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SUMMARY 
Context 
Today one of the lowest scoring sectors in digitalization is the construction sector. Still much has changed the last decade 
in the digitalization in structural design. The construction industry is leaving the era of 2D drawings in favor of BIM and 
eventually parametric modeling. With new design software that facilitates programming, it has never been easier to 
develop new tools for digital design of buildings. Therefore, it can be interesting to explore whether the construction 
industry can learn from the industries that have come further in digitization and borrow techniques from there. 
Objective 
The aim of this thesis is to explore whether simple design problems can be reduced to a path finding problem and thus use 
a path finding algorithm to solve the problem. Such an algorithm will be able to update itself every time something changes 
and thus automatically avoid collision. This will then save time and money, and will integrate smoothly with parametric 
modeling. 
Method 
To test this in practice, a plugin was created for the Grasshopper visual programming interface which is part of the 
Rhinoceros 6 CAD program. This plugin contains custom grasshopper components. These components allow the user to 
divide the space around existing geometry into a grid and then run the A* path finding algorithm to find a path between two 
selected points. The user har the ability to influence which path the algorithm chooses by changing different values in the 
algorithms cost function. Finally, the result is shown in the form of a pipe modelled along the path between the two points. 
Result 
The algorithm was run on different cases and with different input values to test how the algorithm behaves. It is shown how 
the user can influence the algorithm to have different properties by changing the input values. The algorithm showed 
promising results in some cases, while in other it did not. A run time test was also done. 
Conclusion and further work. 
The algorithm shows promising results, but a lot of work remains. There are a number of things that need to be improved 
with the current algorithm to make it work more optimally. Among these is to reduce the number of turns the algorithm 
chooses to do as well as reduce run time. There are also several elements of the algorithm that may be interesting to 
explore further such as the heuristic function, the cost function but also other path finding algorithms. 
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Summary

Context
Today one of the lowest scoring sectors in digitalization is the construction
sector. Still much has changed the last decade in the digitalization in struc-
tural design. The construction industry is leaving the era of 2D drawings in
favor of BIM and eventually parametric modeling. With new design soft-
ware that facilitates programming, it has never been easier to develop new
tools for digital design of buildings. Therefore, it can be interesting to ex-
plore whether the construction industry can learn from the industries that
have come further in digitization and borrow techniques from there.

Objective
The aim of this thesis is to explore whether simple design problems can be
reduced to a path finding problem and thus use a path finding algorithm
to solve the problem. Such an algorithm will be able to update itself every
time something changes and thus automatically avoid collision. This will
then save time and money, and will integrate smoothly with parametric
modeling.

Method
To test this in practice, a plugin was created for the Grasshopper visual
programming interface which is part of the Rhinoceros 6 CAD program.
This plugin contains custom grasshopper components. These components
allow the user to divide the space around existing geometry into a grid
and then run the A* path finding algorithm to find a path between two
selected points. The user har the ability to influence which path the algo-
rithm chooses by changing different values in the algorithms cost function.
Finally, the result is shown in the form of a pipe modelled along the path
between the two points.

Result
The algorithm was run on different cases and with different input values to
test how the algorithm behaves. It is shown how the user can influence the
algorithm to have different properties by changing the input values. The
algorithm showed promising results in some cases, while in other it did
not. A run time test was also done.
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Conclusion and further work.
The algorithm shows promising results, but a lot of work remains. There
are a number of things that need to be improved with the current algorithm
to make it work more optimally. Among these is to reduce the number of
turns the algorithm chooses to do as well as reduce run time. There are also
several elements of the algorithm that may be interesting to explore further
such as the heuristic function, the cost function but also other path finding
algorithms.
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Sammendrag

Kontekst
Byggbransjen er i dag de en av bransjene som scorer dårligst på digitalis-
ering sammenliknet med andre bransjer. Samtidig har mye skjedd på dig-
italiseringsfronten innen bygningsdesign. Byggbransjen er på tur ut av en
æra med 2D tegninger til fordel for BIM og etter hvert parametrisk model-
lering. Med framveksten nye dataprogrammer som tilrettelegger for videre
utvikling har det aldri vært så enkelt som nå å utvikle nye verktøy for dig-
ital design av bygninger. Derfor kan det være interessant å se om man i
byggbransjen kan lære av de bransjene som har kommet lenger i digitalis-
eringen og låne teknikker derfra.

Målsetting
Målsetningen med denne oppgaven er å utforske hvorvidt enkle problemer
innen konstruksjonsdesign kan reduseres til stifinnerproblemer og dermed
benytte stifinneralgoritmer til å automatisk finner en vei. En slik algoritme
vil kunne oppdaterer seg hver gang noe endres og dermed automatisk un-
ngå kollisjon. Dette vil da kunne spare tid og penger, og vil gli naturlig inn
med parametrisk modellering.

Metode
For å teste dette i praksis ble det laget en plugin til det visuelle pro-
grammeringsgrensesnittet Grasshopper som er en del av CAD program-
met Rhinoceros 6. I denne pluginen inneholder skreddersydde grasshop-
perkomponenter. Disse komponentene gir brukeren mulighet til å inndele
eksisterende geometri i et rutenett og deretter kjøre A* stifinneralgoritmen
for å finne en vei mellom to valgte ruter. Brukeren har mulighet til å påvirke
hvilke veier algoritmen velger ved å endre på ulike verdier i algoritmens
kostfunksjon. Til slutt vises resultatet i form av et rør modellert langs ruta
mellom de to punktene.

Resultat
I ulike tester vises det hvordan algoritmen oppfører seg med ulike in-
putverdier. Det vises hvordan brukeren kan påvirke algoritmen til å ha
ulike egenskaper ved å endre på inputverdiene. Det diskuteres om algorit-
men oppfører seg ønskelig, i hvilke tilfeller den ikke gjør det og det gjøres
også en kjøretidstest.
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Konklusjon og videre arbeid.
Konklusjonen er at algoritmen viser lovende resultater, men at mye arbeid
gjenstår. Det er en rekke ting som må forbedres med nåværende algoritme
for å få den til å fungere mer optimalt. Blant dette er å minske antall
svinger algoritmen velger å gjøre samt redusere kjøretid. Det er også en
rekke deler av algoritmen som kan være interessant å utforske videre som
heuristikkfunksjonen, kostfunksjonen men også andre stifinneralgoritmer.
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Chapter 1

Theory

1.1 The eras of Computer Aided Design(CAD)

There are many ways to describe the history of Computer Aided Design
(CAD). One way presented by Robert Aish is that the way we design with
and think about CAD can be presented as three eras[1]. These in more or
less chronological order these are the 2D drafting era, the BIM era and the
design computational era. They are heavily overlapping, but the logic and
individual adaption uusally follows this order.

The 2D Drafting era
This era started in the 1980s when the first computer tools were made to
aid in the already existing practice of drawing 2D-drawings. 2D drawing
was at the time the main way of designing. When computers started to be-
come a common tool for engineering firms, programs like Sketchpad and
early versions AutoCAD emerged. The way of designing still consisted of
drawing a model line by line. All the information is written in clear text
on the drawing. This was a natural progression as the workflow stayed the
same, but the ability to digitally correct, redraw, store and reuse drawings
made computer programs attractive. This era and way of designing, how-
ever, did not capitalize on the vast functionality a computer can provide.

The Building Information Modelling Era
As computers are able to store large amounts of data, the natural progres-
sion from the 2D drafting era is the building information model (BIM) era.
Instead of designing through a series of separate drawings the idea behind
BIM is to create a single 3D model instead. This has several advantages
over 2D drawings. With a single 3D model it is a lot easier to force overall
consistency especially when there are a lot of subcontractors. A lot of meta-
data can also be stored about the 3D model apart from just the geometry.
Last but not least it is a lot easier to get an overview of the whole project.
This also makes it possible to do clash detections tests where it is tested
whether geometry which should not not intersect does that nonetheless.
The model is still manually modeled like in the drawing era which means
the work flow is not changed that much. This suites a conservative indus-
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try well and is therefore a logical next step.

The Design Computational Era
The third and last era is the computational era. In the BIM era the engi-
neer designed the model directly. In the computational era the idea is that
the engineer designs a script or graph (e.g in Grasshopper, explained in
section 1.3.1) which generates the model for the engineer. The motivation
behind this is that even though the initial time spent on creating a script
or graph is often longer than creating a 3D model in a designing software,
the time it takes to change the model is significantly less. This era started
with the appearance of parametric modeling software like Grasshopper,
Autodesk Dynamo and Bentleys’ GC around 2007 (commercial launch of
Grasshopper and GC). In these programs the user creates a directed graph
of functions which create geometry. The parameters of buildings are often
easily changed by number sliders or similar and then the whole building
is remodeled with the updated parameters. Although graphical scripting
is intuitive it is rarely seen in the ICT industry. There is therefore quite
probable that the architectural, engineering and construction industry will
move towards imperative programming (i.e. text scripts in programming
languages) which is the norm in high tech industries.

Where are we today?
This question is not as straight forward as it seems. The reason for this
is that studies have shown that different firms are in different eras. For
example in a study done about clash detection and avoidance [2] compa-
nies reported that a clashes occurred because subcontractors delivered 2D
drawings instead of BIM models. This shows that there are both firms in
the BIM and 2D drafting era. Grasshopper, GC, and Dynamo have grow-
ing functionality and which might indicate that there are firms entering the
computational design era. As there are firms at all sides of the spectrum,
the majority usually lay somewhere in the middle which in this case might
be the BIM era, but it’s all rather speculative. The important part is that
imperative programming in the design computational era is a probable fu-
ture.

1.2 The problem

Even though more and more firms and people in the construction industry
are embracing BIM, parametric modelling and other more technological
solutions, the construction industry is still far behind in terms of digital-
ization. McKinsey did a study in 2015 on how different sectors in the US
compared in the use of digital tools and automation to boost productiv-
ity[3]. Of all the 21 sectors in the study construction came second to last,
only better than the agriculture and hunting sector. Even though this was a
US study it is not entirely unlikely that the results would be similar in Eu-
rope and Norway. As the construction sector is working its way through
the CAD eras it is also working its way towards a more digital way of de-
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signing. It can therefore be interesting to look at what technologies have
been developed in the more digitalized sectors like the ICT sector and the
media sector.

One of the big cost savers of having a common BIM model is the ability
to do clash detection to avoid clashes between different engineering disci-
plines[2][4][5][6]. Clash detection and collision is not a subject specific to
the construction sector. In the media sector for example this problem has
been solved in a variety of ways. More specifically in computer games.
Collision detection has been a subject in video games since the very first
video game, a tennis game similar to Pong, was created in 1958. But video
games today have taken it a lot further. Not only are there a vast number
of methods for collision detection in use, there are also a lot of algorithms
and methods for collision avoidance. Collision avoidance in construction
is a subject which is currently lacking research[6]. Therefore the question
of this thesis is the following:

Can we use methods for collision avoidance implemented in
other fields to solve collision avoidance in construction?

1.2.1 How is this task handled today?

A study was done on clash avoidance and detection by Akponeware et
al. in 2017[6]. It concluded that collision/clash avoidance during the
design phase usually was solved indirectly. It was solved indirectly by
putting all BIM sub assemblies on top of each other, then run the model
through a clash detection program and then edit the parts which do clash.
Although dealing with clashes during the design phase saves costs, it
still demands resources. It is also not error proof as the clash detection
programs might have problems when there is a combination of BIM models
and 2D drawings. It is probably not the optimal solution, but it is the most
widely used solution today according to Akponeware et al.

1.2.2 How will my solution help?

The idea behind this thesis is that since clash detection and clash avoidance
has been studied thoroughly in other more digitalized sectors there must
surely be lessons to be learnt. With the emergence of different parametric
tools which also have support for imperative programming it is easier than
ever to implement those solutions which have already been developed in
other fields. In this thesis I will therefore experiment with the automation
of creating a pipe with the help of path finding algorithms. This is beneficial
as it solves these problems:

• It reduces the time needed to model, as the pipe will model itself.

• Most importantly it will avoid collision unless the user specifically
wants it. Therefore no resources are needed to deal with clashes.
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• Whenever some of the other geometry is changed, the piping
algorithm will be rerun and therefore ensures a forever collision free
pipe.

1.3 Software

1.3.1 Rhino Grasshopper

To be able to implement a programmed solution for the above de-
scribed problem applicable software is needed. Rhinoceros 6 (Rhino) is a
Computer-aided design software. Like other CAD programs its purpose is
to let the user create, edit, analyze, document, render, animate, and trans-
late 2D and 3D geometry. What differentiates Rhino from other similar
CAD programs is its focus on Non-Uniform Rational B-Spline (NURBS)
geometry[7]. NURBS is a mathematical approach to model curves and sur-
face geometry. NURBS curves and surfaces are made with the help of con-
trol points and a mathematical function based on these control points. This
is important because it makes it easier to change geometry by changing
the control points used to create them. Because NURBS are mathematically
defined, a lot less information is required to represent the geometry than
with common faceted approximations [7]. The combination that most of
the geometry can be changed with control points, that each geometry uses
little memory and that all geometry is based on math makes Rhino a per-
fect combination with Grasshopper.

Grasshopper started as a plugin for Rhino and is now fully integrated into
Rhino. Grasshopper functions as a visual scripting environment. This
means that the user creates a script visually by making a directed graph.
In the graph each node is a called a component and each edge is called a con-
nection. A component gets data via the connections from upstream compo-
nents, does some computation and sends data downstream to downstream
components. A component can receive data, send data or do both.

An example of a grasshopper script is shown in fig. 1.1. In this script three
number parameters are set by the number sliders. Then three points are
created which are then used as control points for the NURBS curve shown
in fig. 1.2. With this set up, the parameters of the points are easily changed
and then the geometry will adjust accordingly as seen in fig. 1.3. As we
can see, the Rhino Grasshopper combination is a excellent tool for para-
metric modeling. The visual way of scripting is a way of programming
which is very easily understood by humans even without any earlier cod-
ing experience. This makes parametric modeling in Grasshopper available
to many and is Rhino-Grasshoppers biggest selling point. Geometry can
also be modeled "by hand" in Rhino, then captured by Grasshopper as a
component and then further geometry may be made in the Grasshopper
environment. Whenever the captured geometry is changed in Rhino the
Grasshopper script wil be updated to fit with the new geometry. The ge-
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Fig 1.1
Example on how to create a NURBS curve in Grasshopper

Fig 1.2
Curve and points made in fig. 1.1

Fig 1.3
Y coordinate in the second point in-
creased to 10

ometry created in grasshopper however are only visualized in Rhino. It can
not be changed in Rhino before the user are satisfied with the results and
exports the result from Grasshopper to Rhino. This might seem tedious but
it is easily done and lessens the work needed for visualization and thereby
speeds up the scripts.

1.3.2 C#, Visual studio and Grasshopper plugins

As mentioned earlier Grasshopper started as a plugin. It is written in
the programming language C#. C# is a general-purpose object oriented
programming language created by Microsoft around 2000 as a part of
their .NET Framework initiative[8]. The syntax is C like and the standard
library is covers a lot. As it is supported by one of the biggest companies
in the tech industries, it has grown to be a modern, and quite popular
language among programmers. Microsoft has made its own intelligent
design environment (IDE) called Visual Studio where most of the set up for

5



a C# program is already done. If one needs further functionality than what
Visual Studio offers on installation a vast amounts of plugins for Visual
Studio exists. Grasshopper has created one of these plugins. With this
plugin a developer can create, package and install plugins with custom
components and functionality for Grasshopper.

6



Fig 1.4
Gif of the A* algorithm. This opens in Adobe pdf viewers only. A sheet of the
frames are available in the appendix.

1.4 A* Algorithm

The A* (pronounced A-star) algorithm is a greedy breadth first graph
search algorithm[9]. It is built on Dijkstra’s shortest path algorithm, and
the algorithm was first published in 1968 as a part of the Shakey robot
project[9]. The algorithm operates in a graph of nodes where every node
is given a cost. The algorithm is given a start node and a goal node and
then searches the graph for the path with the lowest cost. Compared to
Dijkstra, the goal of the A* algorithm is the same but the A* algorithm is
designed to find the optimal path while visiting the fewest nodes possible.
An visualization of the algorithm is shown in fig 1.4. The algorithm works
like this:
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1. Add starting node to the OPEN list.

2. As long as there are elements in the OPEN list do the following:

(a) Pop the highest priority (lowest values) item from the OPEN list.
Set this to be the agent node.

(b) Add this node to the CLOSED list.

(c) Check if agent node is the goal node. If it is then stop and jump
to step 3.

(d) For each neighbor of the agent node do the following:

i. Check to see if the neighbor is in the Closed List. If it is,
ignore it and jump to next neighbor.

ii. Check to see if it’s in the OPEN list.
A. If it’s not, add it to the OPEN list. Set the agent node as

its parent and record the cost so far. Set the priority to
the cost so far plus the heuristic function.

B. If it is in the OPEN list check if the path through the
agent node is cheaper than through it’s current parent
node. If it is set agent as the new parent node and
update with the new lower cost.

3. Backtrack from the goal node to the starting node by walking through
each node’s parent. Return this path.

As described above, the A* algorithm uses a priority to determine what
node to visit next. The A* algorithm will prioritize to visit the node by the
following function:

f (n) = g(n) + h(n) (1.1)

Where g(n) is the cost of reaching the node n from the start node and
h(n) is what’s called a heuristic function. The heuristic function is an
estimate on the reminding cost to reach the goal node from node n. For
the A* algorithm to be optimal the heuristic function must be admissable
and consistent. A heuristic function is admissable if it fulfills the following
criteria: The estimated remaining cost must not exceed the actual cost to reach the
goal. i.e. it must never overestimate the cost of reaching the goal from the
current point. As an equation, that is:

h(n) <= G(n, g) (1.2)

where G(n, g) is the cost of the optimal path from node n to goal node g.
A heuristic function is consistent if the following is true: The estimated cost
to reach the goal node is always less than or equal the estimated cost of reaching
the goal from any neighbor plus the cost of reaching that neighbor. This can be
written as:

h(n) <= h(p) + G(n, p) (1.3)

where p is a neighboring node of n. Say the A* algorithm operates on a
2D grid where each node is a square cell on the grid. The only allowed
moves are up, down, left or right. Diagonal moves are not allowed. In this
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scenario a widely used heuristic function is the Manhattan distance[10].
This function looks like this:

hn = |xn − xgoal |+ |yn − ygoal | (1.4)

In other words the sum of the horizontal and the vertical distance to the
goal. This heuristic function is admissable if the cost of each cell is at least
1. With the move set available and with the constraint that each cell cost
at least one, the cheapest scenario possible is where the cost from start to
goal is equal to the Manhattan distance. If costs are more than one or the
cheapest path includes a detour the cost from start to goal will be larger
than the Manhattan distance.

1.4.1 Use in gaming

The A* algorithm has been used for NPCs in many video games e.g[11]:

• Age of Empire series

• Sid Meyer’s civilization series

• World of Warcraft

• Warcraft series

1.4.2 Development

The A* algorithm is known for it’s use in video games[12]. In many video
games a lot of movable characters need to find paths across a map or a
world as efficient as possible. A* has shown that it is able to find an optimal
path with a lower space requirement than many other methods. As long as
the heuristic is both admissable and consistent the A* algorithm will find
the optimal path, as long as it exists, while visiting equal or fewer nodes
as any A* like algorithm[9]. Because of this, it has become very popular. A
lot of work has been done to make it faster. Of the things that have been
done, exploration of data structures are one of them. For the OPEN list a
min-heap has been found to be one of the more optimal data structures. A
min heap sorts the items added on insertion. Finding the lowest possible
element will therefore take O(1) time. For the Visited list a hashmap might
be the optimal list as long as the required space is available. A hashmap is
optimal because it uses O(1) time to search for an element which is done
quite often during the algorithm (see step ii in the algorithm). The result is
an algorithm which runs much faster than one which is implemented with
generic lists.

1.4.3 Other uses in construction

There exists at least one article [11] researching whether the A* algorithm
can be used to automate generation of construction geometry. In this article
A* has been used to calculate the optimal cutting lengths for concrete
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reinforcing at the time of construction. The resulting geometry was a BIM
model of the necessary reinforcement. The motivation was to lower the
cost of excessive reinforcing steel usage during construction and with that
also lower transportation costs and the time spent on construction.
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Chapter 2

Method

In this chapter we will look at how the A* algorithm in its original form can be used
in a parametric environment to automatically generate desired geometry, more
specifically pipes. The parametric environment chosen will be Rhino Grasshopper.
The broad idea is that a grid is made around some existing geometry, a start and
end point is chosen, a path is found with the A* algorithm and then a pipe is
modeled along this path. Each step in the process will be as a separate Grasshopper
component. Before the A* algorithm can be implemented a series of preparations
needs to be done. Firstly the area containing constraining geometry will need to
be divided into equally sized cells in a 3D grid. The resulting 3D grid will be
the "World" where the A* algorithm will operate.The next thing to be done will
be to set a cost for each cell in the 3D grid. A cost for each cell can be set based
on the constraining geometry and parameters set by the user. Lastly the user will
need to pick out a starting cell and a goal cell for the algorithm. When all this is
done the A* algorithm can be used to find a path from cell A to cell B like in the
maze problem (section 2.1.1). Exactly how this is implemented is described in the
chapter. The heuristic function chosen in this master thesis will be the Manhattan
distance and the cost function will also be described in this chapter.
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2.1 Reducing the problem

2.1.1 The maze problem

Fig 2.1
Maze problem

In this thesis the A* algorithm will be used in a way which simulates the
maze problem. The maze problem is a common, well defined and well
explored problem in computer science. The setup of the maze problem
might look something like in fig 2.1. In a N × M grid maze the goal
is to find the optimal path between a source cell and a destination cell.
This problem can be solved by a lot of algorithms and the A* algorithm is
one of them. For a discussion on why the A* was chosen among all path
finding algorithms see section 4.1. In short, it is used because it is a generic
algorithm, which is quite fast the first time it runs, no matter what variables
are changed. The idea is therefore to take imported geometry from a BIM
model, reduce the piping problem to the maze problem and then run the
A* algorithm. To be able to do this there are a number of steps that needs
to be done.

2.1.2 Preparing the maze problem

Firstly the geometry which the algorithm will work with needs to be im-
ported. Let’s say a company is designing a building and have created a
virtual BIM model of the building. The important factors for the algorithm
is not all the details of the facade, but the walls, columns, beams, floors
and roofs. There might be a point to only include load bearing elements as
dividing walls are often thin and cheap to penetrate. They are also not de-
signed to carry the load of the pipes. Why this is a point will be explained
later.
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When the relevant geometry is imported it needs to be divided into a 3D
grid of equally sized cubes. These cubes will be the cells which the algo-
rithm move between. Each cell will have 6 neighbors, one to the left, right,
up and down, one in the front and in the back. While this makes the prob-
lem a lot simpler it is also a restriction. By making cells in the form of cubes
the pipe will only be able change direction in 90 degree turns. Here the as-
sumption was made that most rooms and buildings are rectangular. Even
in non-rectangular rooms it can often be observed that piping and venti-
lation ducts are still using only 90 degree bends. Therefore the reduction
to only operate in 90 degree angles might be acceptable. Although there
are a lot of non rectangular buildings, and algorithms which handles non
rectangular rooms exists, the reduction to rectangular rooms was chosen to
reduce the scope of this thesis.

Fig 2.2
The grid is not perpendicular to the
walls

Because the algorithm will be restricted
to 90 degree turns it is important that
the grid is perpendicular to the most
defining geometries (i.e. walls). If
this is not done one might have a
case similar to fig 2.2. The pipe
will follow the red path from point
E to point J instead of the desired
path shown in blue. Clearly this
is not optimal, however if the grid
cells are created perpendicular to the
walls then the desired outcome is possi-
ble.

When a grid is created the next thing to do is to assign a cost to each cell
based on a chosen cost function. Lastly a source cell and a destination cell
is chosen and the A* algorithm is run. If it exists, the A* algorithm will re-
turn a path between the source and destination cells. A pipe can then easily
and automatically be modelled along this path. This is the idea of what the
program is supposed to do. In short:

• Import relevant geometry.

• Create a grid around the geometry perpendicular to the most defining
geometry.

• Apply a cost to each grid cell.

• Set a source and goal cell for the pipe and thereby defining it as the
maze problem.

• Run the A* algorithm to find a path.

• Return a pipe modelled along the path.
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2.1.3 How to influence the chosen path

As mentioned in equation 1.4 the algorithm is dependent on both a heuris-
tic function and a cumulative cost function. Because the only movements
allowed are up, down, left, right, forward and backward movements, the
manhattan distance can be used as the heuristic as long as the cost of each
cell is at least 1. If the cost is at least 1 the the manhattan distance will be
both admissable and consistent. There is not much to influence here apart
from completely changing the heuristic function, but that is beyond the
scope of this thesis.

Until now it has only been mentioned that each cell has a cost. For the
original maze problem a normal solution is to set the cost of each white cell
as 1, and each black cell (walls) as infinite. In fact the A* algorithm often
includes an additional step between step i and ii where it it checks if the
tile is a wall. If this is the case, it is added to the CLOSED list and ignored.
With a cost of 1 the manhattan distance is consistent and admissable. The
algorithm wil find a way and it’s usually to go straight at the goal, then
dodge walls if any and then continue. An example of this can be seen in
fig 2.3. This, however, is not necessarily the desired solution. Piping and

Fig 2.3
Cost of all tiles are 1. Walls are infinite

similar components like ventilation often follow walls and roofs. Piping
straight through a room is often avoided as it occupies space which can
be used for more useful things. Having components stick to walls and
roofs also help lessen the structural complexity as piping moving straight
through a room might need to be supported by very long cantilevers or
columns, or have very large cross sections to be able to carry the self
weight and additional load. Therefore it is often cheaper to have piping
follow load bearing construction elements like load bearing walls instead
of taking the shortest path from A to B. This is what creates the motivation
to differentiate the costs of each tile. Therefore a lot of the work done during
this thesis was to create a cost equation for the cells and to develop a system
where the user is able to adjust the variables of the cost equation.
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Cost function

Instead of having a constant cost or areas of constant cost for each cell in the
grid, a cost will be calculated for each individual cell. The user will be able
to set som parameters and then the cost of each cell is set by the following
formula:

Ci =




(

n

∑
j=0
− 1

Dij

)
− cmin

cmax − cmin

×MC + 1 if Dij > T

Cwall otherwise

(2.1)

where:
Dij = distance from tile i to geometry j.
T = wall tolerance, a distance set by the user.
cmin & cmax = min and max cost of all grid tiles before min-max normaliza-
tion.
MC = Max Cost, a variable set by the user.
Cwall = cost of passing through a wall set by the user

It is important that the cost is no less than 1. This is because of the heuristic
function used by the A* algorithm. For the A* algorithm to behave opti-
mally it is required that the heuristic function never over estimates the cost
to reach the goal. As the the heuristic function chosen is the Manhattan
distance (see 1.4) then each move must cost at least 1. The idea is that the
closer a node is to constricting geometry the cheaper it is. The constricting
geometry is set by the user. The counter intuitive part of this equation is
that the geometry given creates both the most expensive and the cheapest
nodes. The cheapest nodes are those right next to the constricting geometry,
while the nodes inside the geometries are often the most expensive. If the
right geometry is chosen this makes sense from a construction perspective.
From a construction perspective you want pipes, ventilation, and similar
to follow load bearing construction elements. These elements can handle
the extra load, while for example a light drywall cannot. At the same time
it should be really costly to penetrate load bearing construction elements.
The penetration point becomes a weak spot in the construction and there-
fore the element might have to be reinforced or the cross section might need
to be enlarged. Either way this is expensive, increases the complexity of the
construction and its often reasonable to avoid penetrating load bearing el-
ements.

The path the algorithm chooses will have a varying degree of a property
hence called stickiness. If the path is sticky it will cling to any wall or object
possible, while unsticky it will tend to go straighter at the goal. An exam-
ple on this is the left and right part of Fig 3.5. On the left side the pipe’s
path goes straight and therefore is unsticky, while on the right the pipe’s
path clings to the wall and is therefore sticky. The stickiness of the path is
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controlled by the cost function. In the chosen cost function this is mainly
done by the MaxCost (MC) variable. By increasing or decreasing this vari-
able the user is able to control the stickiness of the algorithm. A large MC
will give a large span in costs, and therefore more stickiness. The nodes in
the middle of the room will become very expensive compared to the nodes
near the walls.

Fig 2.4
Example constricting geometry

Fig 2.5
Example of costs for each cell in 2D

Fig 2.6
Distance
between cell
and wall.

For example lets say we have the case of fig 2.4. Then an
example of the costs calculated could look something like
in fig 2.5. In this example Cwall = 999 and MC = 1. The
observant reader would notice that a MC of 1 gives the cell
with the highest cost a value of 2. The cells have a cost in the
range [1, 2]. The cheapest ones are in the corners adjacent
to the side wall and the middle wall. The wall’s exact loca-
tion goes from the middle and a little down, but width of the
wall is smaller than the width of a cell. Therefore the cells
above the wall get a lower cost than the cells under it. This
is because the cells above are right next to the wall, while
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the cells under the wall are half the cell which contains the wall away from
the wall(see fig 2.6). The cells containing the middle wall gets assigned the
wall cost. The most expensive cells are those that are far away from the
middle wall, and not too close to the side wall. One thing to note is that the
surrounding walls are one single geometry. Therefore the distance to this
geometry is most often the distance from the cell and to the long side. The
most expensive cells are therefore those which are about as far away from
the short side as the long side of the surrounding wall. In this example
it would have made sense to divide the surrounding wall into individual
walls. In a real world scenario with hundreds of different geometries this
might be too costly and not necessarily straight forward to do. In the case
of other geometries this might also make sense. A truss contains lots of
parts, but should be handled as a single geometry.

An important part of the use of an equation instead of a constant cost is
that the algorithm will have a different behavior with the varying costs. An
equally important part is that the user is in control of this behavior. This is
done through varying the MC, T and Cwall variables. Varying MC creates a
more or less sticky behavior. Varying Cwall varies the algorithm’s tendency
to go around or through obstacles. Varying T makes a path closer or further
away from obstacles the optimal. In the grasshopper environment, which
will be introduced in the next section, this is done quite easily.

To summarize, a lot has to be prepared before the A* algorithm can be used
to find a path for piping. In short what needs to be done is the following:

1. Import relevant geometry.

2. Create a grid around the geometry perpendicular to the most defining
geometry.

3. Set the MC, T and Cwall variables.

4. Calculate the cost of each cell according to the cost equation.

5. Set a source and goal cell for the pipe and thereby defining it as the
maze problem.

6. Run the A* algorithm to find a path.

7. Return a pipe modelled along the path.
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2.2 The Rhino Grasshopper workflow

2.2.1 The Rhino Grasshopper cycle

Fig 2.7
Rhino Grasshopper workflow

For the task of implementing the functionality described in the last section
Rhino and Grasshopper was chosen. As mentioned in section 1.3.1 Rhino
is a CAD program and Grasshopper is a plugin for Rhino which adds vi-
sual programming (and therefore parametric modelling) capabilities. The
workflow of the resulting grasshopper program implemented in this thesis
is shown very roughly in fig 2.7. Here the yellow boxes are things hap-
pening in Rhino, the green diamonds are things happening in Grasshopper
and the blue ellipses are changes done by the user. The constricting geom-
etry will need to be either modelled in Rhino or imported to Rhino. This
geometry is then imported into Grasshopper. A bounding box is then cre-
ated around the constricting geometry and divided into a 3D grid. The grid
is oriented perpendicular to the largest vertical surfaces of the constricting
geometry. The next thing which will be done in Grasshopper is that each
cell will be assigned a cost based on the cost equation (eq 2.1). Then the
user sets a start and end point and runs the A* algorithm. After the algo-
rithm is run the resulting geometry will be visualized in Rhino. If the user
is satisfied with the result and wants to be able to do changes to it in Rhino
the user is able to export it from Grasshopper to Rhino by a function called
baking. This geometry may then be processed further in Rhino or might
be included in the constricting geometry for e.g. a second run of the al-
gorithm. Say the user wants a second pipe, then the algorithm can be run
with the first pipe as part of the constricting geometry to avoid collision.

All changes done by the user will initialize a rerun of the affected step in
Grasshopper and all following steps. For example if the constricting ge-
ometry is changed the whole Grasshopper chain is rerun. If cost variables
are changed i.e. Cwall then only the cost calculation and the A* algorithm is
rerun. The grid will stay untouched.
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The way this workflow is implemented in Grasshopper is through a plugin
for grasshopper. During this thesis a plugin for Grasshopper was made.
This plugin gives Grasshopper additional custom made components (the
graph nodes which takes input and give an output) to excecute the desired
workflow. The custom Grasshopper components created are presented in
the table in section 2.2.2.
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2.2.2 Components

Table 2.1
Custom components made with C#

Fig 2.8
World
Mesher 3D

G: Geometry defining the necessary space to grid.
5%: Size of each grid cube by percent of shortest side.
(default 5%)
M: The generated grid/Mesh
Ex: Error messages
D: Data for PointSetter component

Fig 2.9
PointSetter

D: Data from WM3D
x: x coordinate in the interval [0,1]
y: y coordinate in the interval [0,1]
z: z coordinate in the interval [0,1]
OK: If true then all child components are updated

Fig 2.10
CostSetter

C: Constricting and load bearing geometry
Gr: Grid from WorldMesher3D
T: Wall tolerance
WC: Wall Cost, cost of going through walls
MC: Max Cost. Cost lies in the interval [1,MC+1]
O: Output grid of costs
C: Debugging text. Not in use

Fig 2.11
A* Pipe

G: Cost grid from CostSetter
S: Start coordinates from PointSetter
E: End coordinates from PointSetter
R: Radius of pipe
P: Pipe Mesh
Ex: error messages

Fig 2.12
CostChanger

Cost: Cost grid from CostSetter
P: Coordinates from PointSetter
NC: New cost of tile
OK: If true the tile’s cost is updated.
C: The cost of the tile
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Fig 2.13
Grasshopper components in action

2.2.3 Grasshopper setup

The components in grasshopper are connected as seen in fig 2.13. The func-
tion of the individual components are as follows:

World Mesher 3D
The A* algorithm as described in section 2.1.1 requires a grid to operate in.
The goal of the World Mesher 3D (WM3D) component is to create that grid.
Often the A* is explained in 2 dimensions but there is no difference between
2D and 3D in terms of functionality. The algorithm behaves the same ex-
cept with the ability to move vertically in addition to horizontally. This
component takes geometry as an input to grid the world of the A* algo-
rithm. These geometries are only used only for the grid task. This is to give
the user the the ability to choose the outer walls of a building or dummy
geometry inside a room to grid only part of the room. The geometry is
then inscribed in a bounding box oriented according to the largest vertical
surfaces of the input geometry. This may mean that the x and y axes are
perpendicular to the outer walls for example. Volume around the bound-
ing box is then divided into cubes of equal size. The size of the cubes are
set to a percentage of the shortest side of the length or depth. For example
if a room is 10m× 20m× 3.5m and the percentage is set to 10, the resulting
grid will be 10× 20× 4 cells large, and the cell size will be 1× 1× 1m

CostSetter
The next requirement is for the grid cells to have a cost. This is done by
the CostSetter. The CostSetter requires 5 different inputs. The first input is
the geometry which will be used in the cost equation. The idea is that this
is all the load bearing geometry as described before. This must then be all
the relevant geometry and might include a different set of geometries than
used for the WM3D component. Each cell gets a cost equal to equation 2.1.
The distances are measured from the cell center and to the closest surface
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point of each geometry.

A*Pipe
This component is where the pathfinding algorithm is executed based on
the previous preparations. The user sets a start and end point with the
PointSetter components (see below) in addition to the radius. The compo-
nent uses the cost grid from CostSetter and finds the optimal route from
start to end and creates a pipe mesh with the desired radius.

PointSetter
This components function is to let the user select a grid cell. These cells
are used for the A* pipe component and the Cost Changer component. It
takes three sliders from 0 to 1 as input for each axis. A ball is created to
show which grid cell is currently chosen. When the OK button is pressed,
all downstream components are updated.

CostChanger
This component is used if the user wishes to manually change the cost of
some of the cells to tweak the path chosen. If for example the user wants
the algorithm to be able to penetrate a wall at a specific location or does not
want the algorithm to take a path e.g. right in front of a doorway, then the
user can change the cost of these tiles to appropriate values.

Installation and use

A guide on this is found in the appendix.
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Chapter 3

Results

3.1 Case studies

3.1.1 Around or through wall

Fig 3.1
As the cost for going through the wall is high A* goes around.

There are several points that are interesting about Fig 3.1. The most obvi-
ous is that the cost of going through the wall is high so the preferred way
is to go around through the gap. The pipe sticks to the dividing wall which
is expected. On the right side it also sticks to the wall but on the left side
the path goes straight away from the dividing wall.

Fig 3.2
Settings for above example

As seen from the settings the wall cost is 58
which is comparatively quite high. As the
nodes costs are closer to 1 near the walls the
detour would need to be near 50 tiles before
going through would be cheaper. Therefore it is
natural that the path chosen utilizes the gap and
goes around the wall. The stickiness is medium.

A max cost of 5 does give cases as seen on the left side, where following
the wall as close as possible is not the cheapest. On the left side there is a
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possible other path where the path goes straight down and then follows the
lower wall to the gap. The reason this is not really viable is that the nodes
near the dividing wall is closer to the wall and therefore cheaper. This
could be fixed with finer meshing. However the path straight down is also
further away from the left wall than the path to the dividing wall is from
the upper wall. Therefore the upper path is probably cheaper even though
it is a bit longer before the path reaches a wall. If we increase the MaxCost
to increase the stickiness the will probably just stick to the top. Therefore
it is unlikely that the bottom path will ever be chosen unless given extra
initiative by the user.

Fig 3.3
Here the cost for going through the wall is lowered.

As the cost of going through a wall is lowered in Fig 3.3 the preferred path
is now through the wall. It does also stick to the wall all the way between
the points.

Fig 3.4
Settings for fig 3.3

As the cost of going through is lowered and the
MaxCost is greatly increased the general cost of
each node is increased. Therefore it is cheaper
to take the shorter path through the wall, while
because of the high MaxCost, the path will have
a sticky behavior and therefore sticks to the wall.
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Fig 3.5
A "hole" or a preferred spot for going through the wall was created.

In this example a "hole" was created by man-
ually setting the cost of the wall nodes where it penetrates to 0 with
CostChanger. Otherwise this is the exact same setup as in Fig 2.3. It fol-
lows the same path except it’s cheaper to go through the hole than all the
way around.

As this has the same same settings as Fig 3.2 going through the hole is
way cheaper than anything else. In this scenario the wall cost would need
too be near 1 for the algorithm to choose anything else. We see the same
tendency of a sticky right side and sticky left side. This is expected as the
path is the same, only that the detour to get past the wall is shorter.

Fig 3.6
Same example as Fig 3.5 but with the start point moved one node to the left.

Fig 3.6 is the same setup as Fig 3.5 but with the left end node of the pipe
moved one node to the left. This makes is worth taking the detour along
the upper wall instead of going straight. The same was true if the left point
was moved one node closer to the upper wall. This tells us that the left
node is an edge case of when it’s worth it or not to follow the upper wall
with the current settings.
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3.1.2 Under truss

Fig 3.7
Example

This situation is interesting. The grid is coarser but most importantly the
wall tolerance is set quite high. This makes A* unable to find a clear path (a
path which does not include walls) through the truss even though the pipe
in itself is small enough. It does however find that the cheapest solution is
to go up and follow the relatively straight path under the trusses instead of
going along the walls as previously seen. This includes the move to the left
which is done straight under a truss. This is probably the path you want a
pipe to take as the beams can carry the load. The detour to the wall is a lot
longer so going up might be the better choice.
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3.1.3 Through truss

Fig 3.8
Example

One could also have a case where you’d want to go through a beam of e.g.
concrete. In this case a hole could be made similar to in Fig 3.5. This is not
very practical if operating on a large model with many beams. However
that is not necessary a bad thing. Where exactly one penetrates a concrete
beam have a lot to say for its model bearing capabilities. A better solution
would be for the construction engineer to create beams with holes in them
for all relevant beams, run the algorithm with a small enough mesh that
it can pass through those holes like in Fig 3.8 and then exchange all non
penetrated beams with regular beams afterwards.
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3.1.4 Misc

Fig 3.9
Here the cost along the walls are negative

This is why min-max normalization in the cost function is necessary. While
experimenting with the cost function this situation was created where the
cost along the wall became negative as min-max normalization was not
implemented in the code and the scaling of the cost function too large. The
cheapest path therefore is to maximize the length of the pipe along the wall
to "collect" the negative cost before going to the goal. The result is the pretty
pattern seen in Fig 3.9.
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Chapter 4

Discussion

4.1 Why the A* algorithm

As mentioned in section 2.1.1 the objective of this thesis is to reduce the
problem of modelling a pipe to the maze problem. When reduced to the
maze problem a lot of different algorithms can be used. In the maze prob-
lem both the grid, source and destination do not change. If the source and
destination cells change but the world remains static the A* is normally
outperformed by algorithms which uses a pre-processed graph[13]. On the
other hand if the source and destination stays the same but the world is
partly unkown or dynamic then algorithms like D* Lite are better[14]. D*
Lite is an algorithm which has evolved from the A* algorithm to tackle dy-
namic cases, but it is not used in this thesis. This is because the cases are
not dynamic i.e. objects does not suddenly appear in real time, blocking
the path. The advantage of using the A* algorithm is that it visits less cells
than say the Dijkstra shortest path algorithm. If the world is static but the
source and destination cells change then other algorithms which uses pre-
processing might outperform A* in terms of speed. In other words there
are a lot of algorithm which are more efficient than the A* algorithm in
specific cases. The reason why the A* algorithm is chosen is because of
its generality. An algorithm specifically made for an dynamic environment
will be slow if the world never changes but the start and end points change.
Likewise an algorithm which pre-processes the entire world will be slow if
the world changes frequently. The A* algorithm also tackles some special
cases of the maze problem. Normally going through walls is not allowed
in the maze problem. This will be allowed in this master thesis as the A*
algorithm allows this.

As described in section 1.4 the A* algorithm uses a cost function and a
heuristic function. The algorithm in itself is not that interesting as. This is
because it is proven that it is guaranteed to find the optimal path as long
as the heuristic function is admissible and consistent[15]. It is also proved
that the A* algorithm visits less or equal the amount of node as any other
A* like algorithm. Therefore there is little point in changing the algorithm
unless changing to a non-A* like algorithm. What can be changed however
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is the cost and the heuristic function.

4.2 A point about run time

For the this kind of algorithm to be of any use it needs to be fast. Cal-
culations which finish in near realtime will be much more versatile than
calculations which needs hours or days to finish. In parametric modelling
most of the effort is used in building the graph or script. After this is done
the idea is that changes should be easy and quick to make to optimize the
model. As this is to be used in a parametric modelling environment a quick
runtime is much preferred. A slow algorithm slows down each incremen-
tation step in the optimization phase when constructing with a parametric
model. The alternative is to not run the algorithm whenever you change the
parameters, but this goes against the parametric way of designing. There-
fore a runtime analasys was done and the results are presented below.

Fig 4.1
Runtime during test

Fig 4.2
Dummy objects

Grasshopper has a tool for measuring the run-
time of each component. An example from one
of the tests is seen in fig. 4.1. Runtime under
1 second is marked in grey and above 1 sec-
ond in red. The runtime during the case stud-
ies in section 3.1 were quite fast. The runtime
of each component were in milliseconds, with
other words near instant. The values where rel-
atively similar so the time was mostly used on
Grasshopper specific code which is running for
every component regardless of function. In the
case studies however a very small amount of ge-
ometries were used (two at the lowest). This is
not realistic in a live use case. More geometry
needed to be added. The 10 different objects seen in 4.2 where chosen and
copied into the testing field a total of 33 times. This gave the algorithm a
total number of 332 different geometries to grid, use for costs and navigate
around/through. 332 objects is not a lot, but the thought behind the use
case is that this kind of algorithm would only be used together with the
relevant geometries in a BIM/parametric model. All the different angled
parts of the facade is then irrelevant. The most relevant parts for this algo-
rithm would be walls and beams and for this 332 objects is more adequate.
With the new geometry added tests were run with a grid size of 4%, 3%
and 1%. The results were as follows:
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Fig 4.3
Runtime with decreasing grid size

Griding worked surprisingly well. The amount of time used is still in the
milliseconds. CostSetters function takes the most of the time. That is 99,9%
of the total time used. This was a expected result. In computer science
runtime calculations are often done using what’s called big O notation.
In big O notation the function O(n) means that there will always exist a
function C × n > n where C is a constant. If a software function loops
through n objects and uses a x amount of seconds per object, where x is
constant, then the runtime function of the software function can be written
as f (n) = x × n = O(n) because there exists the function g(n) = C × n
where g(n) > f (n) if for example C = x + 1.
In the World Mesher 3D component the geometries (g) are looped through
twice and the cells (n) once. The runtime of WM3D is therefore O(g + n).
The CostSetter loops through all the geometries for each cell so the runtime
of CostSetter is O(n× g). The latter function is expected to be a lot larger.
In a worst case scenario the A*Pipe component will run through all the cells
once so the runtime of this function is O(n).
With these calculations in mind the result that the CostSetter uses most of
the time comes as no surprise. Also there is a very costly method in the
middle of the inner most loop seen in fig. 4.4, which further increases the
problem.

Fig 4.4
These two lines are costly functions

These lines are costly because the computer is told that even though
it does not know which object "t" is, it most likely got the method
IsPointInside. The computer then has to find the method and use it. A
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real world equivalent scenario of this would be if you and a friend were in
a residential area and you need a dictionary. You point at a house and tell
your friend that "This is a house. Houses are likely to contain a dictionary.
Go into the random house, find the dictionary and look up a word for me."
It takes time for a stranger to enter someones home orient themselves find
a dictionary and then look up a word.
All this leads to CostSetter being the bottleneck of the system. This means
several things. Whenever the geometry is changed the CostSetter needs to
run again. This is bad if there are done lots of small changes to the defining
geometry. With a grid size of 4% the runtime of CostSetter is around 20
seconds. Research on interactive websites has show that users lose their
train of thought after 1s and starts doing other tasks after 10 seconds[16].
20 seconds is therefore too long. There might be other rendering processes
which take more time in a parametric model, but with 20s added on top of
that we are at the edge of coffee break territory. Coffee break territory is
when the wait time of a program is so long that you have time to get coffee
or a snack. With a grid size of 3% the runtime is 1.6m. This is well inside
coffee break territory. The users train of thought is longe gone when this
finishes. If the user likes coffee brakes this might be acceptable but many
might not find it acceptable. At 1% the runtime is 46 minutes. This is not
workable so the user would have to disconnect the geometry components
when not working with piping. However if the defining geometry is not
changed that much, the rest of the system is near instant. In Fig 4.3 the
A*Pipe does still have a runtime in milliseconds. Even for a grid size of 1%
the runtime is under 1 second which means the user notices the delay, but
their focus is not broken[16]. This means the user can do everything except
changing the geometry in real time. This includes changing individual
costs changing start and end points. The user can experiment with creating
"holes" as seen in 3.5 and when satisfied change the geometry accordingly.
To summarize the algorithm in it’s current state might be too slow for
complex models with lots of geometry objects. On the other hand if the
model is less complex and a courser grid is sufficient then the system might
be just fast enough to for interactive use.

4.2.1 Improving the runtime of the cost function calculations

The cost function can be greatly improved by the use of multi-threading,
and GPU calculations. As seen in equation 2.1 the cost function is linear and
can be done in parallel. In the current implementation all the geometries
are looped over for each element in the cost matrix. One could do the same
in parallel. The problem with this is that each calculation would have to
keep the whole set of geometries in memory. Geometries, at least complex
ones, take up lot of space and when most processor cores only got a small
amount of MB worth of memory this is not ideal. A lot of reading back and
forth between the RAM would be necessary. Another way of doing it is not
to do the calculations of each element in parallel but to create a cost matrix
for each geometry. This might be counter intuitive if we think about the
runtime calculations done in section 4.2. If done in parallel calculating each
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node separately would have a runtime of O(g) while calculating for each
geometry separately would have a runtime of O(n). If n > g then surely
calculating each node in parallel must be faster. The problem is memory
as mentioned earlier. Each geometry alone does not take that much space
and can often be represented mathematically. The result would be a cost
matrix for each geometry. With only one geometry to worry about the
calculation for each element in each can also be done in parallel. After all
the matrices for each geometry is created all that is left is matrix addition
and multiplication. All the earlier tasks are what GPUs are for. As long as
the memory constraint of each task is low GPU calculations are superior
to CPU calculations. If parallelism is implemented this would most likely
improve CostSetters runtime significantly.

4.3 A point about grid size, bends and other problems

The runtime of the system is greatly affected by the resolution of the grid
as described in section 4.2. A change in resoluton also affects the path as
described in section 3.1.2 and 3.1.3. A finer resoluton is important if small
openings or the pipe needs to be as close to walls and other geometry as
possible. This is often the case and therefore it would be natural to think
that one should set the resolution as fine as possible. Unfortunately, besides
the increasing runtime, there are currently a lot of other problems which
occur if the grid size is set to a very small value. Most of them can be seen
in fig. 4.5. Currently the algorithm got no additional cost for making turns.
This is fine if you are a character in a computer game, but in construction
bends means more welds, which means higher costs. Because a lot of small
geometries were added the problem with no cost of bends really shows
itself. As the lowest cost is right beside or above geometry the path chosen
includes a lot of small bends to pass over each and every geometry along
the path. In fig 4.5 there are as much as 7 bends over a very small stretch of
pipe. This is not cost efficient. The second problem which is also seen in fig
4.5 is that the grid is smaller than the radius of bends (and also the radius
of the pipe). As seen in the figure (at point 2-5 and 7) the current system
can not create a proper mesh because the stretches are too short for proper
bends. This should not be allowed and should be restricted somehow.
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Fig 4.5
This figures shows some of the problems with the current algorithm
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Chapter 5

Conclusion and further work

5.1 Was it a good implementation?

This thesis has shown that a implementation of graph searching algo-
rithms, more specifically the A* algorithm, in parametric modelling is pos-
sible. It has shown as a promising technology which might some day in the
future prove to automate mundane modelling tasks and prevent collisions
in complex structures. It is also clear from this thesis that there is a long
way to go before we reach that future.

5.2 Further work

The grasshopper plugin created in this thesis was never ment to become
a finished product. If one were to develope the plugin further with the
goal to produce a product for the industry a lot of changes would need to
be made. One of the first thing that need to be fixed is the problem with
grid resolution and bends. When the grid resolution is high the path cho-
sen should not include stretches which are smaller than what is needed for
proper bends. This would be the best solution. Alternatively a less ideal
solution would be to restrict the grid resolution so that no cell is smaller
than what is needed for a proper bend.

Secondly there needs to be a cost for adding bends. Going in zigzag might
be the shortest route but when construction starts this is costly. Therefore
adding bends should be costly so that if two paths are equivalent but one
got less bends then the one with fewer bends are chosen. On the other hand
on constructions with thermal expansions some bends are necessary to ab-
sorb the expansion. In this case long stretches should also be penalized.

Thirdly the CostSetter component needs a speed improvement to handle
larger files. The first thing to do is to get rid of the two costly lines seen in
fig 4.4. This is probably the easiest thing to do. The reason it was not done
in the span of this master thesis was that the CostSetter component was
more than fast enough for the experiments done in this thesis. In a real use
case on the other hand it is not. If the cost function is kept as it is presented
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in this thesis then the calculations should be parallelized as described in
section 4.2.1. This will take more time than the first improvement but most
likely yield larger rewards, especially when working on larger models.

For further research both the cost function and the heuristic function could
be interesting to look at. In this thesis very little research was done on the
heuristic function. The Manhattan distance was chosen as this is a quite
common heuristic function for the A* algorithm. The cost function was
then adjusted so that the Manhattan distance is an admissable heuristic. To
research further on the topic of heuristic functions might therefore be quite
interesting and possible rewarding. The A* algorithm depends both on the
cost and the heuristic and each are equally important. As with the heuristic
function only one cost function was implemented. This as well might be a
interesting topic of research. As shown in this thesis even small changes to
the parameters of the same cost function can make quite different results.
Another cost function might therefore generate other solutions. It is likely
that the cost function in this thesis might be far from an optimal one.
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Appendix

Installation guide

To install the grasshopper plugin one must have Rhino 6 installed. The
plugin is tested to work with Rhino Version 6 SR27 (6.27.20176.5001,
06/24/2020).
Extract all files under /plugin in the zip file, that is:

• CSP_for_piping.gha

• Priority Queue.dll

• Priority Queue.pdb

• Priority Queue.xml

Copy the uncompressed files to:
%appdata%/Grasshopper/Libraries/

Run Rhino and Grasshopper and check that you have a new tab called
CSPiping in Grasshopper.

Alternatively if the zipped files does not work one can build the project
from the source code files. To do this follow this https://developer.rhino3d.com/guides/grasshopper/installing-
tools-windows/ and this https://developer.rhino3d.com/guides/grasshopper/your-
first-component-windows/ guide on how to compile grasshopper plugins.

For use of the plugin, open the TestField3.3dm file and the CSPiping.gh
file. It is advised to do this together with someone familiar with Grasshop-
per.
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A* GIF frames

Fig 5.1: This shows the frame of the gif shown in fig: 1.4

38



Bibliography

[1] R. Aish. “First Build Your Tools.” In: Inside Smartgeometry: Expanding
the Architectural Possibilities of Computational Design (Jan. 2013),
pp. 36–49. DOI: 10.1002/9781118653074.ch2.

[2] S. Azhar. “Building information modeling (BIM): Trends, benefits,
risks, and challenges for the AEC industry.” In: Leadership and
management in engineering 11.3 (2011), pp. 241–252.

[3] J. Manyika et al. “Digital America: A tale of the haves and have-
mores.” In: McKinsey Global Institute (2015), pp. 1–120.

[4] C. Sun et al. “A literature review of the factors limiting the
application of BIM in the construction industry.” In: Technological and
Economic Development of Economy 23.5 (2017), pp. 764–779.

[5] J. Zhang and Z. Hu. “BIM-and 4D-based integrated solution of analy-
sis and management for conflicts and structural safety problems dur-
ing construction: 1. Principles and methodologies.” In: Automation in
construction 20.2 (2011), pp. 155–166.

[6] A. O. Akponeware and Z. A. Adamu. “Clash detection or clash
avoidance? An investigation into coordination problems in 3D BIM.”
In: Buildings 7.3 (2017), p. 75.

[7] R. M.
bibinitperiod Associates. What are NURBS? 2020. URL: https://www.
rhino3d.com/nurbs (visited on 06/19/2020).

[8] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# language specification.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[9] N. J. Nilsson. The quest for artificial intelligence. Cambridge University
Press, 2009.

[10] dummy. dummy title. 1980.

[11] S. Chang, R.-S. Shiu, and I.-C. Wu. Applying an A-Star Search Algorithm
for Generating the Minimized Material Scheme for the Rebar Quantity
Takeoff. English. Copyright - Copyright IAARC Publications 2019;
Last updated - 2019-12-13. 2019. URL: https://search.proquest.com/
docview/2268537017?accountid=12870.

[12] X. Cui and H. Shi. “A*-based pathfinding in modern computer
games.” In: International Journal of Computer Science and Network
Security 11.1 (2011), pp. 125–130.

39



[13] D. Delling et al. “Engineering Route Planning Algorithms.” In:
Algorithmics of Large and Complex Networks: Design, Analysis, and
Simulation. Ed. by J. Lerner, D. Wagner, and K. A. Zweig. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 117–139. ISBN: 978-
3-642-02094-0. DOI: 10.1007/978-3-642-02094-0_7. URL: https://doi.
org/10.1007/978-3-642-02094-0_7.

[14] S. Koenig and M. Likhachev. “Fast replanning for navigation in
unknown terrain.” In: IEEE Transactions on Robotics 21.3 (2005),
pp. 354–363.

[15] R. Dechter and J. Pearl. “Generalized Best-First Search Strategies and
the Optimality of A*.” In: J. ACM 32.3 (July 1985), pp. 505–536. ISSN:
0004-5411. DOI: 10.1145/3828.3830. URL: https://doi.org/10.1145/
3828.3830.

[16] F. F.-H. Nah. “A study on tolerable waiting time: how long are Web
users willing to wait?” In: Behaviour & Information Technology 23.3
(2004), pp. 153–163. DOI: 10 . 1080 / 01449290410001669914. eprint:
https ://doi .org/10.1080/01449290410001669914. URL: https ://doi .
org/10.1080/01449290410001669914.

40




	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


