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Summary

A fault-tolerant dynamic positioning (DP) control system for the remotely operated vehicle Blueye Pioneer
(hereby referred to as ”the drone”) is developed in this thesis. As a part of developing the control system,
relevant information and characteristics regarding the drone and the external acoustic positioning system
used, are described. The chosen observer is a model-based extended Kalman filter developed using a low-
speed model of the drone. The model parameters are estimated using the geometric properties of the drone,
Eidsvik’s method for the hydrodynamic parameters, and Derivative-free Optimization (DFO) on experimen-
tal data for the damping parameters. The observer is developed to handle asynchronous measurements and
to detect and handle signal freeze of the measurements. For other relevant failure modes, e.g. outlier and
high noise, mechanisms for detection and handling are proposed. A guidance system consisting of a pure
pursuit velocity reference generator is developed. Lastly, PID control laws for surge, sway, heave and yaw
are designed.

The estimation of model parameters is challenging and does not give a high accuracy model for the control
system. To compensate for this, the observer is designed with high process noise covariance in order to rely
more on the measurements than the model. The state estimates with corresponding measurements follows
the measurements closely, while the velocity and bias estimates are highly fluctuating. The control system is
able to go to the desired position in x, y, and z with an accuracy of less than 1m. However, the drone does not
follow the shortest path to the desired position, but rather makes a large detour before arriving. The heading
controller does not give satisfactory results as it has large oscillations around the desired heading angle.
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Sammendrag

I denne masteroppgaven er et feil-tolerant dynamisk posisjonering (DP) kontrollsystem utviklet for under-
vannsdronen Blueye Pioner. For å kunne utvikle kontrollsystemet er relevant informasjon og egenskaper
relatert til dronen og dens indre sensorer i tillegg til det eksterne akustiske posisjonseringssystemet pre-
sentert. Et extended Kalman filter blir valgt som estimator og utviklet basert på en lavhastighetsmodell av
dronen. Modellparametrene er estimert ved å bruke de geometriske egenskapene til dronen, Eidsviks metode
for hydrodynamiske parametre, og derivative-fri optimalisering på data samlet i Marin Cybernetic’s laben
for å finne dempning. Relevante feilmodier for sensorene er identifisert og noen er implementert i esti-
matoren. For de resterende feilmodiene som ikke er implementert, er metoder for å detektere og håndtere
disse foreslått. Et referansesystem basert på metoden pure pursuit er implementert for å generere referanse-
hastigheter til kontrollsystemet. Til slutt utvikles kontrollere for jag, svai, hiv og gir.

Identifikasjonen av dempingen i modellen er utfordrende og gir ikke en model med høy nøyaktighet. For å
kompansere for en unøyaktig modell, blir kovariansen av prosessstøyen i estimatoren satt til en høy verdi, slik
at estimatoren stoler mer på målingene enn modellen. Dette fører til at estimatene med tilhørende målinger
følger målingene tett. Hastighet- og bias-estimatetene er fluktuerende. Kontrollsystemet leder dronen til
ønsket posisjon i x, y, og z med en nøyaktighet på under 1m. Heading-vinkelen oscillerer rundt ønsket
vinkel uten å konvergere.

ii



Preface

This master thesis is a continuation of the project thesis written in the fall semester (Bellingmo, 2019). The
thesis is written as part of the study program Marine Technology at the Norwegian University of Science
and Technology (NTNU). A part of the experimental testing in this thesis was done in the NTNU’s Marine
Cybernetics Laboratory. This thesis was written during the spring of 2020 when the university was shut
down due to the virus Covid-19. Through this, I have learned the benefits of digital guidance, but also sought
the opportunity to get help from fellow students. Additionally, working undisturbed at home has its benefits.

My supervisor at NTNU, Roger Skjetne, has helped me with general questions regarding the scope of the
work and possible approaches for the assignments. Additionally, he has provided me with great guidance
when using Derivative-free optimization to identify model parameters. My co-supervisor at Blueye, Andreas
Viggen, has helped with topics specific for the Blueye drone. Also other employees at Blueye has helped
with software issues related to the Blueye drone. The employees at Water Linked has provided me with all
the relevant information needed to use their acoustic positioning system. Most of the software related issues
encountered have been solved by the help of a fellow student and google.

This thesis has been challenging at times, but rewarding once a solution has been found. I have found it es-
pecially rewarding to be able to do real-life testing with the Blueye drone and an acoustic positioning system
outside. Through the project, I have gained new knowledge regarding hardware and software related issues,
which I believe will be much appreciated in the future.

It is assumed that the reader has knowledge of hydrodynamics and control theory.
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Chapter 1
Introduction

1.1 Background

For the Remotely Operated Vehicle (ROV) Blueye Pioneer there is an interest to develop a robust and easy
to handle dynamic positioning (DP) control system, since a typical user for this low cost ROV does not have
the necessary skills to handle unforeseen events and fault. Thus, there is a need for a fault-tolerant control
system able to automatically detect and handle typical failure modes on the ROV (hereafter referred to as the
drone). The drone is equipped with functionalities that automatically keeps the drone at the desired depth
and heading, but has no functionality for controlling surge and sway motion. The drone is mainly used for
inspection for which such a DP capability proves useful. The DP system will also provide the location of
the drone, which is highly important in search and rescue operations, but also in inspections e.g. when faults
are detects. A fault-tolerant DP control system will ensure safer operation and make it easier to control the
drone. The DP control system will be developed using the NTNU AUR-Lab owned version of the ROV. The
findings from this thesis will be relevant for other ROVs as well, especially small sized ROVs.

1.2 Objective

The main goal of this project is to develop a fault-tolerant DP control system, which includes a fault-tolerant
observer, a guidance system, and a controller. This includes studying the available sensor suite of the drone
and the acoustic positioning system (APS) that will determine the relevant failure modes. Additionally, this
includes making a model of the drone that can be used in the control system.

1.3 Work Description

As a part of making a fault-tolerant control system, several aspects must be established. Firstly, it is important
to get familiar with the Blueye Pioneer and the APS to be used and its main functions. This includes making
an overview of the relevant hardware and software components used in the control system. In order to make
a fault-tolerant observer, the characteristics of the available sensor suite will be investigated. To build an
model-based observer, the model parameters must be identified. The observer will be designed and tested
both in open-loop and closed-loop. Methods for detecting and handling faults in the observer with respect
to the relevant failure modes will be described and implemented. A guidance system for DP functionality
will be designed. With the observer and guidance system in place, the controller can be designed and
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Chapter 1. Introduction

implemented. The control system will be tested outside under real operating conditions. Additionally, a
literature background will be made on the subjects of:
• The Blueye Pioneer drone.
• Dynamic modeling of ROVs and identification of model parameters.
• Relevant sensors for ROVs in DP, especially the APS, inertial measurement unit, and pressure sensor.
• Dynamic positioning, including main DP control system components and observer designs. Observer

designs for ROVs.
• Relevant failure modes of the DP sensors.
• Fault-tolerant DP observer designs.
• Derivative free optimization for DP.

Figure 1.1 shows where these tasks have been answered in the report. Chapter 2 contains the necessary sci-
entific background for the work and mentions relevant previous work with regards to topics covered. Chapter
3 presents the main characteristics of the drone and the external APS used, including related hardware and
software information. Chapter 4 presents the sensor suit to be used in the DP control system, which includes
the pressure sensor and IMU in the drone, and the APS as a whole. Chapter 5 presents the problem statement
for the DP control system including limitations and assumptions made. Chapter 6 describes how the model
parameters have been identified, i.e., the mass, Coriolis-centripetal, and damping parameters. Chapter 7
describes the design and development of the chosen observer, i.e. an extended Kalman filter (EKF). Chapter
8 presents the guidance system developed, where target tracking strategy pure pursuit is used to generate
reference velocities. Lastly, Chapter 9 describes how the design and implementation of the PID control law
and the control system as a whole.

Ch 2
Background + Literature

review

Ch 4
Sensor suit for DP:

Pressure sensor
IMU
APS

Ch 5
Problem statemt for DP

control system

Ch 6
Model identification:

Mass, Coriolis, 
Damping + DFO

Ch 7
Design and develop

observer:
EKF

Ch 3
Main characteristics of

Blueye drone and APS +
Hardware +

Software

Ch 9
Design and develop

control law:
PID controller

Ch 8
Design and develop
guidance system:

Pure pursuit

Figure 1.1: Overview of the report and can be seen as a readers guide to the master thesis.

1.4 Scope and Delimitation

The drone is mainly used for underwater inspections and therefore usually operated at low speed. Based on
this, the dynamics of the drone is modelled using a low-speed hydrodynamic model. An APS is the only
external device used in the DP control system in addition to the drone itself. The drone is typically controlled
by giving joystick inputs related to the desired force in a given degree of freedom to the drone through an
application on a phone or tablet. In this thesis, the input will be given as a desired pose, i.e. x-, y-, z-position
and heading angle, that is passed to the drone using a PC. The drone is equipped with an internal guidance
system that is based on joystick input. To have the input given by the desired pose instead of joystick input,
an external guidance system is developed. The external guidance system will be used instead of the existing
internal guidance system. The DP controller developed in this project will be an integrated part of the ex-
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1.5 Challenges

isting controller for the drone. The existing controller already has DP functionalities for auto-heading and
auto-depth on the drone, so the extended control system will be developed for the degrees of freedom in the
horizontal plane, i.e. surge, sway, and yaw. The existing thrust allocation on the drone will be used as is.

As the scope of work has proved to be larger than anticipated, the DP observer is implemented to be fault-
tolerant with regards to some and not all relevant failure modes. Detection and handling of the other relevant
failure modes will be described, but not implemented. If all relevant failure modes were to be handled and
detected in the observer, there would not be time to develop the control system, which was considered an
essential part of the work assignment.

1.5 Challenges

One of the major challenges in this thesis is to get accurate positioning estimates and velocity estimates
with measurements from the APS (2Hz) and an uncertain model representing the drone. Another challenges
is getting accurate heading angle estimates in areas where a digital compass can deviate due to magnetic
disturbances. The heading is of high importance for a DP control system, since it dominates the motion
in the horizontal plane and the transformation between the NED and body frame, and should therefore be
reliable and accurate. This is discussed in detail in Chapter 10.
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Chapter 2
Background and Literature Review

Relevant parts of the previously conducted project thesis by this author (Bellingmo, 2019) is included in this
master thesis, as this is a continuation of the project thesis.

2.1 ROV

Underwater vehicles can be divided in two categories, manned and unmanned (Christ and Wernli, 2014). Fur-
ther, unmanned underwater vehicles (UUVs) can be divided in to autonomous underwater vehicles (AUV)
and remotely operated vehicle (ROV). An ROV differs from an AUV in that it is has an umbilical for com-
munication and/or power supply between the surface and the vehicle (Christ and Wernli, 2014). Depending
on the usage, ROVs are usually equipped with camera, light, and manipulators (Ludvigsen, 2019). ROVs
can be classified according to their application. For instance an ROV used to gather camera images and other
sensor data is categorized as an observation class ROV (Christ and Wernli, 2014).

2.2 Blueye Pioneer Underwater Drone

In this thesis, the ROV Blueye Pioneer will be used, illustrated in Figure 2.1.

Figure 2.1: The underwater drone Blueye Pioneer. Courtesy: Blueye Robotics.

The drone is an observation class ROV, as the main purpose is to gather camera images. The drone is
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2.3 Notation

considered a low cost and small sized drone, used mainly for underwater inspections in sea and fresh water.
The drone is used in a various of markets, e.g. shipping, waterworks, and search and rescue. The drone is
developed to be easy to use and handle, such that no previous knowledge of the drone is required to get a
good user experience. All technical specifications regarding the drone is found at blueye.no1. The ROV used
in this project thesis is a Blueye Pioneer, developed by Blueye Robotics AS, owned by NTNU AUR-LAB.
Several theses are based on the Blueye drone, e.g. Mokleiv (2017), Kvalberg (2019), and Scheide (2016).

2.3 Notation

In this thesis, the notation from SNAME (1950) will be used. These are summarized in Table 2.1 and
Table 2.2. Scalars, vectors, and matrices are represented by normal letters, bold lowercase letters, and bold
uppercase letters, respectively.

Forces Linear and Positions and
DOF moments angular velocities Euler angles
Surge X u x
Sway Y v y
Heave Z w z
Roll K p φ
Pitch M q θ
Yaw N r ψ

Table 2.1: SNAME notation.

DOF Added mass Linear damping Quadratic damping
Surge Xu̇ Xu X|u|u
Sway Yv̇ Yv Y|v|v
Heave Zẇ Zw Z|w|w
Roll Kṗ Kp K|p|p
Pitch Mq̇ Mq M|q|q
Yaw Nṙ Nr N|r|r

Table 2.2: SNAME notation for hydrodynamic coefficients.

The generalized vectors for position, velocity and force are given by (2.1) for 6 degrees of freedom (DOF)
and will be used in this thesis (Fossen, 2011).

η =



x
y
z
φ
θ
ψ

 , ν =



u
v
w
p
q
r

 , τ =



X
Y
Z
K
M
N

 (2.1)

1https://support.blueye.no/hc/en-us/articles/360006036673-Technical-specifications?
preview%5Btheme_id%5D=210292689&preview_as_role=anonymous#
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Chapter 2. Background and Literature Review

2.4 Geometric Relations

The theory in this section is mainly taken from Fossen (2011).

2.4.1 Reference Frames

When describing the motion of a marine craft it is convenient to define some reference frames. Relevant
reference frames for this thesis are defined in the following.

ECI: The Earth-Centered Inertial (ECI) frame {i} is an inertial frame fixed to the Earth’s surface, meaning
that it is nonaccelerating. The origin is located at the Earth’s center. Newton’s law of motion is valid in this
frame as it is non-accelerating.

ECEF: The Earth-Centered Earth-Fixed (ECEF) reference frame {e} = (xe, ye, ze) rotates with the Earth
and has its origin oe fixed to the center of the Earth. This frame is often used for global navigation.

NED: The North, East, Down (NED) reference frame {n} = (xn, yn, zn) where the origin is located at
the surface of the Earth. The x-axis points to the true North, y-axis towards East, and the z-axis points
downwards normal to the Earth’s surface. The coordinates are determined by the two angles longitude and
latitude. This frame is used for local navigation where it’s commonly assumed to be an inertial frame of the
vehicle (Skjetne, 2005). The relation between the ECI, ECEF, and NED frames are illustrated in Figure 2.2.
One can see that ECI (black) is fixed, ECEF (blue) rotates with the earth, and NED is situated at the surface
of the Earth.

Figure 2.2: The reference frames ECI (black), ECEF (blue), and NED (green). Courtesy: (Breivik, 2010, p.46).

BODY: The BODY reference frame {b} = (xb, yb, zb) is a moving frame fixed to the vessel. The axes are
aligned with the principal axes of inertia, as seen in Figure 2.3. The origin ob of the body frame is referred
to as the Coordinate Origin (CO).
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zb

xb
yb

Figure 2.3: Body frame. Courtesy: Blueye Robotics.

USER A user frame is a reference frame that is specified by the user. For this thesis, a relevant user frame
can be a Earth-fixed reference frame with the origin at the location of the user, e.g. at shore where the x-axis
is straight out from shore and y-axis alongside the shore. A user frame is useful when the user wants to know
the position of the drone relative to it self.

2.4.2 Body-Fixed Reference Points

The most important reference point for a marine vessel is the coordinate origin (CO) of the body-fixed frame.
The CO is the reference point used in the control system. Other reference points are the center of gravity
(CG), the center of buoyancy (CB), and the center of flotation (CF). The distance from CO til CG is given by
rbg = [xg, yg, zg]

> . In general, these points can vary with time, except CO, which is why CO is often chosen
as the origin of the control system. For instance, for a container ship the load may vary with time, which can
change the CG.

2.4.3 Rotations and Translations

To go from one reference frame a to another frame b can be done using a rotation matrix Rb
a as seen in (2.2).

xb = Rb
ax

a (2.2)

For a rotation between the NED and BODY frames, this may be done using the Euler angles roll (φ), pitch
(θ), and (ψ). For the velocity vector ν this is

νn = Rn
b (Θ)νb (2.3)

R(Θ) is the Euler angle rotation matrix and is given as

Rn
b (Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 (2.4)
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c(·) and s(·) are the cosine and sine functions. The cross-product operator S is defined as

S(λ) = −S>(λ) =

 0 −λ λ
λ 0 λ1
−λ2 λ1 0

 , (2.5)

and equals the cross-product between to vectors λ and a

λ× a = S(λ)a. (2.6)

The transformation matrix T (Θ) relates the body-fixed angular velocity ωb = [p, q, r]> with the Euler rate
vector Θ̇ = [φ̇, θ̇, ψ̇]>, i.e.,

Θ̇ = T (Θ)ωb. (2.7)

2.4.4 Inertia Matrix

The inertia matrix Ig about CG is defined as

Ig =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Ixz −Iyz Iz

 , (2.8)

where Ix, Iy, Iz are the moments of inertia about the body-axes and Ixy = Iyx, Ixz = Izx, and Iyz = Iyz
are the products of inertia. The transformation between Ig to Ib, where Ib is the inertia matrix about the an
arbitrary origin ob, is given by

Ib = Ig −mS2(rbg). (2.9)

2.5 Stochastic Processes

Gaussian White Noise White noise is a stationary random process with a constant spectral density (Brown
and Hwang, 2012). Assuming that the noise is made of superposition of independent random variables, the
Central limit theorem gives that the noise tends towards a normal distribution (Brown and Hwang, 2012).
Gaussian distribution is another name for normal distribution. A Gaussian white noise variable has zero
mean (Brown and Hwang, 2012). A multidimensional Gaussian white noise variable can be expressed by

v ∼ N (0,P), (2.10)

where P is the covariance matrix.

Wiener Process The Wiener process is dened as integrated Gaussian white noise where the initial value is
zero (Brown and Hwang, 2012). A wiener process is given by

ḃ = w, w ∼ N (0,P), (2.11)

where w is a zero-mean Gaussian white noise with covariance matrix P.

2.6 ROV Modelling

The theory in this section is mainly taken from Fossen (2011).
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2.7 Dynamic Positioning

2.6.1 Kinematic Equation

The kinematic equation for six degrees of freedom (DOF) is given by

η̇n = J(ηn)νb, (2.12)

where the position is in the NED frame and the velocity is expressed in the body frame. The transformation
matrix from the inertial frame to the body frame J is

J(η) =

[
R(Θ) 03x3

03x3 T (Θ)

]
, (2.13)

where R is the Euler angle rotation matrix and T is a transformation matrix.

2.6.2 Kinetics

The equation of motion is given by

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τenv. (2.14)

The equation of motion is constituted by a rigid-body, hydrostatic and hydrodynamic part such that (2.14)
becomes

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr +D(νv)νv + g(η) = τ + τenv, (2.15)

where
• M = MRB + MA: system inertia matrix,
• C(ν) = CRB(ν) +CA(νr): centripetal and Coriolis matrix,
• D(ν): damping matrix,
• g(η): restoring force vector,
• τ : control forces and moments, and
• τenv: environmental forces due to wind, waves and current.

The relative velocity vector is the difference between the velocity vector and the ocean current, i.e., νr =
ν − νc. The subscript RB stands for rigid body and A stands for added mass. Added mass is an inertia force
that occurs because an accelerating body must move a volume of the surrounding fluid (Fossen, 2011).

2.6.3 Identification of Model Parameters

Identification of the hydrodynamic parameters for a general work class ROV is proposed in Eidsvik (2015),
where an empirical method for added mass estimation was made. This is further discussed for the ROV
uDrone in Sandøy (2016). Model parameter estimation for the Blueye Pioneer will be discussed in further
detail in Chapter 6.

2.7 Dynamic Positioning

According to DNV (2010), dynamic positioning (DP) is defined as a vessel that keeps its position and heading
by using the thrusters and propellers on the vessel.

9
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2.8 Sensors for DP

Relevant sensors for an ROV in DP low-speed operations include accelerometer, gyroscopes, gyrocompass,
depth sensor and acoustic positioning. An overview of these sensors is given below.

2.8.1 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) often consists of a 3-axis gyroscope, 3-axis accelerometer, and 3-axis
magnetometer which is used to measure the acceleration, angular velocity and the magnetic field (Fossen,
2011). Today, due to an development in Micro-Electric-Mechanical System (MEMS) technology, there exist
IMUs with high accuracy and low price at a small size (Dukan, 2014). This is suitable for small sized
ROVs, like the Blueye drone. There also exist more accurate IMUs using gyroscopes with north-seeking
capabilities, e.g. fiber optical gyroscopes and ring laser gyroscopes, which do not need magnetometers
(Dukan, 2014). These gyroscope-based IMUs are usually larger and more expensive, and is thus not suitable
for the small Blueye drone. Models of the IMU measurements are defined in Mahony et al. (2008). The
gyroscope measures the angular velocity in the body frame ωimu = [p, q, r]> and can be modeled as

ωbimu = ωb + bbgyro + wb
gyro, (2.16)

where ω is the true value, b is the bias, and w is the measurement noise. The accelerometer measures the
linear acceleration along the three axis a = [ax, ay, az]

>. Expressed in the body frame, the measurements
are modeled adding a bias b and a noise w.

abimu = ν̇b −Rb
n(Θ)gn + bbacc + wb

acc. (2.17)

The accelerometer measures the acceleration minus the gravitational acceleration g, which are expressed in
the inertial frame, and must be transformed to the body frame. The magnetometer measures the magnetic
field m and is modeled with a bias and measurement noise, similarly to the others. Expressed in the body
frame, we get

mb
imu = Rb

n(Θ)mn + bbmag + wb
mag, (2.18)

where mn is the true magnetic field expressed in NED. The bias represents the local magnetic disturbance on
the IMU. The magnetic force is used to compute the heading. This is done inside the IMU, and the heading
measurement is an output from the IMU. Another way to find the heading, is by using a gyrocompass. A
gyrocompass is a non-magnetic compass that finds the heading using the rotation of the Earth and a fast
spinning wheel (Bai and Bai, 2014).

2.8.2 Depth Sensor

The depth sensor is in reality a pressure sensor. The depth can be computed using (2.19).

z =

∫ puuv

patm

1

ρ(S, T, p)g(L, p)
, (2.19)

where the depth is a function of salinity S, temperature T, pressure p, latitude L, density ρ, and gravity g,
patm is the atmospheric pressure and puuv is the pressure at the UUV (Ludvigsen, 2019)..

10



2.9 Motion Control System

2.8.3 Acoustic Positioning System

For underwater navigation, acoustic positioning system (APS) is commonly used since the Global Naviga-
tion Satellite Systems (GNSS’s) does not work under water. An APS computes the range from a transponder
attached to the underwater vehicle to the transducer placed at a known location (Christ and Wernli, 2014). A
transponder receives acoustic signals and automatically transmits a replay signal (Christ and Wernli, 2014).
A transducer transforms a pressure wave into electrical current, and vice versa, meaning that it acts as both
a receiver and transmitter (Christ and Wernli, 2014). The distance is calculated by measuring the time of
flight for the acoustic signal to travel from the transponders to the target vessel and return, using the speed of
sound in water. Additionally, the phase of the wave is measured to get the direction, and thus the position of
the target can be computed (Ludvigsen and Sørensen, 2016). The speed of sound depends on temperature,
pressure, and salinity (Milne, 1983).

There are three main types of APS’s; Long-baseline (LBL), short-baseline (SBL), and ultra-short-baseline
(USBL) systems, as illustrated in Figure 2.4. LBL provides wide area positioning by having three of more
transponders placed at known locations on the seabed that communicate with a transducer attach to an un-
derwater vehicle (Bai and Bai, 2014). USBL and SBL on the other hand, have the transducer placed in the
surface, typically on a ship or platform, while a transponder is attached to the underwater vehicle. An SBL
have several transducers with relatively small spacing (baseline) mounted on a ship or structure near the
surface, while a USBL consists of one transceiver that is typically mounted on a pole beneath a ship (Bai
and Bai, 2014). USBL systems offer a fixed accuracy, while the accuracy of the SBL improves with trans-
ducer spacing (Bai and Bai, 2014). Additionally, SBL systems works well in shallow water and reflective
environments compared to USBL2.

Figure 2.4: LBL, SBL and USBL acoustic positioning. Courtesy: Mallios et al. (2009).

2.9 Motion Control System

A motion control system (MCS), also referred to as a control system, usually consists of the three blocks
guidance, navigation and control systems (Fossen, 2011). These blocks can be loosely or tightly coupled de-
pending on the application. The guidance system computes the reference position, velocity and acceleration
of the vehicle (Fossen, 2011). The navigation system determines the position and possibly the velocity and
acceleration of the vehicle using sensor measurements, and typically consists of a signal processing module
and an observer (Fossen, 2011). The control system determines the necessary control load produced by the
vehicle in order to satisfy the control objective (Fossen, 2011). This block typically consists of the controller

2https://waterlinked.github.io/docs/explorer-kit/introduction/
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which computes the needed control load and a thrust allocation for distributing the load to the individual
actuators. A control objective for a DP control system can for instance be to maintain the reference posi-
tion. A closed-loop guidance system is illustrated in Figure 2.5. Each block of the motion control system is
explained in further detailed in the following subsection.

Observer

Signal processing

Controller Thrust allocation

GuidanceControlNavigation

Vehicle

Reference generator

Figure 2.5: Connections in a motion control system. The navigation system includes a signal processing module and
an observer, the control system includes a controller and a thrust allocation, while the guidance system contains a
reference generator. Courtesy: Figure inspired by (Fossen, 2011, p. 233).

A DP system developed and tested for the ROV Minerva is described in Dukan et al. (2011), which showed
good performance of an extended Kalman filter for the nonlinear dynamics of the drone. Breivik (2010) de-
scribes MCS for marine vehicles, including guidance systems for target tracking. MCS for ROVs is described
and implemented in Dukan (2014) and Fernandes et al. (2015), where the former has some interesting notes
on how to make a guidance system with joystick in the closed-loop control, while the latter have results that
encourage the use of a high-gain state observer instead of the standard extended Kalman filter.

2.9.1 Observer Design

The tasks of an observer, also named state estimator, is to filter out the noise from the measurement, estimate
states from the measurements, predict states in case of sensor faults, and estimate disturbances (Candeloro
et al., 2012). Observer design can be divided in two types: sensor-based and model-based.

Sensor-Based Observer In a sensor-based observer the strapdown inertial navigation system (INS) uses
only the inertial sensor measurements, which typically includes an IMU (Dukan, 2014). This considers only
the kinematics, so no estimation of model parameters are necessary. The inertial sensors are usually sensitive
to alignment and calibration errors. Integrating IMU readings to get position, velocity and attitude will drift
over time. To limit the errors, INS is usually fused with a positioning system, e.g. GNSS in air or APS
under water. This fusion can be done using an error-state Kalman filter (ESKF), as described in Sola (2017).
A sensor-based hybrid observer using asynchronous measurements for DP is described in Brodtkorb et al.
(2015). Other work on INS and positioning systems are proposed in Vik and Fossen (2001) and Mahony et al.
(2008). The work of Dukan (2014) contains both model-based Kalman filters and sensor-based observers.

Model-Based Observer A model-based observer uses a model of the vessel to estimate the states and
are good for filtering noise and estimation without causing phase lag (Dukan, 2014). An overview of some
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model-based observers for DP of ROVs is given in Candeloro et al. (2012), where the linear Kalman filter
(LKF), adaptive Kalman filter, extended Kalman filter (EKF), and the passive nonlinear observer are tested.
Their results showed that the EKF performed best. A comparison between a linear time-varying Kalman
filter, an EKF, and an uncented Kalman filter is discussed in Værnø et al. (2019), where all observers had
similar performance. EKF in DP is also discussed in Tannuri and Morishita (2006) and Hassani et al. (2013).
A nonlinear passive observer for ships is described in Fossen and Strand (1999) and using time-varying gains
in Værnø et al. (2017).

The observer must also be able to handle sensor fusion with sensors which have asynchronous measurement
updates. Methods for motion estimation using sensor fusion of GNSS and IMU based on a multirate Kalman
filter is discussed in Ren et al. (2019). Integration filter for APS, DVL, IMU and Pressure Gauge for under-
water vehicles is proposed in Dukan and Sørensen (2013). Zhao et al. (2012) considers the issue of handling
asynchronous measurements from DVL and APS sensors. In this project thesis, EKF is implemented and is
therefore explained in more detail.

Extended Kalman Filter

A Kalman filter is a recursive filter that estimates the state of a dynamic system using noisy measurements
(Fossen, 2011). Using a Kalman filter, it is possible to estimate unmeasured states and filter out white noise
(Fossen, 2011). The objective of the Kalman filter is to minimize the estimation error (Ghadrdan et al., 2012).
A Kalman filter assumes that the system is observable and linear, and that the process and measurement noise
are independent and Gaussian distributed (Ghadrdan et al., 2012). In dead reckoning, when measurements
are lost in a period of time, the Kalman filter is useful as it can predict the states. For nonlinear system
dynamics, the extended Kalman filter (EKF) can be used. A system with a nonlinear process model can be
written on the form

ẋ = f(x) + Bu + Ew, w ∼ N (0,Q) (2.20a)

y = Hx + v, v ∼ N (0,R), (2.20b)

where x is the state, y is the measurement, u is the control input v and w are measurement and process
noise, f(x) is a nonlinear function, and B, E, and H are model parameters. The corresponding nonlinear
discrete-time process model can be written as

x(k + 1) = F(x̂(k),u(k)) + Γw(k), w(k) ∼ N (0,Qd), (2.21a)

y(k) = Hx(k) + v(k), v(k) ∼ N (0,Rd), (2.21b)

The discrete EKF algorithm is found in Fossen (2011) and is given in (2.22).

Design matrices Qd(k) = Q>d (k) > 0 , Rd(k) = R>d (k) > 0 (2.22a)

Initial conditions x̄(0) = x0 , P̄(0) = P0 (2.22b)

Kalman gain K(k) = P̄(k)H>(k)[H(k)P̄(k)H>(k) + Rd(k)]−1 (2.22c)

Predictor x̄(k + 1) = F(x̂(k),u(k))

P̄(k + 1) = Φ(k)P̂(k)Φ>(k) + Γ(k)Qd(k)Γ>(k)
(2.22d)

Corrector x̂(k) = x̄(k) + K(y(k)−H(k)x̄(k))

P̂(k) = [I−K(k)H(k)]P̄(k)[I−K(k)H(k)]>+

K(k)Rd(k)K>(k) , P̂(k) = P̂>(k) > 0

(2.22e)
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where Qd is the discrete-time process noise covariance matrix, Rd is the discrete-time measurement noise
covariance matrix, P is the error covariance matrix, and K is the Kalman gain. In an EKF, the system matrices
are linearized about the estimated states x̂ (Lefebvre et al., 2004). The discrete time matrices F(x̂(k),u(k)),
Φ(k), and Γ(k) are found by forward Euler integration (Fossen, 2011) are given by

F(x̂(k),u(k)) = x̂(k) + h[f(x̂) + Bu(k)] (2.23a)

Φ(k) = I + h
∂f(x(k))

∂x(k)

∣∣∣∣∣
x=x̂

(2.23b)

Γ(k) = hE, (2.23c)

where h is the sampling time. Stability of the EKF is not guaranteed since its inherent approximation can
make the filter diverge with unbounded estimation errors (Bar-Shalom et al., 2002).

2.9.2 Guidance System

A guidance system can be designed in different manners, depending on the control objective. Setpoint
regulation is a type of motion control system where the desired pose is constant (Fossen, 2011). Another
examples is trajectory tracking, or simply target tracking, where the goal is to track a desired output yd(t)
(Fossen, 2011). Pure pursuit guidance is a type of target tracking where the controlled vehicle aligns its
velocity vector along the line of sight vector between the controlled vehicle and the target (Breivik, 2010).
This gives the desired velocity

vd = −Umax
p̃√

p̃>p̃ + ∆2
p

, (2.24)

where p̃ = p−pt is the position error, Umax is the maximum approach speed, and ∆p is a tuning parameter.
Here p denotes the position of the controlled vehicle, while pt is the position of the target.

2.9.3 Control Law

A simple and widely used control law is the proportional, integral and derivative (PID) controller, given by

τ = −Kpe−Kdė−Ki

∫ t′

0
e(t)dt, (2.25)

where e = x̂−xd is the estimation error for the state vector x, and Kp, Kd, and Ki are the controller gains.
The subscript d on the state vectors represent the desired states. The controller gains can be found by using
the control design model and its bandwidth as explained in Fossen (2011, chapter 12.2), or tuning by trial
and error. An example of more advanced control law is an adaptive controller, e.g. based on a contraction
theory as described in Lakshmanan et al. (2020).

2.10 Signal Fault Tolerance

Fundamental topics on signal fault tolerance is covered in Blanke (2016), while change detection and prac-
tical examples are discussed in Gustafsson and Gustafsson (2000). Blanke (2016) defines a fault as ”a
deviation of the system structure or the system parameters from the nominal situation”. This can be ”fixed”
using fault-tolerant control. A fault-tolerant control system is aimed to ”prevent a component fault from
causing a failure at the system level” (Blanke, 2016). The same book describes a failure as ”the inability of
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a system or component to accomplish its function”. This on the other hand, can not be easily fixed and the
failed component has to be shut off.

2.10.1 Signal Fault Modeling

Signal failure modes are the physical effect of a signal fault. Common failure modes are; signal dropout,
bias, drift, frozen signal, outliers, and high noise. The theory in this section is based on Mokleiv (2017),
otherwise specified. A sensor measurement can be modeled as the real signal and a measurement noise
(Gustafsson and Gustafsson, 2000), i.e.,

ynominal = yreal + v, v ∼ N (0, σ2),

where y is a scalar signal and σ2 is the variance. The noise is modeled as a Gaussian white noise, which is
often a good assumption, since the noise can be considered a sum of small contributions (see Section 2.5).
This model is defined as the nominal fault-free measurement and can be expressed as

ynominal ∼ N (yreal, σ
2).

Frozen Signal A frozen signal is characterized by several consecutive measurements which are equal. This
leads to zero variance and can be modeled as

y ∼ N (yk−1, 0) (2.26)

Signal Dropout The behavior of a dropout depends on the sensors and the software used. For the Blueye
Pioneer all sensor measurements are run through the Robotic Operating system (ROS) software which only
publishes new measurements, i.e., when the measurement has changed. This means that a signal dropout
would behave like a frozen signal and can be handled in the same manner, i.e, not differentiating between a
frozen signal or dropout.

Bias A bias is a constant offset that changes the nominal measurement. The bias does not affect the
variance in the model, but adds on to the mean

y ∼ N (ynominal + ybias, σ
2
0) (2.27)

Signal Drift A signal drift is equal to a signal bias, only that the offset varies with time. This can be
modeled as

y ∼ N (ynominal + ydrift(t), σ
2
0) (2.28)

Outliers An outlier is categorised as a measurement that is outside a certain band about the estimated
mean (Sørensen, 2013). This can be seen as a measurement with a large z-score, i.e., distance from the mean
measured in standard deviation, where the z-score is typically between 3-9 (Sørensen, 2013). If the signal is
outside the range defined in (2.29), it is assumed to be an outlier. a is the z-score.

y ∈ [ynominal − aσ, ynominal + aσ] (2.29)

Since the drone is going to operate at low speed (due to DP), an outlier can be seen as a large difference
between two measurement, as this can not be due to a large velocity (Zhao et al., 2012).
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High Noise A failure mode is categorized as high noise when there is an increase in the noise level over a
period of time. This mode manifests itself in a similar way as an outlier, only that the variance is increased
for several measurements, not just a few. High noise can be modeled as

y ∼ N (yreal, σ
2
high) (2.30)

Summary

The modeling of all the failure modes are summarized in Table 2.3.

Failure mode Model Specification

Frozen signal y ∼ N (yk−1, 0)

Signal dropout y ∼ N (yk−1, 0)

Bias y ∼ N (ynominal + ybias, σ
2
0)

Signal drift y ∼ N (ynominal + ydrift(t), σ
2
0)

Outlier y /∈ [ynominal − aσ, ynominal + aσ] a ∈ [3, 9]

High noise y ∼ N (yreal, σ
2
high)

Table 2.3: Failure modes summary.

2.11 Fault-tolerant DP Observer

A fault-tolerant observer must be able to detect and handle all the relevant failure modes. Mokleiv (2017)
made a fault-tolerant observer using EKF for a previous model on the Blueye drone, which is of high rele-
vance for this thesis. The work of Abrahamsen (2019) covers fault-tolerant DP for a vessel utilizing machine
learning approaches. A fault-tolerant navigation system for underwater robots using particle filter is dis-
cussed in Zhao et al. (2012) and Zhao et al. (2014). More on fault-detection and handling is described in
Section 7.3.1.

2.12 Derivative-Free Optimization

Derivative-free optimization (DFO) is the ”mathematical study of optimization algorithms that do not use
derivatives” (Audet, 2017). The inclusion of ”mathematical studies” in the definition limits DFO algorithms
to have methods that can be mathematically analyzed to prove convergence or other stopping criteria (Audet,
2017). The DFO solely utilizes the objective function, f(x), to find the optimal solution. For a minimization
problem, the objective can be formulated as

min
x
f(x). (2.31)

DFO is generally used when the derivative is impossible or hard to obtain. When the gradient is avail-
able, DFO will be outperformed by most modern gradient-based optimization algorithms (Audet, 2017). A
popular DFO algorithm is the Nelder-Mead simplex algorithm (Nelder-Mead for short), developed by John
Nelder and Roger Mead in 1965, which is a search method for unconstrained minimization (Nelder and
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Mead, 1965). Particle swarm optimization is another example of a DFO algorithm. The use of DFO to find
unknown parameters for DP is discussed in several papers. Relevant master theses are Løvås (2019) and Alf-
sen (2019), who use DFO to find control parameters for DP, where the latter also use DFO to find observer
gains. In Værnø et al. (2019), DFO is used to find damping parameters for the system model and observer
gains.

2.13 Networking

A network can be defined as two or more processes communicating, where the processes can be on the same
or different devices (Turtschi, 2002). The Internet Protocol (IP) was developed to have a standardized way to
communicate over different networks (Turtschi, 2002). Sockets are used to access IP-based networks from
an application (Turtschi, 2002). Network sockets are ”endpoints of communication used for connecting to
other computers, sending, and receiving data from them.” (Turtschi, 2002). Network communication can
be divided in four protocol layers; Application layer, Transport layer, Network layer, and physical layer
(Turtschi, 2002), illustrated in Figure 2.6.

Application Layer
(HTTP, ...)

Transport Layer 
(TCP, UDP, ...)

Network Layer
(IP, ...)

Physical Layer
(Ethernet, ...)

Figure 2.6: Communication protocol-stack. Courtesy: Turtschi (2002).

Two common protocols used in the Transport layer are the Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP). TCP is a connection- and stream-oriented protocol, for which a communication
link must be connected at all times (Turtschi, 2002). TCP is reliable, as it ensures that no packets are lost.
Most protocols that need reliability use TCP as their base, e.g. the Hypertext Transfer Protocol (HTTP).
UDP is a connection-less protocol, meaning that it sends packets without checking if the receiver is ready,
which may lead to loss of packets (Turtschi, 2002). Using UDP, there is no guarantee that the packets sent
will be received in order. The benefit of UDP is that it is faster than TCP, since it doesn’t have to resend
packets or give them in order (Turtschi, 2002).
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Chapter 3
Experimental Platform

This chapter gives an overview of specifications of the drone and APS used, including hardware and software
related information.

3.1 Specification of Underwater Drone

The underwater drone used in this project is the Blueye Pioneer from Blueye Robotics. The specifications
are found at Blueye.com (Blueye). The drone is shown in Figure 2.3.

3.1.1 Geometric Properties

Table 3.1 shows the most relevant geometric properties for the underwater drone. Aproj,top, Aproj,side, and
Aproj,front are the projected areas top, side, and front respectively. Iz is the moment of inertia in yaw. The
mass m is weight in air with salt water ballast.

Parameter Value Unit
L 485 mm
W 257 mm
H 354 mm
m 8.6 kg
Aproj,top 79561.5 mm2

Aproj,side 140366 mm2

Aproj,front 56387 mm2

Iz 92502.96 kgmm2

Table 3.1: Geometric properties.

3.1.2 Thrusters

The drone has four thrusters; two longitudinal, one lateral, and one vertical thruster. The power of each
thruster is 350W in free water. When placed on the drone, the efficiency is lower, depending on the location.
Table 3.2 gives the position of each thruster relative to CG in the body frame, the main thrust direction, and
an approximate efficiency coefficient for each thruster.
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Main thrust
Thruster X [m] Y [m] Z [m] directions Efficiency
Longitudinal starboard 0.1491 0.08082 -0.02628 Surge and yaw 0.9
Longitudinal port 0.1491 -0.08082 -0.02628 Surge and yaw 0.9
Lateral 0.06141 -0.01502 -0.02628 Sway 0.8
Vertical -0.02359 -0.00082 -0.06848 Heave 0.6

Table 3.2: Actuator table

3.1.3 Internal Sensors

The drone is equipped with an IMU, pressure sensor, temperature sensor, and a camera. Since the IMU
and the pressure sensors are the most relevant sensors for the control system to be developed, they will be
described in more detail in Chapter 4.

3.1.4 Surface Unit

The drone is connected to the Surface Unit by an Ethernet cable. The Surface Unit has a wifi router for
wireless connection to smartphones or tablets. Additionally, it has a USB port for attachment of Ethernet
adapter for wired connection in difficult wireless environment.

3.2 Specifications of APS

Figure 3.1: Waterlinked’s Underwater GPS operating prin-
ciple. At point 1 is where the underwater vehicle with
the Locator is placed, point 2 illustrate the submerged re-
ceivers, and point 3 show where the topside hosing (Master-
D1) could be placed. Courtesy: Water Linked AS.

For this project, the positioning system from Wa-
ter Linked named ”Underwater GPS” is used
as the APS. The documentation for the Under-
water GPS is found at waterlinked.com (Wa-
ter Linked). The Underwater GPS is based
on SBL acoustic positioning. The system con-
sists of four hydroacoustic receivers submerged
near the surface together with a digital acous-
tic position computing board named Master-D1
and a hydroacoustic locator named Locator U1
strapped to the drone. The Locator U1 (also
referred to as simply the Locator) consists of
a transducer, a depth sensor, and an inter-
nal GPS based time sync module. The trans-
ducer in the Locator is only used as a trans-
mitter, i.e. transmitting acoustic signals. The
Master-D1 is usually placed in a topside hous-
ing. The operating principle is shown in Fig-
ure 3.1.

The position of the Locator is calculated using the
time-of-flight between the receiver and the transmit-
ter. This position is computed in the acoustic refer-
ence system where the origin is at the location of
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the Master-D1 and x- and y-axes are defined by the
orientation of the topside housing1. The Master-D1 is equipped with an IMU and GPS. The IMU is used
to find the orientation of the topside housing, and together with the GPS and acoustic positioning data, the
global position of the Locator is computed. The global position is given in the NED frame with units latitude
and longitude. The position data sent to the user (by e.g. the API) is filtered in a Kalman filter installed in
the Master-D1. Communication with the Underwater GPS can easily be done through Water Linked’s API2.
Through the API the user will be notified if there is a loss of signal from the Locator or other issues.

3.3 Hardware Topology

Drone Hardware A microcontroller KL82 is mounted on the power management unit (PMU) to power
the thrusters and the other sensors. The KL82 handles the communication with the thrusters and battery
and communicates the control signals with a 4-in-1 electronic speed controller (ESC) by the digital protocol
DShot. The ESC controls the control signal to the four thrusters. A single board computer named Imx6 runs
the Blueye-made operating system (OS) named Blunux. Blunux is a configuration of a Yocto project3, which
is a project to develop Linux distributions. The Imx6 and KL82 are connected by Universal Asynchronous
Receiver/Transmitter (UART). The pressure sensor and IMU are connected with I2C to the Imx6. The Imx6
is used to communicate from the drone through an Ethernet cable to the Surface Unit placed above sea level.
Topside computers and tablets are connected to the network provided by the Surface Unit and are able to
subscribe and publish messages to the drone using the Robotic Operating System (ROS).

APS Hardware The Master-D1 communicates with a PC by an Ethernet cable. The Master-D1 is con-
nected with the receivers using a Water Linked proprietary signal. The receiver communicate with the
Locator attached to the drone. The Topside housing (Master-D1) is equipped with a GPS and an IMU.

A hardware topology of the Blueye drone and the APS is illustrated in Figure 3.2. The PC in the figure
illustrate the topside computer that will be used to communicate with the drone and the APS. The PC will
run the control system to be developed. The drone is equipped with two IMUs, but for simplicity, only one
IMU is shown in the figure.

1https://waterlinked.github.io/docs/explorer-kit/gui/receivers/
2https://waterlinked.github.io/docs/explorer-kit/gui/api/
3https://www.yoctoproject.org/
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Figure 3.2: Hardware topology of the drone (marked in blue) and the APS (marked in red). Courtesy to Water Linked
for photo of Topside housing.

3.3.1 Power Flow

The drone is powered from an in-house battery with nominal capacity of 6500 mAh and nominal voltage
of 14.8V. Under normal using conditions, the battery last for approximately two hours. The microcontroller
KL82 in the drone is placed on a Power Management Unit (PMU) board which distributes the power to each
component in the drone. The computer Imx6, pressure sensor, and IMU are powered with 3.3V, the camera
is powered with 5V, while the four thrusters are powered with 14.8V. The Master-D1 of the APS is powered
by an external battery at 14.8V. The Master-D1 has a PMU which distributes 12V to each receiver. The trans-
mitter Locator U1 is equipped with an internal battery which can power the transmitter for approximately 10
hours. The power flow for the drone and the APS are shown in Figure 3.3 and Figure 3.4 respectively.
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Figure 3.3: Power flow for the drone.
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Figure 3.4: Power flow for the APS.

3.4 Software Topology

The OS, framework, programming language, and API for the topside computer, the single-board computer
Imx6 inside the drone, and the Master-D1 onboard the APS are presented in Table 3.3. The topside computer
refers to the computer used to run the control system components developed in this thesis.

Topside computer Imx6 on drone Master-D1 on APS
OS Ubuntu 16.04 Blunux Linux
Framework ROS Kinetic ROS Melodic -
Programming language Python 2 C++/Python 2 C/C++/Python
API - Blueye SDK Swagger HTTP

Table 3.3: OS, framework, programming language and API used on hardware components on the drone, the APS, and
the topside computer (PC) used to run the developed control system.

The software on the drone is written in ROS which contains tools and libraries to simplify the task of manage
the behavior of a robot.4 The communication interface in ROS provides the possibility publishing and

4https://www.ros.org/about-ros/
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subscribing messages among others. The Blueye drone has a Software Development Kit (SDK) that allows
for control of some functions on the drone, without accessing all the code on the drone. More information
regarding the SDK is found at blueye-robotics.github.io5. Water Linked’s APS is equipped with a software
API of the type Swagger based on HTTP6. The API allows you to easily read acoustic and global position
data. The software topology is illustrated in Figure 3.5 where it is divided in the tree subsystems; Topside
computer, Drone, and APS. The relevant modules of each subsystem for DP are shown. The observer in the
APS receives raw measurements from the IMU and GPS located on the Master-D1 board, in addition to the
measurements from the receivers. The internal observer in the APS filters the raw signals and detect and
handle typical failure modes in the signals. The x and y position from the observer are sent to the control
system to be developed in the computer used in this thesis, i.e. the Topside computer. The drone is equipped
with an internal observer, a controller, and a thrust allocation. The drone also contains other software related
functions, but only the ones with the highest relevance for the DP control system are included. The drone will
provide the heading, heading rate and control force to the control system to be developed. Details regarding
the signal flow in the APS is given in Appendix C.1.

Control system to be implemented

Topside computer

Drone
Controller

Thrust allocation

ThrustersIMU & Depth sensor

Observer

APS

Observer
IMU

Receivers

Locator

GPS

Topside housing

Figure 3.5: Software topology of the drone and APS.

3.4.1 Internal Observers

Both the APS and the drone are equipped with observers, hereby referred to as the ”internal observer” of the
APS and the drone. For the drone, the internal observer is an integrated part of the internal control system on
the drone. The drone’s internal observer computes multiple heading estimates using different combinations
of sensor data, which are published using ROS on Rostopics. Two relevant topics that represent the heading
will be described here. The topic observer/attitude gives the heading angle computed using a fusion of the

5https://blueye-robotics.github.io/blueye.sdk/
6https://waterlinked.github.io/docs/explorer-kit/gui/api/
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Chapter 3. Experimental Platform

digital compass, i.e. the magnetometers in the IMU, and the integrated heading rate from the gyroscope in the
IMU. The second topic observer/state estimator bases the heading estimated on the integrated heading
rate from the gyroscope in the IMU. When the heading angle is computed by integrating the heading rate
given by the gyroscope, this will lead to a drift in the heading estimate. The heading estimate from the topic
observer/state estimator is used in the internal control system on the drone.

3.5 Control Modes

The drone is equipped with auto depth and auto heading functions. Auto depth enables the drone to keep
a specified depth, while it can move in x and y direction. For auto heading, the drone keeps a heading
specified by the user. It is also possible to control the drone manually, with e.g. joysticks. The drone has
functionalities named ”slow” and ”boost”, which enable the control input to be either smaller or larger than
the nominal force input.

3.6 Marine Cybernetics Laboratory

The Marine Cybernetics Laboratory at Tyholt, hereby referred to as the MC-lab, is used to perform some
tests with the drone. Information regarding the lab is found at ntnu.edu7. This lab is equipped with a camera-
based positioning system named Qualisys. The system has a position data noise level of ±1 camera units.
More information regarding Qualisys can be found at qualisys.com8.

7https://www.ntnu.edu/imt/lab/cybernetics
8https://www.qualisys.com/
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Chapter 4
Sensor Suite for DP

The available sensor suite relevant for DP is presented in this chapter, including sensor characteristics in
terms of update rate, noise, bias accuracy, signal type and other relevant failure modes.

4.1 Drone-Related Sensors

The drone uses both TCP and UDP for network communication. UDP is used for the main communication
of data out from the drone, e.g. depth and heading measurements. For the main communication input to the
drone, TCP is applied. Examples of information that is sent over TCP is motion input (in surge, sway etc.)
or a service to set the auto function for heading on.

4.1.1 Depth Sensor

The depth sensor has an update rate of 42 Hz. The resolution of the sensor is 0.2 mbar according the sensor
specifications1, which equals approximately 0.2 cm in depth. The resolution describes the magnitude of
change in the measurement needed for it to be detected. The noise variance in the depth measurements
is approximately 1× 10−6 m2, based on measurements on the same drone in Kvalberg (2019). The depth
sensor measurements are accurate for most depths, but has some uncertainty when it is close to or above the
surface. For most operational conditions, this will not be an issue. The signal from the depth sensor is an
I2C type, which is a serial communication bus.

4.1.2 IMU

The drone is equipped with two identical IMUs for redundant measurements. Since they are identical, only
one will be described here. The MEMS-based IMU consists of a 3-axis gyroscope, 3-axis accelerometer, and
3-axis magnetometer. The IMU has an update rate of 100 Hz. The IMU is placed behind the camera, which
is not in the CO, which gives a lever arm from the IMU measurement to the CO. The IMU measurements
experience drift, which is one of its largest error source. The signals from the IMU are also I2C, like the
depth sensor. The heading angle is one of the measurements the IMU can provide. A typical failure mode for
the heading angle computed using the magnetometer, is magnetic disturbances. This magnetic disturbance
can be caused by external objects with magnetic properties, e.g. ferrous metals. This is a relevant issue when

1Blueye.no
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using the drone for e.g. inspections, as the drone can be close to structures containing the ferrous metal iron,
which can cause a magnetic disturbance for the magnetometer. The drone is equipped with motors for the
thrusters. Motors produce magnetic fields, which can influence the heading angle from the magnetometer as
well. In the internal observer of the drone, the digital compass measurements are calibrated to reduce the
effect of the running motors on the heading angle.

4.2 APS

The update rate of an acoustic system is normally lower than surface based positioning systems (e.g GNSS).
For underwater acoustics, the acoustic signal travels at speed of sound in water, while in GNSS radio signals
are used, whom travel at the speed of light which is much higher than speed of sound in water.Using the
transmitter in Locator U1 in Water Linked’s APS, the system has an update rate of 2 Hz. The accuracy of
an APS is determined by the range. For this system, the maximum range is 100 m from any of the receivers
to the transponder. The update rate of APS depends on slant range between the transponder and transducer,
where the rate decreases and gets more irregular at lager ranges (Zhao et al., 2012). The Locator is equipped
with a internal GPS to time sync the internal clock when the Locator is still in air. However, after some
time under water, the clock will start to drift and lead to an error in the position estimate. Diving with the
Underwater GPS for 7 hours, the signal will drift approximately 1 m. Water Linked’s API will give an error
message if the position is lost or other issues are discovered during operation. The signal from the receivers
in the APS is a Water Linked proprietary signal. TCP is used as the network interface.

4.3 Location of Sensors

The location of the sensors are needed to transform these measurements to the desired reference frame in the
control system. The IMU on the drone is placed behind the camera, while the APS transmitter is attached to
the top of the drone. Table 4.1 gives their distance relative to CG in the body frame, which coincides with
the CO (see Section 5.2).

System Sensor X [m] Y [m] Z [m]
Drone Pressure sensor 0.0547 -0.0008 -0.0951

IMU 0.1239 -0.0442 -0.1173
APS APS transmitter 0.0814 0.0000 -0.2036

Table 4.1: Sensor location relative to CG.

4.4 Sensor Update and Uncertainties

The average update rates, standard deviation of the noise, and bias for the different sensors are given in
Table 4.2. The data for the pressure sensor, accelerometer, gyro, magnetometer in the drone are gathered
from experiments on the drone done in Kvalberg (2019). For bias, only data on the accelerometer and gyro
in the drone’s IMU is known. The APS sensor represent the characteristics of the system as a whole. Data
on the noise for the APS measurements are not available.
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4.4 Sensor Update and Uncertainties

System Sensor Noise std Update rate Bias
Drone Pressure sensor 1× 10−3 m 42 Hz

Accelerometer (IMU) 0.0308 m/s2 100 Hz 6.8× 10−6 m/s2

Gyroscope (IMU) 3.08× 10−5 rad/s 100 Hz 0.017 rad/s
Magnetometer (IMU) 1× 10−3 rad 100 Hz

APS APS - 2 Hz

Table 4.2: Sensor update rates, noise standard deviation and bias overview.
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Chapter 5
Problem Statement

To make the motion control system, a model of the drone must first be identified. A large focus will be given
the identification of the damping parameters, as these are hard to find. With the model in place, the observer
will be designed. Once the measurements have been filtered and faulty signals handled in the observer, the
control law can be implemented. Lastly, to get a complete DP system, a guidance system must be designed
in order to set the desired pose for the control system. In this project, the existing thrust allocation algorithm
on the drone will be applied.

5.1 Configuration Space and Workspace

A configuration space is ”the space of possible positions and orientations a vehicle can attain” (Fossen,
2011). The configuration space for the drone is 6 DOF, which are surge, sway, heave, roll, pitch, and yaw.
The workspace of the drone is a reduced space of the real configurations space (Fossen, 2011), chosen to be
3 DOF in the horizontal plane, i.e. surge, sway, and yaw. The workspace is reduced to the chosen DOFs
since the drone is already stable with regards to roll and pitch, and has existing functionality to control heave.
The drone is equipped with a heading controller, but the yaw motion is included because it is essential for
controlling the motion in the horizontal plane. The observer design model (ODM) and control design model
(CDM) are defined in the workspace of the drone.

5.2 Reference Frames

The CO, i.e., the origin of the body frame and the origin of the control system, is chosen to coincide with
the center of gravity (CG), such that xg = yg = zg = 0. For simplicity, the CG is assumed constant. In this
thesis, the drone will be controlled from shore at the location of the user, giving the need to define a user
reference frame. The user frame is chosen to be equivalent to the acoustic reference frame (see Section 3.2),
where the origin is at the location of the topside housing (Master-D1) of the APS, the x-axis is parallel to the
shore, the y-axis is pointing straight out from the shore, and the z-axis points upwards. Elements in the user
frame are denoted with the superscript u. The NED frame is assumed inertial, which means that the rotation
of the Earth is neglected and Newton’s law apply. This is a fair assumption when the drone is operated in a
limited geographical area. The NED frame used in this control system is defined as a local NED frame with
the same origin as the user frame, i.e., at the topside housing of the APS. The coordinates in the local NED
frame are given in meters from its origin. The relation between the local NED, body and user frame is shown
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5.3 Equations of Motion

in Figure 5.1. As can be seen from the figure, the user frame is flipped relative to the NED frame and the
body frame, that is, the z-axis in NED points downwards, while the z-axis in the user frame points upwards.
The angle between the NED frame and the body frame is denoted α.

xn

yn

xb

yb

yu

Shore
xu

Topside housing

Figure 5.1: Local NED (n), body (b) and user (b) frame together. α is the angle between the NED frame and the user
frame. Courtesy of Blueye drone: Blueye Robotics.

5.3 Equations of Motion

The vessel model in 3 DOFs is represented by the states and control inputs

ηn =

xy
ψ

 , νb =

uv
r

 , τ b =

XY
N

 , (5.1)

where τ is the control load vector. The superscript {n} and {b} mean that the vector is in the NED frame
and body frame, respectively. The heading angle is chosen to be contained between [-pi,pi). The equations
of motions for the drone in the workspace is given by

η̇n = J(ψn)νb (5.2a)

Mν̇b = −C(νb)νb −D(νb)νb + τ b + bb (5.2b)

ḃb = wb,wb (5.2c)

where the transformation matrix J(ψ) is given by

J(ψ) =

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 , (5.3)

where c(·) and s(·) are abbreviations for the cosine and sine functions. The bias b = [bx, by, bψ] accounts for
unmodeled effects and is modeled as a Wiener process where w is a zero-mean Gaussian white noise. The

29



Chapter 5. Problem Statement

force from the umbilical acting on the drone is not included in the model, and will thus be a part of the bias.
The restoring force is not included as it acts in the vertical plane, not the horizontal plane which is modeled
here.

5.4 State-Space Model

The system model in (5.2) is written in state-space form by defining a state x, input u and measurement
vector y.

ẋ = A(x)x + Bu + Ew, w ∼ N (0,Q) (5.4a)

y = Hx + v, v ∼ N (0,R) (5.4b)

where w is the process noise and v is the measurement white noise. They are both modeled as zero-mean
Gaussian noise. The chosen state and measurements vectors are given by (5.5). The control input is the
control load produced by the thrusters.

x =

ηnνb
bb

 , y =

ynaps
ψ
r

 , and u = τ b (5.5)

where yaps = [x, y]> is the position measurement from the APS. The heading ψ and the heading rate
r are both from the drone’s internal observer, but from different rostopics published by the drone. The
heading is gathered from the rostopic named observer/attitude, which is based on the heading com-
puted using the magnetometers and the gyroscope in the IMU, while the heading rate is from the rostopic
observer/state estimator, which is computed using the gyroscope in the IMU. This choice of vectors
gives the following state-space matrices

A(x) =


0 J(ψ) 0
0 −M−1(C(νn) +D(νn)) M−1

0 0 0

 (5.6a)

B =

 0
M−1

0

 (5.6b)

E =

0
0
I

 (5.6c)

H =


1 0 0 0 0 0 01x3

0 1 0 0 0 0 01x3

0 0 1 0 0 0 01x3

0 0 0 0 0 1 01x3

 . (5.6d)

5.5 Speed Regimes

As stated in Section 1.4, the DP system will only be developed for low speed operations. This requires a
definition of what is considered low speed regarding the drone. The maximum forward (surge) speed of the
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drone is 3 knots, i.e. 1.54 m s−1. The maximum speed in the other DOFs are unknown, but assumed to
be lower than surge. For this project, low speed is defined as 0−0.9 m s−1 for surge, sway and heave, and
0−15 ◦ s−1 for yaw.

5.6 Assumptions

• The NED frame is assumed inertial, which is a fair assumption when the drone is to be operated in a
small geographical area.
• The CO in the BODY frame is chosen to coincide with the center of gravity (CG). This means that
xg = yg = zg = 0.
• The functionalities for slow and boost on the control input to the thrusters, discussed in Section 3.5,

will not be applied in this project. This is done to simplify the development of the DP system.
• Since the lateral thruster is placed 2 cm above the CO (see Table 3.2), it will give small roll moment

to the drone. The vertical thruster has a lever arm in both x and y direction in the body frame, giving
pitch and roll moment. The lever arm along the y-axis for the vertical thruster is close to zero, so
the roll moment caused by this is negligible. With the four existing thruster on the drone, the control
system is not able to compensate for these roll and pitch moments.
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Chapter 6
Estimation of Model Parameters

The following chapter shows how the model parameters for a vessel model defined in the 3 DOF workspace
were estimated.

6.1 Rigid-Body

The rigid-body inertia matrix MRB and the Coriolis-centripetal matrix for rigid body CRB(ν) in 6 DOF
are given by (Fossen, 2011),

MRB =

[
mI −mS(rbg)

mS(rbg) Ib

]
(6.1a)

CRB(ν) =

[
0 −mS(ν1)−mS(ν2)S(rbg)

−mS(ν1) +mS(rbg)S(ν2) S(Ibν2)

]
(6.1b)

,
where m is the mass, Ib is the inertia matrix about CO, S is the cross-product operator, rbg is the distance
vector from CO to CG, and ν1 = [u, v, w]> and ν2 = [p, q, r]>. Since the drone is symmetric about the
xz-plane, Ixy = Iyz = 0. Moreover, since the body-frame origin CO is placed in the CG, rg equals zero.
Applying these assumptions, the model parameter matrices in 3 DOF simplify to

MRB =

m 0 0
0 m 0
0 0 Iz

 , CRB(ν) =

 0 0 −mv
0 0 mu
mv −mu 0

 . (6.2)

The mass, moment of inertia, and linear velocities v and u are estimated by the observer, providing the
rigid-body matrices.

6.2 Hydrodynamics

The added mass matrix in 3 DOF is defined as

MA = −

Xu̇ Xv̇ Xṙ

Yu̇ Yv̇ Yṙ
Nu̇ Nv̇ Nṙ

 . (6.3)
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The added mass was found using the empirical method developed by Eidsvik (2015), which takes use of
experimental data from a DNV standard. The method was validated on the uDrone in Sandøy (2016). Ei-
dsvik’s method assumes that the ROV is a rectangular prism where 2 of 3 sides are equal. The difference
between the two approximately equal sides should not be larger than 10%. For the Blueye drone, the width
is 25% lower than the height, meaning that the assumption did not hold. Additionally, the thrusters on the
drone are placed on the sides and change the flow around the vehicle compared to a rectangle shaped prism.
As discussed in Mokleiv (2017), Eidsvik tested the ROV Neptunus, which has some geometric similarities
to the Blueye drone and also has the thrusters sticking out. The empirical method was satisfactory for the
ROV Neptunus except for heave, roll, and yaw directions.

The added mass was computed using the length, height, width, and projected areas for each side of the drone
given in Table 3.1. The added mass was computed for both fresh water, whose density is assumed to be 1000
kg/m3, and sea water, whose density is assumed to be 1025 kg/m3. This gave the added mass matrix in
(6.4). The location of script to compute the added mass is given in Appendix B.1.1.

MA = diag{5.09, 19.38, 0.16} for fresh water (6.4a)

MA = diag{5.22, 19.87, 0.16} for sea water (6.4b)

Modeling the added mass matrix as a diagonal matrix (Fossen, 2011, p.121), the Coriolis-centripetal matrix
simplified to

CA(ν) =

 0 0 Yv̇v
0 0 −Xu̇u
−Yv̇v Xu̇u 0

 , (6.5)

where Yv̇ andXu̇ are elements in the added mass matrix. Since the Coriolis-centripetal matrix C(ν) is linear
in the velocity vector ν, the matrix is easily modeled taking ν as input. The damping can be divided into a
linear and nonlinear part

D(ν) = DL + DNL(ν). (6.6)

The linear damping is due to potential damping and skin friction, while the nonlinear damping is due to
quadratic and higher-order damping terms (Fossen, 2011). The linear damping was modeled as

DL =

Xu 0 0
0 Yv Yr
0 Nv Nr

 . (6.7)

The nonlinear damping was simplified to include only the quadratic terms, i.e., DNL(ν) = DQ(ν), which
is given by

DQ(ν) =

X|u|u|u| 0 0

0 Y|v|v|v|+ Y|r|v|r| Y|v|r|v|
0 N|r|v|r| N|r|r|r|+N|v|r|v|

 . (6.8)

Identification of the damping coefficients is explained in Section 6.4.
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6.3 Hydrostatics

The restoring force includes the gravitational fng and buoyancy force fnb . The gravitational force is given by
the submerged weight of the droneW = mg, while the buoyancy is given byB = ρg∆ (Fossen, 2011). ∆ is
the volume displacement of the drone and equals the volume of the drone when the drone is fully submerged.
These forces act in the vertical plane, which is not included in the workspace of the drone.

6.3.1 Thrust Dynamics

The control forces and moments on the drone are determined by the four thrusters described in Section 3.1.2.
The forces and moments τ in surge, sway, and yaw from a force vector f = [X,Y, Z]> is given by

τ =

[
f

(r× f)yaw

]
=

 X
Y

Y lx −Xly

 =

XY
N

 , (6.9)

where r = [lx, ly, lz]
> is the location of the thruster in the body frame relatice to the CO. The thrust forces

ft and control input u for each thruster is defined in Table 6.1. The control input is the PWM signals to each
thruster. Additionally, the lever arms from CO to each thruster giving the yaw moment is defined.

Location Thrust force Control input Lever arm
Longitudinal starboard ft1 u1 -ly,longitud
Longitudinal port ft2 u2 ly,longitud
Lateral ft3 u3 lx,lat
Vertical ft4 u4

Table 6.1: Thrust notation.

The vertical thruster has no lever arm for the yaw moment, since the force direction is parallel to the z-axis.
The lever arms to the yaw moment can be found in Table 3.2, but restated here for clarity,

Lever arm Value [m]
ly,longitud 0.08082
lx,lat 0.06141

Table 6.2: Lever arms for yaw moment.

The thrust forces ft are related to the control inputs u by a force coefficient matrix K, i.e.,

ft = Ku, (6.10)

The control load vector produced by all the thrusters τ is related to the individual thruster forces by

τ = Tft, (6.11)

where T is the thrust configuration matrix that depends on the location of the thrusters relative to the center
of gravity, given by

T =

 1 1 0 0
0 0 1 0

−ly,longitud ly,longitud lx,lat 0

 . (6.12)
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6.4 Identify Damping by Free-Running Test and DFO

6.4 Identify Damping by Free-Running Test and DFO

To identify the damping coefficients, a free-running tests of the drone in the MC-lab with all sensors con-
nected, together with camera-based positioning system Qualisys, was performed. The free running tests
consisted of six different parts, i.e., (1) surge test, (2) sway test, (3) yaw test, (4) combined surge and sway
test, (5) combined surge and yaw test, and (6) combined sway and yaw test. Each test was conducted by
setting a constant speed of the DOF(s) to be tested first in positive direction, zero speed, and then in negative
direction. This was done using the Blueye SDK, from where you can set the input in the four DOFs surge,
sway, heave and yaw. All the tests were run in the low speed regime, defined in Section 5.5.In order to get
a free floating drone, the drone was controlled to have a negative heave motion during the test, such that the
drone would stay above the bottom of the tank. This means that for all the DOFs tested, there was always a
coupling to heave. The auto functions for heave and heading were both on during the tests. Due to shallow
water in the MC-lab, it was not possible to test the drone for heave alone.

6.4.1 Gather Data From Free-Running Test

The data was gathered by running the positioning system Qualisys in MC-lab and logging data from the
drone simultaneously. Both Qualisys and drone data were sampled at 50 Hz. The following data was saved:

1. From Qualisys:
• the position in x, y and z

2. From drone:
• control force τ
• depth from the drone’s state estimator
• heading angle from the drone’s state estimator

Ideally, data from Water Linked’s APS should also have been recorded, but since the system does require
constant GPS lock, this could not be performed inside the MC-lab.

6.4.2 Data Processing

Before the data could be used for optimization, data from different sources had to be synchronized, missing
data had to be handled and noisy signals filtered. Additionally, the velocity had to be computed from the
position such that it could be used in the optimization.

Change Reference frame

The position data from Qualisys was measured in a local reference frame in the MC-lab, illustrated in Fig-
ure 6.1. The Qualisys position coordinates needed to be transformed to the NED frame, such that it would
be in the same frame as the position to be used in the simulation. To do this, the angle between the magnetic
north and the x-axis in the Qualisys reference frame had to be determined. This was done by measuring the
heading estimated by the drone when it was aligned with the x-axis of the Qualisys reference frame. This
gave the angle φQ = 156◦ from North to the Qualisys frame. This angle measurement will have elements of
uncertain due to possible errors in the alignment to the x-axis of the Qualisys reference frame and uncertainty
in heading angle measurement of the drone.
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Figure 6.1: Qualisys Reference System in the tank in the MC-lab. The blue lines represent the NED frame, while the
lines marked in black represent the axes in the Qualisys reference frame. φQ is the angle from x-axis in the NED frame
to the x-axis of the Qualisys frame.

Synchronization of Data

The moment of initiation for gathering data from Qualisys and the drone was not the same during the tests, as
they were gathered using two different computers. The Qualisys data were gather using an offline program,
for which an accurate timestamp was not added to the data. To synchronize these data, the depth measure-
ments from Qualisys and the drone were compared, to find the delay between the to. This was done by visual
inspection of the data, and will give an uncertainty in the analysis using these data.

Interpolation and Cleansing

The position data from Qualisys contained a lot of missing data points. This occurred frequently when the
Qualisys’ cameras that captured the drone switched as the drone was moving. According to the employee
Torgeir Wahl working in the MC-lab, Qualisys captured the motion of the drone poorly due to its unusual
shape. Firstly, the start and end of the tests were found by looking at the when control force input for the
DOF to be tested was unlike zero. This was easily detected for all tests including surge and sway, but for
the yaw test this could not be detect, since the auto-depth function was on during the whole test. Secondly,
interpolation was used to estimate the missing data points in the position data from Qualisys. For this, the
MATLAB function interp1 with the spline method was used. When the measurements only contained a few
missing data points, the interpolation worked well. However, since the true position was unknown, it was
not possible to tell if the interpolation was correct. In the optimization, the DFO does not know if the data
are true measurements or interpolated, and trust them equally, which leads to an uncertainty in the model
parameters. The uncertainty increased with the amount of missing data. The heading measurements from
the drone was not filtered, as the filtering in the drone’s state estimator was considered sufficient.

Filter Position

To filter the position data, a lowpass filter was applied. With a passband frequency of 0.01 Hz and sampling
rate of 50 HZ , the noise was removed from the measurements. However, using a lowpass filter, the filtered
measurement vector got transients at the beginning and end of the vector. This is handled by using the raw
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measurements for the first and last part of the vector instead of the filtered measurement. The heading angle
was contained between [−pi, pi).

Find Velocity

The velocity vector was computed using a Finite Impulse Response (FIR) differentiating filter on the filtered
pose. The filter was implemented using the FIR differentiating filter found at github.com1, with a filter
order of 50, passband frequncy of 2 Hz, and a stopband frequency of 5 Hz. This filter is based on the FIR
differentiation filter developed in Udjus (2017). Since the heading angle was contained between -pi and pi,
the computed heading rate got transients when the heading changes quickly from pi to -pi or visa versa.
Lastly, the velocity vector was transformed to the body frame using a rotation matrix.

Uncertainties

The uncertainties in the data that may influence the damping identification are summarized here:
• Measurement uncertainty in Qualisys and sensors on the drone.
• Angle between North and Qualisys reference frame φQ.
• Synchronization of Qualisys and drone data.
• Accuracy of interpolated position data.
• Accuracy of velocity estimates.

6.4.3 Damping Identification Using DFO

To identify the damping, DFO was applied to the experimental data. The data was first divided in low and
high speed according to Section 5.5. Only low speed data was be applied, since the goal is to make a low
speed DP system. Secondly, the low speed data was divided in test and training data, where the training data
was used to tune the optimization parameters. The test data was used to find the accuracy of the optimization
using an ”unknown” data sets. DFO is useful when the gradient of the objective function is unknown or
uncertain, which was the case for this optimization. The steps needed to estimate the damping using DFO
are:

1. Parameterization Parameterize the drone, i.e., design the model for the simulation and verification
model (SVM).

2. SVM Run simulations on the same cases as in the experiment using the control input to the thrust
allocation as input.

3. KPI Compute the Key Performance Indicator (KPI) to see how the optimization performed.
4. DFO Find damping parameters using the chosen DFO algorithm based on the KPI.

Steps 2-4 are repeated until the optimization find damping parameters with a satisfactory KPI. If it cannot
conclude with a satisfactory KPI, a new parameterization (step 1) can be performed.

Parameterization

To identify the damping by optimization, the drone’s motion was parameterized. Two different 3 DOF
models were used in the simulation, both using (5.2) as a basis. The two models only differ in how the
kinetic equation (5.2c) is modeled. In the simple model (Model 1) the Coriolis-centripetal matrixC(ν) and
the nonlinear damping termDL(ν) are neglected. Additionally the bias loads b are neglected, meaning that

1https://github.com/NTNU-MCS
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the unmodeled dynamics will be included in the damping term. The second model, Model 2, is modeled
equally as (5.2c), except that the nonlinear damping only includes linear damping and quadratic damping.
The kinetic equations are given by

Model 1 Mν̇ = −DLν + τ, (6.13a)

Model 2 Mν̇ = −C(ν)ν − (DQ(ν) +DL)ν + τ + b, (6.13b)

with corresponding position vector ηn = [x, y, ψ], velocity vector νb = [u, v, r], and control load vector
τ b = [X,Y,N ]. The reference frame superscripts are omitted for simplicity, but the states are given in the
frame indicated in the former sentence. Since there was no current or waves in the MC-lab tank, the velocity
vector became simply ν. The model parameters found in Section 6.1 and Section 6.2 were applied, except
that the linear damping was chosen to be symmetrical, meaning that Yr = Nv. The mass and Centripetal-
centripetal matrices were assumed known and correctly identified.

Simulation

In order to estimate the position and velocity, a simulation verification model (SVM) was developed. The
SVM may include the drone dynamics, propulsion system, external forces (wind, waves, and current), and
sensor modules (Fossen, 2011). The SVM simulates the response of the system using the model specified.
The SVM takes the control force load τ as input, and outputs the acceleration. The acceleration was found by
solving the kinetic equation (6.13) using the currently chosen model. To methods for estimating the velocity
and pose were developed; Method 1 and Method 2.

Method 1: Open-Loop Simulation Method 1 is an open-loop simulation where the velocity was found by
integrating the acceleration and the pose was found by integrating the velocity and by solving the kinematic
equation (2.12). This was done in discrete time by using the Forward Euler method, given by

η̂k+1 = η̂k + hJ(ψ̂k)ν̂k (6.14a)

ν̂k+1 = ν̂k + hν̇k, (6.14b)

where h is the sampling time.

Method 2: Closed-Loop Simulation with Observer Method 2 is a closed-loop simulation with a Luen-
berger observer to get better estimates of the velocity and pose. This method also uses Forward Euler to
discretize the system. The discrete time state equations for Method 2 is given by

η̂k+1 = η̂k + h(J(ψ̂k)ν̂k + L2ηη̃ + L1νJ(ψ̂k)ν̃) (6.15a)

ν̂k+1 = ν̂k + h(ν̇k + M−1(L1ηJ
>(ψ̂k)η̃ + L1ν ν̃)) (6.15b)

b̂k+1 = b̂k + h(L1ηJ
>(ψ̂k)η̃ + L1ν ν̃), (6.15c)

where b is the bias vector and the estimation error is defined as η̃ = η− η̂ and ν̃ = ν− ν̂. η and ν represent
the measured pose and velocity vectors, while η̂ and ν̂ represent the estimated states in the simulation. By
introducing this feedback gain through the observer, the estimate of the damping will get more and more
accurate. The gains used in the simulation are stated in Table 6.3.
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L-gain Value
L1η 0.1 diag{1,1,180/pi}
L2η 100 diag{1,1,180/pi}
L3η 50 diag{5,5,pi/180}
L1ν 0.1 diag{1,1,0.1*pi/180}
L2ν diag{1,1,0.1*pi/180}
L3ν 500 diag{1,1,0.1*pi/180}

Table 6.3: Luneberger gains in method 2.

For both methods, Model 1 and Model 2 were both tested in the simulation. In order to have the same
coordinate origin for the simulation as the measurement data, the initial pose of the simulation was set equal
to the initial pose from the Qualisys measurement in NED frame and the heading measurement from the
drone.

KPI

The sum of absolute error (SAE) was chosen to be the KPI function to be used in this DFO. The KPI was
calculated using a data set from each of the six tests, e.g surge-test, surge-sway-test etc. The SAE for each
of these tests are summed together to get the total KPI. This is done to get damping parameters that will fit
for all the tested DOFs. The function for the KPI is given by

KPI =

m∑
i=1

[wx, wy, wψ][wη

n∑
k=1

||η̂ − η||+ wν

n∑
k=1

||ν̂ − ν||], (6.16)

where m is the total number of tests, i.e., surge-test, sway-test etc, and n are the total number of samples in
each test set. [wx, wy, wψ] is the weighting in surge, sway, and yaw, while wη and wν are the weighting for
the pose and velocity error respectively. In the KPI, the heading and heading rate are given degrees. This
means that if the weights in all DOFs were equal to 1, the KPI would punish 1◦ error in heading equally as
1m error in x or y position. The chosen weighting parameters for the two simulation method are given in
Table 6.4.

Simulation method [wx, wy, wψ] wη wν
Method 1 [1, 1, 10] 0.25 1
Method 2 [0.2, 0.2, 1] 0.1 1

Table 6.4: Weighting parameters.

DFO

Matlab’s bounded fminsearch function2, fminsearchbnd, was the chosen DFO algorithm. Fminsearch uses
the Nelder-Mead algorithm, and was chosen since it has few tuning parameters which makes it easy to use.
The Nelder-Mead algorithm is explained in some detail in Appendix D. The constrained Nelder-Mead has
no analytical guarantee for convergence, but was applied to limit the search area and exclude nonphysical
solutions. With both upper and lower bounds on the optimization parameters, the fminsearchbnd method

2https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
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uses a sinus transformation to keep the optimization parameters constrained. The goal of the DFO is to
minimize the damping parameters x using the objective function f(x), under some constraints, i.e.,

min
x
f(x) (6.17a)

xLB < x < xUB constraint (6.17b)

The chosen KPI is the objective function of the DFO. The constraints are here given as upper and lower
bound of x, i.e., xLB and xUB . The damping parameter x to be optimized for both models are given by

Model 1 x = [Xu, Yv, Yr, Nr] (6.18a)

Model 2 x = [Xu, Yv, Yr, Nr, Xuu, Yvv, Yrv, Yvr, Nrv, Nvr, Nrr]. (6.18b)

The chosen constraints for the different methods and models are given in Table 6.5.

Model 1 Model 2
Method 1 LB = [1,50,-3,1] LB = [1,50,-3,0.1,5,25,-5,-5,-5,-5,0.1]

UB = [20,100,3,10] UB = [20,100,3,5,20,100,5,5,5,5,10]
Method 2 LB = [1,30,-3,1] LB = [1,30,-3,0.1,5,25,-5,-5,-5,-5,0.1]

UB = [25,100,3,10] UB = [25,100,3,5,20,100,5,5,5,5,10]

Table 6.5: Lower and upper bounds for optimization

Since the Nelder-Mead algorithm only can guarantee a local optimum, the DFO was fed with three different
initialization of x. This was done by generating random numbers between the lower and upper limits of x.

6.4.4 Implementation

Figure 6.2 is a simple illustration of the flow of the optimization for one initialization of x. In the real case,
the optimization is ran with several initializations of x. The optimization takes the measured data and the FIR
differentiated velocity from all the six tests as input. An initial damping parameter x0 is chosen randomly
between the lower and upper bounds. The bounded fminsearch, i.e. the chosen DFO algorithm, is ran by
first running a simulation. The simulation depends on which method and model is chosen. The simulation
outputs the estimated position, velocity, and bias. The KPI is computed using the measured and estimated
states. The KPI value is returned to the DFO, where the performance of the damping parameter is evaluated
based on the KPI value. If the optimization limit is reached, e.g. having a satisfactory low KPI value, the
optimization is terminated. If not, a new damping parameter x is computed based on the performance of
the previous damping parameter. The optimization continuous until a optimization limit is reached, e.g. a
satisfactory low KPI value or maximum number of iterations is obtained. The figure is a simplification as it
does not show that the different models have different lower and upper bounds. The coded implementation
for identifying the damping in Matlab is described in Appendix B.1.2.
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Figure 6.2: Flow of the DFO for one initialization of x.

6.4.5 Damping Results

The optimization results for Method 1 and Method 2 are given below. Only a small selection of all the tests
performed are be presented.

Results Method 1

All the presented results using Method 1 in the simulation were run using Model 1. Results from a sway-yaw
test using Method 1 is shown in Figure 6.3 and Figure 6.4.
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Figure 6.3: Pose from Method 1 using Model 1 in sway-yaw test. X- and y-position is given in the NED frame. The
x-axis shows the time in seconds. The simulated responses are illustrated with a solid line, while the measured states
are represented by a dotted line.
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Figure 6.4: Velocity and control load for Method 1 using Model 1 in sway-yaw test. The velocity and control load
are given in the body frame. The x-axes shows the time in seconds. The control load (τ ) is the input to the SVM,
generating the velocity and position estimates. The simulated responses are illustrated with a solid line, while the
measured states are represented by a dotted line.

Results from a sway test using Method 1 is shown in Figure 6.5 and Figure 6.6.
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Figure 6.5: Pose for Method 1 using Model 1 in sway test. X- and y-position is given in the NED frame The x-axis
shows the time in seconds. The simulated responses are illustrated with a solid line, while the measured states are
represented by a dotted line.
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Figure 6.6: Velocity and control load vector for Method 1 using Model 1 in sway test. The velocity and control load
are given in the body frame. The x-axes shows the time in seconds. The simulated responses are illustrated with a solid
line, while the measured states are represented by a dotted line.

Results Method 2

The results using Method 2 are all from the same pure sway test presented in Method 1. This means that
the control load vector τ is the same for both methods, and is thus only shown in Figure 6.6. The pose and
velocity from simulation Method 2 using Model 1 are shown in Figure 6.7.
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Figure 6.7: Pose and velocity for Method 2 using Model 1 in sway test. X- and y-position is given in the NED frame,
while the velocity is given in the body frame. The x-axes shows the time in seconds. The simulated responses are
illustrated with a solid line, while the measured states are represented by a dotted line.

The pose and velocity from simulation Method 2 using Model 2 are shown in Figure 6.8.
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Figure 6.8: Pose and velocity for Method 2 using Model 2 in sway test. X- and y-position is given in the NED frame,
while the velocity is given in the body frame. The x-axes shows the time in seconds. The simulated responses are
illustrated with a solid line, while the measured states are represented by a dotted line.

The KPI and best damping parameter, xopt, obtained during the optimization are given in Table 6.6. The KPI
stated is the total KPI, i.e., the total SAE for all the test, not just the sway test.

Method 1 Method 2 + Model 1 Method 2 + Model 2
KPI 2.3× 106 1.45× 105 1.45× 105

xopt [20.0,6.0,-3.0,7.6] [25.0,30.0,1.4,3.3] [11.4,31.2,2.2,2.5,8.8,
86.8,-4.9,2.4,-5.0,-5.0,0.1]

Table 6.6: Optimization performance

The value of the KPI during the optimization for Method 2 using Model 1 is shown in Figure 6.9. Function
value is the same as the KPI value.
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Figure 6.9: KPI value for each iteration of the optimization for Method 2 using Model 1.
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6.4.6 Discussion of Damping

Method 1: Sway-Yaw Test

The responses from the sway-yaw test shown in Figure 6.3 and Figure 6.4 shows a good response in sway as
the estimated velocity in sway follows closely the measured one. In surge, there is a small measured velocity
around zero, while the estimated surge velocity is simply zero since the surge control force is zero. This is
because the surge is uncoupled from sway and yaw in the model, and does not take into account that a force
in sway or yaw can induce a motion in surge. For a more accurate model, this coupling should have been
accounted for, but since the induced surge velocity is quite small in this case, it does not have a large impact
on the performance. In yaw, the model is not able to estimate the heading rate accurately compared to the
measured one. At the worst point, the discrepancy is approximately 8 ◦ s−1. This may be due to the fact that
the auto-heading function was active during the whole test, impacting the control load in yaw such that the
yaw velocity was hard to estimate correctly. The discrepancy in the heading rate leads to a large error in the
heading estimate, which again leads to an error in the x- and y-position since these are transformed to the
NED frame using the heading angle. The auto-heading function was turned on so that the drone would not
drift in yaw during the tests, which was especially useful during the surge and sway related tests. A possible
way to improve the performance of the model, could have been to turn off the auto-heading function during
the tests when a control input was given in yaw, i.e. surge-yaw, sway-yaw, and yaw. This way, it may have
been easier to estimate a correct heading rate based on the control moment in yaw.

Method 1: Sway Test - Discrepancy in Experimental Data

In the response from the pure sway test shown in Figure 6.5 and Figure 6.6, one can see that the simulated
position and velocity in surge have opposite signs than the measured ones. Since both the velocity and the
control load are given in the body frame, a positive control force in surge should give a positive velocity
in surge and visa versa. Additionally, considering that the heading angle is approximately 135◦ for the first
15 seconds on the test, the positive control force in surge should give a negative motion in surge and sway.
However, for this sway test, this was not the case. This is the opposite response of what was seen in the
sway-yaw test, shown in Figure 6.3 and Figure 6.4, where the measured position and velocity have signs
corresponding to the sign of the control load. The reason for this discrepancy remains unknown, but most
likely stems from an error in gathering or processing the experimental data. This unexplained behavior leads
to a large uncertainty in the results from the optimization for both Method 1 and 2, since the measured
velocity is used as input in both methods.

Method 2

The response from Method 2 using Model 1 and Model 2, shown in Figure 6.7 and Figure 6.8 respectively,
shows a good performance for both models. The simulations with the observer are able to estimate the pose
and velocity with a small error from the measured ones for both models. The simple Luenberger observer
functions well, even though the measurements have a large uncertainty. This indicates that an observer is
able to estimate the states well, regardless of the accuracy of the model. Comparing the results from Method
2 using the different models, one can see that the performance is quite similar. The largest difference lays
in the estimation of the heading angle and heading rate. Figure 6.7 shows that Model 1 has a slightly
smaller estimation error than Model 2, seen in Figure 6.8, meaning the Model 1 performs better than Model
2. Assuming that the damping parameters are correctly identified, the elaborate model (Model 2) should
better represent the real process and thus have better estimates than the simple model (Model 1). However,
this is not the case for this sway test. This may be a coincidence for this exact optimization, or may be a
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consequence of that the optimization more easily finds a local optimum for Model 1 than Model 2, since the
search space is significantly smaller using Model 1. For the simple model (Model 1), the search space in the
optimization has 4 dimensions, while in the elaborate model (Model 2), the search space has 11 dimensions.

Optimization Performance

The development of the optimization performance indicated by the KPI for Method 2 using Model 1 shown
in Figure 6.9, shows a stagnation in the decrease of the KPI only after a few iterations. This may be explained
by looking at the optimal damping parameters (xopt) given in Table 6.6 and the upper and lower bounds given
in Table 6.5. One can see that many of the optimal damping parameters are on the lower and upper bounds.
This may indicate that a global optimum is outside the lower and upper bounds, or that the optimization
is not able to find an optimum using the chosen models. Table 6.6 shows that the total KPI from all the
tests (e.g. surge-sway, surge-yaw etc) is smaller for Method 2 than Method 1, indicating that the Method 2
performs better than Method 1, which corresponds with the observations from the sway test. Even though the
results from Method 2 in the sway test using Model 1 where slightly better than using Model 2, the overall
performance for all the tests, indicated by the KPI, is the same for Model 1 and 2.

6.4.7 Conclusion

The results from the sway test showed that Method 2 performed better than Method 1. Additionally, the
simple model (Model 1) performed slightly better than the elaborate model (Model 2) in the sway test. The
overall performance from all the test, indicated by the total KPI, showed similar performance for Model 1
and 2 using Method 2. With a similar performance for both models, the damping results from Method 2
using Model 1 will be used, since this has the simplest model. For Model 1, neglecting nonlinear damping
and Coriolis-centripetal matrix, is a fair assumption for low speed, as their are both small for low speed. The
chosen damping is given by

DL =

25 0 0
0 30 1.4
0 1.4 3.3

 . (6.19)

It must be noted that this damping parameter is highly uncertain, due to the uncertainty in the measured data
and the developed model. To improve the results, different models could have been implemented and tested.
However, there exists no model that can replicate the real process exactly. The results are affected by the
poor quality of the position data gathered from Qualisys. The missing data points in the Qualisys data have
led to a large uncertainty in the interpolated position and filtered velocity vectors. To improve the results,
more accurate data should be used. In the simulation, the velocity is found by integrating the acceleration,
which can lead to a drift in the velocity. The position was found by integrating the velocity, which can lead
to an even larger drift in position. This will increase the uncertainty of the estimated states.
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DP Observer

The DP observer is based on an observer design model (ODM) which is defined in the workspace of the
drone (see Chapter 5). The ODM focuses on modelling measurement noise, failure situations including
dead-reckoning capabilities, filtering and motion prediction (Fossen, 2011). The ODM was chosen as a
linearized and discretized version of the state-space model given in Section 5.4, i.e. on the form

x(k + 1) = F(x̂(k),u(k)) + Γw(k), w(k) ∼ N (0,Qd), (7.1a)

y(k) = Hx(k) + v(k), v(k) ∼ N (0,Rd). (7.1b)

7.1 Observability

To see if the system is observable, some assumptions were made such that the state matrix A became linear.
The Centripetal and CoriolisC(ν) matrix was assumed negligible, the damping matrixD(ν)) was assumed
linear, and the transformation matrix J(ψ) was assumed equal to the identity matrix I. With a linear A ma-
trix, the observability matrix was computed by using the MATLAB function obsv(A,H). The observability
matrix had rank 9, which means that a system with this A matrix had full rank and is thus observable (Chen,
2013).

7.2 EKF

For this thesis, an EKF was chosen as the observer and was implemented using (2.22). The EKF was
discretized and linearized according to (2.23), where the method for deriving the partial derivative ∂f(x)

∂x(k) is
described in Appendix A. The observer rate was chosen to be equal to the sampling rate of the fastest sensor,
that is, 100Hz.

7.2.1 Tuning

The EKF was tuned by altering the discrete-time process noise covariance matrices Rd and Qd. The discrete-
time measurement noise covariance matrix Rd was chosen taking the noise variance for each sensor given in
Table 4.2 as a basis, i.e.,

Rd = diag{σ2xaps , σ
2
yaps , σ

2
ψ, σ

2
r} = diag{1× 10−5, 1× 10−5, 1× 10−6, 1× 10−6} (7.2)
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where h is the sampling time, σ2iaps , σ2ψ, σ2r are the noise variance for APS, heading and heading rate,
respectively. Since the noise level of the APS measurements were not available, an approximate noise level
was found by tuning the observer until a satisfactory result for filtered the position. The discrete-time process
noise covariance matrix Qd was found by trial and error and is given by

Qd = diag{1× 103 ,1× 103 ,1× 103 } (7.3)

The process noise covariance matrix was chosen to be quite high in order to avoid fluctuating estimates.
More on this in Section 7.4.3.

Before the raw measurements from the sensors could enter the observer and the rest of the control system,
the measurements had to go through a signal processing module. In this thesis the signal processing module
was designed as an integrated part of the observer.

7.3 Signal Processing Module

The signal processing module is used to detect and remove faulty signals, such that these will not propagate
through the control system (Sørensen, 2013). In order to have a robust observer, it should be able to handle
different update rates from the sensors, possible failure modes, and dead reckoning.

Transform Data The position measurements from the APS were received in the user frame. Before they
were used in the observer, they had be transformed to the local NED frame. The position was first rotated
180◦ about the x-axis, such that the z-axis in the user frame would be pointing in the same direction as
the z-axis of the NED frame. The APS computes the angle from the North to the y-axis in the acoustic
frame using an internal IMU sensor. The angle from the North to the x-axis in the acoustic frame (which
equals the user frame), i.e. α (see Figure 5.1), is found by adding 90◦ to the angle from North to the y-axis
provided by the APS. Using this angle, the position data was rotated about the z-axis such that the data was
aligned with the NED frame. In the control system, the measurements should be transformed to the CO, i.e.,
the reference point of the control system. The x and y position from the APS were not measured in CO,
but at the transmitter placed on top of the drone, where the exact distance from CO in the body frame is
found in Table 4.1. The offset from the CO to the transmitter was transformed to the NED frame and then
subtracted from the position measurements in the NED frame. The heading and heading rate measurements
are provided by the IMU sensor, which is not located in the CO either. Since the axes of the IMU are aligned
with the principal axes of the body frame, the heading and heading rate measurements do not need to be
corrected for misalignment.

Synchronization of Measurements The sensor that provides the measurements have different updates
rates. The signal processing module synchronizes the different measurements such that the observer receives
them all at the same rate, i.e. the observer rate. The sampling rates for all the sensors are given in Table 4.2.
The heading and heading rate, gathered from the state estimator on the drone, have a sampling rate of 100
Hz, while the x and y position from the APS have a sampling rate of 2 Hz. With an observer rate of 100 Hz,
new x and y position data will only be received for every 50th iteration in the observer. The APS will simply
provide the previous measurement until a new measurement is available. In the observer, this is detected as
a signal freeze. Handling signal freeze is described in Section 7.3.1.
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7.3 Signal Processing Module

7.3.1 Fault Detection and Handling

The signal processing module should check for signal range and variance, frozen signals, and outliers. Before
the heading and heading rate enter the observer developed in this thesis, they have been processed by the
observer in the integrated control system on the drone, i.e., its internal observer. The position data are also
processed by an observer integrated in the APS, before they enter the observer developed in this thesis. Both
internal observers filter the data and remove faulty signals. In this thesis, signal freeze was the only failure
mode detected and handled. A frozen signal was detected by zero variance for n consecutive signal samples,
where the number n was chosen to be 5. A signal freeze was handled by skipping the corrector step by setting
the Kalman gain K to zero, as described in (Fossen, 2011).

Proposed Method

For this thesis, fault detection and fault-handling was only implemented for signal freeze, so a proposed
approach for other relevant failure modes is described. Fault detection is vital to detect and remove faulty
signals so that these signals will not propagate through the control system. As the different failure modes
have been modeled in Section 2.10.1, they can be detected by considering which distribution fits the signal
best. All these failure modes can be detected by detecting a change in mean or variance from the nominal
values yreal and σ20 . A limitation of change detection is that ”the design is a compromise between detecting
true changes and avoiding false alarms” (Gustafsson and Gustafsson, 2000), hence, it is a crucial issue to
separate between the two.

High Derivative After a frozen signal, a high derivative in the measurement may occur, as the new signal
may differ significantly from the previously known signal. This may be falsely detected as an outlier or high
noise. As proposed in Abrahamsen (2019), this can be handled by implementing a few seconds of cool-down
after a signal freeze before fault detection is activated.

Bias and Drift Signal bias or drift can be detected by observing a change in the mean. This requires an
estimate of yreal which may be done using redundant sensor information or a model (Mokleiv, 2017). The
CUSUM algorithm can be used to detect a change in mean or variance. The CUSUM algorithm is explained
in Appendix E.

Outliers As described in Section 2.10.1 can outliers be detected by checking if the z-score is larger than a
certain number. Outlier rejection can also be done using a χ2 test and an EKF as described in Lekkas et al.
(2015). When an outlier is detected, the measurement is usually replaced by a calculated number, e.g. the
mean value (Sørensen, 2013).

High Noise High noise detection can be detected by observing a change in variance, since high noise gives
high variance (Sørensen, 2013). This can be detected using CUSUM.

Dead Reckoning with EKF When dead reckoning occurs, the observer should ignore the new measure-
ments, and instead base the predictions on the model alone. In the EKF, this can be handled in the same
manner as a signal freeze, i.e., by skipping the corrector step by setting the Kalman gain K to zero (Fossen,
2011).
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7.4 Results From Open-Loop Tests

The drone was tested outside at a location where the river meets the ocean, i.e. in brackish water. At the
test location, the water was calm, that is, the effects of currents and waves were low. At the test location, the
APS always had GPS signals available. The observer was tested in open-loop with two different values of
the process noise covariance Qd.

7.4.1 Observer With High Process Noise Covariance

This subsection shows the results from the observer tested in open-loop with a high process noise covariance,
i.e.,

Qd = diag{1× 103 ,1× 103 ,1× 103 }. (7.4)

The estimated states corresponding to the measured states and the linear velocities are show in Figure 7.1.
Figure 7.2 shows the estimated bias loads.
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Figure 7.1: Estimated and measured x position, y position, heading angle and heading rate with estimated linear
velocities in open-loop test using EKF with high process noise covariance.
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Figure 7.2: Bias loads in open-loop test using EKF with high process noise covariance.

7.4.2 Observer With Low Process Noise Covariance

The observer was also tested with a low process noise covariance, i.e.,

Qd = diag{1 ,1 ,1 }. (7.5)

The corresponding response is shown in Figure 7.3.
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Figure 7.3: Estimated and measured x position, y position, heading angle and heading rate with estimated linear
velocities using EKF with low process noise covariance.

7.4.3 Discussion

In Figure 7.1 one can see that the estimated states follow the measured states closely. This is due to the
relatively large elements in the process noise covariance matrix, Qd, compared to the measurement noise
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covariance matrix, Rd, telling the observer rely more on the measurements than the model. The EKF was
able to estimate x and y positions, even though the sampling rate of the APS is much lower than the sam-
pling rate of the observer. After 35 seconds, it may seem as if the estimated heading deviates largely from
the measured one when the heading does a sudden change. This sudden change is due to the fact that the
heading is contained between -180◦ to 180◦. When the estimated heading is approximately -180◦ and the
measured heading is approximately 180◦, they are in fact quite close. Figure 7.1 shows that the estimated
velocities are quite fluctuating. With only position and heading measurements available and a model with
poor accuracy, the linear velocities are hard to estimate. Velocity or acceleration measurements could have
improved these estimates. Figure 7.2 show that the bias loads are highly fluctuating, which means that there
are unmodeled effects or poorly modeled effects in the model.

Figure 7.3 shows that the estimated states become highly fluctuating with a low value of Qd. The discrete-
time process noise covariance depends on the sampling rate of the observer. The observer is ran at 100Hz,
while the slowest sampling rate is 2Hz for the APS. This means that new position data from the APS are
received only each 50th iteration in the observer. Between the new position measurements, the corrector step
is omitted and the observer bases its estimates on the model alone. The results from the model identification
in Section 6.4 showed that the accuracy of the model is poor. Since the ODM is derived from a continu-
ous, nonlinear model, the ODM will additionally have both linearization errors and discretization errors that
influence the estimates. With an inaccurate model, the state estimates that highly depend on measurements
with a low sampling rate (e.g. position and velocity depending on APS), will be hard to estimate correctly
between each new measurement. Each time a new measurement is available, i.e. when the Kalman gain is
not set to zero, the observer is able to correct this estimation error, see Equation (2.22e). How the states
estimates are corrected depends on the noise covariances Qd and Rd. When process noise covariance Qd

is relatively low, the observer will trust more in the model. At a high observer rate, this will lead to highly
fluctuating estimates due to an inaccurate model.

To keep the state estimates of the observer from diverging at an observer rate of 100Hz, the Qd-matrix was
given a high value such that it would trust more in the measurements than the model. The process noise
covariance was chosen to be

Qd = diag{1× 103 ,1× 103 ,1× 103 }. (7.6)

In this thesis, the noise covariances were tuned directly in the discrete-time model, making them dependent
on the observer rate. To make the noise covariances independent of the observer rate, they could have been
tuned in the continuous-time model. The noise covariances would later be discretized using the observer rate.
This way, the observer rate could have been changed without having to tune the noise covariance matrices
once more. Having measurements from additional sensors, e.g. linear accelerations from the IMU, could
have improved the position and linear velocity estimates when the APS measurements are not available.
Integrating the noisy acceleration measurements from the IMU, would lead to a drift in the velocity and
position estimates, but could still improve the observer estimates compared to only using the model alone.
More propositions for improving the estimates are discussed in Section 11.2.
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Guidance System

The guidance system should compute the reference position, velocity, and possibly acceleration of the vehicle
(Fossen, 2011). The reference states should be feasible for the vehicle and give a desired motion towards the
desired states.

8.1 Design

As stated in Section 1.4, an external guidance system was developed such that the input can be given by a
desired pose, i.e. x-, y-, z-position and heading angle, instead of joystick input based on the desired force in
a DOF, which is the solution of the existing internal guidance system on the drone. In the external guidance
system the input is passed to the drone using a PC with ROS installed to communicate with the drone. The
external guidance system was used instead of the existing internal guidance system. Since the guidance
system is replacing the existing internal guidance system on the drone, the guidance system has to generate
reference position and velocity in heave such that the existing depth controller in the drone will work as in-
tended. The guidance system developed for this thesis will hereafter be referred to as ”the” guidance system.

In the guidance system, the user can to specify the desired pose input in a augmented position vector, that is,
ηud = [xud , yud , zud , ψd] in the user frame. The input pose in the user frame was transformed to the local NED
frame, as explained in Section 7.3. The desired heading was contained between [−pi, pi). To generate the
reference (desired) velocity νnd = [und , v

n
d , w

n
d , rd], the target tracking strategy pure pursuit was employed.

The reference linear velocities were computed using (2.24), restated here for clarity, i.e.,[
ud
vd

]
= −Umax

p̃√
p̃>p̃ + ∆2

p

, wd = −wmax
z̃√

z̃2 + ∆2
z

, (8.1)

where p = [x, y]>, p̃ = p̂−pd, z̃ = ẑ−zd, Umax =
√
u2max + v2max and wmax are the maximum approach

speed in the horizontal plane and vertical axis respectively, and ∆p and ∆z are tuning parameters. umax
and vmax refers to the maximum surge and sway speed, respectively. Inspired by Breivik (2010, p 143), the
heading rate was computed using

rd = −ra,maxtanh(
∆ψψ̃

ra,max
), (8.2)

where the heading error is defined as ψ̃ = ψ̂ − ψd, ra,max is the maximum heading rate, and ∆ψ is a
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tuning parameter that determines the shape of this approach. The chosen tuning parameters are given in
Equation (10.1). Lastly, the desired velocity was transformed to the body frame using

νbd = J(ψ)>νnd where J(ψ) =


c(ψ) −s(ψ) 0 0
s(ψ) c(ψ) 0 0

0 0 1 0
0 0 0 1

 . (8.3)

8.2 Implementation

The input and output flow to the guidance system is illustrated in Figure 8.1. The guidance system receives
the desired pose ηud in the user frame and transforms it to the NED frame using the angle α from the APS. α
is the angle between the user frame (i.e. the acoustic frame) and the NED frame, as specified in Section 5.2.
The estimated x- and y-position, and heading are received from the external observer, while the estimated
depth is received from the internal observer in the drone. The guidance system computes the reference
velocities by using the error between the desired position and estimated position. The desired pose and
velocity are sent to the controller inside the drone.

Controller

Drone internal
observer

Drone
External observer

Guidance system

User input

APS internal observer

APS

Figure 8.1: Input and output to the guidance system. The external observer refers to the EKF developed in Chapter 7.

The guidance system is ran at a rate of 100Hz, the same as the observer.Details regarding the coded imple-
mentation is given in Appendix B.2.2.
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Control System

The control system determines the necessary control load produced by the vehicle in order to satisfy the
control objective (Fossen, 2011), i.e. go to the desired position using the reference velocity. This is done by
developing a control law and a thrust allocation.

9.1 Design

As stated in Section 1.4, the scope of this projects includes making a control system that can control the
drone in surge, sway, yaw, as there already exists functionalities for controlling heave motion. The control
law for surge, sway and yaw will be implemented as an integrated part of the existing controller on the drone.
The existing thrust allocation in the drone will be used as is. The control system uses a control design model
(CDM) based the continues-time model defined in Section 5.4. Like the ODM, the CDM is defined in the
workspace of the drone, i.e. surge, sway, and yaw. The control objective is to make ||hd − h|| → 0 as
t→∞, where h = [x, y, z, ψ, u, v, w, r]>. A feedback PD controller is chosen as the control law, given by

τ b = −KpJ
>(ψ)(η̂n − ηnd )−Kd(ν̂

b − νbd), (9.1)

where Kp and Kd are the controller gains. The subscript d on the state vectors represent the desired states.
The existing heave controller used is a PID controller which accounts for the restoring force g(η) in heave,
given by

τ bheave = −Kp,depth(ẑn − znd )−Kd,depth(ŵb − wbd)−Ki,depth

∫ t′

0
z(t)dt+ g(η). (9.2)

The integral term is added to remove any steady-state error in the depth. When the drone is submerged, the
buoyancy is slightly larger than the gravitational force, giving a positive buoyancy for the drone. The chosen
controller gains are found by trial and error, given in Equation (10.2). In the existing depth controller, the
reference depth is usually close to the measured depth. In the DP control system developed here, the distance
between the measured and the reference depth can be larger. For the new control purpose, also the depth
controller had to be tuned to get a satisfactory behaviour.
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9.2 Implementation

The complete control system, including the observer and guidance system, is illustrated in Figure 9.1. This
an extension of the guidance system illustrated in Figure 8.1, where the inputs and outputs to the observer
and control system are included as well. The external observer, i.e. the EKF developed in Chapter 7, gets the
”measured” position x̂u and ŷu in the user frame frame and the angle between the user frame and the NED
frame α̂ as input from the APS. The external observer also receives the ”measured” heading ψ̂, heading rate
r̂, and control load τ b from the drone. The inputs are not true measurements, as they are estimates from the
internal observers in the APS and the drone. The internal controller in the drone receives the desired pose
ηud and velocity νud from the guidance system. The estimates states in the workspace (surge, sway, yaw),
i.e. η̂n, ν̂n, and b̂

n
, are received from the external observer, while the estimated depth ẑn and depth rate ŵn

are received from the internal observer on the drone. Using these inputs, the controller computes the control
load τ b that is passed to the thrust allocation. The thrust allocation the individual force of each thruster using
the control load.

External observer

Guidance system Controller

Drone internal
observer

User input

Drone

Thrust allocation

APS internal observer

APS

Figure 9.1: Implemented control system with all components. The external observer refers to the EKF developed in
Chapter 7.

Details on the implementation and running the control system is explained in Appendix B.2.3.
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Results and Analysis

10.1 Results From Closed-loop

This section shows the results from tests with the whole control system, i.e. in closed-loop. The drone was
tested at the same test location as for the open-loop test, i.e outside at a place where the river meets the ocean
with calm water. The results in Figures 10.1 to 10.7 shows the results from a test with the controller activated
for surge, sway, heave and yaw. The reference generator tuning parameters for the guidance system are given
by

∆p = 10, ∆z = 10, ∆ψ = 0.5, (10.1a)

Umax = 1.27 m s−1, wmax = 0.9 m s−1, ra,max = 15 ◦ s−1. (10.1b)

The maximum velocities in the reference generator are chosen to be lower than the believed maximum speed
in order to ensure that the drone can follow the reference and lead to a calm motion of the drone. The control
law gains used in this test are given by

Kp = diag{2, 2, 0.3} Kp = diag{0.1, 0.1, 0.3} (10.2a)

Kp,depth = 10, Ki,depth = 0.01, Kd,depth = 0.5 . (10.2b)
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Figure 10.1: Horizontal trajectory of the drone.
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Figure 10.2: Reference and estimated pose in the closed-loop test.
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Figure 10.3: Reference and estimated velocities in the closed-loop test.
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Figure 10.4: Control load from the closed-loop test.
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Figure 10.5: Thrust setpoints for each thruster from the closed-loop test.
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Figure 10.6: Bias loads from the closed-loop test.
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Figure 10.7: Heading estimates from the rostopics observer/attitude and observer/state estimates from the drone
in the closed-loop test.

10.1.1 Discussion

Figure 10.2 shows that the estimated position converges towards the desired position with an accuracy of
less than 1m. The heading estimate does not converge, but has large oscillations around the desired angle.
Through excessive tuning of the heading controller, the convergence of the estimated heading towards the
desired one can be improved. However, due to limited time for testing and tuning, this was not achieve in
this project. For the surge, sway, and heave controller one can see that it takes a long time to reach the
desired position. Additionally, Figure 10.1 shows that the drone does not take the shortest path towards the
desired position, but makes a large detour. This indicates that all the controllers should be tuned further for
improved accuracy and avoiding large detours. Figure 10.5 shows that the thrusters are run at 10-30 % of
their maximum force, indicating the thrust force available is not a limiting factor for the control system given
the current tuning parameters.

In Figure 10.3 one can see that the chosen reference generator parameters given in Equation (10.1) gave
smooth reference velocities. This was done to avoid large transients in the reference velocity when the dis-
tance between the current pose and actual pose is large, e.g. at the beginning, and to avoid oscillations around
the desired pose when drone is close to the desired pose. This ensured a slow motion towards the desired po-
sition and made it easier to control the drone. Figure 10.3 shows that the velocity estimates from the observer
are quite fluctuating, similar to was seen in the open-loop test in Section 7.4. Since the velocity estimates
are used in the feedback controllers, they influence the performance of the control system. Improvement of
the velocity estimate is therefore desirable and might be crucial in order to improve the performance of the
control system. This is further discussed in Section 11.2.

From figure Figure 10.6, one can see that the bias in surge, sway and yaw are highly fluctuating. Looking
at the control load in Figure 10.4, one can see that the bias loads in surge and sway are considerably larger
than the control loads in surge and sway. This means that the observer design model uses the bias actively
to explain discrepancies between its predictions and the measurements. This is further evidence that the
observer design model is inaccurate and does not represent the physics of the real drone.
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Different Heading Estimates

Figure 10.7 shows that the estimated heading angle from the drone’s internal observer for the estimates
published at the rostopics observer/attitude and observer/state estimates differs up to 20◦ during the
test. Since there are only two measurements, one can not determine which one is the most accurate mea-
surement, as sensor voting would require a third reference. As described in Section 3.4.1, the heading from
observer/attitude is computed using the digital compass and the integrated gyro readings, while the head-
ing from observer/state estimates is computed using the integrated gyro alone. The latter method of
estimating heading is prone to uncertainty due to the need to integrate heading rates, while the former has
additional uncertainties due to possible magnetic disturbances. In this thesis, the heading estimate from
observer/attitude was used in the control system, while in the original control system for the drone,
the heading estimate from observer/state estimates is used. When there is no or low magnetic distur-
bance, the heading from observer/attitude is more accurate than the other. As described in Section 4.1.2,
the drone is often operated in areas close to ferrous metals, e.g. ship hulls or pipes, where there is a lot
of magnetic disturbance. For this reason, Blueye only takes use of the gyro based heading, i.e. from
observer/state estimates, in their control system. The heading angle is of high importance for the control
system, since it determines the motion in the horizontal plane and the transformation between the NED and
body frame. For instance the control forces in surge and sway are computed using the position errors in NED
transformed to the body frame, see Equation (9.1). To have the most accurate heading estimates, the heading
from the topic observer/attitude was used in the control system developed in this thesis. For this to be
true, the operational area for the DP system was assumed to have few magnetic disturbances. A possible
improvement to this issue of which heading estimate to use is proposed in Section 11.2.
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Chapter 11
Conclusion and Recommendations

11.1 Conclusion

A DP control system has been developed, including making a model of the drone, an observer, a guidance
system, and control laws. The model identified in Chapter 6 gave poor results in terms of representing
the real process when using DFO on experimental data from the MC-lab. This had some impact on the
observer, as the process noise covariance had to be set relatively high such that the observer relied more
on the measurements than the model, in order to avoid fluctuating estimates. This led to states with high
correspondence to the measurements. For the states with no direct measurements, e.g. the linear velocity
estimates, the estimates were volatile and fluctuating. The observer was developed to handle asynchronous
measurements and to detect and handle signal freeze. The surge, sway and depth controllers were able to
reach the desired positions within an accuracy of less than 1m. The drone did not follow the shortest path
to the desired position, but made a large detour before arriving. The heading controller developed did not
give a satisfactory behaviour, as it had large oscillations around the desired heading. Additionally, due to
relying on the magnetometer and the gyroscope, the heading estimate of the observer is prone to magnetic
disturbance which varies with the area of operation. The performance of the control system depends heavily
on the accuracy of the heading estimates and the performance of the heading controller, and the improvement
of these is therefore of significant importance for the overall control system.

11.2 Recommendations

Sensor Data

For improved accuracy in the DP control system, more sensors could have been used. For example a light
weight DVL used to estimate the velocity could have improved the accuracy in both velocity and position
when the drone is close to an object or the sea bottom. In this thesis, not all the sensor data available has
been used, e.g. the acceleration from the IMU. By integrating the acceleration, one can get estimates of
the velocity and position, which is especially useful when the APS measurements are not available. Since
the sampling rate of the APS is much lower than the IMU and the chosen observer rate, this could improve
the position and velocity estimates in the observer for the iterations when the APS measurements are not
available. Another method to improve the state estimates in the observer, is to include a smoothing filter
for step changes due to the slow APS updates, as described in (Ren et al., 2019). Both the Locator in the
APS and the drone are equipped with a pressure sensor. For simplicity, only the depth estimate from the
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pressure sensor in the drone was used in this project. In order to obtain a redundant depth estimate, both
these measurements should be used in the control system.

Heading Estimates

As discussed in Section 10.1.1, two possible heading estimates were relevant for use in the control system;
(1) based on the digital compass and the integrated gyroscope reading (observer/attitude), and (2) based on
the integrated gyroscope reading alone (observer/state estimate). In this thesis, heading estimate number
(1) was used, while in the original control system of the drone heading estimate number (2) is applied.
The second one is useful when the drone experiences magnetic disturbances, as the heading estimate from
digital compass will deviate. Since the heading angle is of high importance in the control system, the most
accurate heading available at each time step should be used. An easy solution would be to use a more
accurate sensor, e.g. a gyrocompass. However, an accurate gyrocompass typically comes at a size and cost
which is not compatible with the drone. A more feasible solution could be to implemented a switch between
heading alternative (1) and (2), where alternative (1) is used when the drone is far from objects that can cause
magnetic disturbances, while alternative (2) is used when close to magnetic disturbances, e.g. ship hulls.

GUI and Guidance System

The guidance system in this thesis only allowed for desired setpoints in the defined user frame. This could
easily be extended to the local and global NED frame, for extended functionality. Another functionality
that could be useful, is that the user can define its own user frame, e.g. by specifying the orientation of the
user relative to North. As of now, the user has to input the desired setpoints in a script on the computer.
In the future, this should be integrated in the mobile application that is usually used to control the drone.
Additionally, a combination of joystick input and automatic control should be implemented for the surge and
sway controller, which is available for the yaw and heading controller. For more advanced use, the guidance
system can be developed to do path following instead of just pure pursuit, which is the present solution.

General

To improve the performance of the DP control system, more tuning of the control laws should be performed,
in particular for the heading controller. Additionally, the model should be improved to better represent the
real system, as discussed in Section 6.4.7. To avoid the issues of making an accurate model, a sensor-based
observer, described in Section 2.9.1, could have been implemented instead of the model-based observer. To
see if the observer is consistent, i.e. ”convergence of the estimate to the true value” (Bar-Shalom et al.,
2002), a filter consistency test should be performed. For improved control in the low speed regime, the
slow function discussed in Section 3.5 could be applied. The control system developed in this thesis has
only been tested in calm environments. For a more robust control system, it should be tested under harsher
circumstances, e.g. with waves and current. In this thesis, motion in roll and pitch have been neglected. The
drone is underactuated with regards to these DOFs. An interesting topic would be to study how one could
stabilize a vehicle in its underactuated DOFs.
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Appendix A
Partial derivative of nonlinear term in state
space model

This chapter explains how the partial derivative of the nonlinear term, i.e. ∂f(x)∂x , in the states space equation
(5.4b) is derived in an analytic manner. The nonlinear term of the state-space model is given by

f(x) = A(x)x =

f1(x)
f2(x)
f3(x)

 =

 J(ψ)ν
−M−1(C(ν) +D(ν))ν + M−1b

0

 (A.1)

where the A and x matrices are given in eq. (5.6a) and eq. (5.5) respectively. In the EKF, you need to find
the partial derivative of f(x) with regards to the state vector x, i.e. ∂f(x)

∂x(k) . To find the partial derivative, each
elements of the function f is computed. Firstly, the elements are rewritten as

f1(x) = J(η)ν =

c(ψ)u− s(ψ)v
s(ψ)u+ c(ψ)v

r

 (A.2a)

f2(x) = −M−1C(ν)ν −M−1D(ν)ν + M−1b := f2C + f2D + f2b (A.2b)

f3(x) = 0 (A.2c)

c(·) and s(·) are abbreviations for the cosine and sine functions. Then each element in the vector function
f(x) is partially derivated w.r.t each element in the state vector x, i.e.,

∂f(x)

∂x
=


∂f1
∂η

∂f1
∂ν

∂f1
∂b

∂f2
∂η

∂f2
∂ν

∂f2
∂b

∂f3
∂η

∂f3
∂ν

∂f3
∂b

 =


∂f1
∂η

∂f1
∂ν 0

0
∂f2C
∂ν +

∂f2D
∂ν

∂f2b
∂b

0 0 0

 . (A.3)

For breviaty, the dependency of x of the partial derivatives is not stated in (A.3). These elements of partial
derivatives that are non-zeros are given below.

∂f1(x)

∂η
=

0 0 −s(ψ)u− c(ψ)v
0 0 c(ψ)u− s(ψ)v
0 0 0

 (A.4)
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∂f1
∂ν

= J(η) (A.5)

∂f2C (x)

∂ν
= −M−1

 0 C13r C13v
C23r 0 C23u

C31v + C32v C31u+ C32u 0

 (A.6)

where Cij is element in row i and column j in the C(ν) matrix.

∂f2D(x)

∂ν
= −M−1(DL + 2DQ(ν)) (A.7)

where

DQ(ν) =

X|u|u|u| 0 0

0 Y|v|v|v| 0

0 0 N|r|r|r|

 (A.8)

∂f2b
∂b

= M−1 (A.9)
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Appendix B
codes

B.1 MATLAB

B.1.1 Added Mass Estimation

The script for Eidsvik (2015) empirical method of finding the added mass is found in in the folder code with
the name AddedMass Eidsvik. The geometric parameters used can be found in Table 3.1.

B.1.2 Damping Identification

The code used to perform the damping identification using DFO is found in the folder code/DFO. To run
the simulations using Method 1, run the script named optim all tests sim. To run the simulations using
Method 2, run the script named optim all tests obs. In both these scripts the variable D optim al is used
to decide which model is used, where giving this variable the value 1 means that Model 1 is run, while the
value 2 means the Model 2 is run.

B.2 Control System

B.2.1 Observer

The codes with the implemented observer are found in the folder code/controlsystem/observer+guidance.
The scripts are written in Python. Before being able to run the observer, the computer running the observer
must be connected to the drone through wifi and to the APS using an Ethernet cable. To run the observer
using the ODM developed in this thesis (see Chapter 7), you need to run the script node observer with the
case variables set to the following: case model = 1, case parder = 1, case obs = 1, case pos = 1, and
signal freeze = True.

B.2.2 Guidance system

The codes with the implemented guided system are found in the folder code/controlsystem/observer +
guidance. The scripts are written in Python. To run the guidance system, the computer used must be
connected the same way as when running the observer. To run the guidance system, you need to run the
script reference generator with the case parameters set to: depth case = 1 and case pos = 1.
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B.2.3 Controller

The coded implementation of the control laws is not appended, since this is a part of the private Blueye codes.
However, all the relevant parts that have been implemented have been stated in Chapter 9. Since the control
laws were implemented as a part of the internal control system on the drone, the modified controller had to be
cross compiled to the drone using a docker image. The cross compilation required internet access. Once the
controller was cross-compiled to the drone, the script could not be modified without cross-compiling again.
When testing outdoors, the controller in surge, sway, heave and yaw were activated by calling rosservices.
For tuning the controller gains, ROS’ dynamic reconfigure package1, was used to update the controller gains
at runtime without having to restart any rosnodes. This was done by running the script dyn param client
which can be found in the folder code/controlsystem/live tuning.

1http://wiki.ros.org/dynamic_reconfigure
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Appendix C
Software

C.1 Signal flow APS

A detailed signal flow in Water Linked’s APS is shown in Figure C.1.

Figure C.1: Signal flow APS. Courtesy Water Linked.
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Appendix D
Nelder-Mead Simplex Algorithm

The Nelder-Mead algorithm is based on simplices, which are ”bounded convex polytopes with nonempty
interior and exactly n + 1 vertices” (Audet, 2017). The methods begins by constructing a simplex and
evaluating the objective function at each vertex of the simplex. Simply explained, it attempts to replace the
worst vertex of the simplex with a better one. The algorithm evolves by doing ”reflections”, ”contractions”,
and ”expansion” (Audet, 2017). A detailed explanation of the algorith is found in (Lagarias et al., 1998).
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Appendix E
CUSUM

This section is written based on ”the CUSUM Algorithm” section in (Blanke, 2016). The cumulative sum
(CUSUM) algorithm is used to detect a known changes. This algorithm takes use of the log-likelihood ratio
of an observation z, defined as

s(z) = ln
pθ1(z)

pθ0(z)
(E.1)

where pθi is a probability density function that depends on the parameter θ. θ0 is the parameter before a
change has occurred, and θ1 is the parameter is the changed parameter.
The CUSUM is defined as the sum of all the log-likelihood ratios

S(k) =

k∑
i=1

s(z(i)) =

k∑
i=1

ln
pθ1(z(i))

pθ0(z(i))
(E.2)

where S(k) is the CUSUM for the present time instant k.
The CUSUM is expected to have a negative drift before a change, and a positive drift after the change.
Defining two hypotheses, H1 and H2, where H1 is the nominal case and H2 is the case where a change has
occurred. To decide between the two hypotheses, one can use a decision function g(k) defined as

g(k) = S(k)−m(k) (E.3)

where m(k) = mini≤j≤kS(j). The decision function can identically be defined as

g(k) = max
1≤j≤k

k∑
i=1

ln
pθ1(z(i))

pθ0(z(i))
= max

1≤j≤k

k∑
i=1

s(z(i)) (E.4)

The test of determining if a change has happened is then defined as

if g(k) ≤ h accept H0 (E.5a)

if g(k) < h accept H1 (E.5b)

The threshold h is a design parameter that must be specified by the user.
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Applications

The CUSUM algorithm can be used to detect a change in mean or variance since the probability functions
are known. For instance, for a change in mean for a normal distribution from µ0 to µ1 we get

s(z) = ln
pµ1(z)

pµ0(z)
=

2(µ1 − µ0)z + (µ21 + µ20)

2σ2
(E.6)

where µ and σ are respectively the mean and the variance of the normal distribution. An equivalent log-
likelihood function can be derived for the variance. The changed mean µ1 is another design parameter that
must be determined. The design parameter h and µ1 can be determined to satisfy specified mean time for
detection and/or mean time between false alarms. This is done using the average run length (ARL) function
L

L(µ) = Eµ(ka) (E.7)

where ka is the alarm time, i.e. the time when g(k) exceeds the threshold h. The ARL function can be
approximated as

L̂ = (exp[−2(
µsh

σ2s
+ 1.166

µs
σs

)]− 1 + 2(
µsh

σ2s
+ 1.166

µs
σs

))(
σ2s
2µ2s

) (E.8)

where µs and σ2s are the mean and variance of the increments of the cumulative sum. They are given by

µs =
µ1 − µ0
σ2

(µ− µ1 − µ0
2

) (E.9)

and

σ2s =
(µ1 − µ0)2

σ2
(E.10)

When the mean µ equals µ1, the ARL function L(µ1) gives the mean time for detection τ̄ . The mean time
for detection can be estimated as

ˆ̄τ = L̂(
β2

2σ2
) (E.11)

β is a new variable defined as β = µ1 − µ0. When µ = µ0, the ARL function L(µ0) gives the mean time
between false alarms T̄ , which is estimated as

ˆ̄T = L̂(− β2

2σ2
) (E.12)
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