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Abstract

As life expectancy steadily rises, new age-related challenges arise. Exposure to both
osteoporotic fracture and cancer increases with age, and more cases are revealed
as new technologies for medical examination are developed. Since bone loss has
been related to cancer treatment, investigations on how this can be prevented are
conducted. There is a general consensus that some forms of cancer therapy induce
loss in bone mineral density and that physical training strengthens the skeleton.
The question at hand is how cancer patients can perform exercises to attenuate the
detrimental side effects of their treatment.

The aim of this three-part study has been to analyze some mechanical aspects of
cortical bone physiology and how radiation and exercise affect certain bone quali-
ties. Several studies have been conducted on skeletal response adaptation to loading.
However, simultaneous introduction of ionizing radiation is little investigated. Fur-
ther, finite element analysis as a tool for virtual testing of mechanical properties has
been assessed.

In the first part, two separate experiments were conducted to measure rat femur
response to radiation and training. An overall weaker mechanical performance was
measured in radiated bone than in the control, but no significant differences were
obtained. Radiated and trained femurs did also see some improvement over the
radiated untrained specimens. However, the experiment results were inconclusive.

The second goal of the study was to virtually reproduce the physical bending tests
conducted in the first part. Finite element models with specimen-specific geometry
and density distribution were obtained by micro-CT imaging, and empirical rela-
tionships were employed to assign density-dependent intrinsic material properties.
Correlation between experimental and virtual tests was assessed, and some critical
challenges were unveiled. It was concluded that three-point bending test measure-
ments are highly dependent on specimen aspect ratio, and that small elements are
essential for accurate representation of inhomogeneous bone.

Finally, a scripted training/radiation model was presented. Muscle loads were de-
fined from dynamics calculations and applied in static analyses. An adaptation
model was employed to simulate bone evolution, and an expression for radiation
damage was proposed. By comparison with the experimental setup in the first part,
simulations yielded pleasing correlation, but further development is advised. The
model can be considered as a preliminary proof of concept, which in future can help
improve evaluations of patient-specific exercise treatment.
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Sammendrag

Med stadig stigende forventet levealder oppstår nye aldersrelaterte utfordringer.
Eksponering for både osteoporotiske brudd og kreft øker med alder, og flere tilfeller
oppdages siden ny teknologi for medisinsk undersøkelse utvikles. Siden osteoporose
har blitt relatert til kreftbehandling, utføres undersøkelser på hvordan dette kan bli
forhindret. Det er generell enighet om at enkelte typer kreftbehandling forårsaker
tap av beinmineral og at fysisk trening styrker skjelettet. Et spørsmål er hvordan
kreftpasienter kan utføre fysisk trening for å lindre på skadelige bivirkninger fra
deres behandling.

Målet for denne tredelte studien har vært å analysere noen mekaniske aspekter
av kortikal bein og hvordan stråling og trening påvirker enkelte beinegenskaper.
Flere studier har vært utført på skjelettets adaptasjon til belasting, men samtidig
introduksjon av ioniserende stråling er lite forsket på. Videre har muligheten for
mekanisk testing med elementmetode blitt undersøkt.

I første del ble to separate eksperimenter utført for å måle rottefemurs respons til
stråling og trening. Det ble målt en generelt svakere mekanisk kvalitet i strålet
bein enn i kontrollgruppen, men ingen signifikante forskjeller ble funnet. Strålet og
trent bein så også noe forbedring fra strålet og ikke-trent bein. Likevel ble ingen
konklusjon fastslått.

Det andre målet for studien var å virtuelt reprodusere de fysiske testene utført i
første del. Elementmetodemodeller med spesifikk geometri og tetthetsfordeling ble
hentet fra microCT-skanning, og empiriske modeller ble anvendt for å tilegne tet-
thetsavhengige materialegenskaper. Korrelasjon mellom eksperimentell og virtuell
test ble evaluert, og enkelte kritiske utfordringer ble oppdaget. Det ble konklud-
ert at målinger fra trepunkts bøyetesting er svært avhengig av størrelsesforholdet
til prøven, og at elementer må være små nok til å presist representere inhomogent
bein.

Til slutt ble en skriptet trening/stråling-modell presentert. Laster fra muskler ble
definert fra dynamiske beregninger og påført i statiske analyser. En modell for adap-
tasjon ble anvendt, og et uttrykk for strålingsskade ble foreslått. Ved sammenligning
med eksperimentell testprosedyre i første del viste simuleringene tilfredsstillende ko-
rrelasjon, men videre utvikling er anbefalt. Modellen kan ansees som en innledende
konseptutprøving, som i fremtiden kan forbedre evaluering av pasientspesifikk tren-
ingsbehandling.
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1 | Introduction

1.1 Background and motivation

The skeleton facilitates movement and protection of soft organs. It transmits forces
throughout the body and acts as a mechanical organ system. Bones are thus required
to be strong and stiff to withstand the loads they are subjected to.

It is well known that physical exercises is a good way to build and maintain bone
strength. Ever since the definition of Wolff’s law was proposed, both presence and
absence of physical stimulus has been shown to affect bone tissue over time through
adaptation and remodeling (Frost 2004). On the other hand, cancer treatment-
induced bone loss (CTIBL) can inflict detrimental damage to bone quality and
remodeling efficiency, as described by D’Oronzo et al. (2015). With a stable rise
in number of cancer and treatment cases every year (WHO 2020), and increasing
chance of survival, it is in high interest of medical scientists to unveil exactly how
cancer treatment affects bone adaptation and how this can be accounted for through
patient specific treatment.

The development of micro-computed tomography (µCT) has allowed for detailed
reconstruction of bone in 3D. Such digital models can further be transformed to a
finite element (FE) mesh, where voxel density is accounted for. By mapping bone
density values to intrinsic quantities, such as Young’s modulus and yield stress,
both the inhomogeneous material distribution and complex geometry of bone can be
investigated from a purely mechanical point of view. Finite element method (FEM)
can thereby facilitate non-intrusive, in silico, assessment of mechanical properties of
tissue. Further, training stimulus and radiation deterioration can be simulated to
investigate their respective and combined effects.

Some density-dependent material laws exist for healthy bone. Likewise, mathe-
matical expressions for bone adaptation have been developed. The inclusion of a
radiation damage model is however a little investigated field of study. When a new
“variable” is introduced to a defined set of material laws, it is common practice to
perform some form of experimental testing to validate the new model. Three-point
bending test (TPBT) is often used to evaluate the aforementioned intrinsic material
properties. Well-defined expressions for calculating such indices exist for isotropic
materials with regular geometry. However, the complex material composition and
irregular shape of femur present new challenges.

1



1.2 Problem description

The project at hand can be divided into multiple smaller problems. A brief descrip-
tion of what is investigated and the challenges met in the present study is presented
below.

1.2.1 Experimental testing of cortical bone

Femurs from rats, which have undergone radiation, radiation and training or nei-
ther, are obtained. Each specimen is subjected to TPBT to measure various bone
qualities. Global response properties are measured directly, and intrinsic indices are
obtained through µCT image analysis. Results are compared between each group
to investigate the impact of radiation and training. Further assessment is made to
evaluate the feasibility of the mechanical testing method.

1.2.2 Virtual testing of cortical bone

Virtual representations of the femurs are obtained by µCT, where geometry and
density properties are measured. These properties are mapped to intrinsic material
properties with the use of statistically correlating expressions, established through
empirical assessments. For implementation of virtual TPBT, specific loading condi-
tions are defined to accurately represent real-life experimental bending tests. One
corresponding model is made and virtually tested for every experimental specimen.
Relevant simulation results are obtained and assessed to compare the virtual and
experimental test results.

1.2.3 Simulation of training and radiation

A preliminary training/radiation simulation is created. Training is defined by gen-
erating a full FE femur model and a load case which resembles real-life anatomy.
Muscle attachment points, load intensities and force directions must be defined as
accurately as possible in for the training effects to apply with the right amount,
and in the correct locations. Specimen-specific exercise schedules and intensities are
recorded, and the training simulation can thus be tested with multiple load cases.
Through the development of a well-fitting training simulation, an expression for
bone adaptation can be developed. Additionally, radiation damage is simulated. A
virtual representation of established knowledge on the behavior of radiated bone
must be defined. This accounts for effects on both the soft, organic collagen and on
the inorganic apatite mineral, which constitute the skeletal tissue. Different aspects
of radiation-induced deterioration are examined, and the impact on bone adapta-
tion effectiveness is discussed. An attempt is made to establish some fundamental
knowledge on the combined simulation of training and radiation.

2



Radiation therapy and training effects on the mechanical performance of bone

1.3 Research questions

The challenges described are confined to the following questions:

• Question 1: Can the effects of training and radiation on healthy bone be
detected by TPBT? If so, what are the measurable changes?

• Question 2: By use of µCT and density to stiffness calculation, how can we
recreate real-life bending test in silico?

• Question 3: How can exercise be simulated virtually, and is it possible to
accurately apply an adaptation model to a µCT-obtained FE model?

1.4 Limitations

Trabecular bone structure will not be considered in this study. Although the trabec-
ular region is more susceptible to radiation and training stimulus than the cortical
region (Zhai et al. 2019; Westerlind et al. 1998), the mechanical testing method
utilized does not facilitate accurate assessment of spongy bone. This poses some
limitation to the overall experiment viability.

Some anisotropic bone properties are disregarded, namely those caused by spe-
cific organizing of material constituents at the histological level. For instance,
Young’s modulus, which is defined by an orthogonal manner, is considered to be
isotropic. However, density distribution is considered as inhomogeneous, and ten-
sion/compression stiffness asymmetry is taken into account when defining density-
dependent material laws.

When simulating training and radiation, the presence of mechanosensory cells, whose
effect on FEM simulation of bone adaptation has been discussed by Weinans et al.
(1992) and Ruimerman et al. (2003), is not considered. The absence of such cells
might cause a checkerboard pattern (local stress shielding), where neighboring voxels
obtain very different densities. This does not coincide with realistic remodeling of
cortical bone. However, the resulting bone strength is tested in TPBT, where global
qualities are assessed. Disregarding sensory cells is thus considered admissible.
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1.5 Thesis outline

Chapter 2 – Theoretical background: Some relevant theory regarding rodent
femur tissue anatomy and muscle anatomy is presented. This includes geometrical
aspects, material composition, the physiology of remodeling and effects of radiation,
and muscle attachments and activation during training. Additionally, preliminary
knowledge on µCT scanning and reconstruction by use of FEM is presented.

Chapter 3 – Materials and methods: Procedures of both real and simulated
experiments are described. This includes the in vivo comparative medicine animal
study conducted by the Department of Clinical and Molecular Medicine and Com-
parative Medicine Core Facility, which dictates important simulation settings and
result expectations. Voxel data acquirement procedure is also discussed, and some
initial tests of convergence and error estimates are presented.

Chapter 4 – Results: Test results from the two experimental tests are presented.
Global response values and intrinsic measurements are compared. Correlation of
both global and intrinsic values between experimental and virtual bending tests are
also put forward. Results are briefly discussed, and some questions concerning the
outcomes are raised. Results from bone radiation/training simulation are presented.

Chapter 5 – Discussion: Implications of test results are discussed. Possible
sources of error, regarding both the experimental and the virtual testing method,
are analyzed more in depth. Testing quality and study validity is evaluated and
suggested alterations and optimizations are presented.

Chapter 6 – Conclusion and further work: Some final thoughts regarding
radiation therapy and training effects on the mechanical performance of bone, and
a summary of the study. How can the findings in the present study be utilized to
further investigate the subjects of interest? What can be done differently in future
studies to ensure better test results and stronger correlations?
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2 | Theoretical background

2.1 The femoral bone

Just like in humans, the rat femur connects the hip joint to the knee joint and trans-
mits forces related to standing and gate. It consists of proximal and distal epiphyses,
smooth and rounded surfaces which glide against articular cartilage; proximal and
distal metaphyses, the rough regions where muscles and tendons are attached; and
diaphysis, which is the long mid-section of the bone. There are some inherent dif-
ferences between rodent and human femora due to the unlike two- and four-legged
posture. These contrasts are expressed in muscular and geometrical characteristics,
while material composition is considered to be similar in general. Although the
femur is the bone mostly focused on throughout the respective thesis, much of the
knowledge provided in the following sections applies to other bones as well.

(a) (b)

Figure 2.1: Illustration of rat skeleton and femur: (a) anatomical location of right femur
in rat. Axis cross is oriented with respect to local orientation of femur. Adapted from
The Biology Corner (2021), (b) main sections of femur, seen in the coronal plane from
the posterior towards the anterior region. The axis system depicted is the same system
employed throughout the thesis: z-axis is longitudinal from distal towards proximal region
of femur; y-axis is horizontal from anterior towards posterior; x-axis is horizontal from
right towards left side (lateral towards medial region with respect to right femur).
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2.1.1 Muscular anatomy

There are several muscles working together to perform leg extension and contraction.
In addition, a full leg extension consists of both hip extension and knee extension.
Due to the activation of several muscles, and their attachment points being located
at different sites, the femur is consequently loaded in multiple directions during some
form of movement. Figure 2.2 depicts the most important muscles related to hip
and knee extension, and a list of muscles and their respective attachment points is
presented in Table 2.1. Hip extensor muscles mainly originate at some region of the
pelvis and insert onto either the proximal or the distal femoral metaphysis. Knee
extensors, also known as the quadriceps group, originate at the proximal part of
femur and inserts on the patella (kneecap).

In rodents and other four-legged mammals, ischium and pubis, the posteriormost
parts of the pelvic bone, protrude further away from the hip joint than in humans
(Fig. 2.1a). This causes a greater muscle moment arm of the hamstrings relative to
the hip joint center coordinates. The hamstring muscle group (semimembranosus,
semitendinosus and biceps femoris) perform both hip extension and knee flexion.
However, due to the greater moment arms, these muscles play a larger role in hip
extension in rodents than in humans, where the gluteus muscles are more predomi-
nant. Thus, during a jump, where the hip is extended, a rodent femur behaves more
like a rod under compression than a cantilever, as in humans.

(a) Posterior (b) Anterior

Figure 2.2: Schematic illustration of right femoral muscle attachment points. Note that
actual attachment points in general cover larger surfaces: (a) posterior muscles, mainly
responsible for hip extension, (b) anterior muscles, mainly responsible for knee extension.
Full muscle names are listed in Table 2.1. Adapted from Charles et al. (2016a).
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Hip extensors Abbreviation Origin point Insertion point

Gluteus maximus GM (d,m,v) Lateral aspect of
iliac crest

Lateral aspect of
proximal femur

Semimembranosus SM Mid facet of ischial
tuberosity

Medial aspect of
proximal tibia
(proximal to
gracilis)

Semitendinosus ST Caudal facet of
ischial tuberosity

Medial aspect of
proximal tibia
(distal to gracilis)

Biceps femoris
(anterior)

BFA Cranial facet of
ischial tuberosity
(superficial to
caudofemoralis)

Caudal-medial
aspect of lateral
femoral condyle

Biceps femoris
(posterior)

BFP (cr) Lower-mid facet of
ischial tuberosity
(superficial to
semitendinosus)

Proximolateral
aspect of the head
of fibula and
adjacent fascia

Caudofemoralis* CA Cranial facet of
ischial tuberosity

Caudal-medial
aspect of medial
femoral condyle

Knee extensors Abbreviation Origin Insertion

Rectus femoris RF Cranial inferior iliac
spine of ilium

Base (proximal
surface) of patella

Vastus medialis VM Medial aspect of
proximal part of
femur

Base (proximal
surface) of patella

Vastus lateralis VL Lateral aspect of
proximal part of
femur

Base (proximal
surface) of patella

Vastus intermedius* VI Cranial aspect of
proximal part of
femur

Base (proximal
surface) of patella

Table 2.1: List of femoral muscles and their respective origin and insertion points.
*Indicates no depiction in Figure 2.2. Adapted from Charles et al. (2016b).

A jumping sequence is a short and intensive action where both anterior and posterior
leg muscles are tensed. Rats can initiate a jump from either a four- or two-legged
stance, but in both cases, the quadriceps, hamstrings and glutes go from relaxed to
contracted state. Figure 2.3 depicts a jump from two-legged standing. The height is
33 cm, and the jump itself lasts about one tenth of a second. If we assume maximum
velocity at the moment when the hindlimbs leave the ground and zero velocity when
landing at the top, we can approximate the acceleration during the jump:
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(a) (b) (c)

Figure 2.3: Illustration of rat posture right before and during a jump: (a) standing before
initiating the jump, (b) t0, crouched position, right before performing the jump. Hip and
knee joints are flexed and ready to extend, (c) t1, jump is finished and hip and leg joints
are fully extended. Slow motion video was captured with a OnePlus 5 mobile camera at
120 frames per second. The sequence from (b) to (c) was captured in 14 frames, resulting
in a jump duration of 0.117 seconds.

a =

√
2gh

t1 − t0
(2.1)

Here, g is the gravitational acceleration, assumed to be 9.81 ms−2, h is the jumping
height, and t1− t0 is the duration from jump initiation to the hindlimbs leaving the
ground. The formula is a considerable simplification; a is assumed to be constant,
the rat mass is considered as a singular point which travels the full jump height and
the acceleration happens without the mass moving. Nevertheless, this calculation
provides a good assumption of what forces are exerted on the femur. Further, if one
assumes the jump to be perfectly vertical, all forces acting on the mass center to
be expressed as one vertical force and the gravitational acceleration to be positive
definite, the net force can be expressed:

∑
F = m(a+ g) (2.2)

wherem is the rat mass expressed as a singular point. By combining Equations (2.1)
and (2.2), one can express individual load cases for each rat femur with force in-
tensities dependent on the rat weight and jump height. Additionally, forces must
be divided to represent the respective muscle groups. This process is described in
Section 3.4.
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2.1.2 Femur geometry

Most forces related to a jump are directed axially through the femur, exerting com-
pressive stress. However, due to its geometry and the position of muscle attachment
points, the bone is also susceptible to other stresses, like bending, shear and torsion.
Further, bending can occur about any axis parallel to the transverse plane, requiring
the femur to be strong in multiple directions. Equations (2.3a) and (2.3b) describe
the 2nd moment of area of a beam and the axial stress, σz in in that beam when
subjected to a moment, Mx’, respectively. In a case where the flexural axis varies
in any direction orthogonal to the z-axis, Equation (2.3a) dictates that the optimal
cross section of a beam bound by a maximum area is the portion bounded by two
circles, which is a hollow cylinder.

Ix’ =

∫∫
A

y′
2
dA (2.3a)

σz =
Mx’

Ix’
· y′ (2.3b)

Here, the x’y’-plane denotes an arbitrary plane with normal vector parallel to the
z-axis. Shear stress induced by torsion is calculated similarly as bending stress, only
dependent on the second polar moment of area, J , instead of I:

Jz =

∫∫
A

r2dA (2.4a)

τ =
Tz

Jz
· r (2.4b)

Torsion shear stress occurs orthogonal to any radial axis, r, from the center of mass
and increases outwards. If one considers the cross section of a beam under bend-
ing and torsion load to be that of a thick-walled hollow cylinder, Equations (2.3a)
and (2.4a) are expressed by Equations (2.5a) and (2.6a), respectively, where R and
r denote the outer and inner diameter. By further imposing a constant cross section
area, A, one can express the maximum bending and torsion stresses (Eqs. (2.5b)
and (2.6b)).

Ix’ =
π

4
(R4 − r4) (2.5a)

σz,max =
2Mx’

AR2 − A2

2π

·R (2.5b)

Jz =
π

2
(R4 − r4) (2.6a)

τmax =
Tz

AR2 − A2

2π

·R (2.6b)
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It can be deduced from Equations (2.5b) and (2.6b) that given a finite bending and
torsion moment:

lim
R→∞

σz,max(R) = lim
R→∞

τmax(R) = 0

and thus, for a finite cylindrical area, the exerted stresses from bending and torsion
are minimized by maximizing the wall radius. Likewise, if one still assumes the
cross section to be cylindrical, Equation (2.7) describes the nominal shear stress.
The function behaves in a similar manner as it goes to zero when R and r go
towards infinity.

τmax =
4Vx’

3π

(
R2 +Rr + r2

R4 − r4

)
(2.7)

Images of all rat femur cross sections are shown in Appendix A. They can to some
degree resemble a thick-walled cylinder, and from a purely mechanical point of view,
the femur is nearly optimally designed for the aforementioned types of load. It is
a note of interest that rat femur is generally more oval-shaped than human. This
might be caused by the inherent difference in stance and gate and overall movement.
Another important property of the femur, which will affect the project procedure to
a certain extent, is the aspect ratio of the shaft, or shaft length divided by the cross
section diameter perpendicular to the flexural axis. while the aspect ratio of human
femur is ∼13, the same ratio was measured to ∼8 for the rats utilized in this project.
Although a low aspect ratio might be beneficial from an evolutionary perspective,
it does introduce some challenges when conducting a three-point bending test.

2.1.3 Bone material

Skeletal tissue material comes in various forms and arrangements, depending on the
bone and its duties. Long bones, like the femur, are structurally different at different
regions. The proximal and distal epiphyses and metaphyses consist of an inhomo-
geneous, honeycomb-like network of small bones, called trabeculae. The porous
trabecular bone provides multiaxial strength while maintaining a low apparent den-
sity. At the transition between the metaphyses and diaphysis, the bone congregates
at the perimeter as dense, cortical bone (Fig. 2.4).

The material properties of cortical bone are inherently different from trabecular
bone due to the unlike structure. However, this bone is also inhomogeneous because
bone itself is a composite material. Its main constituents are organic matrix (∼30 %
of weight, ∼35 % of volume), predominantly type I collagen, and inorganic apatite
mineral (∼60 % of weight, ∼40 % of volume), and the remainder is water. The
organic phase is soft and ductile. It contributes to the maximum strain before failure
and to toughness, which governs energy absorption before rupture and resistance to
crack propagation. The mineral phase is hard and rigid. It maintains the physical
structure and is central to the Young’s modulus of bone. However, apatite mineral
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is also brittle, much like concrete, meaning it will fail more easily under tension
than compression. The interaction between organic and inorganic phases causes
a tension/compression asymmetry, where compressive yield stress is nearly double
that of tensile (Morgan et al. 2013, p. 1–17). Consequently, the force-displacement
curve from a TPBT will have nonlinear characteristics.

At the histological level, or the microscale, of cortical bone, mineralized collagen
fibrils (fibers of alternating collagen molecules and mineral crystals) are organized
in lamellar sheets. The fibre orientation is uniform within each lamella but varies be-
tween each sheet. This dense plywood structure is strongest in the average direction
of all fibrils, which is close to the longitudinal axis for any long bone. The lamellar
pattern is mostly concentric, either about vascular channels or about the entire di-
aphysis, presenting an orthogonal material behavior (Jee 2001, p. 1–5). This makes
the femur much weaker in transverse compression than in axial compression.

Despite the very anisotropic material behavior of bone, some intrinsic properties
have been deducted through multiple experiments. The data listed in Table 2.2,
collected by Karim, Hussein, et al. (2013), are the most relevant properties for the
work presented in this thesis. These properties vary greatly between different animal
species, individual subjects, different bones and locations within each bone. Thus,
the presented measurements cannot be considered as absolute values, but rather as
adequate indicators which can be compared to when evaluating test results. The
following subsections describe how some intrinsic material properties of bone are
affected by external factors as well.

(a) Proximal region (b) Distal region

Figure 2.4: µCT pictures of rat femur, cut along the coronal plane, illustrating the
trabecular and cortical sections.
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Mechanical property Range Description

Young’s modulus, E GPa 10.7–14.8 Bending
18.2 Compression, longitudinal
11.7 Compression, transverse
17.9 Tension, longitudinal
10.1 Tension, transverse

Yield strain, εy % 0.73 Tension (no further description)
Yield stress, σy MPa 191–227 Bending

182 Compression, longitudinal
121 Compression, transverse
107.9–115 Tension (no further description)

Ultimate strain, εu % 2.20 Compression, longitudinal
4.62 Compression, transverse
2.93–3.1 Tension, longitudinal
3.24 Tension, transverse

Ultimate stress, σu MPa 208.6–281 Bending
195–205 Compression, longitudinal
131–133 Compression, transverse
133–135 Tension, longitudinal
51–53 Tension, transverse

Fracture toughness, K MPa
√
m 4.28–5.09

Table 2.2: Mechanical properties of cortical bone measured in human femur. Adapted
from Karim, Hussein, et al. (2013).

2.1.4 Remodeling and adaptation

After fully developing to its adult length and shape, bone still reshapes and changes
continuously to maintain a healthy skeleton. This episodic, repetitive process of mi-
croscopic damage repair and fatigue prevention is called remodeling, in which basic
multicellular units (BMUs) perform resorption (removal) and absorption (adding)
of tissue. It begins with osteoclasts removing both organic and mineral phases from
a site, followed by osteoblasts which form osteoid. Osteoid functions as a scaffold for
apatite mineral to crystallize in. When a BMU cycle is completed, a new vascular
channel (osteon) is formed in cortical bone. Since the BMU diameter of ∼200 µm
is larger than an individual trabecula, which is 100–150 µm, only hemi-osteons are
formed in the spongy regions. A complete remodeling sequence in humans takes
between four and six months (much shorter time in rodents), and formation takes
considerably longer time than resorption. Age-related imbalance in the remodeling
procedure, such that it leans heavier towards resorption, is thought to be the cause
of some osteoporotic fractures (Martin et al. 2015, p. 49, 97–107).

Adaptation is a subdivision of remodeling which is thought to facilitate an optimiza-
tion of bone’s mechanical efficiency. After the formation of osteoid and initiation of
mineralization, some osteoblasts transform into osteocytes within the secreted ma-
trix. These are mechanosensory cells which regulate further absorption and resorp-
tion at their specific location. By transducing mechanical stress and strain signals
into biochemical signals, they interpret whether a higher or lower bone mineral den-

12



Radiation therapy and training effects on the mechanical performance of bone

sity (BMD) is needed to withstand the local loading. The Mechanostat is a collective
term which describes the physiological reaction to mechanical stimuli. According to
this term, adaptation works in a control loop, which maintains equilibrium state
between bone material strength and the mechanical loads exerted on it. Bone adap-
tation is generally considered as a mechanism which increases mineral accumulation
due to training. For instance, heavy weightlifting leads to stronger bones. However,
since a high BMD at a location subjected to little load is an inefficient distribution
of mass and energy, adaptation also promotes tissue removal where needed. This
was demonstrated by Vico et al. (2000), who research the effects of microgravity
on BMD loss in cosmonauts. Likewise, bedridden patients and elderly people are
susceptible to negative adaptation due to reduced mobility (Eimori et al. 2016).

From a literature study by Auestad (2020), it was found that bone adaptation is
highly sensitive to loading continuity. Although it may take months for a human
bone to initialize adaptive formation, resorption occurs more promptly. This corre-
lates to, and might in part be because of, the different duration of formation and
resorption in the BMU cycle. Further, after a long time of stimulus through exer-
cising, the degree of formation seems to lessen, suggesting that training intensity
might not be as important to formation as simply training at all. It was further
found that weighted resistance training is more effective than aerobic. However,
since weightlifting movements tend to be isometric and unidirectional, optimal for-
mation might be inhibited. As the femur is shaped to withstand loading in different
directions, it also needs to be loaded in different directions to fully develop. An
example of this was shown by Nilsson et al. (2013), who discovered greater femoral
and tibial bone qualities in soccer players than in resistance training subjects.

It must be noted the difference in time aspects of physiological events between
human beings and rats. A rat’s lifespan is two to four years, and the duration of
different physiological events are much shorter. Thus, adaptive bone formation can
be observed in laboratory rats in just a few weeks. When Mosti et al. (2016) studied
the musculoskeletal effects of exercise in ovariectomized rats, increased BMD was
observed after eight weeks of plyometric jumping exercise.

2.1.5 Radiation

Although radiation therapy is much used in cancer treatment, it has been shown
to have detrimental consequences on muscular and musculoskeletal quality. High
energy irradiation can alter the cell DNA, causing cell death and cancer treatment-
induced bone loss (CTIBL). The most adverse effects occur early after subjection
to radiation, as the collagen phase is diminishing. This leads to porous and brittle
bone which is more susceptible to fracture. In the long run, irradiation can result
in loss in trabecular number and thinning of both trabecular and cortical bone due
to reduced osteoblast proliferation. This causes an imbalance to the remodeling
homeostasis so that the rate of resorption is higher than that of formation. Expo-
sure to ionizing radiation also affects adaptation efficiency. In addition to causing
osteocyte apoptosis, since osteocytes descend from osteoblasts, reduced osteoblast
proliferation might lead to a reduction of these mechanosensory cells.
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2.2 µCT to FEM

2.2.1 Scanning

What differentiates computed tomography (CT) from conventional X-ray and dual-
energy X-ray absorptiometry (DXA) is the ability to render a three-dimensional
visualization of the scanned body. This provides invaluable information during
medical assessments; disease diagnosis and planning of surgical procedures becomes
easier and more accurate. CT works by rotating either the X-ray source and detector
around the body or the body itself. After a half-circle rotation is completed, the
source and detector system is moved incrementally along the longitudinal body axis
and the rotation sequence is repeated. The different setup of conventional X-ray
and CT scanning is illustrated in Figure 2.5. An algorithm is applied to the set of
CT-images to output views in different planes or a full 3D-rendering.

(a) X-ray configuration (b) CT configuration

(c) X-ray output (d) CT output

Figure 2.5: Illustrations of X-ray and CT setups and resulting outputs. (a) and (b) are
adapted from University of Texas (2020). X-ray path is downwards along the straight lines.
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Due to the different density and water content, and thereby the mass attenuation
coefficient, of different organs, it is possible to distinguish them from one another.
For instance, in a negative 12-bit grayscale image, ranging from 0 (black) to 4095
gray value (GV) (white), bony tissue, which has a low attenuation coefficient, is
presented with light intensity from ∼1300 GV and up. Soft organs are displayed
as much darker since more of the electromagnetic radiation passes through. If,
however, the scan resolution is high enough, like in µCT, even individual trabeculae
and voids in the cortical bone can be observed (Fig. 2.4). Consequently, µCT allows
for detailed investigation of apparent bone density distribution.

While the high irradiation exposure from µCT makes it inapplicable to clinical
procedures, it can be used in ex vivo and rodent studies. In some cases, µCT is even
used to simulate radiation therapy treatment (Mustafy et al. 2018).

2.2.2 Meshing

3D-rendering of body organs is most commonly used for visualization and not for
assessment of material properties. Therefore, many software utilities, both pro-
fessional and freeware, provide the ability to render a surface mesh which can be
exported for 3D printing. However, creating a volumetric mesh is algorithmically
a much more demanding task for which a solution is not commonly offered. Addi-
tionally, in order to obtain voxel-specific densities, the CT-image grayscale values
must be related to each respective voxel. This requires the entire transformation
from image sequence to mesh file to be performed in one sequential job.

When deciding on volume mesh type and size, accuracy and compute cost needs to
be taken into account. While it is desired to precisely represent the small details of
osteons and trabecula (see subsection 2.1.4), a uniform mesh with maximum edge
length of only a few µm will cost an overwhelming amount of computing power to
work with. It is therefore necessary to determine a meshing solution with feasible
accuracy which is still manageable with the computing power available.

In general, a quadratic or higher order cubic mesh element is considered to better
handle large displacements than a triangular element in FE analysis. If the same
accuracy is desired for tetrahedrons, the element edge length and volume need to be
reduced, thus increasing the number of elements. On the other hand, tetrahedrons
are preferable when modeling complex geometries. Additionally, a smaller element
volume means that each bone voxel density is better represented, suggesting that
tetrahedral elements might be preferable over hexahedral elements when modeling
bone. A visualization of the argument made is seen in Figure 2.6. It is shown
that if a hexahedral and a tetrahedral mesh were set to represent the same amount
µCT pixels per finite element, the hexahedral element edge length would have to be
smaller than the tetrahedral element edge length.
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Figure 2.6: An equal edge length of a tetrahedral and hexahedral element results in
smaller tetrahedral element volume and, thereby, higher accuracy. The illustration consid-
ers an equilateral pixel volume from CT scan and equilateral hexahedral and tetrahedral
elements.
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3 | Materials and methods

3.1 Rat radiation and training

Two individual in vivo animal studies were conducted at St. Olav’s Hospital (Trond-
heim, Norway) by the Department of Clinical and Molecular Medicine and Compar-
ative Medicine Core Facility (NTNU). In the first study, 24 female Sprague Dawley
rats (12 weeks of age, 282 ± 11 g) were housed in wire-top cages with woodchip
bedding, 4 animals per cage. The rats followed a 12-hour day-night cycle, in room
temperature at 24 ± 1°C and relative humidity at 40–50 %. After approximately
one week of acclimatization, 12 rats (Rad-1) were subjected to one single dose of 6
Gy whole body radiation under anesthesia, using a linear accelerator which creates
high energy photon radiation (high energy X-rays). The other group (Ctrl) was not
radiated. Euthanasia was conducted 2, and 4 and 9 weeks after radiation, 4 radiated
rats and 4 controls at each point of time.

In the second study, 24 rats of same species, (12 weeks of age, 300 ± 15 g) were
housed under same conditions. All rats were radiated approximately one week af-
ter acclimatization, as described above. Two weeks after radiation, 12 rats in the
exercise group (RadEx) started high intensity jump training, following the same
program as described by Mosti et al. (2016). The program lasted for 6 weeks, with 3
sessions each week, except 2 sessions the third week and one session the final week,
for a total of 15 training sessions. Each session consisted of 3 sets of 6 jumps, with
2–3 minutes of rest between each set, for a total of 18 jumps per session. Jumping
height was set to 20 cm for the first session, 24 cm for the two following session and
28 cm at the fourth session, unless the rat was unable to jump this high. For the
following sessions, the jumping height was individually adjusted to each rat’s capac-
ity to emphasize progressive jumping height throughout the training period. The
maximum successive height during a session was logged for each rat. Rat weight was
logged each week. Euthanasia was conducted on all animals 8 weeks after radiation,
48 hours after the last exercise session for the animals in the exercise group.

The rats from the first and second studies were labeled with number 1–24 and 25–48,
respectively. µCT scanning procedure is described in the following section.

17



3.2 Voxel data acquirement

3.2.1 µCT scanning

For both the studies conducted at NTNU and St. Olav’s Hospital, right femur was
obtained from all rats after euthanasia for µCT scan. Femurs were snap frozen in
liquid nitrogen and stored at -80 °C until analysis. Before µCT scanning, the femurs
were thawed in room temperature and wrapped in paper with phosphate buffered
saline (PBS) solution to avoid dehydration and placed in a plastic tube. Femurs
were scanned at 18 µm isotropic resolution with a SkyScan1172 µCT imaging sys-
tem (Skyscan, Kontich, Belgium). Source voltage and current were set to 65 kV and
385 µA, respectively, and a 0.5 mm aluminum filter was used to optimize contrast.
X-ray source was rotated in steps of 0.5°, and raw images were reconstructed to 3D
cross-sectional data using NRecon software (SkyScan). For reconstruction, beam
hardening, smoothing and ring artifact reduction were set to 31 %, 3 and 4, respec-
tively. The reconstructed images were exported as 16-bit TIFF images for finest
possible GV level increments. After scanning, the femurs were stored at -80°C until
they were transported to the bending test facility. Here, the samples were stored in
a household freezer for a maximum of 4 days before testing.

3.2.2 Mimics

All reconstructed µCT image sequences were processed and converted into FE mod-
els using Mimics 23.0 (Materialise NV, Leuven, Belgium). Although the actual
scanned voxel size was 17.66348 µm per pixel, restrictions to decimal places in Mim-
ics required a rounding to 0.0177 mm. A 0.2 % size increase was however considered
acceptable. The color depth was mapped from 16-bit to 12-bit to reduce the amount
of data. Additionally, this allowed for utilization of the predefined density threshold
values in Mimics when masking the segments of interest. 12-bit GV levels of bone
is described in subsection 2.2.1.

Segmentation of the femur was conducted by applying a global mask with minimum
GV threshold of 1300 with automatic filling of all small voids. A second mask
was applied to fill the entire femoral cavity. Open holes, due to the presence of
some vessels passing into the femur, were marked and sealed to make the segment
watertight. A new mask with maximum GV threshold of 1249 was then created and
adjusted to mark the diaphyseal inside. This mask was bounded by the proximal and
distal metaphyseal sections so that only the medullary cavity volume was covered.
By performing a Boolean operation, in which the cavity mask is subtracted from
the femoral mask, one is left with a hollow femur with a smooth inside surface. This
reduces the total number of elements and computation time. It also reduces the
amount of cavity surface irregularities caused by trabecular bone. This minimizes
the possibility for ill-defined elements when creating a uniform volumetric mesh.
The porous bone regions at the endosteum were considered to be insignificant to the
bone strength.
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The segmented models intended for virtual TPBT were cut so that the proximal and
distal heads were removed, which further reduced the number of elements. Images
of each specimen, taken during experimental TPBT, were utilized to decide where
the model should be cut. Cutting planes were set at 1 mm distance from where the
femur was contacting the bending test supports (see section 3.3), resulting in a total
model length of 14 mm.

A standard tessellation language part file was created and smoothed to remove some
remaining irregularities in Mimics. The part was then copied to 3-matic (Materialise
NV) to perform FE meshing. The decision made on element size is described in
subsection 3.2.4. A uniform meshing algorithm was applied, and potential noisy
or overlapping shells were removed. Before creating a volumetric mesh, node- and
element sets were defined for where different boundary conditions should be applied
in the virtual TPBT (see subsection 3.3.3). This was done manually, by positioning
the model along an inbuilt ruler and marking out the respective surface elements
(Fig. 3.1). The marked distal and proximal posterior surface elements are where the
femur is supported, and the anterior surface elements are where the plunger comes
in contact with the specimen. By this method, only periosteum nodes, and no nodes
inside the mesh, would be selected for boundary conditions. It was ensured that the
contact surface regions were uniformly one element wide to replicate the sharp-edged
contact points on the bending test machine. After creating a volumetric mesh, an
Abaqus input file with quadratic elements and specific node sets was exported from
3-matic, and the FE mesh was copied back to Mimics.

(a) (b)

Figure 3.1: Example of boundary surfaces in 3-matic: (a) anterior (front) surface, where
the plunger is applied, (b) posterior (back) surface, where the specimen lies on two support.
Note that the model is 14 mm long, support surfaces are 12 mm apart and the plunger
surface is in the middle of the model. All boundary surfaces were made short enough to
only cover a flat anteriormost and posteriormost region.
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Figure 3.2: Example density distribution plot from Mimics after assigning linear GV and
apparent density relationship.

Back in Mimics, a gray value and apparent density relationship was defined. A linear
relationship was considered (Ramezanzadehkoldeh and Skallerud 2017a), adjusted
for 12-bit depth GV levels, deriving the expression ρ = 4.395×10−4 GV (g/cm3). To
maintain a low level of granularity in density levels, the scale from zero to maximum
density was divided into 1000 steps. Figure 3.2 depicts the density distribution of
femur 1. Since only a section of cortical bone was modeled, very few elements with
density below typical apparent density of cortical bone are represented.

Two Ansys Preprocessor files containing element densities and element to node re-
lationships were exported from Mimics. Since Abaqus, the simulation software uti-
lized in this study (see subsection 3.3.3), assigns field variables to nodes, and not to
elements, a conversion script was created in MATLAB (MathWorks, Natick, Mas-
sachusetts, USA), to assign the element densities to nearby nodes instead. The script
would also sort out the elements related to the boundary surfaces (see Appendix G).

3.2.3 Inverse distance weighting interpolation

In order to retain an as accurate density distribution as possible during conversion,
is was considered infeasible to calculate the node density since the average of its
related elements, as local information would be lost. Instead, an inverse distance
weighting interpolation (IDWI) formula was employed (Eq. (3.1)). This formula
works by weighting the average density of all element connected to a node with the
inverse of the distance between each element and the node:

ρn =

NoE∑
i=1

(
ρi
dpi

)
NoE∑
i=1

(
1

dpi

) (3.1)

Here, NoE is the number of elements related to a node and ρn is the calculated
node density. ρpi is the apparent density of each element raised to the power of a
weighting number, p. If p is set to 0, the formula expresses the mean of all element
densities, and as p increases, the weights for distant elements decrease. Figure 3.3
depicts the IDWI nodal density distribution of femur 1, calculated with p = 1 and
p = 2 versus Mimics element densities.
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Figure 3.3: Mimics element densities (Imported) versus IDWI with p = 1 and p = 2.
Frequency is the percentage share of all elements. Element type: C3D10.

Although p = 2 seems to yield better correlation with Mimics than p = 1, there is
still some information lost. Figure 3.4 shows a distribution plot with p = 40.

Figure 3.4: Mimics element densities (Imported) versus IDWI with p = 1 and p = 40.
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When the p value is this high, generally only the immediate surrounding elements
will influence the predicted density. Yet, the predicted nodal density is not equal to
the single nearest element, which would have caused all nodes related to one small
element to be of equal density. Because of how IDWI works, it was nevertheless
necessary for the mesh elements to be as uniform in size as possible for the nodal
density prediction to work optimally.

3.2.4 Defining element properties

Since Materialise 3-matic is only able to produce tetrahedral volume elements, this
method was employed. In general, hexahedra are preferred over tetrahedra since
they are more economic, with respect number of elements for an equal number
of nodes, and because of their higher per-element accuracy. On the other hand,
tetrahedra are better for fitting complex geometries.

Another important note, which originates from the Mimics element-to-node density
conversion explained in the previous subsection, is the amount of elements which are
connected to each node when performing IDWI. A higher number of elements re-
lated to each node will increase the likelihood for each local density to be accurately
represented. If one considers a group of non-surface quadratic elements, a tetrahe-
dral midpoint node will be connected to at least five elements, while a corner node
is connected to twenty elements or more. Due to the geometric nature of a tetrahe-
dron, a completely uniform mesh of equilateral elements is unobtainable, and nodes
might therefore be connected to even more elements (the largest number obtained
from 3-matic was 42 elements). For an equivalently defined hexahedron, corner and
midpoint nodes are connected to exactly eight and four elements, respectively.

In order to keep a feasible number of element, a voxel reduction, which means
increasing the element edge length to a value higher than the initial pixel size of
0.0177 mm, was applied. Ramezanzadehkoldeh and Skallerud (2017a) found an
8× 8× 8 reduction of hexahedral elements, resulting in about 6× 105 elements with
40 µm edge length, to be acceptable. There are however two important differences
between their study and this one; mice have much smaller femurs than rats. The
same element edge length in a rat femur would consequently generate a model with
several million elements. Second, since the volume of a hexahedron is 6

√
2 times

larger than a tetrahedron with the same edge length, an equivalent model of the
latter element type would consist of ∼8.5 as many elements.

Figure 2.6 shows how many voxels that are represented by hexahedral and tetrahe-
dral elements for an arbitrary voxel volume as reduction magnitude is increased. It
suggests that for an 8 × 8 × 8 reduction of hexahedral elements, an additional ×2
reduction would yield the same representation for tetrahedral elements. Addition-
ally, a conversion from cubic voxels to tetrahedral elements restricts the minimum
element edge length. In order not to falsely manufacture non-existent information,
the element volume cannot be lower than the voxel volume. Tetrahedral edge length
must thus be at least 3

√
6
√

2, or ∼2, times larger than the voxel edge length.
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An initial convergence test was performed to check the sensitivity to element size.
Eight FE models of femur 1, with linear (C3D4) and quadratic (C3D10) elements
and maximum edge lengths of 0.080, 0.160, 0.320 and 0.640 mm, were created.
Homogeneous elastic material, with a Young’s modulus of 3 GPa, was assigned.
Boundary conditions were defined so that all translations and rotations were denied
for the distal cutting plane. A second boundary condition was applied to the prox-
imal cutting plane, forcing a 2 mm displacement towards the posterior. This was
done instead of simulating three-point bending because the larger elements would
not have complied well with the boundary conditions required for the latter option.
Large deformations were accounted for, and resultant reaction force was logged.
Convergence plot is presented in Figure 3.5, and Table 3.1 lists simulation results.

Figure 3.5: Reaction force convergence by p-refinement (linear C3D4 versus quadratic
C3D10 element) and h-refinement.

Element type C3D4 C3D10

Max Edge length (mm) 0.080 0.160 0.320 0.640 0.080 0.160 0.320 0.640

Number of elements 1.1e7 1.3e6 1.5e5 1.3e4 1.1e7 1.3e6 1.5e5 1.3e4

Number of nodes 1.8e6 2.2e5 2.6e4 2.7e3 1.5e7 1.8e6 2.1e5 2.0e4

Reaction force (N) 15.46 15.97 16.94 18.48 DNF 15.69 15.75 16.06

System memory used (MB):

Minimum required 7 856 1 037 103 23 48 198 6 276 868 66

Total data transferred 134 489 8 298 565 54 2.0e6 132 122 7 510 375

Table 3.1: Model size, convergence test reaction force and system memory requirement of
initial test if different FE models with isotropic Young’s modulus. Total data transferred
is the minimum system memory plus storage space required to run the simulation.

Higher resultant forces for larger elements conforms with the theory presented in
subsection 2.2.2, that tetrahedral elements must be small to accurately represent
large deformations. The 0.080 mm quadratic element model did not finish due to
excessive data requirement. However, the test indicates that the simulation is more
sensitive to the polynomial degree of the element than the size. A quadratic element
model with edge length of 0.160 mm was thus chosen for the following simulations.
This corresponds to an edge length multiplication of ∼9 times the original voxel.
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Since a quadratic tetrahedral element consists of six more nodes than a linear el-
ement, this also benefits the efficiency of the IDWI algorithm. Figure 3.6 shows
the predicted density distribution for the same femur as Figure 3.4, but using linear
C3D4 elements instead. A direct comparison indicates that using quadratic elements
yields much more accurate density prediction.

Figure 3.6: Mimics element densities (Imported) versus IDWI with p = 1 and p = 2.
Element type: C3D4.

An additional test was run with the same eight FE models and same boundary
conditions, but applying an expression for density-dependent Young’s modulus. Re-
sulting reaction forces are presented in Figure 3.7.

Figure 3.7: Reaction force, density-dependent Young’s modulus.
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When employing a Young’s modulus and density relationship (see subsection 3.2.5),
the test did not converge satisfactorily. This is due to a combination of information
being lost in Mimics and the IDWI algorithm not working properly for FE models
with very large elements. The increased force from 0.640 mm to 0.320 mm edge
length corresponds with the increased mean density (Table 3.2). For edge lengths of
0.320 mm and less, the test converges similarly as the one presented in Figure 3.5.
It was thus assumed that the 0.160 mm C3D10 was adequately refined for accurate
simulations.

It is noted that although Abaqus assigns field variables (density) to nodes, material
properties are assigned to the elements. An inbuilt conversion algorithm, using a
Gaussian quadrature rule is therefore run by Abaqus to calculate the element den-
sities. Resulting density distributions after this algorithm is applied are presented
in Figures 3.8 and 3.9. Maximum, minimum and mean apparent densities for Mim-
ics elements, IDWI nodes and Abaqus elements are listed in Table 3.2 along with
reaction forces from the second convergence test.

Figure 3.8: IDWI (p = 40) (Nodal) versus Abaqus (Element) density distributions.
Element type: 0.160 mm C3D10. A small amount of information is lost in the Gauss
integration conversion.

Due to the Gauss integration method, the highest apparent density of C3D10 ele-
ments can become slightly higher than the highest nodal density. Likewise, lowest
element density can be less than the lowest nodal density. Densities below 0.01
g/cm3 were however considered as empty voids and disregarded in the simulations.
For the 0.160 mm C3D10 element, average density increases by 0.3 % from Mimics
to Abaqus, which was considered acceptable.
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Figure 3.9: Mimics (Imported) versus IDWI (Nodal) versus Abaqus (Element) density
distributions, representing the total density deviation between µCT voxels and simulation
elements.

Element type C3D4 C3D10

Max Edge length (mm) 0.080 0.160 0.320 0.640 0.080 0.160 0.320 0.640

Reaction force (N) 40.22 40.77 45.14 40.18 DNF 41.32 42.15 39.30

Apparent densities: (g/mm3)

Mimics elements:

Maximum 1.877 1.865 1.804 1.756 1.877 1.866 1.804 1.756

Minimum 4.9e-3 9.3e-4 0.107 0.164 4.9e-3 0.055 0.107 0.164

Mean 1.246 1.223 1.210 1.104 1.246 1.243 1.210 1.104

IDWI nodes:

Maximum 1.865 1.856 1.802 1.731 1.877 1.866 1.804 1.756

Minimum 6.9e-3 0.019 0.119 0.210 5.5e-3 0.057 0.107 0.165

Mean 1.243 1.229 1.229 1.147 1.246 1.246 1.220 1.121

Abaqus element:

Maximum 1.842 1.805 1.780 1.712 1.894 1.866 1.814 1.839

Minimum 0.063 0.041 0.159 0.224 < 0 0.057 0.119 0.098

Mean 1.248 1.230 1.221 1.099 1.250 1.250 1.220 1.097

Table 3.2: Reaction forces from second test, density-dependent Young’s modulus. Max-
imum, minimum and mean apparent densities for the Mimics elements, IDWI nodes and
Abaqus elements.
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3.2.5 Defining material properties

In the second initial element test, described in the previous subsection, Young’s
modulus was calculated from apparent density by a relationship expression. E-ρ
relationship formulas have been studied for several years and numerous expressions
can be obtained from literature. A nonlinear expression often used is:

E = αρβ (3.2)

where E is Young’s modulus (GPa), ρ is apparent density (g/cm3) and α and β
are empirical values. In order to find a well-fitting material law, a series of tests
were conducted, simulating TPBT of femur 4 in a similar manner as described
in subsection 3.3.3. Some values for isotropic Young’s modulus were evaluated,
including the calculated value (E = 3.6 GPa) from the experimental bend test (see
subsection 3.3.2). Elastic perfectly plastic materials were also defined, using the
experimentally measured yield stress (σy = 82.45 MPa). Poisson’s ratio was set to
0.3 for all simulations (Wirtz et al. 2000).

Figure 3.10: Force-displacement curves for simulated TPBT with various materials: E :
perfectly elastic; P : elastic perfectly plastic; CIP : cast iron plasticity; Density dependent :
Young’s modulus expressed as E = 2.998ρ3 ((GPa), density in g/cm3).

Figure 3.10 presents the resulting force-displacement plots from the first test. An
isotropic Young’s modulus between 15 and 10 GPa, which was considered from
literature on material stiffness of cortical bone, yielded very high reaction forces. An
in-depth discussion on this behavior is presented in section 5.2. Utilizing the same
value as measured from experiment, caused the stiffness to be too low, suggesting
that some action was needed to refine the simulation procedure. The curves for
density-dependent material yielded satisfying results. However, the material law
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expression utilized, E = 2.998ρ3 (Gupta and Dan 2004), predicts a much higher
Young’s modulus than what recent studies suggest. In addition, plasticity occurs
earlier than expecting, further suggesting that the material is too stiff. Cast iron
plasticity was suggested to reproduce the tension/compression asymmetry described
in subsection 2.1.3. Results varied however little from perfectly plastic material and
simulations were unlikely to complete. This method was therefore discarded. The
curve labeled P: Density dependent, stiff load area incorporates stiff elements under
the plunger to simulate a full contact analysis. This is further described on page 29.

To overcome some of the challenges related to comparing experimental and virtual
TPBT, a second test was conducted to see if the logged displacement at differ-
ent locations yielded significantly different results (Fig. 3.11). Same material law
expression was utilized. The displacement differences between the curves indicate
that a combination of ring-type deformation and local indentation is present in the
simulation. The curve labeled Loaded area is the average displacement of an algo-
rithmically deduced node set which surrounds the loaded nodes but considers none
of the loaded nodes themselves.

Figure 3.11: Force-displacement curves for simulated TPBT with displacement logged as
average displacement at various locations. Density-dependent Young’s modulus expressed
as E = 2.998ρ3.

Although some local indentation was observed during the experimental TPBT (see
section 5.2), it was not as extreme as the indentation in virtual testing. It was there-
fore decided to log the displacement of the nodes surrounding the loaded surface.

A new test of different material properties was conducted (Fig. 3.12) to assess the
inclusion of plasticity. Although plastic behavior was observed in the experimen-
tal tests, a well-fitting expression for this behavior was not derived for the virtual
testing. In general, yielding occurred at a much lower displacement than expected
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when applying the same σy as measured experimentally. Expressions for density-
dependent yield stress (Ramezanzadehkoldeh and Skallerud 2017a) was suggested,
and this might have yielded more accurate results. However, after some initial tests,
it was decided to discard this implementation due to excessive computation time.
Density-dependent yielding is further discussed in subsection 5.3.3.

Figure 3.12: Force-displacement curves for simulated TPBT with displacement logged as
average displacement of the loaded nodes. Density-dependent Young’s modulus expressed
as E = 2.998ρ3. Plastic: σy = 82.45 MPa. Stiff boundary elements incorporates stiff
elements both under the plunger and at the supports. Cast iron plasticity analysis was not
able to complete.

Figure 3.12 does indicate that the implementation of stiff boundary elements helps
overcome some of the local indentation at contact points. The stiff element algo-
rithm works by finding and listing all elements related to the boundary nodes during
the same conversion script as described in subsection 3.2.2 (see Appendix G). These
are only the very same surface elements as depicted in Figure 3.1. It is noted that
assigning a very high Young’s modulus to some elements might cause a stiffer model.
However, since the algorithm extracts only the boundary elements, and the number
of affected elements is very low, this was not assumed to affect global stiffness signif-
icantly. From the three aforementioned tests, it was decided: to use perfectly elastic
elements with density-dependent Young’s modulus, expressed by Equation (3.2); to
log the displacement as the average displacement of a region surrounding the loaded
nodes; and to implement stiff elements and boundary surfaces.

The final material property needed to be defined was the expression for the Young’s
modulus apparent density relationship. Ramezanzadehkoldeh and Skallerud (2017a)
achieved a good fit for their simulations by employing E = 2.065ρ3.09 (Wirtz et al.
2000). E-ρ plot of this expression, along with other expressions are presented in
Figure 3.13.
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Figure 3.13: Various expressions for Young’s modulus apparent density relationship.
Gupta and Dan (2004): E = 2.998ρ3; Wirtz et al. (2000), axial: E = 2.065ρ3.09; Hernandez
et al. (2001): E = 2.79ρ2.58; Wirtz et al. (2000), transverse: E = 2.314ρ1.57; Average axial
& transverse, derived from Wirtz et al. (2000): E = 2.19ρ2.33 ((GPa), density in g/cm3).

It was discussed whether the TPBT setup in this study yielded an aspect ratio,
L/d, too low to accurately calculate Young’s modulus from bending stiffness (see
subsection 3.3.2). In addition to bending and shearing, it might be that the bone
was being compressed transversely. Long bones are known for having lower mate-
rial stiffness in the transverse direction than the longitudinal direction (Table 2.2,
subsection 2.1.3), and the sensitivity to this difference was discussed. A sensitiv-
ity test, similar to the previous ones, was conducted for the different material laws
expressed in Figure 3.13. An additional expression was defined by calculating α
and β in Equation (3.2) as the average of the α and β values from the axial and
transverse expressions by Wirtz et al. (2000). Resulting force-displacement curves
are presented in Figure 3.14.

The averaged axial and transverse material stiffness expression yielded a displace-
ment curve which correlated very well with the experimental curve. Is was therefore
considered to employ this expression for the simulations. However, due to a signifi-
cant number of other possible sources of error, it was also considered a good measure
to utilize an already well-established relationship. Which material law to utilize was
not decided until simulations of all bones were run with both the averaged expres-
sion and the one presented by Wirtz et al. (2000) for axial loading. Consequently,
E = 2.19ρ2.33 yielded the best fit overall, and was thus defined as the Young’s
modulus apparent density relationship expression for all following simulations.
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Figure 3.14: Force-displacement curves for simulated TPBT with expressions for Young’s
modulus as described in Figure 3.13. Test results, linearized is the experimental force-
displacement of femur 4, which the simulated model is based on.
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3.3 Three-point bending test

3.3.1 Experimental testing

Prior to experimental testing, specimens were placed in plastic tubes with fridge-
tempered PBS solution and thawed in fridge for one hour. Following, the specimens
were moved into room-tempered solution, and thawing was continued for at least
two hours in room temperature. It was discussed whether the bones were thawed
in much wetter conditions than in similar studies, and whether this might have
caused a lower measured Young’s modulus. Bonfield and Datta (1974) discovered
no significant correlation between wetness and elastic properties when testing this
hypothesis, although some changes to non-elastic behavior was observed. In a more
recent study, where quasistatic nanoindentation test was employed (Lee et al. 2012),
dry test conditions yielded nearly double the Young’s modulus and significantly
higher hardness than wet conditions. These differences might have affected the
measured indices in the present study. Excess PBS solution was removed from each
specimen before seating in the testing machine.

Three-point bending tests were conducted with a material-testing machine (Model
5944, 2kN single column machine, Instron Corp., Illinois, USA). Femurs were seated
with the posterior surface facing downwards on triangular supports which were po-
sitioned 12 mm apart. A triangular plunger was positioned over the mid-span. In
order to ensure proper seating, the plunger was moved manually down towards the
anterior surface until a preload of 0.5 N was established. Following, the plunger was
moved at a constant speed of 0.5 mm/min until fracture. Femur 24 was already
broken before the testing and was thus excluded from the study.

Figure 3.15: Experimental test setup
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3.3.2 Data acquisition from experimental test

Force and displacement data from the material testing machine was logged at 10
Hz frequency, providing force-displacement graphs. The raw test results and all
measured values are shown in Appendix B:E. Global stiffness, yield force, ultimate
force and total work was calculated from these graphs. Femur 9 and 10 were excluded
from the study due to dissatisfying bending behavior.

Global stiffness was calculated as the steepest average slope of the force-displacement
curve where 11 successive data points, corresponding to approximately 0.01 mm
plunger movement, varied by a minimum amount. The acceptable variation was
incrementally increased until such a region was found, resulting in 2–8 % variance
for every specimen. For easier comparison of results with the FE analyses, the initial
non-linear region of the curves and the data after first yield was disregarded.

Nominal Young’s modulus was derived from global stiffness. If the aspect ratio,
L/d, of a bending beam is high enough, and shear stresses are negligible, Euler-
Bernoulli beam theory can be applied (Eq. (3.3)). Two important assumptions are
that plane sections remain plane and that deformation angles are small. This is
applicable to long beams with small displacements, and an aspect ratio of >10
is preferred. However, due to the aspect ratio of the respective test setup being
less than approximately 4, transverse shearing is assumed to be present. Nominal
Young’s modulus was thus derived by use of Timoshenko beam theory (Eq. (3.4)) ,
which instead assumes that cross sections remain plane (Ramezanzadehkoldeh and
Skallerud 2017a).

E =
F

D

L3

48Ix
(3.3)

E =
F

D

L3

48Ix

(
1 + 12

(
E

G

)
k
Ix/A

L2

)
(3.4)

Here, F is applied force, D is displacement of plunger, L is beam length, or length
between the supports, and k is a constant equal to 1.2 (Spatz et al. 1996). In
their study, Ramezanzadehkoldeh and Skallerud (2017a) assumed a constant shear
modulus, G, equal to 6 GPa for all specimens, which was obtained by Kohles et al.
(1997). However, due to low resulting Young’s modulus measurements, G was here
calculated from the Young’s modulus of an isotropic material:

G =
E

2 (1 + ν)
(3.5)

where the Poisson’s ratio, ν, is given a value of 0.3. This solution might pose
limitation since bone is known to be anisotropic (see subsection 2.1.3). By combining
Equations (3.4) and (3.5), the resulting expression for Young’s modulus becomes:
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(3.6)

A is the specimen-specific cross section area underneath plunger. It was calcu-
lated with disregard to voxel density by image processing of the CT images. Ix
is the respective 2nd moment of area, calculated using the parallel axis theorem
(Ramezanzadehkoldeh and Skallerud 2017a):

Ix =
∑
voxels

(
y2
iAi,voxel +

∫
voxel area,i

y2
local,idA

)
(3.7)

Nominal yield and ultimate stresses were calculated with the same formula used by
Schriefer et al. (2005), which is derived from Euler-Bernoulli beam theory:

σy = Fy

(
Lc

4Ix

)
, σU = FU

(
Lc

4Ix

)
(3.8)

Fy and FU are the forces at the onset of yielding and maximum force and c is the
distance from the neutral axis to the fiber which is farthest away in y-direction. This
is where the largest bending stress occurs. Due to the non-linear initial regions of
the force-displacement curves, it is impractical to define the yielding force by using
conventional methods. Therefore, yielding was assumed when the mean slope of 11
successive force-displacement data points dropped to 50 % below global stiffness.

3.3.3 Virtual testing

All volumetric femur models, with boundary nodes were created and finalized in 3-
matic (Materialise NV) (see section 3.2). Simulations were performed using Abaqus
FEA (Dassault Systèmes Simulia Corp., Johnston, Rhode Island, USA). Translation
in all directions was denied for the distal contact surface nodes, while translation
in y-direction was denied for the proximal contact surface nodes (Fig. 3.16). Since
the number of nodes representing contact with the plunger varied between models,
a forced displacement boundary condition was chosen instead of an applied force.

Figure 3.16: Schematic representation of the virtual TPBT setup.
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In a static analysis simulation, accounting for large deformations, the surface nodes
under the plunger were given a constant displacement from 0 to 0.2 mm in 0.01 mm
increments. Field output was recorded every increment, 20 increments in total.

Following the FE modeling method by Ramezanzadehkoldeh and Skallerud (2017a),
a full contact analysis simulation would possibly have yielded better fitting results.
In contrast, the simulation method used for this study, with applied boundary con-
ditions, is likely to pose significant limitations. In order to overcome some of the
related weaknesses, every element related to a surface in contact with either support
or plunger were given a very high Young’s modulus to replicate the contact material
of the testing machine. Displacement was logged as the average displacement of the
nodes surrounding the loaded surface, as described in subsection 3.2.5. Resultant
reaction force was measured as the sum of all reaction forces in y-direction acting
on the nodes subjected to a displacement.

Figure 3.17: Cortical section (green) retrieved from femur model.

Figure 3.18: Example illustration of virtual TPBT performed in Abaqus. Distal bound-
ary nodes (left in picture) are denied all translations, proximal boundary nodes (right) are
denied translation in y-direction, loaded nodes (middle) are subjected to a forced displace-
ment downwards.
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3.3.4 Data comparison and statistical analysis

For the two experimental TPBTs, mean ± standard deviation values of global re-
sponse values (stiffness, yield force, ultimate force) were measured. Additionally,
intrinsic properties (Young’s modulus, yield stress and ultimate stress) were cal-
culated and compared. Results from the first test were analyzed with respect to
time of euthanasia due to the important physiological properties of rats (see sub-
section 2.1.4). An independent two-tailed t-test, with a P-value <0.05 considered
to be significant, was also employed for comparison between the two groups in each
bending test.

For comparison between experimental and simulated TPBT of femur 1–24, regres-
sion analysis was used for global stiffness and Young’s modulus. Global Young’s
moduli of the FE models were calculated by the Timoshenko formula (Eq. (3.4))
in the same manner as for the experimental tests. Additionally, yield forces from
the FE models was deduced by logging maximum principal stress at the underside
of the femur. Yielding was assumed when the principal stress reached the same
magnitude as the measured yield stress of the respective experimental test. Yield
force correlation was assessed by regression analysis as well.
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3.4 Simulation script

It must be noted that the simulation of training and radiation presented in this sec-
tion is to be considered as a preliminary proof of concept. Some simplifications were
employed, and assumptions were made on occasions where literature did not present
practical solutions. Nevertheless, the work presented here could lay a foundation for
future studies.

One femur model was chosen to virtual training and radiation. By applying the
different exercise recordings of different rats to a single model, resulting density
distributions and bending stiffness from each simulation could be compared with
the respective experimental test results. A full model (including both epiphyses) of
femur 15 was created. Rat 15 was in the control group and was thus neither radiated
nor trained. The full femur model was meshed in the same manner as the TPBT
models, but the elements forming the epiphyseal regions were given a maximum edge
length of 0.64 mm (Fig. 3.19). This was done to reduce the number of elements,
and since these regions would be excluded from the following bending test, the large
elements would not affect the resulting model stiffness.

Figure 3.19: Meshed model of training/radiation-simulated femur.

The training and radiation simulation script was written in MATLAB. Full code is
found in Appendix H. A loop was repeated for every day of either training or radia-
tion. If training was conducted, the actions described in subsections 3.4.1 and 3.4.2
were applied and new densities were calculated. The procedure for days with ra-
diation is described in subsection 3.4.3. After completing the loop, completing the
rat’s training/radiation program, the final model with new nodal densities was cut
to match the length of the other TPBT models and prepared for bending test. The
bending test was performed in the same manner as described in subsection 3.3.3,
with the same data being recorded.
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3.4.1 Training

The dynamic action of a jump was simplified into static load cases for execution
in Abaqus. Instead of contact with other bones in each joint, a combination of
boundary conditions and applied forces were defined to represent the joints and
active muscles (Fig. 3.20). The distal epiphyseal surface was denied translation,
and forces were applied to the proximal epiphysis and metaphysis. Quadriceps
muscle attachment points were approximated by following descriptions by Johnson
et al. (2008) and Charles et al. (2016a). The hamstring muscles were represented
by applying additional force on the femoral head, while the glutes were excluded
because of assumed little contribution to the total load on the femur.

Figure 3.20: Muscle attachment points.

Loading for each jumping simulation was initially calculated from the formulas for
total force presented in section 2.1. A constant Fbody = 1

2

∑
F (Eq. (2.2)) was

applied to the femoral head to represent the mass of the rat being lifted. Since the
femur orientation during a jump goes from slightly tilted downwards to steeply tilted
upwards (Fig. 2.3), the loading direction was changed during the simulation. This
was done by presenting two perpendicular forces, one axially (negative z-direction)
and one transversely (positive y-direction). By gradually increasing and decreasing
the amplitudes of the two load vectors, the net force from lifting the body remained
even. The loading direction of the quadriceps muscles was calculated approximately
with respect to the position of the patella (Fig. 3.21). The load vector Fquad =
Fquad[ x , y , z ] = Fquad[ 0 , −0.105 , −0.995 ] was estimated. The hamstring
force, Fham, was defined with a constant negative z-direction.
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Figure 3.21: Muscle force directions. $ indicates roughly the quadriceps muscles’ at-
tachment point.

A load amplitude ranging between 0 and 1 was defined for each muscle load. This
way, the force directions remained constant throughout the jump simulation, while
their magnitude varied with respect to femur orientation and muscle activation time.
A total of 4 amplitudes were defined: one for the quadriceps, AQ; one for the
hamstrings, AH ; and one each for the axial and transverse loads of the body mass,
AHA, AHT (Fig. 3.22). The amplitudes were inspired by various musculoskeletal
studies by Johnson et al. (2008), Yeo et al. (2011), and Charles et al. (2016a).

Figure 3.22: Muscle load amplitudes. Calculated reference forces were multiplied with
their respective amplitudes. Head-Axial : AHA = 1

2 cos
10(t+0.95)

π + 0.5; Head-Transverse:
AHT = 1

2 cos
10(t−0.05)

π + 0.5; Head-Hamstring : AH = 1
2 cos

10.4(t+3.4)
π + 0.5; Quad : AQ =

1
2 cos

5.2(t+3.6)
π + 0.5.

Since the simulation time (running from 0 to 1 s) is analogous to the joint angles, the
load amplitudes are naturally expressed by trigonometric functions. Following the
time in Figure 3.22, the femur goes from tilted downwards to horizontal at 0.05 s.
This is when the quadriceps exert the highest force. Prior to this moment, the axial
body load is 0. The hamstring force is greatest just before the bone angle is 45°
(0.55 s). After this, all muscle forces decrease while the axial body force increases.
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Quadriceps muscle reference force was defined as Fquad = 28
24 sin(6°)Fbody ≈ 11Fbody

(Fig. 3.21). The hamstring reference force expression, Fham, was however more
speculative. Since this muscle group is responsible for hip extension, it is unlikely
to exert as much force during a jump as the quadriceps. In addition, due to the
way the hamstring load was configured in this setup, its contribution would be
nearly indistinguishable from that by Fbody. It was thus initially suggested to let
Fham = 1

2
Fbody, with the possibility for later optimization.

Reference force Direction Load amplitude Abaqus load case

Fbody = 1
2m(a+ g)

[0, 0,−1] AHA = 1
2 cos

10(t+0.95)
π + 0.5 F1 = AHAFbody

[0, 1, 0] AHT = 1
2 cos

10(t−0.05)
π + 0.5 F2 = AHTFbody

Fham = 1
2Fbody [0, 0,−1] AH = 1

2 cos
10.4(t+3.4)

π + 0.5 F3 = AHFham

Fquad = 11Fbody [0,−0.105,−0.995] AQ = 1
2 cos

5.2(t+3.6)
π + 0.5 F4 = AQFquad

Table 3.3: Abaqus load cases

In order to obtain the loading contribution from every jump, an equation which
accumulates multiple individual loading events with various magnitudes was em-
ployed. This equation was initially proposed by Carter and colleagues (Beaupré
et al. 1990; Carter et al. 1987; Whalen et al. 1988) with the means to estimate a
daily stress stimulus, ψ, resulting in either formation, resorption or maintenance of
apparent density:

ψ =

[∑
day

ni (σi)
M

] 1
M

(3.9)

where ni is the number of times per day each effective stress magnitude, σi, is applied.
The exponent,M > 1, is a constant which defines the weighting of higher magnitude
loads. With increasing values of M , Equation (3.9) emphasizes high magnitude
loads, such as jumping, more than regular loads, like standing and walking. This
daily stress stimulus theory has since been used in many computational studies. For
this study, however, it was proposed to employ the same formula for predicting an
accumulated jump height. This way, all the jumps performed by each rat during an
exercise session could be condensed into one single simulation:

h =

[∑
day

ni (hi)
M

] 1
M

(3.10)

Since the jumping height, h, together with body mass predicts the loading mag-
nitudes, applied loads were calculated after using this formula. It was considered
that a single load case derived from the average height would yield insufficient load,
while a standard summation of all jump heights would cause too much load.
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3.4.2 Adaptation

After each completed jumping simulation, the nodal densities were updated in ac-
cordance with bone adaptation. For this job, a formulation of Huiskes’s model was
employed (Huiskes et al. 1987):

dρ

dt
=


B
(
U
ρ
− (1− s) · k

)
, if U

ρ
< (1− s) · k

0, otherwise

B
(
U
ρ
− (1 + s) · k

)
, if U

ρ
> (1 + s) · k

(3.11)

This formula considers the strain energy density (SED), U , at every location, which
for linear isotropic materials undergoing small strains is calculated as:

U =
1

2
σijεij (3.12)

where σij and εij are resulting stresses and strains, respectively, and i, j denotes
each direction in the Cartesian coordinate system. B is a remodeling rate coefficient,
regulating the adaptation intensity. k is a reference stimulus which represents the
homeostatic balance point between formation and absorption, and s is a homeostatic
plateau length. Applying a forward Euler scheme to Eq. (3.11) yields:

ρt+∆t =


ρt + ∆t×B

(
Ut

ρt
− (1− s) · k

)
, if Ut

ρt
< (1− s) · k

ρt, otherwise

ρt + ∆t×B
(
Ut

ρt
− (1 + s) · k

)
, if Ut

ρt
> (1 + s) · k

(3.13)

which can be schematically visualized:

Figure 3.23: Huiskes’s model for bone adaptation rate. The plateau depicts the equilib-
rium state between formation and resorption.
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Huiskes’s model was originally proposed for predicting the density distribution in a
trabecular bone region for a model with an initially uniform density distribution.
Applying this model to a cortical region with already defined densities is however
not well documented in literature. This model might thus pose a potential limitation
to the respective adaptation simulation. Nevertheless, the model was employed due
to its well-defined variables and easy inclusion of radiation damage. Some values
of B, k and s were proposed by Weinans et al. (1992). However, these values were
derived for human bone models, and new values were thus considered for the rodent
bone model in this study.

3.4.3 Radiation

Three different stages of radiation damage were considered for the simulation (see
subsection 2.1.5): immediate damage which causes collagen phase diminishing and
BMD loss; lasting damage, where bone formation becomes unbalanced and leans
heavier towards resorption; and damage to adaptation efficiency.

The immediate adverse impact on bone density was simulated by direct reduction of
each nodal density. A damage rate coefficient expression, where increased radiation
dose yields a greater damage, up to a certain point, was proposed:

ρt+∆t = ρt ×
(
1− f(rt)

)
, 1− f(rt) = 1− 1

10α
×min

(
ln(rt + 1) , α

)
(3.14)

Here, rt is the radiation dose (Gy) and α is the value regulating the damage inten-
sity. By employing a logarithmic relationship between radiation dose and resulting
density reduction, the maximum inflicted damage was controlled. This would hinder
very high radiations from completely removing all bone. The divisor, 10α, predicts
a maximum density reduction of 10 %, regardless of radiation dose. This value was
based on the average percentile quality reduction from different doses, measured by
Bartlow et al. (2018) and Mustafy et al. (2018). With a radiation dose of 2× 8 Gy,
Chandra et al. (2014) did obtain a 51 % reduction of trabecular bone stiffness by
using FE analysis. Their FE method was however not described, and radiation has
been shown to impact trabecular bone more adversely than cortical bone (Mustafy
et al. 2018). Such a high damage rate coefficient was thus considered improbable
for this simulation.

It is noted that various physiological events take much shorter time in rats than in
humans. Additionally, their growth plate does not close and bone growth does not
cease at skeletal maturity (Chandra et al. 2014). Rats are therefore able to recover
from radiation damage to some extent (Karim and Judex 2014; Mustafy et al. 2018;
Bartlow et al. 2018). The value of α, which controls both the curve slope and the
maximum of the damage rate coefficient, was adjusted to account for these factors.
Curve plots of Equation (3.14) with different values of α are presented in Figure 3.24.
In a future study, depending on the simulation setup, different values of the divisor,
10α, should be assessed (Fig. 3.25).
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For the same reasons as described above, prediction of later radiation damage would
be highly uncertain and possibly not observable the present simulation study. The
long-term impact of radiation was thus not considered in the script.

The same damage formula was also applied to the variables in Huiskes’s model
(Eq. (3.11)), to represent radiation impact on adaptation. The remodeling rate
coefficient, B, was decreased by ×

(
1 − f(rt)

)
, representing decreased adaptation

efficiency, while the reference stimulus, k, was increased by ×
(
1 + f(rt)

)
to im-

ply a higher SED needed to activate formation. Since B is equal for formation
and resorption, the radiation damage would also reduce the resorption rate, which
might inaccurately represent the true physiological response to radiation. For future
studies, separate variables, Bformation and Bresorption, should perhaps be considered.

Note that the assumption of radiation-induced BMD loss, and thus reduced Young’s
modulus, in cortical bone does not fully conform with literature. This may have
posed a limitation to the simulation method. A further discussion is made in sec-
tion 5.4.

Figure 3.24: Radiation damage rate coefficient. f(rt) = 1− 1
10α ×min

(
ln(rt + 1) , α

)
.

Figure 3.25: Radiation damage rate coefficient. f(rt) = 1− 1
5α ×min

(
ln(rt + 1) , α

)
.

Chapter 3. Materials and methods 43



44



4 | Results

4.1 Experimental bending test of femur 1–23

Figure 4.1: Linearized force-displacement plot of first test. Rat 9, 10 and 24 are excluded.
Color code corresponds with the full plot in Appendix C.

Figure 4.1 shows a cleaned and linearized representation of the force-displacement
curves from the first experimental TPBT of radiated (Rad-1) and non-radiated (Ctrl)
rat femurs. The linear region is the same slope as the measured global stiffness,
meaning that the relationship between yielding and displacement is not accurately
represented in the respective figure. The curves are cut off right after the first
onset of yielding. Due to the continuous growing of rat femurs throughout their
life, measurements are plotted at their respective weeks of euthanasia in Figure 4.2.
There are some indications of radiation causing reduced bone quality improvement
through growth reduction. At week 9 after radiation, the control group saw a higher
increase in global stiffness and yield force, compared to the radiated group. An over-
all increase in Young’s modulus in the control group, compared to a decrease in the
radiated group, was also observed. Ultimate force, yield stress and ultimate stress
decreased steadily in the radiated group while the control group saw no significant
changes in these parameters during the time span. These findings are indicative
of radiation negatively impacting some material properties of cortical bone when
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accounting for the time aspect. However, the comparisons of each result, presented
in Table 4.1, denotes a level of significance too low for the test to confirm this
suggestion.

Figure 4.2: Global stiffness, yield force, ultimate force, Young’s modulus, yield stress
and ultimate stress of radiated (Rad-1) and non-radiated (Ctrl) femurs, plotted over time.
Values are presented as mean and standard error of the mean.

2 weeks 4 weeks 9 weeks

Ctrl Rad-1 Ctrl Rad-1 Ctrl Rad-1

Stiffness
(N/mm)

410.90 ±
24.40

456.79 ±
59.36

441.56 ±
52.30

446.85 ±
89.77

547.95 ±
124.04

455.01 ±
123.46

Yield force (N) 80.25 ±
5.67

80.97 ±
8.17

81.84 ±
12.44

84.46 ±
5.87

98.69 ±
5.66

84.18 ±
15.29

Ultimate force
(N)

124.02 ±
8.80

125.08 ±
6.15

115.70 ±
7.99

119.24 ±
9.29

134.92 ±
26.17

111.42 ±
32.70

Young’s
modulus (MPa)

3176.29 ±
566.17

3804.44 ±
335.58

3026.80 ±
558.42

3267.79 ±
564.21

3616.42 ±
1282.79

3273.04 ±
1379.14

Yield stress
(MPa)

68.72 ±
14.10

74.65 ±
10.81

64.79 ±
13.53

69.57 ±
3.13

73.45 ±
8.22

67.27 ±
16.20

Ultimate stress
(MPa)

105.67 ±
17.15

114.88 ±
6.16

91.18 ±
10.16

98.30 ±
7.54

102.42 ±
33.07

89.33 ±
30.49

Table 4.1: Test results, values are presented as mean ± standard deviation. No significant
differences were found between the groups or between the times of euthanasia.

If the time aspect of the test is disregarded and all measurements of each group
are gathered, the differences become much less distinct. Lumped comparisons of
the measurements are presented in Figure 4.3 and Table 4.2. There were no signif-
icant differences measured between the two groups by this assessment due to high
deviations. The lowest and second lowest P-values are related to yield force and
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ultimate force, respectively, where the radiated group is somewhat weaker. This can
to a lesser extent indicate a difference in some material properties of radiated and
non-radiated bone. Although the slightly higher global stiffness in the control group
conforms with the time-dependent results, high uncertainty prevents any conclusion.
It is evident that the time aspect must be accounted for in the respective assess-
ment due to certain physiological properties of rat femur. Despite some tendencies
of reduced bone quality from radiation, high standard deviations and insignificant
differences render the bending test inconclusive.

Figure 4.3: Global stiffness, yield force, ultimate force, Young’s modulus, yield stress
and ultimate stress of radiated (Rad-1) and non-radiated (Ctrl) femurs, plotted with all
specimens in each group gathered. Values are presented as mean ± standard deviation.

Ctrl Rad-1 P-value

Global stiffness (N/m) 464.28 ± 89.31 452.69 ± 80.90 0.759

Yield force (N) 86.42 ± 11.75 83.11 ± 8.95 0.474

Ultimate force (N) 123.96 ± 16.15 119.23 ± 16.83 0.520

Young’s modulus (MPa) 3248.53 ± 780.74 3464.37 ± 763.15 0.530

Yield stress (MPa) 68.57 ± 11.60 70.79 ± 10.04 0.643

Ultimate stress (MPa) 98.90 ± 19.72 101.88 ± 18.28 0.723

Table 4.2: Comparison of lumped test results. Values are presented as mean ± standard
deviation.
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The measurements of Young’s modulus were lower than what is suggested in other
literature (Ramezanzadehkoldeh and Skallerud 2017a; Schriefer et al. 2005; Cory et
al. 2010). While an elasticity of 10–15 GPa would be expected, the lumped average
was only 3.4 GPa in the present study. A further discussion on this discrepancy is
presented in section 5.1, however, the low values might have posed a weakness to
the comparison of Young’s modulus between the radiated and non-radiated femurs.
Although a wide range in these measurements should be expected, higher mean
values could possibly yield more significant differences.

Yield stress was further analyzed. An average density was calculated by selecting a
region in the middle of the lowermost part of the cortical cross section beneath the
plunger (Fig. 4.4(b)) and employing the expression ρ = 4.395 × 10−4 GV (g/cm3).
Assuming tensile/compressive yielding and stress symmetry about the neutral axis,
correlation between apparent density and measured yield stress was assessed. Data
points for each femur is plotted in Figure 4.4(a). The results were compared to a
relationship based on Cory et al. (2010), which yielded satisfactory results when
employed by Ramezanzadehkoldeh and Skallerud (2017a). Although the densities
are closely gathered, the respective yield stresses congregate around the relationship
curve, suggesting that the quality of the yield stress measuring method was good.

(a) (b)

Figure 4.4: Correlation between density and yield stress: (a) comparison with the rela-
tionship model formulated by Cory et al. (2010), (b) example illustration of the region of
interest analyzed (red square).
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4.2 Experimental bending test of femur 25–48

Figure 4.5: Linearized force-displacement plot of second test.

Linearized and cleaned force-displacements, similar to those presented in section 4.1,
from the second TPBT of radiated (Rad-2) and radiated and exercised (RadEx) rat
femurs are plotted in Figure 4.5. An initial interpretation of the plots shows an
overall slightly higher stiffness and a narrower range than the first bending test.
The highest measured yield forces are also somewhat higher, although this value is
wider spread.

Since all rats from the second study were euthanized simultaneously, the time as-
pect was not accounted for in the respective comparisons. The same parameters
as described previously were measured and compared. All comparisons and corre-
sponding P-values are presented in Figure 4.6 and Table 4.3. Some indications of
greater material quality in the exercise group are seen, as all quantity averages are
of higher value. However, the maximum yield force, Young’s modulus and yield
stress were all seen in the radiated group. Minimum ultimate force and ultimate
stress were also measured in the exercise group although some discrepancies were
considered acceptable. Nevertheless, the high deviations in both groups inhibits any
certain conclusion to be made from the second study as well. Although P-values for
all comparisons were lower, none were low enough for the differences to be significant.

It must be noted that neither of the two in vivo animal studies discovered any
significant differences in cortical bone, except for RadEx having a higher BMD than
Rad-2 (P=0.0036, Mann Whitney U test). It would thus be unlikely for the TPBTs
to show any tangible differences, since mechanical testing is more susceptible to
geometrical variances and other sources of error. Regardless, some critically high
deviations of the measurements suggest that three-point bending test (TPBT) might
not be an admissible method of measuring the impact of radiation and exercise to
cortical bone. Other testing methods, which can alleviate some of the geometrically
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related errors, might however be more feasible. Additionally, other intrinsic bone
properties might be better related to the physiological changes in bone caused by
training and radiation. A good example is measurement of hardness and strain-
rate sensitivity by nanoindentation. This technique is also not as susceptible to
geometrical errors, and many more tests can be conducted on the same sample,
which increases the test accuracy (Ramezanzadehkoldeh and Skallerud 2017b).

Figure 4.6: Global stiffness, yield force, ultimate force, Young’s modulus, yield stress and
ultimate stress of radiated (Rad-2) and radiated and exercised (RadEx) femurs. Values
are presented as mean ± standard deviation.

Rad-2 RadEx P-value

Global stiffness (N/m) 472.06 ± 77.36 500.51 ± 89.53 0.414

Yield force (N) 85.49 ± 17.26 91.08 ± 8.90 0.330

Ultimate force (N) 126.31 ± 12.05 133.00 ± 15.32 0.247

Young’s modulus (MPa) 3437.24 ± 1049.48 3591.10 ± 599.12 0.664

Yield stress (MPa) 69.47 ± 17.86 73.62 ± 9.11 0.481

Ultimate stress (MPa) 102.40 ± 16.13 107.72 ± 15.77 0.423

Table 4.3: Comparison of test results. Values are presented as mean± standard deviation.
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4.3 Virtual bending test of femur 1–23

Figure 4.7: Force-displacement plot of first simulated test. Color coding corresponds
with experimental force-displacement plot.

Resultant force-displacement plot of simulated TPBT of femur 1–23 is presented
in Figure 4.7. Despite the 20 increments of displacement and accounting for large
displacements, the reaction force is nearly perfectly linear throughout the load case.
This was likely caused by the strict boundary conditions and no additional seating
during the simulation. Femur 8 was excepted from the comparison. Its simulated
reaction force differed greatly from the other specimens in a negative manner de-
spite being the specimen with the highest stiffness and Young’s modulus in the
experimental test. An investigation of the density distribution of femur 8 revealed
densities much lower than what natural genetic variation would suggest (Fig. 4.8).
An error during µCT-scanning is likely to have caused this discrepancy.

Figure 4.8: Density distribution of cortical sections, femur 8 (top) and 15 (bottom).
Density distribution of femur 15 is close to the average of all femurs.
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One incident of miscalibration during µCT image reconstruction, which resulted in
a large portion of the study needed to be redone, caused an incorrect density distri-
butions of the FE models, and thus invalid force-displacement results. Although the
large deviation of femur 8 was the main instigator for this error to be discovered, a
new reconstruction of the µCT images did not fix the errors related this specimen,
suggesting that there still might be an error present in the CT image reconstruction
process. Whether or not this error affected all of the models is difficult to say. The
new reconstruction did cause a change of every simulated stiffness, some to a larger
extent than others, but since new FE models and boundary conditions needed to be
created and defined, other factors might partly have contributed to these changes
as well. Other possible sources of error are presented and discussed in section 5.3.

Virtual global stiffness was calculated as mean slope of the force-displacement curve.
When tested, no noteworthy sensitivity to using this method was found. The range
of the curve slopes was not as wide for the simulated tests as for the experimen-
tal ones. Some possible weaknesses in the FE modeling and simulation might have
caused this discrepancy, although the experimental testing setup could also have
been a contributor. As discussed in the previous sections, some deviation should be
expected due to geometric and physiological variations. However, standard devia-
tions equal to 19.2 % and 17.9 % of mean global stiffness in the experimental control
and radiated group, respectively, is slightly more than what should be expected.

Figure 4.9: Global stiffness correlation. The regression curves indicate correlation be-
tween virtual and experimental stiffness for the control and radiated group as well as all
specimens collectively. The higher range in experimental stiffness than virtual stiffness is
visualized by the vertical span being more stretched than the horizontal span.
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Figure 4.9 shows a correlation plot of virtual stiffness versus experimental stiff-
ness. Although the comparisons congregate around the 1:1 line, R-squared is only
0.02. A coefficient of determination this close to zero denotes no correlation be-
tween experimental and virtual stiffness. For cases of perfect correlation, R-squared
is equal to 1. Ramezanzadehkoldeh and Skallerud (2017a) managed to obtain a
stronger correlation of global stiffness with resulting regression curve expressed as
y = 1.0304x + 4.1319 and R2 = 0.828, further indicating the presence of one or
several detrimental errors in this study.

Figure 4.10: Young’s modulus correlation.

Young’s modulus of virtual bending test was calculated with the same Timoshenko
formula as the experimental test (Eq. (3.6)). The same µCT-measurements of Ix and
A were utilized. Resulting correlation plot is presented in Figure 4.10. Here as well,
the difference in measurement range is noted, as the experimental test results are
more spread than the virtual. The control group correlation curve fitted very well,
with a slope of 1.038 and an intercept value of only -40 MPa. However, the coefficient
of determination being no more than 0.34 is unfortunately not satisfactory. There
are some data points which deviate strongly from the main group, causing a poor
correlation of radiated femurs. Namely, femur 1 (4.3 vs. 3.2 GPa), 20 (2.1 vs. 2.9
GPa) and 23 (4.8 vs. 3.3 GPa). Removing these values yields a slightly better
correlation of radiated bones (y = 2.104x− 3284.26), but R-squared is however not
improved. The removal yields a better lumped correlation expression, y = 1.298x−
779.08, but resulting R-squared is nevertheless no more than 0.411. The exemption
of the mentioned bones cannot be justified as no noteworthy discrepancies for these
specimens were discovered in the density distributions or during the FE modeling.
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The fact that virtually measured Young’s modulus is excessively underestimated in
two of the femurs and overestimated in the third one complicates the distinction of
exactly what is causing the discrepancies. It rather indicates that several sources
of error have been present, unless a single error has been affecting the study both
ways.

Although perfectly elastic material properties were employed for the FE models,
simulation stresses and potential yielding was of high interest to investigate. Max-
imum principal stresses (tensile stress) in a large posterior region under the loaded
boundary nodes were recorded. The highest value at each increment was plotted
against residual reaction force. Interpolation or extrapolation, whichever necessary,
was employed to find the reaction force where the stress reached the same magnitude
as the calculated yield stress of the corresponding specimen in the experimental test
(Eq. (3.8)). It should be noted that although the Euler formula for yield stress is
primarily not affected by Young’s modulus, these calculations were to some extent,
due to the bending force being simulated as an enforced displacement and not an
applied force and the density distribution affecting how the loads are distributed.
It is also noted that this method of predicting the yield stress essentially requires
physical testing, since the real test results are utilized in the calculations. However,
the correlation between the described calculations and experimental measurements
should provide an overall quality check of the FEM simulations and help pointing
out the source of error described above. Correlation plots of experimental versus
virtual yield forces are presented in Figure 4.11. These curves fit well, with lumped
correlation expression being y = 0.843x+ 6.02 and R2 = 0.8606.

Figure 4.11: Yield force correlation.
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Virtual TPBT overestimated the yield force by 10.8 %. This corresponds well with
the strict boundary conditions employed instead of contact analysis. Other weak-
nesses related to FEM, such as element size, reduced indentation, not accounting
for orthogonal material properties and possibly inaccurate defining of boundary
nodes might also have contributed to an increased yield force, while ovalization and
removal of epiphyseal segments are likely to have caused reduction. With the coef-
ficient of determination being 0.86, the fitment is considered to be good, suggesting
that the source of error could be somewhere in the mapping from gray value µCT
images to density-dependent Young’s modulus. A full table of all correlation curves
is presented in Table 4.4.

Stiffness (N/mm) Young’s modulus (MPa) Yield force (N)

Ctrl

Experimental 444.36 ± 67.15 3063.29 ± 547.46 85.42 ± 11.99

FEM 435.46 ± 36.60 2989.98 ± 306.84 94.65 ± 11.92

Slope (R2) 0.55 (0.09) 1.04 (0.34) 0.94 (0.86)

Intercept 205.62 -39.95 -3.11

Rad-1

Experimental 452.69 ± 80.90 3464.37 ± 763.15 83.11 ± 8.95

FEM 416.72 ± 40.58 3152.89 ± 154.52 91.03 ± 10.92

Slope (R2) 0.16 (0.01) 3.52 (0.51) 0.77 (0.88)

Intercept 387.09 -7636.66 13.31

All

Experimental 448.94 ± 73.22 3283.88 ± 688.93 84.15 ± 10.20

FEM 425.69 ± 39.01 3079.58 ± 243.15 92.66 ± 11.22

Slope (R2) 0.27 (0.02) 1.73 (0.37) 0.84 (0.86)

Intercept 335.83 -2050.51 6.02

Table 4.4: Comparison and correlation curve expressions for global stiffness, Young’s
modulus and yield force. Note that femur 8 is removed from all measurements, resulting
in different experimental values than presented in Table 4.1.

A further investigation was conducted to identify the source of the discrepancies
described. All 21 FE models were given an homogeneous isotropic Young’s modulus
of 3.5 GPa, which is close to the lumped average of the experimental assessment.
Although the assigned elasticity is lower than suggested values of cortical bone,
the test would still yield correlation based on the quality for the FEM analysis.
Step time increments were reduced from 20 to 10 in order to save time. This had
been tested earlier and showed to have little to no effect on the resulting reaction
force. Correlation of experimental and simulated stiffness and elasticity is plotted in
Figure 4.12. An even narrower range of FEM stiffness was measured, as expected,
since the variation in density was not accounted for. Yet, an even less satisfactory
correlation was obtained (R2 = 0), suggesting that the simulation method was
suffering from some weaknesses. Interestingly, calculations of global elasticity by
Timoshenko yielded on average 30 % lower Young’s modulus than the assigned value.
It is suggested that the Timoshenko formula is unfit for the present testing setup
since Young’s modulus is consistently underestimated. This is discussed further in
subsection 5.2.2.
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Figure 4.12: Stiffness and elasticity correlation, isotropic Young’s modulus.

Final simulations were run, assigning each model the same Young’s modulus as
measured in the experiments. Number of increments were reduced further to 5.
This yielded a lumped stiffness correlation of y = 1.259x + 54.72 and R2 = 0.8505.
Young’s modulus correlation was y = 1.17x+ 581.69, R2 = 0.952. These results are
indicative of the importance of accounting for density when assessing cortical bone.
The strong correlations are supporting the previous suggestion of errors in the µCT
density acquisition.

Figure 4.13: Stiffness and elasticity correlation, isotropic experimental Young’s modulus.

On a final note, the virtual TPBT did also not show any significant difference be-
tween the radiated and non-radiated femurs. Although virtual testing is a promising
method of testing certain bone material properties, the study results indicate that
finite element TPBT analysis is unfit for evaluation of radiation impact on cortical
bone.
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4.4 Training and radiation simulation

The finalized training/radiation script is presented in Appendix H. Force parame-
ters were defined as described in section 3.4, with accumulation exponent, M = 4
(Eq. (3.10)). The variables of Huiskes’s model (Eq. (3.13)) were adjusted to corre-
spond with the rats’ life span. Low time step and remodeling rate coefficient values,
∆t×B, provided a steady density evolution. Reference stimulus was set to k = 0.004
(J/g) (Weinans et al. 1992). It is noted that the reference stimulus is largely related
to the accumulated jumping height. For instance, if height was only calculated by
mean value, k would have been too high for adaptive formation to occur. Initial
tests were conducted to find a suitable balance betweenM and k. Radiation damage
was defined as described in subsection 3.4.3, with α = 2.

The model of femur 15 was set to follow the same program as every one of the 12
specimens in the RadEx group. The simulation started with one dose of radiation
therapy, followed by 15 exercise sessions. Apparent densities were recorded before
simulation and updated after every event.

Figure 4.14 displays the midspan cross section density evolution of femur 43. Top
left image is the density before simulation, the same distribution as obtained by
µCT. Typical values range between 1.35 and 1.5 g/cm3, with some dense regions
reaching 1.65 g/cm3. Second image (top, middle) depicts the density immediately
after radiation. The whole femur is affected equally, thus the uniform change of
colors. Throughout the exercise events, adaptation occurred more strongly at the
anteriormost region of the femur, suggesting that the contribution from quadriceps
was somewhat overemphasized compared to the other muscle loads. Anterior densi-
ties reached maximum values, while the final posterior densities were slightly lower
than initial. Femur 43 is depicted as an example. Other specimens saw similar
adaptation behavior.

Figure 4.15 shows the how bending stiffness and yield force were affected by the
simulation. Stiffness response development varied between ∼5 % increase and one
minor decrease. Mean stiffness increased by 2.3 %. Since the Rad-2 group saw higher
average stiffness than the Rad-1 group in the experimental tests, it is difficult to
evaluate the accuracy of the simulated results.

Yield force was calculated in the same manner as described on page 54, using the
yield stress of femur 15 as reference for every model. All models saw a distinct
increase with a very low standard deviation. Average yield force increased by 4.7 %.
This result emphasizes the previous suggestion that density does not directly affect
this parameter, as mean apparent density in all models was slightly lower than first.
The local distribution of density does however influence the yield force. When most
of the gained bone mineral is located in the anterior region of the model, a higher
force is needed to obtain the reference principal stress in the posterior region.

The density evolution in Figure 4.15 is measured as mean of all models’ average
density at each event. The curve slope is steepest right after radiation and flat-
tens out towards the final exercise. This might indicate that the models are close
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to reaching an equilibrium state between material strength and exerted loads. In
this regard, some aspects of the training/radiation simulation show good fit with
expected results, although the obtained densities were not optimally distributed.

Figure 4.14: Density evolution of femur 43 at midspan. Top left image shows density
distribution prior to simulation, bottom right shows resulting density after final exercise.

Femur 44 saw the largest increase in stiffness and average density. The corresponding
rat was one of the specimens with the highest weight and jumping height combina-
tion during the last events. None of the heaviest or highest jumping models obtained
stiffness above mean value, indicating that mass and height played an equally im-
portant role in the training simulation. Femur 38 saw a slight decrease in stiffness.
This rat was the one with the lowest body mass in the RadEx group and jump-
ing heights below average. Note that since all simulations were run with the same
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model, a direct comparison with experimental results is not achievable. The cor-
relation between body mass and jumping height and resulting stiffness and density
does however contradict the comparative medicine animal study, which found no
correlation between exercise parameters and in vivo measurements. This might sug-
gest that the training/radiation simulation emphasizes these parameters more than
training at all. Similar studies have suggested that exercising beyond a certain level
does not yield significant differences to bone quality improvement (Umemura et al.
1997).

Figure 4.15: Simulation responses and average density evolution. Top: yield force; Mid-
dle: global stiffness; Bottom: Mean average density with standard deviation. Horizontal
axis represent timestamps, where 0 denotes initiation and 16 is after final exercise.
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5 | Discussion

5.1 Radiation and training effects on the mechani-
cal performance of bone

One objective of the present study was to investigate the feasibility of mechanical
testing as a means to evaluate the effects of radiation and training on material and
mechanical properties of cortical bone. No significant results were obtained from
either of the two tests conducted, suggesting that the employed testing method
is unfit. It is well documented that physiological alterations caused by radiation
and exercise are more present in the trabecular regions of the femoral epiphyses
than in the diaphysis (Mustafy et al. 2018; Mosti et al. 2016). Mechanical testing
of trabecular bone would have required other testing methods than TPBT. For
instance, compressive testing of the femur head or a section of the proximal epiphysis
could perhaps be a viable option. Also, the inaccuracies of bending test caused by
geometrical irregularities has proven to pose a significant weakness to the study.
Different implementations of TPBT and other seating orientations have been utilized
in similar studies on rat femurs (Arias-Moreno et al. 2020), but large measurement
variance has nevertheless presented challenges. Schriefer et al. (2005) found in their
study that the radius bone was preferred to the femur for mechanical bending test
because of advantageous geometrical properties and low variability. It is possible
that lower variability, or an increased number of specimens, would have yielded
more significant results when comparing both global and intrinsic properties in the
present study.

The in vivo animal study conducted by the Comparative Medicine Core facility did
also not find any significant differences in cortical properties between the Rad-1
and Ctrl groups. Substantial differences were however observed in bone trabecular
thickness number and separation and bone volume fraction in the assessment of
trabecular bone. The second study did not show any distinction in trabecular or
cortical bone between Rad-2 and RadEx, except for higher cortical BMD in RadEx
than Rad-2. This suggests that no considerable difference in either study should have
been expected in either of the mechanical tests. Due to a generally lower possibility
of measurement error, an in vivo study is more likely to yield tangible results than
mechanical bending tests. Thus, if any considerable results were to be obtained in
the present study, they would most likely be caused by other confounders.
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The radiation-induced reduction of stiffness could to some degree seem contradic-
tory to the diminishing of collagen phase, which governs bone ductility. It is however
important to distinguish between ductility and elasticity (Young’s modulus). While
ductility describes the susceptibility to plastic deformation, elasticity is the mea-
surement of force response in the elastic region. Soft collagen contributes very little
to bone elasticity, compared to apatite mineral. Global stiffness response should
thus not decline immediately after radiation, but later as osteoblast proliferation is
reduced. This conforms well with the observations in the first study. Bartlow et al.
(2018) measured a reduced fracture toughness right after bone radiation. This is a
property which is very much dependent on ductility. A possible assessment of col-
lagen deterioration in the present study could have been to measure the total work
from first yield to breaking. Work (Nmm) is measured as the area under the force-
displacement curve. Since some initial seating occurred during TPBT, the work
until first yield would have to be excluded, resulting in a measurement of the energy
dissipated during plastic deformation. Additionally, to alleviate any contribution
from the mineral phase, one could consider only the force-displacement area above
yielding force (Fig. 5.1). This measurement would be related only to the specimen
toughness and susceptibility to strain governed by the collagen phase. Total work
(elastic + plastic) for each specimen was calculated (see Appendices B and D), but
further assessment was not conducted.

As mentioned earlier, nanoindentation testing could have been an interesting method
of mechanical assessment. Such a study would still mainly consider cortical bone,
but there are some noteworthy advantages over a bending test. Several tests could
be conducted on the same specimen, minimizing the risk of measurement error.
Geometrical variations would also have been alleviated, resulting in fewer possible
confounders. Indentation does also allow for investigation of other material proper-
ties, such as hardness and strain rate sensitivity. These are indices which are likely
to be affected by radiation since they depend on several physiological properties.

Figure 5.1: Example illustration of mineral-independent plastic work
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5.2 Evaluation of the experimental bending test

The complex and irregular geometry and anisotropic material of femur gives rise
to several challenges when assessing mechanical properties, both when comparing
experimental test results and when virtually recreating the same test. The follow-
ing subsections present possible sources or error related to the test setup, some of
which are affecting the experimental testing only, while others might have caused
discrepancies in the FE analysis as well.

5.2.1 Seating orientation

One important possible source of error is how the specimens were seated during
TPBT. It is difficult to define a common global axis system for all specimens to
conform to, and unfortunate seating alignment might have caused specimens to
behave weaker or stronger than expected. Figure 5.2 illustrates how femur 1 was
oriented differently about its longitudinal axis between experimental and virtual
TPBT. The virtual specimen orientation is also representative of how the 2nd mo-
ment of area, Ix, was calculated. An orientation offset of 20° causes a 10 % reduction
of Ix (Fig. 5.3). Consequently, the experimental measurement of Young’s modulus
(Eq. (3.6)) was underestimated. Additionally, measurements of yield stress and ul-
timate stress (Eq. (3.8)) were overestimated since the distance from the neutral axis
to the farthest voxel were actually less than measured. When calculating the geo-
metric properties, a single cross section image of each specimen was utilized, and
the entire femur was considered to have a uniform geometry for the entire diaphysis.
It is thus difficult to estimate the magnitude of the error caused by longitudinal
rotation. Cross section underneath the plunger of all rats from the first and second
tests are found in Appendix A. It is evident that some cross sections are prone to
rotation-induced error due to their oval shape. The error might also have caused
both overestimation and underestimation of geometric measurements, since the ex-
act orientation of test seating versus CT images was not controlled. It was made
sure that all femurs were seated as equally as possible. However, deviations in im-
age orientation were not accounted for. The discrepancy in femur 1 makes for an
8.3 % underestimation of Young’s modulus. It is however considered unlikely that
all specimens were affected this severely. Nevertheless, an elasticity increase from
4.3 to 4.7 GPa is still not enough to match the values suggested in literature.

Since the longitudinal axis can be difficult to recognize in experimental testing, spec-
imens might also not be perfectly aligned between the two supports. This means
that the z-axis orientation about the y-axis is deviating from the axis system of
the plunger and supports. The bending axis would thus be skewed, and the speci-
men would behave stiffer and stronger than expected. Images were taken of every
specimen from the same angle as in Figure 5.2(a) to ensure a uniform orientation
of the z-axis. However, some deviation is possible, and correspondence between ex-
perimental and simulated orientation was not controlled in detail. This is although
unlikely to be a critical source of error.
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(a) (b)

Figure 5.2: Experimental TPBT seating orientation of femur 1, viewed in transverse plane
from inferior towards superior region: (a) overlay of experimental and virtual (blue) TPBT.
Virtual orientation equals orientation of µCT images, (b) cross section underneath plunger:
not rotated (top, image orientation) and rotated 20° (bottom, experimental orientation).

Figure 5.3: Percentage deviation of 2nd moment of area (about horizontal x-axis) due to
rotation during seating. Horizontal plot x-axis represent clockwise rotation when viewed in
same orientation as in Figure 5.2. Zero rotation equals the orientation of the µCT image,
and deviation is calculated with µCT image as original orientation.

Finally, it was observed that some µCT images were misaligned in a way so that
the longitudinal z-axis was angled about the horizontal x-axis. This would not
affect the global response values of each specimen, but the calculation of intrinsic
measurements. Figure 5.4 illustrates how the cross section image of a rod is elongated
due to such a rotation, resulting in overestimation of area, 2nd moment of area and
distance from the neutral axis to the farthest fiber. Consequently, Young’s modulus
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is underestimated while yield stress and ultimate stress is overestimated. Femur
18 and 20 are examples of specimens suffering from the described misalignment.
Their measured elasticities were 27.7 % and 38.9 % lower than the average of the
radiated group, respectively, suggesting that this error might have been an important
contributor to discrepancies of Young’s modulus.

Figure 5.4: Cross section of rod. Actual cross section (yellow) is perfectly circular. The
observed cross section (red) is elongated due to µCT alignment, resulting in a larger surface
area and increased 2nd moment of area.

It is possible that the three described errors related to geometric measurements
have been cancelling each other out in some specimens, while other specimens have
obtained one large accumulated error. It was considered to realign all CT images to
conform to the experimental orientation. However, these deviations were observed
at a later point during the study, and a new reconstruction was considered as too
time consuming. Additionally, a realignment would have required new images for
image to density conversion. It is uncertain how this procedure would have affected
the image bit levels and whether resulting voxel densities would be correct.

The visual estimation of plunger and support contact areas is another possible source
of error. Although the diaphyseal cross sections did not vary much close to the
midspan, the demonstrated importance of Ix and other geometric properties im-
plies that this procedure might have been harmful to the calculation accuracy. A
possible solution to this could, for instance, be to measure average geometric prop-
erties over the entire length of the diaphysis. Although this would not alleviate
the challenges related to orientation, it would overcome some of the problems re-
garding irregular geometry. Another solution could be to implement expressions
for area and 2nd moment of area, as functions of position along the specimen, into
the Timoshenko formula. This is however a tedious task, undermining the feasi-
bility of TPBT. Since cortical bone can be considered as a composite material,
it could also be considered to account for density and measure the flexural rigid-
ity, EIx =

∑
voxelsEi,voxel

(
y2
iAi,voxel +

∫
voxel area,i

y2
local,idA

)
. This would however

require the Young’s modulus-density relationship to be already well defined, and
thus alleviate the need for measuring specimen elasticity in the first place.
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5.2.2 Aspect ratio

The low measurements of Young’s modulus during the experimental tests called for
more examination of relevant literature. Schriefer et al. (2005) favored the radius
bone for bending tests on rat bones, partly because of its high aspect ratio. They
did an investigation on elasticity prediction for a solid cylinder with E = 19.1 GPa
and varying aspect ratio and found that when ratio dropped below 8.5, calculated
Young’s modulus was underestimated (Fig. 5.5(a)), despite employing Timoshenko
beam theory. Van Lenthe et al. (2008) conducted similar TPBTs as the present
study on mouse femurs with different support spans. They predicted the Young’s
modulus using Euler beam theory, but their findings are nevertheless noteworthy
(Fig. 5.5(b)).

(a)

(b)

Figure 5.5: Influence of aspect ratio on prediction of Young’s modulus: (a) adapted from
Schriefer et al. (2005), (b) adapted from Van Lenthe et al. (2008).

The average aspect ratio of all specimens in this study was about 3.6. In the FE
TPBT, where all models were given the same elastic properties, it was observed
that calculations predicted 30 % lower Young’s modulus than initially assigned (see
section 4.3). While the findings by Van Lenthe et al. (2008) would suggest an even
more severe underestimation for this aspect ratio, it is evident that both Euler
and Timoshenko theory fails to accurately predict the Young’s modulus when the
aspect ratio is too low. It is further likely that low aspect ratio has been the most
important, although not the only, reason for the low elasticity measurements in the
present study.
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5.2.3 Deformation irregularities

The displacement parameter in beam theory formulas describes the vertical transla-
tion of the neutral axis during bending. However, more often than not, experimental
bending tests do not obtain this measurement accurately. In the tests conducted
in this study, specimen displacement was recorded as the movement of the plunger.
Therefore, if some form of deformation of the cross section occurred during bending,
both global and intrinsic measurement would be imprecise. The total error related
to deformation in TPBT is difficult to estimate, since both geometric and material
variances are possible constituents.

One possible error, which is not detected by plunger displacement, is local indenta-
tion (Fig. 5.6(a)). Indentation can occur if the tested material stiffness and speci-
men aspect ratio are low or if there are sharp-edged contact points of plunger and
supports. It is also a weakness related to testing of orthotropic materials, which cor-
tical bone is. Broken femurs from the experimental TPBTs had a light discoloration
around the site of fracture. This suggests that some form of local indentation, where
water is flowing away from the specific region, occurred (Fig. 5.6(b)). Some indenta-
tion was observed in the FE analyses, which was accounted for. However, this might
have caused some discrepancies between experimental and virtual TPBT, where the
later would obtain a lower stiffness.

(a) (b)

Figure 5.6: Local indentation: (a) schematic illustration, adapted from Hao et al. (2018),
(b) indentation of femur 30. Note the light color around where the plunger made contact.

Another source of error not accounted for by the experimental tests, is ring-type
deformation, or ovalization (Fig. 5.7(a)). This weakness is more critical in test spec-
imens with low cortical thickness compared to cross section radius, t/r. Schriefer et
al. (2005) found that measured Young’s modulus was within 95 % of expected value
until t/r reached less than 33 %. Average thickness to radius ratio of the specimens
in the present study was measured to 40 %, suggesting that ring deformation would
not be a detrimental error. Note that this calculation was made over the posterior-
most region, and radius was defined as half of the total vertical diameter. The ratio
does depend significantly on where the measurement is made. FEM deformation
of femur 15 is depicted in Figure 5.7(b). Although some ovalization is present, the
error is considered to be small.
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(a) (b)

Figure 5.7: Ring-type deformation: (a) schematic illustration of ovalization of a thin-
walled cylindrical cross section, (b) FE ovalization of femur 15.

One solution to overcome the errors caused by local indentation and ring-type defor-
mation, is to use digital image correlation (DIC). By recording the displacement of
the neutral axis on camera, one would obtain a measurement of the correct parame-
ter to use for beam theory. Additionally, by comparison of plunger and neutral axis
translation, the total error could be calculated. DIC would however not alleviate
posterior indentation where the supports make contact, but this could be accounted
for by more thorough image processing. It was not considered to utilize DIC in the
present study, but it is suggested for future studies.

After completing each bending test, the fracture surface was visually inspected.
Most specimens obtained an even fracture surface, perpendicular to the cross section.
However, some specimens did break in a more unfortunate manner (Fig. 5.8). Femur
9 and 10 were removed from the first test because of this. If there were longitudinal
fractures present in the femurs prior to testing, the specimens would behave more like
two disconnected beam members, resulting in lower stiffness and yield force. This
might explain some of the significant deviations in the experimental measurement
of global response values.

It was considered whether the onset of yielding was actually caused by shear stress
instead of principal stresses. There is a reasonable likelihood for this to be the
case, considering the low aspect ratio. In a theoretical bending beam, the maximum
vertical shear stress occurs at the neutral axis and is zero at the cross section top
and bottom. Therefore, in some of the specimens with longitudinal fracture sur-
faces, maximum and minimum principal stresses were obtained from a selection of
elements located around the neutral axis. Average maximum shear stress was calcu-
lated, τ̄max = 1

2
(σ̄max− σ̄min). Multiplying τ̄max with

√
3 yielded then the equivalent

average von Mises stress for the selected region. Should this value exceed the princi-
pal stresses recorded in the posterior region, then shear yielding might have occurred
before tensile or compressive yielding. Investigations yielded however

√
3τ̄max in the

region of 20–30 MPa at the onset of yielding, which is significantly lower than the
measured yield stresses (60–90 MPa). When assessing individual elements, allevi-
ating the averaging of values, stresses around 40 MPa were obtained, still less than
calculated yield stress. The findings indicate that, although the presence of shear
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yielding during TPBT is possible, the longitudinal fractures did most likely occur
at an earlier point of time. They might, for instance, have been caused by the snap
freezing or during thawing when specimens were moved from freezer into tempered
PBS solution.

Figure 5.8: Different fracture surfaces of broken specimens.

Bone wetness during testing was discussed. It was initially considered to have little
influence on stiffness, but some studies suggest otherwise (Lee et al. 2012). In the
referenced study, dry conditions yielded measurements of Yong’s modulus nearly
twofold the values in wet conditions. The dry conditions are however not further
described in the study. Quasistatic loading, where creep effect is present, is also
not applicable to the present study, where the plunger moved 0.5 mm/min and
loading rate was about 2.5–3.5 N/s. The specimens were however, prior to testing,
stored in very wet, but yet similar, conditions as other studies (Schriefer et al. 2005;
Ramezanzadehkoldeh and Skallerud 2017a; Bartlow et al. 2018), which should not
have caused significant difference.
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5.3 Evaluation of the virtual bending test

The previous section discussed various sources of error causing measurement dis-
crepancies in the experimental tests. While some of the mentioned errors would
affect both the experimental and virtual mechanical tests and their correlation, the
following subsections present challenges related to the FE modeling alone.

5.3.1 FE model construction

The masks created by segmentation in Mimics where manually cleaned for easier
meshing and to obtain a more uniform model. Thus, some trabecular bone was
removed and slight corrections to geometry were made. Regarding surface smoothing
of the endosteum, initial simulations were run with the entire cavity modeled by
elements with Young’s modulus close to zero. When FE procedure was changed
to removing the cavity, no significant difference to resulting forces were observed,
suggesting that strength contribution from diaphyseal trabeculae is negligible.

When discovering that some models had misaligned z-axis about x, it was inves-
tigated to what extent this was affecting the FE stiffness. An angled model will
result in the bending force being exerted more in longitudinal direction, and thus
increase the global stiffness. As previously mentioned, femur 18 and 20, which were
noticeably tilted, obtained lower measurements of Young’s modulus. However, their
stiffness response did not differ from experimental results to any larger extent than
the other specimens. This might be explained by the low aspect ratio, as more forces
are exerting shear stress instead of bending stress. The specimens would thus not be
as sensitive to z-axis orientation about x as first suspected. It has been confirmed
that ring-type deformations were small, which would contradict a suggestion of large
deformations in vertical direction. However, shear does not necessarily contribute
to cross section deformation. As described above, realignment of the models was
considered but not conducted.

It was initially desired for an even smaller mesh element size than what was utilized.
The initial convergence tests were considered successful for a maximum edge length
of 0.160 mm. However, since the force curves did not completely flatten, it might
still be that important information was lost in the voxel reduction, and that the
models were too stiff. The smallest possible tetrahedral edge length, representing
an 18 µm hexahedral voxel without producing false information, would be ∼36
µm. Although such small elements would be infeasible with the current computer
system, 40-60 µm quadratic elements would better ensure homogeneous mechanical
properties within each voxel (Gross et al. 2012), and possibly yield more accurate
results. Additionally, smaller elements would allow for finer assessment of the effects
of local indentation and cross section deformation. It was experimented with smaller
elements around the contact points, since these areas were of higher interest than
the entire diaphysis. This would have generated more elements across the cortical
thickness and more accurate calculation of apparent densities. However, it was
eventually decided to employ a uniform mesh for the entire model. A finer mesh
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would have required more system memory than what was available, resulting in
simulations being unable to complete.

The density distribution histograms presented in subsection 3.2.4 did indicate that
densities were accurately obtained. However, despite employing quadratic 10-node
elements, it is noted that density and Young’s modulus is averaged and discretized,
by Gauss integration, for each element. This means that although true density
distribution is well represented by nodal values, the accuracy of each element stiffness
depends largely on the element size, unless Young’s modulus of each element could be
expressed linearly (or of any higher order) across its volume. Element shape quality
is also a key measure in this regard and is a general weakness of tetrahedral element
mesh. If a tetrahedra is badly shaped, stiffness might be over- or underestimated
in local areas, despite correct nodal densities. Figure 5.9 depicts the arrangement
of elements over the cross section of femur 1 at the midspan. The anterior (top in
picture) cortical thickness of the model is ∼6.4 mm and represented by between 6
and 10 elements.

Figure 5.9: Element mesh at midspan. Densities along black line were obtained for the
plot in Figure 5.10.

Figure 5.10: Element density representation for 8 and 6 elements over cortical thickness.
Horizontal axes go from endosteum towards periosteum.
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The plots in Figure 5.10 were created by obtaining the voxel densities across a section
of the cortical wall (Fig. 5.9), and inputting the number of elements along that re-
gion. The element densities are not the exact same values as obtained by the model,
but averaged representation, which give a reasonable illustration of the problem at
hand. It is shown that for the specific area, the stiffness representation in the middle
of the wall is good. However, the discrete element values fail to accurately reflect
the variations at endosteum and periosteum. Outer surface stiffness is especially im-
portant, since this is where the TPBT plunger made contact. Here, the maximum
voxel density is also not obtained in the model. The very importance of precise FE
density representation has been demonstrated in this study. It is possible that too
large element size did cause a critical weakness to the simulation accuracy, and thus
the correlation between experimental and virtual TPBT. When giving each model
the same global elasticity as calculated from experimental tests (Fig. 4.13), which
did yield very good results, the model is more or less independent of element size
since element stiffness is equal for the entire model.

5.3.2 Boundary conditions

In a full contact TPBT analysis, the plunger and supports are modeled with spe-
cific geometries and material properties. Instead of applying a force or enforcing a
displacement, the plunger is assigned with a velocity, so the simulation resembles
real behavior as closely as possible. Ramezanzadehkoldeh and Skallerud (2017a)
applied only one extra boundary condition, by fixing one node, to prevent rotation
about longitudinal axis. Contact analysis lets the model shift a certain amount to
be properly seated. In contrast, the strict boundary conditions employed in the
present study results in a stiffer reaction force since less movement is allowed. How-
ever, when simulating contact, the elements must be sufficiently small, to avoid that
the master nodes penetrate the slave surface excessively. As described above, the
element mesh was already as refined as possible for the utilized system setup.

The assignment of boundary elements was done manually by visual inspection, re-
sulting in some deviations being unavoidable. Further, due to the triangular surface
elements, creating a one-element wide boundary surface would sometimes cause the
arrangement of selected elements to curve. Figure 5.11 displays the proximal and
distal boundary conditions defined for the model of femur 1. It is shown that the
marked lines are not perfectly aligned. With a maximum edge length of 0.16 mm,
any element would however not deviate more than half this distance from true po-
sition. Local stresses caused by sharp element angles were considered acceptable,
since the parameters were not measured close to the boundary regions.

It is also observed in Figure 5.11 that the proximal boundary surface is not com-
pletely flat, despite there being a large smooth surface towards the medial region
(right in picture). This was done because the flat region was not completely aligned
with the xz-plane. If boundary elements were chosen only at the smooth surface,
the proximal and distal boundary would have been unaligned, thus causing poten-
tial rotation or other unwanted deformation during simulated TPBT. The uneven
surfaces are likely to have caused a slightly stiffer model.
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Defining boundary elements in 3-matic, and not in Abaqus, allowed for easy selection
of only surface elements. One weakness to this was that, when translating a marked
element to a node set, only the corner nodes of the element were selected. This
caused the boundary conditions and enforced displacement not to be applied to
every surface node within the boundary area (one node at each edge of a quadratic
element). The implementation of stiff element properties to the respective elements
(see subsection 3.2.5) should however help alleviate this problem.

How a model is defined, in terms of boundary conditions, is generally considered
crucial to achieve a simulation that is representative of realistic behavior. It is
suggested that an improved method is employed in similar future studies. The
simulation setup in this study is likely to have caused discrepancies of about 10 %
on average (Fig. 4.11). This is a noteworthy amount but is likely to only have caused
a systematic overestimation of stiffness.

Figure 5.11: Boundary conditions employed for femur 1: proximal support (top and
middle), distal support (bottom).
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5.3.3 Material law

Mimics considers a linear relationship between image gray values and corresponding
radiological densities, measured in Hounsfield units (Materialise NV 2020). This
scale is more frequently utilized in similar clinical studies. Further, one can assume
a linear relationship between Hounsfield units and apparent density (Yang et al.
2010). The relationship expression employed in the present study, ρ = 4.395×10−4,
was defined by assuming 0 GV equal to zero density and the maximum cortical
bone density being 1.8 g/cm3 (Taddei et al. 2004). While the maximum density has
been measured to slightly higher values (Adams et al. 2018), the linear relationships
employed imply that the assumed density range would not cause any error to the
correlation, other than shifting the intercept value.

A Young’s modulus-apparent density law, E = 2.19ρ2.33 was employed. Compared to
the relationship model utilized by Ramezanzadehkoldeh and Skallerud (2017a), this
expression predicts a slightly higher Young’s modulus for densities <1.08 g/cm3 and
a lower Young’s modulus for higher densities. Since only cortical bone was assessed,
with average density of ∼1.5 g/cm3, the models were predicted to be less stiff than
the other study. However, since the material relationship is defined by a power law,
the different stiffnesses calculated by each relationship are not proportionate to the
densities. This means that, while one model with low average density might have
seen a low percentage difference in stiffness, another model with very high average
density would see much higher difference. Because of this, the relationship expression
was not set until all simulations were run with both relationship models. A somewhat
better correlation for the two stiffest specimens, whose virtual stiffnesses where
underestimated considerably, was seen when employing the alternative relationship
law. However, the overall correlation was not improved. The averaged expression
was deduced from two empirical expressions: one for axial stiffness and the other
for transverse stiffness (Wirtz et al. 2000). Although little vertical deformation was
observed, it might be that the new formula yielded the best fit due to the low aspect
ratio resulting in a significant amount of transverse loading.

It is noted that the material law employed has not been verified through empirical
study. It is thus uncertain whether this model is gives an optimal representation
of the stiffness-density relationship for the current test setup. Since the α and
β parameters in Equation (3.2) affect the model characteristics differently, it is
considered inaccurate to deduce new parameters by simply averaging them both.

The IDWI algorithm described in subsection 3.2.3 was created, not only to obtain
Abaqus element properties from Mimics, but also to be able to apply simulated
training/radiation adaptation to the nodes in a feasible manner. It is however pos-
sible to import element densities directly from Mimics to Abaqus, alleviating the
IDWI model. The utilized algorithm was considered to work well (Fig. 3.9), but,
as described above, this does not necessarily mean that each element was given the
correct stiffness. A test was conducted to assess the simulation sensitivity to the
IDWI model. Models of femur 2, 11 and 23 were reconstructed and simulated in
virtual TPBT without using the algorithm. All simulation settings were otherwise
equal. From before, femur 11 had seen an overestimation of stiffness, while femur
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23 was significantly underestimated. The new simulations yielded 5.3, 10 and 5.2
% reduced stiffness for specimen 2, 11 and 23, respectively, compared to original
virtual stiffness (Fig. 5.12).

Figure 5.12: New stiffness calculations for femur 2, 11 and 23.

It is shown that the three assessed models saw an error of 5–10 % due to the IDWI
algorithm. This is a noteworthy deviation, which might have contributed to the weak
correlation. Additionally, the previously underestimated model of femur 11 was more
corrected than the other models, indicating that the error might be dependent on
average specimen density. However, alleviating the algorithm caused a systematic
reduction of stiffness for all models, suggesting that the alternative method might
have improved the correlation only slightly. One would have to employ this method
for all specimens to know the magnitude of this error for certain.

Assigning plastic material properties to a FE model will drastically increase the
number of demanding calculations, and thus the simulation time. It was initially
experimented with various models with perfect plasticity, such as uniform yield
stress for all elements and density-dependent yield stress (Cory et al. 2010). Un-
fortunately, these simulations were unable to complete every time with the utilized
computer system. The ones which did complete, did not obtain satisfactory force-
displacement curves (Figs. 3.10 and 3.12). It was also considered to employ cast
iron plasticity properties, where different yield stress can be defined for tensile and
compressive load. This would better conform with the asymmetric tensile and com-
pressive yield stress of bone (Table 2.2). Simulations were however unstable and did
not yield significantly different results from perfectly elastic material. If possible, an
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interesting approach would be to investigate a model where cast iron plasticity and
density-dependent yield stress is combined. Such a model could possibly present
force-displacement curves similar to the experimental ones.

Cortical bone is orthotropic, with higher longitudinal stiffness than transverse. It
is suggested that FE modeling, assuming isotropic material with parameters cor-
responding to the dominant loading direction, can yield good correlation with or-
thotropic material properties. (Ramezanzadehkoldeh and Skallerud 2017a; Schileo
et al. 2007). However, the low aspect ratio in the present study makes it challeng-
ing to define the dominating load direction. Although the first onset of yielding is
assumed to be caused by principal stress in longitudinal direction, various observa-
tions have suggested that other forms of yielding might have occurred, indicating
that transverse loading has been equally as influential on the force response. Another
measure to alleviate anisotropy is to employ a voxel and element size small enough
to ensure isotropic element properties, as described in subsection 5.3.1. Gross et al.
(2012) suggest that voxels of human cortical bone can be considered to be homo-
geneous for sizes <40 µm. Meanwhile, studies on µCT of rat bone have proposed
voxel sizes of <20 µm to be desirable (Bouxsein et al. 2010). Larger voxel sizes might
not only fail to accurately represent inhomogeneous material distribution, but also
cause underestimation of BMD. While the present scan resolution of 18 µm can be
considered as sufficient, the maximum element edge length of 160 µm does pose a
critical weakness to the simulation quality.

It is possible that correcting for the various weaknesses described above would have
yielded much better correlation than what was obtained. While the element size
is considered as the main contributor, unaligned global axes and strict boundary
conditions are also challenges which should be taken into account. It is assumed that
the strong correlation obtained when assigning specimen-specific Young’s modulus
to each model was mainly related to the large element size. However, considering the
faulty reconstruction of femur 8, there might also have been other CT-related errors
present in the models as well. This is unfortunately not possible to evaluate without
performing FE simulations with refined mesh. In such a case, implementation of
plastic properties would also have been an interesting study since behavior post
yielding is just as relevant to bone quality as elastic properties.
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5.4 FEM simulation of radiation and training

The final objective of the present study has been to create a model which simulates
training and radiation of femur. Loading-induced bone formation and deterioration
from radiation was defined to imitate the experimental findings and knowledge from
literature. Since almost no significant measurements were obtained from the present
experiments, this simulation was considered as a proof of concept and an investiga-
tion concerning the feasibility of the model setup. Although clear goals have been
challenging to specify, the simulation model did achieve some results correlating with
other studies. For instance, it has been shown that radiation reduces some qualities
of cortical bone (Bartlow et al. 2018) and that training increases both bone mass
and breaking force (Umemura et al. 1997). The presented model can thus be con-
sidered as a sufficient starting point for future studies. With some improvements, it
may yield good correlations when comparing experimental and virtual assessments
of corresponding specimens.

5.4.1 Simulated training

Different adaptation models found in literature are usually presented with the in-
tention to reproduce the architecture of trabecular bone. The model employed in
the present study (Eq. (3.11)) was developed using FE models of proximal epiphysis
with uniform density distribution (Weinans et al. 1992). With a specimen-specific
assessment of cortical bone, the purpose and objective of the present simulations
are inherently different than what this model was originally designed for. It is thus
possible that employing Huiskes’s model has posed some weakness for virtual load-
ing adaptation. For instance, the defined nodal densities from µCT images would
most likely differ from what the model would give from a uniform distribution.
Adaptations would thus partly emphasize on bone mineral relocation rather than
formation. This might be the cause of some of the observed resorption on the cavity
walls (Fig. 4.14).

It was expected that greater strain energy would occur near the muscle attachment
points and the boundary surface of the FE model than elsewhere. However, these
high SEDs could possibly affect the diaphysis and cause overestimated formation
intensity and TPBT stiffness in the region of interest. Figure 5.13 displays the final
density distribution of the FE model after simulation of rat 43. It shows significant
formation where the quadriceps muscles were attached and some at the surface where
the distal epiphysis was held in place. However, this does not seem to have affected
the diaphyseal region to any extent.

Almost no formation was observed at the femoral head, suggesting that the con-
tribution from quadriceps was overemphasized. The parameters of Huiskes’s model
were adjusted to obtain satisfactory adaptation response, but calculations of each
muscle force were employed as described in Table 3.3 without further tuning. It is
also possible that the omission of certain muscles and surrounding ligament, exerting
a constant compressive force, caused incorrect loading conditions.

Chapter 5. Discussion 77



Figure 5.13: Final density distribution of full femur. The sudden change in density
next to the quadriceps attachment point is caused by the different element sizes at the
surface. The region bounded by the dashed lines corresponds with the volume used in
TPBT. Bottom image is sliced at the middle of the model, separating the medial and
lateral regions.

It has been discussed whether the influence of specimen-specific parameters on adap-
tation intensity was exaggerated. While resistance training does improve certain
qualities of bone (Westerlind et al. 1998; Mosti et al. 2016), bone metabolism might
not correlate with the loading magnitude. A similar study found five jumps per
day to be as effective on BMD and strength improvement as any higher number
of repetitions (Umemura et al. 1997), suggesting that calculations of accumulative
loading (Eq. (3.10)) does not accurately correspond with experimental observations.
Additionally, Huiskes’s model was first suggested by employing the average SED
from multiple loads (Huiskes et al. 1987). The present model obtains the highest
strain energy instead. By considering average loads and omitting load accumulation,
the simulation would emphasize more on training versus no training. However, sim-
ulation results would likely show weaker correlation with specimen-specific exercise
programs.

Although higher cortical BMD was observed in the RadEx group than in the Rad-2
group, exercise-induced bone mineral formation does not fully conform with bone
physiology. A possible solution could be to let an adaptation model determine α and
β instead of ρ in E = αρβ. Several empirical values of α and β have been proposed
in different studies, suggesting that these parameters correlate better than the ap-
parent densities with specimen-specific variation. Another interesting suggestion is
to incorporate construction and removal of elements in regions with very high and
very low density, respectively. Some studies have seen increased cortical thickness
and cross section area in rats undergoing some form of exercise (Umemura et al.
1997).
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A different approach to simulate bone remodeling, not considered in this study, is by
utilizing machine learning. Such a method does not account for every single physio-
logical event or every contributing variable. However, with the remarkable amount of
different parameters to account for, a straightforward trial-and-error strategy might
be better suited for in silico adaptation. Tiwari and Kumar (2018) obtained satis-
factory correlation with experimental tests by using a neural network. From three
input variables (loading strain, frequency and number of cycles) they predicted the
mineral apposition rate in exercised mice. With sufficient data, a similar neural
network could possibly be employed to assess the effects concerned in this study.

5.4.2 Simulated radiation

The radiation damage model caused 9.7 % reduction of nodal density in the entire
FE model (Fig. 4.15). As no significant difference was measured between the experi-
mental radiated and control group, this impact was possibly somewhat exaggerated.
The simulation did however not consider femur growth or growth reduction. The
strong density reduction could therefore to some extent correspond with this effect.

Since all specimens underwent the same radiation therapy, other combinations of
radiation intensity and frequency were not further tested. Some studies suggest
that deterioration is lessened when radiation is divided into several events (Mustafy
et al. 2018). A future improvement to the presented model could be to record the
number of radiations and consider this variable when calculating each damage rate
coefficient. Another alteration could be to let damage rate depend on the current
local density. This would better conform with radiation being more detrimental
to trabecular bone than cortical bone. For instance, the damage rate coefficient
expression (Eq. (3.14)) could be multiplied by a factor inversely proportional to the
respective nodal density.

Just as for exercise and adaptation, radiation is not directly correlated with BMD
loss. Certain mechanical qualities are however reduced. A suggestion is to also
make radiation damage affect the α and β parameters in E = αρβ. One could also
introduce an expression for parameter change in models where density-dependent
yield stress is included. Alternatively, radiation could cause element removal, as
described above. Both Bartlow et al. (2018) and Mustafy et al. (2018) found signif-
icant difference in cortical thickness between radiated and non-radiated femur while
no significant difference in cortical BMD was measured, suggesting that radiation
inflicts more damage to geometrical properties than apparent density. Generation
and removal of voxel elements does however move away from an important goal of
this study, which is employing continuum mechanics to express bone properties.

A persistent reduction of adaptation efficiency was induced by the radiation. Al-
though the final density distribution and stiffness response were satisfactory, these
values would probably be higher than expected with no radiation. It is suggested in
a future model that radiation effect on adaptation is gradually reduced so that the
remodeling rate coefficient and reference stimulus eventually go back to their initial
values.
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6 | Conclusion and further work

In this study, effects of radiation therapy and training on the mechanical performance
of bone have been investigated. Despite the lack of significant differences, some clear
tendencies have been shown. The findings suggest that radiation-induced reduction
of bone metabolism causes weakened Young’s modulus, yield stress and ultimate
stress of cortical bone. There are also indications that exercise might improve the
mentioned properties in radiated bone. The study is however inconclusive regarding
this matter, and further testing is advised to confirm these propositions. Still, the
presented findings did to some extent conform with the in vivo comparative medicine
animal study, which obtained no significant results as well. In any case, physical
activity should never be discouraged because of these findings.

The study was not able to reproduce the experimental and virtual TPBT correla-
tions of Ramezanzadehkoldeh and Skallerud (2017a). The reason for this was likely
a combination of different testing setup, data acquisition and FE modeling proce-
dure. Through a thorough discussion, several adjustments to the current setup have
been proposed to avoid similarly undesirable correlations in future studies. Some of
these modifications, like better definition of global orientation and region of inter-
est, might also produce better results when assessing training and radiation effects.
Low specimen aspect ratio was a persistent challenge in this study. It is suggested
to strive for a higher ratio in future TPBT of long bones, preferably L/d > 9.
The significant importance of voxel and element size when modeling bone has also
been demonstrated. Microscopic variations in bone structure must be adequately
accounted for to rightfully assume material continuity.

Some important considerations regarding in silico testing of bone quality have been
unveiled. Development of solid methods for virtual testing may present efficient and
economical alternatives to physical assessment of CTIBL. Patient-specific µCT-FE
analysis can also provide additional data for evaluating medical treatment.

Finally, a model for virtual training and radiation simulation has been presented.
Employing corresponding programs as in the experiments did yield some satisfac-
tory evolution of apparent density distribution and TPBT stiffness. With further
development, this preliminary model should better account for various physiological
aspects of bone metabolism and training/radiation response. With sufficient im-
provement and calibration, in combination with µCT-FE modeling, this model can
present accurate predictions of exercise treatment effect on cancer patients. Specific
measures can thus be considered to attenuate radiation therapy side effects.
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Appendix A: Midspan cross sections

Femur 1–48, sorted in rising order, left to right and downwards. Femurs 9, 10 and 24 are
excluded.
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Appendix B: Test results, first experiment
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Appendix C: Force-displacement, first experiment
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Appendix D: Test results, second experiment

92



Appendix E: Force-displacement, second experiment
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Appendix F: Cross section analysis script

1 %% Initial
2 clear; close; clc; format long;
3

4 th = 20000; %Threshold
5 pixRes = 0.0177; %Original pixelsize
6 scaling = 4; %Image scaling
7 pixRes = pixRes/scaling;
8

9 %% Read
10 files = dir('*.tif');
11 NoSamples = length(files);
12 sample(NoSamples) = struct;
13 for i = 1:NoSamples
14 sample(i).name = files(i).name;
15 sample(i).img.im = imread(sample(i).name);
16 % Apply zero value to pixels below threshold
17 sample(i).img(1).im = threshold(sample(i).img(1).im,th);
18 % Crop image to fit only cross section
19 sample(i).img(1).im = crop(sample(i).img(1).im);
20 % Scale up the image to n times size
21 sample(i).img(1).im = resize(sample(i).img(1).im,scaling);
22 % Obtain number of pixels in each direction
23 sample(i).img(1).res = size(sample(i).img(1).im);
24 % Calculate area/number of non-zero pixels
25 sample(i).img(1).A = Area(sample(i).img(1).im,pixRes);
26 % Calculate CoM, pixelwise
27 sample(i).img(1).CoM = CentreOfMass(sample(i).img(1).im);
28 % Calculate EI, with Steiner
29 sample(i).img(1).I = MomentArea(sample(i).img(1),pixRes);
30 % Calculate pixelwise distance
31 sample(i).img(1).c = FarthestFiber(sample(i).img(1),pixRes);
32 end
33

34 %% Funcion Threshold
35 function mat = threshold(mat,th)
36 for i = 1:size(mat,1)
37 for j = 1:size(mat,2)
38 if mat(i,j) < th
39 mat(i,j) = 0;
40 end
41 end
42 end
43 end
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44

45 %% Function Crop
46 function mat = crop(mat)
47 flag = false;
48 % Top
49 for i = 1:size(mat,1)
50 for j = 1:size(mat,2)
51 if mat(i,j) > 0
52 top = i;
53 flag = true;
54 break
55 end
56 end
57 if flag
58 break
59 end
60 end
61 flag = false;
62 % Left
63 for j = 1:size(mat,2)
64 for i = 1:size(mat,1)
65 if mat(i,j) > 0
66 left = j;
67 flag = true;
68 break
69 end
70 end
71 if flag
72 break
73 end
74 end
75 flag = false;
76 % Bottom
77 for i = size(mat,1):-1:1
78 for j = size(mat,2):-1:1
79 if mat(i,j) > 0
80 bottom = i;
81 flag = true;
82 break
83 end
84 end
85 if flag
86 break
87 end
88 end
89 flag = false;
90 % Right
91 for j = size(mat,2):-1:1
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92 for i = size(mat,1):-1:1
93 if mat(i,j) > 0
94 right = j;
95 flag = true;
96 break
97 end
98 end
99 if flag

100 break
101 end
102 end
103 mat = mat(top:bottom,left:right);
104 end
105

106 %% Function Resize
107 function new_mat = resize(mat,n)
108 new_mat = zeros(size(mat)*n);
109 for i = 1:size(new_mat,1)
110 for j = 1:size(new_mat,2)
111 new_mat(i,j) = mat(ceil(i/n),ceil(j/n));
112 end
113 end
114 end
115

116 %% Function Area
117 function A = Area(mat,pixRes)
118 % pixel-size
119 A.pixel = numel(mat(mat>0));
120 % Real size
121 A.real = A.pixel*pixRes^2;
122 end
123

124 %% Function CentreOfMass
125 function CoM = CentreOfMass(mat)
126 % Top to bottom
127 weight = zeros(size(mat,1),1);
128 for i = 1:size(mat,1)
129 weight(i) = sum(mat(i,:));
130 end
131 CoM.Y = weight.*(1:1:length(weight))';
132 if size(CoM.Y,1) == size(CoM.Y,2)
133 CoM.Y = diag(CoM.Y);
134 end
135 CoM.Y = round(sum(CoM.Y(:)) / sum(weight(:)));
136 % Left to right
137 weight = zeros(size(mat,2),1);
138 for i = 1:size(mat,2)
139 weight(i) = sum(mat(:,i));
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140 end
141 CoM.X = weight.*(1:1:length(weight))';
142 if size(CoM.X,1) == size(CoM.X,2)
143 CoM.X = diag(CoM.X);
144 end
145 CoM.X = round(sum(CoM.X(:)) / sum(weight(:)));
146 end
147

148 %% Function MomentArea
149 function I = MomentArea(img,pixRes)
150 % About X
151 I.X = 0;
152 for i = 1:size(img.im,1)
153 vox = img.im(i,:);
154 I.X = I.X + (numel(vox(vox>0))*pixRes^4)*...
155 (1/12 + (abs(i-img.CoM.Y))^2);
156 end
157 % About Y
158 I.Y = 0;
159 for i = 1:size(img.im,2)
160 vox = img.im(:,i);
161 I.Y = I.Y + (numel(vox(vox>0))*pixRes^4)*...
162 (1/12 + (abs(i-img.CoM.X))^2);
163 end
164 end
165

166 %% Function FarthestFiber
167 function c = FarthestFiber(img,pixRes)
168 c.pix.Y = max( abs(img.CoM.Y-1), ...
169 abs(img.res(1)-img.CoM.Y) );
170 c.pix.X = max( abs(img.CoM.X-1), ...
171 abs(img.res(2)-img.CoM.X) );
172

173 c.real.Y = pixRes * max( abs(img.CoM.Y-1), ...
174 abs(img.res(1)-img.CoM.Y) );
175 c.real.X = pixRes * max( abs(img.CoM.X-1), ...
176 abs(img.res(2)-img.CoM.X) );
177 end
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Appendix G: Mimics to Abaqus density conversion
script

1 %% Initial
2 clear; clc; close; fclose('all'); format long
3 NoN_E = input('Number of nodes per element: ');
4 p = input('IDWI weight: ');
5

6 %% Get Part/Instance name
7 txtID = uigetfile('*.txt','Select text file containing rat parameters');
8 if (~txtID)
9 disp('Error: A .txt file must be chosen!')

10 fclose('all'); clear; return
11 else
12 txt = fopen(txtID,'r');
13 end
14 if(strcmp(fgetl(txt),'Name of instance:'))
15 prtNm = fgetl(txt);
16 else
17 disp('Error: Wrong .txt file is chosen, or error in setup file!')
18 fclose('all'); clear; return
19 end
20 cdbID = uigetfile('*.cdb','Select the .cdb file');
21 if (~cdbID)
22 disp('Error: A .cdb file must be chosen!')
23 fclose('all'); clear; return
24 else
25 cdb = fopen(cdbID,'r');
26 end
27 csvID = uigetfile('*.csv','Select the .csv file');
28 if (~csvID)
29 disp('Error: A .csv file must be chosen!')
30 fclose('all'); clear; return
31 end
32 inpID = uigetfile('*.inp','Select the initial .inp file');
33 if (~inpID)
34 disp('Error: A .inp file must be chosen!')
35 fclose('all'); clear; return
36 else
37 inp = fopen(inpID,'r');
38 end
39 disp(' '); disp('Performing density initiation')
40 disp(['Rat: ',txtID(1+3:end-4)])
41 disp(['Instance: ', prtNm])
42 disp(['Number of nodes per element: ', num2str(NoN_E)])
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43 tStart = tic;
44

45 %% Count number of nodes and elements
46 [cdb, NoN, NoE] = NoN_NoE_counter(cdb,cdbID,NoN_E);
47 if NoE >= 1e7 || NoN >= 1e7
48 % Run SpaceAdder, bacause MIMICS doesn't write enough empty columns
49 disp('NoN or NoE is more than upper limit (9 999 999)')
50 cdb = SpaceAdder(cdb,cdbID,NoN_E);
51 else
52 disp('NoN and NoE within upper limit (9 999 999)'); disp(' ')
53 end
54

55 %% Import .cdb containing elements and belonging nodes
56 % Read nodes and their positions
57 disp('Extracting node positions')
58 cdbLine = fgetl(cdb);
59 while(~strcmp(cdbLine(1:5),'nbloc'))
60 cdbLine = fgetl(cdb);
61 end
62 fgetl(cdb);
63 NodePos = (fscanf(cdb,'%g %g',[6 inf]))';
64 % Clean up the list (Remove some empty lines)
65 while(mean(NodePos(end,:)) <= 0)
66 NodePos = NodePos(1:end-1,:);
67 end
68 % Finish clean: x, y, z (Remove everything else)
69 NodePos = NodePos(:,end-2:end);
70

71 %% Read elements and belonging nodes
72 disp('Extracting element information')
73 cdbLine = fgetl(cdb);
74 while(~strcmp(cdbLine(1:5),'ebloc'))
75 cdbLine = fgetl(cdb);
76 end
77 fgetl(cdb);
78 cdbList = (fscanf(cdb,'%g %g',[(11+NoN_E) inf]))';
79 % Clean up the list (Remove some empty lines)
80 while(mean(cdbList(end,:)) <= 0)
81 cdbList = cdbList(1:end-1,:);
82 end
83 % Finish clean: #node1, #node2, #node3, #node4 (Remove everything else)
84 cdbList = cdbList(:,end-(NoN_E-1):end);
85

86 %% In case of repetive nodes in .cdb file (Only for C3D4)
87 if NoN_E == 8 || NoN_E == 20
88 NoN_E = NoN_E/2;
89 disp(['Non-unique values activated, reducing NoN_E to ', ...
90 num2str(NoN_E),' and removing extra entries'])
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91 for i = 1:NoE
92 cdbList(i,1:NoN_E) = unique(cdbList(i,:),'stable');
93 end
94 cdbList = cdbList(:,1:NoN_E);
95 disp('Extracted unique nodes from cdbList')
96 end
97

98 %% Import .csv containing element densities
99 disp('Extracting element positions and densities')

100 csvList = readtable(csvID);
101 csvList = table2array(csvList(:,1:4));
102 % Create list of element positions
103 ElemPos = csvList(:,1:3);
104 % Create list of element densities
105 csvList = csvList(:,4);
106

107 %% Create list of nodes with all elements they are tied to
108 disp('Creating node struct')
109 NodeStrt = struct();
110 NodeStrt(NoN).elms = [];
111 for i = 1:NoE
112 for j = 1:NoN_E
113 NodeStrt(cdbList(i,j)).elms = [NodeStrt(cdbList(i,j)).elms i];
114 end
115 end
116

117 %% Inverse distanse weighted interpolation of node density
118 %% from belonging element densities
119 disp(' '); disp('Performing IDWI')
120 DensList = zeros(NoN,length(p));
121 for i = 1:NoN
122 Npos = NodePos(i,:);
123 Edens = csvList(NodeStrt(i).elms);
124 Ex = ElemPos(NodeStrt(i).elms,1);
125 Ey = ElemPos(NodeStrt(i).elms,2);
126 Ez = ElemPos(NodeStrt(i).elms,3);
127 % Calculate distances
128 Dists = zeros(length(Ex),1);
129 for j = 1:length(Dists)
130 Dists(j) = hypot(Npos(1)-Ex(j),Npos(2)-Ey(j));
131 Dists(j) = hypot(Dists(j),Npos(3)-Ez(j));
132 end
133 % IDWI:
134 DensList(i) = ( sum(Edens./Dists.^p) ) / ( sum(1./Dists.^p) );
135 if ~mod(i,2e5)
136 disp(['Calculated ',num2str(i),' of ',num2str(NoN),' nodes'])
137 end
138 end
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139 disp(['Calculated ',num2str(NoN),' of ',num2str(NoN),' nodes'])
140

141 %% Add a new node set to the .inp file
142 disp(' '); disp('Adding a Load-Area node set to the .inp file')
143 [initSetNode,inp,restText] = SetnodeMaker(inp,inpID);
144 % Obtain the respective elements
145 setElems = [];
146 for i = 1:length(initSetNode)
147 setElems = [setElems NodeStrt(initSetNode(i)).elms]; %#ok
148 end
149 % Obtain the respective nodes
150 setNode = [];
151 for i = 1:length(setElems)
152 setNode = [setNode cdbList(setElems(i),:)]; %#ok
153 end
154 setNode = setNode(~ismember(setNode,initSetNode));
155 setNode = unique(setNode);
156 % Write the new set to the inp file
157 disp('Writing node set')
158 writeSetNode(inp,inpID,setNode,restText);
159

160 %% Write an extra .txt file containing stiff element set and extra section
161 disp(' '); disp('Creating an extra .txt file with stiff elements')
162 StiffElementWriter(inpID,cdbList,NodeStrt);
163

164 %% Write dens.txt file which later shall be included in the .inp file
165 disp(' '); disp('Writing densitiies to text file')
166 densfile = ['dens_',txtID(4:end)];
167 fich = fopen(densfile,'w');
168 for i = 1:NoN
169 fprintf(fich,[prtNm, '.%.0f, %1.6f\n'], i, DensList(i,end));
170 end
171 fclose('all');
172 disp(' '); disp(['Density initiation of ',cdbID(1:end-4),' complete!'])
173

174 disp(' ')
175 disp(['Max element density: ', num2str(max(csvList(:)))])
176 disp(['Max node density: ', num2str(max(DensList(:)))])
177 disp(' ')
178 disp(['Min element density: ', num2str(min(csvList(:)))])
179 disp(['Min node density: ', num2str(min(DensList(:)))])
180 disp(' ')
181 disp(['Mean element density: ', num2str(mean(csvList(:)))])
182 disp(['Mean node density: ', num2str(mean(DensList(:)))])
183 disp(' ')
184

185 save('Dens_p.mat','DensList','p','csvList', '-v7.3')
186 disp('csvList, DensList and p saved to Dens_p.mat'); disp(' ')
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187 tEnd = toc(tStart);
188 disp(['Total elapsed time: ',datestr(seconds(tEnd),'HH'), ...
189 ' hours, ', datestr(seconds(tEnd),'MM'), ' minutes and ', ...
190 datestr(seconds(tEnd),'SS'), ' seconds.'])
191 fclose('all');
192

193 %% Counter function:
194 function [cdb, NoN, NoE] = NoN_NoE_counter(f,cdbID,NoN_E)
195 disp(' '); disp('Counting NoN and NoE')
196 NoE = 0; %Counter
197 NoN = 0; %Counter
198 % Obtain NoN;
199 Line = fgetl(f);
200 while(~strcmp(Line(1:5),'nbloc'))
201 Line = fgetl(f);
202 end
203 fgetl(f);
204 Line = fgetl(f);
205 while(length(Line) >= 8)
206 if str2num(Line(1:8)) %#ok
207 NoN = NoN + 1;
208 Line = fgetl(f);
209 else
210 break
211 end
212 end
213 % Obtain NoE;
214 Line = fgetl(f);
215 while(~strcmp(Line(1:5),'ebloc'))
216 Line = fgetl(f);
217 end
218 fgetl(f);
219 disp(' '); disp('Found the element list')
220 Line = fgetl(f);
221 while(length(Line) >= 8 && strcmp(Line(1:8),' 1'))
222 NoE = NoE + 1;
223 Line = fgetl(f);
224 if (NoN_E >= 10)
225 Line = fgetl(f);
226 end
227 end
228 disp(' '); disp(['NoN: ',num2str(NoN)]); disp(['NoE: ',num2str(NoE)])
229 disp(' ')
230 fclose(f);
231 cdb = fopen(cdbID,'r');
232 end
233

234 %% Space adding function:

102



235 function cdb = SpaceAdder(f,cdbID,NoN_E)
236 disp('Fixing spaces on element lines'); disp(' ')
237 s = ' '; %String to add
238 w = fopen('cdb-lck.cdb','w');
239 Line = fgetl(f);
240 while(ischar(Line))
241 fprintf(w,Line);
242 fprintf(w,'\n');
243 Line = fgetl(f);
244 if strcmp(Line(1:5),'ebloc')
245 fprintf(w,Line);
246 fprintf(w,'\n');
247 Line = fgetl(f);
248 fprintf(w,Line);
249 fprintf(w,'\n');
250 break
251 end
252 end
253 Line = fgetl(f); %First line of elements
254 while(ischar(Line))
255 if length(Line) < 8
256 break
257 elseif ~strcmp(Line(1:8),' 1')
258 break
259 end
260 fprintf(w,[Line(1:80),s,Line(81:88),s,Line(89:96), ...
261 s,Line(97:104),s,Line(105:112),s,Line(113:120)]);
262 if NoN_E >= 10
263 fprintf(w,[s,Line(121:128),s,Line(129:136), ...
264 s,Line(137:144),s,Line(145:152)]);
265 fprintf(w,'\n');
266 Line = fgetl(f);
267 fprintf(w,[Line(1:8),s,Line(9:16)]);
268 if NoN_E == 20
269 fprintf(w,[s,Line(17:24),s,Line(25:32), ...
270 s,Line(33:40),s,Line(41:48),s,Line(49:56), ...
271 s,Line(57:64),s,Line(65:72),s,Line(73:80), ...
272 s,Line(81:88),s,Line(89:96)]);
273 end
274 end
275 if NoN_E == 8
276 fprintf(w,[s,Line(121:128),s,Line(129:136), ...
277 s,Line(137:144),s,Line(145:152)]);
278 end
279 fprintf(w,'\n');
280 Line = fgetl(f);
281 end
282 while(ischar(Line))
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283 fprintf(w,Line);
284 fprintf(w,'\n');
285 Line = fgetl(f);
286 end
287 fclose(f);
288 fclose(w);
289 movefile(cdbID, ['OLD_', cdbID])
290 movefile('cdb-lck.cdb', cdbID)
291 disp(' ')
292 cdb = fopen(cdbID,'r');
293 end
294

295 %% Node set finding function:
296 function [initSetNode,inp,restText] = SetnodeMaker(inp,inpID)
297 initSetNode = [];
298 line = fgetl(inp);
299 restText = [];
300 while(ischar(line))
301 if strcmp(line,'*NSET, NSET=NS_BC_Load')
302 line = fgetl(inp);
303 while(~strcmp(line(1),'*'))
304 pos = strfind(line,',');
305 lineLength = length(line);
306 if(length(pos)) %#ok
307 % First node
308 initSetNode(end+1) = ...
309 str2double(line(1:pos(1)-1)); %#ok
310 for i = 1:length(pos)-1
311 initSetNode(end+1) = ...
312 str2double(line(pos(i):pos(i+1))); %#ok
313 end
314 % Last node
315 initSetNode(end+1) = ...
316 str2double(line(pos(end):lineLength)); %#ok
317 else
318 initSetNode(end+1) = ...
319 str2double(line(1:lineLength)); %#ok
320 end
321 line = fgetl(inp);
322 end
323 % Add rest of text to restText
324 restText(end+1).line = line; %#ok
325 while(ischar(line))
326 line = fgetl(inp);
327 if ischar(line)
328 restText(end+1).line = line; %#ok
329 end
330 end
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331 end
332 line = fgetl(inp);
333 end
334 initSetNode = unique(initSetNode);
335 fclose(inp);
336 inp = fopen(inpID,'r');
337 end
338

339 %% Write node set to inp file function
340 function writeSetNode(inp,inpID,setNode,restText)
341 % Obtain position of rest text
342 line = fgetl(inp);
343 c = 0;
344 while(ischar(line))
345 if strcmp(line,restText(1).line)
346 fclose(inp);
347 inp = fopen(inpID,'r+');
348 break
349 end
350 line = fgetl(inp);
351 c = c+1;
352 end
353 % Write the new set
354 for i = 1:c
355 fgetl(inp);
356 end
357 fprintf(inp,'*NSET, NSET=NS_Load_Area\r\n');
358 for i = 1:16:length(setNode)
359 if length(setNode)-i < 15
360 for j = i:length(setNode)-1
361 fprintf(inp,[num2str(setNode(j)),',']);
362 end
363 fprintf(inp,[num2str(setNode(end)),'\r\n']);
364 else
365 for j = i:i+14
366 fprintf(inp,[num2str(setNode(j)),',']);
367 end
368 fprintf(inp,[num2str(setNode(i+15)),'\r\n']);
369 end
370 end
371 % Write the rest text
372 for i = 1:length(restText)
373 fprintf(inp,[restText(i).line,'\r\n']);
374 end
375

376 end
377

378 %% Stiff element finding function
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379 function StiffElementWriter(inpID,cdbList,NodeStrt)
380 inp = fopen(inpID,'r');
381 StiffNode = [];
382 % Proximal nodes
383 line = fgetl(inp);
384 while(ischar(line))
385 if strcmp(line,'*NSET, NSET=NS_BC_Prox')
386 line = fgetl(inp);
387 while(~strcmp(line(1),'*'))
388 pos = strfind(line,',');
389 lineLength = length(line);
390 if(length(pos)) %#ok
391 % First node
392 StiffNode(end+1) = ...
393 str2double(line(1:pos(1)-1)); %#ok
394 for i = 1:length(pos)-1
395 StiffNode(end+1) = ...
396 str2double(line(pos(i):pos(i+1))); %#ok
397 end
398 % Last node
399 StiffNode(end+1) = ...
400 str2double(line(pos(end):lineLength)); %#ok
401 else
402 StiffNode(end+1) = ...
403 str2double(line(1:lineLength)); %#ok
404 end
405 line = fgetl(inp);
406 end
407 fclose(inp);
408 inp = fopen(inpID,'r');
409 break
410 end
411 line = fgetl(inp);
412 end
413 % Distal nodes
414 line = fgetl(inp);
415 while(ischar(line))
416 if strcmp(line,'*NSET, NSET=NS_BC_Dist')
417 line = fgetl(inp);
418 while(~strcmp(line(1),'*'))
419 pos = strfind(line,',');
420 lineLength = length(line);
421 if(length(pos)) %#ok
422 % First node
423 StiffNode(end+1) = ...
424 str2double(line(1:pos(1)-1)); %#ok
425 for i = 1:length(pos)-1
426 StiffNode(end+1) = ...
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427 str2double(line(pos(i):pos(i+1))); %#ok
428 end
429 % Last node
430 StiffNode(end+1) = ...
431 str2double(line(pos(end):lineLength)); %#ok
432 else
433 StiffNode(end+1) = ...
434 str2double(line(1:lineLength)); %#ok
435 end
436 line = fgetl(inp);
437 end
438 fclose(inp);
439 inp = fopen(inpID,'r');
440 break
441 end
442 line = fgetl(inp);
443 end
444 % Loaded nodes
445 line = fgetl(inp);
446 while(ischar(line))
447 if strcmp(line,'*NSET, NSET=NS_BC_Load')
448 line = fgetl(inp);
449 while(~strcmp(line(1),'*'))
450 pos = strfind(line,',');
451 lineLength = length(line);
452 if(length(pos)) %#ok
453 % First node
454 StiffNode(end+1) = ...
455 str2double(line(1:pos(1)-1)); %#ok
456 for i = 1:length(pos)-1
457 StiffNode(end+1) = ...
458 str2double(line(pos(i):pos(i+1))); %#ok
459 end
460 % Last node
461 StiffNode(end+1) = ...
462 str2double(line(pos(end):lineLength)); %#ok
463 else
464 StiffNode(end+1) = ...
465 str2double(line(1:lineLength)); %#ok
466 end
467 line = fgetl(inp);
468 end
469 fclose(inp);
470 inp = fopen(inpID,'r');
471 break
472 end
473 line = fgetl(inp);
474 end
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475 fclose(inp);
476 % Obtain stiff elements
477 StiffElems = [];
478 for i = 1:length(StiffNode)
479 StiffElems = [StiffElems NodeStrt(StiffNode(i)).elms]; %#ok
480 end
481 StiffElems = unique(StiffElems);
482 % Obtain only elements with three BC-nodes
483 discard = [];
484 for i = 1:length(StiffElems)
485 check = ismember(StiffNode,cdbList(StiffElems(i),:));
486 % At least 3 stiff nodes are tied to each stiff element:
487 if numel(check(check>0)) < 3
488 discard(end+1) = i; %#ok
489 end
490 end
491 StiffElems(discard) = [];
492 % Write the file
493 f = fopen('StiffElements.txt','w');
494 fprintf(f,'*Elset, elset=Set-Stiff\r\n');
495 for i = 1:16:length(StiffElems)
496 if length(StiffElems)-i < 15
497 for j = i:length(StiffElems)-1
498 fprintf(f,[num2str(StiffElems(j)),', ']);
499 end
500 fprintf(f,[num2str(StiffElems(end)),'\r\n']);
501 else
502 for j = i:i+14
503 fprintf(f,[num2str(StiffElems(j)),', ']);
504 end
505 fprintf(f,[num2str(StiffElems(i+15)),'\r\n']);
506 end
507 end
508 fprintf(f,'** Section: Section-2\r\n');
509 fprintf(f,['*Solid Section, elset=Set-Stiff, ', ...
510 'material=Material-Stiff\r\n']);
511 fprintf(f,',\r\n');
512 fclose(f);
513 end
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Appendix H: Training/radiation simulation script

1 %% Initial
2 clear all %#ok
3 clc
4 format long
5

6 %% Input data
7 Setup = MainScriptSetup;
8 tStart = tic;
9

10 %% Initialization
11 % Read a textfile containing initial densities and save to variable
12 disp([Setup.RatNam ' loaded, creating initial density list']);
13 dens = zeros(Setup.NoN,1);
14 f1 = fopen('Initial_densities.txt','r');
15 f2 = fopen('dens.txt','w');
16 for i = 1:Setup.NoN
17 line = fgetl(f1);
18 dens(i) = str2double(line(strfind(line,' '):end));
19 fprintf(f2,'%s.%d, %f\r\n', Setup.InstNam, i, dens(i));
20 end
21 fclose(f1);
22 fclose(f2);
23 Setup.Dens = [0, round(mean(dens(:)),4)];
24 disp(['Average density: ', num2str(Setup.Dens(end,2))]);
25

26 Es = 0; %Number of exercises performed
27 Rs = 0; %Number of radiations performed
28

29 %% Loop in the iterative process
30 disp([Setup.RatNam ' ready, starting rat life span:']);disp(' ');
31 for step = 1:length(Setup.Tbl) %Counting through life cycle of one rat
32 if Setup.Tbl(step) %Training
33 Es = Es + 1;
34 disp(' ');disp(['Event ',num2str(step),', exercise ',num2str(Es),':']);
35

36 % Update weight-dependent load from training information!
37 Loads = LoadsEval(Setup,step,Es); %Calculates loads, returns a vector
38 Setup.Forces(Es,:) = round(Loads,4);
39 JobInput(Loads); %Writes step.txt file which the .inp file includes
40

41 % Run abaqus
42 if(exist('Job-Train.lck')) %#ok
43 delete('Job-Train.lck');
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44 end
45 disp('Running job:');
46 Command = ['abaqus job=',Setup.JobNam,' cpus=15 gpus=1 inter'];
47 system(Command);
48

49 % Get the SED from the abaqus odb
50 disp(' ');disp('Obtaining strain energy densities:');
51 if(exist('StrainEnergyDensity.txt')) %#ok
52 delete('StrainEnergyDensity.txt');
53 end
54 system('abaqus cae noGUI=OutputExtraction.py');
55

56 % Save image of cross section
57 fileID = ['DensDisp_',Setup.RatNam,'_',num2str(Es-1),'.png'];
58 if(exist(fileID)) %#ok
59 movefile(fileID,[fileID(1:end-4),'_OLD.png']);
60 end
61 system('abaqus cae noGUI=MakePlotTrain.py');
62 movefile('DensDisp.png',fileID);
63

64 % Get max SED from every time-increment and store
65 ener = SED(Setup,'StrainEnergyDensity.txt');
66 % Get max SED at every node and update densities with Huiske's model
67 disp(' ');disp('Jumping session performed and max SED extracted');
68 disp(['Average SED: ',num2str(round(mean(ener(:)),3))]);
69 disp('Updating densities');
70 for i = 1:Setup.NoN
71 e_d = ener(i)/dens(i);
72 param1 = (1-Setup.s)*Setup.k;
73 param2 = (1+Setup.s)*Setup.k;
74 if (dens(i) < 0.01)
75 % Part of cavity, do nothing
76 elseif (e_d < param1)
77 dens(i) = dens(i) + Setup.Step*(e_d - param1); %Resorption
78 % Bound minimum:
79 dens(i) = max(dens(i),0.01);
80 elseif (e_d > param2)
81 dens(i) = dens(i) + Setup.Step*(e_d - param2); %Formation
82 % Bound maximum:
83 dens(i) = min(dens(i),1.8);
84 end
85 end
86

87 % Write the density input file to abaqus
88 fich = fopen('dens.txt','w');
89 for i = 1:Setup.NoN
90 fprintf(fich,'%s.%d, %f\r\n', Setup.InstNam, i, dens(i));
91 end
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92 fclose(fich);
93 Setup.Dens(end+1,:) = [step, round(mean(dens(:)),4)];
94 disp(' ');disp(['Exercise ',num2str(Es),' completed']);
95 disp(['Average density: ', num2str(Setup.Dens(end,2))]);
96

97 else %Radiation
98 Rs = Rs + 1;
99 disp(['Event ',num2str(step),', radiation ',num2str(Rs),':']);

100 % Perform radiation
101 damage = min(log(Setup.Rads(Rs) + 1),Setup.DamageA1); %Calculate damage
102 % Immediate damage:
103 dens = dens * (1 - damage/(10*Setup.DamageA1));
104 % Update variables in Huiske's model
105 damage = min(log(Setup.Rads(Rs) + 1),Setup.DamageA2); %Calculate damage
106 Setup.Step = Setup.Step * (1 - damage/(10*Setup.DamageA2)); %Reduce
107 Setup.k = Setup.k * (1 + damage/(10*Setup.DamageA2)); %Increase
108 Setup.s = Setup.s; %Do nothing
109

110 % Write the density input file to abaqus
111 fich = fopen('dens.txt','w');
112 for i = 1:Setup.NoN
113 fprintf(fich,'%s.%d, %f\r\n', Setup.InstNam, i, dens(i));
114 end
115 fclose(fich);
116 Setup.Dens(end+1,:) = [step, round(mean(dens(:)),4)];
117 disp(['Radiation ',num2str(Rs),' completed']);
118 disp(['Average density: ', num2str(Setup.Dens(end,2))]);
119 end
120 end
121 disp(' ');disp('RAT LIFESPAN COMPLETED!');
122 tEnd = toc(tStart);
123 disp(['Total elapsed time: ',datestr(seconds(tEnd),'HH'), ...
124 ' hours, ', datestr(seconds(tEnd),'MM'), ' minutes and ', ...
125 datestr(seconds(tEnd),'SS'), ' seconds.']);
126

127 %% TPBT of completed bone
128 tStart = tic;
129 % Prepare for TPBT
130 disp(' ');disp('Preparing for TPBT of completed bone');
131 CopyDens;
132 % Run the new TPBT simulation
133 if(exist('Job-Trained-TPBT.lck')) %#ok
134 delete('Job-Trained-TPBT.lck');
135 end
136 disp('Performing TPBT on the bone');disp(' ');
137 system('abaqus job=Job-Trained-TPBT cpus=15 gpus=1 inter');
138 % Report results
139 disp(' ');disp('Reporting results');
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140 % Save and close Excel workbooks
141 if(exist('ForceDisp.xlsx')) %#ok
142 movefile('ForceDisp.xlsx','ForceDisp_OLD.xlsx');
143 end
144 if(exist('ForceStress.xlsx')) %#ok
145 movefile('ForceStress.xlsx','ForceStress_OLD.xlsx');
146 end
147 system('abaqus cae noGUI=Report2Excel.py');
148 command = ['WScript ',cd,'\SaveAndCloseExcelStiffness.vbs'];
149 system(command);
150 movefile('ForceDisp.xlsx',['ForceDisp_',Setup.RatNam,'.xlsx']);
151 system('abaqus cae noGUI=Report2ExcelStress.py');
152 command = ['WScript ',cd,'\SaveAndCloseExcelStress.vbs'];
153 system(command);
154 movefile('ForceStress.xlsx',['ForceStress_',Setup.RatNam,'.xlsx']);
155 % Save image of cross section
156 fileID = ['DensDisp_',Setup.RatNam,'_final.png'];
157 if(exist(fileID)) %#ok
158 movefile(fileID,[fileID(1:end-4),'_OLD.png']);
159 end
160 system('abaqus cae noGUI=MakePlotTPBT.py');
161 if(exist('DensDisp.png')) %#ok
162 movefile('DensDisp.png',fileID);
163 end
164 % Report results and save information
165 Setup = WorkoutReporter(Setup);
166 save(['Setup_',Setup.RatNam,'.mat'],'Setup');
167 disp(' ');disp('ANALYSIS COMPLETED!');
168 tEnd = toc(tStart);
169 disp(['Total elapsed time: ',datestr(seconds(tEnd),'HH'), ...
170 ' hours, ', datestr(seconds(tEnd),'MM'), ' minutes and ', ...
171 datestr(seconds(tEnd),'SS'), ' seconds.']);
172

173 %% Function MainScriptSetup
174 function [Setup] = MainScriptSetup()
175 f = fopen(uigetfile('*.txt','Select text file containing parameters'),'r');
176 fgetl(f);
177 Setup.InstNam = fgetl(f);
178 fgetl(f);
179 Setup.RatNam = fgetl(f);
180 fgetl(f);
181 Setup.NoN = str2double(fgetl(f));
182 fgetl(f);
183 Setup.Step = str2double(fgetl(f));
184 fgetl(f);
185 Setup.k = str2double(fgetl(f));
186 fgetl(f);
187 Setup.s = str2double(fgetl(f));
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188 fgetl(f);
189 Setup.AccuM = str2double(fgetl(f));
190 fgetl(f);
191 Setup.DamageA1 = str2double(fgetl(f));
192 fgetl(f);
193 Setup.DamageA2 = str2double(fgetl(f));
194 fgetl(f);
195 Setup.NoEx = str2double(fgetl(f));
196 fgetl(f);
197 if Setup.NoEx >= 1
198 Setup.Exers = zeros(Setup.NoEx,3);
199 for i = 1:Setup.NoEx
200 Setup.Exers(i,1) = i;
201 Setup.Exers(i,2) = str2double(fgetl(f)); %No jumps
202 fgetl(f);
203 Setup.Exers(i,3) = str2double(fgetl(f)); %Jump height
204 fgetl(f);
205 end
206 end
207 Setup.NoR = str2double(fgetl(f));
208 fgetl(f);
209 Setup.Rads = cell2mat((textscan(f,'%f'))');
210 fgetl(f);
211 Setup.Tbl = cell2mat((textscan(f,'%f'))');
212 fgetl(f);
213 Setup.Wght = cell2mat((textscan(f,'%f'))');
214 fclose(f);
215 Setup.JobNam = 'Job-Train';
216 Setup.Forces = zeros(Setup.NoEx,4);
217 end
218

219 %% Function LoadsEval
220 function Loads = LoadsEval(Setup,step,Es)
221 % Initial
222 g = 9810;
223 mass = Setup.Wght(step); %Mass of rat
224 t = 0.1; %Duration of jump
225 jumps = Setup.Exers(Es,2);
226 h = Setup.Exers(Es,3);
227 % Accumulation
228 h = ( jumps * h^Setup.AccuM )^(1/Setup.AccuM);
229 % Calculate
230 a = (sqrt(2*g*h)) / t;
231 F = mass*(a+g);
232 F = 1e-6*F; %Convert from gmm/s^2 to kgm/s^2
233 % Forces
234 f1 = -F;%Axial load on femur head
235 f2 = F;%Transverse load on femur head
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236 f3 = -11*F;%Quadriceps
237 f4 = -0.5*F;%Hamstrings, axial on head
238 Loads = [f1 f2 f3 f4];
239 end
240

241 %% Function JobInput
242 function JobInput(Loads)
243 f = fopen('step.txt','w');
244 fprintf(f,'** LOADS\r\n');
245 fprintf(f,'** \r\n');
246 fprintf(f,'** Name: Load-Head-Axial Type: Concentrated force\r\n');
247 fprintf(f,'*Cload, op=NEW, amplitude=Amp-Head-Axial\r\n');
248 fprintf(f,'m_Head, 3, %.4f\r\n',Loads(1));
249 fprintf(f,'** Name: Load-Head-Hamstring Type: Concentrated force\r\n');
250 fprintf(f,'*Cload, op=NEW, amplitude=Amp-Head-Hamstring\r\n');
251 fprintf(f,'m_Head, 3, %.4f\r\n',Loads(4));
252 fprintf(f,'** Name: Load-Head-Transverse Type: Concentrated force\r\n');
253 fprintf(f,'*Cload, op=NEW, amplitude=Amp-Head-Transverse\r\n');
254 fprintf(f,'m_Head, 2, %.4f\r\n',Loads(2));
255 fprintf(f,'** Name: Load-Quadriceps Type: Concentrated force\r\n');
256 fprintf(f,'*Cload, op=NEW, amplitude=Amp-Quads\r\n');
257 fprintf(f,'m_Quad, 2, %.4f\r\n',0.105*Loads(3));
258 fprintf(f,'m_Quad, 3, %.4f\r\n',0.995*Loads(3));
259 fprintf(f,'** \r\n');
260 fprintf(f,'** OUTPUT REQUESTS\r\n');
261 fprintf(f,'** \r\n');
262 fprintf(f,'*Restart, write, frequency=0\r\n');
263 fprintf(f,'** \r\n');
264 fprintf(f,'** FIELD OUTPUT: F-Output-1\r\n');
265 fprintf(f,'** \r\n');
266 fprintf(f,'*Output, field\r\n');
267 fprintf(f,'*Node Output\r\n');
268 fprintf(f,'CF, RF, U\r\n');
269 fprintf(f,'*Element Output, directions=YES\r\n');
270 fprintf(f,'ENER, S\r\n');
271 fprintf(f,'** \r\n');
272 fprintf(f,'** FIELD OUTPUT: F-Output-2\r\n');
273 fprintf(f,'** \r\n');
274 fprintf(f,'*Output, field, frequency=99999\r\n');
275 fprintf(f,'*Node Output\r\n');
276 fprintf(f,'NT, \r\n');
277 fprintf(f,'*Element Output, directions=YES\r\n');
278 fprintf(f,'TEMP, \r\n');
279 fprintf(f,'*End Step\r\n');
280 fclose(f);
281 end
282

283 %% Function SED
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284 function dados = SED(Setup,OutputFile)
285 format long
286 % Initialize dados
287 dados = zeros(Setup.NoN,1);
288 % Read number of frames/increments
289 staID = [Setup.JobNam, '.sta'];
290 f = fopen(staID,'r');
291 for i = 1:6%Standard Abaqus layout
292 line = fgetl(f);
293 end
294 frames = 0; %Counting to the line after last increment
295 while(~strcmp(line, ' THE ANALYSIS HAS COMPLETED SUCCESSFULLY'))
296 frames = frames + 1;
297 line = fgetl(f);
298 end
299 fclose(f);
300 % Read StrainEnergyDensity.txt file
301 f = fopen(OutputFile,'r');
302 for i = 1:frames
303 StopReading = 0;
304 while (~StopReading)
305 tline = fgetl(f);
306 if(length(tline) >= 20 && strcmp(tline(1:10),'----------'))
307 temp = (fscanf(f,'%g %g',[2 Setup.NoN]))';
308 StopReading = 1;
309 end
310 end
311 % Compare to find maximum between current and previous frame
312 dados = max(dados, temp(:,2));
313 end
314 fclose(f);
315 end
316

317 %% Function CopyDens
318 function CopyDens
319 d = fopen('dens.txt','r');
320 inp = fopen('Job-Trained-TPBT.inp','r');
321 nd = fopen('dens_TPBT.txt','w');
322 inp_line = fgetl(inp);
323 % Scroll to node list;
324 while(~strcmp(inp_line,'*Node'))
325 inp_line = fgetl(inp);
326 end
327 % Retreive the relevant nodes
328 nodes = (fscanf(inp, ['%d' ',' '%g' ',' '%g' ',' '%g'], [4 inf]))';
329 nodes = nodes(:,1);
330 % Read all density lines to variable
331 den_lines(max(nodes(:))) = string;
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332 for i = 1:length(den_lines)
333 den_lines(i) = fgetl(d);
334 end
335 % Write only the relevant lines
336 for i = 1:length(nodes)
337 fprintf(nd,strcat(den_lines(nodes(i)),'\n'));
338 end
339 fclose('all');
340 end
341

342 %% Function WorkoutReporter
343 function Setup = WorkoutReporter(Setup)
344 % Reference values
345 Ys = 69.63; %Original yield stress of femur 15
346 OrigStiff = 466.2; %Original sim stiffness of femur 15
347 OrigYield = 111.66; %Original sim yield force of femur 15
348 report = [" loss."," increase."];
349 event = ["Radiation","Training"];
350 % Read tables
351 FD = xlsread(['ForceDisp_',Setup.RatNam,'.xlsx']);
352 FS = xlsread(['ForceStress_',Setup.RatNam,'.xlsx']);
353 % Interpret results
354 Setup.Stiffness = mean(diff(FD(:,2))) / mean(diff(FD(:,1)));
355 Setup.YieldForce = interp1(FS(:,2),FS(:,1),Ys,'pchip','extrap');
356 % Report back
357 disp(' ');disp(['Stiffness is ',num2str(round(Setup.Stiffness,2)), ...
358 ' N/mm']);
359 disp(strcat(['A ',num2str(abs(round(100*(Setup.Stiffness-OrigStiff)/ ...
360 (OrigStiff),3))),'%'], report((OrigStiff-Setup.Stiffness<0)+1)));
361 disp(['Yield force is ',num2str(round(Setup.YieldForce,2)),' N/mm']);
362 disp(strcat(['A ', num2str(abs(round(100*(Setup.YieldForce-OrigYield)/ ...
363 (OrigYield),3))),'%'],report((OrigYield-Setup.YieldForce<0)+1)));
364 Setup.DensT = array2table(Setup.Dens,'VariableNames', ...
365 {'After_event','Density'});
366 Setup.DensT.Event(:,1) = ["Initiation",event(Setup.Tbl + 1)];
367 disp(' ');disp('Average density log:');disp(' ');
368 disp(Setup.DensT);
369 Setup.LoadT = array2table([Setup.Exers(:,1),Setup.Wght(Setup.Tbl>0), ...
370 Setup.Exers(:,3),Setup.Forces],'VariableNames', ...
371 {'Exercise','Weight','Jump_height','Head_A','Head_T','Quad','Ham'});
372 disp('Training log:');disp(' ');
373 disp(Setup.LoadT);
374 end
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