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Abstract

Control-oriented modelling is a method capable of simplifying the identification and tuning of a
mathematical model for a vessel. It can represent the dynamics of vessels that operate at a varied range
of speeds and was adapted to unmannned surface vessels (USVs) by Breivik et al. (2008). Improvements
to control-oriented modelling for USVs have been proposed by Eriksen and Breivik (2017) expanding
the model structure to include yaw instead of only surge and by Kvalvaag (2018) partially automating
the identification procedure. It has been successfully applied to high-speed USVs and was identified in
the project prior to this thesis (de Freitas, 2019) as a good solution to be used during conversions from
surface vessels (SVs) to USVs.

This thesis continues the improvements in control-oriented modelling in order to deliver conversions
with minimized cost, time spent and required know-how. This is done by attempting a full automation
of the identification procedure. After data collection in trials, the procedure is already almost completely
automated. The exception is the stage known as data extraction, in which the data collected needs to
be transformed into inertia and damping results to be fitted to the model. Therefore, two new methods
are proposed for data extraction: one performing steady-state system identification to distinguish steady-
state and transient regions based on Dalheim and Steen (2020), RW-SSID, and another simultaneously
identifying inertia and damping data using optimization and skipping steady-state system identification,
SIMID. Additionally, these methods are combined with methods for automatic removal of data consid-
ered unreliable. The criteria used to define unreliable data are low signal-to-noise ratio and not reaching
steady-state.

The proposed improvements were tested using data acquired by Eriksen and Breivik (2017) in co-
operation with Maritime Robotics. The same case-study USV was used by Breivik et al. (2008) and
Kvalvaag (2018). Results show that the proposed data extraction method SIMID succeeded in fully au-
tomating the control-oriented modelling. On the other hand, RW-SSID had its implementation halted
after its results required an excessive number of tuning parameters. In addition, the results from the au-
tomated control-oriented modelling were successfully used for automating the tuning of saturation limits
for reference filters.
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Sammendrag

Kontrollorientert modellering er en metode som er i stand til å forenkle identifiseringen og tunin-
gen av en matematisk modell for et fartøy. Metoden kan representere dynamikken til fartøy som oper-
erer i et bredt utvalg av hastigheter, og ble tilpasset til ubemannede overflatefartøy (USV-er) av Breivik
et al. (2008). Forbedringer av kontrollorientert modellering for USV-er har blitt foreslått av Eriksen and
Breivik (2017), som utvidet modellstrukturen til å inkludere giring i stedet for bare jaging, og av Kval-
vaag (2018), som delvis automatiserte identifikasjonsprosedyren. Metoden har blitt anvendt med suksess
på hurtiggående USV-er og ble i prosjektet som var forløperen til denne oppgaven (de Freitas, 2019)
identifisert som en god løsning for konvertering av overflatefartøy (SV-er) til USV-er.

Denne masteroppgaven fortsetter forbedringene i kontrollorientert modellering for å kunne utføre
konverteringer med minimal kostnad, tidsbruk og nødvendig kunnskap. Dette gjøres ved å prøve å oppnå
full automatisering av identifikasjonsprosedyren. Etter at datainnsamling i forsøk er gjennomført, er
prosedyren allerede nesten helt automatisert. Unntaket er stadiet kjent som dataekstraksjon, der innsam-
let data må transformeres til treghet- og dempningsresultater som kan tilpasses modellen. Derfor foreslås
to nye metoder for dataekstraksjon: en som utfører systemidentifikasjon av stabil tilstand ved bruk av et
rullende vindu for å skille stabile og transiente regioner basert på Dalheim and Steen (2020), kalt RW-
SSID. Den andre identifiserer treghet- og dempningsdata samtidig ved bruk av optimalisering og unngår
identifikasjon av stabil tilstand, kalt SIMID. I tillegg er disse metodene kombinert med metoder for au-
tomatisk fjerning av data som er ansett som upålitelige. Kriteriene som brukes for å definere upålitelige
data er lavt signal-til-støy-forhold og ikke klarer å oppnå stabil tilstand.

De foreslåtte forbedringene ble testet ved hjelp av data samlet inn av Eriksen and Breivik (2017)
i samarbeid med Maritime Robotics. Den samme casestudien USV ble brukt av Breivik et al. (2008)
og Kvalvaag (2018). Resultatene viser at den foreslåtte dataekstraksjonsmetoden SIMID lyktes med å
automatisere den kontrollorienterte modelleringen. Derimot ble implementeringen av RW-SSID stoppet
fordi resultatene krevde et for stort antall tuningparametere. Resultatene fra den automatiserte kontrol-
lorienterte modelleringen ble også brukt med suksess til å automatisere tuningen av metningsgrenser for
referansefiltre.
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Preface

This thesis was written as the final part of my master’s education at NTNU in the MSc Marine Tech-
nology program with specialization in Marine Cybernetics. It explores the world of unmanned surface
vessels and the motivation for the topic came from working in cooperation with Maritime Robotics.
Conversions from surface vessels to unmanned are performed by the company and the challenge was to
improve existing methods.

The work started with a project thesis (de Freitas, 2019) to identify control system solutions with
potential to improve such conversions and control-oriented modelling was picked among other solutions
to be further explored in this thesis. After reviewing the reference literature, I noticed how the procedure
of control-oriented modelling still required some tuning and making it fully automated would bring clear
benefits. This was successfully achieved with independent development of new methods. Restrictions
due to COVID-19 impeded the execution of planned experimental tests, but this was solved without
loss of quality by using data collected by Eriksen and Breivik (2017) also in cooperation with Maritime
Robotics.

Caio Swan de Freitas

Trondheim, June 8th, 2020
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Chapter 1
Introduction

1.1 Background and Motivation

The history behind seeking autonomy for vessels is not recent. In order to comprehend this statement, it
is necessary to understand what autonomy means for ships. There is still an ongoing debate about final
definitions, but the latest report on the matter by the International Maritime Organization (IMO) divides
the autonomy of ships into four non-exclusive degrees (Maritime Safety Commitee, 2018):

• Degree 1: Ship with automated processes and decision support;

• Degree 2: Remotely controlled ship with seafarers on board;

• Degree 3: Remotely controlled ship without seafarers on board;

• Degree 4: Fully autonomous ship.

Initial attempts for the first degree of autonomy can be traced back to the beginning of the twentieth
century. Back then, the first automation goal was to have an autopilot to steer the vessels. Daniels and
Tucker (1952) describe how the Braine gear was invented in 1906 to automatically steer model yachts
based on balancing the pressure on the mainsail and the pressure on the rudder. Another invention
initially applied to model yachts in 1919 was the wind-vane steering system used to keep the boat on
constant apparent wind (Førthmann, 1998). The same challenge led Minorsky (1922) to describe the
development of a three-term controller that became known as the PID (proportional integral derivative)
controller, which is nowadays the most widely used controller in most types of systems. In this last case,
the application was targeted at commercial and navy ships.

Advancements in sensor, communication and controller technology over the following years made
the second automation degree possible, but the transition to the third and fourth is still under way. In
recent years, unmanned surface vessels (USVs) have increased in popularity as an alternative to manned
vessels and other systems to reduce costs and operational risks for various industries. For instance, USVs
are supporting scientific research about the oceans, offshore oil & gas exploration and military training
(Liu et al., 2016). This trend has led to the development of many USV-specific vessel designs as it can
be seen in a non-exhaustive list of 50 USV projects until 2011 in Liu et al. (2016), in which the majority
are USV-specific designs. Another option is to convert existing (manned) surface vessels (SVs) to USVs.
One such example is the Telemetron vessel shown in Figure 1.1. Such conversions have the potential
to reduce costs even more for cases in which SVs are already successfully applied because there is no
need for investments on a new design development. Moreover, Bertram (2008) states that a conversion
augments the capabilities of a vessel by being able to operate both manned and unmanned in a proven
platform. This represents a more affordable and lower risk solution than a new USV-specific vessel
design.

1



1.2 Objectives, Scope and Limitations

Figure 1.1: USV Telemetron autonomously driving during tests in the Trondheimfjord with a safety pilot (Cour-
tesy of Maritime Robotics).

One of the goals when developing USVs is to provide reliable manoeuvring irrespective of the vessel
characteristics. The implementation of control system solutions and their tuning is a key task to achieve
this goal, but conversions that are time and cost restricted pose some particular challenges on these
tasks that this thesis intends to address. In these cases, commonly used methods, such as model-scale
tests for modelling of control system solutions, are not viable due to the cost and the time required
to execute these tests. In the project prior to this master thesis (de Freitas, 2019), a large selection of
methods were investigated to identify control system solutions that can be implemented and tuned under
these constraints. Alternatives were identified for thrust allocation, control law and reference filter, but
covering all these topics in this thesis is infeasible, so this work focuses on control-oriented modelling.
It is a proven solution already applied to real USVs, but improvements can still be made. For instance,
fully automating the system identification procedure for a model to be used by the control law.

This master thesis was done in cooperation with Maritime Robotics AS to tackle the challenges faced
on conversions and investigate viable alternatives to improve it. This has the potential to increase the
safety and decrease the costs of transportation and operations at sea by making the unmanned technology
available for a wider public at an even faster pace. Though the motivation for this study comes from cases
of conversion from SV to USV, the methodology can also be applied to reduce time and cost for USV-
specific designs.

1.2 Objectives, Scope and Limitations

The main objective of this thesis is to:

• Improve solutions to perform better conversions from SV to USV.

It is important to have a simple sentence to guide as the main objective, but underneath there are
some secondary objectives that specify what better conversions were thought to mean in the context of
this thesis:

• Minimize the cost.

• Minimize the time spent on trials and tuning.

• Maximize the performance of USVs, in terms of control precision and robustness.

2



1.3 Contributions

Aiming to reach such objectives, the project prior to this thesis (de Freitas, 2019) analysed a series
of control system solutions and selected the solutions considered best suited for this problem. Among
these results, it was chosen for this thesis to give continuity to studies on control-oriented modelling with
the focus of applying to conversions of SVs to USVs. Previous works on control-oriented modelling for
USVs (Breivik et al., 2008; Eriksen and Breivik, 2017, 2018; Kvalvaag, 2018) identified potential future
work, some of which were chosen to be addressed in this thesis.

As suggested in Kvalvaag (2018), the system identification procedure for the control-oriented model
has been almost completely automated, but still requires some tuning. Two new methods are proposed
and compared in this work in an attempt to fully automate the process. As suggested in Eriksen and
Breivik (2017), the results from system identification were used for tuning the reference filters. The
methods developed were applied to a high-speed USV actuated by an outboard engine (Figure 1.1), and
it is discussed how these methods could be applied to other types of USVs.

This thesis is structured as follows:

• Chapter 2 - Literature Review: Relevant theory on control system solutions and mathematical
models for vessels is followed by a thorough review of control-oriented modelling and the sys-
tem identification procedure for this modelling. In addition, reference filters are explored further
because system identification results were used to also tune them.

• Chapter 3 - Methodology: Description of two new methods of data extraction to fully automate
the system identification procedure, two heuristic methods to automatically remove unreliable data
from the procedure, and utilization of SI results to tune saturation limits of the reference filters.

• Chapter 4 - Results: Application of a complete system identification procedure to experimental
data from testing a USV using new methods proposed in Chapter 3.

• Chapter 5 - Discussion: Analysis of the results from Chapter 4 and its impacts on conversions of
different vessels.

• Chapter 6 - Conclusion: Summary and conclusion of the content of this thesis and a brief pre-
sentation of possible future works.

1.3 Contributions

The application of control-oriented modelling to USVs is not a novelty, but original methods were devel-
oped to fully automate the identification procedure. The foundation of methods for system identification
in this application are credited to Breivik et al. (2008), Eriksen and Breivik (2017) and Kvalvaag (2018),
and the procedure was almost automatic, still requiring tuning for data extraction and manual identifi-
cation of unreliable data. Therefore, the original methods from this work were developed to automate
these stages of identification. In addition, the resultant model was used to tune the reference filters of the
vessel.

Using data collected by Eriksen and Breivik (2017), the complete system identification procedure
was conducted and the following original methods were implemented:

• RW-SSID: Method for data extraction based on Dalheim and Steen (2020) using rolling windows
for steady-state identification.

• SIMID: Method for data extraction based on control-oriented model structure doing simultaneous
identification of inertia and damping parameters using optimization.

• Removal of Unreliable Data: Heuristic methods to automatically identify and remove data with
low signal-to-ratio and data containing unreached steady-state.

3



1.3 Contributions

• Tuning of Reference Filter Saturation Limits: Using the control-oriented model structure, this
method uses the identified model to tune the saturation limit of surge acceleration, yaw rate and
yaw acceleration for the system’s reference filters.
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Chapter 2
Literature Review

2.1 Control System Solutions

The most rudimentary way to control a vessel is to manually control each of its actuators. For example,
using the steering wheel to define the angle of a rudder and the throttle lever to define the RPM (rotations
per minute) of a thruster. However, this gets too complicated when a big number of actuators are available
and necessary, requiring a more refined control system solution. Since it is a manual mode, this is totally
dependent on the operator and provides no possibility of autonomy.

The next step in complexity is to add thrust allocation on the control system solution, as shown in
Figure 2.1. In this case, instead of defining commands for each actuator, the operator defines commands
for each controllable degree of freedom (DOF). The DOFs of a vessel are commonly defined in terms of
a body fixed axis, as shown in Figure 2.2. The controllable DOFs usually are the planar DOFs - surge,
sway and yaw - or a subset of them, while roll, pitch and heave are intrinsically stable due to the vessel’s
geometry and buoyancy forces, so there is no need to control them apart from in very specific cases.
Therefore, in this solution the operator commands a throttle or force percentage for each controllable
DOF, then the thrust allocation algorithm distributes this overall command as individual commands for
each actuator.

Thrust 
Allocation

Vessel 
Dynamics

Commands
Desired 
Thrusts

Sensor 
outputs

Figure 2.1: Block schematic of open-loop control system solution for the vessel system.

For example, on a cruise ship with two azimuth thrusters on the aft and a bow thruster, it means
setting desired forces and moments on surge, sway and yaw and having the thrust allocation define each
actuator’s angle and rpm to reach the overall command. This allocation depends on parameters of the
actuators, allocation objectives and implemented algorithms. In this case, the operator needs to give
three commands, instead of five if manually controlling all actuators, because it would be necessary to
control the angles of both azimuths, their RPMs and the RPM of the bow thruster. So it is clear to see
the reduction of complexity brought by the thrust allocation.
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2.1 Control System Solutions

Figure 2.2: Coordinate system for vessels indicating inertial and body fixed axes (Blanke and Christensen, 1993)

The two previous control solutions are open-loop systems in which the operator needs experience
to input proper commands so that the desired vessel dynamics are achieved. Although these control
solutions are theoretically sufficient to convert a SV to unmanned, the performance is far from ideal.
This is especially because the system is dependent on feedback from the operator, who is not on board.
Hence, a closed-loop structure is necessary.

The translation of the operator’s experience into algorithms can be divided into four new blocks for
the system: observer, maneuver planning, reference filter and controller. This logic is shown in Figure 2.3
based on Sørensen (2011). In this closed-loop system, the operator’s inputs are reduced to planning the
mission at the maneuver planning block, so not requiring nearly as much continuous critical operation
as when manually setting commands for the thrust allocation or directly for the actuators. The following
paragraphs detail the function of each of these new blocks.

Controller Thrust 
Allocation

Filtered 
commands

Sensors 
outputs

Forces

Moments

Desired 
Thrusts

Observer Vessel 
Dynamics

Maneuver 
Planning

Filtered 
and 

estimated 
states

Reference 
filter

Commands

Figure 2.3: Block schematic of closed-loop control system solution for the vessel system.
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Observer receives the states measured from the vessel dynamics and desired thrusts from the pre-
vious time step. When properly tuned, it filters sensor data and estimates observable unmeasured states
before inputting them to other blocks. This is useful for filtering out random noise as well as high fre-
quency waves, which usually do not need to be counteracted by the controller and would only lead to
more wear and tear of the actuators. Moreover, estimating unmeasured states allows for further control
possibilities and some degree of fault-tolerance if measurement signals are lost temporarily.

Maneuver planning receives the states from the observer and outputs commands to the reference
filter and the controller. The transformation from states to commands depends on what the operator
set as the mission plan. For example, if the plan is to follow a pre-defined path at a given speed, this
block compares the path and the desired speed with the current states and outputs the necessary speed and
heading based on its algorithm. This shifts the operator responsibility from closing the loop on Figure 2.1
to focusing on a higher-level control of the vessel, defining routes and objectives with far fewer updates
than the low-level represented by Figure 2.3.

Reference filter, also known as reference model, is a key block to improve the performance of
the controller. It filters step commands from maneuver planning into smooth continuous achievable
commands in order to avoid saturation, and consequent wear and tear, of actuators. Further detailing
about this block is discussed in Section 2.5 as the results from modelling the vessels dynamics can be
used to, at least partially, tune the reference filter.

Controller calculates the total forces and moments to be distributed by the thrust allocation. This is
done using the filtered commands from the reference filter and the states from the observer. There are
countless alternatives for the controller algorithms and they were explored in de Freitas (2019). One of
the conclusions was to use control-oriented models, which are described in Section 2.3 and further used
in Chapter 3.

A good way to understand the schematic in Figure 2.3 is to follow an example. A typical setup is
to have sensors measuring the vessel’s speed over ground (SOG), course over ground (COG), position
and heading. From these, the observer outputs filtered states as well as unmeasured but observable ones,
such as accelerations and velocity decomposed on the body fixed axis. The maneuver planning has a
mission set by the operator to follow a path at a given speed. Thus, it receives the states and outputs
the necessary surge speed and heading based on its algorithm. The reference filter is input with both
surge speed and heading commands from guidance and outputs their filtered values. The controller uses
these in its algorithm to output total desired surge force and yaw moment. Finally, these are distributed
among the thrusters by the thrust allocation so that the vessel follows the path with the given speed as
determined in the maneuver planning block.

Since parts of each of these blocks can lead to an entire project of research, assumptions were made
to decrease the scope of the initial study (de Freitas, 2019), focusing on parts that were considered more
relevant for the conversion of SVs to USVs. All necessary states commonly available were considered
measured and free of noise, neglecting the need for an observer. In addition, the commands were de-
signed to match whatever was considered necessary for the specified control solution, neglecting the need
for the maneuver planning block. The results provided recommendations of algorithms for thrust allo-
cation, controller and reference filter. From these, it was decided to focus this work on control-oriented
modelling, which is used by the suggested controller and can also be used to tune the reference filter.

Since control-oriented modelling for USVs is a recent technique first seen in Breivik et al. (2008),
it is first presented in the following section the classical mathematical models used for modelling the
dynamics of vessels. Then, Section 2.3 presents control-oriented modelling, comparing it to the classical
models.

2.2 Classical Mathematical Models

This section summarises the most commonly used mathematical models to represent vessel dynamics
and their possible variations. In order to keep consistency between the models presented, all of them
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follow the same coordinate system shown in Figure 2.2 with all 6 DOFs. The inertial axis is fixed to
the Earth on an arbitrary point on the water surface and uses North-East-Down (NED) coordinates. The
axis x0 points North, y0 points East and z0 down. The body-fixed axis follows the same convention with
positive heave downwards from the axis’ origin, positive surge towards the bow and positive sway to
starboard (Perez and Fossen, 2007). The origin of the body fixed axis can be defined anywhere on the
vessel, but it is common to place it at the vessel’s geometric centre. It can also be placed on the centre of
gravity (CG), but this is avoided because CG is not a fixed position.

Although realistically all DOFs are coupled, there are some assumptions that can simplify the models
without serious negative consequences to the representation. This work focuses on the three planar
DOFs - surge, sway and yaw - while the others - heave, roll and pitch - are considered to always be
on the equilibrium point as they are inherently stable for vessels. That is because the coupling between
planar DOFs and others is small, only being more relevant on extreme weather conditions. Moreover,
the stability of heave, roll and pitch makes it rare to focus on making them controllable.

Intending demonstrate the relation between the inertial and the body fixed axis, the correspondence
between planar velocities is shown in Equation (2.1). η = [x, y, ψ]> is the position of the vessel regard-
ing the inertial axis. ν = [u, v, r]> is the velocity of the vessel in the body fixed axis orientation. R(ψ)
is the rotation matrix as a function of the heading ψ shown in Equation (2.2) (Fossen, 2011).

η̇ = R(ψ)ν (2.1a)ẋẏ
ψ̇

 =

u cosψ − v sinψ
u sinψ + v cosψ

r

 (2.1b)

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.2)

All of the mathematical models described in this section follow these definitions. However, the
simplification to three planar DOFs is not sufficient to derive analytical models due to the complexity
of the interaction between hulls and fluids. Therefore, more assumptions are necessary to represent this
interaction.

One of the earliest mathematical models still in use to represent the vessel’s dynamics is the first-
order steering model by Nomoto et al. (1957) as presented in Equation (2.3). It relates the yaw rate of
the vessel r with rudder angle commands δ as a function of parameters T and K. The vessel speed is
considered constant and disturbances are neglected. Nomoto et al. (1957) also proposed a second-order
model with more parameters, as presented in Equation (2.4), but with the same purpose. Even though
these contain many simplifications to cut the tuning down to only a few parameters, they are so powerful
that they are still used nowadays on autopilot implementations.

T ṙ + r = Kδ (2.3)

T1T2r̈ + (T1 + T2)ṙ + r = Kδ +KT3δ̇ (2.4)

For a different approach, Abkowitz (1980) used third-order Taylor series expansion around a constant
surge speed u0 to propose a model including all planar DOFs. The variation of velocity ∆ν from the
reference of the expansion ν0 is presented in Equation (2.5). This leads to the hydrodynamic forces being
represented by Equation (2.6) and vessel accelerations by Equation (2.7):

∆ν = ν − ν0 = [u, v, r]> − [u0, 0, 0]> = [∆u, v, r]> (2.5)
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2.2 Classical Mathematical Models

X(∆ν, δ) = X(ν0, 0) +Xu∆u+Xuu∆u2 +Xuuu∆u3 +Xvvv
2+

(Xrr +mxg)r
2 +Xδδδ

2 +Xvvuv
2∆u+Xrrur

2∆u+Xδδuδ
2∆u+

(Xvr +m)vr +Xvδvδ +Xrδrδ +Xvruvr∆u+Xvδuvδ∆u+Xrδurδ∆u (2.6a)

Y (∆ν, δ) = Y (ν0, 0) + Yu∆u+ Yuu∆u2 + Yvv + Yvvvv
3 + Yvrrvr

2+

Yvδδvδ
2 + Yvuv∆u+ Yvuuv∆u2 + (Yr −mu)r + Yrrrr

3 + Yrvvrv
2+

Yrδδrδ
2 + Yrur∆u+ Yruur∆u

2 + Yδδ + Yδδδδ
3 + Yδvvδv

2+

Yδrrδr
2 + Yδuδ∆u+ Yδuuδ∆u

2 + Yvrδvrδ (2.6b)

N(∆ν, δ) = N(ν0, 0) +Nu∆u+Nuu∆u2 +Nvv +Nvvvv
3 +Nvrrvr

2+

Nvδδvδ
2 +Nvuv∆u+Nvuuv∆u2 + (Nr −mxgu)r +Nrrrr

3 +Nrvvrv
2+

Nrδδrδ
2 +Nrur∆u+Nruur∆u

2 +Nδδ +Nδδδδ
3 +Nδvvδv

2+

Nδrrδr
2 +Nδuδ∆u+Nδuuδ∆u

2 +Nvrδvrδ (2.6c)

u̇ =
X(∆ν, δ)

m−Xu̇
(2.7a)

v̇ =
(Iz −Nṙ)Y (∆ν, δ)− (mxg − Yṙ)N(∆ν, δ)

(m− Yv̇)(Iz −Nṙ)− (mxg −Nv̇)(mxg − Yṙ)
(2.7b)

ṙ =
(m− Yv̇)N(∆ν, δ)− (mxg −Nv̇)Y (∆ν, δ)

(m− Yv̇)(Iz −Nṙ)− (mxg −Nv̇)(mxg − Yṙ)
(2.7c)

where m is the vessel mass, Iz is the inertia around yaw axis and xg is the surge distance from body
fixed axes origin to CG. These are directly obtained from the vessel properties, but the other parameters,
commonly called hydrodynamic derivatives, need system identification (SI) techniques to have their val-
ues defined. The capital letters on the hydrodynamic derivatives correspond to which force it contributes
to and the subscript letters are the speeds or rudder angle to be multiplied to it. For example, Yvrr is
multiplied by vr2 and this multiplication contributes to the total sway force Y . These Taylor-series ex-
pansions do not contain all possible parameters, because many were neglected due to assumptions, such
as considering a port starboard symmetry that decouples surge from sway and yaw (Abkowitz, 1980;
Fossen, 2011). Therefore, although it is clear to see the increase of the number of parameters compared
to the Nomoto models, the Abkowitz model also holds simplifications.

These are two of the most well-known mathematical models for vessels in literature and many others
exist with different assumptions that have been used to represent different vessels. Fossen (2011) presents
many of these alternatives and uses a matrix representation to simplify the notation as shown in Equation
(2.8). This general matrix representation includes coriolis-centripetal C and damping D components
on the left side and a general force vector τ on the right side, but this is adaptable. For example, the
Abkowitz model from Equations (2.6) and (2.7) is rewritten in Equation (2.9) with C andD considered
incorporated in τ and no disturbances or actuators other than the rudder.
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Mν̇ +C(ν)ν +D(ν) = τ (ν, δ) (2.8)m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ

u̇v̇
ṙ

 =

X(∆ν, δ)
Y (∆ν, δ)
N(∆ν, δ)

 (2.9)

2.3 Control-Oriented Model

Classical mathematical models for vessels are designed to be applicable at service speed in displacement
regime (Fossen, 2005). The speed regime of a vessel is defined by its Froude number as defined in
Equation (2.10):

Fn =
U√
gL

(2.10)

where U is speed, g gravity acceleration and L vessel length. A Froude number below 0.3 defines a
displacement regime. Classical mathematical models were designed for such regime, because they were
designed for large vessels in open-water voyages keeping roughly the same speed for days and that
cannot reach Froude numbers above 0.3. However, that is not the case for the smaller USVs considered
in this work. They are expected to operate in conditions requiring more maneuverability and precision
of control at varied speeds, including Froude numbers above 0.3 (Breivik et al., 2008).

Inspired by aircraft control theory and targeted to underactuated vessels, a version of control-oriented
model was presented by Breivik et al. (2008) as a feedforward component for a gain-scheduled PID
controller to fit USVs with a varied range of operation. This method intends to provide a model that is
simple to fit to a vessel, as opposed to the classical models, that are demanding to fit robustly (Breivik
et al., 2008). The controller was applied to a straight-line target tracking problem for a USV and was
therefore divided into total linear speed (U =

√
u2 + v2) and yaw rate (r) controllers. The speed part

combines a feedforward term, derived exclusively from experimental trials, and a PI term to compensate
for uncertainties on the feedforward, while the yaw rate part only contains the PI term. The model
consists of a scaled throttle (ς) as a function of surge speed (u) in a third order polynomial shown in
Equation (2.11a) and a linear transformation from ς to the actual throttle input (τ ) shown in Equation
(2.11b). Breivik et al. (2008) used σ to define scaled throttle instead of ς , but it was changed in this work
to avoid confusion with other uses of σ.

ς(u) = cu3u
3 + cu2u

2 + cu1u+ cu03 (2.11a)
τ(ς) = cς1ς + cς0 (2.11b)

The constants (c) from the functions are obtained through least-squares curve fitting. More on SI
in Section 2.4. Both τ and σ range from 0 to 1, clearly showing the more direct approach from the
control-oriented model, instead of the classical models using forces and moments.

This model is further developed in Eriksen and Breivik (2017) by applying it to both speed and yaw
rate and including inertia terms as shown in Equation (2.12). The motor throttle is defined only for
positive commands as τm ∈ [0, 1] and the rudder input as τδ ∈ [−1, 1]. This formulation seems similar
to the classic models, withM(x) as a inertia matrix and σ(x) as a damping term, but it uses normalized
commands instead of forces and moments for τ , making this a non-first principles model. The similar
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denomination of these components is kept as a simplification.

M(x)ẋ+ σ(x) = τ (2.12a)

M =

[
mU (x) 0

0 mr(x)

]
, σ =

[
σU (x)
σr(x)

]
, x =

[
U
r

]
, τ =

[
τm
τδ

]
(2.12b)

While Breivik et al. (2008) modelled σ as a third order polynomial function of surge speed, Eriksen
and Breivik (2017) modelled bothM and σ as fourth order functions of both states as shown in Equation
(2.13). Inertia components also have an extra asymptotic basis function added to improve capability to
fit to the vessel’s dynamics. The β components are vectors of parameters that are found during SI to
define the model to a respective vessel. In addition, the two hyperparameters a and b in φm also need to
be identified during SI independently for mU and mr. Hyperparameters are parameters that need to be
defined before performing regression to find the other parameters.

mU (x) = φm(x)βmU , mr(x) = φm(x)βmr (2.13a)

φm(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4, U3r, U2r2, Ur3, r4, tanh (a(U − b))] (2.13b)
σU (x) = φσ(x)βσU , σr(x) = φσ(x)βσr (2.13c)

φσ(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4, U3r, U2r2, Ur3, r4] (2.13d)

Finally, in Kvalvaag (2018) a reduction of φ vectors is proposed based on expected symmetries of the
dynamics. The damping always opposes the direction of movement, so considering the boat starboard-
port symmetric and the rudder action unbiased to any side, the yaw rate components in φσr have to be
an odd function. This reduction is shown in Equation (2.14). On the other hand, these same symmetries
result in the yaw rate components in φσU having to be an even function (Equation (2.15)). For inertia
components, both are also even functions for r due to the same symmetries and to keep inertia parameters
positive (Equation (2.16)). Since only positive surge speeds are considered, no reduction is proposed for
U components.

φσr(x) = [1, U, r, U2, Ur, U3, U2r, r3, U4, U3r, Ur3] (2.14)

φσU (x) = [1, U, U2, r2, U3, Ur2, U4, U2r2, r4] (2.15)

φmU (x) = [1, U, U2, r2, U3, Ur2, U4, U2r2, r4, tanh (aU (U − bU ))] (2.16a)

φmr(x) = [1, U, U2, r2, U3, Ur2, U4, U2r2, r4, tanh (ar(U − br))] (2.16b)

2.4 System Identification

According to Ljung (1998), system identification is the process of transforming observed input and output
data from a system into a mathematical model. Such process being divided in four stages:

1. Observed data;

2. Candidate models;

3. Criterion of fit;

4. Validation.
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Each of these could be performed with many alternative methods, so they are explained in this thesis
with examples from what was done in previous works about control-oriented models. The next sec-
tions follow the system identification structure used by the control-oriented model references shown
in Figure 2.4, which is an extended subdivision of the list above by Ljung (1998). All performed the
identification of the mathematical model for a small USV equipped with a rotatable outboard engine.

Start

Experiment design

Data Collection

Data Extraction

Model Structure Selection

Parameter Identification

Model Validation

Any model sufficient?

Unmeasured data
necessary?

Finish

Yes

Yes

No

No

Figure 2.4: System identification procedure (Adapted from: Kvalvaag, 2018).

2.4.1 Experiment Design and Data Collection

The first step on the observed data stage is to acquire the necessary data. In order to do so, the operational
range of the system must be known as well as the available commands and outputs to be measured. This
information is used to design the experiments required to collect the necessary data and choose the
sensors necessary to collect such data. Previous knowledge of general model structures applicable to the
system being handled can be useful to minimize possible iterations.

For the small USVs used, the available commands are throttle and rudder angle commands. It is
desired to identify damping and inertia components for surge speed and yaw rate, so two sets of tests
were designed:

1. For each throttle command, vary rudder angle from zero to maximum stepwise and using the same
steps back to zero.

2. For each rudder angle command, vary throttle from zero to maximum stepwise and using the same
steps back to zero.

Each step should be long enough to allow for steady-state periods, which are used to identify damping
components, while transient periods are used to identify inertia components. Since the rudder action is
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considered symmetrical, there is no need to test both sides. This setup for experiment design is demon-
strated in Figure 2.5, showing the expected boundaries of outputs in red and the inside area being covered
by the step commands. Blue lines correspond to constant throttles and yellow lines to constant rudder
angles.

Figure 2.5: Red boundaries representing limits of inputs for the vessel and input sequence of commands resulting
from experiment design represented by yellow (changing throttle) and blue (changing rudder angle) dotted lines
(Eriksen and Breivik, 2017).

Kvalvaag (2018) also considered in the experiment design the possible deadbands of input commands
as shown in Figure 2.6. This includes direct deadbands of throttle commands (green and red areas) and
safety deadbands for a combination of high throttle and big rudder angle to avoid dangerous sharp turns
at high speeds. Such deadbands can also be adapted to the model structure as done in Equation (2.11b)
by Breivik et al. (2008).
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Figure 2.6: Deadbands of input commands from experiment design. The green and red regions represent areas
where changes in commanded throttle do not affect motor response and the blue region is a user-defined region to
avoid sharp turns at high speeds for safety (Kvalvaag, 2018).

Finally, position and heading sensors are necessary for the collection of data, so that speed and yaw
rate can be derived. Speed can also be acquired directly, for instance with sensors that measure water
flow under the hull. Besides, more than the expected speed and yaw rate, it is important to also acquire
the feedback signals from rudder angle and throttle, because their actuation is not instantaneous to the
received command.

2.4.2 Model Structure Selection

There exist three types of model structures (Ljung, 1998):

1. Black-box structures, not based in physics principles;

2. Structures from physical modelling;

3. Structures from semi-physical modelling.

While black-box models totally depend on the data collected to be defined, physical and semi-
physical models can be defined prior to the experiment design stage, minimizing the necessity of it-
erations. Anyway, it cannot be guarantee beforehand that no iterations will be necessary, as they may
occur due to unexpected dynamics not properly fitting to the model structure chosen.

The control-oriented models, that can be considered semi-physical models, used by Breivik et al.
(2008), Eriksen and Breivik (2017) and Kvalvaag (2018) are presented in Section 2.3 and all of them used
only one model structure without iterations. Although various models could be tested simultaneously,
the next sections consider the choice of a singular model on this step to simplify explanation.

2.4.3 Data Extraction

After the model structure is defined, the data expected by the model for parameter identification must be
extracted from the collected data. This procedure is totally dependent on the model chosen, so this is
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illustrated by an example from the control-oriented moddeling for USVs literature:

Steady-State Identification

As explained in Section 2.4.1, transient and steady-state periods are used to identify inertia and damping
components respectively. Thus, these periods must be identified in the data as exemplified in Figure 2.7.

Time [s]
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r
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Figure 2.7: Example sequence of step commands and splits of the data between grey areas of steady-state and
white areas of transient (Eriksen and Breivik, 2017).

While Eriksen and Breivik (2017) manually defined the transition instants, Kvalvaag (2018) auto-
mated the steady-state identification (SSID). Intending to achieve this automation, a test statistic (R) was
defined as in Equation (2.17) and Equation (2.18) based on Cao and Rhinehart (1995). xi represents the
i-th state of the system and the subscript f indicates a filtered state.

R =
(2− λ1)ν2f,i

δ2f,i
(2.17)

where,

ν2f,i = λ2(xi − xf,i−1)2 + (1− λ2)ν2f,i−1 (2.18a)

δ2f,i = λ3(xi − xi−1)2 + (1− λ3)ν2f,i−1 (2.18b)

xf,i = λ1xi + (1− λ1)xf,i−1 (2.18c)

The null hypothesis, H0, to identify that the system is in steady-state and the alternate hypothesis,
H1, for transient state are defined in Equation (2.19). Rlb and Rlb are lower and upper bounds of the
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hypotheses respectively.

H0 : R ≤ Rlb (2.19a)
H1 : R ≥ Rub (2.19b)

While this method succeeds in minimizing the workload necessary by avoiding manual identification
of transitions, it is not fully automated. It is necessary to tune five parameters: λ1, λ2, λ3, Rlb and Rub
for each state.

Damping data

With the separation of steady-state and transient periods complete, results from each period are extracted
to be used for parameter identification. Damping data is extracted from steady-state periods since, ac-
cording to the model in Equation (2.12), the lack of acceleration leads to damping equal to inputs (Equa-
tion (2.20)).

σ(x) = τ (2.20)

Then, each steady-state period i has its states averaged (x̄i) and assigned to the corresponding damp-
ing (σi) in the data set (Dσ) as shown in Equation (2.21).

Dσ =

[
x̄1 x̄2 ... x̄n
σ1 σ2 ... σn

]
(2.21)

As there is an assumption of port-starboard symmetry on the rudder-generated forces, the response
for zero rudder angle in steady-state must be σr = 0, but some offset may be present in the results
due to disturbances, so σr = 0 must be forced in the data set for these cases (Eriksen and Breivik,
2017). Another modification to the data sets due to this assumption is to mirror results supposing
opposite rudder angle. This would lead every column from damping data set with rudder angle dif-
ferent than zero (Dσ,c = [Ū , r̄, σU , σr]

>) to insert in the data set its port-starboard symmetric set
(Dσ,sym = [Ū ,−r̄, σU ,−σr]>).

Inertia data

Inertia data is extracted separately for surge and yaw, because it depends on whether the step was in
throttle or rudder angle. Considering state xi for a step in τi and inertia parameter mi, Eriksen and
Breivik (2017) proposed a linearized version of the control-oriented model (Equation (2.12)) to be used
for each transient period as shown in Equation (2.22). (·)+ represents the value of a variable at the final
timestep of the region and (·)− at the first timestep.

mi∆ẋi + ki∆xi = ∆τi (2.22a)

ki =
σ+xi − σ−xi
xi+ − xi−

(2.22b)

∆τi = τi − τ−i (2.22c)

∆xi = xi − x−i (2.22d)

The only unknown in Equation (2.22a) is the inertia parameter mi. It can be identified by curve
fitting the acquired data xi from trials to the ordinary differential equation’s solution (Equation (2.23)).
An example is shown in Figure 2.8. The fitting can be performed by doing an optimization as Equation
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2.4 System Identification

(2.24), minimizing the squared error between data xi and the estimate x̂i as a function of mi. As a
modification in notation to make explanations and equations clearer, (̂·) represents that the variable is
estimated, not measured.

x̂i(t) =
∆τi
ki

(
1− e

−kit

mi

)
+ xi

− (2.23)

m̂i = arg min
mi

t+−t−∑
t=0

[xi(t)− x̂i(t)]2 (2.24)
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Figure 2.8: Extraction of inertia measurement mU for a step in the surge speed, showing how the result is affected
by changes in mU (Eriksen and Breivik, 2017).

After the inertia parameter is identified for all transient periods, the data sets can be prepared. Instead
of the average for the states for the entire time series, as done for the damping set, this data set only
averages the first and last states of the period (Equation (2.25)) due to the linearization in Equation
(2.22a), and place it in the midrange value for the states. Finally, the inertia sets are presented in Equation
(2.26).

x̄∗i =
x+
i − x−i

2
(2.25)

DmU =

[
x̄∗1 x̄∗2 ... x̄∗n
mU,1 mU,2 ... mU,n

]
(2.26a)

Dmr =

[
x̄∗1 x̄∗2 ... x̄∗n
mr,1 mr,2 ... mr,n

]
(2.26b)
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2.4 System Identification

The port-starboard symmetry on the rudder-generated forces discussed in the previous section also
leads to extra columns for the data sets. Opposite rudder angle should produce the same inertia results,
so every column from inertia data set with rudder angle different than zero inserts in the data set its
port-starboard symmetric set. For instance, using surge inertia data sets, DmU ,c = [Ū , r̄,mU ]> leads to
also adding (DmU ,sym = [Ū ,−r̄,mU ]>).

2.4.4 Parameter Identification

At this stage, the data extracted is used to identify the parameters of the chosen model. In the control-
oriented model case, this means data sets D are used to define the parameter vectors β from Equation
(2.13). Both Eriksen and Breivik (2017) and Kvalvaag (2018) use similar solutions for this, a weighted
linear least squares with regularizarion and cross-validation.

The common weighted least squares method is formulated as shown in Equation (2.27). Applying it
to the control-oriented model formulation, it can be used to identify β by considering yi the normalized
damping and inertia terms from the data sets and ŷi the normalized estimations by the model as a function
of the states from the data sets. Equation (2.28) gives the example of applying this formulation to identify
β for the surge inertia part of the model using DmU . Although it could be possible to make estimates
for the weights wi, Kvalvaag (2018) did not consider it a good option and followed Eriksen and Breivik
(2017) heuristic approach of setting all equal to one and changing to smaller values in case of clear
outliers. The normalization of states from data sets is done because U and r have different domains, but
should have the same impact in the results of least-squares method (Eriksen and Breivik, 2017).

εLS =

n∑
i=1

wi(yi − ŷi)2 (2.27)

εLS =

n∑
i=1

wi(mU,i − φm(x̄∗i )βmU )2 (2.28)

In this formulation, there is an analytical solution for β that minimizes εLS as shown in Equation
(2.29) still following the previous example.

βmU = (X>WX)−1X>WY (2.29a)
X = [x̄∗1, x̄

∗
2, ..., x̄

∗
n] (2.29b)

Y = [mU,1,mU,2, ...,mU,n] (2.29c)
W = [w1, w2, ..., wn] (2.29d)

A recurring problem for this fitting technique in a case with few data points and considerable model
complexity is overfitting and this can compromise predictions, as shown in an original example in Fig-
ure 2.9. According to Hastie et al. (2009), the prediction accuracy can be improved by shrinking re-
gression coefficients in order to minimize overfitting, a method also known as regularization. A general
formulation for Equation (2.27) including regularization is shown in Equation (2.30).

εLS =
n∑
i=1

wi(yi − ŷi)2 + λR(β) (2.30)

The regularization weight λ controls the amount of shrinkage of parameters in β (Hastie et al., 2009)
and becomes a hyperparameter of the problem. There are different options for the regularization function,
for example Lasso (Equation (2.31)) and Ridge (Equation (2.32)).
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Figure 2.9: Example of the consequences of overfitting and importance of model reduction. Second order polyno-
mial shows a good fit to the original data, while the ninth order polynomial is overfitted to points, not corresponding
well to original data.

R(β) = ||β||1 =
∑
i

|βi| (2.31)

R(β) = ||β||2 =

√∑
i

|βi|2 (2.32)

The identification of hyperparameters, in the control-oriented model case λ from regularization and
a and b from φm, was performed by the reference literature using cross-validation. As an example, the
cross-validation method used by Eriksen and Breivik (2017) was leave-one-out cross-validation. This
method excludes one data point to be used as validation for the parameters identified and the rest is used
for training, repeating the process for all data points and looking for an overall minimum validation error.

2.4.5 Model Verification

Finally, the last stage of system identification is model verification. This is a crucial step to decide if
results found on previous stages are satisfactory or if another iteration of the process is necessary. The
verification can be performed by using a different trial, different to the one used for identification, and
comparing the results for the states acquired and the output of simulating the identified model with the
same inputs.

Figure 2.10 shows the surge speed results of model verification by Eriksen and Breivik (2017). It is
clear to see that the trial was different from the one used for identification as described in Section 2.4.1
and the results from simulation were considered satisfactorily close to real data, apart from some small
offsets. Therefore, in this case there was no iteration on the SI process and the model was approved.
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Figure 2.10: Surge speed results for model verification comparing acquired trial data in blue and data from simu-
lating resulting model from SI in red (Eriksen and Breivik, 2017).

2.5 Reference Filter

The reference filter is responsible for a smooth transition between different commands that come from
maneuver planning. This filtering smooths the steps on commands with two objectives. The first is to
avoid saturation, and consequent wear and tear, of actuators. The second is to minimize integral wind-up
problems in the controller. These problems happens when commands are changed much faster than the
vessel can respond and the error caused by this reaction delay accumulates on the integral component of
the controller, leading to undesired overshooting.

As in the previous sections, the reference filter can be modelled using different techniques. One of
the options is a mathematical model of the vessel’s dynamics as complete as possible to properly filter
commands into feasible desired states. This is done by generating smooth reference trajectories using
model simulations coupled with a controller. Examples are presented in Fossen (2011).

Another alternative is to model the filter like a mass-damper-spring system directly as a function of
natural frequency ωn and damping ratio ζ. Equation (2.33) presents the transfer function R(s) of this
approach, that keeps the tuning as simple as possible. With the purpose of also having smooth second
derivatives, a low pass filter is typically cascaded with the mass-damper-spring system as presented in
Equation (2.34) (Fossen, 1994, 2011). The low pass filter has period Tn = 1/ωn.

R(s) =
ω2
n

s2 + 2ζωns + ω2
n

(2.33)

R(s) =
ω2
n

(1 + Tns)(s2 + 2ζωns + ω2
n)

(2.34a)

=
ω3
n

s3 + (2ζ + 1)ωns2 + (2ζ + 1)ω2
ns + ω3

n

(2.34b)

One possible additional improvement for both cases is to add saturating elements to the first and
second derivatives of the filtered state. This seems especially necessary because the linear system has
an exponential convergence, but this should be applicable to every step amplitude (Fossen, 2011). This
means that every filtered step converges in the same period of time, but this is not realistic for this
application, so the saturating elements are necessary. The saturation is tuned depending on the vessel’s
limitations, which can be identified during SI, as suggested by Eriksen and Breivik (2017) to be done
while identifying the control-oriented model and explored in Section 3.5. Then, the other parameters
are tuned depending on how fast the transition is desired, but also trying to avoid frequent saturation.
Figure 2.11 exemplifies this by showing heading step commands and their respective filtered and filtered
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+ saturated results. For step commands, the derivatives are infinite, but it is possible to compare them
between the same filters with and without saturation as shown in Figure 2.12 for yaw rate limited to
± 8 deg/s and Figure 2.13 for yaw angular acceleration limited to ± 2 deg/s2.
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Figure 2.11: Comparison between heading step commands and their correspondent filtered and filtered + saturated
results for mass-damper-spring based reference filter. Step commands instantly reach desired new values, filtered
results converge all at the same time, and filtered + saturated results converge in a more realistic behaviour due to
saturation limits (de Freitas, 2019).
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Figure 2.12: Comparison between filtered and filtered + saturated results for yaw rate for mass-damper-spring
based reference filter in the same steps from Figure 2.11. Yaw rate saturation is defined at ± 8 deg/s. Step com-
mands are not shown because they are not continuous, so cannot be derived and have their results here (de Freitas,
2019).
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Figure 2.13: Comparison between filtered and filtered + saturated results for yaw angular acceleration for mass-
damper-spring based reference filter in the same steps from Figure 2.11. Yaw angular acceleration saturation is
defined at± 2 deg/s2. Step commands are not shown because they are not continuous, so cannot be double derived
and have their results here (de Freitas, 2019).

Breivik et al. (2008) also uses similar saturating elements, but on another structure for the reference
filter in which the saturation elements are intrinsic. Instead of using a lowpass filter, an approximation
using hyperbolic tangents is proposed, as shown in equations (2.35) to (2.39) for the surge speed. The
tunable parameters on this reference filter are the maximum surge speed achievable by the USV umax,
the acceleration limit α(t) that must be designed between zero and the maximum achievable by the USV
αmax, and the agility gain kp,ρ̃ for the step commands. Figures 2.14 and 2.15 show the behaviour of this
filter for varied steps of surge speed.

ur(t) = umax tanh

(
ρr(t)

umax

)
(2.35)

ρ̇r(t) = α(t) tanh

(
kp,ρ̃ρ̃(t)

α(t)

)
(2.36)

ρ̃(t) = ρd(t)− ρr(t) (2.37)

ρd(t) = umax tanh−1
(
ud(t)

umax

)
(2.38)

ρr(0) = umax tanh−1
(
u(0)

umax

)
(2.39)
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Figure 2.14: Comparison between surge speed step commands and their correspondent filtered + saturated results
for reference filter based on hyperbolic tangents. Step commands instantly reach desired new values, and filtered
+ saturated results converge in a more realistic behaviour due to saturation limits (de Freitas, 2019).
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Figure 2.15: Filtered + saturated results for surge acceleration for reference filter based on hyperbolic tangents
in the same steps as Figure 2.14. Step commands are not shown because they are not continuous, so cannot be
derived and have their results here (de Freitas, 2019).
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Chapter 3
Methodology

3.1 Problem Formulation

Control-oriented modelling is presented in Chapter 2 as a good option to be used during a conversion of
SVs to USVs. In contrast to classical mathematical models for vessels, it is simpler to identify, while
not compromising performance and being suitable for both displacement and non-displacement regimes
(Breivik et al., 2008). Since the objective of this thesis is to perform better conversions, this chapter
presents methods, newly developed or adapted, to improve control-oriented modelling by further au-
tomating SI using techniques different from what was previously tried and identifying tuning parameters
for the system reference filter from the SI results.

The methods from the reference literature were implemented in the Marine Systems Simulator (Fos-
sen and Perez, 2004) to test with different vessel dynamics and identify opportunities for improvements.
Insights from the simulations led to the new methods described in this chapter. In addition, the simula-
tions also showed that the resulting controller using the control-oriented model had no remarkable issues
with straight path following scenarios, so while this topic was proposed in this thesis’ work description,
it was not further explored.

Some parts of SI are not covered in this chapter because no changes were implemented on them
compared to the reference literature as presented in Chapter 2. The model structure used was the same as
proposed by Kvalvaag (2018) with even and odd functions for inertia and damping parameters (Equations
2.14, 2.15 and 2.16). There was an intention of running new experiments with a different vessel, but due
to the restrictions imposed by the government following COVID-19 pandemic at the beginning of 2020,
these experiments were cancelled. Instead, data collected by Eriksen and Breivik (2017) was used for SI
and model validation. Specifications of the Telemetron USV (Figure 1.1), used for data collection, are
presented in Table 3.1.
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3.2 Rolling Window Steady-State Identification (RW-SSID)

Component Description
Vessel hull Polarcirkel Sport 845

Length 8.45 m
Beam 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of throttle valve
Rudder control Hydraulic actuation of outboard engine angle with

proportional-derivate (PD) feedback control
Navigation system

Identification experiments Kongsberg Seatex Seapath 330+
Control experiments Hemisphere Vector VS330

Table 3.1: Telemetron USV specifications (Eriksen and Breivik, 2017).

3.2 Rolling Window Steady-State Identification (RW-SSID)

Kvalvaag (2018) presented an automation for SSID on USV data based on Cao and Rhinehart (1995), as
described in Section 2.4. However, it was still necessary to manually tune 10 parameters, 5 for surge data
and 5 for yaw data. In an attempt to minimize the amount of tuning parameters in this process, RW-SSID
is presented in this section, a different SSID method using rolling windows to distinguish steady-state
and transient regions based on Dalheim and Steen (2020).

The assumption of this method is that data regions of the system can be modelled as shown in
Equation (3.1), the state x is a linear function of time added to a zero-mean white noise component w:

x = b0 + b1t+ w(t) (3.1)

With the objective of determining if a region consists only of steady states, the function parameters
and standard deviations of the noise and the linear slope must be calculated. The linear slope b1 can be
estimated using least squares error, as shown in Equation (3.2). The intercept b0 estimation is calculated
in Equation (3.3) using b̂1. The standard deviation of the noise σ̂w is calculated in Equation (3.4) and
used to calculate the standard deviation of the linear slope σ̂b1 in Equation (3.5). The number of timesteps
in the data region is defined by nt, differing from the notation n used by Dalheim and Steen (2020) to
differentiate it from other uses in this work.

b̂1 =

∑nt
t=1 tx− 1

nt

∑nt
t=1 t

∑nt
t=1 x∑nt

t=1 t
2 − 1

nt
(
∑nt

t=1 t)
2

(3.2)

b̂0 =
1

nt

(
nt∑
t=1

x− b̂1
nt∑
t=1

t

)
(3.3)

σ̂w =

√√√√ 1

nt − 2

nt∑
t=1

(x− b̂1t− b̂0)2 (3.4)

σ̂b1 =
σ̂w√∑nt

t=1(t− t̄)2
(3.5)

The null-hypothesis of the region being a steady-state region is tested using a Student’s t-distribution.
Steady-state would mean a constant state over time, so a two-tailed t-test is applied to b̂1 to check how
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3.2 Rolling Window Steady-State Identification (RW-SSID)

significantly it is different from zero. This test is performed as shown in Equation (3.6), where tα/2,nt−2
is a tabulated value from the Student’s t-distribution. α is the significance level and nt − 2 the number
of DOFs. If the test is true, the null hypothesis is rejected, i.e. the region is not a steady-state region
(Dalheim and Steen, 2020).

t1 =
|b̂1|
σ̂b1

(3.6a)

t1 > tα/2,nt−2 (3.6b)

The approach to cover all data is to use a rolling window and the size nt of the window is a tuning
parameter. Longer windows are better for detecting long-term drift, while shorter windows are better for
detecting fast changing unsteady behaviour. The rolling window is designed to have a maximum overlap
during propagation, so it is shifted at single timesteps until all data is covered (Dalheim and Steen, 2020).

The detection of transition from one type of state to another has a simplification compared to Dalheim
and Steen (2020) due to the nature of the system analysed. The transition from steady-state to transient
is simple to identify, because it happens when the step command for either throttle or rudder angle is
given. Therefore, there is no need to analyse this transition, as it is already known. On the other hand,
the transition from transient to steady-state is smooth and completely depends on the dynamics of the
vessel, making it harder to identify, especially in the presence of external disturbances. Consequently, in
this transition the SSID technique is necessary.

Given these circumstances, the transition from transit to steady-state is then defined as the final
point of the first window after a step in command to have a false result in Equation (3.6), confirming
the null-hypothesis. This procedure differs from Dalheim and Steen (2020), who define a transition to
steady-state from the first point of the window. This change was made based on findings by Kvalvaag
(2018) that premature identification of a transition has negative impact on the results and it is better to
focus on certainty of transition rather than accuracy.

After the identification, the extraction of data for the data sets remains the same as the reference
literature for both inertia and damping sets, DmU , Dmr , DσU and Dσr . This procedure is explained in
Section 2.4.3.

An example case for RW-SSID is shown in Figure 3.1. The data was created analytically and white
noise was added. There are throttle step commands at time 0 and 20 seconds. Various values for the tun-
ing parameters α and size of rolling window nt were tested to show their impact on results. The trade-off
for tuning these parameters is that premature SSID leaves few data to properly identify inertia parameters
in the transient region, while late SSID leaves few data to properly identify damping parameters in the
steady-state region.
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Figure 3.1: Applying RW-SSID to example data created with white noise with varied α and window size. Exam-
ples with bigger window lengths have smaller steady-state regions because this region only starts at the end of the
first window that identifies steady-state. The impact caused by tuning α is much smaller, but still perceptible with
smaller α leading to larger steady-state regions.

3.3 Simultaneous Identification (SIMID)

Another alternative for data extraction, original to this work, is to simultaneously identify inertia and
damping data points after every step by utilizing optimization techniques, skipping the SSID process.
This is based on the method used by Eriksen and Breivik (2017) and Kvalvaag (2018) to identify inertia
parameters as discussed in Section 2.4.3. The equations used there are repeated below.

27



3.3 Simultaneous Identification (SIMID)

mi∆ẋi + ki∆xi = ∆τi (2.22a)

ki =
σ+xi − σ−xi
xi+ − xi−

(2.22b)

∆τi = τi − τ−i (2.22c)

∆xi = xi − x−i (2.22d)

x̂i(t) =
∆τi
ki

(
1− e

−kit

mi

)
+ xi

− (2.23)

In this case, instead of using optimization to estimate only mi, x+i also becomes an estimated param-
eter denoted x̂+i , as shown in Equation (3.8):

m̂i, x̂
+
i = arg min

mi,x
+
i

tf−ti∑
t=0

[xi(t)− x̂i(t)]2 (3.8)

The expected advantages of this approach are:

• Extending the region for inertia identification has no negative impact on the results, in fact the op-
posite holds because a continuous curve of the state for the entire step is identified, while dividing
regions in SSID does not guarantee this continuity as exemplified by Kvalvaag (2018) results when
discussing measurement accuracy.

• No parameters need to be tuned for a SSID.

One disadvantage of this method is the possibility of the optimization getting stuck on a local min-
imum. This risk is mitigated by using the last state of the data as the starting point for x+i in the opti-
mization, since it is expected that the optimized value is close to it. Another action taken to minimize
problems and simplify the optimization, which was developed during iterations over the method, was to
use ki as the parameter to be optimized instead of x+i . This gives the optimization a clear bound for every
problem, because ki is always positive as it is possible to see by inspecting Equation (2.22b). States with
bigger values always have bigger damping, so σ+xi−σ−xi always has the same sign as xi+−xi−, meaning
ki is always positive. Moreover, this removes discontinuities from the search space that could happen by
using x+i as the parameter for optimization and having xi− inside the search space, which could lead to
a division by zero. Equation (3.9) represents the final optimization scheme for this method.

m̂i, k̂i = arg min
mi,ki

tf−ti∑
t=0

[xi(t)− x̂i(t)]2 (3.9a)

x̂+i =
σ+xi − σ−xi

k̂i
+ xi

− (3.9b)

The extraction of the data sets also require changes. First explaining a necessary additional notation,
yi refers to the secondary state, that is considered steady while the other varies. For example, if there
is a step command in throttle, xi is the surge speed U and yi is the yaw rate r, while the opposite is
considered during a step command in the rudder angle.

The state x̂+i is not only the last value of the state after the transient period, but also its mean for the
entire steady-state period, so the same is done for y+i . Although there is the assumption for the model
that yi is steady over the entire window between commands, practice shows that this is not always the
case. For instance, it is clear at high speed that the surge speed drops after an increase in the rudder
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angle. A suggestion for future work is to incorporate these coupled effects in the model, but in this work
only a treatment of yi is done to avoid distortions.

The solution is to define ŷ+i as the average of yi after the moment x̂i has passed the settling time,
which is when x̂i gets closer to x̂+i than 2% of (x̂+i −x−i ), as exemplified in Figure 3.2. The settling time
ts can be analytically calculated for Equation (2.23) as shown in Equation (3.11) using the definition of
x̂+i in Equation (3.10) and the estimated parameters m̂i and k̂.

x̂+i = lim
t→∞

x̂i(t) =
∆τi

k̂i
+ xi

− (3.10)

x̂i(ts) = x̂+i − 0.02(x̂+i − x−i ) =
∆τi

k̂i

(
1− e

−k̂its
m̂i

)
+ xi

− (3.11a)

∆τi

k̂i
+ xi

− − 0.02
∆τi

k̂i
=

∆τi

k̂i

(
1− e

−k̂its
m̂i

)
+ xi

− (3.11b)

0.98
∆τi

k̂i
=

∆τi

k̂i

(
1− e

−k̂its
mi

)
(3.11c)

e
−k̂its
m̂i = 0.02 (3.11d)

−k̂its
m̂i

= ln 0.02 (3.11e)

ts =
−m̂i

k̂i
ln 0.02 ≈ 3.9

m̂i

k̂i
(3.11f)
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Figure 3.2: Example of step response and its respective settling time.

A visual example of the identification of the estimated parameters (x̂i, x̂+i and ŷ+i ) is provided in
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3.3 Simultaneous Identification (SIMID)

Figure 3.3 for a case of throttle step command. Summarizing the sequence of steps of this method:

1. Select measured data between two step commands;

2. Perform optimization (Equation (3.9)) on surge speed if throttle step or on yaw rate if rudder angle
step;

3. Using parameters identified in optimization (m̂i and x̂+i ), calculate settling time (Equation (3.11)),
followed by calculation of ŷ+i .

t[s]

U
[m

/s
]

t[s]

r[
ra

d
/s

]

(a) Simulated surge speed for throttle step of 20% and
estimated surge speed with starting point at 2m/s.

(b) Simulated yaw rate for throttle step of 20% and esti-
mated yaw rate after reaching settling time.

Figure 3.3: Example of response for throttle step command, its measured data and estimated parameters.

Finally, the data sets can be built using the results achieved on each step. Damping data sets include
results from all steps, while inertia data sets are divided in a set for throttle steps DmU and a set for
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rudder angle steps Dmr .

Dσ =

Û+
1 Û+

2 ... Û+
n

r̂+1 r̂+2 ... r̂+n
σ1 σ2 ... σn

 (3.12a)

DmU =


Û+
1U

+U−
1U

2

Û+
2U

+U−
2U

2 ...
Û+
nU

+U−
nU

2
r̂+1U

+r−1U
2

r̂+2U
+r−2U
2 ...

r̂+nU
+r−nU
2

mU,1U mU,2U ... mU,nU

 (3.12b)

Dmr =


Û+
1r

+U−
1r

2

Û+
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+U−
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2 ...
Û+
nr+U

−
nr

2
r̂+1r+r

−
1r

2

r̂+2r+r
−
2r

2 ...
r̂+nr+r

−
nr

2
mr,1r mr,2r ... mr,nr

 (3.12c)

3.4 Removal of Unreliable Data

Even when following the experiment design precisely, problems with the acquired data may create issues
in the final model. During tests with the data extraction methods described in the previous sections, it
was noticed that such problems had two main causes:

• Large relative noise in the data due to low signal-to-noise ratio.

• Not enough time on a step command to reach steady-state.

The data extraction methods assume the data does not have such problems, so there is a need to
remove unreliable data to guarantee consistency in the results. In order to keep the SI process fully
automated, the removal of data with problems was also automated. The heuristic methods used are
described in the following sections.

3.4.1 Identification of Noisy Data

This method is applicable to both data extraction methods from the previous sections. Kvalvaag (2018)
identified that a low signal-to-noise ratio is caused by step commands that are too small to be distin-
guishable from the disturbances of sea conditions and is particularly common at low speed. This can be
mitigated by experiment design and by assuring calm enough sea conditions during trials, but it is not
possible to guarantee all data is free from this problem since step commands that are too big would lower
the performance of the model. Therefore, an automated method is necessary to avoid adding the data
extracted from problematic regions to the data sets and to keep the entire process automated.

The solution utilized requires the data extraction to be performed first. Then, the results are used
to calculate the boundaries in which the data should be confined to confirm its signal-to-noise ratio is
large enough. As a means of calculating these boundaries, the height H of the signal is calculated as the
absolute difference between the first measured state x−i and the estimated steady-state x̂+i , as shown in
Equation (3.13). The upper and lower limits (xlim,up and xlim,low) for the criteria are defined in Equation
(3.14) as the average between x−i and x̂+i plus height for upper limit and less height for lower limit.

H = |x̂+i − x−i | (3.13)
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3.4 Removal of Unreliable Data

xlim,up =
x̂+i + x−i

2
+H (3.14a)

xlim,lo =
x̂+i + x−i

2
−H (3.14b)

Two examples are presented in Figure 3.4 with different throttle steps to demonstrate the impact of
the boundaries and disturbances in each case. Figure 3.4a corresponds to a 20 % step in throttle and
results in approximately 2m/s in height of the signal. Figure 3.4b corresponds to a 5 % step in throttle
and results in approximately 0.5m/s in height of the signal. The noise is the same in both cases and has
an amplitude of approximately 1.5m/s. From visual inspection, it is possible to notice how hard it is
to identify the step curve in Figure 3.4b due to the low signal-to-noise ratio. Applying the methodology,
the 20 % step case easily fulfils the criteria, while Figure 3.5 shows the boundaries for the 5 % step case,
which are trespassed by the data.
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(a) Simulated surge speed for throttle step of 20% and
estimated surge speed with starting point at 1.75m/s,
2m/s and 2.25m/s.

(b) Simulated surge speed for throttle step of 5% and
estimated surge speed with starting point at 1.75m/s,
2m/s and 2.25m/s.

Figure 3.4: Examples to showing how the bigger signal-to-noise ratio in Figure 3.4b results in a bigger spread of
estimated results when compared to Figure 3.4a with a lower signal-to-noise ratio.
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Figure 3.5: Calculated boundaries for estimated state x̂+i from Figure 3.4b starting at 2m/s with 5 % throttle step.

Both cases were created to serve as examples, so it is known that the initial state is 2m/s, but initial
states of 1.75m/s and 2.25m/s were also presented to show how a case with low signal-to-noise ratio
has a wider spread in the results, especially for the inertia parameter m̂i. The spread in the first measured
state x−i was considered when choosing it to calculate the height and the limits, because it can be an
outlier, but not further explored.

3.4.2 Identification of Unreached Steady-State

This identification concerns only SIMID, since the RW-SSID is already embedded with SSID. This
identification is performed just before building the data sets (Equation (3.12)), because it depends on the
estimated parameters found by the optimization and subsequent calculations.

The criteria defined to judge whether steady-state is reached by the vessel is to check if the settling
time ts of the estimated state x̂i happens before the next step command. Figures 3.6 and 3.7 show
examples where the criteria is met (Figures 3.6a and 3.7a) and where it is not (Figures 3.6b and 3.7b). In
these cases, only the examples where the criteria is met would be included in the data sets.
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(a) Simulated surge speed for two subsequent throttle
steps of 20% at time 0 and 5 seconds and estimated surge
speed with starting point at 2m/s.

(b) Simulation of the same system as Figure 3.6a, but
changing second throttle step to happen at 3 seconds.

Figure 3.6: Examples of settling time for estimated state before and close after next step command.
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(a) Simulated surge speed for two subsequent throttle
steps of 20% at time 0 and 6 seconds and estimated surge
speed with starting point at 2m/s.

(b) Simulation of the same system as Figure 3.7a, but
changing second throttle step to happen at 2 seconds.

Figure 3.7: Examples of settling time for estimated state before and far after next step command.

A situation of unreached steady-state is discarded as it may include in the data sets results with
distortions in both m̂i and x̂+i . The dashed line in Figures 3.6b and 3.7b is a projection based on the
available data, but not necessarily what would happen if the vessel was given enough time to reach
steady-state. One assumption of the model structure used is that the states do not overshoot, but it does
occasionally occur in practice. The pair of examples are of the same system being interrupted by a step
at different moments and their respective results for the parameters. All steps are of 20 % in throttle.

It is possible to see how the impact of a premature subsequent step is much worse in Figure 3.7b
than in Figure 3.6b, but it is only possible to affirm this because it is an artificially created example and
the expected behaviour is known from Figures 3.6a and 3.7a. Therefore, results from Figures 3.6b and
3.7b would not be included in the data sets since they do not meet the criteria established. The necessity
of this data cleansing method is minimized by performing the experiment with sufficient time between
steps.

3.5 Reference Filter Saturation Limits

It is presented in Section 2.5 the benefits of having a reference filter in the control system solution. The
algorithms presented can have their performance improved by properly tuning saturation limits, and the
following sections describe how these saturation limits can be identified using the SI results.
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3.5 Reference Filter Saturation Limits

3.5.1 Acceleration Saturation

Based on the model structure of control-oriented modelling, the acceleration saturation limits can be
defined as a function of current and desired states for both surge and yaw. The first step is to modify
Equation (2.12) to isolate the acceleration term, becoming Equation (3.16).

M(x)ẋ+ σ(x) = τ (2.12a)

M =

[
mU (x) 0

0 mr(x)

]
, σ =

[
σU (x)
σr(x)

]
, x =

[
U
r

]
, τ =

[
τm
τδ

]
(2.12b)

ẋ =
−σ(x) + τ

M(x)
(3.16)

A control law defines the values for τ based on current (x) and desired (xd) states. A common algo-
rithm for control laws is to combine a model-based feedforward component with a feedback component
that corrects modelling imprecision. However, since this is a search for the saturation limits of the vessel,
modelling imprecision is not so relevant, given that it is small, because the vessel would be capable of
more acceleration to compensate for the imprecision.

The maximum possible acceleration should not be used as the saturation limit, because it can lead
to unwanted and probably unsafe behaviour. For instance, it is not expected on USVs to command full
throttle until reaching desired speed and then lower throttle to keep that speed. The normal procedure
is to command throttle to the position of the final desired speed. Setting τ using only the feedforward
component matches this normal procedure and the experiment design, where step commands were used,
minimizing errors in the model. Equation (3.17) presents this formulation for τ and Equation (3.18) the
consequence of using it in Equation (3.16).

τ = M(xd)ẋd + σ(xd) (3.17)

ẋ =
−σ(x) +M(xd)ẋd + σ(xd)

M(x)
(3.18)

Although not strictly necessary, the desired acceleration is removed from the equation, because none
of the cases tested in this work include desired acceleration different than zero. This simplifies the
notation from Equation (3.18) to Equation (3.19).

ẋ =
σ(xd)− σ(x)

M(x)
(3.19)

Another simplification proposed is to fix the acceleration parameter during a change in desired state,
just as the method for building the inertia data sets considers fixed inertia parameters during a step
command. This simplifies implementation afterwards because otherwise some changes would need to
be implemented in the example reference filters presented in Section 2.5, and it also enables a better
comparison to SI results because of the similarity of the methods. The maximum absolute acceleration
parameter (ẋmax) is calculated as shown in Equation (3.20), the difference between damping for initial
state xinit and desired state xd divided by the inertia parameter relative to the mean of these states.

ẋmax =
σ(xd)− σ(xinit)

M(xd+xinit
2 )

=
∆τ

M(xd+xinit
2 )

(3.20)

For the purpose of comparing the results obtained for ẋmax with the data acquired from the tests,
two new data sets are built in Equation (3.21), one for surge acceleration (DU̇max

) and another for yaw
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acceleration (Dṙmax).

DU̇max
=


Û+
1U

+U−
1U

2

Û+
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+U−
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2 ...
Û+
nU

+U−
nU

2
r̂+1U

+r−1U
2

r̂+2U
+r−2U
2 ...

r̂+nU
+r−nU
2

U̇max,1U U̇max,2U ... U̇max,nU

σ(x+
1U

)− σ(x−1U ) σ(x+
2U

)− σ(x−2U ) ... σ(x+
nU

)− σ(x−nU
)

 (3.21a)

Dṙmax =


Û+
1r

+U−
1r

2

Û+
2r

+U−
2r

2 ...
Û+
nr+U

−
nr

2
r̂+1r+r

−
1r

2

r̂+2r+r
−
2r

2 ...
r̂+nr+r

−
nr

2
ṙmax,1r ṙmax,2r ... ṙmax,nr

σ(x+
1r

)− σ(x−1r) σ(x+
2r

)− σ(x−2r) ... σ(x+
nr

)− σ(x−nr
)

 (3.21b)

The first two rows are exactly the same as the inertia data sets. It uses the notation from SIMID as
an example, since it is also valid for RW-SSID. The third row stores the maximum absolute acceleration
extracted from each step command as shown in Equation (3.22) by deriving the estimated state x̂i at
t = 0. The final row registers the step in terms of damping to compare the results with proper equivalents
in ẋmax.

x̂i(t) =
∆τi
ki

(
1− e

−kit

mi

)
+ xi

− (2.23)

˙̂xi(t) =
∆τi
mi

e
−kit

mi (3.22a)

ẋmax,i = max
t≥0
| ˙̂xi(t)| = | ˙̂xi(0)| = |∆τi|

mi
e

−ki·0
mi =

|∆τi|
mi

(3.22b)

3.5.2 Yaw Rate Saturation

Instead of controlling rate as the reference state, yaw is usually controlled through the heading or course
over ground states. Hence, it is also useful to define the saturation limit for the yaw rate. It can be found
as the steady-state yaw rate r as a function of surge speed U when the rudder angle command τδ is at its
maximum.

This function could be defined from Equation (2.13) and using the SI results for βσr , but it was
decided to fit a model just to the data specific to this problem. It is simpler than using a parametric
function, while also resulting in a better fit since only target data is used.

σr(x) = φσ(x)βσr (2.13c)

φσ(x) = [1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4, U3r, U2r2, Ur3, r4] (2.13d)

Figure 3.8 shows all data acquired by Eriksen and Breivik (2017), also used in this work, and high-
lights the data applicable to defining the yaw rate saturation. The model used to fit the data is a fourth
order polynomial to keep the pattern of the overall model structure and the procedure to fit also includes
regularization and cross-validation as presented in Section 2.4.4 to avoid overfitting.
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Figure 3.8: Steady-state results for surge speed U and yaw rate r highlighting the results achieved while at
maximum rudder angle.

The point in Figure 3.8 with the biggest yaw rate r represents the limit of the combination of max-
imum throttle and the maximum rudder angle, so the USV is not capable of a bigger r. Therefore, the
fitted polynomial used to define the yaw rate saturation must be truncated at this biggest yaw rate.
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Chapter 4
Results and Discussion

The results obtained are presented in the same sequence for SI as presented in Figure 2.4 and followed
by reference filter saturation limits. The discussion for each result is done right after its presentation and
a final section of general remarks is included.

4.1 Experiment Design, Data Collection and Model Structure Selection

As explained in Chapter 3, these stages of SI were not performed in this work, but taken from the refer-
ence literature as the basis for testing new methods for SI of control-oriented models. The experiment
and data collection procedures are explained in Section 2.4.1 and the model structure is detailed in Sec-
tion 2.3. Overview plots of the collected data are presented in Figures 4.1 and 4.2.
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Figure 4.1: Data collected by Eriksen and Breivik (2017) during sequences of constant rudder angle for changing
throttle.
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Figure 4.2: Data collected by Eriksen and Breivik (2017) during sequences of constant throttle for changing rudder
angle.

Although these stages of SI were not performed in this work, there is one topic to discuss from
the results. A noticeable outcome from the data collection plots (Figures 4.1 and 4.2) not discussed by
Eriksen and Breivik (2017) and Kvalvaag (2018) is that a zero throttle command (τm = 0) still outputs
speed to the USV. This is due to normalizing the throttle command inside the geared range. A combustion
outboard engine has a deadband in the actual throttle in which the gear is neutral, returning no propulsion.
The gear clutches in as soon as the throttle deadband is passed, outputting the engine’s minimum RPM
and consequently the USV’s minimum controllable speed. The relation between normalized and actual
throttle was handled by Breivik et al. (2008) as seen in Equation (2.11b). It was not handled in this work
because experimental tests using the model as the feedforward part of a controller were not performed.

4.2 Data Extraction

The data extraction stage is performed for every step command, but the detailed results are presented
only for a few example steps in order to avoid an overflow of the text. Both new extraction methods are
applied and their overall results presented.

4.2.1 Rolling Window Steady-State Identification (RW-SSID)

This data extraction method delivered the example results in Figures 4.3 to 4.5 after tuning of the size of
the rolling window nt to 10 seconds and the significance level α to 1%. While Figures 4.3 and 4.4 show
a nice fit to the data, Figure 4.5 shows a premature steady-state identification. This can also be seen by
using the same data from Figure 4.5, but with a rolling window size extended to 12 seconds, as shown in
Figure 4.6.

Such discrepancies showed the necessity of tuning the size of the rolling window according to each
case instead of one value for all as initially expected. This would make the near full automation of SI
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impracticable, so it was decided not to continue with this method further in the SI procedure. This is
further discussed in Section 4.2.3 when comparing to SIMID.
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Figure 4.3: Example of throttle step and its extracted results with RW-SSID (α = 1%, nt = 10s).
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Figure 4.4: Example of rudder angle step and its extracted results with RW-SSID (α = 1%, nt = 10s).
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Figure 4.5: Example of throttle step and its extracted results with RW-SSID (α = 1%, nt = 10s).
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Figure 4.6: Example of throttle step, the same as Figure 4.5, and its extracted results with RW-SSID (α =
1%, nt = 12s). Compared to Figure 4.5, the distinction between transient and steady-state regions is found at 32
seconds instead of 17.5 seconds, exemplifying the problem found with tuning the rolling window length nt.

4.2.2 Simultaneous Identification (SIMID)

Figures 4.7 to 4.9 present the results of applying SIMID to the same three steps used to exemplify RW-
SSID results.

43



4.2 Data Extraction

4.0

4.5

5.0

5.5

6.0
U 
[m

/s
]

τ +
i =0.30, Δτi= −0.10

Measured
Estimated Δ  mi=0.19,  x+

i =3.92̂

0 20 40 60 80
Time[s]

0.08

0.10

0.12

0.14

0.16

r [
ra
d/
s]

τ +
i =0.50, Δτi=0

Measured
Estimated Δ  y+

i =0.13̂

Figure 4.7: Example of throttle step, the same as Figure 4.3, and its extracted results with SIMID.
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Figure 4.8: Example of rudder angle step, the same as Figure 4.4, and its extracted results with SIMID.
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Figure 4.9: Example of throttle step, the same as Figure 4.5, and its extracted results with SIMID.

The previous examples were considered valid to be included in the data sets, but some other steps
were not. Figure 4.10 presents a case in which steady-state was not reached by surge speed after a throttle
command and Figure 4.11 presents a case in which signal-to-noise ratio is too low, causing the measured
data to cross established validation boundaries as defined in Section 3.4.1. Both cases were automatically
identified and marked invalid using the methods in Section 3.4.
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Figure 4.10: Example of throttle step and its extracted results with SIMID, invalid due to not reaching steady-sate.
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Figure 4.11: Example of rudder angle step and its extracted results with SIMID, invalid due to the signal-to-noise
ratio being too low.
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The overview of all data collected as presented in Figures 4.1 and 4.2, but including the distinction of
valid and invalid data after applying the methods for removal of unreliable data, is presented in Figures
4.12 and 4.13.
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Figure 4.12: Distinction between valid and invalid data after applying SIMID to data from Figure 4.1.
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Figure 4.13: Distinction between valid and invalid data after applying SIMID to data from Figure 4.2.

A tendency noted in Figures 4.1 and 4.2 is that most invalid throttle steps were removed due to surge
speed not reaching steady-state, while most invalid rudder angle steps were removed due to a low signal-
to-noise ratio. Despite the removal of some part of the acquired data, the results in the next sections
show how the valid data was enough to cover the entire operational range of the USV and produce good
results.

The final data sets extracted after using SIMID are presented in Figure 4.14. The four subfigures
include extracted damping and inertia parameters for surge speed and yaw rate as a function of both
states. The color map from purple, at the lowest values, to yellow, at the highest, follow the vertical axis
in all plots to improve the 3D visualization of the data.
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Figure 4.14: Damping and inertia data sets for surge speed and yaw rate extracted using SIMID.

4.2.3 Comparison of Methods

The fact that the rolling window would need individual tuning for each step in command positioned this
method far away from the objective of full automation, which was achieved by SIMID. Hence, RW-SSID
was considered impractical for data extraction, and its results were not used further in the SI procedure.

Aiming to understand why RW-SSID performed poorly, the article that served as its basis (Dalheim
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and Steen, 2020) was revisited and some explanations were induced. Dalheim and Steen (2020) applied
their steady-state identification method to data collected with many minutes of spacing between steps,
while the data for this work has an average of 60 seconds between steps. Any system identification
method can have better results when more data is available, but in this case such small time period
between steps made RW-SSID impracticable. Longer time periods would open up the possibility of
longer rolling windows, which would prevent premature identification, as shown in Figure 4.5. It makes
it easier to identify if a disturbance in data during steady-state really is only a disturbance or if the vessel
is still in transient dynamics. However, minimizing time is a constraint of the problem and a time period
of many minutes would take too much time to perform all steps designed for the experimental trials.
Therefore, RW-SSID was considered not fit to this problem and its development was halted.

On the other hand, SIMID performed up to expectations. Data extraction was fully automated with
this method and the results were consistent when analysed individually as exemplified in Figures 4.7
to 4.9. Such automation was also made possible by using the methods for automatic removal of data
considered unreliable. A rigorous analysis of removed data show that some parts of it could still have
been used, for instance the steady-state results in Figure 4.11. However, a generalized rule to include such
cases could not be created and this is a requirement for the automation to work properly, so valuable data
was intentionally left out of the SI procedure. The key reason for this decision is that including faulty data
is worse than leaving some good data out, because faulty data deviates the model results and, although
it would be ideal to use as much good data as possible, leaving some out causes no clear impact on the
results unless the amount of extracted data is very small, which is not the case.

Another positive indication of the success of the automation of data extraction by SIMID is that the
final data sets extracted are very similar to the data sets extracted by Eriksen and Breivik (2017) and
Kvalvaag (2018). Even so there is still room for improvement. It can be noted in Figure 4.8 that after the
rudder angle step change the surge speed U takes much longer to converge than the yaw rate r. Since it
is a rudder angle change, the assumption of the model is that U is constant, which is clearly not the case
with this coupled result, causing an offset in the result. Despite this problem, model validation shows
good results, but could possibly be improved if following these suggestions that impact data extraction:

• Longer periods between steps: Not too long since time is a constraint as previously discussed,
but a longer overall period would mean a longer period of steady-state. Therefore, the offset as
seen in Figure 4.8 would be minimized as more data in U steady-state would be used for averaging.

• Identification of coupled motion: This would mean dropping the assumption of decoupled in-
ertia, transforming the inertia matrix from Equation (2.12b) to Equation (4.1) and consequently
requiring additional inertia data sets.

M =

[
mUU (x) mUr(x)
mrU (x) mrr(x)

]
(4.1)

4.3 Parameter Identification

The parameters for the control-oriented model were identified using data sets presented in Figure 4.14.
The results can be represented by generating surfaces with the identified parameters as shown in Fig-
ure 4.15.
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Figure 4.15: Damping and inertia data sets extracted using SIMID and respective surfaces from parameter identi-
fication results cropped on convex area around points.

It is important to highlight that the surfaces are plotted limited to the smallest convex area around the
data points and this is the area where the model is valid. A comparison is plot in Figure 4.16 using the
same model identified and same color map range, but showing the surface for a rectangular area between
minimum and maximum surge speed and yaw rate.
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Figure 4.16: Damping and inertia data sets extracted using SIMID and respective surfaces from parameter identi-
fication results plotted between minimum and maximum surge speed and yaw rate.

In order to provide a better comparison for the problems of using extrapolation for the models,
parameter identification was performed for only half of the data set points, randomly selected. Results
are shown in Figure 4.17 with the surface constrained to the convex area covered by the points and in
Figure 4.18 with the surface limited to minimum and maximum surge speed and yaw rate.
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Figure 4.17: Half of damping and inertia data sets extracted using SIMID and respective surfaces from parameter
identification results cropped on convex area around points.
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Figure 4.18: Half of damping and inertia data sets extracted using SIMID and respective surfaces from parameter
identification results plotted between minimum and maximum surge speed and yaw rate.

The surfaces representing the model with identified parameters showed a good fit to data set points in
Figure 4.15 and similar results to the reference articles that used the same acquired data. Even Figure 4.17
only using half of the extracted data also returned a similar result.

On the other hand, it can be seen by comparing Figures 4.16 and 4.18 how the extrapolation of these
results cannot be trusted. Their region outside convex area around points is completely different for
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the inertia data sets (DmU and Dmr ) in this example, but could be for any of the data sets depending
on the randomly selected points to create the comparison. Moreover, another example of inadequacy of
extrapolation is that, in Figure 4.18, the yaw rate inertiamr becomes negative in the extrapolation, which
could never be realistic because it would make the model represent an unreal unstable dynamic.

These results also reinforce how essential it is that the experiment covers the entire operational range
of the USV. Otherwise, the model could be distorted inside the operational range, causing problems when
using the model as the feedforward component for a controller.

One of the causes for the results from parameter identification only being valid within the convex
area around points is the selected model structure. The control-oriented model is a non-first principles
model for simplification of identification and the incapacity of use for extrapolation is a disadvantageous
consequence of its simplifications. Nevertheless, this problem can be mitigated by acquiring data for
all operational limits of the USV as was done. Hence, the model structure did not spoil results, on the
contrary it made it possible to fully automate the SI process and no iteration on model structure was
necessary.

4.4 Model Validation

The trial for validation is the same as used by Eriksen and Breivik (2017) and its commands for throttle
and rudder angle are presented in Figure 4.19. The results achieved by this work are presented in Fig-
ure 4.20 and were considered satisfactory enough not to need an iteration in SI procedure. Validation
results by Eriksen and Breivik (2017) are shown in Figure 4.21 for comparison on how the results from
this thesis were able to achieve the same model validation quality, although fully automated.
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Figure 4.19: Sequence of throttle and rudder angle commands of trial for model validation.
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Figure 4.21: Model validation results by comparing simulated and measured data of trial not used for SI (Eriksen
and Breivik, 2017).

The results of SI were validated as the simulation using the resulting model was able to reproduce
with satisfactory similarity the behaviour of the USV just by receiving the same command inputs. The
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discussion for this conclusion of the SI procedure is about what could be the possible causes for the
discrepancies between simulation and real states during this model validation.

• Uncoupled data extraction: This is discussed in detail in Section 4.2.3.

• Limitation of polynomial model structure: Representing the vessel inertia and damping terms
with polynomial functions serves its purpose of providing good and simple approximations to
complex dynamics, but its downside is the possibility of not capturing the vessel’s dynamics com-
pletely. It is a known trade-off and the advantages surpass this disadvantage.

• Vessel asymmetry: One of the assumptions during SI was that the vessel is port-starboard sym-
metric. It is rare for the vessel project not to be symmetric, but in practice it is very likely that
asymmetries exist. This can clearly be seen during the final part of the validation trial (Figure 4.20),
in which the rudder angle remains zero, but a positive yaw rate r appears when throttle is com-
manded to maximum and it overshoots to negative when the throttle is set back to zero right before
the trial is ended. This is a case in which the asymmetry influence is clearly identified, but it might
also cause offsets in other parts of the simulation.

In addition, it was identified two causes that could in general create discrepancies between simulation
and real states, but were not the case for the model validation of this work.

• Different weather conditions during trials for identification and validation: The experiment
design is to perform trials in weather conditions as calm as possible, but it is likely that there exist
residual wind, waves and currents, which may have an impact on the results. These can have an
even bigger impact if they are different during identification and validation trials.

• No hysteresis in the model: It is possible for planing vessels to have a hysteresis region of surge
speed when entering and leaving the planing mode, as shown in Figure 4.22 by Kragelund et al.
(2013), but the control-oriented model does not consider this possibility. Therefore, results may
get distorted in the planing region if the USV has this hysteresis behaviour.

Figure 4.22: Hysteresis in USV surge speed due to entering (acceleration) and leaving (deceleration) planing
regime. (Kragelund et al., 2013).
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4.5 Reference Filter Saturation Limits

Since the model was validated, the results could be used to find saturation limits for reference filters as
discussed in Section 3.5.

For acceleration limits, the results are plotted with dots representing the acceleration estimated for
each step as a function of ∆τi (Equation (3.22)) and dashed lines representing the modeled behaviour
(Equation (3.20)) also as a function of ∆τi. The model depends on both states, but a 3D plot made
visualization poor, so it was decided to make the plots of maximum acceleration for each state as a
function of surge speed U and with yaw rate r equal zero. Figure 4.23 shows the results for maximum
acceleration in surge and Figure 4.24 for maximum acceleration in yaw.

For yaw rate limits, the result is shown in Figure 4.25. In this case, the dots in the plot represent the
yaw rates measured in steady-state for maximum rudder angle and the line represents the model fitted to
these dots as explained in Section 3.5.2.
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Figure 4.23: Estimated and modeled surge acceleration as a function of surge speed and step in throttle command.
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Figure 4.24: Estimated and modeled yaw acceleration as a function of surge speed and step in rudder angle
command.
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Figure 4.25: Measured and modeled yaw rate as a function of surge speed for maximum rudder angle.
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The discrepancies discussed in model validation also affect the results for the reference filter satura-
tion limits considering they are directly calculated from the model. The inverse relation between limits
and modelled inertia, as defined in Equation (3.20), makes the errors seem big, because errors that are
considered small at inertia modelling are amplified, but the methodology used guarantees that the sat-
uration limits are feasible because it leaves margin for compensating possible imprecision. It is also
important to remember that the spread in estimated points compared to the modelled lines in Figures
4.23 and 4.24 is also due to plotting the lines for a yaw rate equal to zero, which is not the case for most
of the points, but a reference was necessary to avoid too many lines. On the whole, the results show how
the usual tuning with a single constant value is far from the real saturation limits.

Surge and yaw acceleration limits have similar tendencies, but for different reasons. At low speeds,
the effectiveness of the rudder is low, so it is not capable of producing much yaw acceleration, but the
effectiveness grows as speed grows. A physical explanation for the drop at higher speeds could not
be formulated and the hypothesis is that it is due to the smaller number of points in that area, making
disturbances more relevant in addition to the previously explained amplification of errors because of
inverting inertia results.

On the other hand, the drop for maximum surge acceleration at high speeds may be due to fast growth
in drag forces at such speeds, reducing the capacity of the propeller to output higher acceleration when
requested. For the same reason, the model reaches a plateau during transition from displacement to
planing mode around 5 and 6 meters per second.

Finally, the results for maximum yaw rate in Figure 4.25 present a great fit of the model to the
measured data. It is important to remember that for speeds higher than 7 meters per second there should
be no extrapolation of the model, but the truncated value of maximum yaw rate for this speed. Problems
with model extrapolation are explained in Section 4.3, and although the USV is capable of maintaining
higher speeds steadily, it is not when the rudder is at its maximum angle.

4.6 General Remarks

The combination of SIMID for data extraction and methods for automatic removal of unreliable data
made possible the pursued automation of SI. This means that, with the entire procedure properly coded,
the complete identification of a vessel model can be performed in a single day. The example case in this
work gathered a total of less than 3 hours of data, including throttle steps, rudder steps and validation
trial. On top of that, there would be no added hours for tuning of parameters for SI, which usually can
take a considerable amount of time not only for the tuning itself, but also to get enough experience to
perform it.

Since this work used the same converted USV as the reference literature, it was not possible to
measure the impact of different configurations of actuators, but there are some expected consequences.
The critical stages when considering a different configuration of actuators are experiment design, model
structure selection and data extraction. The experiment design must guarantee that the entire operational
range of the vessel is covered while not defining a sequence of steps that takes too long to be performed.
For an overactuated vessel with multiple redundant actuators, there is a number of possible simplifica-
tions that can be made to minimize the extension of the trials while still collecting enough data. The
different configurations might impact the model structure due to the necessity of combining commands
for different actuators into the commands vector τ . Finally, the data extraction stage might also suf-
fer changes depending on consequences of experiment design and model structure selection, because
if step commands have a clear impact on both surge and yaw, the assumption of decoupling becomes
impracticable.
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Chapter 5
Conclusion

This work successfully implemented improvements to control-oriented modelling such that conversions
from SVs to USVs can be better performed. A new data extraction method for control-oriented models,
SIMID, simultaneously identifies inertia and damping parameters, skipping the necessity of identify-
ing transitions from transient to steady-state such as performed in previous works. SIMID required no
parameter tuning, while returning similarly satisfactory identification results when compared to the ref-
erence literature. When combined with methods for removal of unreliable data, it makes the SI procedure
automatic. Additionally, the results from SI are successfully used to model saturation limits for reference
filters of the system.

Another new data extraction method, RW-SSID, was tested using rolling windows for SSID. It was
developed with the intention to require only two tuning parameters, but its utilization was halted when
proved that the two parameters had to be independently tuned for every step command. This means it
required two times as many tuning parameters as the number of step commands during trials, making its
use impracticable.

Regarding recommendations for future work, it was intended to try for this work a experiment design
with rudder steps always starting from or ending at zero, reflecting what is usually seen during operation
when the boat transitions from turning to straight ahead, instead of changing between rotating states.
However, no new experiments could be run for this work, and this alternative experiment design is left
for future work. Another suggestion for future work is to explore the coupling of inertia parameters,
identifying the coupled parameters during data extraction since results show relevant coupling in some
cases. The final recommendation is to test this methodology on a vessel with a configuration of actuators
other than a single outboard engine, as used in this work and reference literature.
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