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Summary
A floating production, storage and offloading unit (FPSO) is often the only viable option for
oil and gas production in deep waters. More reservoirs are discovered in deep waters, and the
popularity of FPSO’s is rising. Key market players seek cost-efficient deliveries with short lead
times. Consequently, several entities, including Altera Infrastructure, are invested in standard-
ising solutions for their FPSO’s. While different standardised designs are necessary for different
location environment, the type of FPSO design evaluated in this thesis must be able to with-
stand all possible environments and its hull optimised to generate the smallest motions possible.
The processing plant on the ship’s tank top deck is of great importance, and hence particular
focus is given to maximising the space for processing units on deck at a low cost.

The optimisation process was completed by using a genetic algorithm. The thesis objectives of
maximising the deck area and minimising the hull build cost represent the objective function
of the optimisation process. A parametric hull model with 12 decision variables is generated to
shape the vessel’s hull accurately. The genetic algorithm’s output resulted in a Pareto-front with
only non-dominating solutions. Consequently, one could choose any of the optimal points on the
front, each with an equal degree of optimality. To further enhance the optimisation process, a
local search algorithm was employed. While the genetic algorithm uses an evolutionary method
that performs well with many variables and objective functions, the local search is employed
once the solution has converged sufficiently, and the search space is considerably limited. Un-
biased measures have been used to determine both the performance of individual solutions as
well as complete sets of Pareto fronts. Effectively, the genetic algorithm performed best when
evaluating a set of optimal solutions, while the local hybrid search algorithm generated solutions
closest to the point of maximum deck area and minimum cost, called the Utopian point. Multi-
ple optimisation runs were completed with various input parameters altered for each run. Input
parameters such as the Pareto fraction, the maximum number of stall generations and initial
population matrix were changed in order to determine which setup rendered the best results.
Consequently, 6,255 vessels have been generated from multiple optimisation runs. The deck ar-
eas span from 13,525 to 16,824 m2 with a hull build cost range of US $59.78-$72.2 million. Two
vessels were chosen for further evaluation. One vessel has the lowest utility cost, i.e. the lowest
price for the largest deck area. The other is closest to the Utopian point in the optimisation.
The resulting minimum utility cost of all vessels is US$4,302/m2 and US$413/m3 of cargo.

Due to the harsh weather conditions on the intended location, a vessel motions evaluation has
been completed for both vessels. Particular focus has been given to fulfilling the operational
criteria which are set by Altera Infrastructure and other classification societies. Based on a
wave frequency spectrum of the given location, the vessels are compliant with most of the
criteria during normal conditions. Another vital area of focus is the crew comfort and the
measure of the mean sickness dose value measuring the crew’s seasickness. Conclusively, in
normal conditions, both vessels meet all of the operational requirements. Consequently, one can
confirm that the genetic algorithm and the local hybrid search algorithms have efficiently and
accurately generated viable hull geometries that should be evaluated in further work.



Sammendrag
En flytende produksjons-, lagrings- og avlastningsenhet (FPSO) er ofte det eneste levedyktige
alternativet for olje- og gassproduksjon på dypt vann. Flere reservoarer blir oppdaget på dypt
vann, og populariteten til FPSO-er øker. Sentrale aktører i markedet søker kostnadseffektive
leveranser med korte ledetider. Følgelig er flere selskaper, inkludert Altera Infrastructure, in-
vestert i standardisering av løsninger for FPSO-ene. Mens forskjellige standardiserte konstruk-
sjoner er nødvendige for forskjellige lokasjoner, må typen FPSO-design evaluert i denne oppgaven
kunne tåle alle mulige miljøer og skroget er optimalisert for å generere minst bevegelser mulig.
Foredlingsanlegget på skipets tankdekk er av stor betydning, og det gis særlig fokus på å mak-
simere plassen for prosesseringsenheter på dekket til en lav pris.

Optimaliseringsprosessen ble fullført ved bruk av en genetisk algoritme. Oppgavens mål om
å maksimere dekkområdet og minimere kostnadene for skrogbygging representerer objektiv-
funksjonen til optimaliseringsprosessen. En parametrisk skrogmodell med 12 beslutningsvari-
abler genereres for å forme fartøyets skrog nøyaktig. Den genetiske algoritmen genererte en
Pareto-front med bare ikke-dominerende løsninger. Følgelig kunne man velge hvilket som helst
av de optimale punktene på fronten, hver med en like grad av optimalitet. For å forbedre op-
timaliseringsprosessen ble det benyttet en lokal søkealgoritme. Mens den genetiske algoritmen
bruker en evolusjonsmetode som fungerer godt med mange variabler og objektive funksjoner,
brukes det lokale søket når løsningen har konvertert tilstrekkelig, og søkeområdet er betydelig
begrenset. Objektive målinger har blitt brukt for å bestemme både ytelsen til individuelle løs-
ninger så vel som komplette sett med Pareto-fronter. Den genetisk algoritmen presterte best
da en evaluerte et sett med optimale løsninger, mens den lokale hybrid-søkealgoritmen gener-
erte løsninger nærmest punktet for maksimalt dekksareal og minimumskostnad, heretter kalt
det Utopiske punktet. Flere optimaliseringsløp ble fullført med forskjellige parametere endret
for hver kjøring. Parametere som Pareto-fraksjonen, det maksimale antall stallgenerasjoner og
den innledende populasjonsmatrisen ble endret for å bestemme hvilket oppsett som ga best re-
sultat. Følgelig er 6,255 individuelle skip blitt generert fra flere optimeringer. Dekksarealene
spenner fra 13.525 til 16.824 m2 med en skrogkostnad på US$59,78-72,2 millioner. To fartøy ble
valgt for videre evaluering. Ett fartøy har den laveste nyttekostnaden, dvs. den laveste prisen
for det største dekkområdet. Den andre er nærmest det utopiske punktet i optimaliseringen.
Den resulterende minste nyttekostnad for alle fartøyer er US$4,302/m2 og US$413/m3 for lasten.

På grunn av de tøffe værforholdene på det tiltenkte stedet, ble begges fartøy sine bevegelser
evaluert. Spesielt fokus er gitt på å oppfylle de operasjonelle kriteriene som er satt av Altera In-
frastructure og andre klasse-selskaper. Basert på et bølgefrekvensspektrum for det gitte stedet,
er fartøyene i samsvar med de fleste av kriteriene under normale forhold. Et annet viktig foku-
sområde er besetningskomforten og målet for den gjennomsnittlige sykedoseverdien som måler
besetningens sjøsyke. Dermed, under normale forhold, oppfyller begge fartøyene alle driftskrav.
Følgelig kan man bekrefte at den genetiske algoritmen og de lokale hybrid-søkealgoritmene ef-
fektivt og nøyaktig har generert levedyktige skroggeometrier som bør evalueres i videre arbeid.
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Acronyms

bbl Standard petroleum barrel
BDTI Baltic Dirty Tanker Index
CAPEX Capital Expenditure
CCS Carbon Capturing and storage
COG Centre of gravity
COT Crude Oil Tanks
DoF Degrees of freedom
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FPSO Floating Production, Storage and Offloading
FSM Free surface momentum
FSO Floating Storage and Offloading
GA Genetic algorithm
HGA Hybrid genetic algorithm
ISO Organisation for Standardisation
ITTC International Towing Tank Conference
KPI Key performance index
LCB Longitudinal centre of buoyancy
LCG Longitudinal centre of gravity
LQ Living quarters
LR Long-range (tanker vessel size)
LWT Lightship weight
MOGA Multi-objective genetic algorithm
MOLP Linear multi-objective optimisation problem
MOOP Multi-objective non-linear optimisation problem
MOP Multi-objective optimisation
MSDV Mean sickness dose value
MSG Maximum stall generations
MT Metric tonnes
NORSOK NORsk SOkkels Konkurranseposisjon (Norwegian)
NSGA Non-dominated sorting genetic algorithm
RAO Response amplitude operators
TCE Time-charter Equivalent
TCG Transverse centre of gravity
VCG Vertical centre of gravity
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Nomenclature

A(xi) Normalised value of objective function for deck area
A(xi) Objective function for deck area
B Breadth
β Incident wave angle
BWL Breadth waterline
C(xi) Normalised value of objective function for build cost
C(xi) Objective function for build cost
CB Block coefficient
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CP Prismatic coefficient
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D Moulded depth
dj , dj Spread of Pareto solutions, average spread
Ex Excursion envelope
ηj Amplitude of motion in direction j
HS Significant wave height
k Wave number
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LOA Length overall
LPP Length between perpendiculars
LWL Waterline length
PF Pareto fraction
Pc Painting cost
S Wet surface area
Sc Steel cost
σC Constraint tolerance
σF Function tolerance
Sp Surface preparation cost
T , T Draught, mean draught
∆T Longitudinal trim
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TN Natural period
Tp Wave period
UP Utopian point
VP Percentage of vomiting crew
X0 Initial population matrix
xi ith variable of chromosome Xj
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Chapter 1
Introduction

Floating Production, Storage and Offloading (FPSO) units are vessels employed to process and
temporarily store crude oil from wellhead platforms, or directly from a subsea installation. As the
cargo space fills up with the extracted petroleum product, shuttle tankers periodically connect
to offload the cargo and transport it to refineries. Direct offloading offshore is a clear economic
advantage as it does not require high investment costs of fitting a pipeline to shore. FPSO’s
have the capacity of working in both shallow and deep water but is often employed in the latter
due to high investment costs of fixed structures in deep seas. The vessels are highly flexible as
they can be shifted from one field to another conveniently and economically [31].

Figure 1.0.1: Example of turret-moored FPSO [36].

In most cases, crude oil is transferred to the vessel’s cargo tanks while treated gas is used as fuel
for onboard power generation. Excess gas can either be re-injected into the reservoirs, exported
to shore via a pipeline or burned off. Given adequate filtration and cleaning, water from the
wells may be discharged overboard, or re-injected with any gas [33]. A rendering of an FPSO
with an internal turret is illustrated in figure 1.0.1.
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1.1 Background

When the oil fields are located in very deep waters and subject to harsh weather conditions,
one of a few viable options is the use of an FPSO. The vessels may be purpose-built at a yard
as an FPSO or may stem from a converted oil tanker. In calm waters, a lower specification is
often sufficient with simpler mooring systems and hull geometry. In the North Sea, other vessel
properties are required, and a hull geometry that can withstand the sea states is of much more
importance [8, 30]. Consequently, Altera seeks at standardising their FPSO’s design so that the
vessels can be built at a lower cost and shorter lead time, while also being possible to operate
on any field. However, regardless of newbuild or conversion, an FPSO with a cargo capacity of
800,000 to 1,000,000 crude oil barrels (bbls) will culminate to capital expenditure (CAPEX) of
US$1-1.5 bn [30, 38]. Hence, the standardised design should be thoroughly evaluated, and hull
optimality ensured.

The main activity and centre of operation for an FPSO is the topside processing plant. The
plant separates oil, gas and water before the three are shipped off the vessel again. This vessel
module requires plenty of deck area and is located high above the waterline, thus shifting the
vessel’s centre of gravity further away from the waterline. Consequently, it is of interest to max-
imise the deck area of an FPSO in order to fit as much as possible on the deck while having the
possibility for additional retrofitted modules. Furthermore, the question of intact stability arises
when more weight is added high above the waterline, and thus the hull geometry is a vital part
of the vessel’s operability. In theory, a larger vessel would both generate a massive deck area as
well as minimise the vessel’s movements in high seas. However, it is often not necessary with
a cargo capacity of more than 1,000,000 bbls, and hence a larger ship may increase the vessel’s
CAPEX unnecessarily [30]. As a result, Altera has decided that their standardised FPSO design
should be able to carry one million barrels and their wish is reflected in the problem description
of the optimisation.

If one’s goal is to increase the deck area, an optimisation will continuously increase the vessel’s
dimensions. The same will likely happen if one aims to minimise the vessel’s motions. However,
if the build cost is accounted for, the optimisation is constrained by a secondary objective, and
one achieves a convergence resulting with an optimised ship [29]. Vessel optimisation may also
have the added benefits of long-term reduction of onboard personnel, eventually producing lean
FPSO’s with lower manning or even unmanned vessels. Consequently, any entity engineering
and manufacturing FPSO’s seeks robustness in the optimisation that will help accelerate both
the procurement and engineering process. The study of optimising a vessel at an early design
phase is therefore particularly important as it seeks to improve the project profitability in Altera
in the long run.
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1.2 FPSO and offshore market outlook

Due to a highly volatile market with rapid changes in commodity prices and time-charters, one
should bear in mind that the forthcoming section was written in May 2020 with approximately
1-2 week old information.

From the onset of the worldwide Covid-19 pandemic, the offshore oil and shipping industry has
experienced rapid changes and continuously high volatility. In April of 2020, the West Texas
Intermediate (WTI) went negative for the first time in history, closing at -$37.63 USD/bbl,
sending shock-waves into the offshore energy markets. During the six weeks after, the domestic
count of oil and gas rigs has fallen in the by 347 rigs in the US itself as the Brent spot oil
price continues to plummet, and is currently at -46.55% since January 1st (YTD). The price
drop is illustrated in figure 1.2.1. The G20-supported OPEC+ agreement in April to cut oil
production was branded as a big success but did not fool the oil market. Despite substantial
cuts from member countries and worldwide producers, analysts believe that the market will not
be restored to its pre-2020 norm with quashed demand until Q3 2020 [47, 48].

Figure 1.2.1: Commodity prices for Brent sport, WTI and Baltic Dirty Tanker Index (BDTI). The
index is based on the weighted average cost of 17 routes carrying unrefined petroleum oil.

Crude oil tanker owners, always masters of volatility, have been able to play the offshore mar-
ket better than most. Due to increased storage of crude in VLCC’s in Asia, the time-charter
equivalent on the Middle-East China route (TCE-TD3) has experienced the fourth spike since
October 2019, surpassing US$220,000/day. The surging freight rates have also trickled down to
Suezmax tankers due to their lower demurrage costs. Consequently, Aframaxes have followed
suit with the same effect being seen on other routes to the UK, the North Sea and the Baltics.
Furthermore, the current oil prices create a structure of steep contango, thus allowing traders
to charter-in tankers for floating storage at phenomenally high rates. The surge pricing has also
forced multiple LR tank-owners to switch from clean cargo to dirty tankers in search of arbitrage
opportunities [48]. S&P Global Platts claims that there is currently 300 mill. bbls of crude oil
in floating storage, with an additional 100 mill. bbls of clean tonnage [19].
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The low crude prices have hurt production and exploration both on land and offshore. While the
daily worldwide production is considerably reduced since Q1 2020, the global over-supply has
generated a backwardation in the short-term forward production market. Therefore, cheaper
production facilities offshore are necessary to meet today’s market challenges. For FPSO owners,
the cheapest and fastest option to first oil is often through the conversion of either Suezmax’
or VLCC’s with a minimum delivery time of 24 months [35]. However, the surging rates in the
tanker market push the sale prices upward as ship owners jockey for position on the medium-
term time-charters. Consequently, the added benefit of converting a tanker into an FPSO may
soon be outweighed by the increased acquisition cost adding to an already staggering CAPEX.

Consequently, future FPSO’s on order and in the planning processes need to be able to com-
pete with the current market situation by lowering CAPEX and lead time. Current estimates
suggest there are approximately 300 operational vessels worldwide, with another 30 vessels avail-
able. Furthermore, it is estimated that over 50 vessels are on order with an additional 224 in
the planning stages [7]. However, the current fleet of FPSO’s and those in planning stages, 68%
are built from conversions from former tank vessels, and thus only 32% being purpose-built at a
yard. Additionally, reports from a global FPSO survey suggests that about 75% of the currently
operational FPSO’s are located in benign waters off South America, south-east Asia and along
the west coast of Africa. While a majority of vessels are located in calm waters, increased off-
shore activity in the North Sea and Barents Sea spurs the development of internal turret moored
FPSO’s that can withstand the harsh weather conditions. A conversion scheme with standard-
ised vessel modules and topsides is increasing in popularity. While conventional conversions or
newbuilds would usually take 24 to 36 months from FPSO contract to first oil, standardised
and hull geometry and topside solution can reduce the delivery time by 6 to 12 months. The
schedule reduction is applicable for both conversions and newbuilds. Consequently, a generic
hull that can withstand these conditions is highly dependent on a thorough optimisation and
evaluation.

While the CAPEX of the vessels is seemingly reduced through fast and flexible conversions, other
onboard factors have significant influence over the life cycle costs. Better analytical tools and an
increased degree of digitalisation for onboard monitoring systems have helped prolong the lifetime
of multiple vessels as a result of better fatigue level measures. Several entities are now considering
more extensive, innovative steps for the offshore market and FPSO’s. As the environmental
factors gain attention, solutions regarding carbon capturing and storage (CCS), recovery of
volatile organic compounds (VOC Recovery) and onshore power supply must be considered in
the vessels’ design. Furthermore, innovative solutions such as the unmanned wellhead platform
Oseberg Vestflanken 2 shows that lean FPSO’s with lower manning or completely unmanned
may be possible in the coming years.
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1.3 Key performance indicators

The key takeaways from Altera’s interests as well as the current FPSO market outlook show that
there are multiple sets of quantifiable measurements that one can study to evaluate the long-
term performance of a vessel, commonly called key performance indicators (KPIs). Consequently,
before the optimisation is undertaken, one has to determine which of the available KPIs are of
particular interest and which of them can be validated with the current information. Table
1.3.1 summarises the KPIs that are of interest to Altera Infrastructure. These KPIs are also the
general focus area involving the Generation IV of their newbuild and converted FPSO units.

Table 1.3.1: Summary of key performance indicators for hull design that are of interest from Altera
Infrastructure.

KPI Description
Seakeeping performance Minimisation of vessel motions to comply with offshore

regulations and increase vessel operability
Lightship weight Minimisation of lightship weight to minimise steel cost
Topside capacity (area and weight) Increased area for larger processing plant. Maximum

weight to be maximised given compliance with intact
stability criteria

Weathervaning Involves optimal placement of turret and minimisa-
tion of installed effect for weathervaning propulsion
systems

Standardisation Degree of standardisation and cost of flexibility. Min-
imisation of lead time with regards to conversions and
newbuilds

Vessel CAPEX Minimisation of build cost

Considering the KPIs in table 1.3.1, one has a broad range of possible optimisation objectives.
However, a particular focus area for Altera is the topside capacity and CAPEX. Consequently,
ratios involving the lightship weight per barrel produced or deck area per barrel is of interest.
Furthermore, the CAPEX per barrel produced is also necessary to consider if a complete oper-
ational cost analysis is conducted. While considering all KPIs as an objective function would
likely yield stimulating results, insufficient time limits the number of focus areas. Since the
majority of the discussion with Altera consisted of matters relating to the topside capacity and
seakeeping abilities, these KPIs will be the main focus of the following thesis work.

1.4 Objectives

The research objective of this master thesis is to generate a preliminary hull geometry that is
optimised for both maximum deck area and hull build cost through the use of an optimisation
model. The process involves understanding how settings and parameters of the optimisation will
change the output and its effect on the resulting hull geometry.
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Since the the FPSO units are located in harsh weather conditions, their optimality must be
measured against their operability and response in various sea states. An evaluation of the
vessels’ motions will decide whether the optimal ships indeed possess the best possible geometry
as well as determining any possible shortcomings. The objectives can, therefore, be broken
down into several sub-objectives as listed below and are likely to be necessary steps for the
optimisation process and optimal hull selection:

1. Describe the general characteristics and the relevant operating context of an FPSO unit
2. Study relevant topics that apply to the optimisation and objective functions
3. Develop geometric model feasible for optimisation and objective functions while giving

realistic results
4. Create loading conditions and weight distributions based on optimisation output data
5. Evaluate the most influential input parameters affecting the optimisation algorithm
6. Explore and identify methods that guarantee convergence in the optimisation at the global

optimum
7. Develop a framework to fairly evaluate the best individual solution points and complete

sets of Pareto optimal solutions
8. Analyse the hulls’ motions in regular waves
9. Discuss and conclude the reliability of the optimisation model and its results

1.5 Scope and limitations

The work in this thesis involves a multi-objective optimisation using two objective functions
that aims to maximise the deck area and reduce the build cost. Consequently, the overall aim is
to generate one or two optimal hull geometries. The optimisation will be conducted through the
use of a multi-objective optimisation algorithm that can guarantee a convergence and generate
optimal solutions. The optimisation output must then be evaluated to determine the optimal
vessel(s) as well as the optimisation run that generated the best solutions. Included in the op-
timisation is the general hull geometry as well as placement of cargo tanks and water ballast
tanks. The main activity of the work is the optimisation of the hull. If one were to include
the position and shape of the accommodation, processing plant, flare tower or helicopter deck a
much more comprehensive system build up is required. Consequently, these vessel modules are
not included in the scope, nor the model and will therefore not affect the optimisation. Hence,
the corresponding build cost only includes the hull’s paint and steel cost, and no outfitting is
included in the final price estimate. Additionally, the optimisation model considers the vessel’s
motions as a termination criterion. Hence, if the vessel’s motions are too severe, the algorithm
must re-iterate. Subsequently, a more thorough analysis is required as part of the post-processing
to determine the validity of the results.

The optimisation will only focus on the relationship between the hull geometry and the resulting
motions in regular waves. Due to limited time and the complexity of the task, no evaluation of
structural integrity, wave resistance, propulsion study or weathervaning study will be completed.
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2.1 FPSO Characteristics

When one is to optimise the dimensions of an FPSO, it is important to understand the main
characteristics of the vessel in terms of operation and safety. If one disregards the market’s
influence on the hull design, there are still some clear trends that characterise a typical FPSO.
If the vessel is not purpose-built at a yard, an FPSO is often a product of a converted oil tanker,
usually in size range of a Suezmax or a very large crude carrier (VLCC) that carry typically
150,000 DWT to 320,000 DWT, respectively [9]. In the event of a conversion, one aims at
re-using as much as possible of existing vessel systems and equipment to minimise CAPEX for
the conversion. The crude oil tanks may be re-used for the FPSO phase, but the entire topside
processing plant has to be installed as well. While a purpose-built FPSO may have a completion
time of 24-36 months from contract to delivery, a conversion may reduce the lead time to 6-12
months through implementing a more conventional vessel fabrication line [13].

Furthermore, FPSO’s are a particular type of vessels that require complex mooring systems.
The vessels are stationary most of their lifetime and are secured to the seabed through a va-
riety of possible mooring systems. The mooring-system is determined by the specific weather
environment and water depth. With a reliable mooring system, the vessels are suitable for a
wide range of environmental conditions and are usually designed for the capability of stationery
operation for over 20 years without dry-docking. There are various types of mooring systems
and anchor patterns, but the most common are internal or external turrets as well as spread
moorings. A visual example of the mooring systems is given in figure 2.1.1.

7
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(a) Spread moored. (b) External turret. (c) Internal turret.

Figure 2.1.1: Various FPSO mooring systems. From left to right: spread mooring, external turret
mooring, internal mooring. Photo properties belong to Deltamarin [27].

Figure 2.1.1c represents a vessel with an internal turret mooring. The turret is moored to the
seabed with chains and anchors in a radial pattern and has bearings allowing free and unre-
stricted 360° rotation [33]. The vessel will then adjust its heading according to the weather and
will normally lay head to the prevailing environment, thus continuously weathervaning. The
vessel with an external turret possesses many of the similar weathervaning capabilities as the
internal turret but is likely in need of less energy to adjust the heading at the cost of being
less susceptible to harsh weather [5]. The vessel on the left is spread moored. This mooring
configuration is often sufficient in calmer waters where weathervaning is unnecessary. Addition-
ally, some FPSO’s may have disconnectable mooring systems, allowing the vessel to escape from
rough weather like hurricanes or cyclones [27].

While the position of the turret and mooring type is outside the scope of this work, an important
factor to consider is the position of the living quarters (LQ) on the vessel. The exact position
of the LQ is not of great importance for the optimisation algorithms, but the general position
does affect the shape of the hull in practice. However, should the LQ be situated in the bow,
the structure has to be protected from green sea. Consequently, green water effects can be
mitigated by providing a flare angle in the bow. Conversely, if the LQ is abaft, the flare tower
and processing plant must be equally protected. The NORSOK standard state the following;
"The installation shall be oriented with respect to the dominant wind direction to minimise the
likelihood of a gas release or smoke drifting towards the accommodation and primary evacuation
means" [34]. Since the internally turret-moored units are likely to lay head to the wind, most
accommodation structures are located in the bow if designed according to NORSOK. Conse-
quently, the volume and geometry of the fore section become a vital part of the optimisation.
Furthermore, regardless of the positioning of the LQ, the lifeboats must be positioned above the
10,000-year relative wave height profile.
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2.2 Vessel response in regular waves

2.2.1 Sea states at location

The study in this thesis aims at improving a current vessel design that is placed on a location
with one of the world’s harshest ocean environments. Due to classified information from several
corporations, the vessel’s location will be called location X and is situated west of Shetland.
Its water depth is for all practical purposes 400 metres. The wave and wind data used for the
evaluation of the vessel’s response is based on 21 years of continuous hindcast at an undisclosed
grid point near location X . Additionally, the data also comprises of measurements done by
other vessel and drilling rigs in the same area. When considering the weather data as an input
to calculate the vessel motions, data from both a wave frequency table and estimated data
concerning return-periods can be used. Table 2.2.1 represents the latter, showing the significant
wave height (HS) and the peak period of the wave (Tp) given in metres and seconds, respectively.
Significant wave height is defined as the average wave height, from trough to crest, of the highest
one-third of the waves. The calculated values are based on a JONSWAP wave spectra using a
Weibull distribution with γ-range of 2.0 to 3.33 [32].

Table 2.2.1: JONSWAP wave spectra. Central γ: 2.6, σa: 0.07 σb: 0.09.

1-Year 10-Year 50-Year 100-Year 1K-year 10K-year
Hs [m] 13.1 15.3 16.9 17.5 19.9 22.2
Tp [sec] 16.5 17.9 18.9 19.2 20.4 21.5

Another important aspect when calculating HS and Tp for a given return period is through the
use of a site-specific wave frequency table. Such a table summarises the number of occurrences
of each wave with given wave height and period occurring at a given location. An example of
such a table is given in appendix A. This table is used to determine the long-term vessel response
in long-crested waves.

Altera has previously adhered to the rules and regulations of DNV GL; hence the same criteria
will be considered in the following work. Weather data from table 2.2.1 and appendix A shall
be used when considering the vessel’s motions on the production site. To test the ultimate hull
strength assessment, the design bases for wave load analysis comprises of the following situation
for a turret moored unit as stated in DNVGL-OS-C102 [17]:

• Head sea (0°): 60% of operating time
• ± 15°of head: 30% of operating time
• ± 30°of head: 10% of operating time

These requirements will be applied for multiple analyses as it represents the vessel’s heading
probabilities and may affect the vessel’s overall operability.
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2.2.2 Response functions

As seen from the sea-states presented in table 2.2.1, location X is often subject to very harsh
conditions. The large sea-states will often result in large motions for the FPSO units on location
and is likely further to affect the vessel’s operation and crew capability. Hence, it is of interest
to Altera to evaluate the motions of the vessel at location X , and thus the frequency response
functions must be derived.

The most common practise when calculating the response functions is through the use of 2D
strip theory, calculating both the excitation forces and the added mass, damping and restoring
forces. However, if this calculation is done for each vessel, for all frequencies, throughout the
optimisation, computation time would grow exponentially. Hence, a simpler model derived from
empirical methods has been used in the optimisation.

Simplified seakeeping model

The maximum wave-induced motions and accelerations a ship may encounter during its operation
lifetime can be undertaken by considering the hull form, its operational profile and mass distri-
bution. While a linear analysis using two- or three-dimensional hydrodynamic procedures based
on potential theory is quite straightforward, a lack of detailed vessel data, significant expertise
and time may render this procedure futile when optimising. Therefore, a more straightforward
method of predicting wave-induced motions have been developed, giving sufficient engineering
accuracy in the conceptual design phase [24]. The formulas derived from Jensen et al. are there-
fore semi-analytical, considering only length, breadth, draught, block coefficient, waterplane area
and operational profile.

The simplification assumes that the heave and pitch motions are uncoupled, that the vessel has a
constant sectional added mass equal to the displaced water, and that the vessel is homogeneously
loaded. Given these assumptions, the equations of motions in a regular wave, with amplitude a
can be written as;

2
kT

ω2
ẅ +

A2

kBα3ω
ẇ + w = aF cos($t) (2.2.1)

2
kT

ω2
θ̈ +

A2

kBα3ω
θ̇ + θ = aG sin($t), , (2.2.2)

where k is the wave-number, ω is the wave frequency (assuming ω2 = kg), and where B and
T are the breadth and draught of the box respectively. Differentiation with respect to time
t is denoted by a dot. A more comprehensive presentation of the method can be found in
appendix E. Consequently, the solution to equations (2.2.1) and (2.2.2) gives the frequency
response functions;
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Φw = ηF (2.2.3)

Φθ = ηG, (2.2.4)

where η is given by

η =

√(1− 2kTα2)2 +

(
A2

kBα2

)2
−1

. (2.2.5)

The frequency response functions for the vertical motion u and acceleration v in the longitudinal
position x from the vessel’s centre of gravity then becomes:

Φu =
√

Φ2
w + x2Φ2

θ (2.2.6)

Φv = $2Φu = α2kgΦu. (2.2.7)

Φw and Φθ represent the response amplitude operators (RAO’s) for the heave and pitch at
position x from the centre of gravity. The model also formulates the equation of motion in
equation (2.2.8), and the response frequency equation solved for the roll motion is given in
equation (2.2.9).

(
TN
2π

)
C44ϕ̈+B44ϕ̇+ C44ϕ = M (2.2.8)

Φϕ =
|M |([

−$2
(
TN
2π

)2
+ 1

]2

C44 +$2B2
44

) 1
2

(2.2.9)

VERES model

The simplified vessel motions model described in section 2.2.2 assumed a rectangular box with
a constant sectional added mass and only considered the uncoupled motions of heave, pitch
and roll. Since the vessel may experience incoming sea with β as much as 30°, it may also be
important to consider the coupled pitch and roll motions. However, like the simplified model,
the VERES program (the calculation tool in ShipX for vessel motions) also have some important
assumptions as stated from the ShipX Vessel Response Theory Manual [16]:

• The ship is assumed to oscillate harmonically with a frequency equal to the frequency of
encounter. No transient effects due to initial conditions are considered. No hydroelastic
effects are considered.

• A linear relation is assumed between the responses and the incident wave amplitude. This
assumption will not be correct when considering water on deck and slamming in high seas.

• The superposition principle can be used to derive the loads and motions in a sea-state.
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• Potential theory is applied, and the fluid is assumed to be homogeneous, non-viscous,
irrotational and incompressible. Viscous roll damping can be accounted through the use
of empirical formulae.

• The vessel is assumed to be slender, i.e. the length of the hull is much larger than the
breadth and draught.

• The vessel symmetric along the centre line.

Furthermore, the VERES program is based on linear strip theory with the following important
assumptions:

• The wave-amplitudes are small compared to some characteristic dimension of the vessel.
The resulting motions will then be proportionally small.

• The wave steepness is small, i.e. the waves are far from breaking

In the linear theory used, the wave loads and motions are linearly proportionate to the wave
amplitude. If one wishes to evaluate the vessel’s behaviour in irregular waves, one can obtain
results by adding together results from regular waves of different amplitudes, wavelengths and
propagation directions. While this feature shows the model’s flexibility, it is assumed that the
FPSO will only encounter regular waves.

Since the VERES model assumes coupled motions in all six degrees of freedom (DoF), the
model creates individual equations of motions for the j DoF’s. Under the assumptions that
the responses are linear and harmonic, the six, coupled differential equations of motions can be
written as;

6∑
k=1

[(Mjk +Ajk) η̈k +Bjkη̇k + Cjkη] = Fje
iωt, j = 1, . . . , 6. (2.2.10)

Mjk is the element of the generalised mass matrix, Ajk is the element of the added mass matrix,
Bjk is the element of the linear damping matrix and Cjk is the element of the stiffness matrix.
Furthermore, $ is the angular frequency of encounter, while ηk is the surge, sway, heave, roll,
pitch and yaw motion amplitudes. The dots stand for time derivatives so that η̇k and η̈k are the
velocity and acceleration terms, respectively.

Fj is the complex amplitude of the wave exciting forces and moments, with the physical forces
and moments given by the real part of Fjeiωt. Consequently, F1, F2 and F3 refer to the am-
plitudes of the surge, sway and have exciting forces respectively, while F4, F5 and F6 are the
amplitudes of roll, pitch and yaw exciting moments, respectively.

2.3 Vessel response criteria

While DNV GL has a set of regulations to be followed, requirements from the customer or
third-party operators have to be considered as well. Such requirements include limitations on
horizontal movement (excursion envelope) as well as helicopter operation. Additionally, internal
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procedures have been implemented by Altera to safeguard the onboard crew and equipment on
deck.
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2.3.1 Operational criteria

Part of an internal safety measure is the closing of the personnel elevator when the vessel
experiences large displacements. The closure does not necessarily lead to a temporary production
halt, rather an inconvenience in terms of operating heavy equipment and limited movement on
deck. For some of Altera’s FPSO units, the following criteria applies: maximum 8.5 metres of
heave, ±10° of roll and ±5° of pitch.

2.3.2 Helicopter criteria

Crew transport to and from the vessel is primarily done with helicopters. Most of the landing
platforms are often situated close to, and above the accommodation structure. Consequently,
the vessel must adhere to the regulations set by the Helideck Certification Agency’s Helideck
Landing Limitation [3]. The limitations depend on the type of helicopter used for the operation,
as more agile and advanced helicopters have fewer limitations. The limiting conditions stated
in table 2.3.1, therefore represent the strictest criteria (for the least agile aircraft) and will thus
be used as the criterion for all helicopter operations.

Table 2.3.1: Helideck limitations list for aircraft in category A and helideck category 1 [3].

Limiting condition Limiting criteria DAY Limiting criteria NIGHT
Helideck pitch/roll ± 3.0° ± 2.0°
Helideck inclination ± 3.5° ± 2.5°
Helideck avg. heave rate 1.3 m/s 1.0 m/s
Helideck heave ampliture 5.0 m 4.0 m

2.3.3 Excursion envelope

An excursion of a vessel entails horizontal movement from its intended position, and thus the ex-
cursion envelope is the area of allowable displacement in sway and surge of the vessel. Although
not a specific requirement from a given classification society, many operators and customers
require a maximum excursion envelope of 10-25%. Hence, on a water depth of 400 metres, the
vessel may have a maximum horizontal displacement of 40 metres if the excursion envelope is
10%. If the risers from the bottom are flexible, an excursion envelope (Ex) of 25% is usually
required, and a 10% for static steel risers [30].

However, to correctly estimate the vessel’s movement, one has to calculate the 2nd-order motions.
By solving a second-order problem, one can calculate the mean and oscillating forces of the
vessel, i.e. the oscillating surge and sway motions of the vessel that are different from the wave-
frequency of encounter [15]. Furthermore, the stiffness and damping of both the mooring and
the risers have to be considered to forecast the vessel’s movements accurately. Second-order
effects are a represents a considerably more complex task and is not in the scope of this thesis.
The vessels’ motions presented here are only first-order linear motions.
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2.3.4 Motion sickness criteria

The British Standards Institution was the first to present a quantitative guideline for estimat-
ing the incidence of motion sickness from a parameter called motion sickness dose value. This
parameter aims at evaluating human exposure to whole-body vibration at low frequencies. The
parameter is defined by the root mean square (RMS) accelerations and accounting for both ex-
posure time and frequencies. This quantitative measure was then adapted by the International
Towing Tank Conference (ITTC) to be a measure of both seasickness and fatigue on high-
speed marine vehicles. Furthermore, the International Organisation for Standardisation (ISO)
presented more specific methods to measure and evaluate the human response to vibrations.
Through the use of better specification for vibration instrumentation and introduction of ana-
logue filters in the frequency domain, the MSDV could be calculated more accurately through
measured vertical acceleration signals [25]. Consequently, the MSDV is calculated using the
British Standard BS 6841/3/, and is defined as follows:

MSDV =

√∫ T

0
a2 (t) dt, (2.3.1)

where a(t) is the frequency-weighted acceleration and T is the total period (in seconds) during
which the motion should occur. T is set to a maximum of 2 hours. According to the regulations,
the percentage of adults (both male and female), likely to vomit (Vp) is approximated by:

Vp =
1

3
×MSDV. (2.3.2)

Hence, an MSDV (measured in m/s1.5) value of 15 is equal to 5% of the personnel on board
vomits. This number represents the safety limit, i.e. less than 5% of the personnel on board are
motion sick 5% of the time per year. Consequently, the following acceptance criteria apply for
95% of the time per year:

MSDV < 15. (2.3.3)

The acceptance criterion is applicable for all six degrees of freedom [18].

In correspondence with Ø. Røyseth (Naval Architect, Altera Infrastructure), it has been pointed
out that DNV GL Advisory has no experience in where MSDV < 15 for any commercial tank ves-
sel, nor FPSO. A study conducted by the advisory confirmed the statement while also suggesting
that an upper limit of Vp to just 6-7%, would result in total compliance for most vessels.
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2.4 Multi-objective optimisation problem

A thorough analysis and evaluation of several optimisation models have been studied in the
project thesis written in the autumn of 2019. Here, a genetic algorithm was deemed the most
expedient to optimise a hull’s geometry. Consequently, experience shows that the genetic algo-
rithm is highly reliable and produces accurate results when considering vessel hulls. Additionally,
Altera Infrastructure also uses genetic algorithms for their optimisation of FPSO units showing
that the methodology is thoroughly tested and well suited.

When faced with an optimisation problem where one must evaluate interdependent goals, one
must carefully choose the optimisation method to achieve accurate results. Most optimisation
solving methods can be categorised into either classical methods or evolutionary methods. A
genetic algorithm represents the latter, and albeit with many benefits, it is not always the best
way to solve every problem. If it is possible to apply, calculus-based methods will outperform
the GA and quickly find the solution of a convex analytical function of a few variables. In such
cases, the calculus-based algorithm will have found the minimum by the time the GA is still
calculating the costs of its initial population.

However, most realistic problems include a large number of variables and large feasible areas.
Additionally, a complex optimisation problem would include multiple objective functions, allow-
ing the GA to compute each function in parallel. Furthermore, the GA can optimise a large
number of variables that can either be continuous or discrete, as well as operating with extremely
complex cost surfaces enabling it to jump out of local minima. Lastly, and importantly for the
work to be done in this thesis, the GA provides a list of optimum variables and not just a single
solution, allowing the user to select multiple optimal solutions depending on a given selection
criterion.

2.4.1 Formulation

A genetic algorithm used for multi-objective optimisation is a search heuristic inspired by Charles
Darwin’s theory of natural evolution. The algorithm reflects the process of natural selection
where the best solutions are selected for reproduction in order to produce better solutions for
the next iterations. The genetic algorithm was developed by John Holland in the 1970s and
was later popularised by his student David Goldberg, who solved a difficult problem involving
the control of a gas pipeline transmission in his dissertation [21, 22]. The genetic algorithm
creates a population of individuals represented by chromosomes which are a series of character
strings. These chromosomes are then tested against the objective function repeatedly, to see
what solutions are optimal. In multi-objective optimisation problems of M objectives and J

constraints, the problem can be formulated as:

min
x∈X
{f1(x), . . . , fM (x)|gj(x) ≥ 0, j ∈ [1, J ]} , (2.4.1)

where we search for design alternatives x in the design space X confined within variable the
bounds.
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The goal is to find such x that will minimise the objective f(x) while satisfying all the constraints
g(x). If all the constraints are satisfied, the solution is feasible and belongs in the feasible set
Ω, which is denoted by:

Ω = {x ∈ X|gj(x) ≥ 0, j ∈ [1, J ]} . (2.4.2)

The solution to equation (2.4.1) is a Pareto optimal alternative, represented by x∗(i). This
means that there is no better alternative than x∗(i) in the objective space Y (whose feasible
space is denoted with YΩ) [28]. If x∗(i) is the vector that optimised the ith objective in the
multi-objective optimisation problem with M conflicting objectives:

∃x∗(i) ∈ Ω, x∗(i) =
(
x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
M

)T
where fi(x∗(i)) = min fi(x) (2.4.3)

the vector z∗ can then be written as

z∗ = f∗ = (f∗1 , f
∗
2 , . . . , f

∗
M )T , (2.4.4)

where f∗M is the optimum of the M th objective function. If f∗ is closest to the reference point in
the feasible area, it will determine this as the ideal objective vector. However, ideal objectives
vectors do not necessarily exist for all multi-objective optimisations (MOP). Since the optimal
solution for each objective is not necessarily the same solution, the ideal vector, only exists if
all the optimal solutions of all objectives are identical.

It is also important to note that if all the objective functions, as well as the constraints of
the optimisation, are linear, the problem can be categorised as a linear optimisation problem
(MOLP). In contrast, and focus for the following sections, both the objective functions and
multiple constraints are non-linear, rendering a non-linear multi-objective optimisation problem,
typically referred to as MOOP [4].

Dominant solutions

In MOP’s, it is unlikely that there is a single solution that is optimal for all the objectives.
Consequently, there is a set of optimal solutions known as Pareto-optimal solutions that are
generally equally satisfactory. If an alteration of variables cannot improve one objective function
value without worsening another, the solution is Pareto optimal. When several Pareto optimal
solutions are generated, they form a Pareto front which is ordered based on dominance.
Given a solution A and B, solution A dominates B if A has a lower cost (better objective
function value) than B for at least one of the objective functions and is not worse concerning
the remaining objective functions [21]. Dominance can be written in more general terms with
the following conditions:

1. The solution x(A) is no worse than x(B) with respect to all objective functions value, or
fj(x

(A)) �j (x(B)) for all j = 1, 2, . . . ,M .

2. The solution x(A) is strictly better than x(B) in at least one objective function value, or
fj(x

(A)) < fj(x
(B)) for at least one j ∈ {1, 2, . . . ,M}.
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Consequently, a solution is Pareto optimal if no other solution dominates that solution with
respect to other objective functions. Given that the optimisation has generated a non-dominated
set, a Pareto-optimal set exists, and a Pareto-front can be generated from the optimisation.

2.4.2 Pareto front

If the Pareto-optimal set (containing no dominating solutions) is within the feasible search space,
the set can be characterised as a global Pareto-optimal set. Figure 2.4.1 illustrates a Pareto-front
of two objective functions, when maximising A and minimising B.

Figure 2.4.1: Example max-min system with two competing performance criteria, A and B.

The Utopian point, UP , represents the point of optimal value for both objectives. However,
since it is within the unfeasible region of the solution space, this is only a theoretical point,
the genetic algorithm is attempting to reach. Furthermore, one can observe that the points on
the Pareto front are indeed non-dominated, as A or B cannot be improved without detrimental
effect on the other [42].

2.4.3 Initial population

Each possible solution in the optimisation problem, generated by the genetic algorithm, is rep-
resented by a chromosome. In the mathematical formulation of the optimisation problem, each
chromosome is made up of a series of decision variables that represent a possible solution of the
optimisation problem at hand, e.g. multiple measures for a vessel’s hull. In a N -dimensional
problem, a chromosome is an array of size 1×N and is defined as:

X = (x1, x2, . . . , xi, . . . , xN ) (2.4.5)



Chapter 2. Literature review 19

where X represents a feasible solution to the optimisation problem, xi is the ith decision variable
of the feasible solutionX, and N is the number of decision variables. The genetic algorithm must
then generate the initial population with a random generation of chromosomes. The population
size, i.e. the number of possible solutions is denoted as M . The possible solutions based on the
population is represented by a matrix of chromosomes of size M ×N [10].

X1

X2

...
Xj

...
XM


=



x1,1 x1,2 · · · x1,i · · ·x1,N

x2,1 x2,2 · · · x2,i · · ·x2,N

...
xj,1 xj,2 · · · xj,i · · ·xj,N

...
xM,1 xM,2 · · · xM,i · · ·xM,N


(2.4.6)

Here, Xj is the jth solution and where xj,i is the ith decision variable of the jth solution with
a population size of M . Each variable represents a floating-point number. While the rows
M of the initial population matrix may represent the number of possible solutions, the GA
can generate fewer or more non-dominated solutions due to selection and mutation that occur
for each iteration. Depending on the algorithm’s input settings (such as Pareto Fraction and
Generations), a larger initial population size gives the algorithm greater freedom to choose the
best rated solutions. Hence, a 1 × N initial matrix X0 is likely to render few non-dominated
solutions. In contrast, huge initial population size increases the computation time as a score has
to be given continuously to each individual solution.

Figure 2.4.2: Effect of solution quality with varying population size, with respect to computation time
[44]. Solution quality may be given as collective measure of the goodness of the optimisation.

Figure 2.4.2 shows that an oversized population will eventually reach the best possible solution
quality after a long computation time, while the undersized population will never reach the best
solution. Thus, the key is to estimate the right population size to minimise the computation
time while still reaching the best possible solution quality.
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2.4.4 Events in the genetic algorithm

The genetic algorithm is built up of the following five phases:

1. Initial population
2. Fitness function
3. Selection
4. Crossover
5. Mutation

The initial population X0 is chosen, and their fitness concerning the objective(s) is calculated.
The fittest individuals will then be chosen from the population before producing offspring.
These new chromosomes inherit the characteristics of the parents and will be added to the
next generation. Since the selected parents have a good fit, their offspring will likely be even
better and thus the longer chance of surviving the next iteration. There are, however, several
methods for selecting the parent chromosome, the most common being proportionate selection
and tournament selection.

Selection

Selection is the process where chromosomes are chosen randomly from the initial population X0

to be further evaluated. The tournament selection chooses each parent by choosing the tour-
nament size players at random and then choosing the best out of that set to be a parent [1].
Determining the most beneficial tournament size can be difficult, as the smallest possible size of
2 will merely choose a random chromosome, while a tournament size equal to the population will
choose the entire population for all the following generations. As a rule of thumb, a tournament
size of approximately 20% of the population size is favourable [23]. In the MOOP, a tournament
size of 20% of the population will, therefore, be chosen. The tournament selection algorithm
with k amount of players is described Algorithm 1.

Algorithm 1: Tournament selection with k players

for chromosome i = 1 to population size do
Choose k individuals from the population at random;
Calculate cumulative fitness, total fitness (Pi) and sum of proportional fitness;
Choose the best individual from the tournament with probability P1;
Choose the second best individual with P2 = p× (1− p);
Choose the third best individual with probability P3 = p× (1− p)2;
Choose the kth best individual with probability Pk = p× (1− p)k;

end
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Crossover

In the crossover, the offspring of the initially selected chromosomes are generated and are used in
the next generation. There are multiple ways of completing a crossover and choosing crossover
points. The simplest method is choosing one or more points in the chromosome to mark as
the crossover points. The variables between these individual points are then merely swapped
between the two parents. This scheme represents a scattered crossover, as illustrated in table
2.4.1.

Table 2.4.1: Example of scattered crossover with random binary vector.

Parent 1 pm1 pm2 pm3 pm4 pm5 pm6 pmN

Parent 2 pf1 pf2 pf3 pf4 pf5 pf6 pfN

Random vector 1 1 0 1 1 0 0
Child 1 ↑pm1 ↑pm2 pm3 ↑pm4 ↑pm5 pm6 pmN

Child 2 ↑pf1 ↑pf2 pf3 ↑pf4 ↑pf5 pf6 pfN

There are other variations of the crossover algorithm, such as uniform crossover where the algo-
rithm selects N number of points and then randomly choose which parent (if any) will contribute
its variable at each position. While a new generation of chromosomes has to be created for each
iteration, no new information is introduced at this point. Each of the continuous values in the
population continues to the next generation, albeit in different combinations. Hence, if only
scattered or uniform crossover is used, the algorithm is entirely reliant on the mutation to in-
troduce new genetic material [21].

This problem, can however be solved by combining variable values from the parent solutions
into new variable values in their children. Through this blending method, pnew derives from a
combination of the two parents:

pnew = ψpmn + (1− ψ) pfn, (2.4.7)

where ψ is a random number on the interval [0,1], while pmn and pfn is the nth variable of
the father and mother chromosome respectively. Consequently, the second offspring is merely
the complement of the first (using ψ instead of 1 − ψ) [39]. Henceforth, to ensure diversity
and independence from the mutation, the GA will adopt the blending crossover method in its
optimisation.
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Mutation

Since the GA can evaluate very complex cost surfaces, local minima are likely to exist. To deter
the algorithm from converging too quickly, routines are placed to explore other areas of the cost
surface and ensure convergence at the global minimum. This is done by randomly introducing
changes or mutations to the variables [21, 45]. Like the crossover routine, there are numerous
ways of creating a mutation, but one of the most common and well-tested methods is through
the evaluation of the particles’ fitness. Considering the fitness of the solution, the mutation
adaption can be written as

pm =
k1 (fmax − f)

fmax − f
, (2.4.8)

where f is the average fitness and k1 is a mutation constant. This means that the mutation rate
pm is zero for the solution with the maximum fitness. Additionally, pm = k1 for a solution with
f = f . If the solution has a sub-average value, i.e. f < f , pm might take a value above 1.0. To
prevent this, these additional constraints are added:

pm = k2 , f ≤ f (2.4.9)

The goal of the mutation is to prevent the GA converging into local optima. This prevention is
done by employing the solutions with sub-average fitness to search the cost surface that contains
the global optimum. Hence, this solution needs to be completely disrupted. Therefore the values
of k1 and k2 are assigned a value of 0.5 Smaller values could be employed if the values of pm
have little variation, however, for maximum variation and assured deterioration of local optima,
a high value is chosen [46]. In conclusion, we have that;

pm =
k1

(
fmax − f

)
fmax − f

, f ≥ f

pm = k2, f < f

k1, k2 ≤ 1.0

(2.4.10)
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2.4.5 Hybrid approach

When one is faced with a real-world engineering problem, there is often little or no knowledge
of the true global Pareto front. Through the use of evolutionary algorithms (EA) such as the
GA, one can set a benchmark but cannot always ensure true global optimum by itself. Hence,
hybrid methods have been proposed to ensure the convergence close to the true Pareto-front.

A hybridisation, or a hybrid GA, combines the GA’s ability to close in on a global minimum
- given a large number of variables - and the computation speed of a local search algorithm.
Although the GA ensures that the solution trends towards the global minimum, its efficiency
deteriorates once in a smaller solution region. It is therefore desirable at one point, that a local
optimiser ’takes over’ the process to find the minimum. This takeover can either be performed
throughout the generations of the GA (working in parallel, with the local optimiser evaluating
numerous local minima) or at the end of the GA to evaluate the region with best fitness [4].

Figure 2.4.3 shows an example of the effect of a hybrid GA (HGA). The dashed GA line and
the solid of the HGA are not identical to start with due to the random nature of the algorithms.
For the HGA (solid line), one can see that the local optimiser is executed after 458 function
evaluations. As an example, a hybrid algorithm will begin its local search when there is little
improvement after a given number of generations.

Figure 2.4.3: Example of a hybrid algorithm finding the minimum in fewer function calls than the GA
[21].

The HGA will, therefore, use the best chromosome in the current population as the starting
point for the local search optimisation. As expected, the HGA finds the global minimum in a
fraction of the time taken by the GA.
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Figure 2.4.3 shows the possible interaction between local and global search algorithms. The
algorithm determines whether a local search should be conducted or if the GA should be rerun
on its own. To decide whether the local search is executed or not can be decided by the user or
through numeric input.

Figure 2.4.4: Flow chart for hybrid genetic algorithm [14].

Like the example in figure 2.4.3, the local search was executed once the gradient of the cost
curve was sufficiently close to zero. Alternatively, the user can execute the local search every
nth generation given by ∆G = n on a P % of the population. By choosing the HGA parameters
P and ∆G to be constant, one then chooses a non-adaptive hybrid genetic algorithm (NAHGA).
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2.4.6 Hypervolume indicator

When a Pareto front is generated from the optimisation, there are multiple ways of measuring
the quality of an optimal set. A popular way to measure the quality, however, is the hypervol-
ume indicator (IH). The indicator measures the volume of the dominated space bounded from
below a reference point [11]. For a two-dimensional optimisation problem like the MOOP in this
thesis, the hypervolume is simply an area but can be a volume for a 3-dimensional objective.
For an N -dimensional problem, the volume becomes a hypervolume.

By calculating a IH -value, one is guaranteed strict monotonicity regrading the Pareto dominance,
given that a global reference point R is used for all evaluations. Assume that we have a two-
dimensional optimisation problem given by F : Rd → R2 consisting of the two objective functions
(F1(x),F2(x)) = F(x). The hypervolume indicator is then given by the objective subspace
volume that is dominated by a solution set A ⊂ Rd. IH can be defined based on the reference
set R ⊂ R2;

IH(A) = λ (H (A,R)) , (2.4.11)

where H(A,R) denotes the set of objective vectors that are enclosd on the front F(A) =

{F(x)|x ∈ A}, given by A and the reference set R as illustrated in figure 2.4.5. λ(H(A,R)) is
the characteristic function of H(A,R) [6].

Figure 2.4.5: Example of the hypervolume H(A,R) that corresponds to the set of objective vectors that
is dominated by the solution set A, here described by the function f(x), and enclosed by the reference
point R = r [6].

Consequently, the hypervolume indicator IH may be used to evaluate the goodness of the Pareto
sets when running multiple optimisations with varying input parameters. Evaluation of indi-
vidual points on the Pareto set, however, can be measured by their normalised distance to the
Utopian point, UP .
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Problem description

The following chapters aim at outlining the problem set-up, the parametric hull generation and
the optimisation process so that the optimisation can be performed identically at a later stage.

3.1 Geometry-related optimisation setup

For the MOOP to properly evaluate the deck area of the vessel and the building cost, an accurate
hull model must be generated alongside a system set-up that calculates the objective functions
value accurately. The simplified hull model, as well as the bounds and constraints for the
optimisation problem, were discussed with Altera to ensure that the vessel is adequately realistic
for a proper analysis, while also simplified for ease of calculation and reduced computation time.

3.1.1 Simplified hull model

When calculating the deck area and the associated building cost of the vessel, it is desirable
with an accurate hull model to get a realistic result in terms of objective function values. How-
ever, calculating hydrostatics for double-curved shapes with significant variations in multiple
water planes is both time-consuming and a complex task. However, regardless of the ocean’s
conditions, most FPSO’s have simpler shapes that are easier to model parametrically. Hence, al-
most no double-curved surfaces are used for the model when calculating the vessel’s hydrostatic
properties. Figure 3.1.1 represents the simplified hull geometry that is used in the optimisation
set-up. The hull is divided into three large modules that are further broken down into smaller
sub-modules. The main modules consist of the aft of length of x1, the midship section with
length x7, and the bow section with length x8.

The numbered x-values ranging from x1 to x12 are used throughout the optimisation and repre-
sent that specific length (as described in table 3.1.1). It is important to note that while the figure
shows that the aft dimension x3 is smaller than x2, this will not necessarily be the case for the
optimal solution, but it allows the stern to be more narrow if desirable. Thus, the relationships
between the different variable values are not set to a specific value but chosen as an illustrative
example.

26
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Figure 3.1.1: Simplified FPSO hull geometry for optimisation. The ideal geometry is depicted here as
the bilge radius extends all the way to the transom stern. Actual geometry of aft section depicted in
figure 3.1.2.

It is desirable to avoid double-curved surfaces on the model for simplicity in the calculations,
but there are areas where such surfaces are necessary. The bilge radius (x6) is assumed to
circumvent the entire bottom; thus, an elliptical torus is used at the bottom of the bow. Since
the volume and surface calculation of elliptical toruses is a complex numerical calculation, a
simpler calculation was used to lower the computation time. Thus, the double-curved surface in
the bow is calculated as a circular torus and corrected using the average radius on the ellipse.
Since the bilge radius circumvents the entire hull, another double curved corner is found at the
forward end of the aft section. A simplification was done here as well to lower the computation
time and calculation complexity. The simplification of the aft section is represented in figure
3.1.2.

Figure 3.1.2: Simplification of bilge radius in aft section of the simplified hull geometry. Not the change
in bilge radius in the corner of the aft-section.
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Figure 3.1.2 shows that the bilge radius is not calculated along the edges of the aft section.
This simplification will lead to a small increase in wet surface area and but is unlikely to have
a significant impact on the optimal solution. Thus, no further calculations are necessary to
calculate this volume and area more precisely.

The model also allows the draught of the vessel to exceed the height of the transom stern’s edge.
When the waterline is above the lower edge of the stern, the accuracy of the waterplane area will
only become more accurate, and hence benefiting the optimisation considerably. Since the bow
is vertical up to, and above the waterline, there is no change in the waterline area for draughts
above the hull’s bilge radius (when T > x6).

3.1.2 Upper and lower bounds

The upper and lower bounds of the hull dimensions are represented in table 3.1.1. Large intervals
between the upper and lower bounds create large feasible solution areas. Nonetheless, it is also
important to keep the dimensions within sensible ranges. Since one of the optimisation objectives
is to maximise the deck area, the solver will always opt for the largest possible dimensions in one
end of the local Pareto front. Consequently, smaller values are likely to be chosen to minimise
the build cost, as long as the constraints are satisfied for both objectives. While the ranges of
the bounds are kept as large as possible, it is important to note that the given limits have been
selected to develop a slightly similar shape to the FPSO’s of Altera for easier comparison.

Table 3.1.1: *Mean draught is calculated based on displacement and waterplane area, but is added to
the main dimension vector for results analysis. All dimensions in metres.

Dimension Description Lower bound Upper bound
x1 Length of aft part 20 45
x2 Breadth of midship 40 60
x3 Breadth of transom 30 70
x4 Moulded depth of midship 15 40
x5 Moulded depth of aft part 10 25
x6 Radius of bottom corner 0.5 4
x7 Length of midship part 100 200
x8 Length of bow part 40 80
x9 Mean draught* 10 40
x10 Total length of cargo hold 100 180
x11 Total breadth of cargo hold 20 60
x12 Depth of cargo hold 20 40
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While the upper and lower bounds create a feasible area, the constraints of the optimisation
problem will further limit the feasible solution space. It is important to note that some of the
bounds exceed that of the corresponding constraints. For instance, the upper limit of the vessel’s
cargo tank length is set to 180 metres, while the constraint limits the total length to x10 ≤ x7

regardless of the value of x7. The limitation is done purposely, rendering a broader solution
space when considering the non-linear constraints. Hence, the bounds may either be limited by
the bounds or by the linear and non-linear constraints. Additionally, there is some overlap in
the bound limits of the variables, especially those concerning the cargo tank dimensions. The
breadth of the cargo tank cannot exceed the breadth of the vessel, and thus the depth and length
must be altered to meet the cargo volume requirements.

3.1.3 Constraints

While the upper and lower bounds automatically generate one set of constraints for the MOOP,
an additional set of linear and non-linear constraints are necessary to ensure the algorithm
generates dimensions for the vessel that are sensible. The constraints given in equations (3.1.1)
through (3.1.11) have been used throughout the optimisation process for all algorithms. While
fewer constraints ensure more freedom in the optimisation and may generate more innovative
solutions, a more extensive set will generate more similar ships to the current designs and thus
make the results more comparable.

min
x∈x

f1(xi), f2(xi) (3.1.1)

subject to x3, x4 ≤ x2 (3.1.2)

x9 ≤ x4 (3.1.3)

x1, x2, x9, x10 ≤ x7 (3.1.4)

x1 ≤ x8 (3.1.5)

x12 ≤ x11 (3.1.6)

x2 ≤ 55 (3.1.7)

x11 + min
(

2,
x2

15

)
≤ x2 (3.1.8)

x12 + max
[
0.76,min

(
2,
x2

20

)]
≤ x4 (3.1.9)

159, 987 ≤ x10 × x11 × x12 ≤ 160, 000 (3.1.10)

xi ≥ 0, i = 1, . . . , 12 (3.1.11)

All the dimensions of the vessel are non-negative. Constraints based on more complex calcu-
lations such as GM > 0.5 and MSDV < 15 are implemented in the cost function. If these
constraints are broken, the solution is made undesirable by setting the build cost to inanity.
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The goal is to minimise the objective functions f1(x) and f2(x) that represent the maximum
deck area and the building cost of the vessel, respectively. A more detailed outline of the ob-
jective functions are given in section 3.2.1. The first is linear constraints that ensure the right
relationship between the variables’ values. Considerations to length-breadth ratios have not
been considered; however, the midship section should be the longest, followed by the bow sec-
tion and aft section. Furthermore, it is assumed that a vessel does not have adequate intact
stability if B/T ≤ 2.5. However, despite the constraints forcing B>T, not B/T ratio is required.
Resultingly the search area is kept as large as possible. Additional external considerations come
into play, such as the maximum breadth. By limiting the maximum moulded breadth of the
vessel to 55 metres, most large yards worldwide have the possibility of constructing such a vessel.
However, should the breadth exceed 55 or even 60 metres, only a handful of massive yards have
this possibility.

Additionally, the constraints ensure that the cargo tanks are correctly sized for the double bottom
and double hull sides, illustrated in equations (3.1.8) and (3.1.9). According to the DNV GL
regulations for ships, a maximum of 2 metres, or B/20 (with an absolute minimum of 760 mm)
is required as a double bottom [18]. B/15 is used for the width to ensure space for ballast tanks
on the outside of the cargo tanks [49]. The non-linear constraint consists of ensuring enough
cargo space is generated. A barrel unit consists of 159.987 litres, and thus the required cargo
of 1 million bbls is equal to 159,987 m3. The required cargo represents the minimum possible
amount, and an upper limit of 160,000 m3 is used as shown in equation (3.1.10).

3.2 Function and algorithm-related optimisation setup

While section 3.1 considered the necessary setup concerning the hull geometry and geometrical
considerations and constraints, the following part considers the input parameters and setup of
the optimisation algorithm itself. The MOOP setup has been adapted to the possible alterations
that are available in the programming software of MATLAB 2019a.

3.2.1 Objective functions

In direct response to the objective of the thesis work, it is desirable to create a large deck area
for the vessel, while also considering the build cost of the vessel hull. As mentioned in the scope
limitation, the build cost evaluated in the objective function only considers the hull without
topside processing plant, nor superstructures on the tank top deck.

Equation (3.2.1) shows the general expression for the optimisation problem where f1(xi) rep-
resents the deck area function A and f2(xi) is the build cost of the vessel’s hull, denoted C.
The default MOGA setup when using MATLAB 2019a is that of a min-min problem, thus min-
imising both functions. However, the current problem is a max-min problem, hence solved by
minimising the negative value of the deck area, i.e. −minx∈xA.

min
x∈x

f1(xi), f2(xi) = −min
x∈x

A(xi),min
x∈x

C(xi)kj (3.2.1)



Chapter 3. Problem description 31

By minimising the negative value of the deck area, the algorithm strives to come up with large
negative values in the solution and thus maximising the absolute value of the deck area. The
method allows all values of xi ≥ 0 and does not affect the optimisation in terms of generating
an optimal solution. The price breakdown for each cost element is denoted by kj .

Maximisation of deck area

The maximisation of the deck area is merely a geometric evaluation of the surface on the tank
top deck. The function value consists of three parts representing the different modules of the
deck; aft, midship and bow deck. The bow deck will most likely be used for the accommodation
superstructure and helicopter deck. If the bow area is not included in A(xi), the algorithm
is not likely to enhance the bow’s geometry. In such a case, any changes to the bow would
not improve the objective function value, and the bow’s parameters would likely experience
only small alterations from its initial population value. Consequently, the bow area is therefore
included in the objective function, despite not altering the effective deck area available for a
processing plant.

min
x∈x

A(xi) = −


(
x1
x2 + x3

2

)
︸ ︷︷ ︸

Aft deck

+ (x2x7)︸ ︷︷ ︸
Midship deck

+
(
π
x2x8

2

)
︸ ︷︷ ︸
Bow deck

 (3.2.2)

= −
(
x2

(
1

2
x1 + x7 +

1

2
πx8

)
+

1

2
x1x3

)
(3.2.3)

It is important to note that while maximisation of the deck area only considers the variables
x1, x2, x3, x7, x8, all variables xi are altered simultaneously as the objective function C(xi) does
consider all xi.

Minimisation of build cost

The minimisation of the build cost is comprised of three main elements; the surface preparation
costs (Sp), the paint costs (Pc) and the cost of the steel used in the hull (Sc). Each of these
three main elements can be broken down further into smaller subcategories. Different prices kj
applies to different sections of the vessel, such as different paint cost for hull and anti-fouling as
well as steel cost and steel-work on the exterior versus inside tanks. The cost function is given
in equation (3.2.4).

min
x∈x

C(xi) = Sp(xi)kj + Pc(xi)kj + Sc(xi)kj (3.2.4)
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The two objective function only focus on the deck area and the build cost. Ideally, the vessel
motions should be a third, independent objective function. However, if a response amplitude
operator is calculated for a wide range of wave periods for each vessel in the population matrix,
the computation time would be astronomic. Initial estimations shows a computation time of
approximately nine seconds per vessel. With a population size of 100, the computation time for
each iteration would be close to 15 minutes. Consequently, with just 100 population iterations,
an optimisation run would take approximately 25 hours. Hence, the vessel motions is only
calculated if the vessel is too stiff in terms of stability.

3.2.2 Algorithm input parameters

The genetic algorithm that is used in MATLAB 2019a uses a controlled elitist GA that that is a
variant of the Non-dominated Sorting Genetic Algorithm (NSGA-II). The algorithm determines
the fitness of each individual by ranking the fitness of non-dominated solutions. To maintain
the diversity in the population, the algorithm favours individuals that are relatively far away
from the front to be re-iterated. The NSGA-II is slightly more efficient than the original NSGA,
as the latter algorithm’s diversity mechanism is based on fitness sharing by niching. Niching
refers to the formation of groups of individuals in a population, where individuals within a group
are similar to each other, while individuals from different groups are very different from each
other. The loss in efficiency often lies within choosing the right niching size parameter [26].
Consequently, NSGA-II algorithm will be used, adopting a controlled elitist GA with a set of
specific input parameters. The tournament, crossover and selection parameters presented earlier
will be used in addition to the following diversification aides; initial population variations and
Pareto fraction.

Initial population

There are multiple ways of choosing the initial population matrix X0. The most common
method is a random variable value vector. This option entails a given population size with the
variables’ values being randomly assigned within their respective upper and lower bounds. In a
M ×N -sized initial population matrix, each value can be written as:

x0(i, j) = L(xi) + δi (U(xi)− L(xi)) , (3.2.5)

where L(xi) and U(xi) represent the upper and lower bound for variable x0(i, j) respectively.
δi is a random variable between 0 and 1. Consequently, x0(i, j) will be a random value between
the upper and lower bound of the variable xi. This calculation is done for all N variables. The
user will then determine the population size M , either set randomly or to a specific value. For
the optimisation, the analysis has been performed to evaluate what M is most prudent in terms
of computation time versus solution quality.

Another method of creating the initial population is a quasi-random initial population selection.
The initial population is then based on a random selection of chromosomes from an earlier run.
The randomness then only lies within choosing random chromosomes.
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This method enables the algorithm to start its search process from a point that is already fea-
sible, and the algorithm will have a feasible starting point, in hopes of further improving the
solution. While quasi-random initial population leads to shorter computation time, diversity of
the solution is lost early in the process, and the algorithm is even more dependent on diversifi-
cation in the mutation and crossover stages.

With reference to figure 2.4.2, a similar evaluation has been completed to determine the optimal
population size M . Figure 3.2.1 shows the varying population size in regards to its solution
quality and computation time. The solution quality is represented by the complement distance
from UP (1 − D(Xj)), thus the higher the value, the better the solution. Each point on the
graph represents a population size that is a multiple of the 12 variables, i.e. 12×N . Here, the
graph shows that a population of 240 renders the best solution quality, while 120 is the worst.
As expected, a higher population results in longer computation time, and vice versa.

Figure 3.2.1: Varying population size’s effect on the solution quality and computation time. Each
population is a multiple of the 12 variables. Solution quality is the average of five separate GA runs with
a maximum of 20 generations for fast analysis. Longer computation time is expected when there is no
limit on the generations.

It is, however, interesting to note that the solution quality does not converge when reaching
a population size close to 240. Indeed, population sizes of 132 and 168 have similar solution
qualities and were terminated by a fraction of the time of the best solution. Many steps in the
GA are based on randomness during selection and mutation. Thus, it may be challenging to
achieve convergence in terms of population size. Larger population size is far more likely to
cover the search area of global minimum, albeit with a higher likelihood of evaluating more local
minimums than a smaller population. Based on the findings in figure 3.2.1, there is no clear
choice for the population size in terms of computation time. However, a population of 132 does
have the best time versus solution quality, and due to its adequate solution quality, one can
therefore safely assume this population size for the remaining optimisation.
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Pareto Fraction

An elitist GA will always favour individuals with better fitness, while a controlled elitist GA
would favour the individuals who can help increase the diversity of the population. The diversity
is enabled through controlling the elite members of the population as the algorithm progresses.
The Pareto fraction limits the number of individuals on the Pareto front. If the Pareto fraction,
PF , is 0.35, the algorithm will try to limit the number of individuals in the current popula-
tion that are on the Pareto front to 35% of the population size. When PF is smaller, fewer
elite solutions are represented in the Pareto front, and a higher degree of diversity is achieved.
Conversely, if PF is high, there is little room for diversity on the front, and the solution may
converge too quickly [12].

3.2.3 Hybrid approach setup

Section 2.4.5 outlined the general purpose of using hybrid algorithms that conducted local
searches when the rate of convergence of the solution began to diminish. A very similar process
is used for the vessel optimisation process where the variation of the NSGA-II starts the pro-
cess. The GA input parameters such as Pareto fraction and initial value and stall generations
are decided beforehand and apply to both the GA and the HGA. For simplicity, the local search
is conducted after the stopping criteria have been met. Figure 3.2.2 shows that the local hybrid
search can only start when the GA is finished. For the local search to be conducted efficiently,
scores from the GA are used to determine where the search should be conducted in the search
space.

Figure 3.2.2: Process illustration for changes in optimisation algorithms.

When the local search is finished, an optimal set of solutions is likely generated and represent
the last output of the flowchart in figure 3.2.2. For comparative purposes, the genetic algorithm
without the local search is once again run, only this time, its initial population score is the final
score of the local search. While the local search is likely to generate a better solution, a final
GA run with the local search scores may diversify the HGA’s score and thus find new solutions
in the search space the local search could not reach.
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3.2.4 Stopping criteria and restrictions

In order for the GA to stop iterating and continuously changing the chromosomes, multiple
stopping criteria are used. Such criteria can be determined either by the user, by the algorithm
or both. In the optimisation process, the following stopping criteria determines whether the
algorithm is terminated:

• Generations
The user may define a maximum number of generations that the algorithm may undertake
before the optimisation process is automatically terminated. The GA is then terminated
regardless of convergence, and the objective function value may be lower than possible if
the algorithm reaches the maximum number of generations. Hence, to deter this behaviour,
there is no limit, and maximum generations are set to infinity.

• Maximum stall generations (MSG)
The algorithm stops if the average relative change in the best fitness function value over
stall generations is less than or equal to the function tolerance, σF . In more general
terms, the algorithm terminates if the fitness function value does not change more than
the function tolerance after a given maximum of generations. For the optimisation, the
maximum stall generations (MSG) was varied to see the effect on the algorithm’s objective
function effect. A high MSG-value will result in longer computation time as the almost
identical solutions will be regenerated many times, while a small value may result in
premature termination.

• Function tolerance σF
The GA will terminate if the average relative change in the best fitness function value is
less than, or equal to the function tolerance. For the optimisation, the function tolerance
is set to 10−3, meaning that if the change in the fitness function from one generation
to another is less than the tolerance value, the algorithm stops. Termination based on
function tolerance is given that the algorithm has not exceeded the number of possible
stall generations.

• Constraint tolerance σc
The constraint tolerance is included as a user input parameter but is not necessarily
used as a stopping criterion. The constraint tolerance is used to determine the feasibility
concerning the non-linear constraints. In the algorithm’s attempt to satisfy its constraints,
the GA will try to make the inequality as close to zero as possible, and hence the constraint
tolerance decides as to how close is acceptable before the optimisation is terminated.
Throughout the optimisation, the constraint tolerance is set to 10−4.
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In addition to the before-mentioned stopping criteria, one can also implement restrictions that
terminate the current generation and forces the algorithm to start a new iteration or consider-
ably alter the population. Figure 3.2.3 shows the flow of the optimisation algorithm that applies
to both the GA, HGA and the local hybrid search. The optimisation process starts by iden-
tifying the current setup that includes the user input parameters, stopping criteria and initial
population. The algorithm of choice is then chosen before it calculates the fitness, i.e. the deck
area and cost of the vessel.

Before another generation is completed, a parameter check is conducted, evaluating both stability
and the MSDV value of the vessel. If the vessel does not meet the stability requirement of GM
> 0.5, the seasickness requirement of MSDV < 15, the cost function’s value is set to infinity,
thus ultimately deterring the algorithm from evaluating this solution further.

Figure 3.2.3: Flow chart and stopping criteria for optimisation algorithm, both GA and HGA.

If both criteria are met, a feasible solution exists, and its fitness is compared to the earlier fitness
values. If the current solution is not better than the previous solution, the algorithm completes
another iteration with crossover, selection and mutation before again evaluating the possible
solution. This process continues until the stopping criteria are met, and the optimal solution
with non-dominating points is documented as the optimal Pareto front.
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Results

The results presented in the following chapter are results of the optimisation with both the
genetic algorithm (NSGA-II) and the local search hybrid. Meta-data such as stability and
righting levers are obtained from DelftShip hull modelling software. The geometry input to
DelftShip is a direct result of the optimisation.

4.1 Optimisation output

Figure 4.1.1 shows the results of the optimisation conducted, using both the GA, local search
and hybrid GA (GA with local search scores). The final set of result consists of several runs
with different Pareto fractions, MSG’s and different initial populations. Each result generated
an individual Pareto front, as illustrated in figure 4.1.1. Considering the spread in the Pareto
fronts on the graph, and the significant variations in the distance to the utopian point, it is
clear that both the input parameters and algorithm variations have a substantial effect on the
objective function values.

Figure 4.1.1: Result of GA, local search and HGA with multiple Pareto fronts.

37
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Based on the 6,255 individual non-dominated solutions in figure 4.1.1, the following data in table
4.1.1 represent the maximum and minimum values of the two objective functions. The largest
difference between the maximum and minimum deck area is about 21.9%, which is also the
same difference in the maximum and minimum build cost. Furthermore, one can observe that
the largest deck area is a result of the genetic algorithm that uses the scores from the antecedent
local search. As expected, the corresponding build cost when the deck are is 16,841 m2 is also
the highest at US$74.2 million. Conversely, the cheapest vessel only costs US$59.78 million with
a deck area of 13,525 m2.

Table 4.1.1: Objective function values and utility prices for the genetic algorithm, local search and
hybrid genetic algorithm. Build cost values given in million USD.

KPI GA Local search HGA
Max. deck area 16,339 m2 16,639 m2 16,842 m2

Mean deck area 15,214 m2 15,125 m2 15,128 m2

Min. deck area 13,568 m2 13,845 m2 13,525 m2

Max. build cost $73.16 $72.98 $74.20
Mean build cost $66.81 $65.69 $66.59
Min. build cost $59.78 $59.78 $60.07
Max. ratio $4,507/m2 $4,477/m2 $4,941/m2

Mean ratio $4,392/m2 $4,343/m2 $4,403/m2

Min. ratio $4,338/m2 $4,302/m2 $4,321/m2

The ratios in table 4.1.1 represent the utility cost, i.e. the dollar cost of each square meter of
deck area (US$/m2). The lowest ratio is at $4,302/m2 generated by the local search algorithm.
This ratio also corresponds to the vessel with the highest deck area and highest build cost.

4.1.1 Choice of vessels for further study

The study has generated over 6,000 vessels that can be chosen. As individual runs, each point on
the Pareto front are non-dominated solutions; hence any point on the front is optimal. However,
when gathering multiple fronts in one figure, one can observe that some runs have resulted
in better objective values than others, generating fronts closer to UP and thus rending some
solutions dominant. The utopian point for this optimisation is the point where the maximum
deck area and minimum build cost intersect. Hence, an objective measure, regardless of the runs,
is the distance to the utopian point. Since the main objective is to maximise the deck area, while
minimising the build cost, one might consider these two vessels as the obvious candidates for
further investigation. However, a more prudent performance index is the utility price from the
vessel, and thus the vessel with the lowest utility cost is chosen as one of the vessels. The vessel
with the lowest build cost might be interesting but has the highest price per square meter of all
vessels. Hence, an evaluation of the vessel that performs the best numerically is of interest.
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Accordingly, the distance D(Xj) to the Utopian point Up can be calculated using Pythagoras
theorem for each of the points in figure 4.1.1:

D(Xj) =

√(
max{A(xi)} −A(xi)

)2 − (C(xi)−min{C(xi)}
)2
, (4.1.1)

where A(xi) and C(xi) are the normalised values (between 0 and 1) of A(xi) and C(xi) re-
spectively. Based on the calculated in equation (4.1.1), one can determine the vessel point that
is the closest to UP . As the values are normalised, all distances are between 0 and 1, with
D(Xj) = 1 being the farthest away, and vice versa. Figure 4.1.2 shows the extent of D(Xj) for
all the vessels, where the lowest value, and thus closest to Up is 0.625. As one might expect,
the vessel with the highest deck area (and hence also the highest cost), is farthest away from Up

with D(Xj) equal to 1.

Figure 4.1.2: Histogram of normalised distance, D(Xj) to the Utopian point Up. Lowest D(Xj) is
0.625.

Figure 4.1.2 also shows the cumulative probability of the normalised distance, with over 60% of
the points being below 0.75. The smallest distance 0.625 is the closest of all to Up which is the
case for vessel no. 4843 and will thus be evaluated further in the following sections. The vessel
with the lowest utility cost is vessel no. 1864.

Figure 4.1.3 represents the normalised values of the total deck area and the corresponding build
cost. Vessel no. 1863 and 4843 are marked with red and green circles, respectively. From the
figure, one can see that vessel 4843 is closest to the Utopian reference point marked + in the
lower right corner. The distance between the green circle and Utopian point is, therefore, 0.625.
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Figure 4.1.3: Normalised deck area and build cost with chosen vessels highlighted. Utopian reference
point in the lower right corner.

Based on the observed points that lie outside the central cluster in both figure 4.1.1, the algorithm
preferences and choice of the algorithm have a substantial effect on the results. The distances
D(Xj) vary from 0.625 to 1, and there is a 13.9% difference between the maximum and minimum
utility cost. The input parameters of the optimisation have a significant effect on the output
and must be thoroughly evaluated to determine the settings that render the best results.

4.1.2 Variation of algorithm preferences

The 6,255 data points generated in the optimisation have varying input parameters and stop-
ping criteria, while the function tolerance and constraint tolerance is kept constant. Additionally,
there is no maximum number of generations. Changes in the parameters were limited to the
Pareto fraction, PF , the maximum stall generations (MSG), and the method of random selection
for the initial population.

Figure 4.1.4 shows the effect of the Pareto fraction on the results. As previously mentioned, a
higher PF allows more elitist solutions to gather on the Pareto front, while a smaller value will
revisit solutions with worse fitness and iterate them into non-dominating solutions. With the
latter PF , a higher degree of diversification is achieved. However, all the points in the graph are
all non-dominated solutions for each of the individual runs. Thus the distance to the Utopian
point may not vary much with a variable PF .
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Figure 4.1.4: Optimisation results with varying Pareto fraction values.

Observing the distribution of solutions in figure 4.1.4 and the corresponding PF -values, there
is no clear benefit with either PF . While it seems that no given Pareto fraction value is more
favourable than the other, when evaluating the average D(Xj) for all solutions with a given PF ,
PF = 0.9 gives the lowest average distance to the utopian point while PF = 0.3 is on average
the farthest away. However, the differences are almost negligible, with < 5% difference between
the average distances D(Xj). Therefore the variation in the results based on PF are not con-
clusive, and no further focus is given to the evaluation of the PF -effect. More importantly, one
may deduct that the performance of the optimisation is quite independent of elite solutions and
that the diversity of the population is adequately generated from other tools in the optimisation.

The variation of the maximum number of stall generations is likely to have a greater effect on the
resulting output than varying PF -values. Optimisation with MSG-values of both 250 and 1,000
may converge at the same point and generate equal quality solutions. A run with MSG = 1,000
will re-iterate a solution that has met the stopping criteria 1,000 times before the algorithm is
terminated to verify that no better solutions could be found in that area. A run with MSG-value
of only 250 will then stop earlier given the same scenario but have a much shorter computation
time. Hence, a higher MSG-value does not guarantee a better solution, or a solution closer to the
Utopian point but does give a higher level of confidence of not converging in a local minimum.
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Figure 4.1.5: Optimisation results with varying limit on the maximum stall generations.

Figure 4.1.5 show multiple runs with a varying level of maximum stall generations. The main
cluster of solutions have all different MSG-values, and hence there is no clear indication of a
favourable MSG-value in terms of the mean D(Xj) for each MSG-value. However, when starting
the optimisation with completely random values in the initial population, a higher MSG-value
is often required to generate solutions on the Pareto front. The random numbers will often
generate an unfeasible solution, and hence the objective functions will become infinitely high. A
greater MSG-value allows the algorithm to work through the initial stall before generating viable
non-dominating solutions. This problem is indeed visible in figure 4.1.5. The set of solutions
that are far away from the may cluster to the left all have the lowest limit of stall generations.
These solutions had a completely random X0 and were terminated prematurely since the algo-
rithm started stalling early in the process.

In setting up the initial population X0, it has been discussed whether to use a completely
random X0 or the quasi-random method of choosing random solutions from a previous run.
The latter allows the optimisation to iterate the solutions more quickly, as it will not stall at
the beginning of the run and always only experience feasible solutions. However, one is then
highly dependent on other methods for population diversification. Consequently, the effect on
the initial population selection method has also been tested to see the effect on the Pareto fronts.

Figure 4.1.6 shows solutions sorted by initial matrix selection. The iterated (green) points have
a X0 = Xj−1 while the random (red) solutions are completely random from the onset of the
optimisation run. The difference between the two methods has a clear effect on the results,
with the iterated results being, on average much closer to the Utopian point. This difference is
expected, as the solution is already closer when beginning the optimisation and local search.
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Figure 4.1.6: Optimisation resulting with a variation in choice of initial population matrix X0.

However, the loss of diversity is evident as the points outside the main cluster, but closest to the
Utopian point, are those with a completely random X0. While these points are closest to the
UP , they do suffer from an uneven spread, with only a few points located to the right and below
the main cluster. The solutions points in figure 4.1.6 also shows that while generating a few
excellent solutions, random X0-solutions are much more inconsistent in terms of quality than
with the pre-iterated X0. Despite a few excellent solutions with random X0, one could consider
only using the iterated X0 for better consistency and predictability in the optimisation.
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4.2 Optimal hull geometry

In section 4.1.1, vessel no. 1864 and 4843 were chosen. The first vessel was chosen as it has the
lowest utility cost, while the latter was chosen because it is the vessel closest to the UP . The
following section outlines the main characteristics and the key performance indexes (KPI’s) of
these vessels. The loading conditions (weight and centre of gravity) are calculated continuously
in the optimisation process. These numbers are scaled with reference to one of Teekay’s FPSO’s.
Hydrostatic data is calculated by the MATLAB model as well, while the stability data is an
output from the hull modelling software DelftShip.

4.2.1 Numerically optimal vessel

Vessel no. 4843 is the vessel that is closest to the Utopian point in the optimisation (D(Xj) =

0.625). The vessel is designed to carry a maximum of 1,000,000 crude oil barrels before offloaded.
The vessel has a build cost of US$66.15 million and a deck area of 15,375 m2.

Main dimensions

The main dimensions are found in table 4.2.1. Following the practice of standard FPSO technical
documents, the aft perpendicular is measured at the transom stern of the vessel. Thus the length
between perpendiculars LPP is equal to the waterline length LWL.

Table 4.2.1: Main particulars and hydrostatic coefficients for the vessel that is closest to the utopian
point (vessel no. 4843).

Description Symbol Value
Length between perpendiculars LPP 289.11 m
Length waterline LWL 289.11 m
Length overall LOA 293.58 m
Breadth waterline BWL 55.00 m
Draught T 14.84 m
Moulded depth D 22.00 m
Wet surface area S 19,684 m2

Lon. centre of buoyancy from AP LCB 150.76 m
Block coefficient CB 0.899 -
Prismatic coefficient CP 0.899 -
Midship coefficient CM 0.999 -
Waterplane coefficient CW 0.967 -

The output from the algorithm is used to model the hull geometry in DelftShip. When using 12
variables in the model (instead of only main dimensions), it allows the DelftShip hull geometry to
have almost identical hydrostatic values as the MATLAB output. In most cases, there is under
1% difference in the calculation result. Figure 4.2.1 shows the final geometry of the numerically
optimal vessel.
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Figure 4.2.1: Visual representation from DelftShip software of vessel no. 4843.

Figure 4.2.2 shows the sectional body plan of vessel no. 4843. As one can see from both this
figure and figure 4.2.1, the bilge radius is fairly sharp. The sharp radius is a direct result from
the optimisation, where the bilge radius x6 was iterated to be only 0.5 metres. It is important to
note that the additional deck area gained from the bow extension, implemented for generating
a wave flare angle, is not considered in the calculated deck area.

Figure 4.2.2: Body plan of the vessel’s sections. Five buttocks are used and highest waterline is the
design draught.

Figure 4.2.2 also shows that the underwater hull is vertical in the waterline, and hence the
waterplane calculation is accurate with little difference in the MATLAB calculations and Delft-
Ship. The is some difference in wet surface area as the optimisation model over-estimates this
measure. It is likely caused by the constant bilge radius that follows the vessel from the bow
to the stern. While the MATLAB model does account for less wet surface around the bow’s
bilge and the centre module, no bilge radius is accounted for abaft. Consequently, DelftShip’s
estimation is approximately 10% lower.
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Loading conditions

Similar to the load cases presented in the technical specifications from Altera, three loading
conditions are evaluated for each vessel. The lightweight distribution and centre of gravity stay
constant throughout all loading conditions, represented in table 4.2.2.

Table 4.2.2: Lightship weights and centres of gravity for vessel no. 4843.

Description Weight (MT) LCG (m) VCG (m) TCG (m)
Hull construction 38,714.29 151.533 16.009 -0.150
Topside 19,698.91 134.091 31.268 1.350
Turret 3,838.00 211.456 26.701 0.034
Lightweight 62,251.20 149.708 21.497 0.336

The following conditions apply to the loading conditions LC0, LC1 and LC2 found in table 4.2.3:

• LC0:
Ballast loading conditions with almost full ballast tanks. Crude oil cargo tanks completely
empty, i.e. no free surface moment (FSM). 100% consumables.

• LC1:
Laden condition. Almost fully loaded cargo tank with almost empty ballast tanks. Con-
siderable FSM only generated in water ballast tanks. 100% consumables.

• LC2:
Laden conditions. 50% loaded cargo tanks with FSM from both water ballast tanks and
crude oil cargo tanks. 100% consumables.

These loading conditions are used in the stability calculations as well as the seakeeping evalu-
ation in section 5.3. Since loading condition LC1 has the lowest GM-value, this condition was
used for calculating the vessel’s response in regular waves.

The centre of gravity for each weight group is scaled according to the current locations onboard
Altera’s vessels. The longitudinal centre of gravity (LCG), vertical centre of gravity (VCG) and
transverse centre of gravity (TCG) apply only for the deadweight in each loading condition’s
summary.
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Table 4.2.3: Deadweight and centre of gravity for all loading conditions for vessel no. 4843.

Description Weight (MT) LCG (m) VCG (m) TCG (m)

LC0

Consumables and liquids 9,706.28 121.531 10.305 -0.700
Water ballast 56,829.12 155.842 7.054 0.000
Crude oil cargo 0.00 0.000 0.000 0.000
Deadweight 66,535.40 150.837 7.528 -0.102

LC1

Consumables and liquids 14,171.14 100.200 11.487 -0.480
Water ballast 2,654.60 219.417 2.361 0.000
Crude oil cargo 138,318.69 144.555 11.700 0.000
Deadweight 155,144.43 141.784 11.521 -0.044

LC2

Consumables and liquids 14,171.14 100.200 11.487 -0.480
Water ballast 22,614.47 203.685 9.382 0.000
Crude oil cargo 69,158.76 144.555 7.102 0.000
Deadweight 105,944.37 151.244 8.175 -0.064

Stability and righting lever

The stability check and calculation of righting lever are performed in DelftShip according to the
International Code on Intact Stability, IMO [40]. Table 4.2.4 shows the resulting stability data.
Note that the negative trim represents bow up.

Table 4.2.4: Stability data for vessel 4843. Data extracted from loading analysis in DelftShip.

Description LC0 LC1 LC2

TA 9.860 16.131 11.839
T 9.103 16.000 11.651
TF 8.345 13.408 11.463
Trim -1.515 -2.723 -0.376
KM 33.676 25.349 28.849
VCG 14.280 14.348 13.106
GM 19.396 11.001 15.743
GG’ 1.098 1.557 1.917
G’M liquid 18.298 9.444 13.826
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Figure 4.2.3 shows the resulting stability graph for vessel no. 4843, for each of the three loading
conditions. Some of the most important criteria include that the maximum GZ-value must be at
30° or greater and that the area ration A/B ≤ 1.0. The latter criterion implies that the righting
lever momentum is greater than the rollback angle righting momentum. Thus, the vessel will
have intact stability to straighten the hull if it experiences an external force that results in a
rolling motion.

Figure 4.2.3: GZ curves for various loading conditions for vessel no. 4843, including intact stability,
GM.

Table 4.2.5 summarises the criteria information from the GZ curve. Area A and area B marked
in figure 4.2.3 corresponds to the areas that relate to the loading condition LC0. The areas on the
graph are representative of this loading condition. Hence, the area sizes may differ between the
various loading conditions, but all loading conditions meet the intact stability criteria. Further
evaluation of the vessel’s stability and stiffness is commented on in chapter 5.

Table 4.2.5: Evaluation of intact stability criteria according to IMO MSC.267(85) for vessel no. 4843.

Loading conditions LC0 LC1 LC2

Rollback angle -24.6° -18.1° -20.7°
Area A 1.832 0.569 0.991
Area B 4.921 2.770 3.780
Max. GZ 8.137 m 4.614 m 6.513 m
Angle of max. GZ 32.8° 33.9° 31.8°
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4.2.2 Market optimal vessel

Vessel no. 1864 has the lowest USD/m2-value, rendering it the most cost-efficient in terms of
the objective functions. With a deck area of 16,842 m2 and a building cost of $74.20 million
USD, the vessel provides the best value-for-money.

Main dimensions

The main dimensions are found in table 4.2.6. Similar to vessel 4843, the aft perpendicular is
also measured at the start of the transom stern abaft. The differences between the MATLAB
and DelftShip outputs are almost negligible (under 1%) for almost all of the dimensions. How-
ever, like the calculation for the previous vessel, there is some difference in calculating the wet
surface area. For vessel no. 1864, the MATLAB model over-estimated the wet surface area
by approximately 5% which is likely due to the loss of accuracy abaft where no bilge radius is
present. However, the deviation between DelftShip and MATLAB is as much as 19% different
for vessel no. 4843. One might expect that with a smaller bilge radius, the difference would be
smaller than vessel 1864. However, the wet surface area of the aft section makes up 15.6% of
the total area for vessel 4843. In comparison, the same area represents only 10.4% for the larger
vessel no. 1864. The wet surface area does affect the anti-fouling pain cost in the objective func-
tion, and the deviation will thus have an effect on the total paint cost. All the other hydrostatic
coefficients are, however, less than 1% different from the DelftShip output and hence the model
is adequately accurate for optimisation purposes.

Table 4.2.6: Main particulars and hydrostatic coefficients for the vessel with the lowest utility cost.

Description Symbol Value
Length between perpendiculars LPP 323.28 m
Length waterline LWL 323.28 m
Length overall LOA 327.67 m
Breadth waterline BWL 55.00 m
Draught T 14.13 m
Moulded depth D 26.54 m
Wet surface area S 26,554.00 m2

Lon. centre of buoyancy LCB 163.67 m
Block coefficient CB 0.880
Prismatic coefficient CP 0.889
Midship coefficient CM 0.990
Waterplane coefficient CW 0.974
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Figure 4.2.4 shows the final geometry of the vessel from the DelftShip software. Here, the bilge
radius is visibly much larger than vessel no. 4843. The hull generation method is identical
for both vessels, in terms of input when creating the hull geometry. The setup includes an
elliptical bow area and trapezoidal aft. This vessel is approximately 11% longer between the
perpendiculars, thus making it equally slimmer than vessel no. 4843 due to their same breadth.

Figure 4.2.4: Visual representation from DelftShip software of vessel no. 1864.

Many of the same characteristics are repeated for both vessels in terms of the bow area. However,
the extra length of the bow section of this vessel accounts for much of the added length. The
length of the bow section is set by variable x8 which is almost double for vessel no. 1864.
Consequently, a slimmer bow is achieved for this vessel. The sectional body plan is illustrated
in figure 4.2.5, showing that while the optimisation allows for a trapezoidal aft section, the
algorithm has not done so. Consequently, the breadth of the transom stern is equal to the
breadth amidship.

Figure 4.2.5: Body plan of vessel no. 1864’s sections. Five buttocks are used and highest waterline is
the design draught.
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Loading conditions

Similarly to the other vessel, three loading conditions are used in the optimisation. Since LC1

has the lowest GM-value, the vessel’s dimensions have been optimised for this particular loading
condition. Furthermore, it is at this load that the vessel has the highest draught and thus, the
highest requirement of underwater anti-fouling.

Table 4.2.7: Lightship weights and centres of gravity for vessel no. 1864.

Description Weight (MT) LCG (m) VCG (m) TCG (m)
Hull construction 43,290.54 169.445 19.311 -0.150
Topside 22,027.43 149.942 37.716 1.350
Turret 4,291.67 236.451 32.207 0.034
Lightweight 69,609.60 167.405 25.930 0.336

Vessel no. 1864 is considerably larger, and thus with a considerably higher lightship weight.
This results in a 10.4% difference in lightship weight and 4.2% difference in total displacement
in laden condition, LC1. Despite the differences in size and displacement, both vessels shall
carry the maximum crude oil cargo of 1,000,000 barrels, and thus the difference in deadweight
(DWT) is only 1.3%.

Table 4.2.8: Deadweight and centres of gravity for all loading conditions for vessel no. 1864.

Description Weight (MT) LCG (m) VCG (m) TCG (m)

LC0

Consumables and liquids 10,853.62 135.869 12.430 -0.700
Water ballast 63,564.65 166.416 10.266 0.000
Crude oil cargo 0.00 0.000 0.000 0.000
Deadweight 74,418.3 161.961 10.582 -0.102

LC1

Consumables and liquids 15,846.25 112.044 13.855 -0.480
Water ballast 2,968.39 69.709 5.646 0.000
Crude oil cargo 138,318.69 161.655 13.983 0.000
Deadweight 157,133.3 154.915 13.813 -0.048

LC2

Consumables and liquids 15,846.25 112.044 13.855 -0.480
Water ballast 32,137.79 170.344 2.710 0.000
Crude oil cargo 70,808.44 161.655 8.134 0.000
Deadweight 118,792.48 157.388 7.430 -0.064
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Stability and righting lever

Table 4.2.9 and figure 4.2.6 shows the stability data and the right lever for vessel no. 1864. The
vessel meets the stability criteria for all loading conditions.

Table 4.2.9: Stability data and evaluation of intact stability criteria according to IMO MSC.267(85)
for vessel no. 1864. All units in metres unless otherwise specified.

Description Symbol LC0 LC1 LC2

Draught at AP TA 9.422 14.723 12.216
Mean draught T 9.174 13.942 11.737
Draught at FP TF 8.925 13.161 11.258
Longitudinal trim ∆T -0.497 -1.562 -0.958
KM 33.059 25.505 28.049
VCG 18.000 17.533 14.265
GM 15.059 7.972 13.784
GG’ 0.083 1.429 1.047
G’M liquid 14.976 6.543 12.737
Rollback angle θ -27.3 ° -19.9° -21.7°
Area A AA 2.479 0.724 0.1.324
Area B AB 5.416 3.706 5.132
Max. GZ GZMAX 8.685 6.732 8.816
Angle of max. GZ θMAX 36.9° 38.8° 39.2°

Figure 4.2.6: GZ curves for various loading conditions for vessel no. 1864, including intact stability,
GM.
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4.3 Cost breakdown

Exact cost estimation of any vessel is difficult without detailed engineering. In addition to ma-
terial costs, painting, surface preparation and onboard outfitting, external costs such as labour,
dry dock rent, scaffolding and outfitting costs must be accounted for as well. However, these
additional external costs are not part of the optimisation scope and hence not included in the
estimate and will furthermore not affect the output. Additionally, new-build prices are highly
volatile and have significant variations depending on the place of production [20]. For the steel
costs themselves, much more detail is required, with further weight breakdown, to get a more
accurate price estimate.

However, a general estimate of steel prices and surcharges are presented in table 4.3.1. The
surcharges are added to the basic rates of steel. The cost of installed construction steel does
experience price variations and can range from US$1,500/MT in the Middle East and China to
US$10,000 in Northern Europe. However, the typical rates vary between US$2,000-US$4,000.
Hence a base rate of $3,000 USD per metric tonne is used in the optimisation. The plates that
are, e.g. used for tanks cost up to 20% more per tonnes due to its estimated surcharge.

Table 4.3.1: Costs and surcharges for paint, steel work and surface preparations. Currency is in USD.
An average of $22.5/m2 was used for the surface preparation cost.

Coating Rate
Surface preparation $20-$25/m2

Painting underwater areas incl. anti-fouling $40/m2

Painting decks, topsides, exposed areas $20/m2

Painting water ballast tanks $15/m2

Painting cargo tanks, slop tanks, other tanks $10/m2

Surcharges on basic steel rate
Shaped plates and internals 15%
Single plates in one tank or compartment 20%

The rates and surcharge rates in table 4.3.1 is not an industry standard or official numbers from
any organisation as this is often undisclosed in technical documents. The rates are general esti-
mates from Altera that are used in general estimations [41]. In addition to the listed surcharges,
there are many more that involve stiffeners, steel-work to be done in engine rooms and renewals.
However, such detailed engineering has not been possible to complete when the scope is limited
to the preliminary hull design.

When evaluating the cost estimates for the chosen vessels, it is crucial to keep in mind that the
cost image is very simplified. The vessel’s steel weight is likely to be somewhat accurate, as
it is scaled using a volumetric coefficient, with a similar FPSO. However, the surcharges that
accumulate in fitting the internal steel-work cannot all be accounted for, and hence the hull’s
steel cost is likely to be under-estimated. Additionally, painting and surface preparation costs
only include the most extensive areas, such as the tanks, the deck area and the hull’s side. The
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paint used in the vessel’s interior rooms, superstructure and on-deck processing plant, is not
included. The resulting costs associated with each of the chosen vessels are shown in table 4.3.2.
For both vessels, approximately 94% of the costs are associated with the steel cost.

Table 4.3.2: Main cost breakdown for vessels 1864 and 4843. All costs are in USD. Hull structure costs
include the steel cost of internal water ballast tanks (WBT) and crude oil tanks (COT).

Cost area Vessel 4843 Vessel 1864
Surface preparation $3,870,979 $4,393,721
Painting
Under water/anti-fouling $789,637 $1,064,928
Horizontal deck $307,503 $336,835
Hullside $296,097 $477,015
Cargo tanks $587,477 $565,373
Water ballast tanks $654,510 $672,005
Total paint cost $2,635,224 $3,116,156
Hull structure $59,639,690 $66,689,443
Total costs $66,145,894 $74,199,320

The differences in total steel costs between the two vessels are about 11%, while the difference
between the total paint cost and surface preparation cost is 16.7% and 12.7% respectively. It
is, however, expected that the surface preparation cost and paint cost would have a greater
difference than the steel costs. Both vessels require the same cargo tank sizes, and thus the
difference in their total steel cost is marginal. Conversely, the increased hull surface of vessel
no. 1864 increases the painting, and surface preparation cost considerably.
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5.1 Algorithm evaluation

The FPSO optimisation process has involved the use of three different algorithm variations,
mostly based on evolutionary algorithms. It is therefore of interest to determine which of these
algorithms have performed best overall. Initially, the results from figure 4.1.1 in section 4.1
shows that no algorithm was definitely superior in generating optimal Pareto-fronts. Hence, it is
important to look at the other measures of performance for the algorithms. One of the methods
is the measure of normalised distance to UP . Figure 5.1.1 shows the box-plot results of the
distance D(Xj). Initially, one can see that the local hybrid search generates individual solutions
with the smallest distance to UP . While this information may indicate that this algorithm is the
best performing, it is important to consider entire Pareto-sets as well, to evaluate the algorithm’s
performance properly.

Figure 5.1.1: Box-plot results of the normalised distance D(Xj) to UP .

55
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5.1.1 Goodness of solutions

When a large number of resulting points are generated from the optimisation, it can be difficult
to determine how well the algorithms have performed. When considering individual points in
the solution space, the measure of normalised distance to the Utopian point can give a good
indication. However, when one wishes to evaluate the optimisation results as a whole, the
entire Pareto optimal set should be evaluated. Consequently, one can use the hypervolume
calculation to determine the ’goodness’ of each optimisation run or a combined set of Pareto
fronts. Since three variations of an optimisation algorithm have been used in the preceding
process, the hypervolume can help determine which of these performs the best. Figure 5.1.2
shows the hypervolume for the optimisation results of the standard genetic algorithm (no local
hybrid search or initial hybrid scores). Here, the reference point r = (r1, r2) is chosen arbitrarily
to be [13400,76]. While r does not have to be exactly at this point, the reference point’s location
must stay the same for all hypervolume calculations to correctly compare the results.

Figure 5.1.2: Hypervolume H(A, {r}) for the genetic algorithm optimisation, with reference point
r = (r1, r2) = [13400, 76].

The points inside the hyperspace represent all the individual solutions when this particular
algorithm has been used. Each solution is, however, part of a set of Pareto optimal solutions.
All the Pareto fronts together, form the overall Pareto front that is represented by the black
line in figure 5.1.2. Considering the hyperspace denoted H(A, {r}), the grey area covers about
64.9% of the current solution space, with the opposite corner of r being the Utopian point UP .
A hypervolume was calculated for each of the algorithm variations, using the same reference
point r. The resulting hypervolume indicator, IH , is shown in table 5.1.1.
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Table 5.1.1: Maximum hypervolume of the various optimisation algorithms.

Algorithm variation Hypervolume indicator, IH
Genetic algorithm (GA) 64.9%
Local hybrid search 68.1%
Hybrid genetic algorithm (HGA) 64.3%

From table 5.1.1, one may observe that the local hybrid search generates the highest hypervolume
ratio at 68.1%, followed by the GA. This result is as expected, as the hybrid algorithm is better
at finding a better global minimum once the solution has converged sufficiently. It is not likely
that the hybrid search would obtain an equally good result if it did not have the precedent results
form the GA. While the local hybrid search does generate reasonable Pareto-optimal solutions,
its solutions have an extensive and thin spread. Despite the optimal solutions being viable and
close to UP , the thin spread allows for less flexibility in choosing one solution on the Pareto front.

The spread of the solutions along the optimal Pareto-front is calculated through the average
distance measure when using the GA in MATLAB. A smaller average distance measure indi-
cated that the solutions on the Pareto front are evenly distributed. However, the spread is also
a measure of movement on the Pareto front. Hence the GA applies the following algorithm;

Algorithm 2: Termination of algorithm from distance measure

while stall generations < max. stall generations do
if δdj < σF and

∑
dj <

∑
dj−1 then

terminate;
end

end

In short, if the average of the relative change in the spread of the Pareto solutions (δdj) over
stall generations is less than the functional tolerance (σF ), and the final spread (

∑
dj) is smaller

than the average spread of over the last stall (
∑
dj−1), then the algorithm stops. Consequently,

the algorithm that produces a smaller spread and meets all the stopping criteria is likely to
produce better solutions. From the results, the average distance measure between the solutions
on the Pareto front is 0.14, 1.23 and 0.17 for the GA, local search and HGA respectively. Based
on the average spread, the local search is spread very thinly, which is also evident from figure
4.1.1. Thus, when considering the spread, the local algorithm performs poorly. If one equally
weights the performance of the average distance from UP , the hypervolume ratio, and the total
spread

∑
dj , the GA and local search perform equally well.
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While the two first algorithms have an even performance, one would expect the genetic algorithm
that uses the scores from the local search (HGA) to perform better. It is likely that the algorithm
is not able to search outside the already converged minimum of the hybrid, and thus not find
even better solutions. Consequently, using scores from a previous population, the diversity is
severely limited and, and as a result, is outperformed by the other algorithms on all measures.
Despite not performing above the expectation, this algorithm variation was implemented to
compare the solutions with the GA.

5.1.2 Optimal algorithm parameters

Section 3.2.2 presented the input parameters that were considered when setting up the genetic
algorithm and local search. While the function and constraint tolerance are set to constant for
all the optimisation runs, the choice of the initial population, Pareto fraction and maximum of
stall generations were varied. There is no limit to the maximum number of generations, as this
is set to infinity for all runs. Figures 4.1.4 and 4.1.5 shows the results sorted by their Pareto
fraction and MSG-limit respectively. On neither of the figures, a clear trend indicated that one
optimisation setting outperformed the other. Hence, in terms of maximum stall generations, a
limit of 250 was adequate. When MSG was equal to 1,000, no better solutions were generated,
and the increased number of generations only led to prolonged computation time.

However, a clearer trend is visible in the choice of the initial population. Figure 4.1.6 shows a
clear separation between the resulting vessels that were generated through the use of a completely
random initial population, or by a random selection of preceding results. If one considers the
mean distance from UP , the results with random X0, have a mean distance D(Xj) of 0.7837 and
a hypervolume ratio of 52.9%. In contrast, the results where X0 = Xj−1 have a mean distance
of 0.7257 and a hypervolume ratio of 64.81%. Hence, overall the iterated X0 (selecting previous
solutions) gives a better, combined optimisation result. However, when considering individual
solutions, some of the random X0-results are closer to UP . Consequently, one of the vessels
chosen for further study is generated from the random set of X0. The input parameters for the
chosen vessels are represented in table 5.1.2.

Table 5.1.2: Input parameters of optimisation algorithms for the chosen vessels. Both vessels also had
a constraint tolerance of 10−4 and a function tolerance of 10−3.

Input parameter No. 1864 No. 4843
Algorithm HGA Local search
Initial population choice Quasi-random Random
Max stall generations 500 500
Pareto Fraction 0.5 0.7
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5.2 Optimal hull geometries

Two hull geometries were chosen in order to see the difference in optimisation results across the
optimal Pareto front. Naturally, two vessels that are far apart on the front are likely to have
different geometries, and hence the vessel diversity is represented. Vessel no. 1864 was chosen
as it has the lowest utility cost, i.e. cost per square metre of deck area, while vessel no. 4843
was closest to the Utopian point, UP . The following section aims at evaluating the difference in
the vessels’ geometry and characteristic trends of the resulting vessels.

5.2.1 Vessels comparison

From section 4, the main dimensions of the vessels showed that vessel no. 1864 is larger than
vessel no. 4843 in most of the vessel’s KPI’s except for the utility price. Table 5.2.1 represents
the individual values of the resulting chromosomes, showing that some of their measures are
almost identical. The similarity is especially applicable in terms of the length abaft. The
length measures x1 and x7 (length of aft sections and holds section respectively) are less than
1% different for the two vessels. However, the added length of vessel no. 1864 is primarily
contributed by the increased bow length, represented by x8. Figure 5.2.1 illustrates the length
difference in the vessels and thus showing that the main length contribution is in the bow. If one
were to look at the price estimations of all vessels concerning their length’s, the optimisation
generates an expected cost of approximately US$220,000/m length of boat, starting at US$2.2
million. Consequently, the difference in length of the bow cost represents an 11.5% difference,
while only contributing to a 9.1% increase in the deck area.

Table 5.2.1: Final dimensions xi for the chosen chromosomes Xj . All dimensions of vessels given in
metres unless otherwise stated.

Dimension xi Vessel no. 4843 Vessel no. 1864 Difference
Length of aft section x1 44.6 44.9 0.7%
Midship width x2 55.0 55.0 0.0%
Stern width x3 55.0 54.6 0.7%
Moulded depth x4 22.0 26.5 18.7%
Height of transom stern x5 10.0 20.2 67.4%
Bilge radius x6 0.5 3.0 142.9%
Length of middle section x7 200.0 199.7 0.2%
Length of bow section x8 44.6 78.8 55.5%
Mean draught x9 14.8 14.1 4.9%
Length of cargo tank x10 166.4 173.7 4.3%
Breadth of cargo tank x11 47.8 39.0 20.3%
Depth of cargo tank x12 20.0 23.5 16.3%
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However, the most noticeable difference in the dimensions in table 5.2.1 is the considerable dif-
ference between the vessels’ bilge radius. The lower and upper bound for the bilge radius is given
by x6 ∈ [0.5, 4]. From prior studies, the latest designs of similar FPSO’s have a bilge radius of
around 3 metres. Hence, vessel no 1864’s x6-value seems most appropriate. However, the bilge
radius of vessel no. 4843 is only 0.5 metres. While the small bilge radius does meet the con-
straints of the optimisation, such a small bilge radius may lead to manufacturing challenges and
undesirable stress concentrations. However, the structural integrity of the hull is not accounted
for in the optimisation but can be mitigated through increasing the lower bound of x6 to force
a rounder hull geometry.

Figure 5.2.1: Centre line buttocks of vessel no. 1864 and no. 4843 in black and red, respectively.

5.2.2 Trim and heel

While the intact stability is a strict constraint of the optimisation, less focus has been given
on the trim and heel of the vessel. An approximation of the longitudinal centre of buoyancy
is calculated, which serves as a verification of sensible hull shape. However, the longitudinal
trim has been excluded both as an objective function and a constraint. The exclusion is done
purposely as an optimisation aiming to eliminate any heel or trim would result in a much more
complicated task involving the movement of onboard systems and general arrangement setup.
However, the centre of gravity and cargo tank weight, that represent 61% and 64% of vessel 1864
and 4843, respectively, is placed amidships to minimise any trim or heel. Additionally, due to
the vessels’ geometry abaft, less buoyancy is generated, resulting in a longitudinal trim of 1.56
and 2.72 metres for vessels 1864 and 4843, respectively. Both vessels are therefore trimmed bow
up in location condition LC1.
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5.2.3 Turret positioning and cargo tanks

The FPSO units are both assumed to have internal turrets built into the hull and are positioned
on the centre line of the vessels’ x-axis. While the turret position or its configuration was not
part of any objective function, its location has been calculated from the cost function. The centre
of gravity and the weight varies with different hull geometries based on scaled data from similar
ships. However, there is a significant simplification with regards to the turret. Figure 5.2.2
shows a typical deck view of the location of the cargo tanks, water ballast tanks and the turret.
Here, like many other FPSO’s, the turret is located amidst the cargo tanks. Consequently, the
cargo area is slightly small to accommodate the one million barrels of crude oil cargo and the
cargo tanks may need to be longer.

Figure 5.2.2: Example of turret positioning amidst cargo tanks. Water ballast tanks marked in blue
with cargo tanks in between. Illustration not to scale nor representative of optimised vessels.

While this simplification may affect the accuracy of the building cost estimate, there are other
FPSO units built where the turret is located further in the bow. However, regardless of the
location of the turret, additional steel would be used for the turret moonpool and additional
strengthening. Consequently, the cost estimate might be slightly low but no particular focus is
given on the matter and the moonpool does not affect the optimisation result.

5.2.4 Fleet comparison

When determining the total weight and its distribution, the optimisation model has scaled some
of another vessel’s measures to get a more accurate representation. This feature is likely to
generate accurate weight estimates. Meanwhile, the dimensions of the vessels are determined by
the constraints and the bound of the model. Consequently, it would be worthwhile to ascertain
whether the main dimensions are within reasonable ranges when comparing to other FPSO’s.

Hence, the main particulars for over 170 FPSO’s have been found in the maritime database of
Sea-Web [43]. The vessels used in the comparison are all FPSO units, with no FSO’s or cylin-
drical hulls (e.g. Sevan design) included in the count. Figures 5.2.3 to 5.2.5 shows the chosen
vessels marked in red and green alongside the other vessels that are currently operational. A
fitting line with R2-value of 0.971 is added to show a characteristic trend between the displace-
ment and DWT, and that the chosen vessels lie slightly below this trend. Figure 5.2.3 shows
the vessels’ deadweight and its displacement showing that both vessels are slightly under the
expected trend of the market. The model does account for consumables that are included in
the vessel’s DWT. Hence, the slightly lower DWT may indicate that the vessel carries a smaller
amount of cargo than its displacement would suggest.



62 Chapter 5. Analysis

Figure 5.2.3: DWT and displacement of currently operating vessels. Assumed linear relationship for
added trendline.

The relationship between the vessels’ length and displacement is also of interest, as the length of
the vessel is unaffected by any scaling, and entirely determined by the optimisation algorithm.
While the relationship between the DWT and displacement was expectantly linear, the best fit
for the length and displacement is exponential. The R2-value is 0.791, and hence not as strong
a trend as in figure 5.2.3 albeit sufficiently strong to evaluate the vessels position. From figure
5.2.4, one can observe that vessel no. 1864 lies slightly over the general trend, while vessel 4843
is slightly under the trend. Both vessels have the same cargo capacity at full load, and hence
the larger vessel is expected to be above the trendline.

Figure 5.2.4: Length between perpendiculars, LPP and displacement of currently operating vessels.
Assumed exponential relationship for added trendline (f(x) = aebx + cedx).
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Lastly, the relationship between the vessels’ breadth and length is considered. Although the
vessels are seemingly more scattered, a linear trendline with an R2-value of 0.829 is the most
fitting. From figure 5.2.5, one can observe that vessel no. 1864 is quite close to the general
trend, while it would be expected that vessel 4843 would have a breadth of approximately 47
metres, i.e. 15% lower if the trend is followed. However, the high VCG for the topside modules
and turret, the algorithm is likely to maximise the breadth to keep GM > 0.5. Additionally, the
added cost of a vessel’s extra length is likely more than added vessel breadth.

Figure 5.2.5: BWL and LPP for currently operating vessels. Assumed linear relationship for added
trendline.

Additionally, one may consider the ratio between the breadth and draught (B/T-ratio) to get
an idea of the vessels’ loading condition and stability. While the B/T-ratio for vessel 1864 and
4843 is 3.90 and 3.72, respectively, the mean ratio for the currently operating vessels is 2.87.
This relationship may indicate that the optimised vessels are slightly stiffer than the operating
vessels. Based on the GM-values of Altera’s operational FPSO units, the GM-values of vessel
1864 and 4843 are indeed high, but further investigation shows that stiffness is similar to their
shuttle tankers. Albeit the intact stability being quite stiff, the ranges of GM-values for the
various loading conditions seem reasonable.
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5.3 Vessel response

Throughout the optimisation process, the vessel’s motions have been evaluated. The stopping
criteria illustrated in the flowchart in figure 3.2.3 dictates whether the vessel’s motions should be
evaluated based on its GM-value. If the minimum intact stability criteria are met, the MSDV-
value for the vessel is investigated. Consequently, if MSDV > 15, the solution is not feasible.
The heave acceleration is given by Φv = $2Φu, where ΦU =

√
Φ2
w + x2Φ2

θ, and hence the lon-
gitudinal point x where the evaluation of the MSDV-value must be taken into account. When
the distance increases from the centre of gravity, the heave acceleration and pitch acceleration
increases as well. Thus, one would expect that the MSDV-value is higher at the accommodation
superstructure in the bow than in the vessel’s centre of gravity.

All of the vessels that appear on the Pareto front are feasible solutions, and hence passed the
criteria regarding the response in regular seas. The testing conditions during the optimisation
was the sea state with a return-period of 10,000 years. However, it is not expected that the
MSDV-values are below 15 at this point, and the sea state was used to generate the maximum
possible motion from the vessel. Since the vessel’s motions in a normal sea state are still of
interest, a comparative study with the ShipX/VERES vessel motion program was completed. A
comparison was therefore completed for the response amplitude operators for heave, pitch and
roll as shown in figures 5.3.1 and 5.3.2. The response amplitude operators are given in appendix
D).

Figure 5.3.1 shows that the estimation from the simplified model described in section 2.2.2 is
quite accurate in terms of difference between the ηj/A-values. The estimate of the model and
the ShipX output are very similar up to about when Tp = 13 seconds when the RAO’s start to
diverge more. While it is evident from the graphs that the simplification slightly under-estimates
the RAO-values, there is only a 15.8% difference in ηj/A when Tp > 13.0 seconds for heave and
only 10.9% for pitch.

For both η3 and η5, the simplified model under-estimates the amplitudes of the vessel. Albeit
not presented here, the RAO’s for vessel no. 1864 suffered from the same under-estimation.
When β 6= 0, the under-estimation is likely caused by the assumptions of uncoupled motions
and box-shaped geometry of the vessel. Since the RAO’s presented above have incoming waves
30° from the bow, the pitch displacement and acceleration may likely be lower than the actual
value when coupled with the roll motion. This limitation is essential to consider when calculating
the MSDV, as the accelerations are the basis of this calculation.
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Figure 5.3.1: Response amplitude operators for heave displacement and heave acceleration at centre
of gravity for vessel no. 4843. Regular waves, 30° incident wave angle.

Figure 5.3.2: Response amplitude operators for pitch displacement and pitch acceleration in the centre
of gravity for vessel no. 4843. Regular waves, 30° incident wave angle.

Hence, to evaluate the impact of the model’s under-estimation, the MSDV’s were calculated
using both ShipX and the simplified model given the conditions given in the various return-
periods. Figure 5.3.3 shows the MSDV at the vessel’s centre of gravity and accommodation. It
is assumed that the centre of the accommodation superstructure is located at 280 metres in front
of AP. Additionally, the acceleration would likely be even higher when one considers a location
on the vessel as high as the accommodation structure or helicopter platform. However, neither
ShipX or the simplified model accounts for any gain in acceleration with increased distance from
the waterline. This shortcoming in the models will thus likely result in a slight under-estimation
of the calculated MSDV.

As expected, the calculation of MSDV using the acceleration data from the model of Jensen et al.
under-estimates the values both at the centre of gravity and at the accommodation. While the
limit of 15 m/s1.5 is breached for all wave heights when using ShipX, the simplified model never
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reaches this limit. Consequently, the optimisation has rendered the vessel a feasible solution in
terms of maximum MSDV-value.

Figure 5.3.3: Motion sickness dose value at centre of gravity (COG) and accommodation area of vessel.
Points are equivalent to Hs and Tp for chosen return periods.

From the onset, it was known that the empirical approach to calculating the vessel’s motions
would have some shortcomings that may affect the result slightly. However, the model is not
sufficiently accurate, and hence the chosen vessels do surpass the limit of MSDV<15. While
the simplified calculation method allowed a motion evaluation parallel to the optimisation, the
method has allowed the chosen vessels that do not necessarily meet the criteria.

Hence, the subsequent analysis of the vessel’s motions and operational criteria is evaluated using
the ShipX software. Here it is assumed that motions are coupled, and the results are likely to
be reliable.

5.3.1 Crew comfort

Figure 5.3.4 and 5.3.5 illustrates the MSDV in relation to the wave peak period, for various HS-
values. Since a wave heading of β = 30° generates the most significant values for both vessels,
only this heading is used when MSDV for various wave heights. The threshold of MSDV<15
are marked on the figures, showing that the criterion is only met when HS < 10 metres. From
initial observation, one can see that vessel no. 1864 has a generally lower MSDV than vessel
no. 4843 for all wave periods. Around a wave period of approximately 13-14 seconds, vessel no.
4843 has approximately 18% higher MSDV than the larger vessel no. 1864. Consequently, when
the significant wave height is 20 metres, approximately 13% of the crew onboard vessel 4843 will
be seasick, in comparison to the 11% on vessel 1864.
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Figure 5.3.4: MSDV with respect to peak period of wave. Maximum value given six degrees of freedom
in various HS .

Vessel no. 1864 is a larger ship, with a length of 323.3 m versus 289.1 m of vessel 4843. Hence,
it was expected that the vessel’s accelerations would be smaller than the other, and thus have a
lower MSDV. Furthermore, assuming deep water and that k = 2π

λ (where λ is the wavelength),
one can deduce that the maximum accelerations occur when λ/L ∼ 1. This relation is also
expected, as the vessel will achieve the highest pitch and pitch acceleration when λ/L = 1 as
seen in figure 5.3.2. From the response amplitude operators presented in appendix D, the roll
acceleration has little effect on the vessels’ MSDV, as η̈4 only increases dramatically when the
wave peak period, Tp → TN,4.

Figure 5.3.5: MSDV and Tp. Maximum value given six degrees of freedom in various HS .
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Figure 5.3.6 shows the corresponding ranges of HS and Tp where the MSDV < 15 m/s1.5. The
areas below the boundary lines represent the area where the vessel fulfils the MSDV-criteria.
As expected, the maximum allowable HS decreases as λ → L. The minimum point on the
criteria boundaries occurs in the same place as the maximum MSDV, which is where λ/L→ 1.
Additionally, the load cases for the various return-periods are plotted to determine if the criteria
are fulfilled in these sea states. The operational limits are not affected when Tp < 4 seconds, as
excitation forces are insufficient to enact a motion on the vessel. Each wave heading will generate
a boundary line, but here the heading probabilities are applied, and hence the boundary lines
are weighted according to the heading probabilities.

Figure 5.3.6: Criteria boundary for MSDV < 15 for both vessels with applied heading probabilities.
Return period contours are added. The criteria is met when below the boundary curve.

5.3.2 Helicopter operation

The vessels are highly dependent on helicopter operation to transport crew to and from the
vessel when stationed at location X . Hence, it is important to consider the operability of the
helicopter operation. The helicopter operational criteria are not flexible, with strict limitations
for day and nighttime flights. Figure 5.3.7 shows the operational boundaries for helicopter op-
eration for vessel no. 1864 and 4843, both day and night. These boundaries are a result of all
the criteria listed in table 2.3.1, and it is the minimum value for each criterion that generates
the boundary front.

While it may seem that the operational boundaries severely limits the possibility of conducting
safe helicopter flights, one must also consider the wave frequencies in appendix A. This wave
frequency table applies for all year on location X . If the wave frequencies are accounted for, as
well as the heading probabilities, vessel no. 4843 may perform helicopter operations 55.2% of
the year, regardless of assuming as much operation during day and night.



Chapter 5. Analysis 69

Correspondingly, vessel no. 1864 will have a helicopter operability of 60.2%. For both vessels, the
maximum heave rate is the limiting condition for both day and nighttime helicopter operation
for all peak wave periods. As with the operational limits depicted in figure 5.3.6, one would
expect vessel no. 1864 to have a higher Tp before the maximum HS decreases. However,
the RAO for the heave velocity of the vessels (see appendix D) shows that the heave velocity
increases considerably earlier for vessel 1864, and hence the operational boundary’s maximum
HS decreases earlier.

Figure 5.3.7: Maximum operating limits for helicopter operation. Return period contours added.

5.3.3 Heavy weather lockdown

The heavy weather lockdown occurs when the heave displacement is above 8.5 metres, the pitch
is higher than 5° and roll is greater than 10° at the centre of gravity. The operation onboard
does not necessarily close down completely, but there will be limited movement on deck for the
personnel and movement of heavy machinery will be suspended. Figure 5.3.8 and 5.3.9 shows
the operational bounds for the given criteria.

Figure 5.3.8: Maximum operating limits for personnel elevator and limited movement of heavy equip-
ment on vessel 1864. Load cases represent peak of the return period countor line.
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Figure 5.3.9: Maximum operating limits for personnel elevator and limited movement of heavy equip-
ment on vessel no. 4843. Load cases represent peak of the return period countor line.

It is interesting to note that the is a considerable difference between the boundaries of 15° and
30° for vessel no. 1864, while the difference between the corresponding headings for vessel 4843
is not that different. Since the lockdown criteria are dependent on both heave, pitch and roll,
one must consider all of the equivalent RAO’s. Vessel no. 1864 has a natural period TN,4 ≈ 15.5

seconds, hence the boundary’s minimum point at this period. The notable difference in the
heading boundaries is likely caused by the relatively significant differences in the RAO for roll.
The difference in amplitudes for the various headings in pitch and roll is not very significant,
whereas the amplitude difference in roll is twice as high when β = 30°. Consequently, the effect
of the roll limitation is magnified for the lockdown criteria boundary, and hence HS decreases
more rapidly as β → 30°.

Conversely, vessel 4843 experiences less of a difference between the heading angles. It is as
expected where a heading of 30° renders the lowest criteria boundary. When the wave period
is approximately 10 seconds, the smaller vessel 4843 is excited and the maximum allowable
HS decreases earlier than the larger vessel 1864. While the vessels may need to complete a
lockdown procedure when reaching the return-periods illustrated in the figures, the short term
statistics (based on the wave-frequency table) allow almost 100% operability throughout the
year in normal conditions.
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5.3.4 Loading and offloading

The FPSO’s are dependent on shuttle tankers to offload the crude oil that is stored in the cargo
tanks. The North Sea shuttle tankers are most commonly Aframax or Suezmax tankers with
a deadweight capacity of around 80,000 to 160,000 DWT. Hence, least two shuttle tankers are
necessary to offload the cargo if the tank is full with its 1,000,000 barrels. However, Altera
along with its shuttle tankers have operational limits in terms of a given weather window. The
requirements during connection and offloading are different as more precision is required during
mooring and connection with the FPSO. During mooring, the maximum significant wave height
of 4.5 metres is allowed. When the connection is made with the FPSO, the same limit is moved
to HS < 5.5 metres. For both scenarios, a maximum wave period of 15 seconds is allowed. While
not part of this analysis, when mooring, the visibility must be at least 500 metres [37].

Figure 5.3.10 shows the cumulative probability of the significant wave height and the cumulative
probability of the peak wave period. The probability is based on the wave frequency table given
in appendix A. The dashed lines represent the loading limits when mooring and offloading.
Looking at the significant wave height and wave period probability, we have that:

P (mooring) = P (HS < 4.5)× P (Tp < 15) = 87.69%

P (offloading) = P (HS < 5.5)× P (Tp < 15) = 90.98%

P (mooring|offloading) =
P (mooring)× P (offloading)

P (offloading)
= 87.69%

(5.3.1)

Hence, the FPSO’s may complete mooring and offloading procedure 87.7% of the time given the
wave probabilities at location X .

Figure 5.3.10: Cumulative probability distribution of significant wave height from JONSWAP wave
spectrum at location X .
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5.3.5 Weather and heading dependent operability

The criteria boundaries for the helicopter operations and lockdown criteria given in figures 5.3.7,
5.3.8 and 5.3.9 give an indication of which sea-states operation is possible. Additionally, one
can evaluate the overall operability of each criterion by considering the wave probability from
the location’s wave frequency table. From figure 5.3.10, one can observe that most of the sea
states occur in the middle ranges of HS and Tp, and hence the actual operational window may
be larger than the initial impression from the criteria boundaries.

Figure 5.3.11: Percentage operability for both vessels. Heading probabilities applied.

Figure 5.3.11 shows the weighted operability for helicopter operations and lockdown procedures.
It is weighted in accordance with the heading probabilities of location X . Given a constant sea-
state of 3 hours, the vessels can perform helicopter operations around 58% of the time during
the day, and 47% during the night. The lockdown criteria are less strict, and hence the lockdown
only occurs 1% of the time; equivalent to 3.7 days a year. In conclusion, one may argue that of
all the requirements and limitations, it is the strict external regulations of helicopter operations
that limit both vessels’ operability. A customer would normally expect a minimum operability
of 70 to 80% of the year for helicopter operation. Hence, this limiting criteria has the greatest
need of improvement.
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5.4 Verification and validation

The following section aims to evaluate and verify the output of the optimisation, as well as
considering the validity of the current optimisation process.

5.4.1 Realistic vessel motions

The RAO generated from ShipX using two-dimensional strip theory, and the simplified empirical
model is very similar. As these methods are widely different and have disparate assumptions, one
can assume that the data is correct when reaching the same conclusion. Despite the simplified
model’s shortcomings, both models agree on the areas of maximum amplitude and general shape
of the curves. However, to safely validate these motions, model scale testing in a tank facility
must be performed. While such activity could further validate the hulls’ optimality, such tests
are not part of the preliminary design phase. Additionally, such resources are not available for
the current scope.

5.4.2 Price estimation

Estimating an accurate build cost in the shipping and offshore industry is extremely difficult,
as there are multiple market factors to consider. Production location, commodity prices, reg-
ulations and varying customer requirements all contribute to a highly complex pricing scheme.
However, an acceptable estimate can be generated if the scope is narrowed, and thus being
able to compare the vessel’s price to currently known newbuilds. Current estimates within the
ship-brokering community suggest that the newbuild price of a Korean-built Suezmax tanker is
approximately at US$55 million, while a VLCC costs approximately US$88 million [38].

Both the optimised FPSO’s carry one million bbl’s, which is equivalent to almost 140,000 MT
of crude oil cargo, which is slightly less than a conventional Suezmax vessel. Consequently, the
expected price range of the FPSO’s would be around this price if only the hull is included in the
price estimation’s scope. However, even small changes or modifications may increase the price
dramatically. For instance, a Suezmax shuttle tanker with a fitted external bow turret can cost
up to US$120 million. Thus, the estimated prices of US$66.15 and US$74.2 million are slightly
high in terms of a conventional tanker, considering the items included in the scope. However,
due to the long operational life under harsh conditions, one should also consider the following:

• The lightship steel weight of an FPSO of the chosen size is usually about 35% higher than
a conventional Suezmax tank vessel due to hull reinforcement for longer operational life.
Hence, a higher steel cost should be expected.

• Offshore regulations are stricter in terms of fatigue and the costs to ensure 25 years of
operation without docks increases considerably.

• The LQ is much larger as FPSO’s accommodate 60 to 120 crew members in comparison
to a tanker’s 20. Consequently, more lifeboats and accommodation services are required
at an increased cost.

The factors, as mentioned above, can thus verify the high price estimate of the optimised FPSO’s.
However, it is essential to underline that fact that the estimated price only includes the hull
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structure and nothing of the offshore equipment, turret, or deck processing plant. A ready-to-sail
FPSO with a cargo capacity of 1 million bbls is likely to cost in the region US$1.0-1.5 bn [30].

5.4.3 Three-dimensional objective space

A genetic algorithm was used in the precedent optimisation process due to its function of par-
allel computing of multiple objective functions. Also, since a large number of decision variables
were to be optimised, a calculus method may have had difficulties in providing an optimal solu-
tion. However, the computational power of an evolutionary algorithm like the GA, is properly
exploited when there are several objective functions. Hence, a two-dimensional problem might
evolve to larger dimensions given by F : R2 → RN . Consequently, the objective functions are
given by {F1(x),F2(x), . . . ,FN (x)} = F(x), where x = (x1, x2, . . . , xn), x ∈ RN [2].

While the optimisation of the FPSOs’ hull only used two objective functions, there exists the
possibility of including additional objective functions. If one were to extend the scope to include
structural integrity and hydrodynamics, objective functions evaluating the ultimate strength and
resistance could benefit the overall result. However, only two objective functions were used in
the optimisation but with some added complexity. The function calculating the vessel’s motions
based on the empirical model did, to some degree, act as an objective function. Since the func-
tion was not part of the GA’s objective, the vessel’s motions were not minimised. However, the
motions had to be sufficiently small in order for the optimisation to generate a viable solution,
and hence the vessel motions function has acted as third, binary objective function embedded
in the cost function. Additionally, since one would expect exponential growth in computation
time by adding an RAO-calculation for each ship, the current setup was likely beneficial. Con-
sequently, the optimisation did not use too much time while considering the vessels’ motions
only if the algorithm deemed it necessary.

A multi-dimensional optimisation space where N > 3 is a possible optimisation and may generate
positively unexpected solutions due to the complexity of the algorithm’s search space. The
current optimisation evaluation considers two-dimensional measures such as the distance to
UP given by D(Xj) and the hypervolume IH , which is a hyper-area. Consequently, if a third
objective function is applied, IH would become a hyper-volume, and UP would move to a corner
of the feasible search cube. Therefore, while multi-dimensional optimisation where N � 3 is a
better use of the GA, the task of evaluating the results becomes substantially more complex and
the solution space abstract.
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5.5 Sensitivity of results

5.5.1 Upper and lower bounds

The hull geometry is limited by the linear and non-linear constraints, as well as the lower and
upper bounds. Both of these numeric limitations ensures a suitable hull shape. When extending
the lower and upper bounds of the optimisation, the bound limits are multiplied by a factor, thus
increasing or decreasing the bound for each variable correspondingly. As a result of the easing
of the bounds, a larger search space is generated, and better solutions may be found. Thus,
for each run, the factor dt changes and is given by dt = {0.50, 0.55, 0.60, . . . , 1.00}. Hence, the
following changes are done before each run;

min(xi) = LBi · dt

max(xi) = UBi ·
1

dt
.

(5.5.1)

When the extension is zero, dt = 1 and no change in the bounds occur. Hence, the utility price
remains the same as the lowest of the precedent optimisation runs. As dt decreases, the bounds
are ’loosened’ for both the lower and upper bound, and a broader search area is generated.
Ultimately, the bounds are extended by 50% at each end of the bound range. Figure 5.5.1 shows
how the mean utility price (USD/m2) decreases as the search area is extended. Consequently,
by extending both bounds for each variable by 50%, the decrease of the mean utility rate is only
2.14%. The small change in the mean utility rate is likely to be the cause of the still strict, non-
linear constraints and shows that the optimisation is not very sensitive to substantial changes
in the upper and lower bounds. In conjunction with the bounds, it is the constraints that are
likely limiting the output more than the boundary values.

Figure 5.5.1: Change of the average utility price (US$/m2) as the upper and lower bounds of the
algorithm are extended step-wise, up to 50%.

The algorithm’s sensitivity when evaluating the bounds may be quite clear as there is a distinct
change in the average utility rate. However, the GA, like any other evolutionary algorithm, is
dependent on some degree of randomness when the chromosomes evolve to feasible solutions.
Consequently, the measure of sensitivity in other areas such as constraint and function tolerance,
stall generations and Pareto fractions are less evident.
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5.5.2 Motion sensitivity

From figure 5.3.6, one can observe that the vessel does not meet the requirements for most of
the return-periods, represented as load cases. However, prior testing on tank vessels and FPSO’s
indicate that no commercial vessel that is not a cruise ship meets the requirement of MSDV <
15. While the onboard personnel boats of the current FPSO’s calm motions, the criteria is not
met here either. If the VP -criteria increases from 5% of the personnel being seasick, to 6 or 7%,
both vessels meet the requirements for multiple return period’s load cases.

Figures 5.5.2 illustrates the current criteria boundary (in blue), in addition to the possible easing
of the requirement where the maximum MSDV is 18 and 21, representing 6% and 7% of the
crew being seasick, respectively.

Figure 5.5.2: Criteria boundaries for different limits of MSDV for both vessels. Criteria is met when
applied conditions occur beneath the criteria boundary. Load cases represent peak of the return period
countor line.

The larger vessel 1864 generates lower accelerations, and thus meets the requirements in more
of the load cases than vessel 4843. Although the vessels do not meet the requirement for all
the load cases, one should bear in mind that only 6-7% will be seasick, representing only 4-8
persons of the onboard crew. Hence, while it is desirable to create a comfortable work-space, it
is not detrimental for the current hull geometry. In terms of sensitivity to the requirements, one
can observe that minimal changes in the MSDV-limit are sufficient for vessel 1864 to meet the
requirements.
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Conclusion

This thesis has studied the optimisation process that was aimed at generating optimal FPSO
hulls. A genetic algorithm has been used as the optimisation tool to determine the optimal hull
geometries based on the objectives functions that maximise the vessels’ deck area and minimises
their build cost. With a wide spectre of optimal vessels to choose from, further investigation was
completed for two vessels. Vessel no. 1864 was chosen due to its low utility cost of US$4,302/m2

with a deck area of 16,842 m2. Meanwhile, vessel 4843 is closest to the Utopian point and is
deemed the vessel that performs best overall in the optimisation. To further validate the op-
timality of these vessels, a vessel response analysis was conducted with the conditions of their
intended locations. Based on multiple criteria given by external organisations and internal pro-
cedures, the degree of compliance was evaluated.

The genetic algorithm that was used has many input parameters that were carefully chosen in
order to generate the best possible results. Thus, considerable focus was given to determine
the effect on the optimisation output based on the algorithm’s parameters. Consequently, it
was determined that many of the parameters have little effect on the results, as much of the
algorithm’s steps are based on randomness. However, there was a significant effect when chang-
ing the properties of the initial population. On average, using an initial population that was
the results of a past optimisation generated better solutions in terms of the distance D(Xj) to
UP . However, a completely random initial population did render few, but outstanding solutions.
Hence, this showed that this algorithm setting might generate competitive solutions but with
much less consistency. Input parameters such as the maximum stall generations, function tol-
erance, constraint tolerance and Pareto fractions had a negligible effect on the output but were
crucial in allowing the algorithm to exit local optima. In conclusion, algorithm parameters that
help speed up the optimisation and diversify the population helped the optimisation converge
at much better solutions.

77
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Both the genetic algorithm and the local hybrid search were run multiple times with a variety
of input parameters to determine the best results. Evaluation of the results was completed with
two measures; the normalised distance to the Utopian point given by D(Xj), and the hypervol-
ume indicator IH . The former calculation method was used to rank individual solutions in the
solution space. The closer a solution was to UP , the better. While D(Xj) evaluated individual
solutions, the latter method acts as a measure of goodness for a complete Pareto front, i.e. all
the non-dominated solutions on a Pareto front from a single run. Effectively, the genetic algo-
rithm generated the results that rendered the highest hyper-area ratio, while the local hybrid
search generated solutions with the lowest average distance, D(Xj).

Based on the optimised hull geometries, the optimisation model also generated three loading con-
ditions that represented ballast condition, fully loaded and half-full condition. As a result, cargo
tanks and water ballast tanks were modelled in DelftShip. By implementing the optimal hulls
in the software, a verification was completed, showing the accuracy of the optimisation model.
Furthermore, both vessels were evaluated in the vessel motions software ShipX. While both ves-
sels did comply with the stability criteria and most of the operational criteria, the vessels were
not compliant for all regulations regarding helicopter operation or Mean Sickness Dose Value
for all return-periods. However, while compliance for all criteria for all return periods would be
welcomed, it is never expected nor necessary when one considers sea-states with return-periods
of even one year. When designing a vessel to withstand a wave with a return period of 10,000
years, the only criteria is the survival of the crew. Conclusively, both vessels represent feasi-
ble solutions, and the calculations generate sensible results that are fitting for a ship of this scale.

In conclusion, a successful model has been generated using a genetic algorithm to generate
optimal FPSO hulls. With the given level of detail, all of the most important criteria have been
met, thus rendering these hulls feasible and appropriate for further evaluation. However, likely,
a higher level of detail in the model’s geometry setup and an extension of the scope of what is
included in the price estimation will give an even more nuanced image that is likely to generate
slightly different solutions than the current ones.
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6.1 Further work

The following additions presented as further work can all be implemented as additional objective
functions for a more comprehensive multi-objective optimisation.

Motion-based operability
As stated in section 5.4.3, additional objective functions are likely to benefit the optimisation
further, rendering the solution more realistic and feasible. Although the method of visualisation
and evaluation will become much more complex, the added objectives will generate a more re-
alistic problem and validate the solution further. Hence, an area of further development is to
make the vessel’s operability part of the objective functions. Currently, the motions determine
whether a solution is feasible, acting as a binary termination requirement. However, if the mo-
tions are part of the optimisation, an operability profile could be generated. In conjuncture with
the wave frequency table and the response amplitude operators, one could, therefore, generate
a vessel that has motions of smaller magnitudes. The study could, therefore, lead to a higher
degree of helicopter operations, as well as lowering the average MSDV-value of the vessel. The
proposal is possible to complete with the simplified model, but for additional validity and ro-
bustness, a complete two-dimensional strip theory calculation should be completed.

Increased geometry detailing
The current parametric hull geometry has a few shortcomings and simplifications that affects the
optimisation results. The bilge radius which is currently not calculated abaft should, therefore,
be included in future modelling. Furthermore, the current model only allows a flat surface in
the aft section with no possibility of more detailed curvature on the centre line. Hence, future
models should have more variables that dictate the geometry of the aft section underwater. How-
ever, if a higher level of detailing is implemented, it would be prudent to use a vessel motions
model that assumes a more advanced shape than a box to fully exploit the optimisation potential.

Weathervaning analysis
The main focus of this thesis has been FPSO units with internal turrets. Consequently, an
important aspect is the vessel’s station-keeping ability and weathervaning. A weathervaning
analysis would consist of primarily two essential subjects. The first being an evaluation of
the location of the turret that minimises the moment on the turret. Consequently, the second
part would involve a propulsion study to calculate and minimise the installed machinery effect
required to turn the vessel in various sea-states properly. Hence, if a weathervaning analysis
should be included, it would be natural to include both of the problems as objective functions,
by minimising the moment on the turret and minimising the machinery effect or cost on board.
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General FPSO geometry
This thesis has only focused on FPSO units with conventional hull shapes and internal turrets.
However, as an addition to the model, a more comprehensive range of hull geometries can be
considered, enabling hull forms such as spread moored units or external turret moored FPSO’s
to be included in the optimisation output. A step further could also entail the inclusion of
cylindrical designs, similar to those of Sevan Marine’s FPSO units. The extension of the scope
would widen the optimisation possibilities, but the widely different hull shapes would entail a
clear distinction in calculation methods and hence many more variables need to be employed.

Logistical optimality
The scope of the optimisation was limited to the hull’s optimality with no regard to any opera-
tional or logistical optimality. The hull’s shape will affect the motions of the vessel, which will,
in turn, decide the operability of the vessel. Consequently, an area of interest is to evaluate the
entire operation, including the logistics of everything from production, offloading and delivery.
Furthermore, one can optimise the operation of the vessel by diving its lifetime into different
sections, such as varying the type of operation or location over time. Hence, through the use
of an evaluation process like Epoch-Era, one can determine the optimal lifetime operation of a
vessel. In turn, the optimisation may focus on the break-even cost of the vessel for its different
stages or eras.

Life cycle economy and environmental performance
The build cost has been the only economic consideration throughout the optimisation process.
However, it would be of interest in future studies to determine the life cycle costs (LCC) of
the vessels. Furthermore, the vessels’ environmental impact can also be considered, and thus a
life cycle assessment should be included in future works. While these studies would have been
of interest, financial matters and specific prices that are accurate are hard to obtain from any
company.
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Appendix overview

App. Title Description
A Wave Frequency Table Joint frequency of significant wave height and

wave peak period. Representative data for loca-
tion X .

B Vessel no. 1864 Tank arrangement and corresponding fill levels.
Line drawing of vessel no. 1864.

C Vessel no. 4843 Tank arrangement and corresponding fill levels.
Line drawing of vessel no. 4843.

D Response Amplitude Operators Comparison of ShipX and simplified model
RAO’s. Headings from 0-30° for heave, roll and
pitch.

E Simplified Vessel Motion Model Summarised description of simplified vessel mo-
tions model by Jensen et. al. Note that not all
deductions are included in the appendix sum-
mary.

F MATLAB Scripts MATLAB scripts describing the setup of the GA
and local search. getCost.m represents the ob-
jective function for build cost.
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Wave frequency table
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Appendix B
Vessel no. 1864

B.1 Tank arrangement for fully laden condition

B.2 Lines plan

II
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Appendix C
Vessel no. 4843

C.1 Tank arrangement for fully laden condition

C.2 Lines plan

IV





Appendix D
Response amplitude operators

D.1 Vessel no. 1864

D.1.1 Heave motion

D.1.2 Roll motion

VI



Appendix D. Response amplitude operators VII

D.1.3 Pitch motion

D.2 Vessel no. 4843

D.2.1 Heave motion



VIII Appendix D. Response amplitude operators

D.2.2 Roll motion

D.2.3 Pitch motion



Appendix E
Simplified vessel motion calculation

The following explanation of the simplified sea-keeping model derives entirely from the article
Jensen et al. ’Estimation of ship motions using closed-form expressions [24]. The presented
formulae in this appendix are strictly shortened.

The encounter frequency $ is given by

$ = ω − kV cosβ ≡ αω, (E.0.1)

where V is the forward speed of the vessel and β is the heading angle. α is defined as:

α = 1− Fn
√
kL cosβ, (E.0.2)

where the Froude number of the vessel is given by Fn = V/
√
gL. The sectional hydrodynamic

damping is modelled by the dimensionless ratio between the incoming and the diffracted wave
amplitude through the following approximation:

A = 2 sin

(
$2B

2g

)
exp

(
−$

2T

g

)
. (E.0.3)

The forcing functions F and G are then given by;

F = κf
2

ke
sin

(
keL

2

)
(E.0.4)

G = κf
24

(keL)2 L

[
sin

(
keL

2

)
− keL

2
cos

(
keL

2

)]
, (E.0.5)

where ke is the effective wave number, and f are given as;

ke = |k cosβ| (E.0.6)

f =

√
(1− kT )2 +

(
A2

kBα3

)2

. (E.0.7)

The Smith correction factor κ is then approximated by

κ = exp (−keT ) . (E.0.8)
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X Appendix E. Simplified vessel motion calculation

In the simplified model for roll, the ship is assumed to consist of two prismatic beams with the
same draught T , but different breadths B0 and B1 and cross-sectional areas A0 and A1. The
ratio γ between the breadth of the two beams, B0 and B1 is found such that the waterplane
area coefficient CWP is the same for the real ship and the simplified model of the ship.

CWP =
B0L (δ + γ (1− δ))

LB0

γ ≡ B1

B0
=
CWP − δ

1− δ

A0 =
CBB0T

δ + γ(1− δ)
A1 = γA0

(E.0.9)

The sectional damping coefficient b44 is approximated through numerical methods and ultimately
renders:

b44

ρAB2
=

√
B

2g
= a(B/T ) exp(b(B/T )$−1.3)$d(B/T ), (E.0.10)

where A is the cross-sectional area of the submerged part of the section. The three functions
a, b and c are assumed to be linear in B/T . The total hydrodynamic damping coefficient B44 is
then simply taken as:

B44 = Lb44 [δ + κ ∗ 2 (1− δ)] , (E.0.11)

where κ2 = b44,1/b44,0, i.e. the ration of the sectional damping for the two beam elements.
The viscous roll damping is approximately accounted for by adding a percentage of the critical
damping to the inviscid damping. The critical damping is defined as B∗44 = C44TN

π . Hence, the
total damping becomes Btot

44 = B44 + µB∗44.

The sectional excitation moment m can be expressed in terms of the sectional hydrodynamic
damping. The excitation moment for a two-dimensional section in the y − z-plane is given by:

m(x) = iωρeiωt
∫ 0

−∞

[
ϕ0
∂ϕ4

∂y
− ϕ4

∂ϕ0

∂y

]y=∞

y=−∞
dz, (E.0.12)

where ϕ0 is the potential for the incoming waves with united wave amplitude. Carrying out the
integration gives for the sectional excitation moment:

m(x) = sinβ

√
ρg2

ω
b44e

−ixk cosβeiωt. (E.0.13)

Taking the real part of the moment gives the amplitude |M| for the moment that is used in
equations (2.2.8) (2.2.9):

Re(M) =|M | cos (ωt+ ε) = | sinβ|
√
ρg2

ω

2

ke

×
√
b44,0{sin2 (0.5δLke) + κ2 sin2 (0.5 (1− δ)Lke)

2κ sin (0.5δLke) sin (0.5 (1− δ)Lke) cos (0.5Lke)}
1
2 cos (ωt+ ε)

(E.0.14)



Appendix F
MATLAB scripts

F.1 longOptimisation.m

1 tic;
2
3 getFPSOdata;
4 time = datestr(clock,'dd/mm/YY');
5 popSize = 500;
6 repeats = 1;
7
8 load('resulting_data.mat')
9 weight_data = load('weight_data.mat');

10 steel_data = load('steel_data.mat');
11 deadweight_data = load('deadweight_data.mat');
12
13 fid = fopen('sensitivityEval3.txt','a');
14 dt = 0.5:0.01:1.0;
15
16 for k = 1:length(dt)
17 for u = 1:length(popSize)
18 % -------------------------- GA -----------------------------------
19 tic;
20 gaSolver;
21 timeGA = toc;
22 for m = 1:size(x,1)
23 fprintf(fid,'%s, %.0f, %f, %f, %f, %f, %f, %f, %f, %f, %f,',...
24 '%f, %f, %f, %.2f, %.0f, %f, %f, %.1f, %.0f, %.0f, %f\n',...
25 time,1,x(m,1),x(m,2),x(m,3),x(m,4),x(m,5),x(m,6),x(m,7),...
26 x(m,8),x(m,9),x(m,10),x(m,11),x(m,12),FvalGA(m,1),FvalGA(m,2),...
27 Output.averagedistance,Output.spread,ParetoFraction,...
28 initialValue,numberOfVariables*popSize(u),dt(k));
29 end
30 end
31
32 load('gaMatrix.mat')
33 if diffAreaGA > gaMatrix(1,1) && diffCostGA > gaMatrix(1,2)
34 gaMatrix(1,1) = diffAreaGA;
35 gaMatrix(1,2) = diffCostGA;
36 save('gaMatrix.mat','gaMatrix');
37 fprintf('\n<NEW DATA ADDED IN GA MATRIX>\n');
38 end
39
40 %---------------------------- HYBRID ------------------------------
41 hybridSolver;

XI
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42 timeHY = toc;
43 for m = 1:size(x,1)
44 fprintf(fid,'%s, %.0f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f,',...
45 '%f, %f, %.2f, %.0f, %f, %f, %.1f, %.0f, %.0f, %f\n',...
46 time,2,x(m,1),x(m,2),x(m,3),x(m,4),x(m,5),x(m,6),x(m,7),...
47 x(m,8),x(m,9),x(m,10),x(m,11),x(m,12),FvalHY(m,1),FvalHY(m,2),...
48 Output.averagedistance,Output.spread,ParetoFraction,...
49 initialValue,popSize(u),timeHY);
50 end
51
52 load('hybridMatrix.mat')
53 if diffAreaHY > hybridMatrix(1,1) && diffCostHY > hybridMatrix(1,2)
54 hybridMatrix(1,1) = diffAreaHY;
55 hybridMatrix(1,2) = diffCostHY;
56 save('hybridMatrix.mat','hybridMatrix');
57 fprintf('\n<NEW DATA ADDED IN HYBRID MATRIX>\n');
58 end
59
60 %---------------------- GA 2 --------------------------------------
61 options_MOGA = optimoptions(options_MOGA,'HybridFcn',[]);
62 options_MOGA = optimoptions(options_MOGA,'InitialPopulationMatrix',...
63 x,'InitialScoresMatrix',Score);
64 options_MOGA = optimoptions(options_MOGA,'Display','iter');
65 [x,FvalGA,exitFlag,Output,Population,Score] = gamultiobj(FitFcn,...
66 numberOfVariables,A,b,Aeq,beq,lb,ub,nonclon,options_MOGA);
67
68 timeHG = toc;
69 for m = 1:size(x,1)
70 fprintf(fid,'%s, %.0f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f,',...
71 '%f, %f, %.2f, %.0f, %f, %f, %.1f, %.0f, %.0f %f\n',...
72 time,3,x(m,1),x(m,2),x(m,3),x(m,4),x(m,5),x(m,6),x(m,7),...
73 x(m,8),x(m,9),x(m,10),x(m,11),x(m,12),FvalGA(m,1),FvalGA(m,2),...
74 Output.averagedistance,Output.spread,ParetoFraction,...
75 initialValue,popSize(u),timeHG);
76 end
77
78 fprintf('\n------------------------ HGA OPTIMISATION OUTPUT-------\n');
79 fprintf('The number of points on the Pareto front was: ',...
80 '%d\n',size(x,1));
81 fprintf('The number of generations was: ',...
82 '%d\n', Output.generations);
83 fprintf('The average distance measure of the solutions on the Pareto',...
84 'front was: %g\n', Output.averagedistance);
85 fprintf('The spread measure of the Pareto front was: ',...
86 '%g\n', Output.spread);
87
88 fprintf('\nProcess is at %.2f%% \n',(k*u)/(repeats*length(popSize))*100);
89 fprintf('\nPopulation size: %.0f\n',popSize(u))
90 fprintf('Repeat: %.0f\n',k);
91 end
92
93 resulting_data = zeros(size(x,1),numberOfVariables+2);
94 resulting_data(:,1:numberOfVariables) = x;
95 resulting_data(:,13:14) = FvalGA;
96 save('resulting_data.mat','resulting_data');
97
98 fclose(fid);
99

100 elapsed_time = toc;
101
102 fprintf('\nELAPSED TIME: ');
103 fprintf(datestr(datenum(0,0,0,0,0,elapsed_time),'HH:MM:SS '));
104 fprintf('[hh:mm:ss]\n');
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F.2 gaSolver.m

1 % Non-linear constraints function input
2 nonclon = @conditions;
3
4 % Upper and lower bounds
5 % [1 2 3 4 5 6 7 8 9 10 11 12]
6 lb = [20 40 30 15 10 0.5 100 40 10 100 20 20]*dt(k);
7 ub = [45 60 70 40 25 4 200 80 40 180 60 40]*(1+(1-dt(k)));
8
9 % Number of variables in optimisation

10 numberOfVariables = length(lb);
11
12 initialValue = 1;
13 initialSize = 200;
14
15 if initialValue == 1
16 x0LB = 1;
17 x0UB = size(resulting_data,1);
18 row1 = randi([x0LB x0UB],1,initialSize);
19 x0 = resulting_data(row1,1:12);
20 else
21 for j = 1:initialSize
22 for i = 1:numberOfVariables
23 x0(j,i) = (ub(i)-lb(i))*rand(1,1) + lb(i);
24 end %for
25 end %for
26 end % if
27
28 % linear constraints
29 A = [];
30 b = [];
31 Aeq = [];
32 beq = [];
33
34 % Call for the fitness function
35 FitFcn = @objectiveFunction;
36
37 % Option variables
38 FunctionTolerance = 1e-3;
39 ConstraintTolerance = 1e-4;
40 MaxStallGenerations = 200;
41 ParetoFraction = 0.5;
42 MaxGenerations = 20;
43 tournamentSize = round(0.2*length(x0),0);
44 PopulationSize = 500;
45
46 % Multi-objective optimisation options
47 options_MOGA = optimoptions(@gamultiobj,'PlotFcn',{@gaplotpareto,...
48 @gaplotscorediversity});
49 options_MOGA.DistanceMeasureFcn = {@distancecrowding,'genotype'};
50 %options_MOGA = optimoptions(options_MOGA,'Display','iter');
51 options_MOGA = optimoptions(options_MOGA,'ParetoFraction',ParetoFraction);
52 options_MOGA = optimoptions(options_MOGA,'FunctionTolerance',...
53 FunctionTolerance);
54 options_MOGA = optimoptions(options_MOGA,'MaxStallGenerations',...
55 MaxStallGenerations);
56 options_MOGA = optimoptions(options_MOGA,'MaxGenerations',MaxGenerations);
57 options_MOGA = optimoptions(options_MOGA,'ConstraintTolerance',...
58 ConstraintTolerance);
59 options_MOGA = optimoptions(options_MOGA,'InitialPopulationMatrix',x0);
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60 options_MOGA = optimoptions(options_MOGA,'PopulationSize',PopulationSize);
61 %%
62 % Runs the optimisation
63 [x,FvalGA,exitFlag,Output,Population,Score] = gamultiobj(FitFcn,...
64 numberOfVariables,A,b,Aeq,beq,lb,ub,nonclon,options_MOGA);
65
66 %%
67 diffAreaGA = abs(-min(FvalGA(:,1))+max(FvalGA(:,1)))/((-min(FvalGA(:,1)),...
68 -max(FvalGA(:,1)))/2)*100;
69 diffCostGA = abs(min(FvalGA(:,2))-max(FvalGA(:,2)))/((max(FvalGA(:,2))+,...
70 min(FvalGA(:,2)))/2)*100;
71
72 fprintf('\n------------------------ GA OPTIMISATION OUTPUT------',...
73 '-------------------------------\n');
74 fprintf('The number of points on the Pareto front was: ',...
75 '%d\n',size(x,1));
76 fprintf('The number of generations was: ',...
77 '%d\n', Output.generations);
78 fprintf('The average distance measure of the solutions on the Pareto',...
79 'front was: %g\n', Output.averagedistance);
80 fprintf('The spread measure of the Pareto front was: ',...
81 '%g\n', Output.spread);
82
83 fprintf('\n--------------------- OBJECTIVE FUNCTION OUTPUT -----------\n')
84 fprintf('Max deck area: %0.f [m^2] Max CAPEX: USD %.2f mill.\n',...
85 -min(FvalGA(:,1)),max(FvalGA(:,2))*1e-6)
86 fprintf('Min deck area: %.0f [m^2] Min CAPEX: USD %.2f mill.\n',...
87 -max(FvalGA(:,1)),min(FvalGA(:,2))*1e-6)
88 fprintf('Difference: %.3f %% Difference: %.3f %%\n',...
89 diffAreaGA, diffCostGA);
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F.3 hybridSolver.m

1
2 % % Hybrid solution
3 % % Runs the optimisation again with hybrid function from the pareto front
4
5 options_MOGA = optimoptions(options_MOGA,'HybridFcn',@fgoalattain);
6 %options_MOGA = optimoptions(options_MOGA,'Display','iter');
7 %options_MOGA = optimoptions('fgoalattain','Display','iter');
8
9 % Reset the random state (to compare with previous run)

10 strm = RandStream.getGlobalStream;
11 strm.State = Output.rngstate.State;
12
13 [x,FvalHY,exitFlag,Output,Population,Score] = gamultiobj(FitFcn,...
14 numberOfVariables,A,b,Aeq,beq,lb,ub,nonclon,options_MOGA);
15
16 %%
17 diffAreaHY = abs(-min(FvalHY(:,1))+max(FvalHY(:,1)))/,...
18 ((-min(FvalHY(:,1))-max(FvalHY(:,1)))/2)*100;
19 diffCostHY = abs(min(FvalHY(:,2))-max(FvalHY(:,2)))/,...
20 ((max(FvalHY(:,2))+min(FvalHY(:,2)))/2)*100;
21
22 fprintf('\n------------------------ HYBRID OPTIMISATION OUTPUT--------\n');
23 fprintf('The number of points on the Pareto front was: ',...
24 %d\n',size(x,1));
25 fprintf('The number of generations was: ',...
26 %d\n', Output.generations);
27 fprintf('The average distance measure of the solutions on the Pareto',...
28 'front was: %g\n', Output.averagedistance);
29 fprintf('The spread measure of the Pareto front was: ',...
30 '%g\n', Output.spread);
31
32 fprintf('\n--------------------- OBJECTIVE FUNCTION OUTPUT ----------\n')
33 fprintf('Max deck area: %0.f [m^2] Max CAPEX: USD %.2f mill.\n',...
34 -min(FvalHY(:,1)),max(FvalHY(:,2))*1e-6)
35 fprintf('Min deck area: %.0f [m^2] Min CAPEX: USD %.2f mill.\n',...
36 -max(FvalHY(:,1)),min(FvalHY(:,2))*1e-6)
37 fprintf('Difference: %.3f %% Difference: %.3f %%\n',...
38 diffAreaHY, diffCostHY);
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F.4 getCost.m

1 function totalCost = getCost(x)
2
3 % -------------------------------------------------------------------------
4 % ------------------------------ CONSTANTS --------------------------------
5 % -------------------------------------------------------------------------
6
7 % Natural constants
8 seawater_density = 1.025;
9 required_bbl_volume = 1e6;

10 barrel_fluid = 158.987;
11 crude_oil_density = 0.87;
12
13 % -------------------------------------------------------------------------
14 % --------------------- VOLUME | SURFACE | AREA ---------------------------
15 % -------------------------------------------------------------------------
16
17 % Midship
18 midship_area = x(4)*x(2) - 0.5*pi*x(6)^2;
19 midship_deck_area = x(2)*x(7);
20 midship_volume = midship_area * x(7);
21 midship_surface = 2*(x(7)*(x(4)-x(6))) + x(7)*(x(2)-2*x(6)) + pi*x(6)*x(7);
22
23 % Bow section
24 bow_area = ((pi*0.5*x(2)*x(8))/4)*2;
25 bow_volume = bow_area*x(4) - 0.25*((pi*x(6)^2)*(2*pi*((x(2)*0.5+x(8))/2)));
26 bow_circumference = 0.5*pi* ( 3*(x(8)+0.5*x(2)) - sqrt( ...

(3*x(8)+0.5*x(2))*(x(8)+(3/2)*x(2))));
27 bow_surface = bow_circumference* (x(4)-x(6)) + ( 4*pi^2 *((x(8)+x(2))/2)*x(6));
28
29 % Aft section
30 aft_area = ((x(2)+x(3))/2) * x(1);
31 aft_volume = (aft_area * x(4)) - 0.5*((x(4)-x(5))*x(1))*x(2);
32 aft_surface = 2*x(1)*x(5) + x(3)*x(5) + ((x(2)+x(3))/2)*sqrt( x(1)^2 + ...

(x(4)-x(5))^2);
33
34 % Summary
35 total_deck_area = bow_area + midship_deck_area + aft_area;
36 total_hull_volume = midship_volume + bow_volume + aft_volume;
37 total_hull_surface = bow_surface + midship_surface + aft_surface;
38
39 % Waterplane area
40 midship_waterplane = x(7)*x(2);
41 bow_waterplane = ((pi*0.5*x(2)*x(8))/4)*2;
42 aft_waterplane = (0.5*(x(2)+x(3)))*x(1);
43 total_waterplane_area = midship_waterplane + bow_waterplane + aft_waterplane;
44
45 L = x(1)+x(7)+x(8);
46
47 % -------------------------------------------------------------------------
48 % ------------------------- WEIGHT DISTRIBUTION ---------------------------
49 % -------------------------------------------------------------------------
50
51 % ------------------------------ LIGHTSHIP --------------------------------
52
53 weight_data = xlsread('Weight_summary.xlsx','weight_summary');
54 steel_data = xlsread('Weight_summary.xlsx','hull_construction');
55 deadweight_data = xlsread('Weight_summary.xlsx','deadweight');
56
57 weight_data = load('weight_data.mat');
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58 steel_data = load('steel_data.mat');
59 deadweight_data = load('deadweight_data.mat');
60
61 % Weights
62 hull_weight = weight_data.weight_data(10,3)*L;
63 topside_weight = weight_data.weight_data(15,3)*L;
64 turret_weight = weight_data.weight_data(21,3)*L;
65 LWT = hull_weight + topside_weight + turret_weight;
66
67 % Steel weight
68 hull_net_steel_weight = steel_data.steel_data(1,2)*L;
69 welding_weight = steel_data.steel_data(16,2)*L;
70
71 % LCG
72 hull_LCG = weight_data.weight_data(10,5)*L;
73 topside_LCG = weight_data.weight_data(15,5)*L;
74 turret_LCG = weight_data.weight_data(21,5)*L;
75 LWT_LCG = ...

((hull_LCG*hull_weight)+(topside_LCG*topside_weight)+(turret_LCG*turret_weight))/LWT;
76
77 % VCG
78 hull_VCG = weight_data.weight_data(10,7)*x(4);
79 topside_VCG = weight_data.weight_data(15,7)*x(4);
80 turret_VCG = weight_data.weight_data(21,7)*x(4);
81 LWT_VCG = ...

((hull_VCG*hull_weight)+(topside_VCG*topside_weight)+(turret_VCG*turret_weight))/LWT;
82
83 % TCG
84 hull_TCG = weight_data.weight_data(10,9)*x(2);
85 topside_TCG = weight_data.weight_data(15,9)*x(2);
86 turret_TCG = weight_data.weight_data(17,9)*x(2);
87 LWT_TCG = ...

((hull_TCG*hull_weight)+(topside_TCG*topside_weight)+(turret_TCG*turret_weight))/LWT;
88
89 % ----------------------------- DEADWEIGHT --------------------------------
90
91 % 1) Ballast condition (100% consumables)
92 % 2) Full load condition (10% consumables)
93 % 3) Full load condition (100% consumables)
94
95 for i = 1:3
96
97 if i == 1
98 deadweight = deadweight_data.deadweight_data(23,2)*L;
99 deadweight_LCG = deadweight_data.deadweight_data(23,4)*L;

100 deadweight_VCG = deadweight_data.deadweight_data(23,8)*x(4);
101 deadweight_TCG = deadweight_data.deadweight_data(23,6)*x(2);
102
103 waterBallast_weight = deadweight_data.deadweight_data(24,2)*L;
104 waterBallast_LCG = deadweight_data.deadweight_data(24,4)*L;
105 waterBallast_VCG = deadweight_data.deadweight_data(24,8)*x(4);
106 waterBallast_TCG = deadweight_data.deadweight_data(24,6)*x(2);
107
108 cargo_weight = 0;
109 cargo_LCG = 0;
110 cargo_VCG = 0;
111 cargo_TCG = 0;
112
113 elseif i == 2
114 deadweight = deadweight_data.deadweight_data(37,2)*L;
115 deadweight_LCG = deadweight_data.deadweight_data(37,4)*L;
116 deadweight_VCG = deadweight_data.deadweight_data(37,8)*x(4);
117 deadweight_TCG = deadweight_data.deadweight_data(37,6)*x(2);
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118
119 waterBallast_weight = deadweight_data.deadweight_data(38,2)*L;
120 waterBallast_LCG = deadweight_data.deadweight_data(38,4)*L;
121 waterBallast_VCG = deadweight_data.deadweight_data(38,8)*x(4);
122 waterBallast_TCG = deadweight_data.deadweight_data(38,6)*x(2);
123
124 cargo_weight = (required_bbl_volume * barrel_fluid * ...

crude_oil_density)*1e-3;
125 cargo_LCG = 0.5*(x(1)+x(7)+x(8));
126 cargo_VCG = ((barrel_fluid*1e3)/(x(10)*x(11)))/2 + min(2,(x(2)/20));
127 cargo_TCG = 0;
128
129 elseif i == 3
130 deadweight = deadweight_data.deadweight_data(9,2)*L;
131 deadweight_LCG = deadweight_data.deadweight_data(9,4)*L;
132 deadweight_VCG = deadweight_data.deadweight_data(9,8)*x(4);
133 deadweight_TCG = deadweight_data.deadweight_data(9,6)*x(2);
134
135 waterBallast_weight = deadweight_data.deadweight_data(10,2)*L;
136 waterBallast_LCG = deadweight_data.deadweight_data(10,4)*L;
137 waterBallast_VCG = deadweight_data.deadweight_data(10,8)*x(4);
138 waterBallast_TCG = deadweight_data.deadweight_data(10,6)*x(2);
139
140 cargo_weight = (required_bbl_volume * barrel_fluid * ...

crude_oil_density)*1e-3;
141 cargo_LCG = 0.5*(x(1)+x(7)+x(8));
142 cargo_VCG = ((barrel_fluid*1e3)/(x(10)*x(11)))/2 + min(2,(x(2)/20));
143 cargo_TCG = 0;
144 end
145
146 DWT(i) = deadweight + cargo_weight + waterBallast_weight;
147 DWT_LCG(i) = ((deadweight*deadweight_LCG)+(cargo_weight*cargo_LCG)+
148 (waterBallast_weight*waterBallast_LCG))/DWT(i);
149 DWT_VCG(i) = ((deadweight*deadweight_VCG)+(cargo_weight*cargo_VCG)+
150 (waterBallast_weight*waterBallast_VCG))/DWT(i);
151 DWT_TCG(i) = ((deadweight*deadweight_TCG)+(cargo_weight*cargo_TCG)+
152 (waterBallast_weight*waterBallast_TCG))/DWT(i);
153
154 % ----------------------------- VESSEL TOTAL ------------------------------
155 draught_coeff = 1.07602574;
156
157 displacement(i) = DWT(i) + LWT;
158 LCG(i) = ((DWT_LCG(i)*DWT(i))+(LWT_LCG*LWT))./displacement(i);
159 VCG(i) = ((DWT_VCG(i)*DWT(i))+(LWT_VCG*LWT))./displacement(i);
160 TCG(i) = ((DWT_TCG(i)*DWT(i))+(LWT_TCG*LWT))./displacement(i);
161
162 displaced_volume(i) = displacement(i)/seawater_density;
163 mean_draught(i) = (displaced_volume(i)./total_waterplane_area)*draught_coeff;
164
165 assignin('base','displacement',displacement);
166
167 % -------------------------------------------------------------------------
168 % -------------------------- STABILITY CHECK ------------------------------
169 % -------------------------------------------------------------------------
170
171 KB(i) = 0.5*mean_draught(i);
172 KG(i) = VCG(i);
173
174 %I_bow = (pi*0.5*x(2)*x(8)^3)/16 + ...

((pi*0.5*x(2)*x(8))/4)*((4*x(2)*0.5)/(3*pi));
175 I_bow = (pi/16)*x(8)*(0.5*x(2))^3;
176 I_mid = (x(7)*x(2)^3)/12;
177 I_aft = (1/48)*(x(3)*x(2))*(x(3)^2+x(2)^2);
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178 I_tot = I_bow + I_mid + I_aft;
179 BM(i) = I_tot/displaced_volume(i);
180
181 GM(i) = KB(i) + BM(i) - KG(i);
182 assignin('base','GM',GM);
183
184 % Effect of free surface
185 GG(i) = ((x(10)*x(11)^3)/12)*crude_oil_density.*(1./displacement(i))*(1/4);
186 GG(1) = 0;
187
188 GM_mark(i) = GM(i) - GG(i);
189 assignin('base','GM_mark',GM_mark);
190
191 end %for
192
193 % ------------------------- WETTED SURFACE AREA ---------------------------
194
195 mean_draught = mean_draught(end);
196 assignin('base','mean_draught',mean_draught);
197
198 wetted_mid_surface = x(7)*(x(2)-2*x(6)) + pi*x(6)*x(7) + x(7)*(mean_draught-x(6));
199 wetted_bow_surface = bow_circumference*(mean_draught-x(6)) + ( 4*pi^2 ...

*((x(8)+x(2))/2)*x(6));
200 wetted_aft_surface = ((x(2)+x(3))/2)*sqrt( x(1)^2 + (x(4)-x(5))^2) + ...

x(1)*(x(4)-x(5));
201 wetted_surface = wetted_bow_surface + wetted_mid_surface + wetted_aft_surface;
202
203 bowSubVolume = bow_area*mean_draught - ...

0.25*((pi*x(6)^2)*(2*pi*((x(2)*0.5+x(8))/2)));
204 midshipSubVolume = x(2)*mean_draught*x(7) - x(7)*(0.5*pi*x(6)^2);
205 aftSubVolume = 0.5*mean_draught*x(1)*x(2);
206 hullSubVolume = bowSubVolume + midshipSubVolume + aftSubVolume;
207
208 aftLCB = (2/3)*x(1);
209 midLCB = x(1)+(0.5*x(7));
210 bowLCB = x(1)+x(7) + ((4/3)*(x(8)/pi));
211
212 LCB = ((bowSubVolume*bowLCB) + (midshipSubVolume*midLCB) + ...

(aftSubVolume*aftLCB))/hullSubVolume;
213
214 % Coefficients calculations
215 breadth_waterline = x(2);
216 block_coefficient = displaced_volume/(L * breadth_waterline * mean_draught);
217 midship_coefficient = midship_area/(x(4)*x(2));
218 prismatic_coefficient = block_coefficient/midship_coefficient;
219 waterplane_coefficient = total_waterplane_area/(L*breadth_waterline);
220 assignin('base','block_coefficient',block_coefficient);
221
222 % -------------------------------------------------------------------------
223 % -------------------------- COST ESTIMATION ------------------------------
224 % -------------------------------------------------------------------------
225
226 % Steel costs
227 baseSteelCost = 1750;
228 shapePlateCharge = 1.15;
229 cargoPlateCharge = 1.20;
230
231 % Painting costs
232 surfacePrepCost = 22.5;
233 underwaterPaintCost = 40;
234 hullDeckPaintCost = 20;
235 tankPaintCost = 10;
236 waterBallastPaintCost = 15;
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237
238 % ---------------------- SURFACE ESTIMATION -------------------------------
239
240 % Cargo tanks
241 %numTanks = 12;
242 %tankVolume = (required_bbl_volume*barrel_fluid*1e-3)/numTanks;
243 tankBreadth = x(12)/2;
244 tankLength = x(10)/6;
245 tankDepth = x(11);
246 cargoTankSurface = (2*(tankBreadth*tankLength) + 2*(tankDepth*tankBreadth) + ...

2*(tankDepth*tankLength))*12 ...
247 + 2*x(11)*x(12) + 2*x(11)+x(10) + 2*x(10)*x(12);
248
249 % Waterballast tanks
250 wbHeight = (25.27/26.6)*x(4); % Possible height of tanks with 1.33 metre tanktop
251 wbLength = x(7)/10; % Possible length of tanks
252 wbWidth = 0.5*x(2); % Width of tanks from centre of vessel
253 wbHullSurface = (wbHeight-x(6))*wbLength + (wbWidth-x(6))*wbLength + ...

(0.5*pi*x(6)*wbLength);
254 wbSideSurface = 2*((wbWidth-x(6))*min(2,(x(2)/20)) + ...

(wbHeight-x(6))*min(2,(x(2)/15)) + (0.25*pi*x(6)^2));
255 wbTopSurface = min(2,(x(2)/15))*wbLength;
256 wbInnerSurface = min(2,(x(2)/20))*wbLength;
257 wbBigFlatSurface = (wbWidth-x(6))*wbLength + (wbHeight-x(6))*wbLength;
258 wbTankSurface = wbHullSurface + wbSideSurface + wbTopSurface + wbInnerSurface + ...

wbBigFlatSurface;
259
260 waterBallastSurface = 20*wbTankSurface;
261 waterBallastVolume = 20*(min(2,(x(2)/20))*tankBreadth*tankLength + ...

min(2,(x(2)/15))*tankLength*tankDepth - 0.25*pi*x(6)^2*tankLength);
262
263 % Other tanks
264 slopTankSurface = 0;
265 otherTanksSurface = 0;
266
267 % -------------------------- COATING COSTS --------------------------------
268
269 % Surface preparation cost
270 totalSurfaceAreaShip = cargoTankSurface + 2*total_hull_surface + ...
271 total_deck_area + waterBallastSurface + slopTankSurface + otherTanksSurface;
272
273 surfacePrepCost_total = totalSurfaceAreaShip * surfacePrepCost;
274
275 % Painting costs
276 underwaterPaintCost_total = wetted_surface*underwaterPaintCost;
277 deckPaintCost_total = total_deck_area*hullDeckPaintCost;
278 hullsidePaintCost_total = 2*(total_hull_surface - ...

wetted_surface)*hullDeckPaintCost;
279 cargoPaintCost_total = cargoTankSurface * tankPaintCost;
280 waterBallastPaintCost_total = waterBallastSurface * waterBallastPaintCost;
281
282 paintingCost_total = underwaterPaintCost_total + deckPaintCost_total + ...
283 hullsidePaintCost_total + cargoPaintCost_total + waterBallastPaintCost_total;
284
285 % --------------------------- STEEL COSTS ---------------------------------
286
287 hullsideSteelCost = (hull_net_steel_weight)*baseSteelCost*shapePlateCharge;
288 weldingCost = (welding_weight)*baseSteelCost*shapePlateCharge;
289 steelCost_total = hullsideSteelCost + weldingCost;
290
291 % --------------------- SUM OF TOTAL COSTS --------------------------------
292 totalCost = surfacePrepCost_total + paintingCost_total + steelCost_total;
293
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294 % ------------ STABILITY AND MOTION SICKNESS CRITERIA ---------------------
295
296 % Stability criteria for all loading conditions and FSM
297 if (min(GM) < 0.5 || min(GM_mark) < 0.5)
298 totalCost = 1e12;
299 end
300
301 rP = 10000; % chosen return-period (years)
302 wa = 150; % incient wave angle (180 = head sea)
303 MSDV = verticalMotions(rP,x,wa);
304
305 if MSDV > 15
306 totalCost = 1e20;
307 end
308 % % Check of MSDV value for stiff ships
309 % if min(GM(end),GM_mark(end)) > 10
310 % MSDV = verticalMotions(rP,x,wa);
311 % assignin('base','MSDV',MSDV);
312 % if MSDV > 15
313 % totalCost = 1e12;
314 % end
315 % end
316
317 if waterBallastVolume*seawater_density < waterBallast_weight(1)
318 totalCost = 1e12;
319 end
320
321 end

F.5 deckArea.m

1 function total_deck_area = deckArea(x)
2
3 % x(1) = length of aft body
4 % x(2) = breadth at midship at design waterline
5 % x(3) = breadth at aft body
6 % x(4) = hull depth at midship
7 % x(5) = depth of upper aft hull
8 % x(6) = radius of hull bottom
9 % x(7) = length of midship body

10 % x(8) = bow forward radius
11 % x(9) = draught at aft
12 % x(10) = length of cargo tank
13 % x(11) = breadth of cargo tank
14 % x(12) = depth of cargo tank
15
16 % Deck area
17 aft_deck_area = ((x(3)+x(2))/2)*x(1);
18 midship_deck_area = x(7)*x(2);
19 bow_deck_area = ((pi*0.5*x(2)*x(8))/4)*2;
20 total_deck_area = aft_deck_area + midship_deck_area + bow_deck_area;
21 effective_deck_area = total_deck_area - bow_deck_area;
22
23 end %function
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F.6 conditions.m

1 function [c,ceq] = conditions(x)
2
3 % EXAMPLE: ci = A - B -----> A <= B
4
5 % Hull limitations
6 c1 = x(3) - x(2);
7 c2 = x(2) - x(7);
8 c3 = x(1) - x(7);
9 c4 = x(4) - x(2);

10 c5 = x(9) - x(7);
11 c6 = x(9) - x(4);
12 c7 = x(1) - x(8);
13 c14 = x(2) - 55;
14
15 % Cargo limitations
16 c8 = x(12) - x(11);
17 c9 = x(10) - x(7);
18 c10 = (x(11)+min(2,(x(2)/15))) - x(2);
19 c11 = (x(12)+ min(2,(x(2)/20)))- x(4); % DNVGL-RU-SHIP Pt.3 Ch.2.
20 c12 = 1.58987e5 - x(10)*x(11)*x(12);
21 c13 = x(10)*x(11)*x(12) - 1.6e5;
22
23 c = [c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14];
24
25 ceq = [];
26
27 end

F.7 objectiveFunction.m

1 function y = objectiveFunction(x)
2
3 % Initialise for two objectives
4 y = zeros(2,1);
5
6 % Compute first objective
7 y(1) = -deckArea(x);
8
9 % Compute second objective

10 y(2) = getCost(x);
11
12 end % function
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F.8 verticalMotions.m

1 function MSDV = verticalMotions(rP,x,wa)
2
3 if rP == 10000
4 Hs = 22.2;
5 Tp = 21.5;
6 end
7
8 getParticulars;
9

10 g = 9.81; % gravitational constant
11 rho = 1025; % water density
12 v = 0; % Forward velocity
13 V = v*0.51444444; % vessel speed in m/s
14 beta = wa*(pi/180); % wave heading angle (head waves is 180 deg)
15 B0 = x(2); % maximum waterline breadth
16 Cb = block_coefficient; % block coefficient
17 T = mean_draught; % draught
18 L = x(1)+x(7)+x(8); % waterline length
19 Fn = V/(sqrt(g*L)); % Froude number
20 % longitudinal position from the centre of gravity (x=0 means COG)
21 pos = 96;
22 xpos = (L/2)*(pos/100);
23
24 Tn = 17.5;
25 D = displacement*1000; ...

...
;

26 Gmt = 8.299;
27
28 delta = 0.8957;
29 gamma = 0.2234;
30 my = 0.003;
31
32 B1 = gamma*B0;
33 A0 = (Cb*B0*T)/(delta+gamma*(1-delta));
34 A1 = gamma*A0;
35 C44 = g*D*Gmt;
36
37 R = x(2)/mean_draught;
38
39 if R >= 3 && R <= 6
40 a = 0.225*(B0/T)-0.286;
41 b = -0.11*(B0/T)-2.550;
42 d = 0.033*(B0/T)-1.419;
43 else
44 a = -3.94*(B0/T)+13.69;
45 b = -2.12*(B0/T)-1.89;
46 d = 1.16*(B0/T)-7.97;
47 end
48
49 %-------------------------------------------------------------------------%
50
51 period = linspace(13.1,22.2,20);
52 omega = (2*pi)./period;
53
54 for i = 1:length(omega)
55
56 k(i) = omega(i)^2/g;
57 omega_line(i) = omega(i) - k(i)*V*cos(beta);
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58 alpha(i) = 1 - Fn*sqrt(k(i)*L)*cos(beta);
59
60 % Damping ratio between incoming & diffracted wave amplitudes
61 A(i) = 2*sin((omega_line(i)^2*B0)/(2*g))*exp(-(omega_line(i)^2*T)/g);
62
63 % Additional variables
64 k_e(i) = abs(k(i)*cos(beta)); % effective wave number
65 f(i) = (((1-k(i)*T)^2) + (((A(i)^2)/(k(i)*B0*(alpha(i)^3)))^2))^0.5;
66 kappa(i) = exp(-k_e(i)*T); % Smith correction factor
67
68 % Forcing functions
69 F(i) = kappa(i)*f(i) * (2/(k_e(i)*L)) * sin((k_e(i)*L)/2);
70 G(i) = kappa(i)*f(i) * (24/(((k_e(i)*L)^2)*L)) * ( sin((k_e(i)*L)/2)...
71 - ((k_e(i)*L)/2)*cos((k_e(i)*L)/2) );
72
73 eta(i) = (sqrt(((1-2*k(i)*T*alpha(i)^2)^2)+ ...
74 ((A(i)^2/(k(i)*B0*alpha(i)^2))^2)))^-1;
75
76 % Calculation of B44
77 b0_i = (1/(rho*A0*B0^2))*(sqrt(B0/(2*g)));
78 b1_i = (1/(rho*A1*B1^2))*(sqrt(B1/(2*g)));
79 b440(i) = (a*exp(b*(omega_line(i).^-1.3))*(omega_line(i).^d))/b0_i;
80 b441(i) = (a*exp(b*(omega_line(i).^-1.3))*(omega_line(i).^d))/b1_i;
81 kappa_square(i) = b441(i)./b440(i);
82
83 % Critical damping due to viscous effects added to B44
84 B44(i) = L * b440(i)*(delta+kappa_square(i)*(1-delta));
85 B44_krit(i) = ( C44 * Tn)/pi;
86 B44_tot(i) = B44(i) + my*B44_krit(i);
87
88
89 % Amplitude of the excitation moment
90 if beta == pi/2
91 M(i) = sqrt(((rho*g^2)/omega_line(i))*b440(i))*(delta+kappa(i)...
92 *(1-delta))*L;
93 else
94 M(i) = abs(sin(beta))*sqrt((rho*g^2)/omega(i))*(2/k_e(i))*...
95 sqrt(b440(i))* ( sin(0.5*delta*L*k_e(i))^2 + kappa_square(i)...
96 *sin(0.5*(1-delta)*L*k_e(i))^2 + 2*kappa(i)*sin(0.5*delta*L*...
97 k_e(i))*sin(0.5*(1-delta)*L*k_e(i))*cos(0.5*delta*L*k_e(i)))^(0.5);
98
99 en(i) = abs(sin(beta))*(sqrt((rho*g^2)/omega(i)))*(2/k_e(i))*...

100 sqrt(b440(i));
101 to(i) = 0.5*delta*L*k_e(i);
102
103 tre(i) = ((sin(to(i))^2) + kappa_square(i)*...
104 (sin(0.5*(1-delta)*L*k_e(i))^2)+ 2*kappa(i)*sin(to(i))*...
105 sin(0.5*(1-delta)*L*k_e(i))*cos(to(i)))^0.5;
106
107 M(i) = en(i)*tre(i);
108 end
109
110 % Frequency responsose function in roll
111 Phi_phi(i) = abs(M(i))/((-omega_line(i)^2 * (Tn/(2*pi))^2 +1 )^2 * ...
112 C44^2 + omega_line(i)^2 * B44_tot(i)^2)^0.5;
113
114 % Frequency response functions
115 Phi_w(i) = eta(i).*F(i); % Heave
116 Phi_theta(i) = eta(i).*G(i); % Pitch
117
118 % Vertical motion at position x
119 Phi_u(i) = sqrt(Phi_w(i).^2 + xpos^2 * Phi_theta(i).^2);
120
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121 % Vertical acceleration at position x
122 Phi_v(i) = -(omega_line(i)^2) * Phi_u(i);
123
124 % Pitch acceleration
125 Phi_p(i) = -(omega_line(i)^2) * Phi_theta(i);
126
127 % Roll acceleration
128 Phi_a(i) = -(omega_line(i)^2) * Phi_phi(i);
129
130
131 end %for
132
133 A = 0.5*Hs;
134 HeaveAmp = abs(Phi_v(end)*A);
135
136 %%Time specifications:
137 Fs = 10; % samples per second
138 dt = 1/Fs; % seconds per sample
139 StopTime = 7200; % seconds
140 t = (0:dt:StopTime-dt)'; % seconds
141 %%Sine wave:
142 Fc = 1/Tp; % hertz
143
144 % Direct integration of heave acceleration function
145 fun = @(t) (abs(HeaveAmp*sin(2*pi*Fc*t)).^2);
146 q = integral(fun,0,7200);
147 MSDV = sqrt(q);
148
149 end %function
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F.9 optimisationAnalysis.m

1 clear
2 load('allResults11.txt');
3 data = allResults11;
4
5 for i = 1:length(data)
6
7 % Sorting by algorithm
8 if data(i,2) == 1
9 GAarea(i) = data(i,15);

10 GAcost(i) = data(i,16);
11 gaPareto(i) = data(i,17);
12 elseif data(i,2) == 2
13 HYarea(i) = data(i,15);
14 HYcost(i) = data(i,16);
15 hyPareto(i) = data(i,17);
16 elseif data(i,2) == 3
17 HGarea(i) = data(i,15);
18 HGcost(i) = data(i,16);
19 hgPareto(i) = data(i,17);
20 end
21
22 % Sorting by initial value matrix
23 if data(i,20) == 1
24 iteratedx0Area(i) = -data(i,15);
25 iteratedx0Cost(i) = data(i,16);
26
27 % Sorting based on pareto fraction
28 if data(i,19) == 0.3
29 pfArea1(i) = -data(i,15);
30 pfCost1(i) = data(i,16);
31 elseif data(i,19) == 0.5
32 pfArea2(i) = -data(i,15);
33 pfCost2(i) = data(i,16);
34 elseif data(i,19) == 0.7
35 pfArea3(i) = -data(i,15);
36 pfCost3(i) = data(i,16);
37 elseif data(i,19) == 0.9
38 pfArea4(i) = -data(i,15);
39 pfCost4(i) = data(i,16);
40 end
41
42 if data(i,19) > 0.3
43 % Sorting by MSG value
44 if data(i,21) == 250
45 MSG250Area(i) = -data(i,15);
46 MSG250Cost(i) = data(i,16);
47 MSG250Pareto(i) = data(i,17);
48 elseif data(i,21) == 500
49 MSG500Area(i) = -data(i,15);
50 MSG500Cost(i) = data(i,16);
51 MSG500Pareto(i) = data(i,17);
52 elseif data(i,21) == 1000
53 MSG1000Area(i) = -data(i,15);
54 MSG1000Cost(i) = data(i,16);
55 MSG1000Pareto(i) = data(i,17);
56 end
57 end
58
59 elseif data(i,20) == 2
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60 tilfeldigx0Area(i) = -data(i,15);
61 tilfeldigx0Cost(i) = data(i,16);
62 end
63
64 end
65
66 GAarea = -GAarea(GAarea<0);
67 GAcost = GAcost(GAcost>0)*1e-6;
68 HYarea = -HYarea(HYarea<0);
69 HYcost = HYcost(HYcost>0)*1e-6;
70 HGarea = -HGarea(HGarea<0);
71 HGcost = HGcost(HGcost>0)*1e-6;
72
73 gaPareto = gaPareto(gaPareto>0);
74 hyPareto = hyPareto(hyPareto>0);
75 hgPareto = hgPareto(hgPareto>0);
76
77 iteratedx0Area = iteratedx0Area(iteratedx0Area>0);
78 iteratedx0Cost = iteratedx0Cost(iteratedx0Cost>0);
79 tilfeldigx0Area = tilfeldigx0Area(tilfeldigx0Area>0);
80 tilfeldigx0Cost = tilfeldigx0Cost(tilfeldigx0Cost>0);
81
82 pfArea1 = pfArea1(pfArea1>0);
83 pfCost1 = pfCost1(pfCost1>0);
84 pfArea2 = pfArea2(pfArea2>0);
85 pfCost2 = pfCost2(pfCost2>0);
86 pfArea3 = pfArea3(pfArea3>0);
87 pfCost3 = pfCost3(pfCost3>0);
88 pfArea4 = pfArea4(pfArea4>0);
89 pfCost4 = pfCost4(pfCost4>0);
90
91 MSG250Area = MSG250Area(MSG250Area>0);
92 MSG250Cost = MSG250Cost(MSG250Cost>0);
93 MSG250Pareto = MSG250Pareto(MSG250Pareto>0);
94 MSG500Area = MSG500Area(MSG500Area>0);
95 MSG500Cost = MSG500Cost(MSG500Cost>0);
96 MSG500Pareto = MSG500Pareto(MSG500Pareto>0);
97 MSG1000Area = MSG1000Area(MSG1000Area>0);
98 MSG1000Cost = MSG1000Cost(MSG1000Cost>0);
99 MSG1000Pareto = MSG1000Pareto(MSG1000Pareto>0);

100
101 ratioGA = (mean(GAcost)/mean(GAarea))*1e6;
102 ratioHY = (mean(HYcost)/mean(HYarea))*1e6;
103 ratioHG = (mean(HGcost)/mean(HGarea))*1e6;
104 ratioGA2 = min(GAcost./GAarea)*1e6;
105 ratioHY2 = min(HYcost./HYarea)*1e6;
106 ratioHG2 = min(HGcost./HGarea)*1e6;
107
108 MSGvector(1:length(MSG250Area),1) = MSG250Area;
109 MSGvector(1:length(MSG250Area),2) = MSG250Cost;
110 MSGvector(1:length(MSG250Area),3) = MSG250Pareto;
111 MSGvector(length(MSG250Area)+1:length(MSG250Area)+length(MSG500Area),1) = ...

MSG500Area;
112 MSGvector(length(MSG250Area)+1:length(MSG250Area)+length(MSG500Area),2) = ...

MSG500Cost;
113 MSGvector(length(MSG250Area)+1:length(MSG250Area)+length(MSG500Area),3) = ...

MSG500Pareto;
114 MSGvector(length(MSG250Area)+length(MSG500Area)+1:length(MSG250Area)+length(MSG500Area)
115 +length(MSG1000Area),1) = MSG1000Area;
116 MSGvector(length(MSG250Area)+length(MSG500Area)+1:length(MSG250Area)+length(MSG500Area)
117 +length(MSG1000Area),2) = MSG1000Cost;
118 MSGvector(length(MSG250Area)+length(MSG500Area)+1:length(MSG250Area)+length(MSG500Area)
119 +length(MSG1000Area),3) = MSG1000Pareto;
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120
121 %%
122
123 % Normalize data to find closest point to Pareto
124 normArea = -data(:,15);
125 normCost = data(:,16);
126 zArea = (normArea - min(normArea))./(max(normArea) - min(normArea));
127 zCost = (normCost - min(normCost))./(max(normCost) - min(normCost));
128 rz = [max(zArea) min(zCost)];
129 valueRatio = normCost./normArea;
130
131 for k = 1:length(zArea)
132 d(k) = sqrt((rz(1)-zArea(k))^2 + (zCost(k)-rz(2))^2);
133 end
134
135 % [maxi,index1] = min(data(:,15));
136 % [mini,index2] = min(data(:,16));
137
138 [distMin,index1] = min(d);
139 [valueMax,index2] = min(valueRatio);
140
141 % Determine data range for optimal deck area
142 ar1 = data(index1,2);
143 startIndex1 = index1;
144 endIndex1 = index1;
145 while data(startIndex1,2) == ar1
146 if data(index1-1,2) == ar1
147 startIndex1 = startIndex1-1;
148 end
149 end
150 while data(endIndex1,2) == ar1
151 if data(index1+1,2) == ar1
152 endIndex1 = endIndex1+1;
153 end
154 end
155 rangeArea = startIndex1+1:endIndex1-1;
156
157 % Determine data range for optimal CAPEX
158 ar2 = data(index2,2);
159 startIndex2 = index2;
160 endIndex2 = index2;
161 while data(startIndex2,2) == ar2
162 if data(index2-1,2) == ar2
163 startIndex2 = startIndex2-1;
164 end
165 end
166 while data(endIndex2,2) == ar2
167 if data(index2+1,2) == ar2
168 endIndex2 = endIndex2+1;
169 end
170 end
171 rangeCAPEX = startIndex2+1:endIndex2-1;
172
173 % Output
174 x1 = data(index1,3:14);
175 x2 = data(index2,3:14);
176
177 % Calculation for GZ curves
178 shipData1 = xlsread('stability_curves.xlsx','DeckArea');
179 shipData2 = xlsread('stability_curves.xlsx','CAPEX');
180
181 % Deck area
182 [maxGZLC01,indexLC01] = max(shipData1(:,2));
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183 [maxGZLC11,indexLC11] = max(shipData1(:,3));
184 [maxGZLC21,indexLC21] = max(shipData1(:,4));
185 GMLC01 = 20.60;
186 GMLC11 = 9.54;
187 GMLC21 = 9.69;
188
189 % CAPEX
190 [maxGZLC02,indexLC02] = max(shipData2(:,2));
191 [maxGZLC12,indexLC12] = max(shipData2(:,3));
192 [maxGZLC22,indexLC22] = max(shipData2(:,4));
193 GMLC02 = 24.68;
194 GMLC12 = 10.81;
195 GMLC22 = 11.05;
196 %%
197 close all
198
199 % Large figure scatter plots
200 figure('units','normalized','outerposition',[0 0 1 1])
201 sz = 4;
202
203 subplot(2,2,1)
204 scatter(GAarea,GAcost,sz,'c','filled')
205 hold on
206 grid on
207 scatter(HYarea,HYcost,sz,'m','filled')
208 scatter(HGarea,HGcost,sz,'y','filled')
209 ylabel('CAPEX (USD mill.')
210 xlabel('Deck area (m^2)')
211 legend('GA','HY','HG','Location','northwest')
212 title('Variation of optimisation algorithm')
213
214 subplot(2,2,2)
215 scatter(iteratedx0Area,iteratedx0Cost,sz,[0.4660 0.6740 0.1880],'filled')
216 hold on
217 grid on
218 scatter(tilfeldigx0Area,tilfeldigx0Cost,sz,[0.6350 0.0780 0.1840],'filled')
219 ylabel('CAPEX (USD mill.')
220 xlabel('Deck area (m^2)')
221 legend('Iterated','Random','Location','northwest')
222 title('Variation of initial values x_0')
223
224 subplot(2,2,3)
225 scatter(pfArea1,pfCost1*1e-6,sz,[0 0.4470 0.7410],'filled')
226 hold on
227 grid on
228 scatter(pfArea2,pfCost2*1e-6,sz,[0.8500 0.3250 0.0980],'filled')
229 scatter(pfArea3,pfCost3*1e-6,sz,[0.4940 0.1840 0.5560],'filled')
230 scatter(pfArea4,pfCost4*1e-6,sz,[1 0 0],'filled')
231 legend('P_F = 0.3','P_F = 0.5','P_F = 0.7','P_F = 0.9','Location','northwest')
232 xlabel('Deck area [m^2]')
233 ylabel('CAPEX [USD mill.]')
234 title('Variation of Pareto fraction, P_F (x_0 = iterated)')
235
236 subplot(2,2,4)
237 scatter(MSG250Area,MSG250Cost*1e-6,sz,'b','filled')
238 hold on
239 grid on
240 scatter(MSG500Area,MSG500Cost*1e-6,sz,'r','filled')
241 scatter(MSG1000Area,MSG1000Cost*1e-6,sz,'g','filled')
242 ylabel('CAPEX (USD mill.')
243 xlabel('Deck area (m^2)')
244 legend('250','500','1000','Location','northwest')
245 title('Variation of MaxStallGenerations (x_0 = iterated, P_F > 3)')
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246 %%
247 % GZ curve 1
248 figure % Deck area
249 subplot(2,1,1)
250 hold on
251 grid on
252
253 plot(shipData1(:,1),shipData1(:,2),'b') %LC0
254 plot(shipData1(:,1),shipData1(:,3),'r') %LC1
255 plot(shipData1(:,1),shipData1(:,4),'g') %LC2
256 plot([0 (180/pi)],[0 GMLC01],'--b')
257 plot([0 (180/pi)],[0 GMLC21],'--g')
258 plot([0 (180/pi)],[0 GMLC11],'--r')
259 plot([shipData1(indexLC01,1) shipData1(indexLC01,1)],[0 maxGZLC01],'-.b')
260 plot([shipData1(indexLC21,1) shipData1(indexLC21,1)],[0 maxGZLC21],'-.g')
261 plot([shipData1(indexLC11,1) shipData1(indexLC11,1)],[0 maxGZLC11],'-.r')
262
263 set(gca,'xtick',0:5:60)
264 ylim([0 12])
265 xlabel('Heeling angle (deg)')
266 ylabel('Righting arm GZ (m)')
267 legend(['LC_0 (GM = ' num2str(GMLC01),')'],['LC_1 (GM = ' num2str(GMLC11),')'],
268 ['LC_2 (GM = ' num2str(GMLC21),')'],'Location','northwest')
269 title({(['Stability curve for vessel no. ' num2str(index1)]),('IMO MSC.267(85) ...

- Minimum design criteria applicable to all ships')})
270
271 % GZ curve 2
272 subplot(2,1,2) %CAPEX
273 hold on
274 grid on
275
276
277 plot(shipData2(:,1),shipData2(:,2),'b') %LC0
278 plot(shipData2(:,1),shipData2(:,3),'r') %LC1
279 plot(shipData2(:,1),shipData2(:,4),'g') %LC2
280 plot([0 (180/pi)],[0 GMLC02],'--b')
281 plot([0 (180/pi)],[0 GMLC12],'--r')
282 plot([0 (180/pi)],[0 GMLC22],'--g')
283 plot([shipData2(indexLC02,1) shipData2(indexLC02,1)],[0 maxGZLC02],'-.b')
284 plot([shipData2(indexLC12,1) shipData2(indexLC12,1)],[0 maxGZLC12],'-.r')
285 plot([shipData2(indexLC22,1) shipData2(indexLC22,1)],[0 maxGZLC22],'-.g')
286
287 set(gca,'xtick',0:5:60)
288 ylim([0 12])
289 xlabel('Heeling angle (deg)')
290 ylabel('Righting arm GZ (m)')
291 legend(['LC_0 (GM = ' num2str(GMLC02),')'],['LC_1 (GM = ' ...

num2str(GMLC12),')'],['LC_2 (GM = ' ...
num2str(GMLC22),')'],'Location','northwest')

292 title({(['Stability curve for vessel no. ' num2str(index2)]),('IMO MSC.267(85) ...
- Minimum design criteria applicable to all ships')})

293
294
295 %%
296
297 % Best pareto value and most value-for-money
298 figure
299 scatter(normArea,normCost*1e-6,4,'filled')
300 hold on
301 grid on
302 scatter(normArea(index1),normCost(index1)*1e-6,'g')
303 scatter(normArea(index2),normCost(index2)*1e-6,'r')
304 scatter(max(normArea),min(normCost)*1e-6,'+k')
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305 xlabel('Deck area (m^2)')
306 ylabel('CAPEX (USD mill)')
307 legend('All data',['Closest to Pareto front (Index no. ' ...

num2str(index1),')'],['Best value-for-money (Index no. ' ...
num2str(index2),')'],['Pareto ref. point'],'Location','northwest')

308
309 %%
310
311
312 % Save for later use
313 save('x1.mat','x1')
314 save('x2.mat','x2')
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F.10 motionResults.m

1 clear
2 vesselNo = 4843;
3
4 longCOG = xlsread('Vessel_motions_Pareto.xlsx','Long_COG');
5 longCOG2 = xlsread('Vessel_motions.xlsx','Long_COG');
6 longHel = xlsread('Vessel_motions_Pareto.xlsx','Long_Heli');
7 msData = xlsread('Vessel_motions_Pareto.xlsx','MSDV');
8 msData2 = xlsread('Vessel_motions.xlsx','MSDV');
9 raoCOG = xlsread('Vessel_motions_Pareto.xlsx','RAO_COG');

10
11 heliCrit = xlsread('Vessel_motions_Pareto.xlsx','Heli_crit');
12 opCrit = xlsread('Vessel_motions.xlsx','Operation_crit');
13 specData = xlsread('Vessel_motions_Pareto.xlsx','Spectrum');
14 specData1 = flipud(specData(:,1:2));
15 specData2 = specData(1:25,4:5);
16
17 Tp = heliCrit(:,1);
18 Rp = longCOG(1:7,1);
19 wP = linspace(5,25,21);
20 Rp2 = [1 5 10 20 50 100 1000 10000];
21 heading = [0.6 0.3 0.1];
22
23 loadCases = [16.5 13.1; 17.9 15.3; 18.9 16.9; 19.2 17.5; 20.4 19.9; 21.5 22.2];
24 labels = {'1-Year','10-Year','50-Year','100-Year','1k-Year','10k-Year'};
25
26 hsPoint = zeros(length(specData1),1);
27 tpPoint = zeros(length(specData2),1);
28
29 for i = 1:length(specData1)
30 hsPoint(i) = specData1(i,2)/sum(specData1(:,2));
31 end
32
33 for j = 1:length(specData2)
34 tpPoint(j) = specData2(j,2)/sum(specData2(:,2));
35 end
36
37 totalPointHs = cumsum(hsPoint);
38 totalPointTp = cumsum(tpPoint);
39 %% Statistical data for wave spectrum
40 ax1 = figure;
41
42 ax11 = subplot(1,2,1);
43 grid on
44 hold on
45 plot(specData1(:,1),totalPointHs*100,'LineWidth',1.5)
46 plot([4.5 4.5],[0 totalPointHs(10)*100],':r','LineWidth',1.5)
47 plot([0 4.5],[totalPointHs(10)*100 totalPointHs(10)*100],':r','LineWidth',1.5)
48 plot([5 5],[0 totalPointHs(11)*100],':r','LineWidth',1.5)
49 plot([0 5],[totalPointHs(11)*100 totalPointHs(11)*100],':r','LineWidth',1.5)
50 xlabel('Significant wave height, H_s (m)')
51 ylabel('Percentage of time (%)')
52 title('Cumulative probability of significant wave height')
53 set(gca,'xtick',0:2:18)
54 xlim([0 18])
55 set(gca,'LooseInset',get(gca,'TightInset'));
56 ax11.Position = [0.05 0.1162 0.42 0.8065];
57
58 ax12 = subplot(1,2,2);
59 hold on
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60 plot(specData2(:,1),totalPointTp*100,'LineWidth',1.5)
61 plot([15 15],[0 totalPointTp(16)*100],':r','LineWidth',1.5)
62 plot([0 15],[totalPointHs(16)*100 totalPointHs(16)*100],':r','LineWidth',1.5)
63 grid on
64 xlabel('Peak wave period [sec]')
65 ylabel('Percentage of time (%)')
66 title('Cumulative probability of wave peak period')
67 set(gca,'xtick',0:2:24)
68 xlim([0 24])
69 set(gca,'LooseInset',get(gca,'TightInset'));
70 ax12.Position = [0.56 0.1162 ax11.Position(3) ax11.Position(4)];
71
72 ax1.Position = [622 485 993 420];
73 printName = 'M:\Thesis\Master thesis\IMAGES\waveProbabilities.png';
74 saveas(gcf,printName)
75
76
77 %% MSDV with Hs range [5,20]
78
79 ax2 = figure;
80 plot(wP,msData(:,12),wP,msData(:,11),wP,msData(:,10),wP,msData(:,9),'LineWidth',1.05)
81 grid on
82 hold on
83 plot([5 25],[15 15],'-.k','LineWidth',1.5)
84 xlabel('Wave peak period [sec]')
85 ylabel('MSDV [m/s^{1.5}]')
86 set(gca,'xtick',5:1:25)
87 legend('H_s = 20 m','H_s = 15 m','H_s = 10 m','H_s = 5 ...

m','Threshold','Location','northeast')
88 title({'Motion sickness dose value according to ISO 2631-1:1997',...
89 'Duration of exposure 2.0 hours. Wave heading \beta = 30^o','Vessel No. 4843'})
90 set(gca,'LooseInset',get(gca,'TightInset'));
91 ax2.Position = [482 353 990 450];
92 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\MSDV_ValueVessel(4843).png')
93
94 %% MSDV criteria for both vessels (with applied heading probability)
95
96 MSDVcrit4843 = heading(1)*msData(:,15) + heading(2)*msData(:,16) + ...

heading(3)*msData(:,17);
97 MSDVcrit1864 = heading(1)*msData2(:,15) + heading(2)*msData2(:,16) + ...

heading(3)*msData2(:,17);
98
99 ax3 = figure;

100 plot(msData(:,14),MSDVcrit4843,'b','linewidth',1.05)
101 hold on
102 grid on
103 plot(msData2(:,14),MSDVcrit1864,'r','linewidth',1.05)
104 scatter(loadCases(:,1),loadCases(:,2),20,'filled','k')
105 text(loadCases(:,1),loadCases(:,2),labels,'VerticalAlignment','bottom',
106 'HorizontalAlignment','right')
107 xlabel('Peak period, Tp [sec]')
108 ylabel('Significant wave height, H_s [m]')
109 legend('Vessel 4843','Vessel 1864','Load cases','Location','southeast')
110 set(gca,'xtick',3:1:25)
111 xlim([3 25])
112 title({'Maximum operating criteria for MSDV < 15. Duration of exposure 2.0 ...

hours','Location: accommodation structure','Applied heading probabilities'})
113 set(gca,'LooseInset',get(gca,'TightInset'));
114 ax3.Position = [482 290 990 513];
115 % saveas(gcf,'M:\Thesis\Master thesis\IMAGES\MSDV_criteria_bothVessels.png')
116
117 %% MSDV location dependent
118
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119 COG30 = load('M:\Thesis\Master thesis\ShipX ...
Results\ParetoVessel\MSDV_COG_30deg.mpl');

120 Acc30 = load('M:\Thesis\Master thesis\ShipX ...
Results\ParetoVessel\MSDV_Acc_30deg.mpl');

121 ULS = [13.1 15.3 16.9 17.5 19.9 22.2];
122 Acc30Mod = [7.3898 8.6309 9.5334 9.8719 11.2258 12.5232];
123 COG30Mod = [2.8744 3.3571 3.7082 3.8398 4.3665 4.8711];
124
125 ax35 = figure;
126 plot(Acc30(:,1),Acc30(:,2),'-ob',COG30(:,1),COG30(:,2),'-db','LineWidth',1.05)
127 grid on
128 hold on
129 plot(ULS,Acc30Mod,'-or',ULS,COG30Mod,'-dr','LineWidth',1.05)
130 % plot([13 23],[15 15],'-.k','LineWidth',0.9)
131 ylabel('MSDV [m/s^{1.5}]')
132 xlabel('Significant wave height, H_s [m]')
133 legend('Accomodation (ShipX)','Centre of gravity (ShipX)','Accomodation ...

(Model)','Centre of gravity (Model)','Location','east')
134 set(gca,'xtick',13:0.5:23,'YMinorTick','on','ytick',2:2:24)
135 set(gca,'LooseInset',get(gca,'TightInset'));
136 ylim([2 24])
137 title({'Motion sickness dose value (MSDVz)','Wave heading \beta = 30^o. Vessel ...

No. 4843'})
138 ax35.Position = [482 353 990 450];
139 % saveas(gcf,'M:\Thesis\Master thesis\IMAGES\MSDV_location.png')
140
141 %% Sensitivity with variable MSDV
142
143 loct = [0.5 0.5];
144
145 ax4 = figure;
146
147 ax41 = subplot(1,2,1);
148 plot(msData2(:,14),msData2(:,20),msData2(:,14),msData2(:,21),msData2(:,14),msData2(:,17),
149 'LineWidth',1.05)
150 grid on
151 hold on
152 scatter(loadCases(:,1),loadCases(:,2),20,'filled','k')
153 text(loadCases(:,1),loadCases(:,2),labels,
154 'VerticalAlignment','bottom','HorizontalAlignment','right')
155 xlabel('Tp [sec]')
156 ylabel('H_s [m]')
157 legend({'MSDV_{max} = 21','MSDV_{max} = 18','MSDV_{max} = ...

15'},'Location','south','NumColumns',3)
158 set(gca,'xtick',0:1:25)
159 xlim([7 25]); ylim([7 24])
160 title('Vessel No. 1864')
161 set(gca,'LooseInset',get(gca,'TightInset'));
162 ax41.Position = [0.05 0.1162 0.42 0.7];
163
164 ax42 = subplot(1,2,2);
165 plot(msData(:,14),msData(:,21),msData(:,14),msData(:,20),msData(:,14),msData(:,19),
166 'LineWidth',1.05)
167 grid on
168 hold on
169 scatter(loadCases(:,1),loadCases(:,2),20,'filled','k')
170 text(loadCases(:,1),loadCases(:,2),labels,'VerticalAlignment','bottom',
171 'HorizontalAlignment','right')
172 xlabel('Tp [sec]')
173 ylabel('H_s [m]')
174 legend({'MSDV_{max} = 21','MSDV_{max} = 18','MSDV_{max} = ...

15'},'Location','south','NumColumns',3)
175 set(gca,'xtick',0:1:25)
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176 xlim([7 25]); ylim([7 24])
177 title('Vessel No. 4843')
178 ax42.Position = [0.56 0.1162 ax41.Position(3) ax41.Position(4)];
179
180 sgtitle({'Maximum operating criteria for MSDV. Duration of exposure 2.0 hours',
181 'Location: accommodation structure. Heading \beta = 30^o'})
182 ax4.Position = [482 353 990 450];
183 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\MSDV_multiple.png')
184
185 %% Excursion envelope
186
187 % Estimation of 1k and 10k return period data for vessel 4843
188 exp_curve1 = fit(longCOG(1:7,2),Rp,'exp1');
189 exp_curve2 = fit(longCOG(1:7,3),Rp,'exp1');
190 surgeCo1 = [exp_curve1.a exp_curve1.b];
191 swayCo1 = [exp_curve2.a exp_curve2.b];
192 surgeData = [(1/surgeCo1(2))*log(1000/(surgeCo1(1))) ...

(1/surgeCo1(2))*log(10000/(surgeCo1(1)))];
193 swayData = [(1/swayCo1(2))*log(1000/(swayCo1(1))) ...

(1/swayCo1(2))*log(10000/(swayCo1(1)))];
194 longCOG(8:9,2) = surgeData;
195 longCOG(8:9,3) = swayData;
196
197 % Estimation of 1k and 10k return period data for vessel 1864
198 exp_curve3 = fit(longCOG2(1:7,2),Rp,'exp1');
199 exp_curve4 = fit(longCOG2(1:7,3),Rp,'exp1');
200 surgeCo12 = [exp_curve3.a exp_curve3.b];
201 swayCo12 = [exp_curve4.a exp_curve4.b];
202 surgeData2 = [(1/surgeCo12(2))*log(1000/(surgeCo12(1))) ...

(1/surgeCo12(2))*log(10000/(surgeCo12(1)))];
203 swayData2 = [(1/swayCo12(2))*log(1000/(swayCo12(1))) ...

(1/swayCo12(2))*log(10000/(swayCo12(1)))];
204 longCOG2(8:9,2) = surgeData2;
205 longCOG2(8:9,3) = swayData2;
206
207 ax5 = figure;
208 hold on
209 plot(longCOG(2:9,2),Rp2,'-sb','LineWidth',1.05) % Surge 4843
210 plot(longCOG(2:9,3),Rp2,'-db','LineWidth',1.05) % Sway 4843
211 plot(longCOG2(2:9,2),Rp2,'-sr','LineWidth',1.05) % Surge 1864
212 plot(longCOG2(2:9,3),Rp2,'-dr','LineWidth',1.05) % Sway 1864
213 grid on
214 xlabel('Displacement [m]')
215 ylabel('Return period [years]')
216 set(gca,'Yscale','log','xtick',0:1:12)
217 yticks([1 5 10 20 50 100 1000 10000])
218 yticklabels({'1 year','5 years','10 years','20 years','50 years','100 ...

years','1k years','10k years'});
219 ylim([0 12000])
220 legend('Surge 4843','Sway 4843','Surge 1864','Sway 1864','Location','northwest')
221 title({'Displacement at centre of gravity','JONSWAP (\gamma = 2.6). ...

Long-crestes seas'})
222 set(gca,'LooseInset',get(gca,'TightInset'));
223 ax5.Position = [482 353 990 450];
224 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\excursion_figure(4843).png')
225
226 %% Helicopter criteria
227
228 ax6 = figure;
229 plot(Tp,0.5*heliCrit(:,4)+0.5*heliCrit(:,7),'b','LineWidth',1.05)
230 hold on
231 grid on
232 plot(Tp,0.5*heliCrit(:,10)+0.5*heliCrit(:,13),'r','LineWidth',1.05)
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233 scatter(loadCases(:,1),loadCases(:,2),20,'filled','k')
234 text(loadCases(:,1),loadCases(:,2),labels,
235 'VerticalAlignment','bottom','HorizontalAlignment','right')
236 xlabel('Peak period [sec]')
237 ylabel('Significant wave height, H_s [m]')
238 legend('Vessel 4843','Vessel 1864','Location','northeast')
239 set(gca,'xtick',5:1:25,'YMinortick','on','ytick',1:2:24)
240 ylim([1 21])
241 title({'Maximum operating limits','Helicopter operation. Night and daytime ...

operations'})
242 set(gca,'LooseInset',get(gca,'TightInset'));
243 ax6.Position = [482 353 990 600];
244 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\helicopter_valueVesselALL.png')
245
246
247 %% Lockdown criteria
248
249 ax7 = figure;
250 plot(Tp,opCrit(:,2),Tp,opCrit(:,3),Tp,opCrit(:,4),'LineWidth',1.05)
251 hold on
252 scatter(loadCases(:,1),loadCases(:,2),20,'filled','k')
253 text(loadCases(:,1),loadCases(:,2),labels,'VerticalAlignment','bottom',
254 'HorizontalAlignment','right')
255 grid on
256 xlabel('Peak period [sec]')
257 ylabel('Significant wave height, H_s [m]')
258 legend('0^o heading','15^o heading','30^o heading','Load ...

cases','Location','northwest')
259 set(gca,'xtick',5:1:25)
260 title({'Maximum operating limits','Lockdown of vessel','Vessel No. 1864'})
261 set(gca,'LooseInset',get(gca,'TightInset'));
262 ax7.Position = [482 353 990 450];
263 % saveas(gcf,'M:\Thesis\Master thesis\IMAGES\lockdown_valueVessel(1864).png')
264 fileNameax7 = 'lockdown_valueVessel(1864).png';
265 path = 'M:/Master thesis/IMAGES/';
266 figureName = [path,fileNameax7];
267 % sprintf('\includegraphics[width=\textwidth]{%s%s}',path,fileNameax7);
268
269 %% Response amplitude operator for roll
270
271 ax8 = figure;
272 plot(raoCOG(2:31,18),raoCOG(2:31,20),'color',[0.3010 0.7450 ...

0.9330],'LineWidth',1.05)
273 hold on
274 grid on
275 plot(raoCOG(2:31,18),raoCOG(2:31,21),'color',[0 0.4470 0.7410],'LineWidth',1.05)
276 plot(raoCOG(2:50,22),raoCOG(2:50,24),'color',[0.8500 0.3250 ...

0.0980],'LineWidth',1.05)
277 plot(raoCOG(2:50,22),raoCOG(2:50,25),'color',[0.6350 0.0780 ...

0.1840],'LineWidth',1.05)
278 xlabel('Wave period [sec]')
279 ylabel('R.A.O. Roll \eta_4/A [deg/m]')
280 set(gca,'xtick',5:1:25)
281 xlim([5 25])
282 title({'Response amplitude operatiors'})
283 legend('Vessel 1864: 15^o heading','Vessel 1864: 30^o heading','Vessel 4843: ...

15^o heading',
284 'Vessel 4843: 30^o heading','Location','northwest')
285 set(gca,'LooseInset',get(gca,'TightInset'));
286 ax8.Position = [482 353 1030 540];
287 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\RAO_figure_ALL.png')
288
289 %% Response amplitude operator for heave velocity
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290
291 parHel = load('M:\Thesis\Master thesis\ShipX ...

Results\ParetoVessel\RAO_HeavVel.mpl');
292 valHel = load('M:\Thesis\Master thesis\ShipX Results\ValueVessel\RAO_HeavVel.mpl');
293 probs = [0.6 0.3 0.1];
294
295 heaveRatePareto(:,1) = parHel(1:49,1);
296 heaveRateValue(:,1) = valHel(1:31,1);
297 heaveRatePareto(:,2) = parHel(1:49,2)*probs(1) + parHel(50:98,2)*probs(2) + ...

parHel(99:end,2)*probs(3);
298 heaveRateValue(:,2) = valHel(1:31,2)*probs(1) + valHel(32:62,2)*probs(2) + ...

valHel(63:end,2)*probs(3);
299
300 close all
301 ax9 = figure;
302 grid on
303 hold on
304 plot(heaveRatePareto(:,1),heaveRatePareto(:,2),'LineWidth',1.05)
305 plot(heaveRateValue(:,1),heaveRateValue(:,2),'LineWidth',1.05);
306 legend('Vessel no. 4843','Vessel no. 1864','Location','northwest')
307 xlabel('WAVE PERIOD [sec]')
308 ylabel('RAO HEAVE VEL. \eta(3)/A [(m/s)/m]')
309 title('Response amplitude operator for heave velocity')
310 set(gca,'xtick',0:1:30,'YMinortick','on')
311 xlim([0 25])
312 set(gca,'LooseInset',get(gca,'TightInset'));
313 ax9.Position = [680 493 921 485];
314 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\RAO_HeaveRate.png')
315
316 %% Operability bars
317
318 opData = xlsread('operability.xlsx');
319
320 %%
321 heliOp = [min(opData(1:4,4)) min(opData(6:9,4)) min(opData(11:13,4));
322 min(opData(1:4,10)) min(opData(6:9,10)) min(opData(11:13,10))];
323 c = categorical({'Vessel 4843','Vessel 1864'});
324
325 ax30 = figure;
326 b = bar(c,heliOp*100,'FaceAlpha',0.8);
327 set(gca,'YMinortick','on')
328 legend({'Helicopter DAY','Helicopter ...

NIGHT','Lockdown'},'Location','northoutside','NumColumns',3)
329 ytickformat('%g%%')
330 ylim([0 100])
331 set(gca,'LooseInset',get(gca,'TightInset'));
332 ax30.Position = [680 671 830 307];
333 saveas(gcf,'M:\Thesis\Master thesis\IMAGES\operabilityBars.png')
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