks are feasible.

3.2 Navigation system for a Stepwise Maneuvering Prob-
lem

A global low-resolution path planner is combined with a local dynamic high-resolution
path planner. See Figure 1.1 for a visualization. The task of a stepwise path planner
for a marine vessel is (Skjetne, 2019):

30

3.3 Guidance System for a Stepwise Maneuvering Problem

1. The global planner is to determine the initial, intermediate, and destination
waypoint with corresponding reference speed in the regions ud(t) (and its
derivative u̇d(t) if needed).

2. The local planner is to determine the current waypoint x0 and next target way-
point xt, which brings the vessel closer to the next intermediate/destination
waypoint, following the global plan as far as possible.

It may be possible to assume knowledge of a few waypoints coming up, but in this
thesis, it is assumed that the guidance system will at most be provided with one
waypoint ahead, as well as all previous ones.

Note that a scheduler that determines the time scheduling along the path can also
be an essential task of the path planner. This could be especially important for short-
sea shipping, but is left out in this thesis.

3.3 Guidance System for a Stepwise Maneuvering Problem

For a stepwise maneuvering problem, the guidance system in Figure 1.1 is to generate
the desired path and speed profile along the curve, which together constitutes the
reference signals into the control system. These signals must be generated in a format
corresponding to the maneuvering controller in use. Given the stepwise approach,
the path needs to be parametrized in a hybrid fashion, described in Section 2.2.1. We
start with the heading since it introduces an essential requirement for the curve to be
generated. Given the waypoints and reference speed ud(t) from the path planner, the
hybrid path generator is to for each path segment i (Skjetne, 2019):

1) Generate the desired heading curve ψd(i, θ) defined in Equation (2.15), and its
derivatives ψθ

n

d (i, θ) up to order n. For our case n = 2, because of require-
ments imposed by the maneuvering controller later designed. This is explained
in details in Chapter 6. Thus we have:

ψθd(i, θ) =
xθd(i, θ)y

θ2

d (i, θ)− xθ2d,i(θ)yθd(i, θ)
xθd(i, θ)

2 + yθd(i, θ)
2

, (3.2)

ψθ
2

d (i, θ) =
xθd(i, θ)y

θ3

d (i, θ)− xθ3d (i, θ)yθd(i, θ)

xθd(i, θ)
2 + yθd(i, θ)

2
(3.3)

−2

(
xθd(i, θ)y

θ2

d (i, θ)− xθ2d (i, θ)yθd(i, θ)
)(

xθd(i, θ)x
θ2

d (i, θ)− yθ2d (i, θ)yθd(i, θ)
)

(
xθd(i, θ)

2 + yθd(i, θ)
2
)2 .

2) Generate a desired curve:

pd(i, θ) =
[
xd(i, θ) yd(i, θ)

]>
, θ ∈ [0, 1], (3.4)

31

Chapter 3. Problem Formulation

and its necessary derivatives pθ
n

d (i, θ) up to order n. Note the third deriva-
tives appearing in Equation (3.3). For the heading to be continuous, we must
generate the derivatives up to order n = 3.

3) Generate the speed profile vs(t, s(t)), and its respective derivatives:

vts(t, s(t)) and vθs(t, s(t)). (3.5)

The derivatives is needed for the maneuvering controller design.

Given the requirement of generating ψθ
2

d (i, θ) from the maneuvering controller,
it is clear that the path must be at least C3 continuous because of the third derivatives
appearing in Equation (3.3).

3.4 Problem Statement

The main objective is to develop an intelligent guidance concept for an ASV from the
initial to the target point. The problem will be faced in a stepwise manner to facilitate
real-time system performance. This sets some superior requirements for the complete
GNMC system: It must be computationally efficient, reliable, and robust. Further, it
must incorporate the dynamical constraints of the vessel, stated in Section 2.1.

The navigation system will consist of a global low-resolution path planning method
combined with a dynamic high-resolution method such that the planner can react to
local ambient conditions. This includes consideration of global and local mapping
and partitioning of the operation area and how to integrate the global and local meth-
ods seamlessly. The guidance system will provide the reference signal, which con-
stitutes a dynamic assignment together with a path generator. The Bézier curve will
serve as a basis function for the proposed path generator. For the control system,
a maneuvering control law will be proposed together with a control allocation algo-
rithm. The measurement system will not be investigated in this thesis, but an observer
providing the necessary state estimates is assumed.

The proposed block diagram of a GNMC system in Figure 1.1 will serve as a
key reference. We will investigate and propose block by block and finally put the
subsystems together.

3.5 Assumptions and Delimitations

A set of assumptions and delimitations are made when approaching the problem:

• The work is limited to the horizontal plane.

• Environmental loads are not considered.

32

3.5 Assumptions and Delimitations

• We will focus on low-speed (DP) transit operations where the heading is equal
to the direction of the path.

• A simplified 3 DOF control design model with the assumptions and simplifi-
cations done in Section 2.1 will be considered.

• The vessel is assumed to be fully actuated.

• Necessary state estimates from the measurement system are provided by an
observer.

• It is assumed that the operation area is known prior to operation.

• It is assumed that information about obstacles are provided by necessary on-
board sensors.

• It is assumed that at most one waypoint ahead at a time is known, as well as all
previous ones.

• We may assume that a straight-line corridor, within some path-transversal dis-
tance bound from current to next waypoint, is collision-free for obstacles.
Thus, the vessel is freely allowed to move inside the given corridor.

• It is assumed that there is a maximum restriction of ± 90◦ turn between pre-
vious, current, and next waypoint. This is a reasonable assumption since the
vessel will hopefully not need to move backward.

• The international regulations for preventing collisions at sea (COLREG) are
not considered.

33

Chapter 4
Guidance System

This chapter will focus on designing the guidance system. A path generator is pro-
posed using the Bézier curve as a basis function. The requirements and objectives
of the path generator are stated in Section 3.3. First, an analysis of the Bézier curve
is carried out. Then, a proposition for what constitutes a reasonable path will be
given along with the desired behavior, properties, and constraints. Two methods are
proposed: first, a pragmatic solution, second, a solution involving optimization.

At last, we design the speed assignment. Some parts of the following chapter are
based on the author’s specialization project (Knædal, 2019). It is included to make
the master thesis self-contained.

4.1 Analysis of the Bézier Curve

As mentioned in Section 2.3.3, the Bézier curve exhibits several desired properties
when it comes to path generation. To fully utilize the versatility of the Bézier curve,
an analysis of the necessary degree of the curve has to be carried out. A Bézier curve
constructed by a large set of control points is numerically unstable (Wang et al.,
2017). Thus, it is desired to keep the degree as low as possible. It is also convenient
to keep the degree low since higher-order Bézier curves are computationally more
expensive.

From requirements and objectives stated in Section 3.3, the path is required to
be at least C3 to ensure bumpless transfer in the concatenation points. From Defini-
tion 2.1, a single Bézier curve of order nwill belong to the class Cn. This implies that
for a single interval, a Bézier curve of order three fulfills the property of being C3.
Thus, the following analysis is concerned with the discontinuity that may occur in the
concatenation points of the spline. Table 4.1 summarizes the necessary properties.

Using Definition 2.2 and the derivatives found in Example 2.2, the constraints for
C3 continuity in the joints can be formulated. For the path to only be continuous, that
is C0, we have that:

P0,i+1 = Pn,i, i ∈ Im, (4.1)

where the first subscript denotes which control point and the second which curve

34

4.1 Analysis of the Bézier Curve

segment i in the set of m segments, Im = {1, 2 . . . ,m}. Further C1 can be stated as:

P1,i+1 = 2Pn,i − Pn−1,i, i ∈ Im, (4.2)

where the result is simplified with the relation found in Equation (4.1). Further, we
can state the requirements for C2 and C3 continuity in the same manner as:

− 2P1,i+1 + P2,i+1 = Pn−2,i − 2Pn−1,i, i ∈ Im, (4.3)

3P1,i+1 − 3P2,i+1 + P3,i+1 = 2Pn,i − 3Pn−1,i

+ 3Pn−2,i − Pn−3,i, i ∈ Im (4.4)

We can conclude that if Equations (4.1) to (4.4) is fulfilled, C3 continuity in the
joints is achieved. For computational purposes, it is convenient to formulate these
constraints as a system of linear equations on the formAx = b, given as: 1 0 0

−2 1 0
3 −3 1

P1,i+1

P2,i+1

P3,i+1

 =

 2Pn,i − Pn−1,i

−2Pn−1,i + Pn−2,i

2Pn,i − 3Pn−1,i + 3Pn−2,i − Pn−3,i

 (4.5)

It is easy to verify that rank(A) = 3, is equal to the number of columns in A and
thus have a unique solution.

P0,i−1 P1,i−1 P2,i−1 P3,i−1 P1,i P2,i P3,i P4,i P1,i+1 P2,i+1 P3,i+1 P4,i+1=

P0,i

=

P0,i+1

C1 lower endpoint C1 upper endpoint

C2 lower endpoint C2 upper endpoint

Figure 4.1: A cubic Bézier spline of three segments and its control points are shown. The
joints are visualized with a thick mark. One can see that for C1 continuity, there are only
constraints on the neighboring points, and we are thus able to specify the derivative freely.
But for C2 continuity, P2,i is a part of the constraint for both the lower and upper endpoints.
This means we are no longer able to freely set the second derivative without the influence of
the constraints from the other endpoint, and thus not a part of D2 class.

4.1.1 Cubic and Quintic Bézier Spline

A Bézier spline stitched together by cubic curves is C3 and can freely set the first
derivative in each endpoint, thus inD1 class. However, it is not able to set the second
and third-order derivative freely in the endpoints; thus, we are not able to represent
complex shapes that have the restriction of being C3. See Figure 4.1 for a visualiza-
tion. The same reasoning applies to the quintic Bézier curve, where we are not able
to set the third derivative freely.

35

Chapter 4. Guidance System

4.1.2 Septic Bézier Spline

From Definition 2.1, a septic Bézier curve is in class C7. Also, we can set the third
derivatives in the endpoints freely. See Example 4.1 for how this can be done. This
means that it is a part of D3 class, and we can have C3 continuity in the joints. Thus,
it is concluded that a septic Bézier curve is the curve of the lowest degree that fulfills
our requirements.

Table 4.1: Bézier curve of different orders and desired properties for stepwise path gener-
ation. Cn is fulfilled according to Definition 2.1, while Dn is fulfilled according to Defini-
tion 2.3.

Property
Degree Cubic (n = 3) Quintic (n = 5) Septic (n = 7)

C3 4 4 4

D1 4 4 4

D2 7 4 4

D3 7 7 4

4.2 The Path Generator

For a path-following motion control scenario, it is essential to decide upon what
constitutes a “better” path before designing a path generation algorithm. For a surface
vessel treated here, this can vary a lot depending on the overall task environment
and what properties are deemed more valuable. For some missions, the vessel must
converge and stay on the exact path, whereas for other missions, it is more important
to find a path that minimizes length, energy consumed, or time spent. There is a vast
amount of literature that has proposed different solutions, each of them satisfying
different priorities.

For example, the famous result of Dubins (1957) showed that the shortest path
(minimum time) between two configurations (x, y, ψ) of a craft moving at constant
speed U is a path formed by straight lines and circular arc segments. However, Du-
bins path is not the shortest in case of Zermelo’s navigation problem1, since straight
lines are not optimal anymore. Secondly, Dubin’s path is not C2 continuous, since it
is constructed by straight lines which by definition has curvature κ = 0, and circular
arcs with curvature κ = 1/R, defined in Section 2.2.2. Thus, there is a discontinuity
in the concatenation points, which causes Dubins path to be unfeasible in a maneu-
vering problem design for a 3 DOF vessel. From this, one can conclude that there

1Zermelo’s navigation problem is the task of finding the optimal trajectory that minimizes the travel
time in case of environmental forces acting on the vessel.

36

4.2 The Path Generator

does not exist one clear definition of what constitutes the optimal path between two
waypoints.

First and foremost, a reasonable path must be feasible with respect to the dy-
namical constraints imposed by the vessel. Furthermore, for a low-speed vessel
such as ReVolt, a reasonable path between two waypoints could be a path where
the traveled distance/energy consumption is minimized. At the same time, it is
desired to keep the cruising speed throughout the curve as good as possible. Fur-
ther, this implies that it is desired to avoid sharp turns. These properties seem
reasonable for a large container vessel such as ReVolt since it would be energy-
consuming to increase/decrease the speed very often, as well as undesired to in-
troduce more lateral acceleration than necessary due to fragile cargo, for instance.

WPk

WPk+1

WPk+2
ψk+2

ψk+1

x

y

x

y

x

y

Figure 4.2: Three waypoints with
the given heading strategy at the fol-
lowing waypoints. ψk denotes the
heading at waypoint number k.

Proposition 4.1. A reasonable path for a low-
speed vessel such as ReVolt, is one where the
traveled distance/energy consumed is minimized,
and at all time is feasible with respect to the dy-
namical constraints of the vessel.

4.2.1 Strategy on the Next Waypoint

By assuming we only know a certain amount of
waypoints ahead, a strategy has to be defined for
which heading the vessel should have when ap-
proaching the next waypoint. If we only know
one waypoint ahead, a reasonable strategy would
be to use the angle given by the current and the
next waypoint. Then the heading at the next
waypoint is given as:

ψk+1 = atan2(yk+1 − yk, xk+1 − xk), (4.6)

where atan2(y, x) is the four-quadrant version of arctan(y/x). See Figure 4.2 for
a visualization. Further, it is convenient to have zero curvature and rate of change
in curvature such that the vessel is equally ready for turning in both directions. By
placing the control points on a straight line with an angle defined by Equation (4.6)
through the given waypoint, one can specify the given heading, as well as achieve
zero curvature and rate of change in curvature through the waypoint. This was in-
dicated by Marley (2019), and we can indeed demonstrate that this is correct by the
following example.

Example 4.1. Given a septic Bézier curve, initial heading ψ0 = π/8, the following
waypoints: {(0, 0),(2, 2),(5, 2),(6, 4)}, and the assumption that we only know one

37

Chapter 4. Guidance System

waypoint ahead. We want zero curvature and rate of change in curvature, as well as
specify the heading through the waypoints.

We start off by placing P4,i, P5,i, and P6,i on a straight line with an angle defined
by Equation (4.6). For simplicity we can place the control points at equal distance.
P1,i+1,P2,i+1, andP3,i+1 is then given by Equation (4.5). See Figure 4.3b for a visu-
alization. The control points obtained for each segment is given in Appendix B. Using
the constraints defined in Equations (4.1) to (4.4), we can verify if C3 continuity in
the joints are achieved. Considering e.g. waypoint (5, 2):

eq. (4.1) : (5, 2) = (5, 2).

eq. (4.2) : (5.4, 2) = −2 · (5, 2) + (4.6, 2),

(10, 2) = (10, 2).

eq. (4.3) : (5.8, 2)− 2 · (5.4, 2) = (4.2, 2)− 2 · (4.6, 2),

(−5,−2) = (−5,−2).

eq. (4.4) : 3 · (5.4, 2)− 3 · (5.8, 2) + (6.2, 2) = 2 · (5, 2)− 3 · (4.6, 2)

+ 3 · (4.2, 2)− (3.8, 2),

(10, 2) = (10, 2).

All constraints are satisfied. By further calculating the Bézier curve and its deriva-
tives defined by the control points, one can find the direction, curvature, and rate
of change in curvature from Equations (2.21), (2.23), and (4.6). Checking the con-
catenation points, one will indeed find that κ = τ = 0, and the path tangential
γd = ψk+1, Q.E.D. This is depicted in Figure 4.3c. A plot of the derivatives is found
in Appendix B.

38

4.2 The Path Generator

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

0 0.5 1 1.5 2 2.5 3

-20

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3

-30

-20

-10

0

10

20

30

(c)

Figure 4.3: In (a) a cubic, quartic, and a septic Bézier spline consisting of three segments
defined by the control points in Appendix B is visualized. The septic Bézier spline’s control
points are visualized in (b). In (c) the direction, curvature, and rate of change in curvature is
plotted. The strategy for heading, curvature, and rate of change in curvature in the waypoints
is described in Section 4.2.1.

39

Chapter 4. Guidance System

4.2.2 Corridor

For safety reasons, a restriction on the area between the current and next waypoint
where the curve is allowed to be should be imposed. We may assume that a straight-
line corridor, within some path-transversal distance bound from current to next way-
point, is collision-free for static obstacles. The vessel is then freely allowed to move
inside the given corridor, and the path can be constructed within. A visualization
is given in Figure 4.4. Here, each path segment is constructed inside its associated
corridor Gi.

WPk

WPk+1

WPk+2

Gi

Gi+1

Gi+2

ζi

Figure 4.4: Three waypoints are visualized with a straight-line corridor Gi with width ζi
defined between each waypoint. The path must be contained inside the corridor.

Corridor Constraints

To ensure that the path is always inside a given corridor with width ζi, we take ad-
vantage of the convex hull property in Section 2.3.3. Based on the strategy for the
next waypoint in Section 4.2.1, the placement of the control points P1,i+1, P2,i+1,
and P3,i+1 for the next path segment will lie on a straight line defined by Equa-
tion (4.6). By assuming the “worst-case” scenario, a ±90◦ turn between previous,
current, and next waypoint, these control points are placed perpendicular to the wall.
See Figure 4.5 for a visualization.

By placing the control points inside the corridor, the path will by definition be
inside the corridor, by the convex hull property. From Section 4.1, we know that
P4,i, P5,i, P6,i, and P7,i uniquely determines the placement of P1,i+1, P2,i+1, and
P3,i+1. Thus, we can set constraints on the former once, to ensure that the latter once
never exceeds half the corridor width ζi+1/2.

40

4.2 The Path Generator

Gi+1

ζi+1

2

P1,i+1

P2,i+1

P3,i+1

P4,i+1 P5,i+1 P6,i+1

WPk−1

WPk

WPk+1

Figure 4.5: Three waypoints forming a 90◦ turn are visualized. A straight-line corridor Gi

with width ζi are shown between WPk and WPk+1. By placing the control points inside
the corridor, the path will by definition be inside the corridor, from the convex hull property.

4.2.3 Replanning

If a better path is found by the path planner, or in an emergency where the ship is
about to collide with a newly discovered object, it is critical to be able to replan
immediately. See Figure 4.6. A new path needs to be generated from where the
vessel is located right now to a new waypoint. By taking advantage of that B1×2(θ)
and its derivatives is known for all θ, one can solve the “inverse problem” by finding
the control points P0,i+1, P1,i+1, P2,i+1, and P3,i+1, which makes the path C3 for
a given θ. Let us say that we want to replan at θ = θx. By taking advantage of
the properties of the Bézier curve and its derivatives, we can find the control points
that makes the new joint at θx C3 continuous, by solving the following system of
equations:

B1×2(θx) = P0,i+1, (4.7)

Bθ
1×2(θx) = n(P1,i+1 − P0,i+1), (4.8)

Bθ2

1×2(θx) = n(n− 1)(P2,i+1 − 2P1,i+1 + P0,i+1), (4.9)

Bθ3

1×2(θx) = n(n− 1)(n− 2)(P3,i+1 − 3P2,i+1 + 3P1,i+1 + P0,i+1). (4.10)

41

Chapter 4. Guidance System

This can be formulated as system of linear equations on the form Ax = b. For a
septic Bézier curve, it becomes:

1 0 0 0
−7 7 0 0
42 −84 0 0
−210 630 −630 210



P0,i+1

P1,i+1

P2,i+1

P3,i+1

 =


B1×2(θx)
Bθ

1×2(θx)

Bθ2
1×2(θx)

Bθ3
1×2(θx)

 . (4.11)

Note that one must solve two systems of linear equations; one for the x- and one
for the y-coordinates, or one could rotate into a “path-fixed” reference frame using
Equation (4.17), solve one system of equations, and then rotate back. An important
thing to note is that control point P1,i+1, P2,i+1, and P3,i+1 of the new segment will
not necessarily be on a straight line since the curvature and rate of change in curvature
may not be zero at θx.

For the replanner to work in conjunction with a maneuvering controller a map-
ping function f : s→ (θ, i, θx) must be defined.

0 5 10 15 20 25

-5

0

5

10

15

Figure 4.6: A Bézier curve which has been replanned three times. Each color indicates a
new generated curve.

4.2.4 Pragmatic Approach

A pragmatic solution where the control points of the Bézier curve are placed “by
hand” in a proper manner, has the advantage of being obviously explicit and com-
putationally efficient. Based on Proposition 4.1 and the strategy presented in Sec-
tion 4.2.1, a pragmatic solution is established.

42

4.2 The Path Generator

Placement of Control Points

Based on the constraints for C3 continuity in Section 4.1, the placement of control
points P0,i+1, P1,i+1, P2,i+1, and P3,i+1 of next segment, is uniquely determined
by the placement of the control points P4,i, P5,i, P6,i, and P7,i from the previous
segment. P7,i+1 is determined by the next waypoint. Only control point P4,i, P5,i,
and P6,i need to be placed “by hand”.

From practical observations, a suitable combination based on Proposition 4.1, is
obtained by placing P4,i a distance δ away from WPk+1 (= P7,i), while P5,i and
P6,i close to WPk+1. This keeps the arc length as well as the curvature low. A
trade-off must be done; placing the waypoints too close causes high curvature while
placing them too far away results in big turns. The distance can be tuned by a scaling
factor µ, which is coupled to δ. See Figure 4.7a for a visualization.

The control points are thus placed as:

P4,i = WPk+1 − δ [cos(ψk+1), sin(ψk+1)] , (4.12)

P5,i = WPk+1 −
δ

µ
[cos(ψk+1), sin(ψk+1)] , (4.13)

P6,i = WPk+1 −
δ

2µ
[cos(ψk+1), sin(ψk+1)] , (4.14)

where ψi+1 is given by Equation (4.6). This corresponds to the function place-cp in
Algorithm 1. A rule for calculating δ needs to be established. Using Equation (4.5),
one must eventually calculate and evaluate the placement of P1,i+1, P2,i+1, and
P3,i+1.

Avoiding Impractical Behavior

It is never reasonable to perform maneuvers leading the ship further away from the
next waypoint. See figure Figure 4.7b for a visualization. This can occur if the control
points of the current segment are placed beyond the next waypoint. A mathematical
derivation for when this will happen is hard to establish, but it can always be avoided
by placing the control points such that “overlapping” never happens. A simple rule
for avoiding this is to never place the control points further away than half the distance
from next to the current waypoint. The maximum distance is found as:

δmax =
|WPk+1 −WPk|

2
. (4.15)

Comply to Dynamical Constraints

From the convex hull and variation diminishing property, we know that placing the
control points close to the waypoints results in a short path. Actually, by placing

43

Chapter 4. Guidance System

the control points infinitely close, the resulting Bézier curve becomes a straight line
between the waypoints. However, in return, one gets infinitely high curvature. A dis-
tance δmin (κmax, ud(t)) can be established as a function of the curvature constraint
imposed by the ship dynamics and the chosen speed ud(t). δmin represetns then the
minimum distance fromP4,i toP7,i, which assures that the dynamical constraints are
not violated.

A minimum and a maximum distance for δ is now established. As long as δmin is
lower than δmax, P4,i is placed δmin away. If δmin is higher than δmax, P4,i is placed
δmax away. The latter results in a higher path curvature than allowed at the given
speed, thus the speed must be reduced. A pseudo-algorithm is given in Algorithm 1.

-2 0 2 4

0

2

0 0.5 1 1.5 2 2.5 3

-4

-2

0

2

0 0.5 1 1.5 2 2.5 3

-20

0

20

40

(a)

-4 -2 0 2 4 6 8

0

2

4

0 0.5 1 1.5 2 2.5 3

-10

0

10

0 0.5 1 1.5 2 2.5 3

-200

0

200

(b)

Figure 4.7: Two Bézier curves with same waypoints (0,−1), (0, 1), (1, 1), (3, 3), but dif-
ferent placement of control points is shown. In (a) the control points P5,i P6,i is placed
sufficiently close to P7,i (next waypoint). In (b) the control points P5,i P6,i is placed close
to P4,i. As seen from the plots of path curvature and rate of change in path curvature, the
design in (a) achieves much better results compared to (b), based on Proposition 4.1.

44

4.2 The Path Generator

Algorithm 1: Pragmatic Placement of Control Points

1 input: WPcurrent, WPnext, δmin, δmax, µ
2 if δmin < δmax then
3 δ ← δmin ;
4 else

// Reduce Speed
5 δ ← δmax ;

6 ψnext ← CalculateHeading(WPcurrent,WPnext) ;
7 x← PlaceControlPoints(WPcurrent,WPnext, δ, µ, ψnext);
8 return x ;

Discussion

As mentioned, the pragmatic solution does not suffer from computational complexity
and is very efficient. It is not optimal based on Proposition 4.1, but can give good
results if tuned properly. The drawback of the approach is that the control points need
to be placed “by hand” to meet the imposed constraints. The constraints are first and
foremost the corridor constraints, and the maximum curvature allowed for a given
speed, but one must also take into account the distance between the waypoints. The
tuning is not necessarily straight forward, but a stepwise procedure would be:

1. Find κmax for the given speed ud(t).

2. Find δmin (κmax, ud(t)).

3. Tune µ based on δmin.

4.2.5 Optimization Approach

A common solution to path generation is to apply optimization techniques. This
method allows an objective function to be specified where, e.g., minimum time, en-
ergy, and distance are design goals. The idea is: For each hybrid path segment,
an optimization routine can be performed to find the optimal path. A general opti-
mization problem for path planning and generation can be formulated as in Fossen
(2011a):

J = min
χ
{f(χ)}

subject to gk(χ) � 0, (k = 1, . . . , ng) ,

hj(χ) = 0, (j = 1, . . . , nh) ,

χi,min ≤ χi ≤ χi,max, (i = 1, . . . , nx) ,

(4.16)

45

Chapter 4. Guidance System

P1,i+1

P2,i+1

P3,i+1

P4,i

P5,i

P6,i

WPk

WPk+1 WPk+2

North

East

ψk

xp
yp

Figure 4.8: A path-fixed reference frame with origin in WPn
k rotated by a an angle ψk

relative to the NED-frame.

where f(χ) should be minimized with respect to the decision variables in the pa-
rameter vector χ. gk(χ) and hj(χ) are linear or nonlinear inequality and equality
constraints, respectively. In the following section, an optimization problem based on
the Bézier curve will be formulated for optimally placing the control points for each
segment.

Path-Fixed Reference Frame

Consider a straight-line path defined by two waypoints WPn
k = [xk, yk]

> and
WPn

k+1 = [xk+1, yk+1]>, respectively. Here, subscript n refers to the NED-frame.
Also, consider a path-fixed reference frame with origin in WPn

k , whose x-axis has
been rotated by an angle ψk, defined in Equation (4.6), relative to the xn-axis. Hence,
the coordinates of a point P n in the path-fixed reference frame can be computed as:

P p = R(ψk)
>(P n −WPn

k), (4.17)

where subscript p denotes a point relative to the path-fixed reference frame, and:

R(ψk) ,

[
cosψk − sinψk
sinψk cosψk

]
∈ SO(2). (4.18)

See Figure 4.8. By transforming the problem into a path-fixed reference frame and
treating WPn

k as origin, the problem of placing the control points simplifies to a
one-dimensional problem along the xp-axis in the “path-frame”.

Decision Variables

The shape of the Bézier curve is uniquely determined by the placement of the control
points and will thus serve as our decision variables. The first and the last control

46

4.2 The Path Generator

point of the Bézier curve is defined by current and next waypoint, thus not part of the
decision variables. As for the pragmatic approach, the constraints for C3 continuity
in the joints, control point P0,i+1, P1,i+1, P2,i+1, and P3,i+1 of the next segment, is
uniquely determined by the system of linear equations in Equation (4.5). P7,i+1 is
determined by the next waypoint. Thus we are left with P4,i+1, P5,i+1, and P6,i+1.

As mentioned, by formulating the problem in the path-frame we are facing a
one-dimensional problem since the yp-coordinates will be zero. Thus, the decision
variables are only the xp-coordinates of the control points. For convenience we call
the decision variables χ1, χ2, and χ3 such that:

χ>3×1 =
[
x4,i x5,i x6,i

]
=
[
χ1 χ2 χ3

]
. (4.19)

The Bézier curve becomes:

B1×1(θ) = a>1×8(θ)M8×8x8×1, (4.20)

where the monomial basis vector, a>1×8(θ), and the spline matrix,M8×8, is the same
as in Example 2.1, and:

x>8×1 =
[
x0,i x1,i x2,i x3,i χ>3×1 x7,i

]
. (4.21)

Objective Function

Following Proposition 4.1, we want to minimize the traveled distance/energy con-
sumed of the path. For our purpose, the traveled distance corresponds to the arc
length of the path, defined in Equation (2.19). The objective function for one path
segment is then to minimize the arc length. For convenience, we minimize the square:

J = min
χ3×1

∫ 1

0

∣∣∣Bθ
1×1(θ)

∣∣∣2 dθ. (4.22)

Noting that the Bézier curve becomes as in Equation (4.20), it can be expressed as
the inner product of the vector and itself:

J = min
χ3×1

∫ 1

0
Bθ

1×1(θ)>Bθ
1×1(θ) dθ. (4.23)

Plugging in Equation (4.20), the objective function can be written as:

J = min
χ3×1

∫ 1

0
(aθ1×8(θ)>M8×8x8×1)>aθ1×8(θ)>M8×8x8×1 dθ (4.24)

= min
χ3×1

∫ 1

0
x>8×1M

>
8×8a1×8(θ)a1×8(θ)>M8×8x8×1 dθ (4.25)

= min
χ3×1

x>8×1 M
>
8×8

∫ 1

0
aθ1×8(θ)aθ1×8(θ)> dθM8×8︸ ︷︷ ︸

W8×8

x8×1. (4.26)

47

Chapter 4. Guidance System

We define the integral of the the product of the derivative monomial basis vector
as:

c ,
∫ 1

0
aθ1×8(θ)aθ1×8(θ)> dθ. (4.27)

Since c is a constant, it will not contribute to the objective function2. W8×8 is then
found by calculating the product of the lower triangular matrix M8×8 and its conju-
gate transpose:

W8×8 = M>
8×8 cM8×8. (4.28)

M8×8 will in fact be the Cholesky decomposition of W8×8
3. This means that W8×8

is a symmetric positive-definite matrix, and we are left with a strictly convex objective
function in quadratic form:

J = min
χ3×1

x>8×1 W8×8 x8×1. (4.29)

Note that the objective function now contains the vector of all xp-coordinates, but
only χ1, χ2, and χ3 (= x4,i, x5,i, and x6,i) are decision variables. The rest of the xp-
coordinates are known constants. One can further rearrange and simplify to obtain
the expression of a general objective function for a quadratic programming problem:

J = min
χ3×1

χ>3×1 Q3×3 χ3×1 + q>3×1 χ3×1. (4.30)

Here, χ3×1 is given by Equation (4.19),Q3×3 = W8×8[5, 6, 7; 5, 6, 7] (submatrix of
W8×8), and q3×1 contains all linear terms found by expanding Equation (4.29). All
constant terms are left out, since they do not contribute to the solution.

Constraints

The constraints must be formulated such that they are dependent on the decision
variables in χ3×1. Since the origin is located in WPk, the decision variables must
be greater than zero and less than the distance to the next waypoint. These constraints
will be lower and upper bound for the optimization problem. One must also assure
that the decision variables are arranged, such that, e.g., χ3 does not appear before χ1.
See Figure 4.9. These are linear inequality constraints and can be expressed as:

0 ≤ χ1 ≤ χ2 ≤ χ3 ≤ x7,i. (4.31)

2∫ 1

0
aθ1×8(θ)a

θ
1×8(θ)

> dθ =
∫ 1

0
1 + 4θ2 + 9θ4 + 16θ6 + 25θ8 + 36θ10 + 49θ12 dθ = 16.239.

3The Cholesky decomposition of a Hermitian positive definite matrix A is a decomposition of the
form A = L>L, where L is a lower triangular matrix with real and positive diagonal entries, and L>

denotes the conjugate transpose of L. Every Hermitian positive definite matrix (and thus also every
real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition (Zhang et al.,
2017).

48

4.2 The Path Generator

ζi+1

2

x3,i+1x2,i+1x1,i+1χ4,i χ5,i χ6,i x7,i = x0,i+1 ≤≤≤≤ ≤

yp

xp
≤

WPk WPk+1

≤0 ζi+1/2≤

Figure 4.9: One-dimensional constraints for optimization problem in the path-fixed reference
frame with origin in WPk. The red mark indicates the maximum allowed distance of placing
the control points for the next segment.

To ensure that the path is always inside a given corridor with width ζi+1, we take
advantage of the convex hull property of the Bézier curve and the relation between the
control points given by Equation (4.5). For convenience, we assume that the corridor
width is constant. It can be expressed as:

x1,i+1 ≤ x7,i +
ζi+1

2
, (4.32)

x2,i+1 ≤ x7,i +
ζi+1

2
, (4.33)

x3,i+1 ≤ x7,i +
ζi+1

2
, (4.34)

where x7,i is the coordinate of the next waypoint. See Figure 4.9. By using Equa-
tion (4.5) and manipulating the constraints, they can be expressed as:

−χ3 ≤ −x7,i +
ζi+1

2
, (4.35)

χ2 − 4χ3 ≤ −3x7,i +
ζi+1

2
, (4.36)

−χ1 + 6χ2 − 12χ3 ≤ −7x7,i +
ζi+1

2
. (4.37)

One must also assure that these control points are arranged and greater than x7,i. See
Figure 4.9. It can be expressed as:

x7,i ≤ x1,i+1 ≤ x2,i+1 ≤ x3,i+1. (4.38)

49

Chapter 4. Guidance System

Again, we can use Equation (4.5) and manipulate the constraints. To express that all
control points should be greater than x7,i, we can use the relations found in Equa-
tions (4.35) to (4.37) by flipping the inequality sign and setting the corridor term
equal to zero. Lastly, we add the following constraints to ensure that these control
points are arranged:

−χ2 + 3χ3 ≤ 2x7,i, (4.39)

χ1 − 5χ2 + 8χ3 ≤ 4x7,i. (4.40)

Keeping the Curvature Low

In order to respect the dynamical constraints imposed by the vessel, it is vital to keep
the curvature low. The curvature for a Bézier curve is:

κ(θ) =

∣∣∣Bθ
1×2(θ)×Bθ2

1×2(θ)
∣∣∣∣∣Bθ

1×2(θ)
∣∣3 =

∣∣∣xθd(θ)yθ2d (θ)− xθ2d (θ)yθd(θ)
∣∣∣(

xθd(θ)
2 + yθd(θ)

2
)3/2

. (4.41)

Imposing that κ(θ) ≤ κmax, where κmax is specified by the user, results in a highly
nonlinear constraint and a hard optimization problem to solve efficiently. Noting
that the curvature has its peak right after a given waypoint, the constraints given by
Equations (4.31) and (4.38) can be tuned, to smooth out sharp turns:

• Increasing the lower bound given in Equation (4.31) will help smooth out the
sharp turn that can arise after a waypoint. For instance, setting the lower bound
to x7,i/2 is a decent choice.

• The constraint that the control points must be greater than x7,i expressed in
Equation (4.38), can be tuned to avoid sharp turns. We introduce three tuning
variables ε1, ε2, and ε3, and forces x1,i+1, x2,i+1 and x3,i+1 to be greater than
x7,i + εi:

χ3 ≤ x7,i − ε1, (4.42)

−χ2 + 4χ3 ≤ 3x7,i − ε2, (4.43)

χ1 − 6χ2 + 12χ3 ≤ 7x7,i − ε3. (4.44)

An idea can also be to use the replanner in Section 4.2.3 to construct smoother
paths if the waypoint after the next waypoint is assumed to be known a certain dis-
tance before the next waypoint. See Figure 4.6.

50

4.3 Speed Assignment

Optimization Problem

Based on the decision variables, objective function, and constraints formulated, we
can state our optimization problem for one path segment as a quadratic optimization
problem on the form:

J = min
χ

χ>3×1 Q3×3 χ3×1 + q>3×1 χ3×1 (4.45a)

subject to Aχ3×1 � b, (4.45b)

χ3×1 � 03×1, (4.45c)

χ3×1 � x7,i. (4.45d)

For our problem, the set of linear inequality constraintsAχ3×1 � b becomes:



1 −1 0
0 1 −1
0 0 −1
0 1 −4
−1 6 −12
0 0 1
0 −1 4
1 −6 12
0 −1 3
1 −5 8


χ3×1 �



0
0

−x7,i +
ζ

2

−3x7,i +
ζ

2

−7x7,i +
ζ

2
x7,i − ε1

3x7,i − ε2

7x7,i − ε3

2x7,i

4x7,i



. (4.46)

Discussion

Compared to the pragmatic solution, the control points are placed optimally accord-
ing to the objective function. This is a huge advantage over the pragmatic solution
because one can then specify the corridor width ζ directly, rather than going the op-
posite way.

4.3 Speed Assignment

The speed assignment is based on Skjetne (2005). Following Section 3.3, the guid-
ance system should generate the speed profile vs(t, s(t)) and its respective deriva-
tives. We let the desired path speed ud(t) (in m/s) from the path planner be a com-

51

Chapter 4. Guidance System

manded input speed. We have that:

|ṗd(s(t))| =
√
xsd(s(t))

2ṡ(t)2 + ysd(s(t))
2ṡ(t)2

=
√
xsd(s(t))

2 + ysd(s(t))
2 |vs(s(t), t)| = |ud(t)| ,

(4.47)

which must hold along the path. The speed assignment is thus, by definition:

vs(t, s(t)) ,
ud(t)√

xsd(s(t))
2 + ysd(s(t))

2
. (4.48)

Setting the commanded input ud(t) = 0 m/s will stop the vessel on the path, while
setting ud(t) > 0 m/s will move the vessel in positive direction along the path and
ud(t) < 0 m/s will move it in negative direction. This speed assignment can assure
that feasibility along the path always is satisfied.

If we have a constant speed assignment along the path where ud is the desired
constant speed, a maximum constraint on curvature κmax is imposed. It is found
by the implicit relation established in Equation (2.11). Given this type of speed as-
signment, the path must be designed according to the constraint imposed by κmax to
assure feasibility along the path. On the other hand, if we have a path-varying speed
assignment, such that the speed is automatically reduced according to the curvature,
one can assure that feasibility is always satisfied along the path.

52

Chapter 5
Navigation System

This chapter addresses the problem of designing a navigation system comprised of
a global low-resolution path planner together with a local dynamic high-resolution
path planner, satisfying the objectives stated in Section 3.2. OGMs, introduced in
Section 2.5, will serve as a foundation for both methods, and we will assume that the
map is known prior to operation.

We separate local and global waypoints. Local waypoints, also referred to as
nodes and states, are represented by x’s: (x0, x1, . . . , xk). Global waypoints are
represented by WP’s: (WP0,WP1, . . . ,WPk). The Euclidean distance between
two waypoints i and j is denoted |xi − xj |.

5.1 Local Planner - Rapidly Exploring Random Trees

As our local planner, the Rapidly Exploring Random Trees (RRT), first introduced
by LaValle (1998) will be considered. RRT aims to rapidly explore nonconvex high-
dimensional configuration spaces by generating a tree of feasible paths subject to
specified constraints. In its most basic version, the algorithm incrementally builds a
directed tree T = (V,E)1 of feasible connected vertices V and edges E, rooted at
the initial node x0. In each iteration, a node xrand ∈ Xfree is sampled. An effort is
made to connect the nearest vertex, xnearest ∈ V , to xrand. If a connection is made,
xnearest is expanded such that xrand is added to V , and the edge (xnearest, xrand) is
added to E.

RRTs are constructed in a way that reduces the expected distance of a randomly
chosen point to the tree. With a uniform sampling of Xfree, the probability of ex-
panding a vertex is proportional to the size of its Voronoi region, introduced in Sec-
tion 2.5.2. Since the largest Voronoi regions are in the frontier of the search, the three
preferentially expands towards the largest unsearched regions of Xfree. Because of
its expanding nature, the number of samples does not need to be specified a priori,
and a solution is returned as soon as the tree built is dense enough. This enables the

1See e.g. Cormen et al. (2009), pp.246-253.

53

Chapter 5. Navigation System

algorithm to handle real-time constraints.
Another great feature of RRT is the simplicity of adding constraints on how the

tree expands. This makes RRT particularly suited for path planning problems that
involve obstacles and differential constraints. As mentioned, the method is proba-
bilistically complete, guaranteeing that the probability of finding a solution, if one
exists, approaches one as the number of iterations approaches infinity. On the other
hand, the method is not optimal because the existing state graph biases future ex-
pansion (Karaman and Frazzoli, 2011). This is solved by introducing incremental
rewiring of the tree, a heuristic extension known as RRT*. New vertices are then
not only added to the tree if the connection is feasible, but also considered to replace
parents of existing nearby vertices in the tree by optimizing a specified cost function.

(a) (b)

Figure 5.1: A visualization of RRT on a square with dimensions X = [0, 100]× [0, 100] and
xinit = (50, 50). In (a) the RRT quickly expands towards the largest Voronoi regions of the
square. In (b) the RRT becomes more dense and breaks down the largest Voronoi regions.
Adopted from LaValle (2005).

RRT* is asymptotically optimal, guaranteeing that an optimal path from the initial
state to every state in the configuration space is found as the number of iterations
approaches infinity. For a detailed explanation on how RRT* works refer to Karaman
and Frazzoli (2010, 2011). RRT*, given in Algorithm 2, will serve as the foundation
for the local path planner designed in this thesis. The primitive procedures used in
RRT* is explained in Appendix C. In the following sections, we will combine useful
aspects of different RRT variants proposed in the literature as well as modifying them
to our purpose.

5.1.1 Constraints

The RRT* algorithm needs to be customized according to which vehicle type is con-
sidered. Several vehicles with different dynamics and DOF, such as automobiles,

54

5.1 Local Planner - Rapidly Exploring Random Trees

Algorithm 2: RRT*

1 input: x0, xgoal, X
2 Initialize T = (V ← {x0}, E = ∅);
3 for i = 1, . . . , n do
4 xrand ← Samplei;
5 xnearest ← Nearest(T , xrand);
6 xnew ← Steer(xnearest, xrand);
7 if ObstacleFree(xnearest, xnew) then
8 Xnear ← Near(T , xnew, r);
9 V ← V ∪ {xnew};

10 xmin ← xnearest, cmin ← Cost(xnearest);
// Connect along minimum-cost path

11 foreach xnear ∈ Xnear do
12 if CollisionFree(xnear, xnew) ∧ Cost(xnear) < cmin then
13 xmin ← xnear, cmin ← Cost(xnear);

14 E ← E ∪ {xmin};
// Rewire the tree

15 foreach xnear ∈ Xnear do
16 if CollisionFree(xnear, xnew) ∧ Cost(xnear) < cmin then
17 xmin ← xnear, cmin ← Cost(xnear);

18 E ← E \ {xparent, xnear} ∪ {xnew, xnear};

19 return T ;

car-like robots, and spacecrafts, have been investigated in the literature. See for ex-
ample Cheng et al. (2001). We design the constraints to fit our ASV.

Obstacles

In order to navigate safely from initial to target waypoint, the ASV must avoid both
static and dynamic obstacles. Let dmin be the minimum distance to an obstacle al-
lowed. Then, a constraint on minimum distance allowed is given as:

|p(t)− oi(t)| ≥ dmin, ∀oi ∈ O, (5.1)

where p(t) is the vessel position and oi(t) is obstacle i in the set of obstacles O. For
the local path planner, this entails that both vertices and edges in our tree built by
RRT* must be examined for a collision. For convenience, we use dmin both for static
and dynamical obstacles here. Note that dmin should account for the uncertainties

55

Chapter 5. Navigation System

introduced by the measurement system as well as the corridor width introduced in
Section 4.2.2.

We separate static and dynamic obstacles since the static ones can easily be in-
corporated into the OGM. To ensure that dmin is fullfilled for static obstacles, we
introduce a new cost map layer, namely the inflation layer. Each occupied grid cell
is inflated by dmin. This inflation increases the size of the obstacle space Xobs on
the map. By checking that the vertices and the line segments2 between them are not
inside the inflated area, static obstacles are avoided.

Dynamic obstacles can be checked by ensuring that the vertices are not inside a
circle with radius dmin and origin at oi(t). The line segments between them can be
easily checked by finding the projection (if it exists) of oi(t) onto the line segment
and ensure that the distance between the projection and oi(t) is greater than dmin.
Dynamic obstacles must, of course, be continuously updated. A proposal on how
this can be done is given in Section 5.1.4. See Figure 5.2 for a visualization.

WPk = x0

WPk+1 = x6d
min

d
min

d m
in

x1

x2

x3

x4

x5

Figure 5.2: An expanded RRT tree between two global waypoints WPk and WPk+1. The
chosen path of local waypoints x0, . . . , x6 is drawn with a thick marker. One static obstacle in
black, two dynamic obstacles in blue, and their respective obstacle regions in red are shown.

2The line segment between two points in an OGMs can be checked using Bresenham’s line algorithm
(Joy, 1999).

56

5.1 Local Planner - Rapidly Exploring Random Trees

Course Variation

To comply with the assumption from Section 3.5 on a maximum restriction on the
angle between previous, current, and next waypoint we impose that:

|ψk − ψk+1| < ψmax, k ∈ Km. (5.2)

Here ψk is the heading at waypoint k defined in Equation (4.6), ψmax is the maximum
allowed course variation, and Km is the set of waypoint indices.

Curvature

It is in our interest to keep the curvature low to respect the dynamic constraints of the
vessel described in Section 2.1.3. The path planner cannot control the curvature of the
path itself. However, one can constraint the curvature of the circumference connect-
ing the midpoints of the respective segments. This will cause that the waypoints are
connected such that the path is kept straight with less course variation between them.
Let lk be the Euclidean distance between two consecutive waypoints, xk−1 and xk,
and ψk its heading. The constraint then takes the form (Martelli and Zaccone, 2018):

2
tan

(
|ψk − ψk+1|

)
min(lk, lk+1)

< ρmax, k ∈ Km \m, (5.3)

where ρmax is the maximum curvature allowed of the circumference connecting the
midpoints, and Km is the set of waypoint indices.

5.1.2 Cost Function

A weakness of the standard RRT algorithm is that it does not take into account the
path cost. This can lead to path solutions that are far from optimal. The rewiring
procedure of RRT* performs an optimizing action and seeks to minimize a specified
cost function as given in Problem 2.1. The cost function will serve as a heuristic that
biases the growth of the tree towards those regions that result in low-cost solutions.
Thus, the cost function controls the shape of the solution. It is essential to decide
upon what constitutes a better path in terms of waypoints, as for the path generator
discussed in Section 4.2. Since the path planner, more or less, decides the shape of the
overall path, a reasonable path in terms of waypoints could be one that minimizes the
path elongation and the number of maneuvering actions. Furthermore, it is desired to
keep as much distance as possible from the obstacles.

Proposition 5.1. A reasonable path in terms of waypoints for a low-speed vessel such
as the ReVolt is one where the traveled distance/energy consumed and the number of
maneuvering actions is minimized, and the distance to obstacles is maximized.

57

Chapter 5. Navigation System

The features given in Proposition 5.1 can be conflicting in many scenarios. If so,
a trade-off solution should be chosen.

Minimum Distance

Let lk be the Euclidean distance between two consecutive waypoints, xk−1 and xk.
The distance cost of waypoint number k is then:

gl(xk) =
∑
k∈Km

lk, (5.4)

where Km is the set of waypoint indices.

Maneuvering Actions

We want to penalize maneuvering actions. Let ρk be equal to the left side of the
inequality sign in Equation (5.3):

ρk = 2
tan

(
|ψk − ψk+1|

)
min(lk, lk+1)

. (5.5)

The maneuvering cost of waypoint number k is then, as proposed by Martelli and
Zaccone (2018):

gρ(xk) = max
k∈Km

ρk +
1

m

∑
k∈Km

ρk, (5.6)

where Km is the set of waypoint indices, and m is the number of waypoints. gρ will
contribute to keeping the path straight with smooth turns. Also, it will distribute the
waypoints at regular distances.

Obstacles

To maximize the distance to obstacles, we mimic the repulsive forces of obstacles
used primarily by potential field algorithms discussed in Section 2.4. Let d(xk,oi)
be the Euclidean distance between waypoint number k and obstacle i. The obstacle
cost of waypoint number k is then:

go(xk) =
1

2

∑
k∈Km

1

min
oi∈O

d(xk,oi)
2 , (5.7)

where Km is the set of waypoint indices, and O is the set of obstacles. Note that
the repulsive potential as defined here will influence the cost function at any distance
d(xk,oi) from obstacle i. It is common to set a certain limit on how far away from

58

5.1 Local Planner - Rapidly Exploring Random Trees

the object, the repulsive potential should affect the cost, but for simplicity, this is not
treated here.

By combining the proposed cost functions, the total cost of waypoint number k can
be stated as:

gtot(xk) = δ · gl(xk) + ε · gρ(xk) + ζ · go(xk), (5.8)

where δ, ε, and ζ are tuning variables for the respective cost functions. Each cost
function will produce trees with significantly different topologies and path shapes.
See Simulation 1 in Section 8.4.1 for a visualization. Thus, the cost function should
be tuned properly to obtain the desired behavior.

5.1.3 Informed RRT*

RRT* will asymptotically find the optimal path from the initial node to every other
node in the configuration space. For our problem, this is both inefficient and incon-
sistent with the single-query problem treated in this thesis. Gammell et al. (2014)
showed that for problems that want to minimize the path elongation, the subset of
states that can improve a solution could be described by an ellipse for an R2 problem.
For large configuration spaces, they showed that unless the subset given by the ellipse
was sampled directly, the probability of improving the solution becomes arbitrarily
small. The algorithm is named informed RRT* because it utilizes the knowledge
obtained from the informed sampling procedure.

cmin

cbest

√
c2best − c

2
min

x0 xgoal

Figure 5.3: The heuristic sampling domain Xellip for an R2 problem seeking to minimize
path length, is an ellipse with the initial state x0 and the goal state xgoal as focal points.
cbest is the cost of the best solution found so far and cmin is the theoretically minimum cost
between x0 and xgoal. The shape of the ellipsoid will depend on x0, xgoal, cbest, and cmin.

Informed RRT* is an extension to RRT* that introduces a clear improvement in
terms of convergence rate and final solution quality. It retains the same probabilistic
guarantees on completeness and optimality as RRT*. Informed RRT* works as RRT*
until a first feasible solution is found. Then, for the solution to be improved at any
iterations, Gammell et al. (2014) proved that states must be sampled from a heuristic

59

Chapter 5. Navigation System

domain Xellip ⊂ X :

Xellip = {x ∈ X | |x0 − x|+ |xgoal − x| ≤ cbest}, (5.9)

which is the general equation for an n-dimensional hyperspheroid. Here we treat
only n = 2. The transverse diameter of the ellipsoid is cbest and the conjugate one is√
c2
best − c2

min. See Figure 5.3.
The algorithm limits the search to the subproblem formed by the ellipsoid con-

taining all possible better solutions. As time goes and better solutions are found, the
heuristic domain will decrease, and the ellipsoid will shrink. See Figure 5.4. Uni-
form sampling from the ellipsoid can then be achieved by transforming uniformly
distributed samples from a unit circle. For a detailed description refer to Gammell
et al. (2014).

(a) (b)

Figure 5.4: Informed RRT* expanding its tree and converging in the absence of obstacles.
The start and goal node are shown in green and purple, respectively. The current solution
is shown with a thick marker, and the borders of Xellip in blue. In (a) the initial solution is
found. In (b) the solution is improved, and the area of the ellipse decreases. Asymptotically
the ellipse will degenerate to a line between the start and goal.

5.1.4 Real-Time RRT*

Until now, our design of the local planner has only addressed a static environment. In
order to react to dynamic obstacles, a real-time extension of RRT* must be addressed.
Different real-time extensions have been proposed in the literature. For example,
see ERRT and CL-RRT proposed by Bruce and Veloso (2002) and Kuwata et al.
(2009). The expanded tree of these algorithms are only used as a look-ahead in the
environment, and thus only covers small portions of the environment. Naderi et al.
(2015) presented the Real-Time RRT* (RT-RRT*) algorithm that retains the whole
tree in the environment and rewires the nodes online to be able to handle dynamic

60

5.1 Local Planner - Rapidly Exploring Random Trees

obstacles. Our real-time extension of RRT* is heavily based on the work of Naderi
et al. (2015).

The algorithm is given in Algorithm 3. RT-RRT* interleaves two main tasks:
expansion-and-rewiring of the tree and path planning. For RT-RRT* to manage real-
time execution, the algorithm has a limited amount of time for both tasks. The al-
gorithm is initialized with a root node x0, equal to the start location. In each loop
iteration, we expand and rewire the tree as long as possible. Then, we plan a path
towards the goal. If xgoal is found, we follow the path leading to it, just like RRT*.
If not, we plan a K-step path (x0, x1, . . . , xk) from the current tree root, according
to our cost function. Now in Lines 8 and 9 of Algorithm 3, we check if the vessel
is sufficiently close to x0. If so, we update x0 to the next node, x1, in our planned
path. Hence, we enable the ASV to move on to the planned path towards the goal in
a stepwise manner. By updating and keeping the ASV near the root, we can retain
the already expanded tree.

Algorithm 3: RT-RRT* (Naderi et al., 2015).

1 input: x0, xgoal, X
2 Initialize T = (V ← {x0}, E = ∅), Qr, Qs;
3 for i = 1, . . . , n do
4 Update x0, xgoal, Xfree, Xobst;
5 while time is left for Expansion and Rewiring do
6 Expand and Rewire T using Algorithm 4;

7 Plan (x0, x1, . . . , xk) using Algorithm 5 ;
8 if p(t) is close to x0 then
9 x0 ← x1;

10 Move the vessel towards x0 for a limited time;

Tree Expansion and Rewiring

The tree expansion-and-rewiring algorithm is given in Algorithm 4. The method will
be described briefly. For a detailed description of all primitive procedures used, see
Naderi et al. (2015).

The sampling of random nodes is done in the same way as for Informed RRT*,
but we only focus part of the sampling inside the ellipse in case of changes in the

61

Chapter 5. Navigation System

environment. The sampling procedure in Line 2 of Algorithm 4 is performed as:

xrand =



xgoal, if Pr > 1− α,

U(Xfree), if

if Pr >
1− α
β

,

or goal is not found,
Sample ellipse, otherwise,

(5.10)

where Pr ∈ [0, 1] is a random drawn number, α ∈ [0, 1] is a tuning variable for
sampling the goal state, and β ∈ R>0 is for dividing the sampling procedure between
uniform sampling and inside the ellipse. Also, the rotation of the ellipse is updated
every iteration the root x0 is changed.

To control the density of the tree, we check in Line 7 of Algorithm 4 that the
maximum number of neighbors around a node, kmax, and the minimum Euclidean
distance, rmin, between nodes in the tree is not violated before adding the sampled
node to the tree. The new sampled node, xnew, is then used for rewiring random parts
of the tree around itself or its closest node xnearest.

gi
gj

Figure 5.5: Adjacent grid cells for gi
and gj .

Gradually, as more iterations are done, the
tree becomes too large to handle real-time path
planning. To find nearby nodes, we use grid-
based spatial indexing of nodes. We divide the
configuration space into square grid cells. The
set of nodes XSI ⊂ T for a node xnew is then
found by only considering the neighboring grid
cells and the grid that xnew is contained inside.
A grid cell gi is considered a neighbor to gj if it
is the closest non-empty grid (at least one node
inside). See Figure 5.5. Note that the size of
each grid cell strongly influences the processing
time and the size of XSI . Also, the size of each
cell should be big enough to contain the dynamic
obstacle regions.

Same as for RRT*, rewiring is done when a
new sampled node is added to the tree, but in
addition, rewiring is done when the tree root x0 or dynamic obstacles are changing.
Thus, rewiring is done in two different ways:

1. Rewiring starting from a random node in the tree (Line 12 in Algorithm 4).

2. Rewiring starting from the tree root, x0 (Line 13 in Algorithm 4).

This is done by using two queues, Qs and Qr. Nodes added to the queues are nodes
that should be rewired. Except for the start point, the two procedures do the same:

62

5.1 Local Planner - Rapidly Exploring Random Trees

Algorithm 4: Tree Expansion-and-Rewiring (Naderi et al., 2015).

1 input: T , Qr, Qs, kmax, rmin
2 xrand ← Samplei ;
3 xnearest ← Nearest(T , xrand);
4 xnew ← Steer(xnearest, xrand);
5 if ObstacleFree(xnearest, xnew) then
6 Xnear ← Near(T , xnew,XSI);
7 if cardinality(Xnear) < kmax or |xnearest − xnew| > rs then
8 AddNodeToTree(T , xnew, xnearest, Xnear);
9 Push xnew to Qr;

10 else
11 Push xnearest to Qs;
12 RewireRandomNode(Qr, T)

13 RewireFromRoot(Qs, T)

We start by rewiring a node. Then, we continue to push the neighbors of the node
to the respective queue as well as popping new nodes to be rewired from it. The
procedures then iteratively rewire larger portions of the tree until a time condition is
met. See Naderi et al. (2015) for algorithm details.

Blocking Nodes by Dynamic Obstacles

By the assumption that the position of all dynamic obstacles is known, we can block
branches of the tree contained inside their obstacle region. A node is blocked by
setting its cost-to-reach, ctot, to infinity. As a result, branches going out from the
blocked node will get infinite cost-to-reach. Gradually, as rewiring is performed,
the children of the blocked node will be connected to other nodes with lower cost-to-
reach values, thus creating new paths around the dynamic obstacle. With this strategy,
dynamic obstacles are avoided. See Figure 5.6.

Planning

In Line 7 of Algorithm 3, RT-RRT* plans aK-step path from x0. Two scenarios must
be handled; when the tree has reached xgoal, and when it has not. In the first case, we
follow the path leading to the xgoal, just like RRT*, except when the path is rewired.
Then, we update the path accordingly. In the second case, we plan a subpath that
ideally brings us closer to xgoal in the growing tree. We use a cost function to guide
us towards the goal:

f(xk) = gtot(xk) + h(xk). (5.11)

63

Chapter 5. Navigation System

(a)

Rewired

(b)

Figure 5.6: RT-RRT* blocking nodes and outgoing branches from an obstacle region. The
start and goal nodes are shown in green and purple, respectively. The obstacle region is shown
by a transparent red region, blocked nodes with red marks, and the current solution with a
thick marker. In (a) the initial solution is blocked, and the cost-to-reach is set to infinity. In
(b) the tree is rewired to find a new solution going around the obstacle region.

Here, gtot(xk) is defined in Equation (5.8) and h(xk) is an admissible heuristic3 given
as the Euclidean distance to xgoal:

h(xk) = |xk − xgoal|. (5.12)

By using the cost function f(xk), one risk being caught in local minima. This is
solved by planning a K-step path at each iteration and block already “seen” nodes
by setting their heuristic to infinity. Thus the planner can visit other branches. When
the planner reaches a node that is a leaf node or blocked, the algorithm returns the
planned path and block the node. Then, the “best-already-found” path is updated if
the planned path leads us to a better location (closer to xgoal). However, the vessel
only follows the path if it leads to a better location than the current placement of
the vessel. All nodes have the chance to be revisited when another unblocked node
is added as its children by rewiring or adding a new node. Then all ancestors are
unblocked. Note that if xgoal is reached, and the path is blocked by an obstacle, the
path is followed up to the obstacle until rewiring finds another one, or the path gets
cleared. The algorithm is given in Algorithm 5.

3An admissible heuristic is one that never overestimates the cost to reach the goal (Russell and
Norvig, 2009).

64

5.2 Global Planner - A* Algorithm on a Voronoi Roadmap

Algorithm 5: Plan a K-step Path (Naderi et al., 2015).

1 input: T , xgoal
2 if Tree has reached xgoal then
3 Update path from x0 to xgoal if path is rewired;
4 (x0, . . . , xk)← (x0, . . . , xgoal);
5 else
6 for xi ∈ (x0, . . . , xk) do
7 xi = child of xi−1 with minimum f(xc) = g(xc) + h(xc);
8 if xi is leaf node or its children are blocked then
9 (x′0, . . . , x

′
k)← (x0, . . . , xi);

10 block(xi);
11 break loop;

12 Update best path with (x′0, . . . , x
′
k) if necessary;

13 (x′0, . . . , x
′
k)←choose to stay in x0 or follow best path;

14 return (x0, . . . , xk);

5.2 Global Planner - A* Algorithm on a Voronoi Roadmap

The global planner should solve the superior problem of navigating the vessel from
start to goal using the information known before the operation. More specifically, it
should determine the initial, intermediate, and destination waypoint with correspond-
ing reference speeds in the regions. For efficiency reasons, the global planner will be
of low resolution. This means that we do not consider all grids in a configuration
space, but partition it in order to be suited for global planning. In this thesis, we will
partition the configuration space and construct a roadmap using Voronoi roadmaps,
represented in Section 2.5.2. The metric function will be the Euclidean distance given
in Equation (2.43). Static obstacles and map borders are used as generator points.

By using the Voronoi roadmap, one can efficiently use an optimal combinatorial
algorithm. The design of the global planner is similar to the ones represented by
Candeloro et al. (2013) and Lekkas (2014), and can be summarized by the following
steps:

1. Create a raw obstacle-free roadmap using Voronoi partitioning of the configu-
ration space.

2. Waypoints and paths going out of the configuration space border are removed.

3. Include the start and goal location of the vessel in the roadmap.

4. The A* algorithm is used to find the optimal path σ∗ in the roadmap while

65

Chapter 5. Navigation System

directly verifying if clearance constraints are fulfilled.

5. Given a feasible path, its collinear and almost-collinear waypoints are removed.

6. Finally, the pruning of unnecessary waypoints is done.

The difference between the algorithm represented by Candeloro et al. (2013) is
that we verify if the clearance constraints are fulfilled directly in step 4, which ensures
that A* only needs to search for a feasible path once. This can be done since we know
for a fact that our path generator designed in Chapter 4 will generate the path inside a
certain corridor width (which should be smaller or equal to our clearance constraint).
If the clearance constraint is not fulfilled, we set the heuristic cost of the following
node to infinity, ensuring that the path is never chosen.

The creation of a Voronoi roadmap is explained in Section 2.5.2. In the following
subsections step 4, 5, and 6 will be described.

5.2.1 The A* Algorithm

For our global path planner, we will use the well-known A* algorithm, first intro-
duced by Hart et al. (1968). A* is a graph-traversal algorithm that has been widely
used in the robotics and AI community because of its optimality, optimal efficiency,
and completeness (see Russell and Norvig (2009)).

The algorithm is an informed search that leverages the information of the start and
goal location. It evaluates waypoints in the roadmap using a cost function F (WPk),
combining the cost to reach the waypoint, G(WPk), and the heuristic cost to reach
the goal from the waypoint H(WPk):

F (WPk) = G(WPk) +H(WPk). (5.13)

F (WPk) can then be seen as the estimated cost of the cheapest solution through
node WPk. To find the optimal solution, we explore in a greedy manner, the neigh-
bors of the current node with the lowest estimated cost. This strategy is proven to be
both complete and optimal, given that the heuristic H(WPk) is admissible (Russell
and Norvig, 2009). For our global planner, the Euclidean distance will be used to
calculate the cost. Assuming that the distance between the waypoints given by the
Voronoi roadmap is big enough not to violate the dynamic constraints of the vessel,
it is reasonable to not bother about maneuvering actions. The cost to reach node
WPk is thus defined to be equal to the path length cost of the local planner in Equa-
tion (5.4):

G(WPk) =
∑
k∈Km

lk, (5.14)

66

5.2 Global Planner - A* Algorithm on a Voronoi Roadmap

where lk is the Euclidean distance between two consecutive waypoints WPk−1 and
WPk, andKm is the set of waypoint indices. The admissible heuristic cost is further
given as:

H(WPk) = |WPk −WPgoal|. (5.15)

A detailed description with pseudo-code of the algorithm can be found in Russell and
Norvig (2009).

5.2.2 Clearance Constraints

In step 6, one needs to verify that the piecewise linear path between the global way-
points respects a certain clearance constraint dmin. By assuming that the static obsta-
cles are greater in size than dmin, this can be done by verifying if the grid cells in the
OGM a distance dmin on both sides between two consecutive waypoints are part of
the free space. The line segments to be verified bear similarity to the corridor walls
introduced in Section 4.2.2. Four points must be calculated, two endpoints for each
line segment (or wall). The grid cells between the points can then be found using
Bresenham’s line algorithm (Joy, 1999). See Algorithm 6.

Algorithm 6: Check Clearance Constraint.

1 input: WPk, WPk+2, dmin
2 p1, . . . , p4 ← Get endpoints of line segments to be verified;
3 Cells = Bresenham(p1, . . . , p4);
4 for cell ∈ Cells do
5 if cell ∈ Xobs then

// Clearance constraint violated
6 return False;

7 return True;

5.2.3 Pruning of Waypoints

Both step 5 and 7 in our global planner, similarly prune waypoints to achieve a more
practical path. The Voronoi diagram produces a high number of waypoints, propor-
tional to the number of generator points. Including all the waypoints found from the
A* search can result in unpractical paths.

First, as stated in Proposition 5.1, it is desired to limit the number of maneuvering
actions. By removing collinear and almost-collinear waypoints in step 5, one reduces
heading changes as well as shorten the path length.

67

Chapter 5. Navigation System

︸︷︷︸
Collin

ear
way

point to
be pruned

WP0 WP1

WP2

WP3

WP4

Exc
ess

ive
way

po
int

s to
be

pru
ne

d

︷
︸︸

︷

Figure 5.7: Five waypoints and
the connecting straight-line path be-
tween them drawn with a thick
marker are shown. Black areas
are obstacles. WP1, WP2, and
WP3 are collinear, thus WP2 can
be pruned. Further, by assuming
that the straight-line path between
WP0 and WP4 satisfy the clear-
ance constraint, all intermediate way-
points can be pruned.

We treat three consecutive waypoints WP1,
WP2, and WP3, and calculate the heading
change between the former, and the latter once
as:

|dψ1−2 − dψ2−3| < ψthres, (5.16)

where dψ1−2 and dψ2−3 is the heading between
WP1 and WP2, and WP2 and WP3, respec-
tively. ψthres is the threshold value for prun-
ing waypoints. If the heading change is lower
than ψthres, we remove the waypoint. In step
7, we prune excessive waypoints to achieve a
more practical path in terms of fewer waypoints.
There is no reason to assign a path A-B-C if the
path A-C is feasible and respects the clearance
constraint, verified by Algorithm 6.

Both step 5 and 7 in our global planner can
be done by iterating through the list of waypoints
found by the A* and verify if the angle/clearance
constraint is met in Line 7 of Algorithm 7 (using
Algorithm 6 or Equation (5.16)). See Figure 5.7
for a visualization.

Algorithm 7: Pruning of Waypoints.

1 input: σ∗ = {WP0, . . . , WPgoal}, dmin or ψthres
2 i = 0 ;
3 while i < size(σ∗)− 2 do
4 WP1 = σ∗[i] ;
5 WP2 = σ∗[i+ 1] ;
6 WP3 = σ∗[i+ 2] ;
7 if not Angle/Clearance Constraint then
8 RemoveWP2 from σ∗;
9 else

10 i = i+ 1;

11 return σ∗;

68

Chapter 6
Control System

This chapter addresses the problem of designing a high-level control law together
with a thrust allocation algorithm that satisfies the control objective given in Sec-
tion 3.1. The fully actuated low-speed control design model in Equation (2.1) will
be used to designing a maneuvering controller. We assume that the system states
{η,ν, b} are provided by an observer from the measurement system. To design the
maneuvering controller, we will use nonlinear stability theory. See Khalil (2002) for
a reference.

6.1 Maneuvering Control Design

To design the maneuvering controller, we will use the nonlinear adaptive backstep-
ping technique. The method is described in detail by Krstic et al. (1995) and includes
methods for tuning functions, parameter adaptation, and modular designs for both
full-state feedback and output feedback (observer backstepping). In short, backstep-
ping is a recursive technique breaking the design problem of the full system down
to a sequence of sub-problems on lower-order systems, and by recursively use some
states as virtual control inputs to obtain the intermediate control laws using the ap-
propriate Control Lyapunov Function (CLF) (Zhang and Qian, 2017). The design is
based on Skjetne (2019), and is done in two steps. After the first step, we define the
dynamic update law for the parametric value ṡ(t) to fulfill the control objective in
Equation (3.1), and to ensure that the update law only acts in the output space. Bear
in mind the system matrices and their properties given in Section 2.1.

6.1.1 Adaptive Backstepping - Step 1

We define the error state variables:

z1 , R(ψ)>(η − ηd(s)), (6.1)

z2 , ν −α1, (6.2)

ω , ṡ− vs(t, s), (6.3)

69

Chapter 6. Control System

where α1 is the virtual control to be specified later. The total derivative of z1 is:

ż1 = Ṙ(ψ)>(η − ηd(s)) +R(ψ)>(η̇ − ηsd(s)ṡ) (6.4)

= −S(r)R(ψ)>(η − ηd(s)) + ν −R(ψ)>ηsd(s)ṡ (6.5)

= −S(r)z1 + z2 +α1 −R(ψ)>ηsd(s)(ω + vs(t, s)). (6.6)

The first CLF is defined as:
V1 ,

1

2
z>1 z1, (6.7)

and its total derivative is:

V̇1 =
1

2
ż>1 z1 +

1

2
z>1 ż1 (6.8)

=
1

2

(
− S(r)z1 + z2 +α1 −R(ψ)>ηsd(s)(ω + vs(t, s))

)>
z1 (6.9)

+
1

2
z>1

(
− S(r)z1 + z2 +α1 −R(ψ)>ηsd(s)(ω + vs(t, s))

)
=

1

2

(
− z>1 S(r)z1 + z>1 z2 + z>1 α1 (6.10)

− z>1
[
R(ψ)>ηsd(s)(ω + vs(t, s))

]
− z>1 S(r)z1 + z>1 z2 + z>1 α1

− z>1
[
R(ψ)>ηsd(s)(ω + vs(t, s))

])
= −z>1 S(r)z1︸ ︷︷ ︸

=01

+z>1 z2 + z>1

[
α1 −R(ψ)>ηsd(s)(ω + vs(t, s))

]
, (6.11)

and furthermore, its derivative with respect to s is:

V s
1 =

1

2
zs1
>z1 +

1

2
z>1 z

s
1 (6.12)

=
1

2

(
−R(ψ)>ηsd(s)

)>
z1 +

1

2
z>1

(
−R(ψ)>ηsd(s)

)
(6.13)

= −z>1 R(ψ)>ηsd(s). (6.14)

Note now the use of Young’s inequality 2, such that:

V̇1 = z>1 z2 + z>1

[
α1 −R(ψ)>ηsd(s)(ω + vs(t, s))

]
(6.15)

≤ 1

4γ
z>2 z2 + z>1

[
γz1 +α1 −R(ψ)>ηsd(s)(ω + vs(t, s))

]
. (6.16)

1z>1 S(r)z1 = z>1 (−S(r))z1 =⇒ 2z>1 S(r)z1 = 0 =⇒ z>1 S(r)z1 = 0
2Young’s inequality: a>b ≤ 1

4γ
b>b+ γa>a, where a, b ∈ Rn, γ > 0.

70

6.1 Maneuvering Control Design

We choose our first virtual control α1 and tuning function ρ1 as:

α1 = −K1z1 +R(ψ)>ηsd(s)vs(t, s)− γz1, K1 = K>1 > 0, γ > 0, (6.17)

ρ1 = −z>1 R(ψ)>ηsd(s) = V s
1 . (6.18)

Plugging α1 and ρ1 into Equation (6.16) gives:

V̇1 ≤ −z>1 K1z1 + ρ1ω +
1

4γ
z>2 z2, (6.19)

where we postpone dealing with the coupling term involving z2 until the next step.

6.1.2 Dynamic Update Law Acting in Output Space:

The dynamic update law is constructed to bridge the path following objective with the
speed assignment. We examine two candidates so that the hybrid path signal being
sent from the guidance system can be controlled. Remember that:

ω , ṡ− vs(t, s), (6.20)

V̇1 ≤ −z>1 K1z1 + ρ1ω +
1

4γ
z>2 z2, (6.21)

ρ1 = −z>1 R(ψ)>ηsd(s) = V s
1 . (6.22)

• Tracking Update Law: Choosing:

ω = 0 =⇒ ṡ = vs(t, s), (6.23)

satisfies the dynamic task in Equation (3.1). Furthermore, leaving the coupling
term for the next step and inserting ω into Equation (6.21) we obtain:

V̇1 ≤ −z>1 K1z1. (6.24)

Hence the tracking update law renders V̇1 negative definite and thereby the
equilibrium z1 = 0 uniformly globally exponentially stable (UGES)1. We call
it a “tracking update law” since ṡ just becomes a time signal following the
speed assignment vs(t, s).

• Unit-Tangent Gradient Update Law: Choosing:

ω = −µρ1 = −µV s
1 , µ ≥ 0, (6.25)

=⇒ ṡ = vs(t, s)− µV s
1 = vs(t, s) + µz>1 R(ψ)>ηsd(s) (6.26)

= vs(t, s) + µηsd(s)
>R(ψ)z1. (6.27)

1See Lemma 4.5 in Khalil (2002).

71

Chapter 6. Control System

This is known as the gradient update law because of V s
1 . µ is a tuning variable.

This update law is a smooth dynamic optimization algorithm that selects the
point ηd(s) that minimizes the weighted distance between η and ηd(s). See
Chapter 3.4 in Skjetne (2005) for details. Note that ηsd(s) may for a given s
have varying length, depending on the parameterization. Since it appears in
Equation (6.27), the gradient update law will have a varying gain along the
path. To avoid this, we divide by |ηd(s)| and use the unit tangent vector, such
that:

ṡ = vs(t, s) + µ
ηsd(s)

>∣∣ηsd(s)∣∣R(ψ)z1. (6.28)

Same as for the tracking update law, we leave the coupling term for the next
step, and insert ω into Equation (6.21) to obtain:

V̇1 ≤ −z>1 K1z1 − µ
V s

1
2∣∣ηsd(s)∣∣ . (6.29)

Hence the unit tangent gradient update law renders V̇1 negative definite and
thereby the equilibrium z1 = 0 is UGES.

For each of these choices we get that the term ρ1ω ≤ 0 in Equation (6.21), thus we
can leave it out for the next step. Concluding the first step yields:

Step 1:



K̃1 = K1 + γI > 0

ż1 = −
(
K̃1 + S(r)

)
z1 + z2 −R(ψ)>ηsd(s)ω

α1 = −K̃1z1 +R(ψ)>ηsd(s)vs(t, s)

V̇1 ≤ −z>1 K1z1 +
1

4γ
z>2 z2

ṡ = vs(t, s) + ω

(6.30)

6.1.3 Adaptive Backstepping - Step 2

The second CLF is defined as:

V2 , V1 +
1

2
z>2 Mz2, (6.31)

and its total derivative is:

V̇2 = V̇1 + z>2 Mż2 (6.32)

= −z>1 K1z1 +
1

4γ
z>2 z2 + z>2

(
Mν̇ −Mα̇1

)
. (6.33)

72

6.1 Maneuvering Control Design

Plugging in our 3 DOF model in Equation (2.1) forMν̇ we obtain:

V̇2 = −z>1 K1z1 +
1

4γ
z>2 z2 (6.34)

+ z>2

(
−C(ν)ν −D(ν)ν + τ +R(ψ)>b−Mα̇1

)
.

We now choose τ to stabilize our second CLF:

τ = −K2z2 +C(ν)ν +D(ν)ν −R(ψ)>b+Mα̇1, K2 = K>2 > 0. (6.35)

Plugging Equation (6.35) into Equation (6.34) we obtain:

V̇2 ≤ −z>1 K1z1 − z>2
(
K2 −

1

4γ

)
z2 ≤ 0. (6.36)

Thus τ renders V̇2 negative definite and thereby the equilibrium point (z1, z2) =
(0, 0) UGES. Note that we need to find an expression for α̇1, which directly appears
in our controller. We get:

α̇1 = −K̃1ż1 + Ṙ(ψ)>ηsd(s)vs(t, s) +R(ψ)>η̇sd(s)vs(t, s) (6.37)

+R(ψ)>ηsd(s)v̇s(t, s)

= −K̃1ż1 − S(r)R(ψ)>ηsd(s)vs(t, s) +R(ψ)>ηs
2

d (s)ṡvs(t, s) (6.38)

+R(ψ)>ηsd(s)
(
vts(t, s) + vss(t, s)ṡ

)
.

By plugging in for ż1 the expression can be further simplified:

α̇1 = −K̃1

(
−
(
K̃1 + S(r)

)
z1 + z2 −R(ψ)>ηsd(s)ω

)
(6.39)

− S(r)R(ψ)>ηsd(s)vs(t, s) +R(ψ)>ηsd(s)v
t
s(t, s)

+R(ψ)>
(
ηs

2

d (s)vs(t, s) + vss(t, s)
)
ṡ

= −K̃1

(
−
(
K̃1 + S(r)

)
z1 + ν + K̃1z1 −R(ψ)>ηsd(ṡ− ω) (6.40)

−R(ψ)>ηsd(s)ω
)
− S(r)R(ψ)>ηsd(s)vs(t, s) +R(ψ)>ηsd(s)v

t
s(t, s)

+R(ψ)>
[
ηs

2

d (s)vs(t, s) + vss(t, s)
]
ṡ

= K̃1S(r)z1 − K̃1ν − S(r)R(ψ)>ηsd(s)vs(t, s) (6.41)

+R(ψ)>ηsd(s)v
t
s(t, s) +

[
K̃1R(ψ)>ηsd(s) +R(ψ)>ηs

2

d (s)vs(t, s)

+R(ψ)>ηsd(s)v
s
s(t, s)

]
ṡ.

73

Chapter 6. Control System

The terms inside the square brackets in Equation (6.41) constitutes αs1. If we now
define:

σ1 , K̃1S(r)z1−K̃1ν−S(r)R(ψ)>ηsd(s)vs(t, s)+R(ψ)>ηsd(s)v
t
s(t, s), (6.42)

we can write:
α̇1 = σ1 +αs1ṡ. (6.43)

6.1.4 Maneuvering Control Law

In summary, we need these signals for implementation:

z1 = R(ψ)>(η − ηd(s))
z2 = ν −α1

ṡ = vs(t, s) + ω

α1 = −K̃1z1 +R(ψ)>ηsd(s)vs(t, s)

αs1 = K̃1R(ψ)>ηsd(s) +R(ψ)>ηs
2

d (s)vs(t, s) +R(ψ)>ηsd(s)v
s
s(t, s)

σ1 = K̃1S(r)z1 − K̃1ν − S(r)R(ψ)>ηsd(s)vs(t, s)

+R(ψ)>ηsd(s)v
t
s(t, s)

τ = −K2z2 +C(ν)ν +D(ν)ν −R(ψ)>b+Mσ1 +Mαs1ṡ

(6.44)

with the associated tuning variables:

γ > 0

K1 = K>1 > 0

K̃1 = K̃>1 = K1 + γI > 0

K2 = K>2 > 0

(6.45)

Note that the bias in the control law is assumed to be provided by a DP observer
from the measurement system. If this is not the case, the bias can be compensated by
including an integral action state on z2, but this will not be treated here.

6.2 Thrust Allocation

The generalized forces calculated by the high-level controller has to be distributed to
the actuators available in terms of control input u ∈ Rr, where r denotes the number
of control inputs. By assuming linearity, the control force due to a propeller can be
written as:

T = ku, (6.46)

74

6.2 Thrust Allocation

where k is the force coefficient, and u is the control input depending on the actuator.
For the azimuth thrusters treated in this thesis, the input is typically shaft speed,
torque, or power. See Smogeli (2006) for an in-depth description of different actuator
models and thruster parameters.

A mapping between the actuator forces T = Ku, where K ∈ Rr×r is the
diagonal force coefficient matrix, to the desired virtual control τd ∈ Rn, is usually
expressed through a linear actuator model:

τd = B(xthr, t)Ku = B(xthr, t)T . (6.47)

Here B(xthr, t) ∈ Rn×r represents the thrust configuration matrix representing the
geometric relationship which transforms the individual thruster forces into the com-
manded forces and moments. xthr includes both position and orientation of each
thruster, and t denotes time. The ReVolt concept vessel treated in this thesis, repre-
sented in Section 2.7, has three azimuth thrusters: two in the stern and one in the bow.
Thus, the thrust configuration matrix depends on the orientation of each thruster, and
can be modeled as:

B(xthr) =

 cosα1 cosα2

sinα1 sinα2

lx,1 sinα1 − ly,1 cosα1 lx,2 sinα2 − ly,2 cosα2

cosα3

sinα3

lx,2 sinα3 − ly,2 cosα3

 , (6.48)

where αi is angle of thruster number i, and lx,i and ly,i denotes the longitudinal and
transverse distance from thruster number i to the center of gravity (CG), respectively.

The primary objective of the control allocation is to compute the actuator forces
T that ensures that the commanded virtual control τd is produced jointly by the ef-
forts at all time t (Johansen and Fossen, 2013). In this thesis, we are faced with an
overactuated problem (r > n), resulting in that the inverse problem of finding T is
ill-posed. For such a problem, a unique solution generally does not exists. Also, due
to physical constraints, finding an exact configuration satisfying the objective is not
always possible. Thus, the control allocation must usually degrade its performance
objectives to minimize the allocation error τd − τ , where τ is the “actual” force
applied by the thrust allocation.

The problem is naturally faced as a model-based optimization problem, depend-
ing on available actuators. The control allocation problem is a well-studied with a
vast amount of literature addressing it. For an overview of different approaches, refer
to Johansen and Fossen (2013).

75

Chapter 6. Control System

6.2.1 Extended Thrust Formulation for the Concept Vessel ReVolt

The thrust allocation algorithm used in this thesis is provided by DNV GL and uses
the Extended Thrust Formulation approach for rotatable actuators (Lindfors, 1993;
Sørdalen, 1997). Equation (6.48) is nonlinear because of the orientation of each
thruster. This implies that a nonlinear optimization problem must be solved to mini-
mize the allocation error. As earlier mentioned, nonlinear optimization problems are
hard to solve efficiently. To avoid this, we extend our configuration matrix by divid-
ing each rotatable thruster force into two components; one x and one y component.
The extended thrust configuration matrix for the ReVolt becomes:

τe = BeTe =

 1 0 1 0 1 0
0 1 0 1 0 1
−ly,1 lx,1 −ly,2 lx,2 −ly,3 lx,3




Tx,1
Ty,1
Tx,2
Ty,2
Tx,3
Ty,3

 , (6.49)

where the subscript e denotes extended. HereBe ∈ Rn×q and Te ∈ Rq, where q > r.
The total force Ti and orientation αi for thruster number i can be calculated by:

Ti =
√
T 2
x,i + T 2

y,i, (6.50)

αi = atan2(Ty,i, Tx,i), (6.51)

where atan2(y, x) is the four-quadrant version of arctan(y/x).
By neglecting all dynamical constraints (saturation and rate constraints) and, for

convenience, choosing a quadratic cost function trying to minimize the applied forces
Te, we can formulate the optimization problem as:

J = min
Te∈Rq

T>e W Te (6.52a)

subject to τe −BeTe = 0, (6.52b)

where W ∈ Rq×q is a positive definite weight matrix penalizing the thrust efforts of
each respective force component. The issue of not just inverting Equation (6.49) is
that Be is not a square matrix. Usually, Be has full rank, implying that there is an
infinite number of Te’s satisfying Equation (6.49). This is solved by introducing the
generalized pseudo-inverse of Be found by the Moorse-Penrose inverse2. Using the
pseudo-inverse, the optimization problem in Equation (6.52) has an explicit solution
ifBe is full rank:

Te = W−1B>e (BeW
−1B>e)−1. (6.53)

2B†e = B>e (BeB
>
e)
−1

76

6.3 Saturating Element

Rank deficiency of Be means that no forces and moments can be produced in a spe-
cific direction, resulting in that not all desired forces in τd can be achieved. Usually,
this is avoided by thoughtful placement of the actuators during design. Still, the al-
gorithm should be able to handle it due to singularities and possible thruster-losses.
An additional regularization term, εI , can solve this, ensuring that the inverse always
exists:

Te = W−1B>e (BeW
−1B>e + εI)−1, (6.54)

where ε ≥ 0 is a small constant.
Since no constraints are imposed on, for example, rate limitations in the change

of thrust and direction when solving the optimization problem, this must be done post
hoc. The simplest way is to saturate the output of the unconstrained solution. This
could however lead to sub-optimal allocation. For a more detailed solution, refer to
Johansen and Fossen (2013).

6.3 Saturating Element

In order for the maneuvering controller to generate obtainable output for the thrust
allocation, the controller must be saturated according to what the real thruster dy-
namics of the vessel is able to produce. This can be calculated by considering the
minimum/maximum forces and moments the vessel can produce in each DOF. For
example, using the data and measurements from the ReVolt vessel, given in Table 7.1,
we get:

Xmax =
3∑
i=1

τmaxX,i = 2 · 20.5 N = 41 N, (6.55)

Y max =

3∑
i=1

τmaxY,i = 2 · 20.5 N + 9 N = 50 N, (6.56)

Nmax =

3∑
i=1

τmaxN,i = 2 · (20.5 N · 1.12 m) + 9 N · 1.08 m ≈ 55 Nm. (6.57)

Here τmaxX,i denotes maximum force in surge obtained by thruster number i. The same
goes for the others DOFs.

77

Chapter 7
Experimental Platform and
Implementation

The experimental platform used is the same as in the author specialization project
(Knædal, 2019), hence the general description of the concept vessel ReVolt, given in
Section 2.7, is based on that. Further, the simulator used is described and implemen-
tation details are given.

7.1 The ReVolt Test Platform

The ReVolt is equipped with three azimuth thrusters; two main thrusters in the stern
and one retractable in the bow. See Figure 7.1 for dimensions. The Froud number
of the ReVolt vessel is Fn = 0.27. According to Fossen (2011c), the vessel can then
be classified as a low-speed displacement vessel (Fn < 0.4). This means that buoy-
ancy force dominates relative to the hydrodynamic forces (added mass and damping).
Thus, the vessel model used, given in Section 2.1, is well suited.

Alfheim and Muggerud (2017) have calculated the hydrodynamic coefficients
and other relevant physical parameters. DNV GL has performed a towing tank test to
obtain thrust coefficients and the forces they provide. See Table 7.1 for an overview
of the placement and the force each respective thruster provide. In addition to the
thrusters, the vessel is equipped with, among other things, an embedded computer, a
global positioning system (GPS) aided by an inertial measurement unit (IMU), and a
heading vector. Further, it is equipped with a Velodyne lidar, a Ladybug camera, and
an automatic identification system (AIS) receiver for object detection. For a detailed
description of different components onboard and technical details, see Alfheim and
Muggerud (2017) and Norbye (2019).

78

7.2 Simulator

Table 7.1: Thruster placements and their maximum and minimum force contributions. The
enumeration of the thrusters are (1) port in stern, (2) starboard in stern, and (3) bow. Courtesy:
Alfheim and Muggerud (2017).

Thruster lx [m] ly [m] Tmax/min [N]

1 -1.12 -0.15 ±20.5
2 -1.12 0.15 ±20.5
3 1.08 0 ±9

Figure 7.1: Dimensions of the ReVolt model scale ship. Courtesy: Alfheim and Muggerud
(2017).

7.2 Simulator

It is an absolute necessity to be able to test software implementations before testing
on the real physical model to prevent hazardous events from occurring. DNV GL has
developed an Open Simulation Platform (OSP) to establish an ecosystem for models
and co-simulations in the maritime industry1. The OSP system facilitates efficient
construction of digital twin systems and vessels in order to carry out testing and
simulation of the software. Such a digital twin has been made of the ReVolt and is
the simulator used in this thesis.

The OSP runs on a Microsoft Windows operating system (OS), while the control
system runs on a Linux OS. The computers connect through an category 5E Ethernet
cable. By separating the simulation environment and the control system, the distance
between real-life testing and simulation is minimized since the control system does
not know the difference between the real ReVolt and the simulated one.

The OSP incorporates functionalities for modeling environmental forces, thruster
loss, and virtual obstacle ships. This gives the opportunity for a more realistic simu-

1https://opensimulationplatform.com/

79

https://opensimulationplatform.com/

Chapter 7. Experimental Platform and Implementation

Figure 7.2: A visualization of the OSP’s GUI with ReVolt in Dorabassenget in Trondheim.

lation environment. Figure 7.2 shows the graphical user interface (GUI) of the OSP.
Note that all results obtained using the OSP belongs to DNV GL.

7.3 Software

The implemented code running the control system is written in C++ and Python us-
ing the Robotic Operating System (ROS) framework2. ROS is a flexible framework
for writing robot software that aims to make robotic development faster, more robust,
and easy to share3. ROS serves as a “core” of the entire program running. Processes
running in ROS are represented as nodes in a graph structure, connected by edges
called topics. The nodes can communicate with each other through topics, provide
services for one another, and share obtained data from a database called the param-
eter server. The nodes can be written in the preferred programming language. The
ROS graph structure convention makes it easy to separate the complete system into
subsystems, as represented in Figure 1.1. This again makes it easier to verify and test
subsystems for a risk and classification society such as DNV GL.

Most of the implementations are done in Python because of its broad support and
available libraries for scientific and numerical computations. The CVXOPT library
is used for solving the quadratic optimization problem formulated in Section 4.2.54.

2https://www.ros.org/
3https://www.ros.org/about-ros/
4https://cvxopt.org/

80

https://www.ros.org/
https://www.ros.org/about-ros/
https://cvxopt.org/

7.4 Implementation

Further, the NumPy5and SciPy6 libraries has been used extensively throughout the
implementation. The ROS package tuw_voronoi_graph, created by Binder
(2017), has been forked and used for Voronoi partitioning and the costmap_2d
package7 is used for creating costmaps. The state estimates used are obtained from
an EKF observer implemented by Andreas Bell Martinsen and written in Python. The
thrust allocation algorithm is provided by DNV GL and written in Java. The imple-
mented system has been run and tested on Dell Latitude E7440 with an Intel Core
i5-4310U CPU with four cores, and a 2.00 GHz clock. The OS used is Ubuntu 16.04
LTS, 64-bit.

Figure 7.3: A screenshot of the GUI for the control system.

7.4 Implementation

Several ROS packages have been created, each one corresponding to a subsystem
in Figure 1.1. Check out the GitHub repository created8. The computation graph
illustrating how the actual implementation communicates is shown in Figure 7.4.
The author would like to emphasize that time has been devoted to writing easily
understandable code that is well commented such that it is easy to read and develop
further. A new control mode has been added to the ReVolt operating system. A

5https://numpy.org/
6https://www.scipy.org/
7http://wiki.ros.org/costmap_2d
8https://github.com/magnuok/Autonomous-Path-Planning-and-

Maneuvering-of-a-Surface-Vessel

81

https://numpy.org/
https://www.scipy.org/
http://wiki.ros.org/costmap_2d
https://github.com/magnuok/Autonomous-Path-Planning-and-Maneuvering-of-a-Surface-Vessel
https://github.com/magnuok/Autonomous-Path-Planning-and-Maneuvering-of-a-Surface-Vessel

Chapter 7. Experimental Platform and Implementation

GUI using a Qt-based framework9 together with RViz10, a 3D visualization tool for
ROS, have been made to control the system. The GUI makes it possible to place
initial and target waypoint by clicking directly on the desired location on the map.
Simple display tools have been implemented to visualize the implemented algorithms
behavior in real-time, which can be turned on and off. Furthermore, configuration and
tuning of relevant parameters online have been added to the GUI. See Figure 7.3 for
a screenshot of the GUI.

The pragmatic approach was only implemented and simulated in MATLAB. An
own GitHub repository was made for the MATLAB code11. Data has been recorded
using rosbags12 in both simulations and the experiment. For plotting, both MATLAB

and the matplotlib library13 in Python have been used. Scripts for experimental test-
ing have been made — for example, a script to create OGMs from real data obtained
from ReVolt.

9http://wiki.ros.org/rqt
10http://wiki.ros.org/rviz
11https://github.com/magnuok/path_generator
12http://wiki.ros.org/rosbag
13https://matplotlib.org/index.html
14http://wiki.ros.org/rqt_graph

82

http://wiki.ros.org/rqt
http://wiki.ros.org/rviz
https://github.com/magnuok/path_generator
http://wiki.ros.org/rosbag
https://matplotlib.org/index.html
http://wiki.ros.org/rqt_graph

7.4 Implementation

Fi
gu

re
7.

4:
T

he
fig

ur
e

sh
ow

s
th

e
co

m
pu

ta
tio

n
gr

ap
h

of
th

e
im

pl
em

en
te

d
G

N
M

C
sy

st
em

.
T

he
ve

rt
ic

es
in

th
e

gr
ap

h
re

pr
es

en
t

R
O

S
no

de
s,

w
hi

le
th

e
ed

ge
s

be
tw

ee
n

th
em

ar
e

R
O

S
to

pi
cs

w
hi

ch
th

e
no

de
s

co
m

m
un

ic
at

e
th

ro
ug

h.
T

he
gr

ap
h

is
ge

ne
ra

te
d

by
th

e
G

U
I

pl
ug

in
r
q
t
_
g
r
a
p
h

pa
ck

ag
e14

.
N

od
es

co
nt

ai
ni

ng
“m

od
bu

s”
in

th
e

na
m

e
be

lo
ng

s
to

th
e

O
SP

.T
he

C
M

E
no

de
is

th
e

“C
on

tr
ol

M
od

e
E

xe
cu

to
r”

,
w

hi
ch

is
th

e
su

pe
ri

or
no

de
de

ci
di

ng
in

w
hi

ch
co

nt
ro

lm
od

e
th

e
ve

ss
el

sh
ou

ld
be

.T
he

re
st

is
se

lf
-e

xp
la

na
to

ry
.

83

Chapter 8
Simulations

This chapter presents simulations, discussions, and results to verify performance for
each designed and implemented subsystem. Lastly, a complete simulation is done
to verify that the complete system works seamlessly. All simulations involving the
control system of the vessel are conducted using the OSP simulator described in
Section 7.2. The parameter values used in the control model of ReVolt is given in
Appendix A.

8.1 Guidance System

Table 8.1: Parameters and results for the S-
shaped simulation for the pragmatic and opti-
mization approach.

Pragmatic Optimization

Parameters

ζ = 3 m ζ = 3 m
µ = 3 ε = ζ/6

δmin = 1.5 m
ud(t) = 0.2 m/s ud(t) = 0.2 m/s
utd(t) = 0.0 m/s2 utd(t) = 0.0 m/s2

Results

L = 53.88 m L = 53.34 m

An S-shaped simulation was created to
illustrate the performance of the guid-
ance system. The simulation gives a
comparison between the pragmatic and
optimization approach. The arc length,
defined in Equation (2.19), is used as
the cost function. The corridor width
ζ = 1.5 m is equal for all path seg-
ments and the desired speed, ud(t) =
0.2 m/s, is constant. The tuning param-
eters ε1, ε2, and ε3 are all set to the same
value ε. The desired path consists of
a total of eleven waypoints representing
an S-shape, given in Appendix D. Rel-
evant parameters and result is found in
Table 8.1 for both methods.

84

8.1 Guidance System

8.1.1 Pragmatic Approach

The control points are placed according to Equations (4.12) to (4.14). It should be
noted that the placement of the control points is tuned for the given scenario, as
emphasized in Line 8. From Figure 8.1, one can see that the pragmatic approach
gives a smooth S-formed shape. The control points are placed with equal distance.
Furthermore, they are placed inside the corridor, resulting in the curve being inside
the corridor. From Figure 8.2, one can see that the rate of change in curvature is
continuous, entailing that the hybrid curve is C3 continuous. The curvature has its
peaks right after the waypoints, which coincides with where the turns are performed.
The cost function is evaluated to L = 53.88 m. Since we are performing similar
maneuvers, one can see that a pattern repeats itself from both the curvature, rate of
change in curvature, and the speed profile in Figure 8.2.

-5 0 5 10 15 20 25

-5

0

5

10

15

20

Figure 8.1: A xy-plot of desired path of S-shaped simulation for the pragmatic approach.
The Bézier curve is drawn in red on top of its control polygon.

85

Chapter 8. Simulations

0 1 2 3 4 5 6 7 8 9 10

-50

0

50

100

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Figure 8.2: The direction, curvature, rate of change in curvature, and the speed profile and
its respective derivatives for the Bézier curve in Figure 8.1.

86

8.1 Guidance System

8.1.2 Optimization Approach

The control points are placed by solving the optimization problem formulated in
Section 4.2.5. All control points are placed inside the corridor, resulting in the curve
being inside the corridor. The optimization approach delivers a smooth S-formed
shape. The cost function is evaluated toL = 53.34 m. As for the pragmatic approach,
we have a repeating pattern in curvature, rate of change in curvature, and the speed
profile in Figure 8.4. Notice that the control points are placed very close to the
waypoints, which contributes to a shorter arc length. However, in return, one can
see that the curvature has high peaks before and after the waypoints. This is also the
case for the rate of change in curvature.

-5 0 5 10 15 20 25

-5

0

5

10

15

20

Figure 8.3: A xy-plot of desired path of S-shaped simulation for the optimization approach.
The Bézier curve is drawn in red on top of its control polygon.

87

Chapter 8. Simulations

0 1 2 3 4 5 6 7 8 9 10
-100

0

100

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Figure 8.4: The direction, curvature, rate of change in curvature, and the speed profile and
its respective derivatives for the Bézier curve in Figure 8.3.

88

8.2 Control System

8.1.3 Results

Both methods delivers C3 continuous path, such that the required outputs from Sec-
tion 3.3 can be produced. According to the objective function, the optimization ap-
proach achieves a slightly better result. Notice how close to the waypoints the opti-
mization procedure puts the control points. In fact, by placing the control infinitely
close, the path will degenerate to only consist of straight-line path segments. This
coincides with our objective function, which always tries to minimize the arc length.
However, seen from Figures 8.2 and 8.4, the optimization approach has higher peaks
in curvature, and thus, must perform sharper turns. This is also the case for the rate
of change in curvature.

One can see that since the pragmatic approach is placing the control points fur-
ther away, the path tends to start turning later after the waypoints, compared to the
optimization approach. As a result, more maneuvering actions are performed by the
pragmatic one. This is clearly seen from the path direction plot in Figures 8.2 and 8.4.
The pragmatic approach has greater fluctuations in direction than the optimization
approach.

The speed profile, defined in Equation (4.48), has its peaks around the waypoints
for both the pragmatic and optimization approach. The optimization approach has
higher peaks in speed profile compared to the pragmatic one. Remember that the
speed profile is obtained by dividing the desired speed by the norm of the derivative.
Logically, the derivative has its minimum around the waypoint since the curvature
and rate of change in curvature are set equal to zero in the waypoints, making it a
straight line. Thus, the derivative also has its minimum here. Between the waypoints,
the derivative must have its maximum because of continuity. Thus the opposite be-
havior is expected from the speed profile, seen in Figures 8.2 and 8.4. The derivative
with respect to time is zero for both methods, as expected since the desired speed is
constant.

8.2 Control System

The controller settings were tuned by a trial and error approach and tested on different
simulations. The unit tangent gradient update law is used. The settings were K̃1 =
diag(0.5, 0.1, 0.7), K2 = diag(0.1, 0.05, 0.1), and µ = 0.03. The controller was
saturated with τmax = [41 N, 50 N, 55 Nm]>, as calculated in Section 6.3. For each
simulation the vessel was put to rest in a dynamic position (zero speed), and then the
vessel was commanded online to move along the path with a desired speed ud = 0.25
m/s. The simulations are conducted with thrust losses but no environmental forces
acting.

During simulations, it was discovered that the thrust allocation was struggling to

89

Chapter 8. Simulations

allocate desired forces in sway. A workaround was to fix the angle of the bow thruster
to 90◦(that is α3 = π/2 in Equation (6.49)) to simplify the allocation problem. This
resulted in much better results, without the loss of any actuation. Two simulations
are performed to illustrate the performance of the controller; a straight-line and an
S-shaped maneuver.

8.2.1 Simulation 1: Straight-line Maneuver

The vessel is commanded to move in a straight line for 30 m. The results of the
straight-line simulation are presented in Figures 8.5 to 8.8.

5 0 5 10 15 20 25 30 35
East [m]

10

5

0

5

10

N
or

th
 [m

]

Position in the Horizontal Plane

pnd

pn

Vessel

Figure 8.5: Position in horizontal plane.

90

8.2 Control System

0 10 20 30 40 50
+1.5885199e9

0.012
0.010
0.008
0.006
0.004
0.002
0.000
0.002

x(
t)

[m
]

North Position

ηd(t)

η(t)

0 10 20 30 40 50
+1.5885199e9

5
0
5

10
15
20
25
30

y(
t)

[m
]

East Position

0 10 20 30 40 50
t [s] +1.5885199e9

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ψ
(t

)
[d
eg

]

Attitude

Figure 8.6: Position versus time for each DOF.

0 10 20 30 40 50
+1.5885199e9

0.0
0.2
0.4
0.6
0.8

u(
t)

[m
/s

]

Surge Speed

ν(t)

0 10 20 30 40 50
+1.5885199e9

0.08
0.06
0.04
0.02
0.00

v(
t)

[m
/s

]

Sway Speed

0 10 20 30 40 50
t [s] +1.5885199e9

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

r(
t)

[d
eg
/s

]

Yaw Rate

Figure 8.7: Speed versus time for each DOF.

91

Chapter 8. Simulations

0 10 20 30 40 50
+1.5885199e9

30
20
10

0
10
20
30
40

X
(t

)
[N

]
Surge Force

τd(t)

τ(t)

0 10 20 30 40 50
+1.5885199e9

15
10

5
0
5

10
15

Y
(t

)
[N

]

Sway Force

0 10 20 30 40 50
t [s] +1.5885199e9

25
20
15
10

5
0
5

N
(t

)
[N
m

]

Yaw Moment

Figure 8.8: Forces versus time for each DOF.

8.2.2 Simulation 2: S-shaped Maneuver

The vessel is commanded to move along an S-shaped path, equal to the one provided
by the optimization approach of the guidance system in Section 8.1.2. The waypoints
used are the same and given in Appendix D. The results of the S-shaped simulation
are presented in Figures 8.9 to 8.12.

92

8.2 Control System

10 0 10 20 30
East [m]

5

0

5

10

15

20

N
or

th
 [m

]
Position in the Horizontal Plane

pnd

pn

Vessel

Figure 8.9: Position in horizontal plane.

0 50 100 150 200
+1.5903904e9

10
5
0
5

10
15
20
25

x(
t)

[m
]

North Position

ηd(t)

η(t)

0 50 100 150 200
+1.5903904e9

0
2
4
6
8

10
12
14
16
18

y(
t)

[m
]

East Position

0 50 100 150 200
t [s] +1.5903904e9

100
50

0
50

100
150

ψ
(t

)
[d
eg

]

Attitude

Figure 8.10: Position versus time for each DOF.

93

Chapter 8. Simulations

0 50 100 150 200
+1.5903904e9

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

u(
t)

[m
/s

]

Surge Speed

ν(t)

0 50 100 150 200
+1.5903904e9

0.4
0.2
0.0
0.2
0.4

v(
t)

[m
/s

]

Sway Speed

0 50 100 150 200
t [s] +1.5903904e9

20
15
10

5
0
5

10
15
20

r(
t)

[d
eg
/s

]

Yaw Rate

Figure 8.11: Speed versus time for each DOF.

0 50 100 150 200
+1.5903904e9

30
20
10

0
10
20
30
40

X
(t

)
[N

]

Surge Force

τd(t)

τ(t)

0 50 100 150 200
+1.5903904e9

60
40
20

0
20
40
60

Y
(t

)
[N

]

Sway Force

0 50 100 150 200
t [s] +1.5903904e9

60
40
20

0
20
40
60

N
(t

)
[N
m

]

Yaw Moment

Figure 8.12: Forces versus time for each DOF.

94

8.3 Navigation System: Global Planner

8.2.3 Results

Figures 8.5 and 8.9 shows that the controller can trace the desired pose with good
accuracy. From the S-shaped simulation in Figure 8.9, one can see that the vessel
is waving a little back and forth in sway. This could be removed to some degree
by better tuning. From Figure 8.12, one can see that the “actual” forces and moment
from the thrust allocation follow quite well the desired force and moment in surge and
yaw, but struggle a bit in sway. Intuitively, it can be seen from Figures 8.9 and 8.10
that the controller has a more challenging time following sharp corners accurately.
Also, it seems to struggle with satisfying the speed assignment. This could be caused
by suboptimal tuning as well as poor state estimates obtained from the EKF observer.

Heavy oscillations for both simulations characterize the desired surge force. This
is an undesirable behavior that could cause unnecessary wear and tear on the propul-
sion equipment. A problem discovered under the simulations was that no restrictions
on the operating frequency for the different subsystems were imposed, which could
be the reason for this. No restriction on operating frequency also causes high and
low-level control to work equally fast, which can lead to bandwidth trouble. The lack
of restrictions on the operating frequency also causes very tight plots with no de-
lay between desired and actual. If real-life experiments are performed, this problem
should be solved. The behavior can also indicate too aggressive tuning parameters in
surge.

Most likely, the parameter convergence will be different for different paths and
desired speeds. More time can be put into the tuning of the controller to achieve
better performance, but for our purpose, the performance obtained seemed sufficient.

8.3 Navigation System: Global Planner

The global planner has been implemented and tested on cost maps created from
OGMs. The inflation radius is set to 1 m. Two scenarios are simulated to illus-
trate the performance of the global path planner. For both simulations, the segment
length between each node in the Voronoi roadmap is set to maximum 10 m. The
occupancy threshold, ranging in the interval [0, 100], is set to 60.

8.3.1 Simulation 1

The following simulation illustrates the behavior of the global planner. The simula-
tion solve the global path planning problem from WP0 = (27m, 3m) to WPgoal =
(20 m, 27 m), with clearance constraint dmin = 1 m and angle threshold ψthres =
10◦. The results are presented in Figure 8.13.

95

Chapter 8. Simulations

0 5 10 15 20 25 30
East [m]

0

5

10

15

20

25

30

N
or

th
 [m

]

Path Found by A*
Voronoi roadmap
Global path
Start/goal

(a)

0 5 10 15 20 25 30
East [m]

0

5

10

15

20

25

30

N
or

th
 [m

]

Path Found After Removing Collinear Waypoints
Voronoi roadmap
Global path
Start/goal

(b)

0 5 10 15 20 25 30
East [m]

0

5

10

15

20

25

30

N
or

th
 [m

]

Path Found After Removing Excessive Waypoints
Voronoi roadmap
Global path
Start/goal

(c)

Figure 8.13: Results for Simulation 1 of the global planner.

8.3.2 Simulation 2

The following simulation illustrates the behavior of the global planner with and with-
out a clearance constraint. Two simulations are performed, one with clearance set to
dmin = 0 m, and another with dmin = 0.5 m. Both simulations solve the global path
planning problem from WP0 = (13 m, 5 m) to WPgoal = (1 m, 13 m), with angle

96

8.3 Navigation System: Global Planner

threshold ψthres = 10◦. The OGM is the same as shown in Figure 2.7, created by
Binder (2017). The results are presented in Figure 8.14.

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

N
or

th
 [m

]

Path Found by A*
Voronoi roadmap
Global path
Start/goal

(a)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

N
or

th
 [m

]

Path Found by A*
Voronoi roadmap
Global path
Start/goal

(b)

Figure 8.14: Results for Simulation 2 of the global planner. Subfigure (a), (c), and (e) shows
results with no clearance constraint, while (b), (d), and (f) shows results with 1 m clearance
constraint.

8.3.3 Results

The results obtained from Simulation 1 and 2 shows how the global planner can
generate waypoints that guarantee that the vessel is always at a safe distance from
obstacles in a cluttered environment. In Figure 8.13a the path found from A* is
visualized. Figure 8.13b shows the path after removing collinear waypoints. Finally,
Section 8.3.1 shows the final path after removing excessive waypoints. One can see
that the algorithm generates a safe path defined by few waypoints. Simulation 2
illustrates the behavior of the global planner with and without clearance constraints.
From Figures 8.14a and 8.14b, we can see that the A* algorithm obtains different
initial paths. In Figure 8.14a, no clearance constraint is imposed; thus, the path goes
through the narrow passage to obtain the shortest path. In Figure 8.14b, one can see
that the A* chooses a longer path, but a safe one.

Note that a plotting error causes the triangles to appear in the Voronoi roadmaps.
The Voronoi roadmap is found using the OGM without any inflation; thus, the nodes
close to lethal zones appear inside the inflation.

97

Chapter 8. Simulations

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

N
or

th
 [m

]

Path Found After Removing Collinear Waypoints
Voronoi roadmap
Global path
Start/goal

(c)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

N
or

th
 [m

]

Path Found After Removing Collinear Waypoints
Voronoi roadmap
Global path
Start/goal

(d)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

N
or

th
 [m

]

Path Found After Removing Excessive Waypoints
Voronoi roadmap
Global path
Start/goal

(e)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

N
or

th
 [m

]

Path Found After Removing Excessive Waypoints
Voronoi roadmap
Global path
Start/goal

(f)

Figure 8.14: Results for global planner for Simulation 2. Subfigure (a), (c), and (e) shows
results with no clearance constraint, while (b), (d), and (f) shows results with 1 m clearance
constraint.

8.4 Navigation System: Local Planner

Several parameters need to be tuned to obtain a desired performance for the local
planner. Table 8.2 gives an overview and a comprehensive description of each one.
The local planner has been implemented and tested on cost maps created from OGMs.

98

8.4 Navigation System: Local Planner

Several simulations are performed to illustrate different aspects of the local planner.
The average runtime for expand-and-rewiring 100 nodes was 0.1197 s.

Table 8.2: Tuning parameters for the local planner and their value for each performed simu-
lation. A value set to “-” indicates that the parameter is not relevant for the given simulation.

Param. Description S.1 S.2 S.3 S.4 S.5

rgoal Radius of goal region. 1 m 1.5 m 1.5 m 1.5 m 4 m
rmin Min. distance between nodes. 0.5 m 0.2 m 0.2 m 0.2 m 1 m
rmax Max. expanding distance 2 m 2 m 4 m 4 m 6 m
α Goal sample rate (percentage). 0.05% 0% 0.05% 0.05% 0.05%
δ Distance cost parameter. - 1 10 10 10
ε Obstacle cost parameter. - 0 1 1 1
ζ Curvature cost parameter. - 0 1 1 1

ψmax Max. angle between nodes. 90◦ 90◦ 90◦ 90◦ 90◦

ρmax Max. “curvature”. 10 20 10 10 2
kmax Max. number of node neighbors. 50 15 50 20 100
K Max. steps for K-step path. - 3 4 3 5
ι Roughness of the steering

(resolution).
0.1 m 0.1 m 0.1 m 0.1 m 0.1 m

n Grid dim. for spatial indexing
(n× n).

7 7 7 7 8

λ Occupied thres. for grid [0, 100] 30 60 30 30 30
β Dividing sampling between

uniform and ellipse.
- 106 2 2 10

8.4.1 Simulation 1: Tree growth

The simulation illustrates how different cost functions affect tree expansion and con-
tribute to significantly different tree topologies. The cost functions represented in
Section 5.1.2 are simulated independently from one another. That is, set one of the
tuning parameters δ, ε, and ζ to one, and the others to zero. At each simulation,
1000 nodes were generated. Except for δ, ε, and ζ, the algorithm was tuned using
the values given in the S.1 column of Table 8.2. The start and goal pose was set to
x0 = (8 m, 1 m, 90◦) and xgoal = (8 m, 14 m, 90◦). Two obstacles are present with
an obstacle region dmin = 2 m. The results are visualized in Figure 8.15.

99

Chapter 8. Simulations

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16
No

rth
 [m

]

Minimum Distance
RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(a)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

Minimum Repulsion Potential
RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(b)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

Minimum Curvature
RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(c)

Figure 8.15: The results for the local planner, Simulation 1: Tree Growth.

100

8.4 Navigation System: Local Planner

8.4.2 Simulation 2: Informed Sampling

The simulation illustrates how informed sampling speeds up the convergence rate
and focus the sampling on the subset of states that may improve the initially found
solution. One simulation is performed where each subfigure in Figure 8.16 shows
the state after 50 more nodes added to the tree. The algorithm was tuned using the
values given in the S.2 column of Table 8.2. Note that β is set very high to only draw
samples inside the ellipse if an initial path from start to goal is found. The start and
goal pose was set to x0 = (10 m, 2 m, 135◦) and xgoal = (14 m, 4 m, 135◦).

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse

(a)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse

(b)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse

(c)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse

(d)

Figure 8.16: The results for the local planner, Simulation 2: Informed Sampling.

101

Chapter 8. Simulations

8.4.3 Simulation 3: Blocking Branches by Dynamic Obstacles

The simulation illustrates how dynamic obstacles do blocking of branches, and how
rewiring of the tree performs obstacle avoidance and finds new paths. One simulation
is performed where each subfigure in Figure 8.17 shows the state after 150 more
nodes are generated. The algorithm was tuned using the values given in the S.3
column of Table 8.2. The start and goal pose was set to x0 = (2 m, 8 m, 0◦) and
xgoal = (14 m, 8 m, 0◦). One obstacle with an obstacle region dmin = 2 m, starts at
(14 m, 8 m) and moves from north to south. The size of the grid cell for the spatial
indexing is greater than dmin × dmin to contain the obstacle region.

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(a)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(b)

Figure 8.17: The results for the local planner, Simulation 3: Blocking Branches by Dynamic
Obstacles.

102

8.4 Navigation System: Local Planner

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(c)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(d)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(e)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(f)

Figure 8.17: The results for the local planner, Simulation 3: Blocking Branches by Dynamic
Obstacles.

8.4.4 Simulation 4: Rewiring and Planning “On the Fly”

In this simulation, we update the tree root using the obtained path from Algorithm 5,
such that the root moves towards the goal. The simulation illustrates how the tree
is gradually rewired “on the fly” to tackle a dynamic obstacle. One simulation is
performed where each subfigure in Figure 8.17 shows the state after 150 more nodes
are generated. The algorithm was tuned using the values given in the S.4 column
of Table 8.2. The start and goal pose was set to x0 = (2 m, 12 m, 0◦) and xgoal =

103

Chapter 8. Simulations

(14 m, 4.5 m, 0◦). One obstacle with an obstacle region dmin = 2 m, starting at the
same location as the goal, is set to move from east to west. The size of the grid cell
for the spatial indexing is greater than dmin × dmin to contain the obstacle region.

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(a)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(b)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(c)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(d)

Figure 8.18: The results for the local planner, Simulation 4: Rewiring and Planning “On the
Fly”.

104

8.4 Navigation System: Local Planner

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(e)

0 2 4 6 8 10 12 14 16
East [m]

0

2

4

6

8

10

12

14

16

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(f)

Figure 8.18: The results for the local planner, Simulation 4: Rewiring and Planning “On the
Fly”.

8.4.5 Results

Four simulations are performed and illustrate different aspects of the local planner.
The simulations are performed in different environments to show diversity. All sim-
ulations are performed following the assumptions given in Section 3.5, which is first
and foremost a maximum restriction of ± 90◦ turn between previous, current, and
next node. All simulations were tuned to their purpose. We start by discussing the
results from Simulation 1, and continue with 2, 3, and 4.

Simulation 1 shows how each respective cost function affects tree growth and
expansion. As expected, using the Euclidean distance as cost function results in
the shortest path. The path itself wraps around the obstacle in the middle to obtain
the shortest path in Figure 8.15a. The branches of the tree extend as far as they
can in each direction to find the shortest distance from the root to every other state.
Note that no nodes are sampled behind the root because of the restrictions on angle
and maneuvering actions. The minimum repulsion and curvature cost functions in
Figures 8.15b and 8.15c produces significantly different paths and tree topologies,
compared to Euclidean distance cost function. Figure 8.15b shows how the path is
chosen to avoid the obstacles at any cost. Bear in mind that only leaf nodes are
generated close to obstacles since they have a high cost compared to the ones far
away. The minimum curvature cost in Figure 8.15c produces a smooth path with the
waypoints distributed at regular distances. By using a combination of the three cost
functions, one can take leverage of their respective properties to achieve a reasonable

105

Chapter 8. Simulations

path for a low-speed vessel such as ReVolt, given in Proposition 5.1.
For the local planner to be able to work in real-time, it is an absolute necessity

that the convergence rate is as fast as possible. Simulation 2 shows how informed
sampling increases the convergence rate towards the optimal path in terms of path
elongation. Figure 8.16a depicts the initial path found after 50 nodes are generated.
Already we know, as long as there are no changes in the environment, that the optimal
path will lie within the ellipse. Thus we can exclude going around the obstacles in
the center of the map on the north side. In Figure 8.16b, the local planner finds the
narrow passage between the obstacles and further decreases the size of the ellipse.
A sampling of the informed subset increases the density of samples drawn around
the optimal solution, which contributes to faster convergence towards the optimal
solution. Figures 8.16c and 8.16d further illustrates how the density increases inside
the ellipse, while no uniform samples outside of it are done.

In Simulation 3, a dynamic obstacle moves from north to south. Figure 8.17a
shows the initial path after 150 nodes are generated. The obstacle starts moving
southwards in Figure 8.17b, and the first nodes are blocked. Note how rewiring is
done such that nodes north of the obstacle are connected to other parts of the tree.
In Figures 8.17c and 8.17d the obstacle moves further south, and nodes that were
obtained inside the obstacle region are gradually and continuously connected to the
tree again. The initial path is kept until the state portrayed in Figure 8.17e. Here the
obstacle has moved such that the initial path found is not valid anymore. The tree is
rewired to go around the obstacle on the south side. However, as the obstacle moves
further south in Figure 8.17f, rewiring finds a path similar to the one found initially.
Remember that the sampling is divided between uniform and inside the ellipse to
cope with unforeseen changes. This allows the local planner to find reasonable paths
outside the ellipse as well.

In Simulation 4, all aspects of the global planner are tested. The simulation starts
with an obstacle placed on top of the goal region. Since no valid path is found in
Figures 8.18a to 8.18c, the local planner plans a K-step path in accordance with
Algorithm 5. In each step, we update the root to be located at the next node found in
our path and rewires continuously. In Figures 8.18b and 8.18c, one can see how the
nodes behind the root get connected to new parts of the tree, which does not violate
the imposed constraints. As the obstacle moves westwards and away from the goal
region, a path to the goal is discovered in Figure 8.18d. The root now follows the
path up to the goal region. Note that the sampling ellipse is updated in Figures 8.18e
and 8.18f as the root shifts towards the goal. Simulation 4 illustrates clearly the
advantage of the hybrid path planning approach, where the path is updated at each
step according to obtained information.

Note that Simulation 3 and 4 is performed with no restrictions on time, as indi-
cated in Algorithm 3. This makes us able to rewire the whole tree at each iteration.

106

8.5 A Complete Simulation

Note that if a restriction is made, the rewire procedure starting from the root ensures
that the most critical subspace in front is rewired first. With time, other parts of the
tree further away will gradually be rewired. This is clearly seen in Figures 8.18d
to 8.18f. During simulations, a solution was always found if it existed, which coin-
cides with RRT’s property of being probabilistically complete.

8.5 A Complete Simulation

A simulation of the complete GNMC system is performed to illustrate how the sub-
systems can be integrated in a seamless manner to achieve autonomous guidance
and control. The results are shown in Figures 8.19 to 8.21. The global planner
solve the path planning problem from WP0 = (152 m, 1128 m) to WPgoal =
(179m, 1128m), with clearance constraint dmin = 2 m and angle threshold ψthres =
10◦. The global path together with the Voronoi roadmap is shown in Figure 8.19. The
global waypoints are are fed in as intermediate waypoints for the local planner. If the
vessel is inside the the goal region of the corresponding waypoint, a new global way-
point is set up to be tracked down by the local planner. The local planner are tuned
using the values given in the S.5 column of Table 8.2. Two dynamic obstacles starting
at (177 m, 1149 m) and (165 m, 1129 m), with an obstacle region dmin = 2 m are
present. Both obstacles move westwards at a slow pace. The limited time set for tree
rewiring and expansion is set to 0.01 s. Each local path is constructed in a stepwise
manner where each path segment is generated when the vessel is sufficiently close
to the following waypoint. Figure 8.21 shows 6 different states of the local planner
during the simulation.

The guidance system uses the optimization approach with the same tuning pa-
rameters as in Table 8.1. The control system uses the same tuning parameters and
configurations, as given in Section 8.2. The desired path constructed by the guidance
system, together with the vessel position in the horizontal plane, is depicted in Fig-
ure 8.20. Plots for the position, speed, and force in each DOF for the simulation are
given in Appendix E.

107

Chapter 8. Simulations

155 160 165 170 175 180

East [m]

1130

1135

1140

1145

1150

1155

N
or

th
[m

]

Global Path

Voronoi roadmap

Global path

Start/goal

Figure 8.19: The results of the complete simulation for the global planner.

155 160 165 170 175 180

East [m]

1130

1135

1140

1145

1150

1155

N
or

th
[m

]

Position in the Horizontal Plane

pnd

pn

Vessel

Figure 8.20: The results of the complete simulation for the guidance and control system.

108

8.5 A Complete Simulation

155 160 165 170 175 180
East [m]

1130

1135

1140

1145

1150

1155

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(a)

155 160 165 170 175 180
East [m]

1130

1135

1140

1145

1150

1155

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Obstacle region

(b)

150 155 160 165 170 175 180
East [m]

1130

1135

1140

1145

1150

1155

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(c)

155 160 165 170 175 180
East [m]

1130

1135

1140

1145

1150

1155

No
rth

 [m
]

RRT tree
Blocked branches
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(d)

Figure 8.21: The results of the complete simulation for the local planner.

109

Chapter 8. Simulations

155 160 165 170 175 180
East [m]

1130

1135

1140

1145

1150

1155

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(e)

155 160 165 170 175 180
East [m]

1130

1135

1140

1145

1150

1155

No
rth

 [m
]

RRT tree
Start/goal
Global waypoints
Goal region
Path
Sampling ellipse
Obstacle region

(f)

Figure 8.21: The results of the complete simulation for the local planner.

8.5.1 Results

Figure 8.19 shows that the global planner plans a safe path consisting of few way-
points through the configuration space. It is clear that the global planner only takes
into consideration the static obstacles defined by the black areas in the configuration
space. Figure 8.21 shows how the global waypoints are used as intermediate way-
points to be tracked down by the local planner. One can see how the local planner
continuously rewires and expands its tree to avoid dynamic obstacles. By comparing
Figures 8.20 and 8.21e, one can see how the local planner replans its route to avoid
the approaching obstacle. This results in the detour on the north side of it. Also note
how the tree is rewired back towards where the vessel came from in Figure 8.21e,
covering the whole configuration space. Intuitively this can be seen as overkill, and
it would be smarter to focus the computational effort in front and close by the vessel.

In Figure 8.20, the final desired path constructed by the guidance system is por-
trayed. A flaw of the guidance system was revealed; it produces wiggling path seg-
ments for waypoints placed very close to one another. This leads to the control sys-
tem having a hard time tracking the desired output from the guidance system. One
can see that around path segments with rapidly changing heading, the control system
struggles.

110

Chapter 9
Experiment

Due to limited time and the impact of COVID-19, it looked like the thesis had to be
restricted to only simulations. Fortunately, we were able to perform a last-minute
experiment of the guidance and control system on the real ReVolt. This chapter
represents the experimental setup, the results obtained, and experimental problems
experienced. Section 9.2 mentions some important hardware related problems ex-
perienced with ReVolt that should be resolved for ReVolt to be correctly operating
in the future. The parameter values used in the control model of ReVolt is given in
Appendix A. The goal of the sea trial was to validate the performance of the guidance
and control system.

9.1 Experimental Setup

The experiment was conducted in Dorabassenget in Trondheim, June 2, 2020. Testing
of software and addressing hardware related problems on ReVolt were done at NTNU
Gløshaugen before it was shipped down to Skippergata, where ReVolt was ejected
into the water. As an escort boat, NTNUI Dykkergruppa’s Fjøset II was rented. The
experiment was done together with Knut Turøy and Simen Sem Øvereng, who also
performed experiments on ReVolt the same day. Two pictures from the experiment
are shown in Figure 9.1.

A path consisting of 14 waypoints forming an 8-shaped path, given in Appendix D,
was created. The optimization approach was used as the path generator. The same
tuning parameters as for the S-shaped simulation in Section 8.1.2 was used, except
for the corridor width ζ set to 4 m.

For the control system, the same tuning parameters used in the simulations, given
in Section 8.2, was used. In the experiment, the vessel was put to rest in a dynamic
position (zero speed) at the first waypoint with heading in the direction of the second
waypoint. Then, the vessel was commanded online to move along the path with
a desired speed ud = 0.25 m/s. When the vessel was close enough to the next
waypoint, a new path segment was generated by the path generator. Figure 9.2 shows
the computation graph of the control system running on the onboard computer.

111

Chapter 9. Experiment

(a) (b)

Figure 9.1: Figure (a) shows me controlling the ReVolt remotely from the escort boat with
ReVolt in the background. Figure (b) shows Knut Turøy, Simen Sem Øvereng, and his biceps
observing ReVolt’s behavior during the experiment.

The sea trial was conducted under calm weather conditions with practically no
waves present. However, it was evident that some current and light breeze was affect-
ing the vessel. The environmental load was documented by putting the vessel to rest,
with the bow facing the wind. A rosbag was recorded to see how the vessel drifted
away from the initial point. See Figure 9.3. One can see that the vessel starts drifting
away towards the southwest. Notice how the Munk moment turns the vessel such that
the port side is facing towards the direction of the average environmental load.

1http://wiki.ros.org/rqt_graph

112

http://wiki.ros.org/rqt_graph

9.1 Experimental Setup

Fi
gu

re
9.

2:
T

he
fig

ur
e

sh
ow

s
th

e
co

m
pu

ta
tio

n
gr

ap
h

of
th

e
co

nt
ro

ls
ys

te
m

ru
nn

in
g

on
th

e
on

bo
ar

d
co

m
pu

te
rd

ur
in

g
th

e
ex

pe
ri

m
en

t.
T

he
ve

rt
ic

es
in

th
e

gr
ap

h
re

pr
es

en
tR

O
S

no
de

s,
w

hi
le

th
e

ed
ge

s
be

tw
ee

n
th

em
ar

e
R

O
S

to
pi

cs
w

hi
ch

th
e

no
de

s
co

m
m

un
ic

at
e

th
ro

ug
h.

T
he

gr
ap

h
is

ge
ne

ra
te

d
by

th
e

G
U

Ip
lu

gi
n
r
q
t
_
g
r
a
p
h

pa
ck

ag
e1 .T

he
C

M
E

no
de

is
th

e
“C

on
tr

ol
M

od
e

E
xe

cu
to

r”
,w

hi
ch

is
th

e
su

pe
ri

or
no

de
de

ci
di

ng
in

w
hi

ch
co

nt
ro

lm
od

e
th

e
ve

ss
el

sh
ou

ld
be

.
T

he
X

se
ns

an
d

ve
ct

or
33

0
no

de
is

th
e

IM
U

an
d

ve
ct

or
,r

es
pe

ct
iv

el
y,

pr
ov

id
in

g
th

e
ne

ce
ss

ar
y

m
ea

su
re

m
en

ts
to

th
e

ob
se

rv
er

.

113

Chapter 9. Experiment

162 164 166 168
East [m]

1

2

3

4

5

6

N
o
rt

h
 [
m

]

+1.141e3 Position in the Horizontal Plane

pn

Vessel

(a)

20 40 60 80 100 120 140 160
+1.5911157e9

0
1
2
3
4
5
6
7

x
(t

)
[m

]

+1.141e3 North Position

η(t)

20 40 60 80 100 120 140 160
+1.5911157e9

162
163
164
165
166
167
168

y(
t)

[m
]

East Position

20 40 60 80 100 120 140 160
t [s] +1.5911157e9

80
70
60
50
40
30
20
10

0

ψ
(t

)
[d
eg

]

Attitude

(b)

Figure 9.3: Environmental forces acting on the vessel under the experiment. Figure (a)
shows position in horizontal plane. Figure (b) shows position versus time for each DOF.

9.2 Problems

Physical testing always presents unforeseen issues related to hardware and purely
practical problems. Initially, the test was set to May 29, but problems related to the
battery and stern thrusters were discovered. Thus, the experiment had to be post-
poned. During the winter, changes in the location of specific equipment were done.
This led to problems with getting heading signals from the VS330 vector. It was
found that the settings on the device were outdated and had to be changed physically.

Also, several problems were discovered related to the thrusters. A safety sensor
seemed to be damaged during the shipping down to Skippergata. It was blocking
all signals going to the bow thruster and thus had to be disabled. It was found that
constraining the bow thruster to 90◦ in the code did not match 90◦ physically. A
workaround was to constrain the bow thruster to 120◦. A malfunction in the bow
thruster made it incapable of applying any thrust below 50% of maximum thrust.
This will affect the results, especially related to heading. Further, hysteresis related
to rotating the stern thrusters were discovered during the initial test day, May 29.
Some duct tape, together with WD-40 spray, lubricated the thrusters and resolved the
issue during the test day.

Lastly, it was discovered that ReVolt took in some water during the test day. All
these problems should be resolved for ReVolt to be correctly operating in the future.

114

9.3 Results

9.3 Results

Three robag recordings were done when performing the experiment. All three de-
livered similar result. The results shown in Figures 9.4 to 9.9 are from the second
recording. The vessel starts in approximately WP0 = (179 m, 1129 m) and per-
forms an 8-shaped maneuver ending up in WP13 = (184 m, 1129 m).

From Figure 9.4, one can see that the guidance system produces stepwise a
smooth 8-shaped path to be followed. From Figures 9.6 and 9.7, one can see that
ReVolt can track the desired path, but struggles to satisfy the speed assignment. On
the straight lines between the corners, it traces the path precisely. However, one can
see that is it struggles to trace the path accurately in the corners. One reason for this
is the environmental load acting on the vessel. Another one is the physical problems
found with the thrusters, explained in Section 9.2.

However, notice how all signals are lost and freezes after approximately 100 s
in Figures 9.7 to 9.9. Also, see the jump in the estimated north position of about
5 m in Figure 9.7 around 160 s. One can see the oscillating effect of this on the
desired and actual control forces applied to the ReVolt around 160 s in Figure 9.9.
This indicates that the experiment was occasionally prone to poor signals from the
measurement system, which affect the results. Notice the difference in continuity in
signals between the simulations and the experiment. The simulation has continuous
smooth signals, while the signals in the experiment have similarities with zero-order-
hold sampled signals, as expected.

The experiment indicate that the control design does not need 100% numerically
correct values of the hydrodynamic parameters to work. This illustrates the robust-
ness of the control system.

115

Chapter 9. Experiment

-10 -5 0 5 10 15 20 25 30 35

-5

0

5

10

15

20

25

30

Figure 9.4: A xy-plot of desired path constructed. The Bézier curve is drawn in red on top
of its control polygon.

116

9.3 Results

0 2 4 6 8 10 12 14
-200

0

200

0 2 4 6 8 10 12 14
0

0.5

1

0 2 4 6 8 10 12 14
-20

0

20

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0 2 4 6 8 10 12 14
-0.5

0

0.5

0 2 4 6 8 10 12 14
-1

0

1

Figure 9.5: The direction, curvature, rate of change in curvature, and the speed profile and
its respective derivatives for the desired path in Figure 9.4.

117

Chapter 9. Experiment

150 160 170 180

East [m]

1125

1130

1135

1140

1145

1150

N
or

th
[m

]

Position in the Horizontal Plane

pnd

pn

Vessel

Figure 9.6: Position in horizontal plane.

0 50 100 150 200 250 300 350
+1.5910879×109

1125

1130

1135

1140

1145

1150

x(
t)

[m
]

North Position

ηd(t)

η(t)

0 50 100 150 200 250 300 350
+1.5910879×109

145
150
155
160
165
170
175
180
185
190

y(
t)

[m
]

East Position

0 50 100 150 200 250 300 350

t [s] +1.5910879×109

−200
−150
−100
−50

0
50

100
150
200

ψ
(t

)
[d
eg

]

Attitude

Figure 9.7: Position versus time for each DOF.

118

9.3 Results

0 50 100 150 200 250 300 350
+1.5910879×109

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

u(
t)

[m
/s

]

Surge Speed

ν(t)

0 50 100 150 200 250 300 350
+1.5910879×109

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

v(
t)

[m
/s

]

Sway Speed

0 50 100 150 200 250 300 350

t [s] +1.5910879×109

−20
−15
−10
−5

0
5

10
15
20

r(
t)

[d
eg
/s

]

Yaw Rate

Figure 9.8: Speed versus time for each DOF.

0 50 100 150 200 250 300 350
+1.5910879×109

−40

−20

0

20

40

X
(t

)
[N

]

Surge Force

τd(t)

τ(t)

0 50 100 150 200 250 300 350
+1.5910879×109

−60
−40
−20

0
20
40
60

Y
(t

)
[N

]

Sway Force

0 50 100 150 200 250 300 350

t [s] +1.5910879×109

−60
−40
−20

0
20
40
60

N
(t

)
[N
m

]

Yaw Moment

Figure 9.9: Forces versus time for each DOF.

119

Chapter 10
A Critical Assessment

A diverse set of simulations, together with an experiment, are done to verify the per-
formance of each developed subsystem as well as illustrate how they can be integrated
seamlessly to achieve autonomous guidance and control. The navigation system can
produce safe and efficient paths through waypoints for simple scenarios. It operates
on OGMs, which can be obtained from available sensors on the ReVolt vessel and
written scripts. The global planner is computationally efficient due to the low com-
putational effort of generating the Voronoi roadmap and searching through it with the
optimal A* algorithm. It should be mentioned that it was assumed that the size of
static obstacles was greater than the clearance threshold, introduced in Section 5.2.2.
Consequently, static obstacles smaller than the clearance threshold are not detected
in the current implementation. This is a defect that should be corrected in the global
planner.

A drawback of the current implementation is that both the global and the local
path planner operates on the same resolution of the operation area. The global planner
could undoubtedly operate on a lower resolution to achieve satisfactory performance.

By reducing the number of waypoints, the number of maneuvering actions is re-
duced, in accordance with Proposition 5.1. Having a look at the complete simulation,
the local planner tends to produce paths defined by many waypoints, resulting in un-
practical paths. Better tuning of the local planner would likely reduce the amount.
Especially the minimum and maximum distance between the nodes together with the
grid dimension for spatial indexing would have a significant impact. Also, penalizing
maneuvering actions in the objective function would help. Another solution to reduce
the number of waypoints could be to prune waypoints from the local planner similar
to the global planner, described in Section 5.2.3.

As for now, the local planner rewires and expands its tree in the whole configu-
ration space. For a single query problem, this is an overkill and leads to unnecessary
use of computation. Intuitively, the local planner could be limited to only search the
closest surroundings in the search for the next intermediate waypoint received from
the global planner.

An important question is if the local planner is fast enough to tackle real-time

120

planning. The grid-based spatial indexing, together with an upper threshold for the
number of nodes nearby, was implemented to put a roof on the computational ef-
fort in each iteration (see Section 5.1.4). Profiling of the current implementation
was done to identify the bottlenecks in the algorithm, which was first and foremost
identifying if grid cells were occupied or not. This is a clear indication of how the
resolution of the OGM affects the efficiency of the current implementation. It should
also be mentioned that the implementation was done in Python, which is an inter-
preted language. A considerable boost in speed would, of course, be to implement in
a compiled language such as C++.

From the simulation and experiment performed in Section 8.1, it is demonstrated
that the Bézier curve and optimization can be combined to produce a reasonable path
for a low-speed vessel through stepwise path generation. The suggested algorithms
deliver a C3 continuous path, such that the required outputs from Section 3.3 can
be produced. Thus, it is reasonable to say that the algorithms give adequate results,
based on the assumptions and delimitations given in Section 3.5.

However, from the complete simulation, it was discovered that the path gener-
ator delivers wiggling paths with high curvature for waypoints placed close to one
another. This raises the question if the path generator should be tuned for different
segment lengths to produce a reasonable path. This is a drawback of the current de-
sign and implementation. Referring to the objectives in Section 1.2, it was desired
to impose constraints on maximum curvature to respect the dynamical constraints
of the vessel. As for now, the curvature control problem is unsolved, resulting in
the speed of the vessel has to be adjusted to ensure feasibility. As demonstrated in
Section 4.2.5, constraining the curvature led to a highly nonlinear constraint and a
challenging optimization problem to solve efficiently.

Having a closer look at the result in Section 8.1, one could ask the question
if the pragmatic approach is good enough for our purpose, and the advantage of
performing an optimized search is worth it. Nevertheless, one should bear in mind
that the pragmatic approach is tuned for the specific scenario.

The maneuvering controller delivers satisfying results when it comes to track-
ing the desired path. However, it struggles to satisfy the speed assignment in both
simulations and experiment. Heavy oscillations for both simulations and experiment
characterize the desired surge force. The behavior indicates aggressive tuning pa-
rameters in surge and the need for a dead-zone, causing the control to not respond to
small deviations. As mentioned, this could be caused by suboptimal tuning as well
as inadequate state estimates obtained from the EKF observer. However, one could
argue that the path generator may occasionally deliver a path violating the dynamics
of the vessel, which can be hard to track. Hence, it is difficult to blame the maneu-
vering controller. The pseudo-inverse thrust allocation algorithm on ReVolt delivers
pleasant results in surge and yaw, but significant deviations were seen between the

121

Chapter 10. A Critical Assessment

commanded and actual force applied in sway. By constraining the bow thruster to
90◦, better results were obtained. However, one can still see from the plots in Sec-
tion 8.2 that the thrust allocation struggles. This may be caused by poor tuning of the
weight matrix penalizing the thrust efforts of each respective force component in the
thrust optimization problem in Equation (6.52a). DNV GL has not given access to
tune the weight matrix in its implementation.

The simulations (and partially the experiment) have shown how the subsystems
investigated can be integrated seamlessly to achieve autonomous guidance and con-
trol. Moreover, the stepwise approach has been successfully interpreted. However,
assuming only one waypoint ahead is known may be an oversimplification of the
problem, which leads to sub-optimal planning. As for now, the complete system has
only been tested with dynamic obstacles for simple scenarios. For the system to be
applicable for real-life situations, it must be able to handle more complex scenarios
compliant with COLREG.

Finally, it should be noted that the proposed GNMC system requires tuning of
many parameters to perform well, which can be challenging.

122

Chapter 11
Conclusion

This thesis has proposed an intelligent guidance concept for an ASV, moving from
initial to target point. The problem was faced in a stepwise manner to facilitate real-
time execution and the ability to replan in an online. For convenience, we proposed
to divide the complete closed-loop system into four submodules: the guidance, navi-
gation, measurement, and control system.

The optimal A* algorithm working on a Voronoi roadmap, together with a real-
time variant of RRT combining the useful aspects of different variants adapted to our
use, constituted the navigation system. The global planner, mostly based on exist-
ing methods, generated safe paths efficiently, due to the low computational cost of
generating the Voronoi roadmap and the optimal search of A*. With its probabilis-
tic completeness, the local planner always found a feasible path if one existed. It
showed how RRT could be used to avoid dynamical obstacles and gradually replan
in a stepwise manner. However, questions were raised if the current solution is com-
putationally efficient enough to tackle real-life situations. Also, it tended to produce
paths consisting of many waypoints, leading to irrational planning for a stepwise
problem assuming only one waypoint ahead is known.

A new way to generate a stepwise, smooth, and continuous path in the horizontal
plane using the Bézier curve and quadratic optimization was developed. Also, a prag-
matic approach was suggested. It was shown how the path generators, together with
a dynamic assignment (which makes up the guidance system), was able to produce
the necessary signals for a maneuvering controller. Nonlinear adaptive backstepping
was used to design a high-level maneuvering control law. Due to problems with the
already implemented thrust allocation algorithm provided by DNV GL, it was added
to the scope of work.

A considerable amount of simulations were performed to verify performance for
each designed subsystem. The simulations provided a sound basis for experimental
testing. Due to limited time and the impact of COVID-19, only the guidance and
control systems were tested experimentally on the real ReVolt.

123

Chapter 11. Conclusion

11.1 Recommendations for Further Work

As for any project, there is always a constraint on time. There are several features of
the proposed GNMC system that can be approved and made more sophisticated. We
start with the vessel’s behavior on a practical level. For convenience, we assumed
when approaching the problem that the vessel knew at most one waypoint ahead
in time. However, as seen from the complete simulation performed in Section 8.5,
we often know more than only one. Especially the path generator could utilize this
information to give a more elegant path behavior. For instance, the desired heading at
the next waypoint could be the mean of the current and next segment heading, which
will result in a smoother path. Also, one could argue that the vessel does not need
to go through the waypoints, but rather within a defined circle of acceptance. See,
e.g., Fossen et al. (2003). This would give more flexibility for the path generator and
contribute to more elegant paths.

In the current implementation of the local planner, informed sampling, together
with grid spatial indexing, was introduced to speed up the convergence rate and put a
roof on computational effort in each iteration. For a real-time planner, it will always
be in its best interest to improve more. Jaillet et al. (2008) presented the method
Transition-based RRT, which combines the strengths of RRT with the efficiency of
stochastic optimization methods that use transition tests to accept or to reject a new
potential state. This could be a promising extension of the current implementation
that can be implemented, as the navigation system already operates on cost maps.

Further work would undoubtedly investigate how to make the local planner com-
ply with COLREG. Simulation 3 of the local planner illustrates a great example
where COLREG would block the whole area in front of the obstacle and force the
vessel to move behind it. Chiang and Tapia (2018) has already started research on an
RRT-based COLREG-compliant motion planner.

As stated in the objectives and scope of work, it was desired to constrain the max-
imum curvature allowed for the path generator to comply with the vessel’s dynamics.
As shown in Section 4.2.5, this results in a highly nonlinear constraint and a hard
problem to solve. To the best of the author’s knowledge, it remains open to solve
the curvature control problem when the arc length of the curve is to be minimized.
However, several workarounds have been proposed in the literature and could be in-
vestigated in further work. Another interesting point is how the replanning technique,
introduced in Section 4.2.3, could be exploited not just for replanning, but to produce
smoother paths with low curvature.

For now, the vessel is only intended to operate on calm sea states. The system
should be made more robust by taking into account environmental loads as waves,
wind, and current. As for all tunable systems, more time and effort could be invested
to achieve better performance through tuning. The same tuning parameters were used

124

in simulation and experiment. Even with realistic simulations, the tuning parameters
will never perfectly fit the real system. Some proper tuning of the parameters on
the real system will probably improve the performance. Also, for the maneuvering
controller, one could add an integral state to better compensate for the constant bias.

At last, it would be favorable to perform more complex simulations and sea trials
to validate the performance better, especially for the navigation system.

125

Bibliography

Abrahamsen, B., 2019. Fault Tolerant Dynamic Positioning for the Autonomous Test
Platform ReVolt. Master’s thesis. Norwegian University of Science and Technol-
ogy. Trondheim.

Alfheim, H., Muggerud, K., 2017. Development of a Dynamic Positioning System
for the ReVolt Model Ship. Master’s thesis. Norwegian University of Science and
Technology. Trondheim.

Aurenhammer, F., 1991. Voronoi Diagrams—a Survey of a Fundamental Geometric
Data Structure. ACM Comput. Surv. 23, 345–405. URL: https://doi.org/
10.1145/116873.116880, doi:10.1145/116873.116880. place: New
York, NY, USA Publisher: Association for Computing Machinery.

Barsky, B.A., DeRose, A.D., 1984. Geometric Continuity of Parametric Curves.
Technical Report UCB/CSD-84-205. EECS Department, University of Cal-
ifornia, Berkeley. URL: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/1984/5752.html.

Binder, B., 2017. Spatio-temporal prioritized planning. Master’s thesis. Technische
Universität Wien. Wien, Austria.

Bruce, J., Veloso, M., 2002. Real-Time Randomized Path Planning for Robot Navi-
gation. doi:10.1007/978-3-540-45135-8_23.

Candeloro, M., Lekkas, A.M., Sørensen, A.J., Fossen, T.I., 2013. Continuous
Curvature Path Planning using Voronoi diagrams and Fermat’s spirals. IFAC
Proceedings Volumes 46, 132 – 137. URL: http://www.sciencedirect.
com/science/article/pii/S147466701646146X, doi:https:
//doi.org/10.3182/20130918-4-JP-3022.00064.

Casselman, B., 2008. From Bézier to Bernstein. URL: http://www.ams.org/
publicoutreach/feature-column/fcarc-bezier.

Cheng, P., Shen, Z., Lavalle, S., 2001. RRT-based trajectory design for autonomous
automobiles and spacecraft. Archives of Control Sciences 11.

126

https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
http://dx.doi.org/10.1145/116873.116880
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5752.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5752.html
http://dx.doi.org/10.1007/978-3-540-45135-8_23
http://www.sciencedirect.com/science/article/pii/S147466701646146X
http://www.sciencedirect.com/science/article/pii/S147466701646146X
http://dx.doi.org/https://doi.org/10.3182/20130918-4-JP-3022.00064
http://dx.doi.org/https://doi.org/10.3182/20130918-4-JP-3022.00064
http://www.ams.org/publicoutreach/feature-column/fcarc-bezier
http://www.ams.org/publicoutreach/feature-column/fcarc-bezier

Chiang, H.L., Tapia, L., 2018. COLREG-RRT: An RRT-Based COLREGS-
Compliant Motion Planner for Surface Vehicle Navigation. IEEE Robotics and
Automation Letters 3, 2024–2031. doi:10.1109/LRA.2018.2801881.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2009. Introduction to Algo-
rithms, Third Edition. 3rd ed., The MIT Press.

Dubins, L.E., 1957. On Curves of Minimal Length with a Constraint on Average
Curvature, and with Prescribed Initial and Terminal Positions and Tangents. Amer-
ican Journal of Mathematics 79, 497–516. URL: http://www.jstor.org/
stable/2372560. publisher: Johns Hopkins University Press.

Elfes, A., 1989. Using Occupancy Grids for Mobile Robot Perception and Naviga-
tion. Computer 22, 46 – 57. doi:10.1109/2.30720.

Elia Nadira, S., Omar, R., Hailma, C.K.N., 2016. Potential field methods and their
inherent approaches for path planning 11, 10801–10805.

Farouki, R.T., 2012. The Bernstein polynomial basis: A centennial retro-
spective. Computer Aided Geometric Design 29, 379 – 419. URL:
http://www.sciencedirect.com/science/article/pii/
S0167839612000192, doi:https://doi.org/10.1016/j.cagd.
2012.03.001.

Fossen, T.I., 2011a. Guidance Systems, in: Handbook of Marine Craft Hy-
drodynamics and Motion Control. John Wiley & Sons, Ltd, pp. 241–284.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.ch10, doi:10.1002/9781119994138.ch10. section:
10 eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.ch10.

Fossen, T.I., 2011b. Introduction, in: Handbook of Marine Craft Hydro-
dynamics and Motion Control. John Wiley & Sons, Ltd, pp. 227–239.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.ch9, doi:10.1002/9781119994138.ch9. section: 9
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.ch9.

Fossen, T.I., 2011c. Introduction, in: Handbook of Marine Craft Hy-
drodynamics and Motion Control. John Wiley & Sons, Ltd, pp. 1–
14. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.ch1, doi:10.1002/9781119994138.ch1. section: 1 -
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.ch1.

127

http://dx.doi.org/10.1109/LRA.2018.2801881
http://www.jstor.org/stable/2372560
http://www.jstor.org/stable/2372560
http://dx.doi.org/10.1109/2.30720
http://www.sciencedirect.com/science/article/pii/S0167839612000192
http://www.sciencedirect.com/science/article/pii/S0167839612000192
http://dx.doi.org/https://doi.org/10.1016/j.cagd.2012.03.001
http://dx.doi.org/https://doi.org/10.1016/j.cagd.2012.03.001
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch10
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch10
http://dx.doi.org/10.1002/9781119994138.ch10
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch9
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch9
http://dx.doi.org/10.1002/9781119994138.ch9
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch1
http://dx.doi.org/10.1002/9781119994138.ch1

Fossen, T.I., 2011d. Kinematics, in: Handbook of Marine Craft Hy-
drodynamics and Motion Control. John Wiley & Sons, Ltd, pp. 15–
44. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.ch2, doi:10.1002/9781119994138.ch2. section: 2 -
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.ch2.

Fossen, T.I., 2011e. Maneuvering Theory, in: Handbook of Marine Craft Hy-
drodynamics and Motion Control. John Wiley & Sons, Ltd, pp. 109–132.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.ch6, doi:10.1002/9781119994138.ch6. section: 6
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.ch6.

Fossen, T.I., 2011f. Motion Control Systems, in: Handbook of Marine Craft
Hydrodynamics and Motion Control. John Wiley & Sons, Ltd, pp. 343–415.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119994138.ch12, doi:10.1002/9781119994138.ch12. section:
12 eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119994138.ch12.

Fossen, T.I., Breivik, M., Skjetne, R., 2003. Line-of-sight path follow-
ing of underactuated marine craft. IFAC Proceedings Volumes 36, 211 –
216. URL: http://www.sciencedirect.com/science/article/
pii/S1474667017378096, doi:https://doi.org/10.1016/S1474-
6670(17)37809-6.

Gammell, J.D., Srinivasa, S.S., Barfoot, T.D., 2014. Informed RRT*: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic, in: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2997–3004. doi:10.1109/IROS.2014.6942976.
iSSN: 2153-0866.

Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R., 2015. Path Planning and
Trajectory Planning Algorithms: A General Overview. Mechanisms and Machine
Science 29, 3–27. doi:10.1007/978-3-319-14705-5_1.

Gertler, M., Hagen, G., 1960. Handling quality criteria for surface ships. Technical
Report. Naval Ship Resarch and Development Center. Washington D.C.

Goldman, R., 2005. Curvature formulas for implicit curves and surfaces.

Hart, P.E., Nilsson, N.J., Raphael, B., 1968. A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4, 100–107. doi:10.1109/TSSC.1968.300136.

128

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch2
http://dx.doi.org/10.1002/9781119994138.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch6
http://dx.doi.org/10.1002/9781119994138.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119994138.ch12
http://dx.doi.org/10.1002/9781119994138.ch12
http://www.sciencedirect.com/science/article/pii/S1474667017378096
http://www.sciencedirect.com/science/article/pii/S1474667017378096
http://dx.doi.org/https://doi.org/10.1016/S1474-6670(17)37809-6
http://dx.doi.org/https://doi.org/10.1016/S1474-6670(17)37809-6
http://dx.doi.org/10.1109/IROS.2014.6942976
http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1109/TSSC.1968.300136

Jaillet, L., Cortes, J., Simeon, T., 2008. Transition-based RRT for path planning in
continuous cost spaces, in: 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2145–2150. doi:10.1109/IROS.2008.4650993.
iSSN: 2153-0866.

Johansen, T.A., Fossen, T.I., 2013. Control allocation—A survey. Auto-
matica 49, 1087–1103. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0005109813000368, doi:10.1016/j.automatica.
2013.01.035.

Joy, K.I., 1999. Breshenham’s algorithm. Computer Science Department, University
of California, Davis .

Joy, K.I., 2000a. Bernstein Polynomials. Visualization and Graphics Research Group
Department of Computer Science University of California, Davis .

Joy, K.I., 2000b. A Matrix Formulation of the Cubic Bézier Curve. Visualization and
Graphics Research Group Department of Computer Science University of Califor-
nia, Davis .

Kamsvåg, V., 2018. Fusion Between Camera and Lidar for Autonomous Surface Ve-
hicles. Master’s thesis. Norwegian University of Science and Technology. Trond-
heim.

Karaman, S., Frazzoli, E., 2010. Incremental sampling-based algorithms for optimal
motion planning. Robotics Science and Systems VI 104.

Karaman, S., Frazzoli, E., 2011. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research 30, 846–894. Publisher:
Sage Publications Sage UK: London, England.

Kavraki, L.E., Kolountzakis, M.N., Latombe, J., 1998. Analysis of probabilistic
roadmaps for path planning. IEEE Transactions on Robotics and Automation 14,
166–171. doi:10.1109/70.660866.

Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H., 1996. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation 12, 566–580. doi:10.1109/70.508439.

Khalil, H., 2002. Nonlinear Systems. Pearson Education, Prentice Hall. URL:
https://books.google.no/books?id=t_d1QgAACAAJ.

Knædal, M., 2019. Stepwise Path-Generation using Bézier Curves. Specialization
project. Norwegian University of Science and Technology. Trondheim.

129

http://dx.doi.org/10.1109/IROS.2008.4650993
https://linkinghub.elsevier.com/retrieve/pii/S0005109813000368
https://linkinghub.elsevier.com/retrieve/pii/S0005109813000368
http://dx.doi.org/10.1016/j.automatica.2013.01.035
http://dx.doi.org/10.1016/j.automatica.2013.01.035
http://dx.doi.org/10.1109/70.660866
http://dx.doi.org/10.1109/70.508439
https://books.google.no/books?id=t_d1QgAACAAJ

Knædal, M., Sagild, J., Johansen, J., Koivumäki, S., 2018. Monte Carlo Localization
of a Mobile Robot. Lab report 1. Insituto Superior Tecnico. URL: https://
github.com/magnuok/as_group15_mcl.

Kreyszig, E., Kreyszig, H., Norminton, E.J., 2011. Advanced Engineering Mathe-
matics. Tenth ed., Wiley, Hoboken, NJ.

Krstic, M., Kokotovic, P.V., Kanellakopoulos, I., 1995. Nonlinear and Adaptive Con-
trol Design. 1st ed., John Wiley & Sons, Inc., USA.

Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J., Fiore, G., 2009. Real-Time
Motion Planning With Applications to Autonomous Urban Driving. Control Sys-
tems Technology, IEEE Transactions on 17, 1105 – 1118. doi:10.1109/TCST.
2008.2012116.

LaValle, S.M., 1998. Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning. Technical Report. Department of Computer Science, Iowa State University.
Ames, IA 50011 USA.

LaValle, S.M., 2005. RRT Page: About RRTs. URL: http://msl.cs.uiuc.
edu/rrt/about.html.

LaValle, S.M., 2006. Planning Algorithms. Cambridge University Press. doi:10.
1017/CBO9780511546877.

LaValle, S.M., Kuffner, J., 2000. Rapidly-Exploring Random Trees: Progress and
Prospects. Algorithmic and computational robotics: New directions .

Lekkas, A., 2014. Guidance and Path-Planning Systems for Autonomous Vehicles.
PhD Thesis. Norwegian University of Science and Technology.

Lindfors, I., 1993. Thrust allocation method for the dynamic positioning system, in:
10th international ship control systems symposium (SCSS’93), pp. 3–93.

Liu, Z., Zhang, Y., Yu, X., Yuan, C., 2016. Unmanned surface vehi-
cles: An overview of developments and challenges. Annual Reviews
in Control 41, 71 – 93. URL: http://www.sciencedirect.
com/science/article/pii/S1367578816300219, doi:https:
//doi.org/10.1016/j.arcontrol.2016.04.018.

Lu, D.V., Hershberger, D., Smart, W.D., 2014. Layered costmaps for context-
sensitive navigation, in: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 709–715. doi:10.1109/IROS.2014.6942636.
iSSN: 2153-0866.

130

https://github.com/magnuok/as_group15_mcl
https://github.com/magnuok/as_group15_mcl
http://dx.doi.org/10.1109/TCST.2008.2012116
http://dx.doi.org/10.1109/TCST.2008.2012116
http://msl.cs.uiuc.edu/rrt/about.html
http://msl.cs.uiuc.edu/rrt/about.html
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1017/CBO9780511546877
http://www.sciencedirect.com/science/article/pii/S1367578816300219
http://www.sciencedirect.com/science/article/pii/S1367578816300219
http://dx.doi.org/https://doi.org/10.1016/j.arcontrol.2016.04.018
http://dx.doi.org/https://doi.org/10.1016/j.arcontrol.2016.04.018
http://dx.doi.org/10.1109/IROS.2014.6942636

Lyche, T., Mørken, K., 2008. Spline Methods Draft. Department of Informatics,
Centre of Mathematics for Applications, University of Oslo , 3–4,14–19.

Marley, M., 2019. BézierPathGeneration asimpleexample.m.

Martelli, M., Zaccone, R., 2018. A random sampling based algorithm for ship path
planning with obstacles. doi:10.24868/issn.2631-8741.2018.018.

MiT, 2009. Definition of Bézier curve and its properties — MiT- Massachusetts
Institute of Technology. URL: http://web.mit.edu/hyperbook/
Patrikalakis-Maekawa-Cho/node12.html.

Naderi, K., Rajamäki, J., Hämäläinen, P., 2015. RT-RRT*: a real-time path planning
algorithm based on RRT*, pp. 113–118. doi:10.1145/2822013.2822036.

Norbye, H.G., 2019. Real-time sensor fusion for the ReVolt model-scale vessel.
Master’s thesis. Norwegian University of Science and Technology. Trondheim.

Panati, S., Baasandorj, B., Chong, K., 2015. Autonomous Mobile Robot Navigation
Using Harmonic Potential Field. IOP Conference Series: Materials Science and
Engineering 83, 012018. doi:10.1088/1757-899X/83/1/012018.

Reif, J.H., 1979. Complexity of the mover’s problem and generalizations, in: 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979), pp. 587–
769. doi:10.1109/SFCS.1979.10. iSSN: 0272-5428.

Runge, C., 1901. Über empirische Funktionen und die Interpolation zwischen
äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik , 224–243.

Russell, S., Norvig, P., 2009. Artificial Intelligence: A Modern Approach. 3rd ed.,
Prentice Hall Press, USA.

Sarfraz, M., Samreen, S., Hussain, M.Z., 2018. A quadratic trigonometric weighted
spline with local support basis functions. Alexandria Engineering Journal 57, 1041
– 1049. URL: http://www.sciencedirect.com/science/article/
pii/S1110016817300789, doi:https://doi.org/10.1016/j.aej.
2017.02.016.

Skjetne, R., 2005. The Maneuvering Problem. PhD Thesis. Norwegian University of
Science and Technology.

Skjetne, R., 2019. Maneuvering control design of a low-speed fully-actuated vessel
with stepwise path generation. Revision D.

131

http://dx.doi.org/10.24868/issn.2631-8741.2018.018
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node12.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node12.html
http://dx.doi.org/10.1145/2822013.2822036
http://dx.doi.org/10.1088/1757-899X/83/1/012018
http://dx.doi.org/10.1109/SFCS.1979.10
http://www.sciencedirect.com/science/article/pii/S1110016817300789
http://www.sciencedirect.com/science/article/pii/S1110016817300789
http://dx.doi.org/https://doi.org/10.1016/j.aej.2017.02.016
http://dx.doi.org/https://doi.org/10.1016/j.aej.2017.02.016

Smogeli, O., 2006. Control of Marine Propellers: from Normal to Extreme Condi-
tions. PhD Thesis. Norwegian University of Science and Technology. Trondheim.

SNAME, 1950. The Society of Naval Architecture and Marine Enigneers. Nomen-
clature for Treating the Motion of a Submerged Body Through a Fluid. Published:
Technical and Research Bulletin No. 1-5.

Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., Feyzeau, P.,
2013. Path planning: A 2013 survey. Proceedings of 2013 International Con-
ference on Industrial Engineering and Systems Management, IEEE - IESM 2013
.

Speck, J., 2014. Continuity and Discontinuity.

Sørdalen, O.J., 1997. Optimal thrust allocation for marine vessels. Control
Engineering Practice 5, 1223 – 1231. URL: http://www.sciencedirect.
com/science/article/pii/S0967066197843614, doi:https:
//doi.org/10.1016/S0967-0661(97)84361-4.

Thrun, S., 2003. Robotic Mapping: A Survey, in: Exploring Artificial Intelligence
in the New Millennium. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp. 1–35.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic robotics. MIT Press,
Cambridge, Mass. URL: http://www.amazon.de/gp/product/
0262201623/102-8479661-9831324?v=glance&n=283155&n=
507846&s=books&v=glance.

Tvete, H.A., 2020. The ReVolt. URL: https://www.dnvgl.com/
technology-innovation/revolt/index.html.

Vagale, A., Bye, R., Oucheikh, R., Osen, O., Fossen, T.I., 2020a. Path Planning and
Collision Avoidance for Autonomous Surface Vehicles II: A Comparative Study
of Algorithms.

Vagale, A., Oucheikh, R., Bye, R., Osen, O., Fossen, T.I., 2020b. Path Planning and
Collision Avoidance for Autonomous Surface Vehicles I: A Review.

Wang, X., Jiang, P., Li, D., Sun, T., 2017. Curvature Continuous and Bounded Path
Planning for Fixed-Wing UAVs. Sensors 17, 2155. doi:10.3390/s17092155.

Yu, J., 2016. Intractability of Optimal Multirobot Path Planning on Planar Graphs.
IEEE Robotics and Automation Letters 1, 33–40.

132

http://www.sciencedirect.com/science/article/pii/S0967066197843614
http://www.sciencedirect.com/science/article/pii/S0967066197843614
http://dx.doi.org/https://doi.org/10.1016/S0967-0661(97)84361-4
http://dx.doi.org/https://doi.org/10.1016/S0967-0661(97)84361-4
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
https://www.dnvgl.com/technology-innovation/revolt/index.html
https://www.dnvgl.com/technology-innovation/revolt/index.html
http://dx.doi.org/10.3390/s17092155

Zhang, S., Qian, W.q., 2017. Dynamic backstepping control for pure-feedback
nonlinear systems. arXiv:1706.08641 [cs] URL: http://arxiv.org/abs/
1706.08641. arXiv: 1706.08641.

Zhang, S., Qian, W.q., Golub, G.H., Van Loan, C.F., 2017. Matrix Computations.
arXiv:1706.08641 [cs] URL: http://arxiv.org/abs/1706.08641. edi-
tion: 3 ISBN: 9780801854149 Place: Baltimore Publisher: Johns Hopkins.

133

http://arxiv.org/abs/1706.08641
http://arxiv.org/abs/1706.08641
http://arxiv.org/abs/1706.08641

Appendix A
Parameter Values for ReVolt

This appendix gives the parameter values used for modeling ReVolt. The parameters
is adopted from Alfheim and Muggerud (2017). The system inertia matrix M in 3
DOF is the sum of the rigid body inertia:

MRB =

 257 0 0
0 257 0
0 0 298

 , (A.1)

and the added mass:

MA =

 6.930 0 0
0 49.440 7.007
0 7.028 24.556

 . (A.2)

Their respective sum becomes:

M = MRB +MA =

 263.93 0 0
0 306.44 7.00
0 7.03 322.15

 . (A.3)

The numerical values for the Coriolis and centripetal matrix C(ν) is:

C(ν) =

 0 0 −207.56v + 7.00r
0 0 250.07u

207.56v − 7.00r −250.07u 0

 . (A.4)

Lastly, the values of the (linear) damping matrixD:

D =

 50.66 0 0
0 601.45 83.05
0 83.10 268.17

 . (A.5)

134

Appendix B
Control Points and Plot of
Derivatives from Example 4.1

Table B.1: Control points from Example 4.1.

Segment Control points

1 {(0, 0), (.36.15), (.73, .30), (1.10, 0.45),
(1.15, 1.15), (1.43, 1.43), (1.7, 1.7), (2, 2)]}

2 {(2, 2), (2.28, 2.28), (2.56, 2.56), (2.84, 2.84),
(3.80, 2), (4.20, 2), (4.60, 2), (5, 2)}

3 {(5, 2), (5.40, 2), (5.80, 2), (6.20, 2),
(5.46, 2.92), (5.64, 3.28), (5.82, 3.64), (6, 4)}

135

0 0.5 1 1.5 2 2.5 3

0

2

4

0 0.5 1 1.5 2 2.5 3

-10

0

10

0 0.5 1 1.5 2 2.5 3

-50

0

50

Figure B.1: First-,second-, and third derivatives for the septic Bézier curve in Example 4.1.

136

Appendix C
Primitive Procedures for RRT

The following section is based on Karaman and Frazzoli (2011) and states the prim-
itive procedures used in RRT*, given in Algorithm 2, and needed for designing the
local path planner.

• Sample: Uniformly samples from Xfree. That is:

xrand ∼ U(Xfree).

• Nearest: Given T = (V,E) and x ∈ Xfree, the procedure returns the vertex
in V that is “closest” to x in terms of a given cost function.

• Near: Given T = (V,E) and x ∈ Xfree, the procedure returns the vertices in
V that is contained within a ball of a certain radius r. Note that the radius is
often implemented as a function of the sample dispersion. See LaValle (2006).

• Steering: Given two points x, y ∈ Xfree, the function returns a point z ∈
Xfree that minimizes |z − y| while at the same time maintaining that
|z − x| ≤ rmax, for a specified rmax > 0. |·| denotes the distance between the
nodes.

• Collision Test: Given two nodes x, y ∈ Xfree, the procedure checks if the line
segment between x and y lies in Xfree.

• Parent: Given a node x, the procedure returns the parent of x.

• Cost: Given a node x, the procedure returns the cost of x for a specified cost
function (e.g., Euclidean distance).

137

Appendix D
Waypoints for Simulations and
Experiment

The waypoints for S-shaped maneuver used in simulations of the guidance and con-
trol system in Chapter 8:

WP0 = (0, 0) WP3 = (10,−4) WP6 = (6, 12) WP9 = (14, 20)

WP1 = (2, 0) WP4 = (14, 0) WP7 = (6, 16) WP10 = (18, 16)

WP2 = (6,−4) WP5 = (14, 4) WP8 = (10, 20) WP11 = (22, 16)

The waypoints for 8-shaped maneuver used in experiment conducted of the guidance
and control system in Chapter 9:

WP0 = (0, 0) WP4 = (20, 0) WP8 = (10, 30) WP11 = (20, 20)

WP1 = (5, 0) WP5 = (20, 5) WP9 = (15, 30) WP12 = (5, 5)

WP2 = (10,−5) WP6 = (5, 20) WP10 = (20, 25) WP13 = (5, 0)

WP3 = (15,−5) WP7 = (5, 25)

138

Appendix E
Plot of Position, Speed, and Forces
for the Complete Simulation

150 200 250 300 350 400 450
+1.589905×109

1130

1140

1150

x(
t)

[m
]

North Position

ηd(t)

η(t)

150 200 250 300 350 400 450
+1.589905×109

160

170

y(
t)

[m
]

East Position

150 200 250 300 350 400 450

t [s] +1.589905×109

−200

−100

0

100

200

ψ
(t

)
[d
eg

]

Attitude

Figure E.1: Position versus time for each DOF for the complete simulation in Section 8.5.

139

150 200 250 300 350 400 450
+1.589905×109

0.2

0.4

u(
t)

[m
/s

]
Surge Speed

ν(t)

150 200 250 300 350 400 450
+1.589905×109

−0.25

0.00

0.25

v(
t)

[m
/s

]

Sway Speed

150 200 250 300 350 400 450

t [s] +1.589905×109

−0.25

0.00

0.25

r(
t)

[d
eg
/s

]

Yaw Rate

Figure E.2: Speed versus time for each DOF for the complete simulation in Section 8.5.

150 200 250 300 350 400 450
+1.589905×109

−25

0

25

X
(t

)
[N

]

Surge Force

τd(t)

τ(t)

150 200 250 300 350 400 450
+1.589905×109

−50

0

50

Y
(t

)
[N

]

Sway Force

150 200 250 300 350 400 450

t [s] +1.589905×109

−50

0

50

N
(t

)
[N
m

]

Yaw Moment

Figure E.3: Forces versus time for each DOF for the complete simulation in Section 8.5.

140

M
agnus Knæ

dal
Autonom

ous Path Planning and M
aneuvering of a Surface Vessel

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Magnus Knædal

Autonomous Path Planning and
Maneuvering of a Surface Vessel

Master’s thesis in Engineering & ICT, Marine Cybernetics

Supervisor: Roger Skjetne

June 2020

The ReVolt model scale ship. Photo: Simen Sem Øvereng (2019).

	Preface
	Acknowledgments
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Preliminaries
	1 Introduction
	1.1 Background and Motivation
	1.2 Objectives
	1.3 Scope of Work
	1.4 Contributions
	1.5 Outline of Thesis

	2 Background Knowledge and Literature Review
	2.1 Vessel Model and Description
	2.1.1 Notation and Reference Frames
	2.1.2 Vessel Model
	2.1.3 Maneuverability and Vehicle Characteristics

	2.2 Curve Theory
	2.2.1 Path Parameterization
	2.2.2 Path Evaluation Criteria

	2.3 The Bézier Curve
	2.3.1 Definition
	2.3.2 Derivatives
	2.3.3 Properties

	2.4 The Path Planning Problem
	2.5 Map Representation and Partitioning
	2.5.1 Cost Maps
	2.5.2 Voronoi Partitioning

	2.6 The Maneuvering Problem
	2.7 The Concept Vessel ReVolt by DNV GL

	3 Problem Formulation
	3.1 Control System for a Stepwise Maneuvering Problem
	3.2 Navigation system for a Stepwise Maneuvering Problem
	3.3 Guidance System for a Stepwise Maneuvering Problem
	3.4 Problem Statement
	3.5 Assumptions and Delimitations

	4 Guidance System
	4.1 Analysis of the Bézier Curve
	4.1.1 Cubic and Quintic Bézier Spline
	4.1.2 Septic Bézier Spline

	4.2 The Path Generator
	4.2.1 Strategy on the Next Waypoint
	4.2.2 Corridor
	4.2.3 Replanning
	4.2.4 Pragmatic Approach
	4.2.5 Optimization Approach

	4.3 Speed Assignment

	5 Navigation System
	5.1 Local Planner - Rapidly Exploring Random Trees
	5.1.1 Constraints
	5.1.2 Cost Function
	5.1.3 Informed RRT*
	5.1.4 Real-Time RRT*

	5.2 Global Planner - A* Algorithm on a Voronoi Roadmap
	5.2.1 The A* Algorithm
	5.2.2 Clearance Constraints
	5.2.3 Pruning of Waypoints

	6 Control System
	6.1 Maneuvering Control Design
	6.1.1 Adaptive Backstepping - Step 1
	6.1.2 Dynamic Update Law Acting in Output Space:
	6.1.3 Adaptive Backstepping - Step 2
	6.1.4 Maneuvering Control Law

	6.2 Thrust Allocation
	6.2.1 Extended Thrust Formulation for the Concept Vessel ReVolt

	6.3 Saturating Element

	7 Experimental Platform and Implementation
	7.1 The ReVolt Test Platform
	7.2 Simulator
	7.3 Software
	7.4 Implementation

	8 Simulations
	8.1 Guidance System
	8.1.1 Pragmatic Approach
	8.1.2 Optimization Approach
	8.1.3 Results

	8.2 Control System
	8.2.1 Simulation 1: Straight-line Maneuver
	8.2.2 Simulation 2: S-shaped Maneuver
	8.2.3 Results

	8.3 Navigation System: Global Planner
	8.3.1 Simulation 1
	8.3.2 Simulation 2
	8.3.3 Results

	8.4 Navigation System: Local Planner
	8.4.1 Simulation 1: Tree growth
	8.4.2 Simulation 2: Informed Sampling
	8.4.3 Simulation 3: Blocking Branches by Dynamic Obstacles
	8.4.4 Simulation 4: Rewiring and Planning ``On the Fly''
	8.4.5 Results

	8.5 A Complete Simulation
	8.5.1 Results

	9 Experiment
	9.1 Experimental Setup
	9.2 Problems
	9.3 Results

	10 A Critical Assessment
	11 Conclusion
	11.1 Recommendations for Further Work

	Bibliography
	A Parameter Values for ReVolt
	B Control Points and Plot of Derivatives from @tempd *@tempc chapterexmp:control points placement
	C Primitive Procedures for RRT
	D Waypoints for Simulations and Experiment
	E Plot of Position, Speed, and Forces for the Complete Simulation

