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Abstract

Kristiansen and Faltinsen (2017a) showed that the inviscid FNV theory over-predicts the
third harmonic wave load on bottom fixed vertical surface-piercing cylinders for long and
steep waves. The analytic solution is obtained by potential theory, which do not capture
flow separation. The KC number in severe sea states indicate flow separation and viscous
effects affecting the forces. The need for viscous modelling was apparent to improve ex-
isting theories. A combined viscous CFD-FNV method was derived by substituting the
2D inline force from uniform potential theory with viscous 2D CFD.

As experiments indicate 3D effects might have an impact on higher order. A 3D extension
to original 2D CFD was included. The term is derived by expanding the CFD results with
the remaining terms in the Navier Stokes equation, and assuming that the slender body
assumption is valid. The CFD-FNV theory did improve the estimation on third harmonic
loads compared to the FNV theory with fifth order stokes wave kinematics. Forces were
accurately estimated for a broad range of wave conditions. The discrepancy between the
inviscid FNV theory and experiments were, partially, corrected by the combination of vis-
cous CFD analysis and the inclusion of the newly derivated slender body term.

The experiments by Kristiansen and Faltinsen (2017a) were reconducted to get visual data
of possible 3D effects. A narrow run-up at the rear of the cylinder in regular waves was
observed, the phenomenon has previously been mentioned in several papers. The obser-
vation lead to an investigation of methods to describe the phenomenon, and subsequently
involve the effect in the analysis. This unfortunately came to a halt as the project was
limited by time. This is thus left for further investigation.
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Chapter 1
Introduction

1.1 Motivation
The worlds energy demand is rapidly increasing, all while traditional fossile fuel is being
phased out. This leads to increased pressure on environmentally friendly solutions. In
order to fulfil the energy demand, the wind industry is expanding their domain offshore,
creating a fast growing marine sector. The most common offshore wind turbines today
are bottom fixed structures. Technology for these, still need improvement to create a more
cost efficient design in order to be competitive with fossile fuel energy production.
Bottom fixed monopile design wind turbine towers have a natural periode of roughly four
to five seconds. This unfortunately coincide with the 3ω components of the incoming
waves in severe wave conditions. A severe sea condition, ultimate limit state condition
(ULS), at the location of offshore monopile typically has 10 to 15 seconds peak periode.
Therefore it is crucial to accurately model these higher order excitation load components,
which excite resonance.

1.2 Background
Experiments have shown that offshore wind turbines are prone to be excited by transient
ringing loads. Ringing is defined as the transient vibrational response occurring after a
high steep wave at higher frequency than the incident waves. The observed behaviour
can not be explained by traditional wave diffraction theories such as Maccamy and Fuchs
(1954). During the first years of 1990s multiple authors tried to derive a method for
calculations the excitation loads. The effort culminated in a few potential theory theories
for estimation of such loads. Malenica and Molin (1995a) derived a third order diffraction
theory using a standard perturbation series. In contrast to Malenica and Molin (1995a)
did Faltinsen et al. (1995) allow the wave height to be of the same order as the cylinder
radius in his derivation of the forces. Faltinsen et al. (1995) used perturbation theory to
include third order wave theory in. The analytic expression, hereinafter referred to as the
FNV theory, was generalised by Kristiansen and Faltinsen (2017a) to finite water depth
and fifth order waves. As potential theory was assumed for both theories, a limit on the
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1.3. Scope

validity is introduced, due to the occurrence of flow separation at higher KC numbers.
The theories have shown to over-predict the third harmonic load by a significant amount
in severe sea states. The flow field behind a body in water is impacted by the effect of
viscosity and turbulence through the boundary layer. The flow pattern becomes inherently
complex if the oscillatory fluid is investigated, where vortices and the high degree of
disturbance and turbulence level is brought back to the cylinder surface. The need for
viscous modelling is apparent to further evolve, and improve existing theories. The lack
of knowledge regarding the viscous effects were mentioned by Kristiansen and Faltinsen
(2017a).

1.3 Scope
The scope of this thesis is to examine the effect of flow separation with regards to the
third harmonic load on monopiles to create a better load prediction. Viscous effects are
to be accounted for by using 2D CFD analysis and assuming that the cross flow principle
is valid. The CFD extension is to be included in the FNV theory for a CFD-FNV theory.
Additionally an expansion to 2D CFD solution by the use of the Navier Stokes Equations
and slender body assumption should be derived, in order to capture 3D effects without
using computational heavy 3D CFD analysis.

1.4 Report structure
This report will first present background theory, which is necessary to get the theoretical
insight required to both use and extend existing theories. Expansion and continuation of
previous work is then presented.
Results of experiments conducted will be presented, with a discussion on phenomenons
observed, and the numerical model created in order to recreate the experiments with CFD
analysis will be presented. The choice of mesh, solvers and schemes will be discussed.
Validation of the method against experiments follows.
The combined CFD-FNV was applied to a monopile with fifth-order wave theory. And
the results are presented with a discussion on accuracy, especially regarding the higher
order loads. Lastly, a conclusion and recommendations for further works are presented.
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Chapter 2
Theory

This section gives insight in background theory and assumptions.

2.1 Fundamental Equations
The governing equations regarding fluid flow is based on three universal conservation
laws:

• Conservation of mass

• Conservation of momentum

• Conservation of energy

Conservation of energy is based on the first law of thermodynamics, as heat transfer is
neglected this will not be a topic for further discussion.

2.1.1 Continuity Equation
When applying the conservation of mass principle on a fluid we, obtain the continuity
equation. Assume the fluid is passing through an infinitesimal control volume, which is
fixed in space. Conservation of the fluid mass then yields:

∂ρ

∂t
+∇ · (ρV) = 0 (2.1.1)

The rate of change of fluid density is included in the first term, whereas mass flux through
the control volume is included in the second term. Rewrite Equation 2.1.1 to the form:

Dρ

Dt
+ ρ(∇ ·V ) = 0 (2.1.2)

Water is assumed to be incompressible, yielding:

Dρ

Dt
= 0 (2.1.3)

3



2.2. Potential flow theory

and one obtain the following relation:

∇ ·V = 0 (2.1.4)

2.1.2 Momentum Equation
Newton’s second law is in fluid dynamics refereed to as the Conservation of Momentum.
By recalling the control volume, assuming incompressible fluid and applying Newton’s
second law, one obtains:

ρ
DV

Dt
= ρf +∇ · Πij (2.1.5)

This equation can be recognised as Newton’s second law on the form:

ma =
∑

F (2.1.6)

Where the first force term is the body forces acting, such as gravity. And the second term
represents the surface forces.

By the Newtonian fluid assumption where the relationship between shear stress and shear
rate is directly proportional, Schlisting (1968) derived a deformation law for Πij . By
substituting the equation into the momentum equation (Equation 2.1.5) one obtains the
Navier Stokes equation on the following form:

ρ
DV

Dt
= ρf −∇p+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δijµ

∂uk
∂xk

]
(2.1.7)

where δij is the Kronecker delta function, and ui,uj represents velocities. If we assume
the the flow is incompressible and constant viscosity, we can further simplify to:

ρ
DV

Dt
= ρf −∇p+ µ∇2V (2.1.8)

Which we will refer to as the Navier Stokes Equation.

2.2 Potential flow theory
For a broad range of applications, seawater has the properties of a perfect fluid. The fluid
is in general considered as incompressible, which is a good approximation of the physical
properties. For an external and free flow, the inviscid and irrotational approximation is
accurate. Viscosity mostly act in the boundary layer around an object. Potential theory is
thus applicable in cases like undisturbed waves. The assumptions for potential theory:

• Incompressible

• Inviscid

• Irrotational

Page 4 of 60



2.2. Potential flow theory

When potential theory is applicable, there exists a velocity potential (φ) to describe the
fluid motion. The potential φ is described as:

V = ∇φ (2.2.1)

Incompressible flow has zero divergence:

∇ ·V = 0 (2.2.2)

One thus obtain the Laplace equation which must hold throughout the fluid.

∇2φ = 0 (2.2.3)

(Faltinsen, 1990a)

2.2.1 Boundary Value Problem

To derive a velocity potential for a flow, one needs to define a set of boundary conditions.
In the marine environment one often investigates a finite domain with an inlet, outlet, a
free surface with air interaction and an impermeable seabed. The domain often contains
a body, whose excitation and reaction forces are to be investigated.

2.2.1.1 Boundary Condition at the Seafloor

To enforce the impermeability of a body, the velocity potential needs to satisfy the fol-
lowing equation:

∂φ

∂n
= U ·n (2.2.4)

where U is the body velocity and n the normal vector. At the horisontal seafloor, Equa-
tion 2.2.4 simplifies to

∂φ

∂z
= 0 (2.2.5)

as no fluid particles are crossing the seabed.

2.2.1.2 Free Surface

2.2.1.2.1 Kinematic Boundary Condition

"A fluid particle on the free-surface is assumed to stay on the free surface
(Faltinsen, 1990b)."

The free surface can be expressed as:

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
= 0 on z = ζ(x, y, t) (2.2.6)
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2.2. Potential flow theory

2.2.1.2.2 Dynamic Free Surface Condition
Pressure is a continuous quantity, and at the surface the pressure equals the atmospheric
pressure. By applying the Bernoulli equation at the surface and enforcing atmospheric
pressure one obtain the following boundary condition:

gζ +
∂φ

∂t
+

1

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
)

= 0 at z = ζ(x, y, t) (2.2.7)

2.2.1.2.3 Combined Free Surface Condition
By combining Equation 2.2.7 and Equation 2.2.6 we obtain the free surface condition.

∂2φ

∂t2
+ g

∂ζ

∂z
+ 2∇φ ·∇∂φ

∂t
+

1

2
∇φ∇|∇φ|2 = 0 (2.2.8)

For waves where the wave height is short compared to the length, a linearised, also re-
ferred to as airy wave, theory achieve reliable and accurate results. The airy wave theory
is obtained by linearising the Taylor expansion of Equation 2.2.8 around the mean free
surface. The airy waves approximation yield adequate results over a broad range of prob-
lems. However, as sea state severeness increases, the higher order terms is necessary to
obtain an accurate solution.

2.2.2 Stokes Wave Theory
Stokes Wave Theory approximates the boundary value problem by a perturbation series
approach. These series are dependent on a perturbation parameter ε (ε ∼ kζ1). The
velocity potential (φ) and surface elevation (ζ) can then be expressed as a series expansion.

φ = εφ1 + ε2φ2 + ε3φ3 + . . . (2.2.9)

ζ = εζ1 + ε2ζ2 + ε3ζ3 + . . . (2.2.10)

Similar expressions exist for all variables.
For Stokes theory of nth order, substitute n terms of Equation 2.2.9 and Equation 2.2.10
into the Laplace equation and the boundary conditions. As the combined free surface
boundary condition, earlier derived, is evaluated at the free surface, which still is un-
known, the equations are Taylor expanded about z=0.

2.2.2.1 Stokes Fifth Order Waves

The accuracy of Stokes Wave theory improves with the inclusion of additional terms.
The extent and computational cost of the calculation increases dramatically as terms are
added. Skjelberia and Hendrickson (1960) derived a fifth order theory published in 1960.
Assuming that both φ and ζ are described as trigonometric series. They proposed the
following expression:
(The denotation is taken from Skjelberia and Hendrickson (1960) and Brorsen (2007))

φ =
cω
k

5∑
n=1

Dn cosh(nk(h+ z)) sin(n(kx− ωt)) (2.2.11)

Page 6 of 60



2.2. Potential flow theory

ζ =
1

k

5∑
n=1

En cosh(nθ) (2.2.12)

where the wave celerity (cω) is given by:

cω =

√
C2

0 (1 + λ2C1 + λ4C2)

k
(2.2.13)

The quantities En andDn are expressions containing wave length and coefficients depen-
dent on water depth to wave length ratio. The expression for obtaining the coefficients
Aij ,Bij and Ci are given in Skjelbreia and Hendricksons’ paper (Skjelberia and Hen-
drickson, 1960). Fenton John D. (1985) noted that C2 in Skjelbreias paper was denoted
with a wrong sign, this is thus changed to be consistent with Fenton John D. (1985).

n Dn En

1 λA11 + λ3A13 + λ5A15 λ

2 λ2A22 + λ4A24 λ2B22 + λ4B24

3 λ3A33 + λ5A35 λ3B33 + λ5B35

4 λ4A44 λ4B44

5 λ5A55 λ5B55

Table 2.2.1: Definition of En and Dn

Skjelbreia’s solution is calculated by first knowing the periode, waveheight and water
depth. Then the wavelength, L, and a coefficient, λ, is calculated by iteration of the
following set of equations:

F (k, λ) = ω2 − gk tanh(kh) ·
(
1 + λ2C1 + λ4C2

)
= 0, (2.2.14)

f(λ, k) =
kH

2
−
(
λ+ λ3B33 + λ5 (B35 +B55)

)
= 0. (2.2.15)

These are solved iteratively with initial guesses from third order stokes until a converged
solution is reached.
The velocity components and accelerations are then to be obtained by differentiation of
the velocity potential.

u = cω

5∑
j=1

jDj cosh jk(z + h) cos jθ (2.2.16)

w = −cω
5∑
j=1

j ·Dj sinh jk(z + h) sin jθ (2.2.17)

∂u

∂x
= cωk

5∑
j=1

j2 ·Dj cosh jk(z + h) sin jθ (2.2.18)

∂u

∂z
= cωk

5∑
j=1

j2 ·Dj sinh jk(z + h) cos jθ (2.2.19)
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2.3. Wave Forces on Circular Cylinders

2.2.2.2 Taylor Expansion Above Mean Free Surface

To obtain velocities and accelerations above z=0, we utilise a Taylor expansion, as is done
in the derivation of Stokes Wave Theory. The Taylor expansion allows us to evaluate the
properties for 0 < z < ζ. All variables are obtained at z = 0.

f(z) = (f1 + f2 + f3 + f4 + f5) + z
∂ (f1 + f2 + f3 + f4)

∂z

+
z2

2

∂2 (f1 + f2 + f3)

∂z2
+
z3

6

∂3 (f1 + f2)

∂z3
+
z4

24

∂4f1

∂z4
+O(z6),

(2.2.20)

where f1 through f5 represent the five terms each variable consist of.

2.2.2.3 Limitations with Stokes Fifth Order Waves

For all stoke waves, except first order, it is assumed that O(h/L) = 1. In shallow water
where h

L � 1 a secondary wave crest occur which is not observed in nature. This un-
proportionately large second order term occurs for h/L < 0.10 − 0.15 in Stokes fifth
order theory. For lower order theory, this phenomenon is observed for larger h/L values.
To summarise the assumptions made during the derivation of stoke waves, the flow is
assumed to be potential flow, and symmetrical about the wave crest.

2.2.2.4 Ursell number

Ursell (1953) defined a non-dimensonal number as

Ur =
Hλ2

h3
(2.2.21)

Multiple papers have discussed the importance of the Ursell number with regards to Stoke
waves and its validity. The consensus seem to be that Stoke waves are valid for values up
to Ur ≈ 40 (Fenton John D., 1985). For higher Ursell numbers, cnoidal wave theory has
shown to obtain more accurate results as shown by Hedges (1995).

2.3 Wave Forces on Circular Cylinders
As slender circular cylinders are a highly utilised shape in the marine environment, there
exists several theories to analyse the wave forces acting on the cylinder. Many of whom
is based on potential theory. The three theories which dominate the field is Malenica and
Molin (1995a), the Morison’s equation and the FNV theory by Faltinsen et al. (1995).
These theories give a fairly good approximation of the forces, but it still does not exist a
theory capable of giving accurate results for all structure fluid interaction problems.

2.3.1 KC - Number
To categorise the relationship between the flow velocity and period for a sinusoidally
oscillating flow U = Uamplitude sin(ωt), Keulegan and Carpenter (1958) defined a pa-
rameter (hereinafter referred to as the KC number) as:

KC =
Uamplitude ∗ T

D
. (2.3.1)
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2.3. Wave Forces on Circular Cylinders

Where T and D is the period and diameter, respectively. The KC number has shown to
be a fairly good way to describe the flow-field and the forces arising. The KC number is
heavily impacting the degree of asymmetry in the wake and the amount of vortexshedding
occurring. Bearman, Downie, et al. (1985) state that the onset of asymmetrical features
occur at KC=7, three years later Bearman, Obasaju, et al. (1988) presented a paper where
the data suggested onset of asymmetry at KC=5.

2.3.2 Inviscid Flow Calculation for 2D Uniform Flow

If potential flow is assumed, the horizontal drag force acting at a cylinder in 2D uniform
flow described as

Fx =

(
ρ
πD2

4
+ a

(2D)
11

)
∂u

∂t
(2.3.2)

where a11 is the 2D added mass coefficient.

a
(2D)
11 = ρa2π = ρ

πD2

4
(2.3.3)

To generalise one introduce CM , the coefficient of inertia, such that the equation gets the
commonly used form

Fx = CMρ
πD2

4

∂u

∂t
(2.3.4)

2.3.3 Morison’s Equation

The Morison equation is a widely used prediction method to predict hydrodynamic loads.
Because of its simplicity, especially when combined with first order wave theory, it is a
quick and simple tool to get a load estimation. The equation is divided into two terms;
one represent the mass forces and the other the viscous forces acting on the cylinder.
The horizontal force per unit length of the vertical cylinder, dFx, is given by Morison’s
equation as:

dFx = ρ
π

4
D2CM∂u/∂tdz︸ ︷︷ ︸
Mass force

+
1

2
ρDCD|u|udz︸ ︷︷ ︸
Drag force

, (2.3.5)

where ρ is the water density, D is the cylinder diameter, a1 and u are the horizontal ac-
celeration and velocity of the undisturbed fluid at the mid-point of the strip. By assuming
long wave approximation, ie. that the waves are long compared to the cylinder radius,
such that the cylinder do not deflect the waves, the wave kinematics is taken from the
undisturbed potential. Long wave approximation requires that the wave length is five
times the diameter of the structure:

λ

D
> 5 (2.3.6)

CM and CD are the mass and drag coefficients, respectively.

The mass force term in Morison’s equation could be recognised as the potential theory
force from Equation 2.3.4
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2.3. Wave Forces on Circular Cylinders

dFx = (
ρπD2

4
+ a11)∂u/∂tdz︸ ︷︷ ︸

Mass force

. (2.3.7)

This is the most common version of the Morison equation. However, a modification
has been introduced where the total advection term (∂u/∂t + u∂u/∂x + w∂u/∂z ) is
substituted for ∂u/∂t.

dF = ρπD2/4Cm(∂u/∂t+ u∂u/∂x+ w∂u/∂z)

+ρCdD/2|u|u
(2.3.8)

The total advection Morison equation is almost similar the FNV theory. The difference
will be pointed out after the latter is derived.

2.3.3.1 Calculation of CM and CD

The coefficients in the Morison equation can be obtained from experiments by Fourier
averaging. Recall the force acting on the cylinder as:

−
∫
pn̂ds = Fx = ρ

1

2
CDDU∞ | U∞ | +ρ

π

4
D2CM U̇∞. (2.3.9)

First multiply Equation 2.3.9 by U∞ to simplify the equation:

∫ n2T

n1T

FCFDU∞dt = ρ
1

2
CDD

∫ n2T

n1T

U∞ | U∞ | U∞dt+ρ
π

4
D2CM���

���
��:0∫ n2T

n1T

U̇∞U∞dt ,

(2.3.10)
by reorganising one obtain the drag coefficient:

CD =

∫ n2T

n1T

FCFDU∞dt

ρ
1

2
D

∫ n2T

n1T

U∞ | U∞ | U∞dt
. (2.3.11)

Similarly the equation could be simplified by multiplying with U̇∞:

∫ n2T

n1T

FCFDU̇∞dt = ρ
1

2
CDD

��
���

���
���:

0∫ n2T

n1T

U∞ | U∞ | U̇∞dt +ρ
π

4
D2CM

∫ n2T

n1T

U̇∞U̇∞dt,

(2.3.12)
By reorganising, the inertia coefficient is obtained:

CM =

∫ n2T

n1T

FCFDU̇∞dt

ρ
π

4
D2

∫ n2T

n1T

U̇∞U̇∞dt

. (2.3.13)

Page 10 of 60



2.3. Wave Forces on Circular Cylinders

2.3.4 FNV
Faltinsen et al. (1995) developed a diffraction based theory, capable of capturing higher
order loads. Like the traditional diffraction theory it is assumed that ζ,D � L. However,
contradictory to traditional theory we allow O(kζ) ≈ O(ka) � 1. This extension of
validity make sure the theory includes severe sea states. Initially the theory was limited
to infinite water depths and regular incident waves. Kristiansen and Faltinsen (2017a).
generalised the theory to include arbitrary wave kinematics i.e finite water depths.

2.3.4.1 Derivation of the FNV Theory

A brief introduction to the derivation of the theory will be presented. For full derivation
see Kristiansen and Faltinsen (2017a)
First, assume the total wave potential to consist of three main parts, namely incident wave
potential, linear diffraction potential and higher order diffraction potential - φTotal =
φIncident +φDiffraction +ψ. ψ approximates the higher order free surface condition (to
third order) and satisfies the Laplace equation for 3 dimensions.
The domain is then subdivided to two complementary domains such that

Inner Outer

Order Order

r O(a) O(L)

a O(1)

h O(1/ε)

Table 2.3.1: Subdomain division, a - radius, L - wavelength, ε - perturbation prameter

The parameter ε is a small pertubation parameter such that the linear wave slope for the
incident waves and the non-dimensional cylinder radius are of order ε. (kζa = O(ε) =
ka)

2.3.4.1.1 Inner Region
For the inner domain, let ε → 0, from Table 2.3.1 it is obvious that r remains constant
whereas the length h→∞, the velocity field thus appears to be constant along the cylin-
der centre:

∂φ

∂z
� ∂φ

∂x
,
∂φ

∂y
(2.3.14)

given:
∂/∂z = O(ε) (2.3.15)

Because the horisontal derivatives are dominating, the Laplace equation neatly reduces to
two dimensions. By Taylor expanding the linear component of the diffraction potential
from (x,y)=(0,0), we obtain:

φInner = φI |x=0,y=0+(x+ φ11)
∂φI
∂x

∣∣∣∣
x=0,y=0

+

(
1

2
x2 + φ21

)
∂2φI
∂x2

∣∣∣∣
x=0,y=0

+f(z, t)+O
(
ε4
)

(2.3.16)
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2.3. Wave Forces on Circular Cylinders

Where φij satisfy 2D Laplace equation and the impermeability condition at the cylinder
surface.

∂

∂n
(x+ φ11)

∣∣∣
r=a

= 0 and
∂

∂n

(
1

2
x2 + φ21

)∣∣∣
r=a

= 0, (2.3.17)

n is used to denote the normal vector of the body pointing outwards from the body. We
have included an arbitrary function f , as the inner solution misses a boundary condition.
The inner domain is too small to utilise the far field condition. This function is found by
matching the inner and outer potential as they must be equal at the boundary region.

2.3.4.1.2 Outer Region
The solution for the outer region is obtained by solving the three-dimensional Laplace
equation and a far field condition. Note that there is no restriction to satisfy the body
boundary condition. When the outer solution is found, it is matched with the inner solu-
tion to obtain the unknown, f . Faltinsen (1999) showed that this f do not result in forces
below the fifth order and is therefore neglected.

The higher order scatter potential is found by the following formula.

(
∂2ψ

∂t2
+ g

∂ψ

∂z
)
∣∣∣
z=ζ

= −2∇φ ·∇∂φ
∂t
− 1

2
∇φ ·∇(∇φ ·∇φ)

∣∣∣
z=ζ

(2.3.18)

Close to the surface, ψ is dominated by the vertical gradient, thus it is assumed:

∂2ψ

∂t2
� g

∂ψ

∂z
. (2.3.19)

The potential for ψ is only calculated for the inner region, we assume that the surface is a
plane with constant height (ζI1|x=0,y=0). The BVP was solved by Faltinsen et al. (1995).

Fψ = ρπa2 4

g
u2 ∂u

∂t
|x=0,y=0 (2.3.20)

The force component from the linear diffraction potentials is given as

dF ′(z, t) = −
∫ 2π

0

p ·Nxadθ. (2.3.21)

N denotes the surface normal in x direction. We then find the pressure according to
Bernoulli equation and carry out the integration to obtain the following:

dF ′(z, t) = ρπa2

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
+ a11

(
∂u

∂t
+ w

∂u

∂z

)
(2.3.22)

The total force is then the sum of all the force components

Fx(t) =

∫ ζ

−h
dF ′(z, t)dz + Fψ. (2.3.23)

The difference between the previously mentioned advection Morison for the first har-
monic force is related to the term ∂u/∂x. In Morison equation the term reads CM∂u/∂x,
whereas in the FNV theory ∂u/∂x. This leads to ((CM − 1)∂u/∂x) difference between
the theories.
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2.4. Expansion of the FNV Theory

2.4 Expansion of the FNV Theory
Calculation of forces acting on a slender, circular cylinder by the FNV theory neglects
viscous effects. Doing a full 3D viscous CFD analysis is simply too computationally
heavy. Rather one would prefer a simpler tool, while still being able to introduce viscous
effects. Recall the following equation from the FNV theory:

dF ′(z, t) = ρπa2

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
+ a11

(
∂u

∂t
+ w

∂u

∂z

)
. (2.4.1)

Observe the terms can be split into 2 groups; terms acting in a horizontal plane dependent
on the time derivative and terms dependent on space derivatives.

dF ′time(z, t) = ρπa2

(
∂u

∂t

)
+ a11

(
∂u

∂t

)
(2.4.2)

dF ′space(z, t) = ρπa2

(
u
∂u

∂x
+ w

∂u

∂z

)
+ a11

(
w
∂u

∂z

)
(2.4.3)

The dF ′time(z, t) force could be recognised as the analytic expression for inline force
in potential theory (Equation 2.3.4) for a 2D uniform flow. The flow condition with a
uniform oscillatory flow can be recreated in a 2D CFD analysis, where viscous forces can
be accounted for. The potential flow force is replaced by a 2D CFD force. The new local
force at a cross section becomes:

dF ′(z, t) = dF ′space(z, t) + dFCFD(z, t) (2.4.4)

where the total force again is found by Equation 2.3.23.

2.5 Expansion of 2D CFD with Navier Stokes Equations
The result from a 2D CFD analysis is obtained by solving the Navier Stokes equation with
zero vertical components. Recall the Momentum equation which is solved in a 2D plane.
For the sake of simplicity further down the line, utilise cylindrical coordinates.

r : ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
+ vz

∂vr
∂z

)
= −∂P

∂r
+

µ

(
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+

1

r2

∂2vr
∂θ2

− 2

r2

∂vθ
∂θ

+
∂2vr
∂z2

)
+ ρgr.

(2.5.1)

With zero vertical components, one obtain the following equation,

r : ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r

)
= −∂P2D

∂r
+

µ

(
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+

1

r2

∂2vr
∂θ2

− 2

r2

∂vθ
∂θ

)
+ ρgr,

(2.5.2)

which is solved by a CFD analysis. As pressure is a linear scalar, assume the pressure
could be written as:

P = P2D + Pw (2.5.3)
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2.5. Expansion of 2D CFD with Navier Stokes Equations

namely a 2D pressure, and a 3D contribution. Subtract Equation 2.5.2 from Equation 2.5.1,
to gather the terms neglected by assuming 2D flow, to obtain the following relationship:

ρvz
∂vr
∂z
− µ∂

2vr
∂z2

= −∂pw
∂r

(2.5.4)

For a monopile in incident wave, an approximation of the vertical velocity can be achieved
by assuming a small structure compared to wavelength. The velocity potential is thus as-
sumed to be undisturbed and one utilise the vertical velocity component from the undis-
turbed potential. As previously discussed, potential theory is generally a good assumption
when the flow is not influenced by a body. By assuming viscous effects is negligible, the
3D viscous term is neglected from Equation 2.5.4 (µ∂

2vr
∂z2 � ρvz

∂vr
∂z ). Equation 2.5.4

then simplifies to:

ρvz
∂vr
∂z

= −∂pw
∂r

(2.5.5)

By investigating two 2D CFD analyses from different vertical position, then the term ∂u
∂z

can be approximated with a numerical scheme.

To obtain the pressure acting at a body, Equation 2.5.5 is integrated from far field where
we assume the pressure to be known to the body of the cylinder:

Pw = PFarfield + ρ

∫ Radius

FarField

∂pw
∂r

dr. (2.5.6)

The force contribution from the pressure acting at the body is included in the pressure
from the 2D simulation for a semi 3D result.

dF ′w(z, t) = −
∫ 2π

0

PwNxadθ. (2.5.7)

N denotes the surface normal in x direction.
The CFD-FNV load on a strip then becomes:

dF ′(z, t) = dF ′space(z, t) + dFCFD(z, t) + dF ′w(z, t) (2.5.8)

and the total load calculated by integration

Fx(t) =

∫ ζ

−h
dF ′(z, t)dz + Fψ. (2.5.9)

In the case where the coordinate system have a velocity and acceleration, the equations are
solved differently as the original total derivative from Equation 2.1.8 gains extra terms.
For the special case where the coordinate systems’ movement accurately matches the par-
ticle velocity vz the relative velocity between the particles and coordinate system in the
vertical direction is zero. The extra terms which originated from the coordinate system
movement will zero out and we are left with the same equation.

The additional term described here is a new approach and have, to the authors knowledge,
never been utilised before. The accuracy is dependent on a few assumptions, namely:
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2.6. Computational Fluid Dynamics

• The validity of using an undisturbed velocity potential

• The assumption that each strip is independent as there is no information transfer
between each CFD analysis

2.5.1 Capturing the Effect of Water Rise-up

Figure 2.5.1: Vortex sheet behind the
monopile

Chaplin et al. (1997) described a water rise-up at
the rear of the cylinder as a large wave crest is
passing the cylinder. The same phenomenon was
discussed and visualised by Kristiansen and Faltin-
sen (2017a). The water rise-up at the rear of the
cylinder indicates that the slender body assumption
is not perfectly valid. In an effort to explain and
include the rise-up effect, a possible explanation
was derived. According to Griffin (2020) the vortex
strength behind a bluff body, such as a monopile,
is dependent on Reynolds number. The velocities
closer to the free surface is higher, we thus assume
that the vortices shed are stronger. Recall Prandtl
lifting-line theory where vortices are used to de-
velop lift at a foil. In 3D these vortices are bounded
and runs from infinitely far back of the foil across
the span and then back. The same analogy could be
used here. Assume the shed vortex could be modelled as a set of bound vortices. As the
vortex is strongest at the surface, we assume that some of the vortex sheet bend of further
down and thus reduces the vortex strength as illustrated in Figure 2.5.1. The vortices in-
duce a vertical velocity component. If the vorticity can be found from the 2D CFD and
the change across each strip can be found, then the induced vertical velocity components
could be added to the wave kinematics. Unfortunately, due to limited time this theory was
never finished, and could thus not be included. However, it remains a topic of interest as
the induced velocities induce a rise-up as visually observed.

2.6 Computational Fluid Dynamics

2.6.1 Averaged Navier Stokes for Turbulent flows

The Navier Stokes equation govern unsteady turbulent flows, but as these are hard, bor-
derline impossible to solve, a simplification is needed. By time averaging one smoothens
out the irregular quantities. We assume that a variable could be split into a time average
and fluctuations around the mean value. For example:
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u = ū+ u′ (2.6.1)

(a) Averaging for RANS

for a variable f:
f = f̄ + f ′ (2.6.2)

then by definition

f̄ ′ =
1

∆t

∫ t0+∆t

0

f ′dt ≡ 0 (2.6.3)

note that as f̄ ′ ≡ 0 does not imply that the product is zero, the product ¯f ′f ′ 6= 0. The
normalised RMS value of velocity is whats commonly referred to as turbulence intensity.
Equation 2.1.8 could be written as

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(2.6.4)

by simply writing out the operators and dividing by ρ.
Insert the fluctuating parameteres on the form as Equation 2.6.2, and obtain the RANS
equation.

∂ūi
∂t

+ ūj
∂ūi
∂xj

= − ∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τij
∂xj

(2.6.5)

where
τij = u′iu

′
j (2.6.6)

is referred to as the Reynolds stress term. This term includes six additional unknowns
in 3D, and leaves the problem to be closed. The closure problem can be solved using a
technique known as turbulence modelling. Continuity equation for a incompressible fluid:

∂ūi
∂xi

= 0 (2.6.7)

2.6.2 Boussinesq Eddy Viscosity
As the equation set involves more unknowns than equations, one needs to close the prob-
lem. This is an unsolved problem, an approximation is forced by correlating the unknown
to variables with known quantities. One of the most common methods are the Boussinesq
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Eddy Viscosity proposed by Joseph Boussinesq. The Boussinesq Eddy Viscosity concept
build upon the following assumption. As the turbulence intensity in a flow increases, the
chaos within the flow increases, and the amount of vortices increase. The more chaos, the
more energy the flow can transport. The same could be achieved by simply increasing the
viscosity. This is done by adding a turbulent viscosity to the momentum equation such
that the smaller vortices do not need to be resolved, and thus save computational effort.
The Boussinesq assumption reads:

− ρu′iu′j = 2µTSij −
2

3
δij

(
µT

∂uk
∂xk

+ ρk̄

)
(2.6.8)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.6.9)

and
k̄ = u′iu

′
i/2 (2.6.10)

To solve this equation there still is a few unknowns. These are solved by the turbulence
model. There are several options depending on the amount of equations used to close the
problem. Most one-equation and zero-equation models rely on experimentally obtained
results, whereas two-equation models is closed without the use of experimental results.

2.6.2.1 Turbulence Model

There have been proposed multiple turbulence models to use in CFD, all of whom have
their strengths and weaknesses. Amongst these are the k−ω model, as well as k− ε. The
k − ε is a successful turbulence model which yeilds accurate results for the flow which
it has been tuned for, but suffers from inaccuracy at the near wall treatment as ε do not
converge to zero. It normally overestimates shear stress and thus delays separation. On
the other hand, the k − ω model has the possibility to enforce a Dirichlet condition at
the wall, to more accurately solve the boundary condition. The drawback is the highly
dependence on the on the turbulence properties defined at the inlet. The SST k − ω gives
a "best of both worlds" approach, combining the strength of the k − ε and k − ω model.
SST k − ω model uses k − ω approach for near-wall treatment and switches to the k − ε
formulation free-stream. More information about turbulence model and its properties can
be found in the book by Pope (2000) where k, ω, ε is defined.

2.6.3 Numerical Stability
The courant number was described by Courant et al. (1967) in regards to numerical stabil-
ity of explicit schemes. Where stability requires the courant number to be below an upper
limit.

Co =
abs(u)∆t

∆x
+

abs(v)∆t

∆y
< Comax (2.6.11)

As Holzmann (2019) described, OpenFOAM slightly altered the formula to include the
cell volume rather than its side length, but the concept remains the same. A high Courant
number means that the fluid travels far through the cell at each time-step. The Courant
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number has a direct implication on the time to run an analysis as a low courant num-
ber results in more time steps per unit of time. A high courant number is beneficial for
computational performance, but might cause instabilities.

2.7 The Numerical Algorithms: SIMPLE, PISO and PIM-
PLE

As very few analytic solutions of the Navier-Stoke equation exist, numerical methods are
used to approximate a solution. To solve the problem one apply numerical techniques.
The most common algorithms are named SIMPLE, PISO and PIMPLE.

The momentum equation has four unknowns, of which three are velocity components in
addition to the pressure. However, there are only three equations. One thus introduce
the continuity equation. Special techniques are applied to solve the system. After some
mathematical operations one could obtain a meaningful equation set. The derivation can
be found in the book by H. K. Versteeg (2007). The pressure-momentum coupling
problem is then solved numerically. The Pimple algorithm is one of the most commonly
used for transient problems. Pimple combines the Simple and Piso techniques, on which
more information can be found in the book by Moukalled et al. (2016). Within each time-
step, a steady state solution is found using an under-relaxation strategy. Then proceed to
the next time-step after using outer corrector loops to ensure explicit parts of the equations
have reached convergence. As convergence is reached the outer correction loop is left, and
the same procedure is done for the subsequent time-step.

2.7.1 Resolving the boundary layer
A wall bounded flow needs to obey the no slip and no penetration boundary condition at
the wall. This results in a boundary layer close to the wall. At the wall, viscous forces
dominate as the Reynolds stresses are zero. The important dimensionless parameter y+

measures the viscous lengths from the wall

y+ =
y

δv
=
uτy

ν
(2.7.1)

where:

uτ =

√
τw
ρ

(2.7.2)

and:

τw = ρν

(
∂uk
∂xk

)
at the body

(2.7.3)

Close to the wall where the viscous force is important, the velocity profile is dependent
on the Reynolds number as well as whether the flow is turbulent or not. For oscillatory
flow is the point of transition to turbulent flow not well documented, some papers indicate
the onset of turbulent structures as early as Re = 7000. Fully resolving the boundary
layer is crucial to accurately model separation, and the flow in general, close to a body.

Page 18 of 60



2.8. Software

Low values of y+ describes a flow where viscous forces dominate, whereas for y+ > 50
viscous forces are negligible. For 5 < y+ < 50 there is a buffer layer between the
viscous sublayer and the fully turbulent region. The buffer layer should be avoided. Salim
and Cheah (2009) describes the importance of y+ in mesh generation. They conclude
that keeping y+ ≈ 1 is desirable for near wall modelling which leads to more accurate
computational predictions. An alternative is to keep y+ in the fully turbulent region and
use wall functions to describe the flow as a low y+ value results in a computationally
heavier analysis as the number of cells increase.

2.8 Software
The preferred software for this project was chosen to be the open source CFD code
OpenFOAM. Most commercial CFD codes are expensive, whereas OpenFOAM is free
of charge. Sarode et al. (2017) benchmarked OpenFOAM against costly commercial soft-
ware and concluded that the results obtained by OpenFOAM shows the same behaviour.
The downside is the lack of graphical user interface and generally poor user friendliness.
As soon as the user has overcome the apparent issues getting started, OpenFOAM is a
really powerful tool and being run on linux has great capabilities being connected with
Python to automise the process of setting up cases for analysis.
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Chapter 3
Experiments

A paper by Kristiansen and Faltinsen (2017a) based on experiments originally carried out
by former Statiol (now Equinor). The first tests were conducted on 2017 at Tyholt. The
same model and set-up still exist at NTNU. Experiments were carried out using the same
set up and model.

3.1 Test Setup
The wind turbine monopile was mounted in Lilletanken at Tyholt, Trondheim. The scale
of the model is 1:48. The diameter of the model is 0.144 meters and a water-depth of
h = 0.5625 meters. 4 wave-probes were mounted upstream of the monopile, two at same
height and two downstream. See Figure 3.1.1 for a photo of the lab set-up.

Figure 3.1.1: Photo of model test lab set-up. The wave maker is seen in the end of the tank.

As seen in the figure, the wave probes were placed in the center between the tank walls
and the monopile, on each side. The distances, in wave propagation direction between the

20



3.1. Test Setup

wave probes and the dimensions of the tank are given in Figure 3.1.2.

Figure 3.1.2: Lab set-up

During the experiments, the free surface elevation was measured at 8 different positions.
Horizontal force and overturning moment in the bottom of the monopile were measured
by a force transducer, using strain measurements. All sensors had been calibrated before-
hand. The focus in the experiments was neither the loads nor moment, but visual data of
the interaction problem and vortex generation.
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3.2 Results

A discrepancy in the incoming waves was observed, causing unexpected loads. Kris-
tiansen and Faltinsen (2017a) observed the same phenomenon concluded it was caused
by free parasitic waves excited from the wavemaker. Adding a correction signal at a fre-
quency of 2ω solved the matter for Faltinsen. The same analogy was applied in these
experiments, but as time was limited between other ongoing experiments, proper tuning
of the correction signal was never achieved. The parasitic wave was reduced to a point
where it was no longer visually observable, however it still had a slight impact on the
loads. However, it still had a slight impact on the loads. As the experiment had been
carried out multiple times with proper tuning, a lot of data was readily available. The data
presented below is data obtained by previous experiments in the same tank and the same
rig. Parts of the data has been previously published.

Figure 3.2.1: First three force harmonics from Experiments (•), FNV theory (−) forH1/λ = 1/25

The data shows inconsistencies between the FNV theory and the experimental data with
regards to third order forces. Similar plots for H1/λ = 1/30 and H1/λ = 1/40 are
shown in section A.2. The data for H1/λ = 1/30 shows a similar inconsistency, whereas
for H1/λ = 1/40 there are generally good agreement between experiments and theory.
The same experimental data will be further investigated and compared to the newly de-
veloped CFD-FNV theory in chapter 6.
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3.2. Results

3.2.1 Visual Observation

(a) (b) (c)

(d) (e) (f)

Figure 3.2.2: Snapshots of the flow behind the cylinder with T=2.165 s and steepness of H1/λ =
1/25

From Figure 3.2.2 where a wave-crest is passing the mono-pile. The first picture is taken
90 degrees before the wave crest, and the last one right after the crest has passed. Observe
the water rise-up occurring as the wave crest hits the monopile. The rise-up is narrow at
first, and seems to be consisting of water originating from below the water surface. As the
wave passes, the rise-up reaches its maximum height and dissipates.

(a) (b) (c)

Figure 3.2.3: Snapshots of the flow behind the cylinder seen from above with T=2.165 s and steep-
ness of H1/λ = 1/25

In Figure 3.2.3 the the first picture is taken as one see the first sign of rise-up. Again
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3.2. Results

observe the narrow peak. The next picture is where the peak is closing up on its maximum
height. A crucial takeaway in this picture is the formation of two nearly symmetrical
vortices occurring in the water surface. This is an indication that the water rise-up could
origin from the vortex sheet as discussed in subsection 2.5.1.

(a) (b) (c)

Figure 3.2.4: Snapshots of the flow behind the cylinder seen from above with T=2.165 s and steep-
ness of H1/λ = 1/25

After the peak breaks, a highly turbulent environment arises behind the cylinder. This
highlights the importance of proper turbulence modeling and a sufficiently fine grid when
doing CFD analysis on this phenomenon. By neglecting 3D effects, the disturbances of
the fluid will probably be less turbulent and the validity of both slender body assumption
and the cross flow principle should be discussed.
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Chapter 4
Numerical Model

4.1 Mesh Structure

A structured grid comes with several advantages and drawbacks compared to unstructured
grids. Unstructured grids are easy to create using a meshing tool and allows for complex
geometries, whereas the process of creating a a structured grids can tedious. A structured
grid using only hexahedral cells results in a higher orthogonality and a more efficient use
of memory, allowing for faster computation. A pure hexahedral mesh is therefore utilised
in this report and created using OpenFOAMs blockMesh tool.

4.1.1 Block Mesh

A set of blocks subdivides the domain, illustrated in Figure 4.1.1, into smaller parts to
ensure sufficient control. The boundary layer is kept within a block to ensure required
mesh quality. The boundary layer is estimated by laminar theory:

δ99 = 4.6 ·

√
2ν

ω
(4.1.1)

One can then ensure that enough cells to capture the boundary layer effect are put within
the boundary layer. A second control circle are placed around the cylinder to capture the
vortices shedding from the cylinder, the size of this block is chosen to be 10r as this should
be sufficient to keep the vortices within this region of high quality mesh. The domain is
outwards transformed to a square. The cell size is the same across block boarders to avoid
large changes of cell size.
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4.2. Boundary Conditions

Figure 4.1.1: Block discretisation of the computational domain

4.2 Boundary Conditions
The cylinder is enclosed in a 2D domain. We assume that the domain is sufficiently
large, and apply boundary conditions at the boundary. The boundary conditions should
mimic the physics involved as best as possible. The oscillatory flow is pressure-driven
as this showed to highly improve stability from a velocity forced flow. The pressure
enforced on the boundary according to the following equations. Recall the Navier Stokes
Equation 2.1.8, and assume only pressure-force is acting.

Du

Dt
= −1

ρ
∇p (4.2.1)

in x direction:

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂x
(4.2.2)

Assume that the flow velocity do not change trough the domain to satisfy continuity:

∂u

∂t
= −1

ρ

∂p

∂x
(4.2.3)
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4.2. Boundary Conditions

To obtain additional equation to close the equation set, the pressure at the inlet is defined
as the negative pressure at the outlet.

p(
L

2
) ≡ −p(−L

2
) (4.2.4)

The pressure can be obtained by solving for p(L2 ):∫ L
2

−L
2

∂p

∂x
dx = −ρ

∫ L
2

−L
2

∂u

∂t
dx, (4.2.5)

p(
L

2
) = −1

2
ρL

∂u

∂t
. (4.2.6)

At the right and left boundary, hereinafter referred to as inlet/outlet, the pressure is thus
defined according to Equation 4.2.6. We assume that the inflow is perpendicular to the
inlet and outlet, and that the flow at the top and bottom only have a component in the flow
direction through the domain. The boundary conditions applied is listed in Table 4.2.1:

Boundary Contidtions

Variabel Cylinder Top and Bottom Inlet Outlet

pressure zeroGradient zeroGradient uniformTotalPressure
velocity noSlip slip pressureNormalInletOutletVelocity

k fixedV alue[0] fixedV alue[1] fixedV alue[1]

omega fixedV alue[2] fixedV alue[3] fixedV alue[3]

nut nutkWallFunction calculated calculated

Table 4.2.1: Boundary conditions

where the values inserted are individual for each analysis and calculated based on the
following:

[0] : k = 0 (4.2.7)

[1] :
10−5U2

∞
ReL

< k∞ <
0.1U2

∞
ReL

(4.2.8)

[2] : ωwall = 10
6ν∞

β1 (∆ywall)
2 (4.2.9)

where β1 = 0.075

[3] :
U∞
L

< ω∞ <
10U∞
L

(4.2.10)

in the equations above, U∞ is calculated as the RMS value over one periode of the inlet
velocity. The equations are taken from Menter (1994) as well as Langley Research Center
(n.d.). The velocity is initialised to match the phase at the beginning of each analysis.
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4.3. OpenFOAM model

4.3 OpenFOAM model
The OpenFOAM model was created by trial and error, as well as input from relevant lit-
erature. A brief introduction was given in section 2.6. More thorough derivations and
explanations are readily available from Mathematics, Numerics, Derivations and Open-
FOAM® by Holzmann (2019) and The Finite Volume Method in Computational Fluid
Dynamics by Moukalled et al. (2016).

4.3.1 Solvers
The PIMPLE was the chosen solver algorithm. As previously mentioned this is a merged
PISO and SIMPLE algorithm.
The following setup was used for the PIMPLE algorithm:

Pimple Settings

Variable Value

nNonOrthogonalCorrectors 1
nCorrectors 3

nOuterCorrectors 500

Residual control
U 1e− 5

p 1e− 5

k 1e− 4

omega 1e− 4

Relaxation Factors
U 0.7
p 0.3
k 0.7

omega 0.7

Table 4.3.1: Pimple Settings

Solvers

Variable Solver Tolerance Smoother Preconditioner

p GAMG 1e− 5 DICGaussSeidel -
U PBiCG 1e− 8 - DILU
k smoothSolver 1e− 5 symGaussSeidel -

omega smoothSolver 1e− 5 symGaussSeidel -

Table 4.3.2: Solvers
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4.3. OpenFOAM model

As the system of equations to be solved is big, solving it efficiently and accurately is
important. Solving the equations is done by combining a multi-grid method (GAMG) us-
ing numerical methods with the preconditioned bi-conjugate gradient (PBiCG). Diagonal
based incomplete LU (DILU) preconditioner were used for the velocity . The solvers are
chosen such to achieve the best possible accuracy combined with stability. They are all
based on Discretization Schemes – How to Choose the Schemes by OpenFoam adviser
Guerrero (n.d.).

4.3.2 Schemes
. Additional information can be found in (Moukalled et al., 2016).

Numerical Schemes

Variable Scheme Precision

Time Schemes
ddt CrankNicolson 0.75 ≈ O

(
δt2
)

GradSchemes
default cellMDLimited Gauss linear 0.5; O

(
∆x2,∆y2

)
U cellMDLimited Gauss linear 0.5; O

(
∆x2,∆y2

)
DivSchemes

phi, U Gauss linearUpwind O
(
∆x2,∆y2

)
phi, k Gauss linearUpwind O

(
∆x2,∆y2

)
phi, omega Gauss linearUpwind O

(
∆x2,∆y2

)
phi, nuEff*dev2(T(grad(U))) Gauss linear O

(
∆x2,∆y2

)
laplacianSchemes

diffusive terms Gauss linear limited 1 O
(
∆x2,∆y2

)
Table 4.3.3: Schemes

The schemes are chosen based on a compromise between stability and accuracy. Mesh
quality impacts the choise, where a low quality mesh needs a more stable scheme. The
above chosen schemes are chosen based on testing and the input from Discretization
Schemes – How to Choose the Schemes by OpenFoam adviser Guerrero (n.d.).
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Chapter 5
Mesh Convergence

Each block shown in Figure 4.1.1 is meshed into a finer grid. As the grid definition
depends on multiple variables, finding out their dependence is an extremely time con-
suming task. To simplify this problem, free variables were locked in dependence to
others. The first cell height at the cylinder surface is calculated through estimation of
y + 1 with the equations presented in subsection 2.7.1 to ensure y+ ≈ 1. The amount
of cells around the cylinder was chosen to be 400, such that each cell covered less than
1 degree, as advised by prof. Bjørnar Pettersen. This should be sufficient to accurately
capture the point of flow separation. The cell size radially was defined with a growth-rate
from the first cell hight. Separate growth-rate was defined inside the estimated boundary
layer and for the domain control circle. Five cases of the inner growth-rate was tested.
InnerGrowthRate = {1.2, 1.15, 1.1, 1.08, 1.05}. The outer growth-rate was defined as
a multiple of this in such a manner:

OuterGrowthRate = (InnerGrowthRate− 1) ∗ Factor + 1, (5.0.1)

where three different factors where tested. Factor = {0.25, 0.125, 0.1}.

The mesh convergence was conducted by first initialising the fluid with three oscillations
on a general mesh, The result then were mapped onto the new mesh to be tested. One
oscillation to adjust to the new mesh, and then five oscillations where the force coefficients
where calculated. This saved computational time as the initialisation oscillations did not
have to be performed at each case.

A subset of the meshes are shown in Figure 5.0.1 through Figure 5.0.4 to give a visual
indication on the grid generation.
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(a) (b) (c)

Figure 5.0.1: Domain with Factor 0.1, 0.125 and 0.25, reading from left to right, with the grading
factor in the boundary layer at 1.2

(a) (b) (c)

Figure 5.0.2: Distance 10r to each side, with Factor 0.1, 0.125 and 0.25, reading from left to right,
with the grading factor in the boundary layer at 1.2.

(a) (b) (c)

Figure 5.0.3: Domain with Factor 0.1, 0.125 and 0.25, reading from left to right, with the grading
factor in the boundary layer at 1.05.
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5.1. Mesh Convergence Results

(a) (b) (c)

Figure 5.0.4: Distance 10r to each side, with Factor 0.1, 0.125 and 0.25, reading from left to right,
with the grading factor in the boundary layer at 1.2.

5.1 Mesh Convergence Results

Each mesh had a series of tests conducted for a range of KC and Reynolds numbers. Not
all of them yielded viable results. Due to computational time limits not all were tested.
The accuracy of the solution is dependent on the number of grid cells as much as their
positioning. The first thing observed is that the lower KC numbers are more or less inde-
pendent of mesh quality within the region investigated, whereas the higher KC numbers
showed a great dependance.

CM and CD are extracted as shown in subsubsection 2.3.3.1. A total of eight periodes,
where the 3 first are considered as initialisation, before the next five is used for calculating
CM andCD. The extreme values were discarded, and the average over the remaining three
is used as the final value. The standard deviation is plotted as a vertical line in all plots
below.

(a) (b)

Figure 5.1.1: Mesh convergence for KC=1.
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5.1. Mesh Convergence Results

(a) (b)

Figure 5.1.2: Mesh convergence for KC=2.

The lower KC numbers shows early convergence and small mesh dependence for CM .
For KC=1 and a low Reynolds number, capturing the boundary layer effect is important to
estimate drag. This thus indicate a finer grid is necessary. A coarse CFD mesh generally
under-predicts the drag force for low KC numbers as the viscous sublayer is not fully
resolved. Experimental data shows a high value for CD at KC=1

(a) (b)

Figure 5.1.3: Mesh convergence for KC=6.
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5.1. Mesh Convergence Results

(a) (b)

Figure 5.1.4: Mesh convergence for KC=10.

For higher KC values the flow is inherently hard to solve. Experiments show great vari-
ation of results. The considerable scatter in experimental and CFD results indicate com-
plicated physical phenomena occurring at higher KC values. This is partly why no mesh
were completely accurate. However, based on the presented data we conclude that the
mesh converges faster for an outer grading factor of 0.1. The inner grading-factor at 1.08
captures the flow features and forces quite well, and is computationally much lighter than
1.05. This is thus chosen as the preferred mesh.

5.1.0.1 Time Consumption

As can be seen from the Figure 5.1.5 and Figure 5.1.6 the computational load on refining
the mesh is severe. Accuracy definitely comes at a computational cost. It is believed that
the chosen mesh shows balance between computational efficiency and accuracy.

(a) (b)

Figure 5.1.5: Mesh convergence and computational time for KC=1
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5.1. Mesh Convergence Results

(a) (b)

Figure 5.1.6: Mesh convergence and computational time for KC=10

5.1.1 Domain Size

The domain size is affecting the flow field around the cylinder if it is not sufficiently
large. By altering the domain size and testing for multiple KC numbers, the impact on the
forces are investigated. The mesh inside the outer control circle is kept constant, and so
is the cell size in the far field part of the domain. Increasing the domain size is obviously
increasing the cell count within the domain, and thus making it computationally heavier.
Theoretically, from potential theory, es the disturbance from a cylinder proportional to
1
r2 , at a distance r from the cylinder. There is a variation as the size is altered, but a
domain size of 20D showed to be fairly consistent with the larger 30D. To avoid the time-
consuming larger domain, 20D was thus chosen as the final domain size.

(a) (b)

Figure 5.1.7: Domain size convergence
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5.1. Mesh Convergence Results

(a) (b)

Figure 5.1.8: Domain size and computational time

5.1.2 Courant Number Dependence

An investigation of the impact of the Courant number was done. For Co < 1 there
was no clear trend in the results and they were consistent. For computational reasons
a high Courant number is beneficial as it allows for higher time steps. A value of 0.8
was chosen to ensure all higher loads were captured, and to avoid instabilities at higher
Courant numbers.

(a) (b)

Figure 5.1.9: Courant number dependencce
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5.1. Mesh Convergence Results

5.1.3 Number of Oscillation

(a) (b)

Figure 5.1.10: Number of oscillations before quasi steady state

Observe that the forces for the lower KC numbers converge fast, and reach a steady state
as early as after one or two oscillations. The steady state condition, if it exists, is not as
pronounced for high KC numbers. The values oscillate severely. Due to computational
limitations, a desire to keep the number of oscillations low arouse. It is also questionable
whether a full steady state conditions could be found with the amount of vortices shedding,
or if it is throughly unstable. Singh (1979) mentioned considerable variations was found
between each cycle for high KC numbers. After five to six periods there is no clear
trend, indicating that sort of convergence to a quasi steady state is reached. Ideally should
averaging occur over many periods. However, the results indicate that 3 initialisation
periods and averaging over five periods should be sufficient to get reliable results. One
might however, expect slight deviation in the obtained results.

5.1.4 Core Convergence

(a) (b)

Figure 5.1.11: Computational time vs number of cores for parallel runs
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5.1. Mesh Convergence Results

As time was a limiting factor, effort was put in ensuring maximum efficiency of the avail-
able computing power. As parallel computing was utilised, finding the optimum number
of cores to solve the problem as efficient as possible was important. The final mesh was
tested on a range of cores and then the time to preform the analysis was recorded. By
normalising the time, (by the time for running on minimum amount of cores, as well as
the number of possible parallel simulations on the computer), the optimum point for effi-
ciently running multiple simulations were found. The optimum point would be the lowest
total time consumption, and can be seen from Figure 5.1.11.

5.1.5 Final Mesh Quality
The final mesh has properties as defined in Table 5.1.1.

Mesh Quality
Hexahedra cells = 283956

Variabel Max Average

Aspect ratio 29.1595 -
Non Orthogonality 44.341 6.95782

skewness 0.524302 -

Variabel Value
Inner Grading Factor 1.08
Outer Grading Factor 0.1

Domain Size 20D
Courant Number 0.8

Table 5.1.1: Final mesh properites

A visualisation of key-points in the domain could be seen in Figure 5.1.13 and Fig-
ure 5.1.13:

(a) (b) (c)

Figure 5.1.12: Full domain for the final mesh, distance 10r to each side and close to the cylinder to
visualise the boundary layer
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5.2. Validation of Numerical Results

Figure 5.1.13: Outside the outer control circle where the cell size across boarders was kept constant.

5.2 Validation of Numerical Results

Throughout history several studies on circular cylinders in oscillating flow has been per-
formed. It is a substantial amount of data available as grounds for comparison. It should
be noted that the experiments show a high degree of scatter. The results obtained by CFD
were compared to experimentally obtained results from Sarpkaya (1976a) and Bearman,
Downie, et al. (1985). The results shows a fairly good agreement. It should be mentioned
that for low KC numbers, CM is a bit lower than experimental data, but follows the trend
with a distinct drop at KC ≈ 6. Singh (1979) discussed the considerable amount of
scatter between different papers. He mentions that many might have been prone to exper-
imental errors as simple, analoge apparatus for force sampling was used. However, the
CFD setup obtain values within the natural scatter amongst experiments.
At KC = 12, a sudden drop in CM accompanied by a spike in CD, while at KC = 14
the opposite occurs.This seems a bit unlikely, even though experiments have shown vari-
ations, these are less distinct. The cause might be that the analysis was yet to reach steady
state. It could also be observed that the standard deviations is quite large at this point,
which indicates a time dependent variation.
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5.2. Validation of Numerical Results

Figure 5.2.1: Comparison of CM 2D CFD and experimental result, � Sarpkaya (1976a) β =
11525, • Sarpkaya (1976a) Re=40 000, N Bearman, Downie, et al. (1985)

Figure 5.2.2: Comparison of CD 2D CFD and experimental result,� Sarpkaya (1976a) β =
11525,• Sarpkaya (1976a) Re=40 000, N Bearman, Downie, et al. (1985)
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5.3. 3D Discretisation

5.3 3D Discretisation

The 3D problem is discretisised from a 3D problem to a 2D problem by the same analogy
as strip theory. A Lagrangian style mesh is used, where the strips follow the vertical
position of a water particle. The water oscillating the monopile will thus have the right
disturbance levels, as it is the "same" water-particle and vortices which have shedded that
reinteract with the cylinder. This will more accurately capture the physical phenomena
occurring at each strip.

(a)
(b)

Figure 5.3.1: Strip position over one cycle compared to the particle path.

The strips are carefully placed so that the velocity change across each strip is the same.
The region with high gradient at the top is resolved by more strips.

To obtain an estimate of the amount of strips necessary to accurately solve the problem
the FNV theory was calculated with the number of strips ranging from 5 to 15 at the most
severe sea state whereH1/λ = 1/25. Choosing a severe sea state results in a conservative
discretisation. The results showed convergence at ten strips, and it is assumed that the
expanded CFD-FNV theory follows roughly the same trend, indicating that ten strips
should be sufficient.

This is thus chosen as the preferred discretisation.
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5.3. 3D Discretisation

Figure 5.3.2: Number of strips necessary for accurate FNV calculations, H1/λ = 1/25.

(a) (b)

Figure 5.3.3: Strip position and corresponding velocity.

In Figure 5.3.3, the depth of each strip, together with the velocity at the strip is presented.
The colours used in the depth plot can be found in the velocity plot.

5.3.1 Examples of Wave Kinematics

An example of the wave kinematics calculated with Stokes fifth order wave theory is
presented in Figure 5.3.4a and Figure 5.3.4b.
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5.3. 3D Discretisation

(a) U velocity - Stokes 5th order for wave peri-
ode 1 .4433 s and H1/λ = 20,h=0.5625.

(b) U velocity - Stokes 5th order for wave peri-
ode 1 .4433s, and H1/λ = 20,h=0.5625.
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5.4. Automation of OpenFOAM

5.3.2 Derivative of Velocity Between Strips

Figure 5.3.5: Probe positions in the do-
main.

To obtain the properties necessary to solve Equa-
tion 2.5.5 lines reaching out in the radial direction
was put, in the domain. Each line contained 100
equidistant probes to sample the velocity at each
time-step. A total of 180 lines meant each line
covered ∆θ = 2 deg (illustrated in Figure 5.3.5).
The effect of changing these parameters was never
tested as time limits made it impossible to conduct
such thorough tests. They were thus chosen to be
what was expected by the author to be sufficient.
Increasing the amount of probes highly impacts the
storage capacity required, as well as the complexity
of post-processing as these files contained roughly
200 gigabytes to scan through for each wave con-
dition.

5.4 Automation of OpenFOAM
To efficiently run the vast amount of analysis required to achieve accurate results, a python
script was written to run the CFD simulations. This ensured all computational power was
fully utilised. The script create a folder-structure for the analyses, calculates fifth order
stoke waves as input, creates a mesh, applies the correct turbulence parameters and starts
the calculation on the desired amount of cores. As soon as a calculation is finished the
next one starts to avoid down time. The python interface ensures little human interaction
to keep flaws away. When the python scripts were used, effort could be focused elsewhere
making the CFD analysis an automated process. The script only relied on the input of the
desired test conditions and mesh parameters previously derived. The same script were
slightly altered and used for the mesh convergence test and showed reliable behaviour.
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Chapter 6
Results

Throughout the process of obtaining the results, a vast amount of data was produced. The
computational effort necessary to calculate a single wave condition limited the amount
of different cases investigated. The expanded CFD-FNV theory was compared to results
obtained by Kristiansen and Faltinsen (2017a), with focus on the third harmonics, as
discrepancy between theory and experiments were substansial. A thorough investigation
for the importance of the different terms will be shown.

6.1 Test Program

The test program was created to match the experiments done by Kristiansen and Faltinsen
(2017a). As both computational and storage capacity was a limiting factor, the tests were
limited to 4 periodes, namely T = {1.299s, 1.732s, 1.876s, 2.021s} . Each period was
tested for steepness parameters H1/λ = {1/25, 1/30, 1/40}. All for the water depth
of 0.5625 m. The previously mentioned Ursell number is well below 40, indicating that
Stokes fifth order theory is applicable.

6.2 FNV vs CFD-FNV

An example of the unfiltered signal obtained by CFD and CFD-FNV theory is shown in
Figure 6.2.1. The FNV and FNV-CFD shows a good agreement of the total force.
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6.2. FNV vs CFD-FNV

Figure 6.2.1: Unfiltered signal of the total force Fx/ρga
3 for ka = 0.115 and H1/λ = 1/40.

By applying a bandpass filter, the difference in the higher order harmonics becomes more
pronounced. The first and second harmonic load show remarkable resemblance, where the
discrepancy occurs at the third harmonic. A slight end effect from the filter is observed
Figure 6.2.4.

(a) (b)

Figure 6.2.2: First harmonic force Fx/ρga
3 for ka = 0.115 andH1/λ = 1/40 andH1/λ = 1/25

respectively.
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6.3. Comparison of the CFD-FNV Method to Experiments

(a) (b)

Figure 6.2.3: Second harmonic force Fx/ρga
3 for ka = 0.115 and H1/λ = 1/40 and H1/λ =

1/25 respectively.

(a) (b)

Figure 6.2.4: Third harmonic force Fx/ρga
3 for ka = 0.115 and H1/λ = 1/40 and H1/λ =

1/25 respectively.

Observe that the slender body term has no effect on the first order forces. This is consis-
tent with the good agreement between FNV theory and experiments previously discussed.
There is a slight effect on the second harmonic load, but the real impact is on third har-
monic. The extra force term is 180 degrees out of phase. The inclusion of viscous effects
also slightly lowers the amplitude of the third harmonic force.

6.3 Comparison of the CFD-FNV Method to Experiments

The FNV theory and experiments generally predicts the same first and second harmonic
loads for a broad range of conditions. However, for the third harmonic loading, the FNV
theory over-predicts the loads for more severe sea states. As was shown in the experiments
section.
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6.3. Comparison of the CFD-FNV Method to Experiments

Figure 6.3.1: Non-dimensional force amplitudes for H1/λ = 1/40, vs non dimensional wave-
number ka, • Experiments by Kristiansen and Faltinsen (2017a), � CFD-FNV without slender
body term, × CFD-FNV,− FNV.

Figure 6.3.2: Non-dimensional force amplitudes for H1/λ = 1/30, vs non dimensional wave-
number ka, • Experiments by Kristiansen and Faltinsen (2017a), � CFD-FNV without slender
body term, × CFD-FNV,− FNV.

For H1/λ = 1/40, both the FNV and CFD-FNV theory predicts the loads very well.
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6.3. Comparison of the CFD-FNV Method to Experiments

There is no discrepancy between the results. For the third harmonic, the CFD-FNV pre-
dicts a lower value than the FNV, but is still consistent with the lower values of experi-
mental results.
For H1/λ = 1/30, the discrepancy between the FNV theory and experiments becomes
quite pronounced. For the third harmonic, the CFD-FNV method predicts values that
are consistent, though slightly higher than experimental results. The CFD-FNV method
predicts lower forces than the FNV theory in regards to first harmonic. For lower ka num-
bers, there is quite a bit of variation in the experimental results. The CFD-FNV theory
seems to predict a low value, but within the natural differences of the experimental data.

Figure 6.3.3: Non-dimensional force amplitudes for H1/λ = 1/25, vs non dimensional wave-
number ka, • Experiments by Kristiansen and Faltinsen (2017a), � CFD-FNV without slender
body term, × CFD-FNV,− FNV.

H1/λ = 1/25 is the point where the discrepancy between experiments and FNV theory
was discussed by Kristiansen and Faltinsen (2017a). The estimation of the third harmonic
by CFD-FNV is closer to the experimental data. However, there is still a slight discrep-
ancy.

With regards to the first harmonic the CFD-FNV method predicts lower first harmonic
load for lower ka numbers, and seems to be more consistent for higher values where the
match compared to experimental data is perfect. It is worth mentioning that the second
order loads are consistent for both FNV and CFD-FNV with regards to experiments.
The model seems to more accurately model the third harmonic, but as the FNV model
it under-predicts the first harmonic load for the most severe sea states. The difference
between the original FNV theory and experiments is partially described by the inclusion
of 2D viscous effects and the 3D expansion. Both contributes to better compliance with
experimental data.
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6.3. Comparison of the CFD-FNV Method to Experiments

6.3.1 Dependence on KC5

The different harmonics and their dependency on the wave number k were investigated
as done by Kristiansen and Faltinsen (2017a). Additionally the dependence on other pa-
rameters such as Reynolds number, KC number etc were investigated. As the KC number
originally is defined for a sinusoidal oscillating flow, we introduce a new parameter to
describe the in the same manner, by using the maximum horizontal velocity from Stokes
5th order theory

KC5 =
Um5T

D
. (6.3.1)

Figure 6.3.4: Non-dimensional force amplitudes vs KC Number, T=2.021, T=1.876,
T=1.732, T=1.299 CFD-FNV.

From Figure 6.3.4, we observe that the second and third harmonic loads seem to be a func-
tion of KC number, whereas the first harmonic shows less KC dependence. It is believed
that the higher order loads is dependent on vortex shedding, and thus is the importance of
KC high for these loads.

It should be mentioned that the number of results are fairly low, and too low to make a
generalisation, but it is believed that they indicate important phenomena. Experimental
results were overlaid to confirm the hypothesis. They could be seen in section A.3. The
experimental results indicate that the second harmonic is proportional to the KC numbers,
whereas a lot more scatter was found surrounding the third harmonic. The trend could
thus be a result of numerics, or a coincidence due to the low amount of data points. In
section A.3, the dependence on Reynolds number is also shown. There is a clear trend that
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6.4. Vorticity Field

by increasing the Reynolds number the forces increase. This could be due to the simple
fact that a higher Reynolds number means more severe sea state. Whether the effect is
directly connected to the Reynolds number is questionable.

6.4 Vorticity Field
The vorticity around the cylinder was visualised. The visualisation is taken for the 8th
oscillation at the free surface of the wave. The smoothening effect of RANS is observed,
but the method is fully capable of capturing the larger vortices, as small vortex concen-
trations is not fully resolved. A similar figure for H1/λ = 1/40, T=1.73 can be found in
section A.4.

(a) t=0T (b) t=0.2T

Figure 6.4.1: Vorticity at the surface for H1/λ = 1/25, T=1.73.

(a) t=0.4T (b) t=0.6T

Figure 6.4.2: Vorticity at the surface for H1/λ = 1/25, T=1.73.

(a) t=0.8T (b) t=T

Figure 6.4.3: Vorticity at the surface for H1/λ = 1/25, T=1.73s.
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6.4. Vorticity Field

The scenario tested in the experiments, and shown in Figure 3.2.3, was recreated in CFD
with the purpose of visual comparison. The vortices, which are believed to cause the
upwash, is depicted in Figure 6.4.4. The CFD analysis is taken at the surface and should
be a direct replica of the conditions tested in the tank. Observe the smoothening caused by
the averaging in the RANS method, but the similarities are astonishing. The two vortices
are separated by a small gap where the vortices are believed to induce velocities in 3D,
leading to the observed water rise-up.

(a) (b)

Figure 6.4.4: Visual comparison of experimental vs numerical flow field (vorticity) for T=2.165
s,H1/λ = 1/25.

Similar figures for an entire period is shown in section A.5.
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6.4. Vorticity Field

6.4.1 Visualisation of Strip positioning

All analysis presented in this thesis have consisted of a total of ten strips discretising the
cylinder, from 3D to multiple 2D domains. Calculations have been performed in the 2D
domain before the solution was integrated back to a 3D solution. This was visualised by
showing the vorticity field from each 2D strip in the 3D configuration which they occur.

Figure 6.4.5: Super imposed vorticity field from 2D CFD below the wave crest, for H1/λ = 1/25
and T=1.73s, seen from the side/behind and above the seabed.

Observe that as each strip is solved independently without information transfer, the vortex
sheet develops independently. Hence is the vortex sheet not entirely representing the
physical reality as the vortices might affect each other to force a pattern running along the
cylinder. However, by examining the backside of the cylinder, the vortices seems to be
consistent. It should also be noted that the visualisation confirms the assumption that the
vortex strength is higher close to the surface.
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6.4. Vorticity Field

Figure 6.4.6: Super imposed vorticity field from 2D CFD below the wave crest, for H1/λ = 1/25
and T=1.73s, seen from behind and below the seabed.

Similar figures for different angles as well as the 2D strips, can be found in section A.6.
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Chapter 7
Discussion and Conclusion

In this master thesis a method for computing the harmonic wave loading on a surfacepierc-
ing cylinder was derived. Numerical tools were used in combination with potential theory
to create a combined CFD-FNV theory. The CFD model in OpenFOAM was tested on
a sinusoidal flow and validated against experiments. The CFD model showed agreement
for a broad range of conditions and generally obtained reliable results. An expansion
term to 2D CFD analysis was included, in the hopes of improving the accuracy of the
calculation by including additional force components as a semi 3D solution. The expan-
sion term resulted in a force with a 3ω frequency when applied to stokes fifth order waves.

A 3D discretisation using a Lagrangian grid to accurately capture the backflow of vor-
tices and ensure realistic flow condition was designed and implemented in the CFD-
FNV method. The total CFD-FNV method was compared against experimental data from
Kristiansen and Faltinsen (2017a), focusing on the third harmonic load. Kristiansen and
Faltinsen (2017a) showed that a discrepancy in the FNV theory caused an over prediction
of the third harmonic loads. By inclusion of viscous effects, and the previous mentioned
slender body term, the CFD-FNV theory showed significant improvements in regards to
the third harmonic loads compared to the the regular FNV theory. There is still a dis-
crepancy in the results for the most severe sea states. During experiments, significant 3D
effects was observed, which is not described by the incident velocity potential. The results
show that a slender body assumption improves the estimation of third harmonic. How-
ever, as it still exist a discrepancy, the body’s impact on flow probably should be included.
The effect is best captured by 3D CFD, but could possibly be estimated and included in
the potential for incident flow to improve the accuracy of the proposed procedure.

The second and third harmonic loads obtained from CFD was dependent on the KC num-
ber. When the experimental data from Kristiansen and Faltinsen (2017a) was overlaid, the
same result showed for the second harmonic. The third harmonic had greater variation and
scatter.
There is still work to be done on this topic to improve and validate the tools created during
this thesis. A continuation on the work regarding the lifting-line theory to describe the
upwell and further include the 3D effects in the Navier Stokes expansion should be done.
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The visual comparison showed remarkable compliance, so this is an interesting field of
study for further works. There are parameters whose impact on the results never were
investigated, such as the number of CFD strips necessary. This should also be confirmed
if further work was to be carried out.
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Appendix A
Appendix

A.1 Convergence Results

(a) (b)

(a) (b)
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A.2. Experiments

A.2 Experiments

Figure A.2.1: First three force harmonics from Experiments (•), FNV theory (−) forH1/λ = 1/30
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A.3. Additional Results

Figure A.2.2: First three force harmonics from Experiments (•), FNV theory (−) forH1/λ = 1/40

A.3 Additional Results

Figure A.3.1: Figure
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A.3. Additional Results

Figure A.3.2: Figure

Figure A.3.3: Figure
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A.3. Additional Results

Figure A.3.4: Figure
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A.4. Vorticity Field Over One Full Period

A.4 Vorticity Field Over One Full Period

(a) t=0T (b) t=0.2T

(c) t=0.4T (d) t=0.6T

(e) t=0.8T (f) t=T

Figure A.4.1: Vorticity at the surface for H1/λ = 1/40, T=1.73
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A.5. Vorticity Comparison to Experimental Data

A.5 Vorticity Comparison to Experimental Data

(a) t=0T (b) t=0T

(c) t=0.1T (d) t=0.1T

(e) t=0.2T (f) t=0.2T

Figure A.5.1: Visual comparison of experimental vs numerical flow field (vorticity) for T=2.165
s,H1/λ = 1/25.
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A.5. Vorticity Comparison to Experimental Data

(a) t=0.3T (b) t=0.3T

(c) t=0.4T (d) t=0.4T

(e) t=0.5 (f) t=0.5T

Figure A.5.2: Visual comparison of experimental vs numerical flow field (vorticity) for T=2.165
s,H1/λ = 1/25.
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A.5. Vorticity Comparison to Experimental Data

(a) t=0.6T (b) t=0.6T

(c) t=0.7T (d) t=0.7T

(e) t=0.8T (f) t=0.8T

Figure A.5.3: Visual comparison of experimental vs numerical flow field (vorticity) for T=2.165
s,H1/λ = 1/25.
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A.5. Vorticity Comparison to Experimental Data

(a) t=0.9T (b) t=0.9T

(c) t=T (d) t=T

Figure A.5.4: Visual comparison of experimental vs numerical flow field (vorticity) for T=2.165
s,H1/λ = 1/25.
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A.6. 3D discretisation

A.6 3D discretisation

Figure A.6.1: 3D vorticity field below the wave crest for H1/λ = 1/25 and T=1.73s, Seen from
underneath

Figure A.6.2: 3D vorticity field below the wave crest for H1/λ = 1/25 and T=1.73s, Seen from
underneath
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A.6. 3D discretisation

(a) Strip 0 (b) Strip 1

(c) Strip 2 (d) Strip 3

(e) Strip 4 (f) Strip 5

(g) Strip 6 (h) Strip 7

(i) Strip 8 (j) Strip 9

Figure A.6.3: Vorticity at the surface for H1/λ = 1/40, T=1.73

Page XII



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e 
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Herman Schrader Bordal

Estimation of Higher Order Wave Loads
on Offshore Monopiles

Master’s thesis in MTMART

Supervisor: Trygve Kristiansen

June 2020


	Abstract
	Introduction
	Motivation
	Background
	Scope
	Report structure

	Theory
	Fundamental Equations
	Continuity Equation
	Momentum Equation

	Potential flow theory
	Boundary Value Problem
	Boundary Condition at the Seafloor
	Free Surface
	Kinematic Boundary Condition
	Dynamic Free Surface Condition
	Combined Free Surface Condition


	Stokes Wave Theory
	Stokes Fifth Order Waves
	Taylor Expansion Above Mean Free Surface
	Limitations with Stokes Fifth Order Waves
	Ursell number


	Wave Forces on Circular Cylinders
	KC - Number 
	Inviscid Flow Calculation for 2D Uniform Flow
	Morison's Equation
	Calculation of CM and CD

	FNV
	Derivation of the FNV Theory
	Inner Region
	Outer Region



	Expansion of the FNV Theory
	Expansion of 2D CFD with Navier Stokes Equations
	Capturing the Effect of Water Rise-up

	Computational Fluid Dynamics
	Averaged Navier Stokes for Turbulent flows
	Boussinesq Eddy Viscosity
	Turbulence Model

	Numerical Stability

	The Numerical Algorithms: SIMPLE, PISO and PIMPLE
	Resolving the boundary layer

	Software

	Experiments
	Test Setup
	Results
	Visual Observation


	Numerical Model
	Mesh Structure
	Block Mesh

	Boundary Conditions
	OpenFOAM model
	Solvers
	Schemes


	Mesh Convergence
	Mesh Convergence Results
	Time Consumption
	Domain Size
	Courant Number Dependence
	Number of Oscillation
	Core Convergence
	Final Mesh Quality

	Validation of Numerical Results
	3D Discretisation
	Examples of Wave Kinematics
	Derivative of Velocity Between Strips

	Automation of OpenFOAM

	Results
	Test Program
	FNV vs CFD-FNV
	Comparison of the CFD-FNV Method to Experiments
	Dependence on KC5

	Vorticity Field
	Visualisation of Strip positioning


	Discussion and Conclusion
	Bibliography
	Appendix
	Convergence Results
	Experiments
	Additional Results
	Vorticity Field Over One Full Period
	Vorticity Comparison to Experimental Data
	3D discretisation


