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SUMMARY: 
This thesis place attention on the estimation of aerodynamic admittance functions and investigation of the 
pressure field around the twin-box model. Wind tunnel testing of a twin-box model was conducted at NTNU 
and the pressure and turbulent flow was measured using MSP4264 pressure scanners and Cobra probe.  
 
The pressure field gave an unexpected amount of positive pressure, particularly at the downstream-box. The 
pressure was further converted to forces, by integrating it over the cross-section surface. A distinct peak was 
detected in the force spectra, mainly caused by the downstream deck, due to vortices shed from the 
upstream-box or in the wake of the downstream-box.  
 
Aerodynamic admittance functions were estimated using three different methods, the general, the equivalent 
and cross-spectral method. The estimated functions were then compared to each other, Sears functions and 
with previous studies. All functions showed a distinct peak, the same peak as detected in the force spectra 
and the slopes were decreasing for increasing frequency. A deviation was seen between the functions 
corresponding to the horizontal and vertical turbulence components implying that the equivalent method 
gives inaccurate results. Comparison of the equivalent and cross-spectral method showed that the lift 
admittance matched previous studies, while drag and moment had some deviations. In addition, it was found 
that Sears function overestimated for all reduced frequencies, and not applicable for the twin-box bridge. The 
estimated admittance functions were considered as valid in terms of shape and can be used to understand 
the buffeting response of a twin-box bridge. 
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Abstract

Aerodynamic admittance functions is a tool to predict buffeting forces. Hence they are one
of the most important factors in evaluating buffeting response. The objective of this the-
sis is to estimate the aerodynamic admittance functions and investigate the pressure field
around the twin-box model. Wind tunnel testing of a twin-box model was conducted at the
Department of Energy and Process Engineering at NTNU Gløshaugen. The surface pres-
sure was measured using 256 plastic tubes distributed on 6 correlations lines connected to
four MSP4264 pressure scanners. The turbulent flow was measured using a cobra probe.
All data was processed and transferred to the frequency domain for the estimation of the
admittance function.

An extra focus was put on the theory related to the admittance functions, as well as
the wind tunnel test, and several previous studies have been evaluated to determine the
methodology used in this thesis. The concept and geometry of the model are based on
the shapes of previous masters thesis at NTNU. Several solutions were discussed due to
challenges related to placement and attachment of the pressure scanners and tube system.

The pressure distributions were found for all tests. The results gave an unexpected amount
of positive pressure, particularly at the downstream-box. The pressure was then converted
to forces, by integrating it over the cross-section surface. The force spectra showed a dis-
tinct peak, mainly caused by the downstream deck, due to vortices shed from the upstream-
box or in the wake of the downstream-box.

Admittance functions were estimated using three different methods, the general, the equiv-
alent and the cross-spectral. The estimated functions were then compared to each other,
then to the Sears functions and finally with previous studies. All functions showed a
distinct peak, the same peak as detected in the force spectra. The slopes decreased for
increasing frequency. Furthermore, the results showed that functions corresponding to the
horizontal and vertical turbulence components deviates significantly, and implying that the
equivalent method produces inaccurate results. The admittance functions for lift showed
similarity with previous studies, while drag and moment had deviations. Besides, it was
found that Sears function overestimated for all reduced frequencies and is not applicable
for the twin-box bridge.

The estimated admittance functions were considered valid in terms of shape and can be
used to understand the buffeting response of a twin-box bridge.
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Sammendrag

Aerodynamiske frekvensresponsfunksjonene er et viktig verktøy for å predikere buffet-
ing krefter. De er derfor en av de viktigste faktorene for å evaluere buffetingrespons.
Hovedfokuset i denne oppgaven er å estimere frekvensresponsfunksjonene og undersøke
trykkfordelingen rundt en dobbel kassetverrsnitt bru. Det er utført tester i vindtunnelen,
ved Institutt for energi- og prosessteknikk ved NTNU Gløshaugen. Overflatetrykket til
modellen ble målt ved å bruke 256 plastrør fordelt på 6 korrelasjonslinjer og koblet til
4 MSP4264 trykkskannere. Den turbulente vinden ble målt med en cobra probe. Alt av
data er behandlet og transformert til frekvens domenet for å estimere frekvensrespons-
funksjonene.

Det har blitt lagt fokus på teorien bak de aerodynamiske frekvensresponsfunksjonene samt
vindtunneltestene. Flere tidligere studier er blitt evaluert, for å bestemme metodene som
brukes i denne oppgaven. Konseptet og geometrien til modellen er basert på modeller
fra tidligere masteroppgaver ved NTNU. Flere ulike løsninger ble diskutert, på grunn av
utfordringer knyttet til hvordan trykkskanner og plastrørene skulle plasseres og festes til
modellen.

Trykkfordelingen til tverrsnittet ble funnet for alle testene. Resultatene viste en uventet
mengde med positivt trykk. Trykket ble deretter transformert til krefter, ved å integrere
trykket over overflaten til tverrsnittet. Lastspekteret viste tydelige topper, hovedsakelig
forårsaket av nedstrøms kassen, på grunn av virvler dannet av oppstrøms kassen, eller i
bakkant av nedstrøms kasse. Videre ble lastspektrene brukt til estimeringen av frekvensre-
sponsfunksjonene.

Frekvensresponsfunksjonene ble estimert ved bruk av tre forskjellige metoder, den generelle,
ekvivalente og kryss spektrale. De estimerte funksjonene ble sammenlignet med hveran-
dre, Sears-funksjonen og tidligere studier. Alle funksjonene viste en tydelig topp, den
samme som ble observert i lastspektrene, og funksjonen synker for økende frekvenser.
Videre viste resultatene at funksjonene som tilsvarer horisontale og vertikale turbulens
komponenter avviker betydelig, og antyder at den ekvivalente metoden gir unøyaktige re-
sultater. Frekvensresponsfunksjonen for løft viste samsvar med tidligere studier, mens
drag og moment hadde avvik. Videre ble det oppdaget at Sears funksjonen overestimerte
for alle reduserte frekvenser, og er derfor ikke anvendelig for dobbel kassetverrsnitt bru.

Frekvensresponsfunksjonene ble ansett som akseptable i henhold til form og kan bli brukt
til å forstå buffetingresponsen til en dobbel kassetverrsnitt bru.
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Chapter 1

Introduction

The investigation of long-span bridge structures is more important than ever. The limit
of slenderness and span-length of bridges are constantly pushed, resulting in more sen-
sitive structures when exposed to wind. The requirements of the aerodynamic stability
are therefore increasing, and it is shown that closed-box bridges usually cannot satisfy
these requirements. Twin-box bridges, on the other hand, are shown to improve the aero-
dynamic stability for long-span bridges. In addition, the use of twin-box bridges often
results in lighter structures making them economically appealing. Consequently, applica-
tions of twin-box girder in bridge engineering design are becoming more common. Some
of the words longest bridges, for instance, the Stone cutters bridge with a center span of
1018 m and the Xihoumen Bridge with a center span of 1650 m are twin-box bridges [4].

Twin-box bridges are effective in improving the flutter characteristics by altering the sur-
face pressure distribution around the bridge deck. However, the flow characteristics around
the deck are complicated due to the effects of the gap between the separated decks. The
flow will induce vibrations in terms of vortex-induced vibration, often encountered by
twin-box girders, and buffeting loads induced by fluctuating wind.

For the design and user comfort of a long-span bridge the prediction of buffeting forces are
important. The estimation of the buffeting forces on a bridge deck depends on a transfer
function, called the aerodynamic admittance function, transferring the turbulent wind to
buffeting forces. Sears derived a theoretically aerodynamic admittance function of a thin
airfoil in 1941. The same approach was extended to wind engineering by Davenport in
1962. For bluff bodies, such as a twin-box section, the theoretical exact expression for
the admittance cannot be derived, due to complex forces caused by separation and reat-
tachment of flow. Hence, the aerodynamic admittance of bridge decks has always been
a challenging and difficult topic in the bridge aerodynamics and the admittance function
are commonly found experimentally. A widely used method to estimate the aerodynamic
admittance functions, is using wind tunnel tests, measuring the surface pressure and the
turbulent flow. This is previous done by Larose (1992), who developed the theory by
Davenport and included the the contribution from the cross-spectra between the buffeting
forces and turbulence components. Zhu et al. (2018) identified six aerodynamic admit-
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tance functions with a colligated residue least square method of auto and cross-spectra.

Most previous studies have focused on the aerodynamic admittance of closed-box bridges.
Considering that the twin-box bridge will play an important role in the further develop-
ment in the construction of long suspension bridges, its aerodynamic properties and the
prediction of buffeting forces should be investigated further. For this reason, the main
focus in this thesis is to estimate the aerodynamic admittance functions for a twin-box
bridge. A model will be tested in the wind tunnel at NTNU for different wind velocities
and the admittance functions will be estimated using three different methods. To investi-
gate the pressure distribution, aerodynamic forces, and admittance functions, the pressure
is measured using 256 tubes distributed along 6 correlation lines at the surface of the
cross-section. Separating the tubes on 6 different lines allows investigating of the corre-
lation between the buffeting forces. As mentioned, the flow around a twin-box section is
complicated. By measuring the surface pressure it is possible to get a clear picture on the
pressure distribution and the related flow. These are two important factors for understand-
ing the aerodynamic characterises of a twin-box bridge.

This thesis describes the relevant theory related to the aerodynamic admittance function,
wind tunnel testing and the experimental identification of the aerodynamic admittance.

1.1 Structure of the Report
Chapter 2: Theory
In this chapter, the relevant background theory is presented. It is assumed that the reader
has an understanding of basic structural dynamics and wind engineering.

Chapter 3: Model
In this chapter, the concept and design of the sectional model is described.

Chapter 4: Wind Tunnel Tests
This chapter presents the experimental setup and experiments performed in the wind tun-
nel test.

Chapter 5: Results and Discussion
The results from the wind tunnel experiments is presented and discussed in this chapter

Chapter 6: Conclusion and Further Work
In the last chapter, the main conclusions are presented together with possible further work.
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Chapter 2

Theory

This chapter gives a theoretical introduction of the theory relevant for the work done in
this thesis.

2.1 Cross Section

The shape of the cross-section of a bridge has big importance on the aerodynamic proper-
ties of a bridge. Bridges are built more slender and longer than ever before, by this, higher
requirements for optimal design is necessary. Today, the twin-box sections have received
much attention due to their flutter stability properties and are widely used in many of the
world’s longest bridges, such as Stonecutters Bridge and Xihoumen Bridge. When the
span lengths increase, the bridge will be more sensitive to wind-induced vibrations, which
underline the importance of understanding the vibration caused by the interaction between
the wind and the structure.

Twin-box bridges are effective in improving the flutter characteristics by altering the sur-
face pressure distribution around the bridge deck. The pressure distribution is greatly
affected by the width of the center gap and by the angle of wind incidence. In the study
done by Kwok et al. [5] the pressure distribution of cross-sections with different gap-width
was investigated. The pressure distribution was used to determine force and moment coef-
ficients and to highlight regions of flow separation corresponding to large negative surface
pressures. It is shown that, when the gap-width is increased, the downstream-box was im-
mersed in the wake of the upstream-box which is associated with the vortices shed from
the upstream-box. As a result large mean positive pressure occur at the upstream wind-
ward surface of the downstream-box and a the drag forces increases significantly. This
underlines the importance of the gap-width and how it affects the aerodynamic properties
of the cross-section. The effect of the lift force and pitching moment due to the gap-width
is neglectable.
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2.2 Equation of Motion
To understand the behaviour of a dynamic system it is necessary to introduce the equation
of motion.

Mẍ(t) +Cẋ(t) +Kx(t) = p(t) (2.1)

The equation describes a systems motion as a function of time and consists of the mass
matrix,M , the stiffness matrix,K and the damping matrix,C. p(t) is a vector consisting
of external forces and x(t) is the displacement vector. The equation of motion can be
solved in many different ways. However, in dynamic analysis it is normal to operate in
the frequency domain and the equation is solved by the frequency response method. This
is done by taking the Fourier transform of the input forces and the output displacement
vectors giving the following expression.

MẌ(ω) +CẊ(ω) +KX(ω) = P (ω) (2.2)

In order to solve the equation it is desirable to have the relation between the input X(ω)
and the output P(ω) and the equation of motion can be expressed without the derivatives.(

−ω2M + iωC +K
)
X(ω) = P (ω) (2.3)

The Fourier TransformX(ω) of the the solution x(t) is then given as.

X(ω) = H(ω)P (ω) (2.4)

Where

H(ω) =
[
−ω2M + iωC +K

]−1
(2.5)

is the frequency response function (FRF) describing the transfer from load to response in
a system.
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2.3 Wind Induced Response

If the airflow is met by a line-like body, the interaction between the flow and the structure
gives rise to forces which will start to fluctuate. The oncoming flow contains turbulence
and on the surface of the body, additional turbulence and vortices are created due to fric-
tion. If the body has sharp edges the flow will separate by the edges. Further, the flow
becomes unstable caused by a variable part alternating from side to side and resulting in
vortices. Additionally, the fluctuating forces may cause the body to oscillate, and the flow
and oscillating body may interact and generate further forces. To sum up, the wind forces
stem from pressure fluctuations, vortices, and interaction between the flow and the oscillat-
ing body. The first of these effects is called buffeting, the second vortex shedding, and the
last is usually called motion-induced forces. All of the mentioned effects occur at all wind
velocities, but the degree of importance for each effect varies with wind speed. Vortex
shedding is at its strongest at low wind velocities, buffeting dominates at strong wind ve-
locities while motion-induced forces are significant at even stronger velocities. Therefore
the corresponding response calculations are usually treated separately [1].

2.3.1 The Strip Theory

The strip theory assumption was originally used on aerofoils, but are now often used for
bridges as well. For bridge structures extended in only one direction, the main concern
is the behavior when the wind attack perpendicular to its longitudinal axis. The spatial
loading can be modeled by the strip theory, considering a unit thickness in the span length
direction. The idea is the same as in the plane strain analysis in the theory of elasticity. By
this, it is only necessary to consider the lift force FL, drag force, FD, and pitching moment
FM acting on the bridge [6].

2.3.2 Quasi-Steady Theory

The quasi-steady theory approximation is a well-known theory used in bridge engineering.
When applying quasi-steady aerodynamics the history of motion can be ignored. For this
reason, forces at any time depend only on the position and velocity at that moment. The
theory is an acceptable assumption when the wind speed is relatively high but unacceptable
in the case of vortex shedding, where the wind speed is relatively low.

The Buffeting Theory

The buffeting theory is based on the quasi-steady theory. The buffeting response includes
the part of the total load on the structure associated with the velocity fluctuations in the
oncoming flow and motion induced contributions. It is assumed that wind consist of two
parts, the stationary wind speed (V) and a fluctuating part (u,v,w). The fluctuating part
is depending on time and place. However, the stationary wind is only depending on the
position.
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Figure 2.1: Bridge cross-section at an arbitrary position [1].

In figure 2.1 a bridge cross-section shown. At an arbitrary position the cross section is
first given the displacements r̄y , r̄z and r̄θ. When the section starts to oscillates the cross
section is given additional dynamic displacement ry , rz and rθ. In this position the drag
force, lift force and the pitching moment can be expressed as:qD(x, t)

qL(x, t)
qM (x, t)

 =
1

2
ρV 2

rel ·

 D · CD(α)
B · CL(α)
B2 · CM (α)

 (2.6)

Where α is the corresponding angel of flow, ρ is the air density, CD, CL and CM are
the drag, lift and pitching moment coefficients and Vrel is the instantaneous relative wind
velocity given by:

V 2
rel = (V + u(t)− ṙy(t))2 + (w(t)− ˙rz(t))

2 (2.7)

Further, the drag, lift and pitching moment can be transformed into a structural axis by a
transformation matrix.

qtot(x, t) =

qyqz
qθ


tot

=

cosβ −sinβ 0
sinβ cosβ 0

0 0 1

 ·
qDqL
qM

 (2.8)

β, the relative angel of attack, is given by:

β = arctan

(
w − ṙz

V + u− ṙy

)
(2.9)

In the buffeting theory, a basic assumption is that linearization of any fluctuating parts will
give sufficient results. The forces from equation 2.6 are in general nonlinear, but a common
assumption is that the fluctuating flow components and structural displacements are small
compared to the mean wind velocity: V >> u(t), w(t), ṙy(t), ṙz(t). Further, assuming
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that β is small, then cosβ ≈ 1 and sinβ ≈ tanβ ≈ β ≈ (w − ṙz)/(V + u − ṙy) ≈
(w − ṙz)/V . By this, V 2

rel and α can be written as [1]:

V 2
rel ≈ V 2 + 2V u− 2V ṙy (2.10)

α = r̄θ + rθ + β ≈ r̄θ + rθ +
w

V
− r̄z
V

(2.11)

The load coefficients are nonlinear and vary with the relative angle of attack, and are
replaced by the following linear approximation:CD(α)

CL(α)
CM (α)

 =

CD(ᾱ)
CL(ᾱ)
CM (ᾱ)

+ αf ·

C ′D(ᾱ)
C ′L(ᾱ)
C ′M (ᾱ)

 (2.12)

where ᾱ and αf are the mean value and the fluctuating part of attack and C ′D, C ′L and C ′M
are the slopes of the load coefficients curves at ᾱ [1].

By using the linear approximations and rewriting equation 2.8, the loads can be written
as:

qtot(x, t) =

q̄y(x)
q̄z(x)
q̄θ(x)

+

qy(x, t)
qz(x, t)
qθ(x, t)

 = q̄ +Bq · v +Cae · r̄ +Kae · r (2.13)

where
v(x, t) = [u w]T (2.14)

r(x, t) = [ry rz rθ]
T (2.15)

q̄(x) =

q̄y(x)
q̄z(x)
q̄θ(x)

 =
ρV 2

2

 DC̄DBC̄L
B2C̄M

 =
ρV 2B

2

D/BC̄DC̄L
BC̄M

 (2.16)

Bq(x) =
ρV B

2

2(D/B)C̄D ((D/B)C ′D − C̄L)
2C̄L (C ′L + (D/B)C̄D)

2BC̄M BC ′M

 (2.17)

Cae(x) = −ρV B
2

2(D/B)C̄D ((D/B)C ′D − C̄L) 0
2C̄L (C ′L + (D/B)C̄D) 0

2BC̄M BC ′M 0

 (2.18)
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Kae(x) =
ρV 2B

2

0 0 (D/B)C ′D
0 0 C ′L
0 0 BC ′M

 (2.19)

q̄(x) is the static part and q(x, t) = Bqv +Caeṙ +Kaer the fluctuating/dynamic part.
Bqv is associated with the turbulence, while Caeṙ and Kaer are motion induced loads
associated with structural velocity and displacement [1]. Kae and Cae are respectively
the aerodynamic stiffness and damping.

2.3.3 Identification of Static Coefficients
The static coefficients CD, CL and CM are dependent on the angle of attack and can be
found from the measured forces for different angles. The coefficients can be extracted
from static tests in the wind tunnel. The following relationship is assumed between the
measured forces and the static coefficients:CD(α)

CL(α)
CM (α)

 =
1

1
2ρV

2L


FD(α)
D

FL(α)
B

FM (α)
B2 )

 (2.20)

Where FD, FL and FM are the drag, lift and pitching moment forces measured in the static
test, and D,B and L are the height, width and length of the bridge deck. The coefficients
are defined as the measured forces normalised by the area normal to the force and the
Bernoulli’s pressure equation.

2.3.4 Vortex Shedding
As mentioned, when airflow is met by a line-like structure flow separation will occur on
the surface and cause alternating vortices in the wake of the body. It takes place at a certain
wind velocity depending on the geometry. The vortices have alternating rotations and ver-
tical forces will arise. For each vortex, the forces change directions and cause vibrations
of the deck [7].

The vortex shedding frequency, fs, is proportional to the mean wind velocity, V , and
the inverse proportional to the across wind width, D. The fs are given by:

fs = St · V
D

(2.21)

where St is the Strouhal number depending on the geometry and flow conditions (Reynolds
number) [8]. Resonance will first occur when fs becomes equal to the lowest natural fre-
quency of the structure. When resonance is occurring, the mean wind velocity is according
to equation 2.21 given by:

V =
fsD

St
(2.22)
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Experiments have shown that fs will deviate from equation 2.22, when resonance occurs
due to interaction between the flow and oscillating structure. This will happen for a certain
range of wind velocities, and stay close or equal to, the natural frequency, fn. The effect
is called lock-in. Such vortex-induced interaction is accompanied by two load effects:
The fluctuating load becomes better correlated in the span-wise direction and a significant
motion-induced part is added. The motion is self-destructive, the induced motions are dis-
turbing the vortex shedding and will diminish when the fluctuating structural displacement
becomes large [1]. A twin-box is more exposed to vortex shedding due to the gap between
the two sections. Although vortex shedding is not the main concern in this thesis, the phe-
nom is likely to occur during testing and cause problems if the critical velocity region is
the same as for the wind tunnel test.
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2.4 Scaling Laws
In order to compare tests done in a wind tunnel with a full-scale model, it is necessary to
introduce some non-dimensional quantities and scaling laws. In this thesis the bridge and
cross-section considered is not a replicate of a real structure and the results obtained can
not be compared to full-scale model results. However, the scaling laws are important when
results from the wind tunnel are used in the design of a full-scale bridge.

2.4.1 Reduced Frequency and Velocity
The structural non-dimensional frequency is often refereed to as the reduced frequency
and is given by:

f∗ =
fB

V
(2.23)

where f is the frequency, B is the deck width and V is the mean wind velocity. The
reduced mean velocity is defined as:

V ∗ =
V

fnB
(2.24)

Where fn is the natural frequency and B and V as mentioned above. The reduced fre-
quency indicates how unsteady the system is. If the reduced frequency approaches 0, it
indicates that the corresponding mode is approaching a steady behaviour. As the reduced
frequency increases the more unsteady the mode becomes.

The reduced frequency and velocity can be used for comparison between the wind tun-
nel model (WT) and the full-scale structure (FS) by the following relation:

VFS
ωFSBFS

=
VWT

ωWTBWT
(2.25)

2.4.2 Reynolds Number
Reynolds number is a dimensionless number and defined as the ratio between fluid inertia
force and viscous force given by the following formula:

Re =
inertiaforces

viscousforces
∝ mass× acceleration

shearstress× area

=
ρL3 V∞

T

µV∞T L2
=
ρL2

µT
=

ρL2

µ L
V∞

=
ρV∞L

µ
=
V∞L

ν

(2.26)

Where L is the characteristic length of the gust, V∞ is the characteristic velocity, µ =
15× 10−6m/s2 the dynamic viscosity and ν is the kinematic viscosity equal µ/ρ.

Ideally, the Reynolds effects should be accounted for when performing a wind tunnel test
of a real structure duplicate. In practice, it is almost impossible to obtain similar Reynolds
number on the model and the full-scale bridge due to limitations of the wind tunnel. Since

10



the kinematic viscosity of air varies little between test and full-scale conditions, the only
way to account for the scaled length is to increase the wind speed. The increase in wind
speed is normally so high that it is out of reach for most boundary layer wind tunnels [9].
According to Tanaka [10], the flow over a sharp edge body is less sensitive to change in
Reynolds’s number. The separation point influencing the action of the aerodynamic forces
will generally occur at the leading edge with the exception of very extreme angles. The
test executed in this master thesis, only small angles of attack will be used and therefore
Reynolds number will not be included in the calculations.

2.4.3 Strouhal Number

The Strouhal number, St, is a dimensionless number that characterize vortex-induced os-
cillation that occur at the Strouhal frequency fs given in section 2.3.4.

St =
fsD

V
(2.27)

V is the the mean wind-speed and D the shape of the cross-section [11].The Strouhal
number needs to be equal in full scale and wind tunnel in order to scale the frequency,
time, length and wind appropriately [12].

StWT = StFS or
TWT

TFS
=
LWT

LFS

VWT

VFS
(2.28)

According to Matsuda et al.[13] the Strouhal number is influenced by the Reynold number
and therefore the flow on the body. Another point to consider is that for a twin deck section
like the one in this thesis, the strouhals number, hence the vortex-shedding frequency will
gradually increase with an increasing gap due to changes in the flow regime [5].

2.4.4 Froude Number

The Froude number is the ratio of the gravity force to the inertia force.

Fr =
gL

V 2

VWT

VFS
=
√
LWT /LFS (2.29)

Where V is the mean wind velocity, g is the acceleration of gravity and L the characteristic
length of the gust.

Since the acceleration of gravity will be equal for both wind tunnel and full scale, Froude
number shows that the velocity scale are equal to the square-root of the geometrical scale.
This leads to a problem in the wind tunnel test because it require low wind velocity and
the instruments are sometimes less accurate at lower wind speeds. Froude number should
be similar in the WT model and FS model for suspension bridges where the gravitational
force are important [9].
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2.4.5 Turbulence Intencity
In a wind tunnel test the turbulence characteristics are represented by the turbulence in-
tensity, spectral density function and the correlation lengths in the flow. The turbulence
intensity is a non-dimensional property defined as the ratio between the standard deviation
of fluctuating velocity, σu, and mean wind speed, V .

Iu =
σu
V

(2.30)

In general cases, low turbulence intensity will lead to higher loads and will be considered
as a conservative case of wind loading. For this reason, the turbulence intensity in a scaled
wind tunnel test needs to be smaller than or equal to the value in a full-scale test [14].

Iu,WT ≤ Iu,FS (2.31)

The correlation length is represented by the integral length scale which is a measure of
eddy sizes in meters in the different directions, Lu,v,w. The conversion between the wind
tunnel and full-size integral length scale is done by the geometrical scale. However, it
is difficult to determine the integral length scale in a wind tunnel and usually, several
predictions are necessary.
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2.5 Wind Tunnel Effects

The wind is influenced by its surrounding environment. Differences in temperature create
pressure variations which make air move and affect the wind speed. The local topography
also affects the wind speed as well as changing the wind pattern. A wind tunnel will not
be able to reproduce the temperature and topography outside. Therefore it is necessary to
manipulate the wind to get the desired flow. In addition, the wind tunnel has some effects
that differ from the natural flow as a result of the limiting cross-section area of the tunnel.
In this section, the effects considered most important for wind tunnel tests are discussed.

2.5.1 Boundary Layer

As the wind moves past an object there will be friction between the fluid and the surface
causing a reduction in the wind velocity. This effect is referred to as boundary layer flow
and is a replicate of flow at a given sight. The local topography has a great impact on the
flow and can create turbulence. In order to have a laminar airflow with constant velocity,
the model must be placed higher than the boundary layer. For the wind tunnel at NTNU,
this length is approximately 200mm from the surface of the wind tunnel [2].

Figure 2.2: Boundary layer effects in the wind tunnel [2]

2.5.2 Blockage

When a model is tested in the wind tunnel the geometric scale of the model is critically
limited by the blockage effect of the wind tunnel. While a real structure has infinite space
around, the test model will have a limited space causing boundary layers. The blockage
effect will vary for different models and is influenced by the shape of the body, aerody-
namic effects, the wind field characteristics and the blockage ratio, SC , where S is the area
of the body normal to the wind flow, and C is the cross-sectional area of the wind tunnel.
This distortion can be neglected if the blockage effect is no greater than 5%.

According to K.Takeda [15], both drag coefficient and wind-induced vibration can be af-
fected by the wind tunnel blockage and found to be significantly even at 5% blocking ratio.
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For the test model in this thesis, the blockage ratio is 0.044 and is therefore neglected and
could be a source of error in the final results.

2.5.3 End Plates
In wind tunnel tests, end plates are used to produce a two-dimensional flow around the
model. The purpose is to prevent the fluid outside the end plate from entering the wake of
the test area. This is maintained by having the diameter of the end plates larger than 8.5d,
where d is the body depth normal to the flow [16]. The bridge model used in this thesis
spans the entire length of the wind tunnel and will not need end plates.

2.5.4 Grid Generated Turbulence
Generation of turbulence in a wind tunnel test can be achieved by installing a grid net. The
grid is placed upstream of the model to make distortion of the passing wind. This type of
simulation is called grid-generated turbulence and causes vortex shedding, separation, and
reattachment’s which are essential characteristics of the turbulence [17].

When using the turbulence is generated by a grid it is often described as isotropic and
homogeneous. The placement and mesh of the grid play a significant role in the charac-
teristics of the turbulence. An isotropic flow will occur when each of the three fluctuating
velocity components is invariant due to an arbitrary rotation of the defining principal axis
[18]. This condition happens at a specific distance behind the grid. Numerous studies have
been done to predict this distance, such as Tresso [18] and Liu et al [17], and confirm the
significance of a fixed position of the testing model in the wind tunnel.
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2.6 Simulation of Turbulence
The objective of this section is to present the method used to simulate a 2D turbulence
field with Monte Carlo simulation and the wind field characteristics defined by N400. The
simulated wind field is later used in a Matlab example presented in section 2.8.

2.6.1 Turbulence Spectrum
A 2D turbulence field is simulated based on wind field characteristics defined in N400
based on the spectral properties of a Kaimal spectrum. In the following section, relevant
definitions and constants from N400 are given [19].

The integral length scale given by N400 is defined as:

xLu =

{
L1(z/z1)0.3, z > zmin

L1(zmin/z1)0.3, z ≤ zmin
(2.32)

Where L1 is the reference length scale equal to 100m and z1 is the reference height equal
to 10m. Further, the turbulence intensity Iu can be calculated according to NS-EN 1991-
1-4:2005+NA:2009,table NA.4.1. For a approximated homogeneous wind field, the other
turbulence intensities and integral length scales for a 2D wind field are given by:

Iw = 1/4 · Iu for


yLu
zLu
yLw
zLw
xLw

 =


1/3
1/5
1/12
1/18
1/18

 xLu (2.33)

The single point auto spectrum, Si(f), for the turbulence components u and w are given
by:

Si(f) =
σ2
iAin̂i

(1 + 1.5Ain̂i)5/3
for i = u,w (2.34)

Where Ai is a constant, σi is the standard deviation of turbulence component i and n̂i is
given by equation 2.35. The single point auto spectrum for the turbulence components is
shown in figure 2.3.

n̂i =
f xLi(z)

vm(z)
(2.35)

vm(z) is the mean wind velocity at a given height. The cross-spectral density of the wind
turbulence components normal to the main flow direction is given by:

Re[Si1i2(f,∆sy)] =
√
Si1(f) · Si2(f) · e−Ciy

f∆sy
vm(z) (2.36)

Where ∆sy is the horizontal distance between the considered points and i1, i2 = u,w,
Cuy = 10.0, and Cwy = 6.5. The cross-spectral density of the wind field are further used
as a basis for the Monte Carlo Simulation.
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Figure 2.3: Normalized single point Kaimal auto spectrum for turbulence components u and w.

2.6.2 Monte Carlo Simulation
Monte Carlo simulation is a technique based on random number generation. The Monte
Carlo method is a widely used algorithm when simulating physical systems like turbu-
lence. The methods that will be presented here is based on the decomposition of stochastic
processes where the spectral process has independent increments.

A spectral representation of a stochastic process presupposes that the process can be de-
composed into harmonic components with stochastic amplitude and phase.

X(t) =

N∑
k=1

Akcos(ωkt+ φk) , k = 1, 2, 3...., (2.37)

Where φk is an independent stochastic variable in the range from 0 to 2π, ωk = (k− 1
2 )∆ω,

where ∆ω is a measure of frequency resolution, t is the time, andAk the deterministic con-
stants the are currently unknown. In numerical calculations φ is represented by the use of
pseudo-random numbers.

The mean value and autocorrelation function of the process taken over the ensemble are
given respectively:

E[X(T )] =

∫ 2π

0

N∑
k=1

cos(ωkt+ φk)
1

2π
dφk (2.38)

and

RX(t+ τ, t) =E[X(t+ τ)X(t)]

=

∫ 2π

0

∫ 2π

0

N∑
k=1

N∑
k=1

AkAlcos(ωk(t+ τ) + φk)cos(ωlt+ φl)
1

(2π)2
dφkdφl

=

N∑
k=1

A2
k

1

2
cos(ωkt) = RX(τ)

(2.39)
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From this, it is evident that the process is at least weakly stationary. Furthermore, by
using the central limit theorem, it can be proved that the process converges towards a
Gaussian process when N →∞, which again implies that the process converges towards
a stationary process. The time average of the process is given by:

〈X(t)〉 = lim
T→∞

1

2T

∫ T

−T
X(t)dt

= lim
T→∞

1

2T

N∑
k=1

∫ T

−T
Akcos(ωkt+ φk)dt = 0

(2.40)

The autocorrelation function can be determined similarly by taking the time average as:

RX(τ) =〈X(t+ τ)X(t)〉

= lim
T→∞

1

2T

∫ T

−T
X(t+ τ)X(t)dt

= lim
T→∞

1

2T

N∑
k=1

N∑
l=1

∫ T

−T
cos(ωk(t+ τ) + φk)cos(ωlt+ φl)dt

=

N∑
k=1

A2
k

1

2
cos(ωkτ)

(2.41)

By comparing equation 2.38 and 2.41 with 2.39 and using the central limit theorem, the
process converges towards an ergodic process when N →∞.

It is possible to use equation 2.37 to simulate an ergodic Gaussian process with a pre-
scribed spectral density S 0

X(ω) or an autocorrelation function R 0
X(ω) provided that N is

sufficiently large. This is done by introducing the following expression:

A2
k = 2S0

X(ωkδω] (2.42)

Inserted in equation 2.39 gives

RX(τ) =

N∑
k=1

S0
X(ωk)∆ωcos(ωkτ) (2.43)

so that
RX(τ) = lim

T→∞ , δω→dω
RX(τ)

= lim
T→∞ , δω→dω

N∑
k=1

S0
X(ω)∆ωcos(ωkτ)

=

∫ ∞
−∞

S0
X(ω)cos(ωτ)dω

(2.44)

17



That is, if Ak is defined by equation 2.42, Rx(τ) converges to the desired correlation
function when N →∞.

A limitation with this simulation is that X(t) will be periodic with the period:

T0 =
2π

∆ω
(2.45)

Which leads to that only half of the period being utilized. Similar requirements to ∆ω are:

∆ω =
π

T
(2.46)

Otherwise, ∆ω, should be chosen so that narrow peaks in the spectral density is repre-
sented in a reasonable way. This often require that ∆ω is significantly smaller than the
effective bandwidth of the narrowest peak and leads to a large number of harmonic com-
ponent which is both expensive and time consuming.

The simulation method discussed requires a large number of cosine joints. These difficul-
ties can be overcome by applying the Fast Fourier Transform (FFT) function to equation
2.37 and 2.42 when ∆ω is constant. Equation 2.37 can be rewritten as follows:

X(t) = Re

[
N∑
k=1

(Ake
iφk)eiωkt

]
(2.47)

The expression inside () can be interpreted as the discrete fourier transform of the series
Ake

iφk, where k = 1, 2..., N . This transformation can easily be performed by using the
FFT algorithm in matlab.

Using the Kaimal turbulence spectrum defined in subsection 2.6.1 and the method pre-
sented, a simulation of the turbulence, u(t) and w(t) can be shown in figure 2.4, where
T = 600 s and ∆ω = 0.0052rad/s. The spectrum of the turbulence component u is com-
pared with the Kaimal spectrum from section 2.6.1 and shown in figure 2.5. The simulated
turbulence field is used in an example presented in section 2.8.
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Figure 2.4: Simulated turbulence
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2.7 Aerodynamic Admittance Functions
For the design and user comfort of a long-span bridge the prediction of buffeting forces is
important. The estimation of the buffeting forces on a bridge deck depends on a transfer
function, called the aerodynamic admittance function (AAF), transferring the turbulent
wind to buffeting forces. It takes into account the unsteadiness of gust loading which
leads to a reduction in the bridge response. A theoretical approach for the Aerodynamic
admittance function was first proposed by Sears (1941) using thin airfoil theory and further
developed by Davenport (1962) by including aerodynamic admittance in the quasi-steady
assumption. This section will briefly describe the Admittance function and discuss how
previous studies have estimated the function for different bridges.

Figure 2.6: Wind acting on bridge cross section

The figure 2.7 presents a bridge section exposed to a turbulent 2D wind field. The wind
field is characterized by the mean wind velocity, V , and the turbulent vector ,v, containing
the longitudinal and vertical turbulence components u(x, t) and w(x, t). In addition the
section is subjected to a set of generalized buffeting forces Fx(t), Fz(t) and Mθ(t), due
to the wind acting on the cross-section. Assuming that the quasi-steady theory applies, the
linearized buffeting load due to turbulence is given by

qb(x, t) = Bqv(x, t) (2.48)

WhereBqv is the dynamic load associated with the turbulence of incoming flow. Consid-
ering only the quasi-steady aerodynamic assumption the transfer matrix,Bq , will be as in
equation 2.17.

The aerodynamic loads on a motionless rigid body in a turbulent flow are normally ex-
pressed in the frequency domain as a linear function. The frequency-domain amplitude of
the buffeting loadQb(x, ω) is obtained by taking the Fourier transform of equation 2.48.

Qb(x, ω) = Bq(ω)v(x, ω) (2.49)

Where

Bq(ω) =
ρV B

2

2(D/B)C̄DAyu ((D/B)C ′D − C̄L)Ayw
2C̄LAzu (C ′L + (D/B)C̄D)Azw

2BC̄MAθu BC ′MAθw

 (2.50)
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The transfer matrix, Bq(ω), contains frequency dependent flow induced dynamic loads
including the admittance functions, Amn(ω) where m = y, z, θ and n = u,w. Unsteady
characteristics of the bridge deck are better described in the frequency domain making it
the most preferred method.

A turbulent wind field is complex and hard to recreate. In order to simulate the turbu-
lence physics, Taylor’s frozen turbulence hypothesis is applied. This assumption states
that the turbulence is transported by the mean wind and maintains its shape when passing
through the observation point. Taylor himself described it as:

If the velocity of the air stream which carries the eddies is very much greater
than the turbulence velocity, one may assume that the sequence of changes in
u at a fixed point are simply due to the passage of an unchanging pattern of
turbulent motion over the point. [20]

He also stated that the correlation between two points with increasing distance will fall
away more slowly for large eddies than for smaller eddies. This statement will be described
with an example below:

B

Bq(ω)

ω

u(t)

t*V =[m]

B

Bq(ω)

ω

u(t)

t*V [m]

(d) (e) (f)

(a) (b) (c)

Figure 2.7: skriv tekst

The buffeting theory described in subsection 2.3.2 implies a perfect correlation of the wind
forces over the cord of the deck. This is valid if the turbulence scale is significantly larger
than the width of the bridge deck and is accurate for low frequencies. For low frequencies,
the mean pressure represented by the vectors in figure 2.7 (c), are strongly correlated over
the cross-section. This is related to how the cross-section lies inside the turbulence field,
as seen in figure 2.7 (b). The x-axis is multiplied with the wind speed to see the sections
position inside the turbulence field. In the low-frequency range, the quasi-steady theory is
valid and the admittance function will approach 1. In contrast, for high frequencies, the
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quasi-steady theory is not valid. The cross-section experience various fields of turbulence
reducing the correlation in the pressure distribution. The aerodynamic admittance function
takes in to account this lack of correlation between velocity fluctuation in the flow region
adjacent to the body. The admittance will decrease towards zero as the frequency increases
because high-frequency velocity fluctuations are less effective in producing changes in the
aerodynamic forces. Briefly, the aerodynamic admittance function takes into account that
low-frequency turbulence provides a high correlation in the distributed pressure, while the
high-frequency turbulence results in a low degree of correlation causing a cancellation
effect.

2.7.1 Analytical Aerodynamic Admittance

The aerodynamic admittance can either be measured, evaluated or approximated using
analytical expressions as the Sears’ function. Sears function is a complex theoretical ex-
pression for the aerodynamic admittance function for a thin airfoil. From the quasi-steady
theory, it is assumed that the lift force at position, x, at time, t, on a bridge deck, is equal
to the force occurring if instantaneous velocity w(t, x) persisted for an infinitely long time
everywhere on the deck. Further, from the strip theory, it is assumed that the lift force (per
unit length) on a strip at position x along the bridge deck is equal to the lift force per unit
length as if the wind fluctuations had been fully correlated along the deck. Sears analysis
of the unsteady lift force, induced by a transversely fully coherent sinusoidal gust, is based
on the strip assumption. He found from the linearized equations of fluid motion and the
Kutta-Joukowski condition (no singularities at the rear end of the airfoil) that the lift force
spectrum is given by [21]:

SL(f∗) = 4π2|φ(f∗)|2Sw(f∗) (2.51)

Where Sw is the spectra of the turbulence component, f∗ = fB/V is the reduced fre-
quency, B is the deck width, and φ(f∗) is the Sears’ function:

|φ(f∗)|2 =

∣∣∣∣∣ [J0(f∗)K1(if∗) + iJ1(f∗)K0(if∗)

K1(if∗) +K0(if∗)2

∣∣∣∣∣
2

(2.52)

J0, J1 are the Bessel function of first kind and K0,K1 are modified Bessel functions of
the second kind. An approximation of the Sears function, given by equation 2.53[9], is
plotted together with Sears function in figure 2.8.

|φ(f∗)|2 =
1

1 + 2π2f∗
(2.53)
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Sears derived the lift formula for a two-dimensional wind in a sinusoidal vertical gust.
In Sears’ analysis, the velocity fluctuation is simplified by having a constant span-wise
spatial distribution and is variable in the stream-wise direction only. Thin airfoil dynamic
force theories depend on unique circulation functions, however, this cannot be realized for
bluff bodies that experience flow separation. So the Sears function in the context of bridge
deck buffeting is commonly used as an approximation for bluff bodies. Previous research,
Jancauska et al. [22] and Han et al. [23], show that the Sears function underestimates
the aerodynamic admittance functions for a bluff body. This will be discussed further in
subsection 2.7.2.

Davenports Empirical Model

Davenport (1962) extended the theory of aerodynamic admittance developed by Sears
(1938) to also apply for wind engineering. He introduced aerodynamic admittance func-
tions relating to drag, lift and moment to longitudinal and vertical turbulence components.
It is a statistical approach that uses the concept of the power spectrum to describe the
stochastic loading of the stationary random type and the statistical properties of the tur-
bulent flow. Considering that the quasi-steady aerodynamic approach is only valid for
low reduced frequencies, Davenport improved this theory by suggesting the aerodynamic
admittance to represent [21]:

• The loss of lift for the higher frequency components of the turbulence, also known
as small gusts.

• And, the spatial variation in the flow since the force are nor necessarily due to wind
fluctuations at one point but on a region surrounding a chord-wise strip.

In addition to the improvements of the aerodynamic admittance, he suggested using un-
steady aerodynamic coefficients determined from the in-phase and out-of-phase compo-
nents of the aerodynamic forces to evaluate the aerodynamic damping. This point goes
beyond the scope of this thesis and will not be discussed further.
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The following theory is based on the equations from the buffeting theory described in
subsection 2.3.2. For simplicity only lift components will be considered. The wind load
due to buffeting actions of the wind is expressed by:

Fz,b =
ρV̄ B

2
[2Czu+ C ′zw] (2.54)

Where Cz is the lift coefficient and C ′z is the slopes of the load coefficients curve. Given
the assumption that the buffeting load is expressed as a stationary process, the load can
be transformed into the frequency domain by the Fourier transform, while neglecting the
effect of the cross-spectrum Suw.

SL(f∗) =

(
ρV̄ B

2

)2 (
4C2

zSu(f∗)|Au,z(f∗)|2 + C ′2z Sw(f∗)|Aw,z(f∗)|2
)

(2.55)

where SL(f∗) is the spectrum of the lift force per unit length on a cross-sectional strip of
the bridge deck. Su,w(f∗) is the spectral densities of the u and w components of the wind
and |Au,w,z(f∗)|2 are the lift aerodynamic admittance due to the turbulence components
u and w. In practice, it is challenging to differentiate the effects of u and w therefor the
admittance is generally lumped and equation 2.55 becomes:

SL(f∗) =

(
ρV̄ B

2

)2

|Az(f∗)|2
(
4C2

zSu(f∗) + C ′2z Sw(f∗)
)

(2.56)

The spectrum represent a point-like load and by introducing the joint acceptance function,
Jz(f

∗), the spectrum can by transitioned into a load on a span with length l.

SFz (f∗j ) = SL(f∗)|Jz(f∗j |2 (2.57)

where the joint acceptance function is given by:

|Jz(f∗)|2 =

∫ l

0

∫ l

0

SL1L2(∆y, f∗)

SL(f∗)
µj(y1)µj(y2)d(y1)d(y2) (2.58)

µj is the jth mode shape and SL1L2
is the cross-spectrum of the lift force between line 1

and 2 separated by ∆y. The joint acceptance function takes into account that the buffeting
force is not fully correlated across the span, and that the gust will affect the structure in a
different way for each mode of vibration. Therefore, there is one joint acceptance function
for each mode of vibration measuring the correlation between the distributed forces across
the span. By using the basis of the strip assumption, the cross-spectrum is given by:

SL1L2
(∆y, f∗)

SL(f∗)
=
Sw1w2

(∆y, f∗)

Sw(f∗)
= coh

1
2
w(∆y, f∗) (2.59)

Further, the spectrum of the response for a given mode, j, induced by the buffeting force
can be calculated using:

Srz (f∗j ) = SFz (f∗j )|H(f∗j )|2 (2.60)
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H(f∗j ) is the single degree-of-freedom mechanical admittance function of mode j, and is
a function of reduced frequency and damping influenced by the aerodynamic forcing.

|H(f∗j |2 =
1(

1− f∗

f∗j

2
)2

+
(

2(ζs,j + ζa,j)
f∗

f∗j

)2 (2.61)

The solution of the equation of motion, also known as the peak response, is composed by
the following:

r̂ = r̄ + g
√
σ2
B +

∑
σ2
Rj

(2.62)

Where r̄ is the mean response, g is the statistical peak factor, σ2
Rj

is the mean square
background response and σ2

B is the mean square modal response at or near the jth resonant
frequency. The contribution of the w component of the turbulence to the mean square
background and modal response can be given as:

σ2
Bz

=

(
ρV̄ 2BC ′

2

)2 (σw
V̄

)2
∫ ∞

0

f∗Sw(f∗)

σ2
w

|Az(f∗)|2|Jz(f∗)|2d ln f∗ (2.63)

σ2
Rzj
≈
(
ρV̄ 2BC ′

2

)2 (σw
V̄

)2 f∗Sw(f∗j )

σ2
w

|Az(f∗j )|2|Jz(f∗j )|2 (π/4)(
ζs,j + ζa(f∗j )

) (2.64)

The background response covers a broad band of frequencies below the natural frequency
and is the part of the dynamic response that acts quasi-statically due to the slow variation
of wind speed. The resonant response is concentrated in a peak at the natural frequency
which is controlled by the damping. Similar expressions can be written for torsional and
lateral direction and can be found in [21].

Davenport expressed the aerodynamic admittance function using equation 2.64 and is
given as:

|Az(f∗)|2 =
SF (f∗)

1
4ρ

2V̄ 2B2C ′2z Sw(f)
(2.65)

Further research of the aerodynamic admittance functions for bridge deck sections in wind
tunnel tests has shown to be different from Davenports formula. Tanaka [10] found that
Davenport’s approximation function seamed to overestimate the aerodynamic admittance
in the high-frequency domain. In contrast, Davenport was found to overestimate corre-
sponding aerodynamic admittance in the low-frequency region.
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2.7.2 Experimental Identification of Aerodynamic Admittance Func-
tions

This subsection gives an overview of previous research on the estimation of the aerody-
namic admittance functions.

Equivalent AAF

A well-known approach to identify the AAF is the Equivalent AAF method and is based on
two assumptions: The first assumption is the auto-spectral method assuming that the cross-
spectrum between the horizontal and vertical wind component is neglected, Suw = Swu =
0. The second assumption assumes that the same effect is reached in each component of
the turbulence, giving one admittance function for each buffeting force.

AFu = AFw = AF (F = L,D,M) (2.66)

The assumption is based on the fact that the derivative of the static wind coefficient, C ′F ,
is significantly larger than CF . Conforming that the vertical component, w, plays a major
role in the buffeting force and the horizontal turbulent wind velocity, u, can be neglected.
The three admittance function found is a weighted average of AFu and AFw and is in
most cases close to ADu, ALw and AMw. For this reason, the vertical fluctuation, w, is
the main contribution for the lift and moment, while the horizontal fluctuation contributes
to the drag. Both assumptions in the equivalent AAF method are done in order to simplify
the identification of admittance and might be inaccurate estimates.

Previous research, Davenport [9], used the assumption of equivalent AAF only consider-
ing the contribution of the vertical component of the turbulence. More recent studies have
questioned this assumption by identifying six-component AAF’s including the contribu-
tion of both horizontal and vertical components of the fluctuating wind velocity. These
methods include measures of both u and w in addition to the cross-spectra, Suw,wu. Zhu
et al. [24] and Han et al. [23] found that the admittance function corresponding to the lon-
gitudinal and vertical components deviates from each other, indicating that it is necessary
to estimate all six admittance functions.

The Response of a Suspension Bridge Deck to Turbulent Wind: the Taut Strip Model
Approach

Larose’s study of pressure investigation was to corroborate the use of taut strip models
in the prediction of the response of long-span bridges to turbulent wind. His study was
carried out in three major phases where the second one, concerns the topic of this thesis.
This phase contained measurements of aerodynamic properties such as the aerodynamic
admittance, the span-wise cross-correlation of the aerodynamic forces in a smooth flow,
grid-generated turbulence and turbulent boundary layer flow.

Larose developed the work done by Davenport, given in subsection 2.7.1, using a more
complete definition of the AAF. The definition includes the vertical and longitudinal com-
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ponents of the turbulence as well as the cross-spectra between the turbulence and buffeting
forces. The expression for the horizontal and vertical lift admittance is given by:

|ALu(f∗)|2 =
U

Cz(0) 1
2ρU

2B

SLu(f∗)Sw(f∗)− SLw(f∗)Swu(f∗)

Su(f∗)Sw(f∗)− Suw(f∗)Swu(f∗)
(2.67)

|ALw(f∗)|2 =
U

dCz

dα
1
2ρU

2B

SLw(f∗)Su(f∗)− SLu(f∗)Swu(f∗)

Su(f∗)Sw(f∗)− Suw(f∗)Swu(f∗)
(2.68)

and moment:

|AMu(f∗)|2 =
U

Ct(0) 1
2ρU

2B

SMu(f∗)Sw(f∗)− SMw(f∗)Swu(f∗)

Su(f∗)Sw(f∗)− Suw(f∗)Swu(f∗)
(2.69)

|AMw(f∗)|2 =
U

dCt

dα
1
2ρU

2B

SMw(f∗)Su(f∗)− SMu(f∗)Swu(f∗)

Su(f∗)Sw(f∗)− Suw(f∗)Swu(f∗)
(2.70)

The experimental technique provides direct measurements of the aerodynamic admittance
as a function of the reduced frequency. For simplicity, the joint acceptance function is put
equal to one, in order to isolate the admittance from any span-wise correlation effects.

For the execution of the test in the wind tunnel, the vertical and longitudinal turbulence
was measured using a hot-wire anemometer placed at the leading edge of the model. Next,
the surface pressure around the section was measured by two solid-state pressure scanners.
Each scanner simultaneously measured the surface pressure from 32 equally spaced pres-
sure taps. The aerodynamic forces were determined by integrating the measured surface
pressure around the deck. The power spectra are found by a transformation from time to
frequency domain using fast Fourier transform. The spectra of the forces and turbulence
components constitute the basis for the evaluation of the aerodynamic admittance.

Larose found that Sears function seemed to be overestimating the admittance at low re-
duced frequencies, while underestimating at higher frequencies, compared to results from
the measurements from the boundary layer flow. Another discovery was that the vertical
component of the turbulence dominates the forces, which could be explained by the dom-
inance of the lift slope and the low mean lift and moment coefficients at zero angle of
attack. Furthermore, he found that the grid generated turbulence providing a high level of
small-scale turbulence favoring the re-attachment of the flow and reducing the admittance
to Sears function for a higher reduced frequency range.
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Colligated Residue Least Square Method of Auto and Cross Spectra (CRLSMACS)

Zhu et al. [24] wanted to overcome the shortcomings of previous estimations methods of
AAF. They introduced a new method called colligated residue least square method of auto
and cross spectra (CRLSMACS). The method identifies six-component AAFs based on
the well-known force and pressure measurement tests in a passive grid-generated turbu-
lent flow.

The buffeting forces corresponding to measured data from a wind tunnel can be seen as a
set of six equations. These six expressions are functions of the auto- and cross-spectra of
the fluctuating wind, Su, Sw and Suw, and the six aerodynamic admittance function be-
tween the distributed buffeting force and the fluctuating wind velocity, ALu, ALw, ADu,
ADw , AMu and AMw. The colligated spectral residue function of the buffeting lift force,
drag force and torsional moment can then be defined and the equation for the residual
function for the lift is reproduced below.

RL(AReLu, A
Im
Lu , A

Re
Lw, A

Im
Lw) = w1ε

2
LL+w2

[(
εReLu
)2

+
(
εImLu

)2]
+w3

[(
εReLw

)2
+
(
εImLw

)2]
(2.71)

εLL = 0.25(ρUB)2{4C2
L|ALu|2Ŝuu + (CD + C ′L)2|ALw|2Ŝww + 4CL(CD + C ′L)

×
[(
AReLuA

Re
Lw +AImLuA

Im
Lw)ŜReuw − (AReLwA

Im
Lu −AImLwAReLu

)
ŜImuw

]
} − ŜL (2.72)

εReLu = 0.5ρUB
[
2CLA

Re
LuŜuu + (CD + C ′L)

(
AReLwS

Re
wu +AImLwS

Im
wu

)]
− ŜReLu (2.73)

εImLu = 0.5ρUB
[
−2CLA

Im
Lu Ŝuu + (CD + C ′L)

(
AReLwŜ

Im
wu −AImLwŜRewu

)]
− ŜImLu (2.74)

εReLw = 0.5ρUB
[
2CL

(
AReLuŜ

Re
uw +AImLu Ŝ

Im
uw

)
+ (CD + C ′L)AReLwŜww

]
− ŜReLw (2.75)

εImLw = 0.5ρUB
[
2CL

(
AReLuŜ

Im
uw −AImLu ŜReuw

)
− (CD + C ′L)AImLwŜww

]
− ŜImLw (2.76)

where, wi (i = 1, 2, 3) are weighted factors. ”Re” and ”Im” represent the real and imagi-
nary part of the corresponding cross spectra or the aerodynamic admittance. The variables
marked with ” ˆ ” corresponds to measured values. By applying the least square method,
the real and imaginary parts of the six-component complex AAF’s can be solved by seek-
ing the minimal values of the residues defined above.

A widely used simplification is to assume full correlation along the longitudinal axes of
the cross-section when identifying the AAF. CRLSMACS account for the fact that the buf-
feting force on a sectional model in turbulent flow is partially correlated and will affect the
buffeting load. The span-wise correction function is obtained from pressure measurements
of the model arranged with pressure tubes and measurements of the wind fluctuation with
a cobra probe. Based on these measurements, the auto-spectra of distributed buffeting
forces can be obtained from the measured buffeting forces.
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The six AFFs of a flat closed-box deck of a single tower cable-stayed bridge is identi-
fied with the method described above and fitted by a target function. Three different cases
of AAFs were considered for the calculation of the buffeting response: Sears function,
1.0, and the identified values using CRLSMACS. Results show that the identified aero-
dynamic admittance functions ALw and AMw are close to the theoretical Sears function.
More importantly, the other four components of the admittance deviate significantly from
the Sears function which is somewhat expected since the Sears function is only appropri-
ate for lift and moment in the vertical direction. In addition, the vertical and horizontal
AAF obtained with the CRLMACS deviates from each other, contradicting the equivalent
AAF method. Last, the calculated displacements root-mean-square are compared to the
displacement obtained from the wind tunnel test of a full bridge aeroelastic model. The
results show that the six-component AFFs identified by CRLSMACS agree well with the
results from the full-bridge model test, which demonstrates the reliability of CRLSMACS.

Six Complex Aerodynamic Admittance Functions

Han et al. [23] presented a separated frequency-by-frequency method for estimating six
complex aerodynamic admittance functions using an active turbulence generator. The
method considering the contribution of vertical and horizontal components of the tur-
bulence. Similar, as for the equivalent AAF method, the cross-spectra between the two
turbulence components is neglected. Considering that Sears function is complex, Han et
al. [23] argued that the AAF for a bridge deck should also be complex. For this reason, the
direct estimation method will cause problems, considering that the module square of AAF
is estimated by the ratio of the power spectral density functions of fluctuating forces and
the wind velocity fluctuations. In the study by Han et al. [23], six complex functions were
identified by using the developed methodology and further compared with Sears function
and Davenport’s formula.

The six complex aerodynamic functions are derived theoretically using the aerodynamic
lift force, drag force and pitching moment exposed to time-varying harmonic turbulent
wind components, u(t) and w(t). Further, the FFT is applied to the aerodynamic forces
and the harmonic turbulent wind components and the six complex aerodynamic functions
are derived. The complex aerodynamic admittance functions χLu, χDu and χMu corre-
sponding to the longitudinal turbulent component are given by:

χLu(ω1) =
Lb(ω1)

1
2ρU

2BDCL
2
U ·

AuT
2 eiθ1

(2.77a)

χDu(ω1) =
Db(ω1)

1
2ρU

2BDCD
2
U ·

AuT
2 eiθ1

(2.77b)

κMu(ω1) =
Mb(ω1)

1
2ρU

2BDCM
2
U ·

AuT
2 eiθ1

(2.77c)
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χLw, χDw and χMw corresponding to vertical turbulent component are given by:

χLw(ω2) =
Lb(ω2)

1
2ρU

2BD
(C′L+CD)

U · BwT
2 eiθ2

(2.78a)

χDw(ω2) =
Db(ω2)

1
2ρU

2BD
(C′D−CL)

U · BwT
2 eiθ2

(2.78b)

χMw(ω2) =
Mb(ω2)

1
2ρU

2BD
C′M
U ·

BwT
2 eiθ2

(2.78c)

where Lb , Db and Mb is the FFT of the lift force, drag force and moment of the bridge
deck. Au and Bw are the amplitude of the harmonic functions u(t) and w(t). ω1 and ω2

are vibration circular frequency of u(t) and w(t), ω1 6= ω2. ρ is the air density; B is the
deck width; U is the mean longitudinal wind velocity; D is the length of the bridge deck
and T is the total duration.

Wind tunnel tests of a thin plate model and a streamlines bridge section were conducted in
a turbulent flow. An active turbulence generator was used for generating simultaneously
harmonic oscillating longitudinal and vertical wind velocity components with different
frequencies. The flow was measured by cobra probes and considered as perfect 2D flow.
Before identifying the aerodynamic functions, the static aerodynamic coefficients of the
section were determined. Further, the aerodynamic forces and the turbulence components
were measured. Then, the six complex aerodynamic admittance functions, relating the
three buffeting forces to the two turbulent wind components were identified using equa-
tion 2.77 and 2.78.

Based on the results, it was concluded that: (1) Drag-force admittance functions and ad-
mittance functions corresponding to the longitudinal component deviate significantly from
the Sears function. (2) It is necessary to estimate all the six admittance function, since the
admittance function corresponding to the longitudinal component are different from those
corresponding to the vertical component. (3) The phases of estimated admittance func-
tions increase with increasing reduced frequency, similar to Sears function [23]. The fact
that the AAF corresponding to the vertical and the AAF corresponding to the horizontal
turbulence deviates from each other, implies that the equivalent AAF method is a bit too
simplified and may give inaccurate results.
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2.8 Simulation Example

This section gives a description of how to use aerodynamic admittance function in the
time and frequency domain. An example in Matlab is used to show a simplified method
of finding the functions. The Discrete Fourier Transform is used repeatedly and will be
explained.

Discrete Fourier Transform

In the time domain, the quasi-steady approximation for the buffeting load is given by
equation 2.48. However, solving the equation in the time domain is time consuming and
as mentioned in section 2.7, the buffeting loads can be expressed in the frequency domain
by taking the Fourier transform. The fast Fourier Transform (FFT) are applied in Matlab,
which is a discrete Fourier transform (DFT). However, the continuous and discrete Fourier
transform and their inverse are related but not identical. For a discrete pair, discrete time
and frequency scale is used. This requires that both the time and frequency scales must be
finite. The discrete approximation, Fa(iω), of the continuous Fourier transform F (iω) =∫∞
−∞ f(t)eiωtdt sampled over a finite interval including N samples is:

Fa(iωk) =

N∑
n=1

f(tn)e(−iωktn)∆t (2.79)

where tn = n∆t and ωk = k∆ω = k2π/N∆t, further, the DFT can be written as:

Fa(iωk) = ∆t

N−1∑
n=0

f(tn)e−i2πkn/N) (2.80)

Next, the standard definition of the discrete Fourier transform can be written as following:

X(k) =

N−1∑
n=0

x(n)e−i2πkn/N) (2.81)

and the discrete inverse Fourier transform as:

x(n) =
1

N

N−1∑
k=0

X(k)ei2πkn/N (2.82)

The X(k) coefficients are complex numbers and the evaluation requires N2 operations.
To reduce the number of operations, the Fast Fourier transform algorithm were developed,
which determines the DFT of an input significantly faster than computing it directly. Pro-
vided that the number of data points equals a power of 2, the number of operations is
reduced to Nlog2N . This will save a great deal of time when N becomes large enough
[25]. The FFT algorithm breaks the problem into smaller sub problems, where the com-
putational cost is halved each time [26].
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Time Domain Analysis

A simulation of how the admittance function affects the buffeting forces is done in Matlab
in the time domain. The load coefficients are approximated to a flat plate and the turbu-
lence components are simulated with the Monte Carlo simulations. To get an estimate on
the output forces in the time domain, an assumed admittance function given by equation
2.83 is used [27]. The output is estimated by first taking the FFT of the simulated tur-
bulence and multiplying it with the assumed admittance function. Next, the IFFT is used
to obtain the output turbulence in the time domain. Then the buffeting loads in the time
domain corrected by the admittance function are obtained.

A(f∗) =
2

(7f∗)2

(
7f∗ − 1 + e−7f∗

)
(2.83)

Both the buffeting quasi-steady load associated with the simulated turbulence and the buf-
feting load depending on the aerodynamic admittance function, are calculated according
to equation 2.48, the plots for the moment and lift force can be shown in figure 2.9 and
2.10. From the plots, it can be seen that the forces deviate from each other due to the
admittance function. Moreover, it is found that the standard deviation from the buffeting
load without admittance is a bit higher than the standard deviation from the buffeting load
with admittance functions.
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Figure 2.9: Buffeting Moment Force
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Figure 2.10: Buffeting Lift Force.
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Frequency Domain Analysis

The power spectrum can be used to describe the stochastic loading as well as the statistical
properties of the turbulence. Assuming that the buffeting loading is a stationary random
process, the buffeting load can be transformed to the frequency domain and the buffeting
load spectrum is given by:

Sq(x, ω) = Bq(x, ω)Sv(x, ω)Bq(x, ω)T (2.84)

Where Sv is the turbulence spectrum. Further, the procedure for estimating the admittance
functions is presented by a Matlab example in the frequency domain. The load coefficients
in, Bq , are approximated to a flat plate. The turbulence used for input is obtained by the
Monte Carlo simulation. As explained in section 2.8, the turbulence corrected by the ad-
mittance functions is used as output and further referred to as filtered turbulence.

In figure 2.11, the spectra for vertical and longitudinal turbulence components are shown.
The simulated turbulence is added white noise to account for measurement noise and other
systematic errors that occur in recordings. The turbulence spectrum obtained in figure 2.11
is the mean spectrum of the 100 different simulated turbulence. This gives a smoother
spectrum in contrast to a spectrum obtained by only one turbulence simulation.
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Figure 2.11: Normalized Turbulence spectrum of simulated turbulence

The buffeting load spectra are calculated by equation 2.84. Both the spectrum for the fil-
tered turbulence and the simulated turbulence are calculated and shown in figure 2.12. As
expected, the two spectra are similar for low reduced frequencies while the load spectrum
with the filtered turbulence decreases faster for higher reduced frequencies.
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Figure 2.12: Normalized lift force spectrum for the simulated and filtered turbulence.

Furthermore, the admittance function for lift is estimated by finding the transfer function
that transfer the turbulent wind into buffeting lift force. The cross-spectra between the
u and w component of the turbulence is neglected. It is looked at a flat plate, for this
reason it is only the vertical turbulence component, w, that contributes to the lift force.
The admittance function for lift can be expressed as following:

AL(f) =
SL(f)

Sw(f)
(2.85)

Where SL is the lift force spectrum, based on the filtered turbulence and Sw is the vertical
turbulence spectra. In order to compare the admittance function to the target admittance
function, given by equation 2.83, the admittance function is normalized and expressed as:

AL(f) =
SL(f)

(ρV B2 )2C ′2L Sw(f)
(2.86)

The aerodynamic admittance function estimate is compared to the target admittance func-
tion from equation 2.83, and shown in figure 2.13. It can bee seen that the estimated and
the target function deviates from each other for higher reduced frequencies.

This example shows the procedure intended to find the admittance functions later in the
thesis. The load coefficients are approximated to a thin plate and the buffeting loads ob-
tained by using the filtered turbulence do not correspond to the output that will be obtained
on the model under the testing. In the wind tunnel experiment, the output is loads obtained
from the pressure scanner. However, the example shows a simplified method where the
admittance functions are estimated.
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2.8.1 Aerodynamic Admittance of a Twin-box Bridge Girder

All methods described so far in this thesis are implemented for closed-box bridges. In this
section the effects of using a twin-box instead of a closed-box bridge will be discussed
based on the newly developed studies by Wang et al. [28].

Wang et al.[28] investigated the characteristics of aerodynamic admittance of a twin-box
bridge deck, by studying the pressure distribution, the buffeting coherence as well as com-
paring it to a closed-box girder bridge. The coherence function is introduced in order to
describe the spatial distribution characteristics of aerodynamic forces and can be found by
the following equation:

CohF =
|SF (y1, y2)|2

SF (y1)SF (y2)
, F = L,D,M (2.87)

Where SF (y1, y2) are the cross-spectra between forces on two different correlation strips
with distance, ∆y. SF (y1) and SF (y2) are the corresponding auto spectrum for each cor-
relation strip.

Buffeting forces on a twin-box girder were found to mainly be provided by the upstream-
box, as the one-point force spectra of the lift and moment at this section is significantly
larger than that of the downstream-box. The formation of buffeting forces acting on the
bridge can be related to both the incoming turbulence and the flow separation. An expla-
nation of why the lift on the downstream-box acts different can be due to the vortex shed
from the trailing edge of the upstream-box.

The coherence of the lift and moment on the twin-box is found to be larger than those
of the incident turbulent wind velocity. This indicates that the three-dimensional effects of
the incident turbulent wind should be accounted for to avoid underestimation of the buf-
feting forces. On the other hand, the span-wise coherence of the twin-box was found to be
smaller than those of the closed-box. Further, it was detected that the span-wise coherence
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on the upstream-box was roughly consistent with the coherence from the closed-box, but
much higher than the downstream box. The overall coherence of lift and moment on the
twin-box was found to be significantly less than that of the closed-box which suggests that
the downstream-box is the main factor in the overall coherence of the twin-box.

Another important mechanism of buffeting force coherence is not only the incident wind,
but also the structure of the vortices. The pressure distribution of the twin-box and the
closed-box is found to be similar at windward edge, while the difference at the trailing
edge of the closed-box and downstream-box is more significant. The high fluctuating
pressure observed at the downstream-box, is probably a result of the vortex shed from the
windward box. When-Li et al. [29] studied the unsteady vortices and turbulent flow for
twin-box girders with different gap widths. He found, that as the gap ratio increased the
vortices shed from the windward-box, impinging on the leading edge of the downstream-
box, resulted in a dramatic increase of the pressure fluctuation on the downstream-box.
For this reason, the gap width should be large enough to keep the vortex shedding from
the trailing edge of the windward-box and make the vortex exist in the gap region. These
behaviors show the gap of twin-box girder produces a completely different flow pattern
compared to the closed-box, which can explain why the coherence of a twin-box is much
smaller than that for a closed-box.

The estimation of the admittance is based on experimentally determine the buffeting force
spectrum, and the averaged aerodynamic force coefficients together with the wind velocity
spectrum. The AAF of the twin-box, at low frequencies, was found to be higher than the
AAF for a closed box. This fact indicates that the buffeting response of the twin-box can
be underestimated when applying research obtained from a closed-box girder directly to a
buffeting analysis of the twin-box deck.

Further investigation of the AAF of twin-box girders with different ratios of integral scale
to the width of the cross-section, Lw/B, revealed that the admittance increases as the ratio
increases. These results suggest that the AAF of a twin-box bridge is strongly dependent
on the ratio and wind field characterises at low reduced frequencies. Comparing the AFF
and the related pressure distribution, it was detected that the AAF not only depends on
the incoming turbulence characteristics, but also the flow separation pattern. For this rea-
son, the three-dimensional effects of turbulence should include both the effect of integral
length scale and the effect of flow separation. It should be mentioned that as the gap ra-
tio increases the more significant the vortex shedding becomes leading to vortex-induced
peaks in the AAF.
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2.9 Tube System
For the measurements of the fluctuating pressure on the twin-box section investigated in
this thesis, Scanivalve pressure scanners are used. The pressure scanner is placed inside
the model and connected to the measurement point through a plastic tube. As the pressure
passes through the tube system, distortions can occur. To get accurate measurements it is
important to take this into account.

According to He at al. [30] the distortion effect is a case of two aspects: (a) the amplitude
of the signal may be attenuated or amplified due to inner friction or chamber resonance.
(b) The phase of the recorded signal deviates from the original. Due to these drawbacks,
the collected signal should be calibrated to reduce the distortions effects. Mechanical
measures, such as adding dampers or restrictors to the system can be used to eliminate
the chamber resonance. In practice, it is more convenient to correct the pressure signals
numerically.

The distortion effects can be described by the frequency response function (FRF) of the
tube system. The magnitude and phase of the FRF can reflect the effects of the tube system
on fluctuating pressure. The FRF of a tube scanner system can be written as:

H(ω) = Y (ω)/X(ω) = FFT (Sout)/FFT (Sin) (2.88)

Where Sout is the output pressure measured by the pressure scanner and Sin the pressure
measured at the surface of the section. When the magnitude, |H(ω)|, and the phase, φ(ω),
are close to 1 and 0 rad, the effects of the tube system are neglectable [31].

Wang et al. [31] analyzed the tube system parameters including the tube length, inside di-
ameter, curvature, deflection angle, thickness, material, restrictor length, restrictor inside
diameter, and restrictor place. All the tube system parameters, except the tube curvature,
have non-negligible effects on the FRF of the tube system for fluctuating pressure mea-
surement. Following, a short summary of the results by Wang et al. [31] is described.

Effects of tube length:
The length of the tubes has a great influence on the magnitude and phase of the FRF. It
can be seen when the length increases the value of peak frequencies decreases, while the
phase of the FRF increases. The frequency for a certain length of the tube is given by, f0,
if f > f0, the signal magnitude is amplified, else the signal magnitude is minimized.

Effect of tube inside diameter:
When increasing the inside diameter of the tubes, the peak frequency raises while the phase
decreases. A reason for this behavior may be caused by the tube damping, which for larger
diameter results in smaller damping, and thus a greater peak value and peak frequency.

Effect of tube curvature:
Several different curvature radii were testes, few effects on the magnitude and phase of the
FRF was observed.
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Effects of tube deflection angle:
The deflection angle of the tubes has few effects on the accuracy, it is only necessary to
avoid twisting of the tubes.

Effects of tube thickness and material:
The transmission of fluctuating pressure in the tube is a fluid-solid-interaction phenomenon,
which is influenced by material strength, surface smoothness, and so on. Therefore, the
tube thickness and material will influence the transmission of the pressure.

Another study by He at al. [30], the effects of the inner diameter (D) of the pressure
tubes and the inner volume (V) of the pressure scanners were investigated. These are con-
sidered to be two key parameters for quantifying the distortion effects and for correcting
the recorded pressure signal. Compared to the parameters discussed by Wang et al. [31],
these parameters can be hard to measure directly. The FRF model for an air-tube-scanner
system can be expressed theoretical, given in equation 2.89.

H(ω) =
[
cosh(φL) +

V

Vt
(σ +

1

k
)nφL · sinh(φL)

]
(2.89)

with:

φ =
ω

c

√
J0(α)γ

J2(α)n
(2.90)

α = i3/2R

√
ρsω

µ
(2.91)

n =
[
1 +

γ − 1

γ
·
J2(α

√
pr)

J0(α
√
pr)

]
(2.92)

where Vt = πR2L is the volume contained in the tube; L,R is the length and inner radius;
V is the volume of the pressure scanner; σ is a dimensionless increase in scanner volume;
k is a polytropic factor for air in the scanner volume; γ is the specific heat ratio of air; Pr
is the Prandtl number; ρs is air density under room conditions; J0 and J2 are the 0th and
2nd order Bessel functions of the first kind.

Once the FRF of the system has been determined, the distorted pressure signals can be
corrected through an inverse FFT (IFFT). Equation 2.88 gives:

FFT (Sin) = X(ω) = Y (ω)/H(ω) = FFT (Sout)/H(ω) (2.93a)
Sin = IFFT (X(ω)) = IFFT (FFT (Sout)/H(ω) (2.93b)

To compute H(ω) via equation 2.89, the parameters D (inner diameter) and V (inner
volume) of the pressure scanner should be predetermined. He et al. [30] proposed a
method with indirect measurements. The tube inner diameter was measured with a water-
weighting method, and V was determined by fitting measured FRF with theoretical pre-
dictions via equation 2.89. The study compared the measured FRF from experiments with
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the theoretical FRF, for two different scanners, Scanivalve and a Honeywell scanners. It
was concluded that the inner volume of the Scanivalve scanners was ignorable.

Furthermore, the theoretical FRF, given by equation 2.89 of the tube-scanner system is
simulated for three different lengths, L = 0.1m, L = 0.5m and L = 1.0m with V = 0.
The magnitude and phase of the FRF can be shown in figure 2.14. From the figure, it can
be seen that phase and magnitude are close to 1 and 0 rad, for the tubes with length 0.5m
at low frequencies. All tubes used in the experiments of this thesis are less than 0.5m. The
distortion effects are therefore neglected.
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Figure 2.14: Magnitude and phase of theoretical FRF of tube-transduces sytem.
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2.10 Estimation Methods for Aerodynamic Admittance
Functions

The admittance functions is a transfer function between the turbulence and the buffeting
forces on the structure. For bluff bodies, like a twin-box bridge, the exact expression of the
admittance cannot be theoretically derived, due to complex aerodynamic forces caused by
separation and reattachment of flow. In sections 2.7, several methods for estimation of the
aerodynamic functions are described. In this thesis, an experimental method is conducted,
where surface pressure and turbulence are measured. The admittance functions are esti-
mated by using three different methods; the general, the equivalent and the cross-spectral
method.

The general estimation method is based on the equivalent assumption, described in sub-
section 2.7.2. The method connects one force spectrum to one turbulent spectrum and the
cross-spectra between the horizontal and vertical turbulence components are neglected.
By finding the transfer function between the force spectrum and the turbulence spectrum
the admittance function can be expressed as:

|AF |2 =
Sj
Si

(2.94)

Where Sj represents the power spectra for the drag force (D), lift force (L) or moment
(M), and Si(f) is the turbulent component for the wind in horizontal (u) or vertical (w)
direction. The result will be three aerodynamic admittance functions where lift and mo-
ment are connected to the vertical turbulence component, w, while drag is connected to
the horizontal turbulence component,u.

The equivalent method is based on the auto-spectra of the forces and turbulence. The
buffeting force spectra can be expressed as [32]:

SD = (
ρV B

2
)2(4C2

DSu|ADu|+ (C ′D − CL)2Sw|ADw|) (2.95a)

SL = (
ρV B

2
)2(4C2

LSu|ALu|+ (C ′L + CD)2Sw|ALw|) (2.95b)

SM = (
ρV B

2
)2(4C2

MSu|AMu|+ C ′2MSw|AMw|) (2.95c)

Where Aij(i = D,L,M) and (j = u,w) is the aerodynamic admittance functions, V is
the mean wind, B is the width of the section, CD, CL, CM are the drag, lift and moment
coefficients and C ′D, C

′
LC
′
M are the derivatives of the drag, lift and moment coefficients.

By using the assumption from the equivalent AAF method where Aiu = Aiw = Ai, i =
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D,L,M , the equivalent aerodynamic admittance can be expressed as following:

|AD|2 =
SD

(ρV B2 )2(4C2
DSu + (C ′D − CL)2Sw)

(2.96a)

|AL|2 =
SL

(ρV B2 )2(4C2
LSu + (C ′L + CD)2Sw)

(2.96b)

|AM |2 =
SM

(ρV B
2

2 )2(4C2
MSu + C ′2MSw)

(2.96c)

Finally, the estimation of six aerodynamic admittance’s will be found by the cross-spectral
method in order to distinguishing between AFu and AFw. The method is based on the
measured cross-spectra between the fluctuating force and each component of the turbu-
lence. The cross-spectral equation for solving the AFFs are given as follows [33]:

SFu =
ρV B

2
(aFAFuSu + bFAFuSuw) F = L,D (2.97a)

SFw =
ρV B

2
(aFAFuSuw + bFAFwSw)

SFu =
ρV B2

2
(aFAFuSu + bFAFuSuw) F = M (2.97b)

SFw =
ρV B2

2
(aFAFuSuw + bFAFwSw)

where

aF = 2CF bF =


[C ′D − CL], F = D

[C ′L − CD], F = L

[C ′M ] F = m

(2.98)

where CF , F = L,D,M is obtained with equation 2.20. The two AAF components for
each force can then be calculated by the following expression:

AFu =
SwSFu − SwuSFw

aF
ρV B

2 (SuSw − SwuSuw)
F = L,D (2.99a)

AFw =
SuSFw − SuwSFu

bF
ρV B

2 (SuSw − SwuSuw)

AFu =
SwSFu − SwuSFw

aF
ρV B2

2 (SuSw − SwuSuw)
F = M (2.99b)

AFw =
SuSFw − SuwSFu

bF
ρV B2

2 (SuSw − SwuSuw)
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Chapter 3

Design and Building Process of
the Model

In this chapter, the design and building process of the bridge model is presented. The
model was built in the Structural engineering laboratory at NTNU, Department for Struc-
tural engineering. The concept and choice of the cross-section are based on wind tunnel
models from previous master thesis at NTNU. Figure 3.1 shows the completed model con-
sisting of an inner core, aluminum pipe, molding material, Divinycell, and the mid-section
made by Lexan plates and plastic tubes.

Figure 3.1: Complete wind tunnel model.

3.1 Choice of Cross Section
The bridge model in this thesis is a twin-deck bridge consisting of two identical sections.
The shape and dimensions of the cross section are based on two previous master’s thesis,
one model showing a linear behavior [34], while the other showed a non-linear behaviour
[35]. The intention with the model chosen for this thesis was to build a model in which
the behaviour would be a mix of the two previous models, a weakly non-linear behaviour.
Several designs of the cross-section were discussed before deciding the final shape. The
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Figure 3.2: First cross section proposal

first cross-section discussed is shown in figure 3.2. Due to multiple angles, causing prob-
lems in the cutting process of the Lexan plates, it was decided that this was not a good fit.

Further, a new cross-section, shown in figure 3.3 was discussed. In this model, the right
wall of the section is perpendicular to the top and bottom parts. Considering that the model
needs space inside for both the aluminium pipe and pressure tube system, it was decided
to increase the height of the cross-section with 15mm. The final cross-section of the twin
box model is shown in figure 3.4.

Figure 3.3: Second cross section proposal
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Figure 3.4: Final cross section

3.2 Material Properties
The model is made up of two identical sections consisting of three main parts; aluminium
pipe, two Divinycell elements and in the middle, a section made of Lexan glass plates.
The aluminium pipe is the core of the model and is the main contribution to the stiffness.
In order to get the shape of the model Divinicell is used due to its low weight and forma-
bility. The mid-section is made by Lexan plates in order to have room for the plastic tubes
measuring the pressure at the bridge surface. Table 3.1 shows a list of the materials used
in the different parts on the sections.

Main part Purpose Material
Aluminium pipe stiffness of model 50x1.5 mm Aluminium pipe

Foam model
Cross section shape
Adherent
Surface treatment

Divinycell
3MTM Spraylim 74
Spray paint, glossy

Lexan plates
Cross section shape
Pressure tubes
Adherent

Lexan plates
1.02 mm Urethane tubes
Glue

Table 3.1: Materials used for the twin-box model

3.3 Distrubution of Pressure Tubes
For the measurement of the fluctuating pressure at the chosen bridge deck, pressure tubes
are placed at the mid-section consisting of Lexan plates. In previous studies, the dis-
tributions of the pressure tubes have been uniformly distributed over the cross-section.
According to [36] the taps should be closely spaced where a strong pressure gradient is
expected. By looking at the pressure distribution obtained from the wind tunnel test done
by Larose [9], it is clear that the pressure gradient is significantly larger at the windward
edge and then gradually decreases over the surface. The density of taps is therefore larger
at the surface of attack and decreasing as the gradient decreases, giving a non-uniform
distribution.
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A total of 256 pressure taps was available and distributed along 6 lines aligned with the
deck axis on both box sections. The first strip has a ring of 48 tubes distributed around the
cross-section. In addition, the five remaining strips, acting as correlation lines, have a ring
of 16 tubes, see figure 3.5. To keep track of which tube is attached to which channel on the
pressure scanner, a numbering system is made to separate the tubes from each other. The
numbering system consists of four numbers identifying each tube; the first number identi-
fies which box section the tube belongs to, the second number identifies which correlation
line the tube belongs to and the last two numbers identifies the tubes position in the given
correlation line. For example, the tubes on the downstream box section are denoted by
the numbers 1101-1148 on the first ring, 1201-1216 for the second ring up to 1601-1616
for the sixth ring. Figure 3.6 shows the numbering and placement of the first and second
correlation line on the windward box.

(a)

(b)

Figure 3.5: Distribution of tubes distance in millimeters, (a) first strip with and (b) second to sixth
strip

The correlation lines, intended for the calculation of the span wise correlation of aerody-
namic pressure, are partitioned in the span wise direction of the model. The span length
is put equal to the width of the top surface of one section model, 190 mm. In order to
detect correlation at different spacing’s the arrangement of the lines are chosen as shown

46



in figure 3.7.

(a)

(b)

Figure 3.6: Numbering system for the first line on the windward box for (a) first strip and (b) second
strip
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SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 3.7: Spacing of correlation lines in millimeters
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3.4 Building Process

In this section is the concept of the model and the building procedure presented. It was
discussed several solutions, but the final solution fell on milling out the Divinycell and
lowering the mid-section with 2mm. In this part, the Lexan plates were glued and most of
the Divinycell were cut away to make room for the tube measurement system.

3.4.1 Choice of Concept

The first concept that was discussed is shown in figure 3.8. A suggestion of placing the
Lexan plates over the entire length of the model, to improve stiffness, was first proposed.
In addition, to have enough room in the mid-section for the tube system, the aluminium
pipes were suggested to only penetrate the ends of the model. This concept would not give
the desired stiffness of the model and therefore a new solution was suggested.

Divinycell

Lexan Plates

Aluminum Pipe

SOLIDWORKS Educational Product. For Instructional Use Only.

(a)

Aluminum pipe through parts of the model

covered by plates 
tube system 
Open room to 

Divinycell

SOLIDWORKS Educational Product. For Instructional Use Only.

(b)

Figure 3.8: Sketch of the first concept of the model

The new solution proposed was to put the aluminium pipe throughout the model and only
have Lexan plates in the mid-section of the model. This gave the required stiffness and
was easier to implement, and therefor concluded to be the final solution.
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Pocket for pressure 
transducer

Plates

Room for aluminium pipe
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Figure 3.9: Sketch of Model

The first step in the building process was to sketch the final concept in SolidWorks. The
sketches were used by the milling machine to mill out the model. First, the inside geom-
etry, the room for pipes, wires and pressure scanners, was milled out on four Divinycell
parts. Next, the aluminium pipes and the top and bottom parts of the model were glued to-
gether forming the base of the two sections of the twin-bridge. Last, the outside geometry
of the model was milled out.

Figure 3.10: Milling of the inside geometry of the model.
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Figure 3.11: Gluing of aluminium pipe.

It is necessary to have easy access to the pressure scanner, placed inside the model, due
to the possibility that the tubes detach from the pressure scanner or other complications
can occur. Several solutions were discussed. The first suggestion was to cut a part of the
Divinycell in two, making it possible to take the upper part on and off. The parts would
be mounted together with small screws to be secure. A sketch on the solution is shown in
figure 3.12, where the green part is the suggested cut in the model.

Cut in the Divinycell, 
then possible to take the 
Divinycell part off and of 

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 3.12: Discussed solution of opening to the pressure scanner.
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It was concluded that this solution would not be optimal in the wind tunnel test and a new
proposal was further discussed. The new proposal was based on making cuts in the top
part of the model, over the scanners, and closed with Lexan plates. This was the chosen
concept and a sketch can be shown in figure 3.13.

Opening for transducers

SOLIDWORKS Educational Product. For Instructional Use Only.

(a)

Opening for  
transducers 
closed with a 
Lexan Plate

SOLIDWORKS Educational Product. For Instructional Use Only.

(b)

Figure 3.13: Solution of openings to the scanners.

The mid-section of the model was trimmed and milled out to make room for the tube
system. Last, to prevent dust from the Divinycell, the model was surface treated with a
glossy spray painting. The finished sections can be shown in figure 3.14

(a) Outside Geometry. (b) Details of middle section.

Figure 3.14: Geometry of the model.
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3.4.2 Application of Lexan Plates and Pressure Tubes

The Lexan plates are placed in the mid-section of the model, as shown in figure 3.9. Each
plate was first sketched in SolidWorks and further milled out in the laboratory. Then, the
256 holes for the pressure tubes, with the arrangement as described in section 3.3, were
drilled out. Next, the pressure tubes are pulled through the holes and glued to the Lexan
plate as shown in figure 3.15 (a).

(a) Details of tubes glued to the Lexan plate (b) Arrangement of tubes, and application of tubes on
scanner

(c) Finished section model with tubes, Lexan plates and pressure scanners

Figure 3.15: Application of Lexan plates and tubes
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The tubes are cut perfectly down to make the surface as smooth as possible. Before at-
taching the plates to the model it was found that a couple of the plates were longer than
intended. For this reason the plates had to be cut and polished down by hand leading to
some rough edges where the plates meet. An attempt of fixing the edges were made by
applying glue to make a smoother transition between the plates, and to prevent the wind
from entering through the gaps. These defects may lead to some errors in the measure-
ments of the pressure.

Before gluing the plates together the tubes were threaded through the model and into
the opening for pressure scanners as gentle as possible to prevent curving of the tubes.
The tubes are then cut as short as possible which together with the curvature are factors
that can affect the accuracy of the measurements as mentioned in section 2.9. At last the
tubes are attached to the pressure scanners and placed inside the model, see figure 3.15 (c).

When both sections of the twin-box bridge was completed the sections were mounted
on a plate with a gap width of 160 mm, giving a 241 mm center spacing between the
aluminium pipes. It should be mentioned that the gap width has significant impact on the
aerodynamic admittance, and should be chosen such that the gap width is large enough to
keep the vortex shedding from the trailing edge of the windward-box and make the vortex
exist in the gap region as described in section 2.8.1. Due to limited time in the laboratory
it was decided to use and existing plate and the recommended gap width was therefore not
considered. The attachment point where the aluminium pipes are connected to the plate
is a load cell, and the plate are then again attached to the mounting system in the wind
tunnel, figure 3.17.

(a) Center spacing between aluminium pipes (b) Gap with

Figure 3.16: Details of the mounting system
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Figure 3.17: Model mounted in wind tunnel
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Chapter 4

Wind Tunnel Testing

The wind tunnel tests of the twin box model were done at the Fluid Mechanics Laboratory
at Department of Energy and Process Engineering, NTNU. In this chapter, the experimen-
tal setup, the monitoring system and the tests in the wind tunnel are described. The main
purpose of the wind tunnel testing is to investigate the pressure distribution caused by the
incoming flow and to estimate the aerodynamic admittance functions.

4.1 Experimental Setup
This section describes the instruments needed for the wind tunnel test and how all the
components are assembled. The three instruments required to achieve pressure and wind
data are the Pitot probe, TFI Cobra probe and the MSP4264 Miniature Pressure Scanner.

The objective of the experimental setup was to synchronize the cobra probe and MSP
with each other in order to register identical time histories, while the Pitot probe was used
to measure the wind velocity. Due to lockdown at NTNU and the Fluid Mechanics Lab-
oratory the authors of this thesis were not able to conduct the work of synchronizing the
components and test them before the final wind tunnel test. Fortunately, this was done by
the supervisor, Ole Andre Øiseth, and PhD candidate, Øyvind Wiig Petersen, to be ready
when the lockdown was terminated. However, the components and the experimental setup
was documented and described in the following sections. A flow chart illustrating the
experimental setup from sampling to processed data are shown in figure 4.1.
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Figure 4.1: Flow chart of experimental setup
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4.1.1 General Experimental Setup

Figure 4.2 shows the experimental setup in the wind tunnel.

Turbulence grid

Load cell x2 Load cell x2

Pitot tube

Twin-box model

Cobra probe

Figure 4.2: Setup inside the wind tunnel.

A uniform grid, generating turbulent flow, was placed 2 m upstream of the twin box model.
Due to limited time in the wind tunnel laboratory, other positions of the grid were not
tested, nor was an optimal wind field created. The grid setup can be shown in figure 4.2.
The Cobra Probe, used to measure the turbulence, was placed 6 cm from the windward
edge of the upstream-box, as shown in figure 4.3.

(a) Cobra Probe setup

(b) Distance from Cobra Probe to windward edge of up-
stream box.

Figure 4.3: Cobra Probe setup.

A clamping mechanism was used to connect the model to the load cells. The load cells are
used to measure the wind induced forces on the section model, and each load cell measures
three forces and three moments. Further, the load cells are connected to an actuator, which
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can move the section into any desired 3 degrees of freedom. In figure 4.4, the load cells
connected to the twin-box section model are shown.

Figure 4.4: Load cells connected to the twin-box.

The pitot probe was placed upstream of the twin-box model, close to the turbulence grid
to avoid turbulence effects when measuring the mean wind speed.

During the testing, it was observed vibrations, due to vortex shedding and it was decided
to increase the stiffness of the twin-box model. A stiffening system with two timber beams
supporting the model, shown in figure 4.5, was used. The tests were conducted with and
without stiffening system.

Stiffening system 

Figure 4.5: Stiffening system of the twin-box model.
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4.1.2 MPS4264 – Miniature Pressure Scanner
Measurements of the fluctuating pressure on the cross-section of the bridge when exposed
to wind are done by four MPS4264 Miniature pressure scanners. The pressure scanners
are described by Scanivale in the Hardware & Software manual [37] as:

The MPS4264 is a 64 channel, intelligent, miniature pressure scanner. Each
MPS4264 series scanner incorporates 64 individual piezoresistive pressure
sensors. In addition to the pressure sensors, the MPS4264 integrates all of the
electronics for the analog-to-digital (A/D) conversion process and a proces-
sor running a digital signal processor (DSP) operating system supporting the
engineering unit conversion process and all communications overhead.

The MSP is specifically designed for experiments conducted in wind tunnels where oper-
ational conditions are very space-constrained and pressures do not exceed 50 psi. For this
reason and its small size, the MSP is user friendly and is a perfect fit for wind engineering
applications.

For the wind tunnel tests conducted in this thesis a total of four MSP pressure scanners was
used, two in the upstream-box and two in the downstream-box. The MSP’s are configured
to scan with an external trigger signal which synchronizes the data collection between the
MSP and the Cobra probe. The trigger signal is received through the power box from the
trigger device. Communication with the MPS’s is through Ethernet cables connected to
the computer via a network switch. This communication is established by the communi-
cation utility ScanTel, which is a text based, command line program that allows the user to
modify the configuration variables and collect data in both TCP/IP and UDP format. All
connections and components can be seen in the flow chart in figure 4.1.

The pressure tubes from the Lexan plate section are attached at the 64 input ports at the
top of each MPS. In appendix A an overview of which pressure channel belongs to which
pressure hole on the surface of each section is presented. An additional plastic tube is
connected to the reference port (REF) while the other end is put outside the wind tunnel.
The purpose of the tube is to serve as a reference pressure and to ensures that when a zero
offset calibration is performed no unwanted offsets are introduced. All connectors and
ports on the MPS4264 Pressure scanner are shown in figure 4.6.

59



Power Trigger 
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Ethernet 
connector

Reference pressure 
port (REF)

Input ports (33-48)

Input ports (1-32)

Figure 4.6: MPS4264 Miniature Pressure Scanner

4.1.3 Cobra Probe
Measurements of the wind data in the wind tunnel test is done by a Cobra Probe instrument.
The Cobra probe is described by TFI [3] as:

The Cobra Probe is a multi-hole pressure probe that provides dynamic, 3-
component velocity and local static pressure measurements in real-time. The
Probe is capable of a linear frequency-response from 0 Hz to more than 2
kHz and is available in various ranges for use between 2 m/s and 100 m/s. It
can measure flow angles in a ±45◦ cone, all six Reynolds stresses and allows
calculation of other higher order terms.

The figure below show the Cobra Probes main features

Figure 4.7: Series 100 Cobra Probe main features by TFI [3]

The components needed for recordings with the Cobra probe are explained and shown in
figure 4.8.

• Series 100 Cobra probe
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– The cobra probe is connected through the interface unit via the 7-pin connector
connected to a a group of four channels on the DAQ system labeled A1-A4.

• The DAQ device

– Transfers analogue signal to digital signal.

– Copies data in order to view the plots of time or frequency spectra in TFI
Device Control System on the computer.

• DAC card placed in the cRIO

– The data recorded from the cobra probe goes directly to the DAC card in the
cRIO.

– It is important that the cables from the DAQ device labeled A1-A4 is inserted
in the right order from 0 to 3 in the DAC card in the cRIO.

– Data from the cRIO is stored on the USB stick.

• Ethernet cable gives connection between the cRIO and the computer.

• Reference pressure cable

– Connected to the Cobra probe on one side while the other end it put outside
the wind tunnel.

Interface Unit

Cobra probe

DAQ 
device

DAC card placed in 
cRIO

USB
Ethernet 
cable

7-pin connector 

Reference 
pressure cable

Figure 4.8: Overview of setup for Cobra probe
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4.1.4 Pitot Probe
A Pitot probe is used to measure the wind-velocity inside the wind tunnel during tests.
It consists of two tubes measuring the static and stagnation pressure at the same point.
The difference between these pressures is contributed to the velocity pressure and used to
calculate the wind speed. Before starting the test the pitot probe needs to be calibrated
for different wind speeds with a manometer. A reference pressure cable connected to the
pitot probe is put outside the wind tunnel with the other reference pressure cables from the
Cobra probe and MSP pressure scanners.

Pitot Probe

Reference pressure cable

Figure 4.9: Setup of the Pitot probe
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4.2 Wind Tunnel Tests

During the tests, the experimental setup described in section 4.1 was used. Tests were per-
formed in both laminar and turbulent wind conditions and with and without the stiffening
system. An overview of the tests is presented in table 4.1.

Filename Direction Flow RPM Notice
Master2020TD 20 00 001 Torsional None 0
Master2020TD 20 00 003 Torsional Turbulent 320
Master2020TD 10 00 002 None Turbulent 320
Master2020TD 10 00 003 None Turbulent 320
Master2020TD 10 00 004 None Turbulent 490
Master2020TD 10 00 005 None Turbulent 180
Master2020TD 10 00 901 None Turbulent 220 Stiffening system
Master2020TD 10 00 902 None Turbulent 300 Stiffening system
Master2020TD 10 00 903 None Turbulent 450 Stiffening system
Master2020TD 10 00 904 None Laminar 220 Stiffening system
Master2020TD 10 00 905 None Laminar 271 Stiffening system
Master2020TD 10 00 906 None Laminar 397 Stiffening system

Table 4.1: File history.

Without the stiffening system, vortex shedding was observed in a region between 200-300
RPM in the turbulent flow. The vibrations disturb the test results and should be excluded
from the test regime. The vortex-induced vibrations happen when the frequency from the
harmonic vortex shedding load coincides with the natural frequency of the section model,
the measured forces will increase and vortex-induced vibrations occur. Besides, lock-in
causes vibrations to built up close to the critical speed. Due to this, the range of velocities
close to the critical vortex-induced vibration is excluded from the test regime.

The turbulence intensity for each test was calculated using equation 2.30. Optimally the
Pitot probe should be used when measuring the mean wind velocity. Compared to the
cobra probe, the pitot probe gives more accurate results. However, for the test with the
stiffening system the wind tunnel motion control system was turned off and measures from
the Pitot probe were therefore not collected. For this reason, the mean velocity for tests
with stiffening is found by meaning the u-component from the Cobra probe. Examination
of tests containing measurements from both pitot probe and cobra probe revealed that the
cobra probe measured lower values for the mean wind velocity. This trend amplifies when
the wind speed increases, indicating that the mean wind velocity for the test performed
with stiffening will not be entirely accurate. Values of the turbulence intensity of each test
are given in table 4.2 to 4.4.
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Filename Iu Iw V[m/s] RPM
Master2020TD 10 00 002 11.3% 9.2% 6.7 320
Master2020TD 10 00 003 11.3% 9.2% 6.7 320
Master2020TD 10 00 004 10.9% 8.6% 10.1 490
Master2020TD 10 00 005 12.5% 10.4% 3.5 180

Table 4.2: Turbulence intensity in tubulent flow

Filename Iu Iw V
[m/s]

RPM

Master2020TD 10 00 901 13.1% 10.7% 3.9 220
Master2020TD 10 00 902 12.5% 10.4% 5.4 300
Master2020TD 10 00 903 12.2% 9.8% 8.3 450

Table 4.3: Turbulence intensity in turbulent flow with stiffening system

Filename Iu Iw V[m/s] RPM
Master2020TD 10 00 904 1.3% 1.5% 4.6 220
Master2020TD 10 00 905 1.3% 1.4% 5.7 271
Master2020TD 10 00 906 1.4% 1.3% 8.4 397

Table 4.4: Turbulence intensity in laminar flow with stiffening system

4.2.1 Static Tests
The static tests were performed to get estimates on the static force coefficients (lift, drag
and moment). The wind speed was kept constant, with a mean wind velocity equal 6.5m/s,
while the angle of attack of the twin box model was changed. The angle of attack was
continuously changed, with a max amplitude of 8 degrees. The pressure scanners were
not used in this test and force measurements were done by the load cells at the ends of the
bridge. A still air test was done as a reference and control check.

4.2.2 Admittance Tests
The admittance tests were performed for different wind velocities for both uniform and
turbulent flow, the angle of attack was equal to zero. From these tests, the aerodynamic
admittance functions can be estimated. The first tests were run without the stiffening
system in a turbulent flow. For the next tests, due to vibrations, the stiffening system was
installed. Different velocities were tested for both uniform and turbulent flow. Due to the
reduction of the velocity caused by the turbulence, the RPM had to be increased in the test
with the uniform flow to achieve the same velocity. During a test, turbulence components,
mean wind and surface pressure are measured. In addition, the load cells measured the
forces acting at the end of each section when the the stiffening system was not installed.
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4.3 Accuracy and Error Sources in the Experimental Setup
Inaccuracies and errors in the experimental setup may lead to inaccurate results. These
may arise from both errors in the measurements and inaccurate assumptions concerning
the test setup. For instance, when the twin box model was mounted inside the wind tunnel,
a level meter was used to place the two sections correctly. Since this is done manually,
some errors can be related to the placement of the girders. Further, the Lexan plates with
the tube system were not completely sealed. The wind can therefore penetrate the section
affecting the flow pattern and the pressure distribution. This uncertainty will be discussed
further in the results.

Measured signals can be exposed to unwanted noise and vibration. Sources to noise in
the wind tunnel tests can be due to electrical noise, or loose components. Electrical noise
was detected in the measurements of the forces in the load cells during the test and for
some of the measurements, it was decided to unplug the wiring from the load cells.

Other sources of disturbance in the signal are dynamic amplification and signature tur-
bulence. The dynamic amplification is due to vibrations around the eigenfrequency of the
test model and can be seen as peaks around the eigenfrequency in the power spectral den-
sity plots. Signature turbulence may be formed by the mix of unsteady vortexes in the gap
and in the wake of the model that produces dynamic forces onto the section.

In addition, pressure changes in the reference pressure tube from the Pivot probe and
the Cobra Probe can occur. For instance, if a door closes it can lead to small changes in
the pressure inside the laboratory and affect the measured reference pressure. Last, it was
detected that three of the pressure tubes, nr 1307, 1407 and 1507, had detached from the
Lexan plates before the tests were executed. There are uncertainties about how this will
affect the measurements and will also be discussed further in the results.
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4.4 Post Processing
For each test executed in the wind tunnel, separate files were saved for the Cobra probe,
pitot probe, MPS pressure scanners and load cells. The measurements and data acquisition
systems were measured at a sampling rate of 200Hz per second. Data processing from raw
to processed data with desired units was done by the supervisor. All time series were
controlled and cut to avoid disturbance and noise at the start and end. Further processing
of the data necessary to achieve the desired results is done in Matlab.

4.4.1 Pressure Data
The purpose of measuring the pressure with the pressure tubes is to estimate the aerody-
namic forces around the twin box section for different wind velocities and flow conditions.
The scanners measured the pressure perpendicular around the surface of the twin-box. Fur-
ther, the surface pressure was integrated over the cross-section to obtain the aerodynamic
forces on the twin-box model. Two different methods to estimate the aerodynamic forces
were investigated, the piece-wise point load method and the interpolated method. The
Matlab scripts can be seen in B. For the piece-wise point load method, the forces are con-
sidered as point loads located at the pressure tubes holes. For the interpolated method the
forces are considered as a distributed load around the cross-section. The mean value of the
pressure from the time series was used to obtain a static pressure and load representation,
and the time series of the forces were used to obtain force spectra.

The surfaces and angles on the upstream and downstream deck are defined as in figure
4.10, and used when calculating the forces and moments in Matlab.

Figure 4.10: Definitions of the surfaces and angles on the twin-box model.
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Further, when calculating the the moments, the definitions of positive and negative forces
are shown in figure 4.11.

Figure 4.11: Moment calculations

The piece-wise point load method considers the pressure and load as point pressures and
loads located at the pressure tubes holes. The loads are obtained by multiplying the pres-
sure with a surface area. This surface area has a with equal 1 meter and the width is
considered as the sum of two half surfaces between two pressure tubes. For the pressure
tubes at the end, the width is assumed to be the sum of the half distance between the neigh-
bor pressure tube and the length to the end of the surface. An illustration of the widths on
the top surface is shown in figure 4.12, where a1-a16 denotes the width of the associated
pressure tube.

Figure 4.12: Illustration of the widths of the top surface, a1-a16 denotes the width to the associated
pressure tubes.

Figure 4.13 and 4.14, shows an example of the pressure and load distribution. Pressure
pointing inward is defined as pushing pressure and pressure pointing outward is defined as
suction.
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Figure 4.13: Example of point pressure Distribution.

Figure 4.14: Example of point load distribution

The interpolated method calculates the aerodynamic forces and moments, as a distributed
load over the surfaces of the cross-section. The distributed pressure and loads are calcu-
lated by a spline function in Matlab, where distributed pressure is piece-wise defined by
the pressure data from each pressure tube around the twin-box cross-section. To obtain
the distributed pressure with the spline function, query points with a spacing of 0.001 m
were arranged around the section. Further, the distributed pressure is determined by cubic
spline interpolation of each pressure signal and the associated location of the tube. The
distributed load was obtained by multiplying the pressure with an area equal to 0.001·1m2,
except for the ends of all surfaces which were multiplied with 0.001 · 1/2m2. Figure 4.15
and 4.16 shows the pressure and load distribution for a random time series obtained with
the interpolated method.
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Figure 4.15: Example of interpolated pressure distribution.

Figure 4.16: Example of interpolated load distribution.

4.4.2 Force Spectra
The time series of the forces, obtained from the pressure measurement and transformed
into loads by the methods described above, are transformed into the frequency domain by
the Welch method using 10 Hanning windows. The spectral densities of the forces are
plotted with logarithmic axes and the different correlation lines are compared. The forces
are further used to find the coherence between the six correlations lines with equation 2.87.
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4.4.3 Wind Data
The raw data files obtained from Cobra probe during tests are collected in Voltage. The
processing of the raw voltage data to velocity data was done by the PhD candidate Øyvind
Wiig Petersen and given to the authors of this thesis for further use.

In order to use the wind data to estimate the aerodynamic admittance of the twin-box
girders the processed velocity data is transferred to the frequency domain. The time se-
ries of the turbulence used for the spectral density function consists of zero mean signal,
only giving the fluctuating part of the wind. The estimation of the power spectral density
function is done using the Welch method which has the advantage of reducing noise in the
estimated spectra. The data was transformed using 10 Hanning Windows.

4.4.4 Admittance Estimates
The aerodynamic admittance functions for the twin-box bridge were all estimated in the
frequency domain. All the data obtained from the MSP pressure scanner and the cobra
probe are zeroed by subtracting the mean of the signal. The spectral densities of the turbu-
lence and the forces are then found by the Welch method as described in subsection 4.4.2
and 4.4.3.

Three different approaches were used for estimation of the Admittance functions, gen-
eral, equivalent and cross-spectral approach. All methods are described in section 2.11
with their respective equations. The estimated admittance functions are plotted with log-
arithmic axes together with the Sears function for comparison. The script used for the
estimation of the aerodynamic admittance functions is attached in Appendix C.
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Chapter 5

Results and Discussion

5.1 Turbulence Spectra

The wind spectrum for each test was analysed to detect possible errors, that could cause
inaccuracies in the final estimation of the admittance functions. Figure 5.1 shows the
vertical and horizontal spectra for both turbulent and uniform flows. The spectra are a
good representation of the wind flow and all other tested velocities are similar to those
presented below.
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Figure 5.1: Spectra of turbulent, V = 3.5m/s, and uniform, V = 4.6m/s, flow in horizontal, u,
and vertical, w, direction

As seen in figure 5.1 the turbulent wind spectrum has significantly higher spectral densities
than the laminar flow, as expected. Another observation was that high peaks were detected
in the laminar wind spectrum. These peaks are possibly caused by vibrations of the cobra
probe at one of the Probe mount’s natural frequencies. Since there is almost no turbulence
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in these data, the natural frequencies of the probes mounting system will be significantly
higher than rest of the signals.
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Figure 5.2: Normalized wind spectra for turbulent flow, V = 3.5m/s.
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Figure 5.3: Normalized wind spectra for laminar flow, V = 4.6m/s.

Figure 5.2 and 5.3 shows the normalized spectra in vertical and horizontal direction for the
two different flows. The measured data are normalized by multiplying with the frequency
and divide by the squared mean wind and plotted against the reduced frequency. All plots
have a maximum value around the reduced frequency 1, except from the distinct peaks
caused by the probe mount’s natural frequency. This is in accordance with turbulence
spectra found by Larose [9], which implement that the spectra are a valid representation
of the turbulent wind field.
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For further validation, the turbulent wind spectra are plotted together with the Kaimal
spectra, given by equation 2.34. The turbulence intensity is given in table 4.2 to 4.4, and
the integral length scale is fitted to the measured data. It should be mentioned that the
integral length scale is difficult to determine in a wind tunnel experiment. In the Kaimal
spectrum the value of the integral length scale determines the peaks horizontal position in
the spectra. To fit the Kaimal spectra to the given turbulence the integral length scale is
put equal to xLu = 0.07m and xLw = 0.0233m. As seen in figure 5.4 the measured
data fits well with the Kaimal spectrum as it shows similar distribution of energy with the
frequency. For this reason, the measured spectra are a good representation of the turbulent
wind and should be adequate to use in the admittance estimation.
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Figure 5.4: Normalized wind spectra for turbulent flow together with Kaimal spectrum,V =
3.5m/s.
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5.2 Comparison of Forces
The forces from the interpolated- and the piece-wise defined load method, described in
section 4.4.1, are presented in table 5.1. The forces are compared with the forces obtained
from the load cells, given in table 5.2.

Table 5.1 and 5.2, presents the total static forces on the upstream- and downstream-box
measured by the load cells and the pressure scanner. The static forces from the pressure
scanner are generally lower than the static forces obtained from the load cells. When
the wind speed increases, the deviation between the pressure measurement forces and the
load cell forces increase. Moreover, the errors are greater on the upstream-box than the
downstream-box. To sum up, when the forces increase the deviation between the pressure
measurement and the load cell increases.

A small difference between the forces obtained from the interpolated load method and
the piece-wise point load method was observed. In general, the interpolated load method
gives higher force magnitude, expect the moment on the downstream-box. Both methods
underestimate the forces on the bridge deck, compared to the load cells, but are considered
sufficient for further work in this thesis.

V [m/s]
Interpolated load method Piece-wise load method
Upstream Downstream Upstream Downstream

Fx [N]
6.7 0.56 0.56 0.57 0.56
3.5 1.81 1.82 1.82 1.81
10.1 3.91 3.99 3.92 3.97

Fz [N]
6.7 0.95 -0.72 0.95 -0.71
3.5 4.07 -2.93 4.03 -2.92
10.1 9.83 -6.48 9.73 -6.47

My [Nm]
6.7 0.28 0.08 0.23 0.10
3.5 1.09 0.35 0.94 0.38
10.1 2.5 0.80 2.25 0.86

Table 5.1: Static forces on upstream- and downstream-box obtained from the interpolated load
method and the piece-wise load method.
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V [m/s]
Load Cells
Upstream Downstream

Fz [N]
6.7 0.99 1.02
3.5 2.85 2.74
10.1 6.31 5.80

Fx [N]
6.7 1.26 -1.07
3.5 5.06 -3.30
10.1 11.31 -6.94

M [Nm]
6.7 0.39 0.18
3.5 1.46 0.56
10.1 3.27 1.17

Table 5.2: Static forces on upstream- and downstream-box obtained from load cells.
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5.3 Static Coefficients
For the estimation of the static coefficients, of the twin-box bridge, different tests were
considered and compared to each other. First, the static coefficients are estimated by forces
measured by the load cells, for the static test described in subsection 4.2.1. This gives the
static coefficient as a function of angle of attack. In addition, the static coefficients of four
tests in different wind velocities were considered. Every time series from the load cells and
pressure scanner are filtered by a lowpass filter with a pass-band frequency of 0.5 Hz and
a stop-band frequency of 1.0 Hz. Then the static coefficients are normalized as described
in equation 2.20.

Static Test

Figure 5.5 to 5.7 shows the normalized static coefficients obtained from the static test for
the total model as well as for the upstream- and downstream-box. The forces and moments
used for the calculation on the upstream- and downstream-box are in global coordinates,
and the whole width of the bridge, B, defined in figure 3.4 is used in the normalization.
The unfiltered raw data of the measured forces are presented by the gray area of the plot
while the blue lines are the filtered forces. Since the test is cycled more than once, the data
were fitted by a third-degree polynomial function in order to extract values at different
angles.

Figure 5.5: Static coefficients bridge model
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Figure 5.6: Static coefficients Upstream-box

Figure 5.7: Static coefficients Downstream-box

From the plots, in figure 5.5 and 5.7, of the static coefficients, a clear nonlinear relation-
ship can be seen between the angle, α, and the drag coefficient. A more linear relationship
is seen for the lift and moment coefficients, especially at the downstream box, but some
non-linearity can be seen for greater angles. In order to prevent the section from rotating
when exposed to wind, CM should be close to zero for α = 0. This is not the case for the
tested model and can lead to some unsteadiness of the model. A reason for this may be
that there has not been focused on optimisation of the cross-sections shape.

The drag, lift and moment slopes, dCL/dα, dCD/dα and dCM/dα, are plotted in fig-
ure 5.8. The slopes are defined as the rate of change in the static coefficients with respect
to the angle of attack. It should be noted that the angle, α, is measured in radians when
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finding the slopes. The static coefficients and corresponding slopes are given in table 5.3
to 5.6. The value at α=0 is highlighted and will be used for further comparison of static
coefficients obtained from the pressure measurements.
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Figure 5.8: Drag, lift and moment slopes for bridge model, upstream-box and downstream-box

Total

Angle CD CL CM

-8 1.683 -0.2424 0.0678
-4 1.121 -0.1884 0.08671
0 0.9949 0.05851 0.1653
4 1.273 0.3189 0.2182
8 1.949 0.3787 0.148

Table 5.3: Static coefficient from bridge model

Angle Upstream-box Downstream-box

CD CL CM CD CL CM

-8 0.6329 -0.0825 -0.0649 1.05 -0.1600 0.1327
-4 0.4694 -0.0437 -0.0237 0.6538 -0.1446 0.1104
0 0.5092 0.1219 0.1171 0.4857 -0.0634 0.0482
4 0.7323 0.2784 0.2484 0.5502 0.0406 -0.0301
8 1.071 0.2657 0.2409 0.8779 0.1130 -0.0929

Table 5.4: Static coefficient from upstream- and downstream-box
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Angle Total

dCD/dα dCL/dα dCM/dα

-8 -11.16 -1.657 -0.6257
-4 -4.793 2.699 0.9369
0 1.031 4.129 1.173
4 6.798 2.753 0.1016
8 12.26 -1.548 -2.313

Table 5.5: Derivative of static coefficient for bridge model

Angle Upstream-box Downstream-box

dCD/dα dCL/dα dCM/dα dCD/dα dCL/dα dCM/dα

-8 -4.0440 -1.133 -0.7532 -7.1150 -0.5234 -0.1397
-4 -0.7403 1.8640 1.6270 -4.0530 0.8346 -0.6900
0 1.8910 2.6800 2.241 -0.8596 1.4600 -1.0860
4 4.0690 1.3830 1.1700 2.7290 1.3700 -1.0680
8 5.6720 -2.105 -0.1402 6.587 0.5579 -0.6367

Table 5.6: Derivative of static coefficient for upstream- and downstream-box

Pressure Measurements

The calculation of the static coefficient based on measurements from the pressure scanners
were found for three different mean wind velocities at 3.5m/s, 6.7 m/s and 10.1 m/s. All
tests are done without the stiffening system and rotation of the model. For this reason,
it is only possible to find the static coefficient at α = 0 and the slope cannot be found.
The coefficients from corresponding measurements from the load cells were also found
for comparison and presented in table 5.7.

Mean wind (V) CD CL CM

MPS Load cells MPS Load cells MPS Load cells
3.5 m/s 0.7179 1.2863 0.0205 0.0163 0.048 0.842
6.7 m/s 0.6455 0.9939 0.0264 0.0426 0.0541 0.0824

10.1 m/s 0.6185 0.9490 0.0348 0.0466 0.0560 0.0800

Table 5.7: Global Static Coefficient from pressure measurements and load cells

Next, the static coefficients for the upstream- and downstream-box were found separately
and presented in table 5.8 and 5.9. It can be seen that the static coefficients obtained
from the pressure measurements were lower than those from the load cells with roughly
30%. However, when comparing the measurements from the load cells and the static tests
for the same mean wind speed, a deviation was observed. All the static coefficients are
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lower for the static test, but the deviation between the drag coefficients are not as signif-
icant as for moment and lift. The reason for this can be that the tests were implemented
differently in terms of rotation, or that the polyfit function is not as precise as expected.
Furthermore, the static coefficients of the upstream-box are generally larger than those
from the downstream-box which indicates that the upstream-box contributes most to the
global static coefficient. The static coefficient’s found by the pressure measurements and
loads cells are closer in value for the downstream-box compared to the upstream-box.

Upstream box

Mean wind (V) CD CL CM

MPS Load cells MPS Load cells MPS Load cells
3.5 m/s 0.3615 0.6348 0.0819 0.1091 0.0337 0.0579
6.7 m/s 0.3235 0.5076 0.0971 0.1229 0.0384 0.0597

10.1 m/s 0.3078 0.4946 0.1036 0.1203 0.0406 0.0590

Table 5.8: Static coefficient for upstream box

Downstream box

Mean wind (V) CD CL CM

MPS Load cells MPS Load cells MPS Load cells
3.5 m/s 0.3564 0.6514 -0.0615 -0.0928 0.0143 0.0263
6.7 m/s 0.3220 0.4864 -0.0706 -0.0793 0.0157 0.0227

10.1 m/s 0.3107 0.4544 -0.0688 -0.0737 0.0154 0.0211

Table 5.9: Static coefficient for downstream box

As already discussed in section 5.2, the forces obtained from pressure measurements are
generally lower than those obtained by the load cells, and will result in lower static coef-
ficients. Based on these observations, it was decided that the static coefficients obtained
from the static test will be the best representation when estimating the aerodynamic ad-
mittance functions. In addition, only the static test provides the slope of the coefficients,
which is a parameter used in the estimation of the admittance functions.
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5.4 Pressure Distribution
In this section, the pressure distributions from the wind tunnel tests are given. The dis-
tribution is represented by the mean value from the time series of each pressure hole. A
complete representation, for all six correlation lines, will be presented for one test. For
the remaining tests, the distribution is given by the first correlation line, due to its dense
distribution of pressure holes. As mentioned in section 4.4.1, positive pressure is defined
as pushing and pointing outward of the cross-section, while negative pressure data is de-
fined as suction and faced inward. In addition, the dynamic pressure, Pd = 1

2ρV
2, where

ρ = 1.17kg/m3, will be given for each wind velocity. The definitions of the surfaces (S1-
S10), given in figure 4.10, are used to explain the pressure acting on the various surfaces
of the cross-section.

5.4.1 Uniform Wind Flow
The pressure distribution from the wind tunnel tests in uniform wind flow with mean ve-
locity: 4.6 m/s, 5.7 m/s and 8.4 m/s, are presented below. Each wind velocity will be
represented by point pressure at each pressure hole and distributed pressure around the
cross-section. In these tests, the model was supported by the stiffening system.

Figure 5.9: Uniform wind flow, RPM = 220, V = 4.6m/s, Pd = 12.92Pa
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Figure 5.10: Uniform wind flow, RPM = 220, V = 4.6m/s, Pd = 12.92Pa

Figure 5.11: Uniform wind flow, RPM = 271, V = 5.7m/s, Pd = 19.01Pa

Figure 5.12: Uniform wind flow, RPM = 271, V = 5.7m/s, Pd = 19.01Pa
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Figure 5.13: Uniform wind flow, RPM = 397, v = 8.4m/s, Pd = 41.28Pa

Figure 5.14: Uniform wind flow, RPM = 397, V = 8.4m/s, Pd = 41.28Pa

As predicted, pressure increases with the increasing wind flow. In addition to a higher
magnitude, the pressure distributions show similarities for the three wind flows. Positive
pressure can be seen at the windward sides of the upstream-box, S3 and S2. When the
flow hits the corner between S2 and S1, the corner causes flow separation. The result is a
separation bubble on S1, giving negative pressure. Further, the flow reattaches at S1 and
the pressure turns positive. The same trend can be seen on the corner between S3 and S4,
where the turbulence causes negative pressure around the corner before the flow reattaches
at S4 and the pressure turns positive.

On the downstream-box, the wind flow gives positive pressure on S10. For the low wind
flows, a separation bubble causing negative pressure can be seen on the corner between
S10 and S6. While for the highest wind flow, the pressure remains positive around this
corner. The same can be seen on the corner between S10 and S9. The pressure is positive
on the surfaces S6, S7 and S8.
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5.4.2 Turbulent Wind Flow
For the turbulent wind flow, the tests were run with and without the stiffening system.

Without Stiffening System

The tests without stiffening system were run with the wind velocities 3.5 m/s, 6.7 m/s and
10.1 m/s. Each wind velocity will be represented by point pressure at each pressure hole
and distributed pressure around the cross-section. In these tests, the model was supported
by the stiffening system. In addition, the pressure distribution of all the six correlation
lines are shown for wind velocity 10.1 m/s.

Figure 5.15: Turbulent wind flow, RPM = 180, V = 3.5m/s, Pd = 7.17Pa

Figure 5.16: Turbulent wind flow, RPM = 180, V = 3.5m/s, Pd = 7.17Pa
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Figure 5.17: Turbulent wind flow, RPM = 320, V = 6.7m/s, Pd = 26.26Pa

Figure 5.18: Turbulent wind flow, RPM = 320, V = 6.7m/s, Pd = 26.26Pa

Figure 5.19: Turbulent wind flow, RPM = 490, V = 10.1m/s, Pd = 59.68Pa
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Figure 5.20: Turbulent wind flow, RPM = 490, V = 10.1m/s, Pd = 59.68Pa

The pressure distribution for the turbulent flows has the same trend as the uniform flow.
It is no significant differences, except that the pressure remains positive around the corner
between S10 and S6, similar to the highest wind velocity in the uniform flow test.
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Figure 5.21 shows the pressure distribution for six correlation lines. A slight increase
in the pressure magnitude was observed as the separation distance increased. This could
indicate that the pressure increases in the span-wise direction. On the other hand, due to the
sparse separation of tubes on correlation lines 2-6, the pressures may be more inaccurate
compared to the pressure at correlation line 1.

(a) Correlation line 1. (b) Correlation line 2.

(c) Correlation line 3. (d) Correlation line 4.

(e) Correlation line 5. (f) Correlation line 6.

Figure 5.21: Pressure distribution for correlation line 1-6, V = 10.1m/s, Pd = 59.68Pa.

With Stiffening System

The test with stiffening system were run with wind velocities 3.9 m/s, 5.4 m/s and 8.3
m/s. Due to the almost identical distribution pattern, only distributed pressure is shown for
these tests.
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Figure 5.22: Turbulent wind flow, RPM = 220, V = 3.9m/s, Pd = 8.9Pa

Figure 5.23: Turbulent wind flow, RPM = 300, V = 5.4m/s, Pd = 17.06Pa

Figure 5.24: Turbulent wind flow, RPM = 450, V = 8.3m/s, Pd = 40.30Pa

The pressure distribution for the turbulent flow with the stiffening system are similar to
the distribution for the turbulent flow without the stiffening system.
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Comparison and validation of pressure distribution

Based on the knowledge of flow characteristics and results obtained from previous studies,
on a twin-box bridge, the distributed pressure presented in this section showed an unex-
pected amount of positive pressure. This was especially observed for the downstream-box.

The pressure on the upstream-box shows a reasonable distribution at all surfaces except the
leeward surface S5. In accordance with the study done by Wang et al. [28] the wind gives
a positive pressure at the nose of the box, while a separation bubble changes the pressure
direction on the onset of surface S1 and S4. As the flow reattaches after the separation
bubble the pressure decreases yet stays negative even at surface S5. The same decrease
is seen in the pressure distribution found by Wang et al, although the pressure changes
direction towards the back of the box. The main reason for questioning the distribution on
the upstream-box is the positive pressure on surface S5. Based on founding’s by previous
studies and the flow characteristics of bluff bodies a negative pressure was expected. A
possible explanation of the positive pressure may be that the gap between the two sec-
tions is small and that the height of the model is relatively high. These factors can cause a
stagnant pressure in the gap and causing the pressure on the surfaces in the gap to be equal.

At the downstream-box, the results show almost only positive pressure. This contrasts
with the results obtained by Wang et al., where the pressure was negative around the en-
tire box. The cross-section considered in this thesis has sharper edges and the height is
relatively high compared to Wang et al., yet some negative pressure should be observed.
Considering if the gap is too small, the twin-box will act more like a closed box and could
explain the flow pattern. However, this does not explain the positive pressure on the lee-
ward nose of the downstream-box. It is a known phenomenon that negative pressure is
produced in the near wake area of a bluff body, due to the vortices shed from the trailing
edge. This phenomenon gives reason to question the positive pressure on the leeward nose
on the downstream box.

The unexpected pressure distributions gives reason to believe there is an overpressure in
the wind tunnel, causing positive pressure on the bridge cross-section. This assumption
is further investigated by subtracting a tentative overpressure from the mean value of the
pressure from each pressure hole.
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Figure 5.25: Pressure distribution in turbulent wind flow, RPM=490, V=10.1 m/s subtracting 40 Pa
from each time series

Figure 5.25 shows the pressure distribution from the same test as figure 5.20 where 40
Pa are subtracted from every mean value. The flow pattern shows more consistency with
results from other studies. However, the pressure on surface S10 is negative and considered
unrealistic as the flow would enter the gap and generate positive pressure. For this reason,
a tentative overpressure of 40 Pa can be an exaggeration. An overpressure of 20 Pa was
then attempted and is shown in figure 5.26. The pressure is now negative at surface S10,
as desired. Then again, the pressure on surface S4 becomes positive making it difficult to
explain the wind field.

Figure 5.26: Pressure distribution in turbulent wind flow, RPM=490, V=10.1m/s subtracting 20 Pa
from each time series

Last, it was discussed if the three detached pressure tubes mentioned in section 4.3 could
be a source of error. Considering that the detached pressure tubes are inside the model,
they could be used as a reference pressure and be subtracted from the mean values of the
attached pressure holes. However, the mean value for the detached tubes was compared
to the corresponding positioned tube at the other correlation lines. It was not detected any
significant deviation, and the mean value of the pressure changes with the wind velocities.
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The wind is probably penetrating the model and affecting the pressure signal in the de-
tached tubes. Figure 5.27 presents the pressure distribution when the mean pressure from
tube no. 1407 is subtracted. The pressure on the downstream-box becomes very small
while the upper surface still only experiences positive pressure as for surface S5. How-
ever, there is positive pressure on surface S10, and a negative pressure at the lower surface
of the downstream box, which seems reasonable compared to previous studies.

Figure 5.27: Pressure distrubution in tubulent wind flow, RPM =490, subtracting the mean pressure
from tube nr 1407

The assumption of an overpressure in the wind tunnel will not affect the total moment
and forces obtained by the integration of the pressure. This is expected, adding a con-
stant pressure to all surfaces, will not change the forces since they are integrated around
a closed circumference. Neither will the total moment change since the cross-section is
single symmetrical about the y-axis and the moment is calculated around a point on this
axis. However, when considering the boxes separately, it is no symmetry, and the moment
on the downstream-box will decrease and increase at the upstream-box. Compared to the
moments obtained from the load cells, the upstream-box will be closer in values, while the
downstream-box will deviate even more than before the subtraction.

In order to evaluate whether an overpressure is possible, the pressure at the windward nose
of the upstream-box was compared to the dynamic pressure and should be approximately
equal. Table 5.10 shows the pressure obtained at the windward nose of the upstream-box
for the three different cases discussed above, the original and the dynamic pressure. When
an overpressure of 20 and 40 Pa was considered, the pressure at tube 1120 was signifi-
cantly lower than the dynamic pressure. When the mean value of the detached tube was
subtracted, the pressure was closer to the dynamic pressure, but still not as close as the
original pressure at the nose.
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Dynamic pressure
V = 10.1m/s

in wind tunnel

Pressure at tube no. 1120

Original subtracted

40Pa 20Pa
mean pressure
tube no.1407

59.68 Pa 61.48 Pa 21.48 Pa 41.48 Pa 47.06 Pa

Table 5.10: Comparison of pressure at tube nr.1120

It is obvious that the pressure distribution obtained from the test done in this thesis are
questionable compared to previous studies. Plausible reasons for the deviations are dis-
cussed above. However, wind characteristics and the flow field are a complex and difficult
topic and further investigations are needed to validate the results. Due to these uncertain-
ties and the similarity between the original and the dynamic pressure, it was decided to use
the original pressure signal the estimation of the aerodynamic admittance functions.
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5.5 Force Spectra

Based on the pressure measurement data, the buffeting forces and spectra were calculated
for each correlation line. The spectral densities were calculated with the forces obtained
from the piece-wise load method, described in section 4.4.1. This method is preferable as
it gives faster calculations and the results match the interpolated load method.
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Figure 5.28: Buffeting Force spectra, V = 10.1m/s, without stiffening system.

Figure 5.28 shows the buffeting force spectra in turbulent wind flow without the stiffening
system. Two peaks are distinct in the lift force spectrum at frequencies 13 Hz and 26 Hz.
While the moment and drag force spectra shows one distinct peak at frequency 13 Hz. The
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peaks are mainly caused by the downstream-box and may be due to the vortex shedding
effect. The same effect was observed in the lift and moment spectra presented by Wang et
al. [28].
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Figure 5.29: Buffeting Force spectra, V = 8.3m/s, RPM = 450, with stiffening system
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Figure 5.30: Buffeting Force spectra, V = 5.4m/s, with stiffening system

Figure 5.29 and 5.30 show the buffeting force spectra in turbulent wind flow with the stiff-
ening system. Only one distinct peak at 26 Hz is observed in the lift and moment force
spectra.

For the drag force spectrum,in figure 5.29a and 5.28a, it is clear that the main contribution
to the total drag force is from the downstream-box. While the lift and moment force spec-
tra, seen in figure 5.28c, 5.28b, 5.29c and 5.29b, are mainly provided by the upstream-box.
The downstream-box may be affected by the vortex shed from the upstream box, which
could be formed by a mix of incoming turbulence and unsteady vortexes. This can explain
why the forces acting on the downstream-box are different from the upstream-box, and
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why the lift on the downstream-box deviates significantly from the upstream-box. More-
over, when looking at the buffeting force spectra for uniform flow, shown in figure 5.31,
it can be seen that the downstream-box contributes most to all three spectra, and indicates
that the signature turbulence formed by the cross-section contributes to extra lift- and mo-
ment forces on the downstream-box.
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Figure 5.31: Buffeting Force spectra, uniform flow, V = 8, 4m/s, RPM = 397, with stiffening
system
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Figure 5.32 shows the force spectra of lift, drag and moment for all the six correlation lines
on the twin-box in a turbulent flow. The high similarity of lift-, drag- and moment- spectra
can be seen for the six lines and confirms the two-dimensionality of the mean flow and the
reliability of the measurements.
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Figure 5.32: Buffeting Force spectra from all strips on the model.
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5.6 Coherence
Based on the buffeting forces found by integration of the pressure on each correlation line
the spanwise coherence was found. The spanwise coherence is based on the auto- and
cross-spectra between two correlation lines with distance ∆y and is calculated according
to equation 2.87. An investigation of the force coherence was done for every test con-
ducted in the wind tunnel. Figure 5.33 and 5.34 show the coherence for lift, drag and
moment for five different separation distances at mean wind 3.9 m/s and 8.3 m/s for the
total model, the upstream-box and the downstream-box. It is clear that the coherence of
lift, drag and moment decreases as the distance, ∆y, increases.

Beginning with the coherence for lift an moment, it can be seen that at low frequen-
cies the downstream-box has lower coherence than the upstream-box. This gap seems
to increase as the distance increases, meaning that the coherence of the downstream-box
decreases more rapidly than the upstream-box. The total coherence is mainly affected by
the upstream-box at low frequencies. Besides, the downstream-box gets higher coherence
at high frequencies compared to the upstream-box. This is plausibly caused by the im-
pinged vortices shed from the leeward edge of the upstream-box on the downstream-box.
Xia et al. [38] also found that the downstream-box force coherence at high frequencies
is stronger than the upstream-box before periodical vortices get suppressed by high turbu-
lence intensity. This tendency seems to be more eminent for higher velocities, as seen in
figure 5.34. Another remark for the higher velocities is the multiple peaks appearing with
increasing frequency. Most peaks appear in the coherence of the downstream-box and can
probably be explained by vortex shedding. Comparing low and high wind velocities, the
slope of the coherence tends to decrease as the wind increase. As a result, the coherence
is greater at high frequencies for higher wind velocities.

Further, the drag-coherence of the upstream-box is constantly higher than the downstream-
box. However, the shape of the total drag-coherence tends to follow the drag-coherence of
the downstream-box indicating that the downstream-box has the greatest influence on the
drag-coherence.

98



0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

h
L

Lift-coherence, y = 10mm 

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

h
D

Drag-coherence, y = 10mm 

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

h
M

Moment-coherence, y = 10mm 

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

h
L

Lift-coherence, y = 25mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

h
D

Drag-coherence, y = 25mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

h
M

Moment-coherence, y = 25mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

h
L

Lift-coherence, y = 45mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

h
D

Drag-coherence, y = 45mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

h
M

Moment-coherence, y = 45mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

h
L

Lift-coherence, y = 95mm

Total

Upstream

Downstream

0 20 40 60 80 100

f [Hz]

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o

h
D

Drag-coherence, y = 95mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

h
M

Moment-coherence, y = 95mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

h
L

Lift-coherence, y = 190mm

Total

Upstream

Downstream

0 20 40 60 80 100

f [Hz]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
o

h
D

Drag-coherence, y = 190mm

Total

Upstream

Downstream

0 10 20 30 40 50 60 70 80 90 100

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

h
M

Moment-coherence, y = 190mm

Total

Upstream

Downstream

Figure 5.33: Spanwise coherence at V = 3.9m/s, turbulent flow.
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Figure 5.34: Spanwise coherence at V = 8.3m/s, turbulent flow.
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5.7 Aerodynamic Admittance Functions
The admittance function transfers the wind spectra to a load spectra and accounts for the
reduction in bridge response due to unsteadiness in the gust. Various methods for finding
the aerodynamic admittance functions have been presented throughout chapter 2 resulting
in the methods given in section 2.10. The first approach is the general admittance function
found by equation 2.94, relating one turbulence spectra to one force spectra. The second
approach, given in equation 2.96, gives the equivalent aerodynamic admittance relating the
force spectra to both vertical and horizontal turbulence components. The last approach is
the cross-spectral method which considers the cross-spectra between the buffeting forces
and the turbulence components. Cross-spectral admittance’s are estimated by equation
2.99. A comparison of the total model with the upstream- and downstream-box will also
be presented for the equivalent method.
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5.7.1 General Admittance Function

Figure 5.35 and 5.36 shows the general admittance functions for different mean wind
velocities in turbulent flow, with and without the stiffness system.

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Lift

Aw

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Drag

Au

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Moment

Aw

(a) V = 3.5m/s

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Lift

Aw

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Drag

Au

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Moment

Aw

(b) V = 6.7m/s

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Lift

Aw

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Drag

Au

10
0

10
1

10
2

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
d

m
it
ta

n
c
e

 [
N

2
/(

m
/s

)2
]

Moment

Aw

(c) V = 10.1m/s

Figure 5.35: General admittance functions for test run without stiffening system.
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Figure 5.36: General admittance functions for tests run with stiffening system.
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The admittance function is a general function transferring the velocity spectra to a force
spectra. Consequently, the admittance’s should be close to similar for all velocities. How-
ever, from the plots, it is seen that the admittance functions vary with the wind velocity.
In general, when the wind speed increases the admittance functions increase. The varia-
tion in magnitude for the various velocities could also be due to the functions not being
normalized. Another remark is that the lift admittance is between 10-20 times higher than
the admittance for the drag and moment. In addition, the data reveals distinct peaks in the
plots. These peaks are located at the same frequency as in the force spectra, in section 5.5,
caused by the vibrations of the bridge deck. As noted, the vibrations are mainly caused by
the downstream-box. Moreover, the shape seems reasonable since the function decreases
whit increasing frequency.
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5.7.2 Equivalent- and Cross-spectral Admittance Function
Figure 5.37 to 5.39, shows the admittance function estimated with the cross-spectral ap-
proach, AFu and AFw (F = L,D,M ), and the equivalent method, AF . In order to com-
pare the result with other studies, Sears function is plotted with the estimated admittance
functions. In addition, the admittance functions are found separately for the upstream-
and downstream-box in order to investigate the contribution of each box. The admittance
functions are shown for different wind velocities in turbulent flow and plotted against the
reduced frequency.
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(b) V = 3.9m/s, with stiffening system.
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(c) V = 6.7m/s, without stiffening system.
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(d) V = 5.4m/s, with stiffening system.
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(e) V = 10.1m/s, without stiffening system.
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(f) V = 8.3m/s, with stiffening system

Figure 5.37: Admittance functions for lift estimated with the cross-spectral approach ALu and ALw,
and with the equivalent method AL for turbulent flow.
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(a) V = 3.5m/s, without stiffening system.
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(b) V = 3.9m/s, with stiffening system.
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(c) V = 6.7m/s, without stiffening system.
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(d) V = 5.4m/s, with stiffening system.
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(e) V = 10.1m/s, without stiffening system.
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(f) V = 8.3m/s, with stiffening system.

Figure 5.38: Admittance functions for drag estimated with the cross-spectral approach ADu and
ADw, and with the equivalent method AD for turbulent flow.
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(a) V = 3.5m/s, without stiffening system.
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(b) V = 3.9m/s, with stiffening system.
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(c) V = 6.7m/s, without stiffening system.
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(d) V = 5.4m/s, with stiffening system.
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(e) V = 10.1m/s. without stiffening system.
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(f) V = 9.8m/s, with stiffening system.

Figure 5.39: Admittance functions for moment estimated with the cross-spectral approach AMu

and AMw, and with the equivalent method AM for turbulent flow.

Figure 5.37 shows the estimated admittance functions for lift. In the equivalent lift ad-
mittance, a peak is distinct at small reduced frequencies for all tests. When the wind
speed increases the slope to the AAF decreases more rapidly. Considering the cross-
spectral AAF’s, it is evident that |ALu|2 and |ALw|2 deviates significantly. Moreover,
|AL|2 lays between |ALw|2 and |ALu|2 and considered reasonable as the equivalent AAF
is a weighted average of these two. Due to the small value of the static coefficient, CL, the
equivalent AFF, |AL|2, is closer to |ALw|2 than |ALu|2.

The estimated admittance functions for drag are presented in figure 5.38. A smooth be-
haviour is seen for the equivalent drag admittance at low wind velocities. As the velocity
increases more peaks appear. Besides, when the wind velocity increases the slope de-
creases faster. The equivalent admittance |AD|2 should be closer to |ADu|2 since the
horizontal component, u, is the main contribution to the drag admittance. Considering
that |AD|2 is closer to |ADw|2, and laying above both |ADu|2 and |ADw|2, implies that
the equivalent approach overestimates the admittance function. Therefore, the true value
of the equivalent drag admittance function may be closer to |ADu|2 found by the cross-
spectral approach.
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Figure 5.39 shows the estimates for the moment admittance functions. As for lift and
drag, the slope decreases faster for higher velocities and one distinct peak appears. It is
seen that |AM |2 lays above both |AMw|2 and |AMu|2. The equivalent admittance function,
|AM |2, is closer to |AMw|2 since the value of the static coefficient CM is small compared
to C ′M . A deviation can be seen in figure 5.39 (a) where |AM |2 is closer to |AMu|2.

Compering the tests with and without the stiffening system shows no significant devia-
tions between the equivalent admittance functions. In general, the estimated AAF’s for
various wind speed are similar in shape and decreases for increasing reduced frequencies.
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Upstream- and Downstream-Deck

Figure 5.40 to 5.42 shows the equivalent admittance functions for the downstream- and
upstream-box.
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(b) V = 3.54m/s, downstream deck
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(c) V = 6.68m/s, upstream deck
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(d) V = 6.68m/s, downstream deck
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(e) V = 10.11m/s, upstream deck
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(f) V = 10.11m/s, downstream deck

Figure 5.40: Equivalent lift admittance functions for upstream and downstream deck, without stiff-
ening system, turbulent flow
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(a) V = 3.54m/s, upstream deck
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(b) V = 3.54m/s, downstream deck
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(c) V = 6.68m/s, upstream deck

10
-1

10
0

10
1

f*=fB/V

10
-4

10
-3

10
-2

10
-1

10
0

10
1

|A
i|2

Admittance functions Drag Downstream

A
D

(d) V = 6.68m/s, downstream deck
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Figure 5.41: Equivalent drag admittance functions for upstream and downstream deck, without
stiffening system, turbulent flow.
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(a) V = 3.54m/s, upstream deck
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(b) V = 3.54m/s, downstream deck
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(c) V = 6.68m/s, upstream deck
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(d) V = 6.68m/s, downstream deck
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Figure 5.42: Equivalent moment admittance functions for upstream and downstream deck, without
stiffening system, turbulent flow.

It is evident that the distinct peak in the total equivalent AAF, |AL,D,M |2, is caused by
the downstream-box, similar to the force spectra in section 5.5. As discussed in section
5.2, this might be due to vortices shed from the upstream deck or vortices in the wake
of the trailing edge of the downstream-box. Then again, the flow pattern and formation
of vortices are complicated and nothing can be said for certain. The magnitude differ-
ence between upstream- and downstream-box is distinct for the drag admittance. The
downstream-box has higher magnitudes, as expected considering the drag force spectra
in section 5.5. Lastly, the lift admittance is slightly higher than the drag and moment
admittance but not as significant as the general admittance functions.
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Validation of the Aerodynamic Admittance Functions

From the results of the admittance functions is it evident that the admittance functions
corresponding to the horizontal and vertical turbulence components deviates. This con-
tradicts the assumption that the same effect is reached in each turbulence component. It
emphasizes the importance of finding two admittance functions for each buffeting force.
It also indicates that the equivalent AAF method gives inaccurate results.

As noted, the slope of the AAF’s decreases faster with increasing wind velocity. A conse-
quence is lower admittance functions for decreasing turbulence intensity which again leads
to a greater reduction of buffeting forces when turbulence is present. The same effect was
detected by Larose [9].

Further, it was detected that Sears function overestimates the equivalent AAF’s for all
reduced frequencies. Previous studies, Larose [9] and Wang et al. [28], shows similar re-
sults for low reduced frequencies, while Sears function underestimated at higher reduced
frequencies. Sears function is an estimate for a thin plate/airfoil considering changes in
the vertical turbulence component and therefore not applicable for bluff twin-box bridges.
This especially applies for the drag AAF mainly affected by the horizontal turbulence
component. The bluffness of the model could also be a cause to the deviation between the
estimates and Sears function.

The equivalent and the cross-spectral AAF’s have similarities in shape, but the magnitude
deviates. Yan et al. [33] studied the same methods for moment and lift, in addition to the
colligated least square method based on the colligated residue of the auto- and cross spectra
(CRLSMACS), described in section 2.7.2. Their results showed that the equivalent AAF
was closer to the |AFw|2 (F=L,M) obtained from CRLSMACS, while the cross-spectral
|AFw|2 was significantly smaller than both the equivalent method and the CRLSMACS.
This could indicate that the cross-spectral method underestimates |AFw|2. The lift admit-
tance functions obtained in this thesis showed consistency with these results. Therefore,
the true value of |ALw|2, from the cross-spectral method, should be closer to |AL|2. The
same consistency was not detected in the moment AAF’s. Figure 5.39 showed that the
equivalent |AM |2 lays above both the cross-spectral moment admittance’s. Whereas Yan
et al. found that the equivalent admittance was between those from the cross-spectral
method. Although the admittance functions for moment deviates from those estimated by
Yan et al., it is important to point out that they examined a closed-box bridge. A twin-
box bridge has a more complex wind field due to its geometry and the gap between the
sections. This will have an impact on the results. However, Wang et al. showed that
the cross-spectral approach gave inaccurate results compared to the CRLSMACS. The
cross-spectral approach neglects the auto-spectral equations and the correlation between
the buffeting forces and the fluctuating wind is generally weak, resulting in inaccurate
estimations. At last, few previous studies have focused on estimating drag AFFs, and
therefore it is difficult to conclude decisively about the results, expect that |AD|2 should
be closer to |ADu|2 than |ADw|2.
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In the estimation methods presented in this thesis, the span-wise correlation effects are
ignored. This assumption is investigated, by evaluating the AAF’s from two different
correlation lines. Figure 5.43 shows the admittance’s for lift, drag, and moment for lines 1
and 6. A deviation can be seen between line 1 and 6 for the moment and lift AAF’s. Also,
the slope is decreasing faster for line 1 compared to line 6. The coherence spectra, shown
in figure 5.34, shows that the lift and moment forces vary in the span-wise direction. It
was also detected that the pressure increased from line 1 to line 6. These observations
indicate that it is incorrect to assume 2-dimensional turbulence and that the 3-dimensional
effect should be considered when estimating admittance functions. Further, the deviation
between the drag admittance for line 1 and line 6 is less evident. Considering that the
drag force has less coherence compared to the lift force and moment, it is unexpected
that the two correlation lines would give similar AAF’s. It should be mentioned that the
turbulence components are measured only in front of correlation line 1, and may not be
a correct representation of the turbulence in front of line 6. Due to uncertainties of wind
characterises, the flow field and estimation of the admittance’s, the span-wise correlation
and the 3-dimensional turbulence effect on the forces should be investigated further.
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Figure 5.43: Equivalent admittance for line 1 and line 6, V = 10.11m/s.

Considering that the cross-section tested in this thesis is not a model of a real bridge,
there are no available data to compare and validate the values of the admittance functions.
Hence, the only way to validate the admittance functions is to consider whether the shapes
of the function has resemblance to previous research. Generally, aerodynamic admittance
functions will gradually decrease as the frequencies increase. This trend can be seen in
the admittance functions found in this thesis as well as showing similarities to the shape
found by other studies. This indicates that the estimated admittance is relevant and can be
used for a more accurate representation of the forces acting on a twin-box bridge.
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Chapter 6

Conclusion and Further Work

6.1 Conclusion
This thesis places attention on the estimation of aerodynamic admittance functions for a
twin-box bridge. The pressure distribution over the cross-section was also investigated.
The twin-box model was tested in turbulent and laminar flow in the wind tunnel at NTNU.
Pressure measurements were performed by using MSP4264 pressure scanners coupled
with 256 pressure tubes distributed over 6 correlation lines on the two sections.

Based on the pressure measurements, the forces were found by using the piece-wise point
load method and the interpolated method. It was discovered that these forces were slightly
underestimated compared to the forces measured by the load cells. Further, the static
coefficients were found by a static test and from the admittance tests. Due to the under-
estimated forces from the pressure measurements in the admittance tests, the coefficients
and corresponding slope from the static test were used in the estimation of the admittance
function.

A presentation of the pressure distributions was produced for all tests. The results showed
inconsistency with previous research due to an unexpected amount of positive pressure,
particularly at the downstream-box. Possible reasons for the unexpected pressure distribu-
tion may be due to the bluffness of the cross-section and that the gap between the sections
is too small. In the building process, several irregularities were detected. This could cause
penetration of the wind into the model and giving inaccurate results. In addition, the pos-
sibility for an overpressure was considered. It was found that the pressure acting on the
cross-section, when subtracting an overpressure, did not match the dynamic pressure in the
wind tunnel. Hence, the original pressure was further used in the estimation of admittance
functions.
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The turbulence spectra gave valid results and showed good alignment with the Kaimal
spectra. Moreover, the force spectra, based on the pressure measurement, were exam-
ined. Several peaks were detected and were mainly caused by the downstream-box, ei-
ther caused by the the vortices shed from the upstream-box or from the wake of the
downstream-box.

Admittance functions were estimated using three different methods, the general, the equiv-
alent and the cross-spectral. The functions decreased for increasing frequency and were
considered valid. All functions had a distinct peak mainly caused by vortex shedding of
the downstream-box. It was also detected that the slope decreased faster when the wind
velocity increased, resulting in a higher buffeting response for high turbulence intensity.
The methods showed higher magnitudes for the lift admittance, this was particularly evi-
dent in the general method.

Further, it was found that the admittance functions estimated with the cross-spectral method,
|AD,L,M,u|2, |AD,L,M,w|2, deviated significantly. This implies that it is necessary to esti-
mate all six admittance functions and that the equivalent method gives inaccurate results.
On the other hand, the cross-spectral method neglects the auto spectral density and the
correlation between the buffeting forces and the turbulence is generally weak. For this
reason, the method may give inaccurate results for the six admittance functions and should
be investigated further.

Comparison of the equivalent and cross-spectra method showed that the lift admittance
matched previous studies, where the equivalent admittance lays above |ALu|2 and below
|ALw|2. The same similarities cannot be seen for the moment and drag admittance func-
tions. For the drag AAF’s, the equivalent admittance lay above both |ADu|2 and |ADw|2,
but closer to |ADw|2. Since the horizontal turbulence component is the main contribu-
tion to the drag force, the equivalent AAF should be closer to |ADu|2. This indicates that
the equivalent AAF for drag is overestimated. The same trend was observed for the es-
timated admittance functions for moment, but here the equivalent admittance was closer
to |AMw|2. In addition, it was found that Sears function overestimates for all reduced
frequencies and is not applicable for the twin-box bridge deck. Finally, the admittance
functions for two separate correlations lines were compared and showed that the admit-
tance function deviated. These observations give reason to question the 2-dimensional
turbulence effect and that the span-wise correlation should be considered.

The estimated admittance functions found in this thesis show an acceptable shape that
decreases with increasing frequency. The admittance functions are important for predict-
ing the buffeting forces, and will lead to a reduction in the bridge response, compared to
the quasi-steady theory.
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6.2 Further Work
Due to the the unexpected pressure distribution detected for the twin-box model and that a
optimized cross-section has not been the main focus in this thesis. Further work regarding
and the model and cross-section should involve:

• Optimization of the model geometry.

• Improve the mid-section of the model where the pressure tubes are attached. The
transition between the Lexan plates should be better executed, hence irregularities
and holes affecting the flow should be avoided. In addition, the tubes should be
attached better to prevent them from falling off.

• Test different gap widths to investigate its effects on the pressure distribution and
the vortex shedding.

Further, evaluation regarding the pressure distribution and the aerodynamic admittance
function should involve:

• A wider range of tests to validate the measurements from the MSP4264 pressure
scanners. In addition to rotational tests of the model to investigate the influence of
the angle of attack.

• Investigate the Strouhal number to get a better understanding of the incoming flow,
and how it is influence the peaks appearing in the force spectra caused by the
downstream-box. Investigation of the coherence between a tube on the downstream-
and the upstream-box to detect at what distance the coherence equals zero. This will
also give a better understanding of the turbulent flow.

• The cross-spectral approach was not considered as optimal for estimating the six
admittance functions. Therefore should the CRLSMACS method be conducted to
investigate the reliability of the admittance functions. Besides, the span-wise corre-
lation is neglected and should be investigated further to state that this is an accurate
assumption.
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Appendix
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A Pressure Transducer Connections
An overview of what channel on the pressure transducer the tubes at the surface of the
section is connected to is presented below.
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DOWNSTREAM-BOX 

SCANNER 1 

Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

1 1101 2 1201 33 1502 34 1506 

3 1102 4 1202 35 1503 36 1606 

5 1103 6 1203 37 1504 38 1121 

7 1104 8 1204 39 1505 40 1122 

9 1105 10 1205 41 1601 42 1123 

11 1106 12 1301 43 1602 44 1124 

13 1107 14 1302 45 1603 46 1125 

15 1108 16 1303 47 1604 48 1126 

17 1109 18 1304 49 1605 50 1127 

19 1110 20 1305 51 1117 52 1128 

21 1111 22 1401 53 1118 54 1129 

23 1112 24 1402 55 1119 56 1130 

25 1113 26 1403 57 1120 58 1131 

27 1114 28 1404 59 1206 60 1132 

29 1115 30 1405 61 1306 62 1207 

31 1116 32 1501 63 1406 64 1208 

SCANNER 2 

Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

1 1209 2 1136 33 1314 34 1143 

3 1307 4 1137 35 1410 36 1144 

5 1308 6 1138 37 1411 38 1145 

7 1309 8 1139 39 1412 40 1146 

9 1407 10 1140 41 1413 42 1147 

11 1408 12 1141 43 1414 44 1148 

13 1409 14 1142 45 1510 46 1215 

15 1507 16 1210 47 1511 48 1216 

17 1508 18 1211 49 1512 50 1315 

19 1509 20 1212 51 1513 52 1316 

21 1607 22 1213 53 1514 54 1415 

23 1608 24 1214 55 1610 56 1416 

25 1609 26 1310 57 1611 58 1515 

27 1133 28 1311 59 1612 60 1516 

29 1134 30 1312 61 1613 62 1615 

31 1135 32 1313 63 1614 64 1616 

 

 

 



 

UPSTREAM-BOX 

SCANNER 3 

Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

1 2101 2 2201 33 2502 34 2506 

3 2102 4 2202 35 2503 36 2606 

5 2103 6 2203 37 2504 38 2121 

7 2104 8 2204 39 2505 40 2122 

9 2105 10 2205 41 2601 42 2123 

11 2106 12 2301 43 2602 44 2124 

13 2107 14 2302 45 2603 46 2125 

15 2108 16 2303 47 2604 48 2126 

17 2109 18 2304 49 2605 50 2127 

19 2110 20 2305 51 2117 52 2128 

21 2111 22 2401 53 2118 54 2129 

23 2112 24 2402 55 2119 56 2130 

25 2113 26 2403 57 2120 58 2131 

27 2114 28 2404 59 2206 60 2132 

29 2115 30 2405 61 2306 62 2207 

31 2116 32 2501 63 2406 64 2208 

SCANNER 4 

Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

  Channel 
no. 

Tube 
no. 

1 2209 2 2136 33 2314 34 2143 

3 2307 4 2137 35 2410 36 2144 

5 2308 6 2138 37 2411 38 2145 

7 2309 8 2139 39 2412 40 2146 

9 2407 10 2140 41 2413 42 2147 

11 2408 12 2141 43 2414 44 2148 

13 2409 14 2142 45 2510 46 2215 

15 2507 16 2210 47 2511 48 2216 

17 2508 18 2211 49 2512 50 2315 

19 2509 20 2212 51 2513 52 2316 

21 2607 22 2213 53 2514 54 2415 

23 2608 24 2214 55 2610 56 2416 

25 2609 26 2310 57 2611 58 2515 

27 2133 28 2311 59 2612 60 2516 

29 2134 30 2312 61 2613 62 2615 

31 2135 32 2313 63 2614 64 2616 

 

 

 



B Matlab scrips for Pressure Scanners Data Processing
Piece-wise Point Load Method

Matlab script for the piece-wise point load method.
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%% Time Series of Point Loads  

% transforming pressure into loads and plotting the pressures 

clc 

clear all 

close all 

%corrline = 1 

corrline = 2 

  

%% importing pressure and sorting it  

load('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\Dat

aCutted\Master2020TD_10_00_904_000.mat') 

p=WT.Data.ProcessedData(8).Data; %pressure from scanners  

[p1_1, p1_2, p1_3, p1_4, p1_5, p1_6, p2_1, p2_2, p2_3, p2_4, p2_5, p2_6] = 

SortPressure2(p); 

p1=p1_1; %downstream box pressure on corrline 1 

p2=p2_1; %upstream box pressure on corrline 1. 

  

  

%% importing coordinates 

[x_taps, y_taps, x_taps2, y_taps2, x_coord, y_coord, x_coord2, y_coord2,  

dist, A,... 

    x_taps_16, y_taps_16, x_taps2_16, y_taps2_16, x_coord_16, y_coord_16, 

x_coord2_16, y_coord2_16] = ImportingCoordinatesFunc; 

%x_taps2, y_taps2 = coordinates for taps only on upstream box corrline 1. 

%x_taps, y_taps = coordinates for taps only on downstream box corrline 1. 

%x_coord2, y_coord2 = coordinates for taps and corners on upstream box 

corrline 1. 

%x_coord, y_coord = coordinates for taps and corners on downstream box 

corrline 1. 

%x_taps2_16, y_taps2_16 = coordinates for taps only on upstream box 

corrline 2-6. 

%x_taps_16, y_taps_16 = coordinates for taps only on downstream box 

corrline 2-6. 

%x_coord2_16, y_coord2_16 = coordinates for taps and corners on upstream 

box corrline 2-6. 

%x_coord_16, y_coord_16 = coordinates for taps and corners on downstream 

box corrline 2-6. 

  

  

%% ------------ Correlation line 1----------------- 

%% normal vectors of the surfaces on the cross-section  

a = zeros(6,2); %upstream box = box 2 

a(1,:) = [x_coord2(1), y_coord2(1)]; 

a(2,:) = [x_coord2(18), y_coord2(18)]; 

a(3,:) = [x_coord2(24), y_coord2(24)]; 

a(4,:) = [x_coord2(38), y_coord2(38)]; 

a(5,:) = [x_coord2(50), y_coord2(50)]; 

a(6,:) = [x_coord2(1), y_coord2(1)]; 

  

b = zeros(6,2); %downstream box = box 1 

b(1,:) = [x_coord(1), y_coord(1)]; 

b(2,:) = [x_coord(18), y_coord(18)]; 

b(3,:) = [x_coord(24), y_coord(24)]; 

b(4,:) = [x_coord(38), y_coord(38)]; 

b(5,:) = [x_coord(50), y_coord(50)]; 

b(6,:) = [x_coord(1), y_coord(1)]; 

  

%distance between two edges 

dxdy=zeros(5,2); %upstream box  

dxdy(1,:)= abs(a(2,:)-a(1,:)); 

dxdy(2,:)=abs(a(3,:)-a(2,:)); 



dxdy(3,:)=abs(a(4,:)-a(3,:));  

dxdy(4,:)=abs(a(5,:)-a(4,:));  

dxdy(5,:)=abs(a(6,:)-a(5,:)); 

  

dxdy2=zeros(5,2); %downstream box 

dxdy2(1,:)= abs(b(2,:)-b(1,:)); 

dxdy2(2,:)=abs(b(3,:)-b(2,:)); 

dxdy2(3,:)=abs(b(4,:)-b(3,:));  

dxdy2(4,:)=abs(b(5,:)-b(4,:));  

dxdy2(5,:)=abs(b(6,:)-b(5,:)); 

  

%normal vectors  

n1 = dxdy(1,:)/norm(dxdy(1,:)); %upstream 

n2 = dxdy(2,:)/norm(dxdy(2,:)); %upstream 

n3 = dxdy(3,:)/norm(dxdy(3,:)); %upstream 

n4 = dxdy(4,:)/norm(dxdy(4,:)); %upstream 

n5 = dxdy(5,:)/norm(dxdy(5,:)); %upstream 

n6 = dxdy2(1,:)/norm(dxdy2(1,:)); %downstream 

n7 = dxdy2(2,:)/norm(dxdy2(2,:)); %downstream 

n8 = dxdy2(3,:)/norm(dxdy2(3,:)); %downstream 

n9 = dxdy2(4,:)/norm(dxdy2(4,:)); %downstream 

n10 = dxdy2(5,:)/norm(dxdy2(5,:)); %downstream 

  

if corrline == 1; 

%% decomponents of pressure 

% the pressure points normal inward at the surface.  

  

%upstream box = box2 

%side1 

Pressure_x2(:,1:16) = p2(:,1:16).*-n1(2); 

Pressure_y2(:,1:16) = p2(:,1:16)*-n1(1); 

%side2 

Pressure_x2(:,17:20) = p2(:,17:20).*n2(2); 

Pressure_y2(:,17:20) = p2(:,17:20).*(-n2(1)); 

%side3 

Pressure_x2(:,21:32) =p2(:,21:32).*(n3(2)); 

Pressure_y2(:,21:32) = p2(:,21:32).*(n3(1)); 

%side4 

Pressure_x2(:,33:42) = p2(:,33:42).*n4(2); 

Pressure_y2(:,33:42) = p2(:,33:42).*(n4(1)); 

%side5 

Pressure_x2(:,43:48) = p2(:,43:48).*-n5(2); 

Pressure_y2(:,43:48) = p2(:,43:48).*+n5(1); 

  

%downstream box = box1 

%side6 

Pressure_x(:,1:16) = p1(:,1:16).*-n6(2); 

Pressure_y(:,1:16) = p1(:,1:16).*-n6(1); 

%side 7 

Pressure_x(:,17:20) = p1(:,17:20).*-n7(2); 

Pressure_y(:,17:20)= p1(:,17:20).*-n7(1); 

%side 8 

Pressure_x(:,21:32) = p1(:,21:32).*-n8(2); 

Pressure_y(:,21:32) = p1(:,21:32).*n8(1); 

%side 9 

Pressure_x(:,33:42) = p1(:,33:42).*n9(2); 

Pressure_y(:,33:42) = p1(:,33:42).*n9(1); 

%side 10 

Pressure_x(:,43:48) = p1(:,43:48).*n10(2); 

Pressure_y(:,43:48) = p1(:,43:48).*n10(1); 

  



%% plotting pressure  

%using mean value of pressure from time series.  

MeanP_x2 = mean(Pressure_x2);  

MeanP_y2 = mean(Pressure_y2); 

MeanP_x = mean(Pressure_x); 

MeanP_y = mean(Pressure_y); 

  

x_new2 = x_taps2 + MeanP_x2'; 

y_new2 = y_taps2 + MeanP_y2'; 

x_new = x_taps + MeanP_x'; 

y_new = y_taps + MeanP_y'; 

  

xy = zeros(48*2,2); 

xy_new = zeros(48*2,2); 

xy(1:48,:) = [x_taps, y_taps]; 

xy(49:end,:) = [x_taps2, y_taps2]; 

xy_new(1:48,:) = [x_new, y_new]; 

xy_new(49:end,:) = [x_new2, y_new2]; 

  

figure(); hold on 

plot(x_coord2, y_coord2) 

plot(x_coord, y_coord) 

axis equal 

hn=arrow3(xy, xy_new, '|-1',[0, 0]); 

c=colorbar; 

title('Point Pressure') 

xlabel('x') 

ylabel('z') 

set(gca, 'fontsize',20) 

xlabel(c,'Pressure, [Pa]') 

ylim([-150 150]) 

%% ---------- Transforming pressure to loads --------------------- 

w=1; %width [m] 

Area = w.*A*10^-3; %[m^2] 

for n = 1:size(p2,2) 

        Load_x(:,n) = Pressure_x(:,n)*Area(n); %downstream 

        Load_y(:,n) = Pressure_y(:,n)*Area(n); %downstream 

        Load_x2(:,n) = Pressure_x2(:,n)*Area(n); %upstream  

        Load_y2(:,n) = Pressure_y2(:,n)*Area(n); %upstream  

end  

  

  

%% Transforming pressure to moments  

centerX = (x_coord2(1)+x_coord(1))/2; centerY=0;   

%(y_coord2(1)+y_coord(1))/2; 

distX=zeros(1,length(x_taps)); distY=zeros(1,length(y_taps)); 

distX2=zeros(1, length(x_taps)); distY2=zeros(1,length(y_taps)); 

for i = 1:length(x_taps) 

    distX(i) = x_taps(i)-centerX; 

    distY(i) = y_taps(i)-centerY; 

    distX2(i) = x_taps2(i)-centerX; 

    distY2(i) = y_taps2(i)-centerY; 

end  

  

abs_distX = abs(distX*10^-3); 

abs_distY = abs(distY*10^-3); 

abs_distX2 = abs(distX2*10^-3); 

abs_distY2 = abs(distY2*10^-3); 

a=0; b=0; c=0; d=0; 

  

  



for i=1:length(x_taps2) %upstream box nr 2 

    if x_taps2(i)<=centerX && y_taps2(i)>=centerY %taps nr 1-24 and 48,47, 

46 box 2 

        if i>=21 %21,22,23,24 

            PS_moment2(:,i) = Load_y2(:,i).*abs_distX2(i) + 

Load_x2(:,i).*abs_distY2(i); 

            a = a+1; 

        elseif i>=17 && i<=20 %17-20 

            PS_moment2(:,i) = Load_y2(:,i).*abs_distX2(i) + 

Load_x2(:,i).*abs_distY2(i); 

            a = a+1; 

        elseif i<=16 && i>=1 %1-16 

            PS_moment2(:,i) = Load_y2(:,i).*abs_distX2(i); 

            a = a+1; 

        else %46-48 

            PS_moment2(:,i) = Load_x2(:,i).*abs_distY2(i); 

            a = a+1; 

        end  

    elseif x_taps2(i)<=centerX && y_taps2(i) <=centerY %taps nr 25-45 

       if i>=25 && i<=32 %taps 25-32 

           PS_moment2(:,i) = Load_y2(:,i).*abs_distX2(i)-

Load_x2(:,i).*abs_distY2(i); 

           b=b+1; 

       elseif i>=33 && i<=42 

           PS_moment2(:,i) = Load_y2(:,i).*abs_distX2(i); 

           b=b+1; 

       else %43-45   

           PS_moment2(:,i) = -Load_x2(:,i).*abs_distY2(i); 

           b=b+1; 

       end 

    end  

end  

  

for i=1:length(x_taps) %downstream box, nr.1 

    if x_taps(i)>= centerX && y_taps(i)>=centerY %%upstream box, nr.2 

         if i>=21 && i<=24 %21,22,23,24 

            PS_moment(:,i) = -Load_y(:,i).*abs_distX(i) + 

Load_x(:,i).*abs_distY(i); 

            c = c+1; 

        elseif i>=17 && i<=20 %17-20 

            PS_moment(:,i) = -Load_y(:,i).*abs_distX(i) + 

Load_x(:,i).*abs_distY(i); 

            c = c+1; 

        elseif i<=16 && i>=1 %1-16 

            PS_moment(:,i) = -Load_y(:,i).*abs_distX(i); 

            c = c+1; 

        else %46-4842) 

            PS_moment(:,i) = Load_x(:,i).*abs_distY(i); 

            c = c+1; 

        end  

    else x_taps(i)>=centerX && y_taps(i)<=centerY; %taps nr 25-45 

       if i>=25 && i<=32 %taps 25-32 

           PS_moment(:,i) = -Load_y(:,i).*abs_distX(i)-

Load_x(:,i).*abs_distY(i); 

           d=d+1; 

       elseif i>=33 && i<=42 %33-42 

           PS_moment(:,i) = -Load_y(:,i).*abs_distX(i); 

           d=d+1; 

       else %43-45   

           PS_moment(:,i) = -Load_x(:,i).*abs_distY(i); 

           d=d+1; 



       end  

    end    

end  

  

  

  

%% saving time series  

TSPointLoad(1).Fz1 = Load_y; 

TSPointLoad(1).Fz2 = Load_y2; 

TSPointLoad(1).Fx1 = Load_x; 

TSPointLoad(1).Fx2 = Load_x2; 

TSPointLoad(1).M1 = PS_moment; 

TSPointLoad(1).M2 = PS_moment2; 

  

%save('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\Po

stProccessing\Time Series Pont Load\TS10_00_904_000', 'TSPointLoad') 

  

else %%corrline = 2 

%% ---------- Line 2:6--------------------------------------------------%% 

  

%% Decomponents of pressure 

p1=zeros(size(p1_2,1),16,5); 

p2=zeros(size(p1_2,1),16,5); 

p1(:,:,1) = p1_2; p1(:,:,2) = p1_3; p1(:,:,3) = p1_4; p1(:,:,4) = p1_5; 

p1(:,:,5) = p1_6;  

p2(:,:,1) = p2_2; p2(:,:,2) = p2_3; p2(:,:,3) = p2_4; p2(:,:,4) = p2_5; 

p2(:,:,5) = p2_6; 

  

  

Pressure_x2=zeros(size(p1_2,1),16,5);  

for n=1:5 

%upstream box = box2 

%side1 

Pressure_x2(:,1:5,n) = p2(:,1:5,n).*-n1(2); 

Pressure_y2(:,1:5,n) = p2(:,1:5,n)*-n1(1); 

%side2 

Pressure_x2(:,6,n) = p2(:,6,n).*n2(2); 

Pressure_y2(:,6,n) = p2(:,6,n).*(-n2(1)); 

%side3 

Pressure_x2(:,7:9,n) =p2(:,7:9,n).*(n3(2)); 

Pressure_y2(:,7:9,n) = p2(:,7:9,n).*(n3(1)); 

%side4 

Pressure_x2(:,10:14,n) = p2(:,10:14,n).*n4(2); 

Pressure_y2(:,10:14,n) = p2(:,10:14,n).*(n4(1)); 

% 

Pressure_x2(:,15:16,n) = p2(:,15:16,n).*-n5(2); 

Pressure_y2(:,15:16,n) = p2(:,15:16,n).*+n5(1); 

%downstream box = box1 

%side6 

Pressure_x(:,1:5,n) = p1(:,1:5,n).*-n6(2); 

Pressure_y(:,1:5,n) = p1(:,1:5,n).*-n6(1); 

%side 7 

Pressure_x(:,6,n) = p1(:,6,n).*-n7(2); 

Pressure_y(:,6,n)= p1(:,6,n).*-n7(1); 

%side 8 

Pressure_x(:,7:9,n) = p1(:,7:9,n).*-n8(2); 

Pressure_y(:,7:9,n) = p1(:,7:9,n).*n8(1); 

%side 9 

Pressure_x(:,10:14,n) = p1(:,10:14,n).*n9(2); 

Pressure_y(:,10:14,n) = p1(:,10:14,n).*n9(1); 

%side 10 



Pressure_x(:,15:16,n) = p1(:,15:16,n).*n10(2); 

Pressure_y(:,15:16,n) = p1(:,15:16,n).*n10(1); 

end  

  

for n=1:5 

    MeanP_x2 = mean(Pressure_x2(:,:,n));  

    MeanP_y2 = mean(Pressure_y2(:,:,n)); 

    MeanP_x = mean(Pressure_x(:,:,n)); 

    MeanP_y = mean(Pressure_y(:,:,n)); 

  

    x_new2 = x_taps2_16 + MeanP_x2'; 

    y_new2 = y_taps2_16 + MeanP_y2'; 

    x_new = x_taps_16 + MeanP_x'; 

    y_new = y_taps_16 + MeanP_y'; 

  

    xy = zeros(16*2,2); 

    xy_new = zeros(16*2,2); 

    xy(1:16,:) = [x_taps_16, y_taps_16]; 

    xy(17:end,:) = [x_taps2_16, y_taps2_16]; 

    xy_new(1:16,:) = [x_new, y_new]; 

    xy_new(17:end,:) = [x_new2, y_new2]; 

     

    figure(n); hold on 

    plot(x_coord2_16, y_coord2_16) 

    plot(x_coord_16, y_coord_16) 

    axis equal 

    hn=arrow3(xy, xy_new, '|-1',[0, 0]); 

    c=colorbar; 

    title('Point Pressure') 

    xlabel('x') 

    ylabel('z') 

    set(gca, 'fontsize',20) 

    xlabel(c,'Pressure, [Pa]') 

    ylim([-150 150]) 

  

end 

  

%% ------------Tranforming into Loads--------------------- 

A = Distance16Taps;  

w=1; %width [m] 

Area = w.*A*10^-3; %[m^2] 

for n=1:5 

    for i = 1:16 

        Load_x(:,i,n) = Pressure_x(:,i,n).*Area(i); %downstream 

        Load_y(:,i,n) = Pressure_y(:,i,n).*Area(i); %downstream 

        Load_x2(:,i,n) = Pressure_x2(:,i,n).*Area(i); %upstream  

        Load_y2(:,i,n) = Pressure_y2(:,i,n).*Area(i); %upstream  

    end  

end  

  

centerX = (x_coord2_16(1)+x_coord_16(1))/2; centerY=0;   

%(y_coord2(1)+y_coord(1))/2; 

% distX=zeros(1,length(x_taps_16)); distY=zeros(1,length(y_taps_16)); 

% distX2=zeros(1, length(x_taps_16)); distY2=zeros(1,length(y_taps_16)); 

for i = 1:length(x_taps_16) 

    distX(i) = x_taps_16(i)-centerX; 

    distY(i) = y_taps_16(i)-centerY; 

    distX2(i) = x_taps2_16(i)-centerX; 

    distY2(i) = y_taps2_16(i)-centerY; 

end  

  



abs_distX = abs(distX*10^-3); 

abs_distY = abs(distY*10^-3); 

abs_distX2 = abs(distX2*10^-3); 

abs_distY2 = abs(distY2*10^-3); 

a=0; b=0; c=0; d=0; 

  

for n=1:5 

    for i=1:length(x_taps_16); 

            if x_taps2_16(i)<=centerX && y_taps2_16(i)>=centerY % 

                 if i>=7 

                    PS_moment2(:,i,n) = Load_y2(:,i,n).*abs_distX2(i) + 

Load_x2(:,i,n).*abs_distY2(i); 

                     a = a+1; 

                elseif i==6 

                 PS_moment2(:,i,n) = Load_y2(:,i,n).*abs_distX2(i) + 

Load_x2(:,i,n).*abs_distY2(i); 

                    a = a+1; 

                elseif i<=5 && i>=1 %1-5 

                   PS_moment2(:,i,n) = Load_y2(:,i,n).*abs_distX2(i); 

                    a = a+1; 

                else %16 

                    PS_moment2(:,i,n) = Load_x2(:,i,n).*abs_distY2(i); 

                    a = a+1; 

                 end   

            elseif x_taps2_16(i)<=centerX && y_taps2_16(i) <=centerY %taps 

nr 25-45 

                if i>=8 && i<=9 %taps 8,9 

                    PS_moment2(:,i,n) = Load_y2(:,i,n).*abs_distX2(i)-

Load_x2(:,i,n).*abs_distY2(i); 

                    b=b+1; 

                elseif i>=10 && i<=14 

                     PS_moment2(:,i,n) = Load_y2(:,i,n).*abs_distX2(i); 

                      b=b+1; 

                else %15  

                      PS_moment2(:,i,n) = -Load_x2(:,i,n).*abs_distY2(i); 

                       b=b+1; 

                end 

            end  

    end  

end  

%%  

for n=1:5 

    for i=1:length(x_taps_16) %downstream box, nr.1 

        if x_taps_16(i)>= centerX && y_taps_16(i)>=centerY %%upstream box, 

nr.2 

             if i>=7 %21,22,23,24 

                PS_moment(:,i,n) = -Load_y(:,i,n).*abs_distX(i) + 

Load_x(:,i,n).*abs_distY(i); 

                c = c+1; 

            elseif i==6  

                 PS_moment(:,i,n) = -Load_y(:,i,n).*abs_distX(i) + 

Load_x(i,n).*abs_distY(i); 

                 c = c+1; 

            elseif i<=5 && i>=1 %1-16 

                PS_moment(:,i,n) = -Load_y(:,i,n).*abs_distX(i); 

                c = c+1; 

            else %46-4842) 

                PS_moment(:,i,n) = Load_x(:,i,n).*abs_distY(i); 

                c = c+1; 

             end  

        else x_taps_16(i)>=centerX && y_taps_16(i)<=centerY; %taps nr 25-45 



            if i>=8 && i<=9 %8,9 

                PS_moment(:,i,n) = -Load_y(:,i,n).*abs_distX(i)-

Load_x(:,i,n).*abs_distY(i); 

                d=d+1; 

             elseif i>=10 && i<=14 %33-42 

                 PS_moment(:,i,n) = -Load_y(:,i,n).*abs_distX(i); 

                 d=d+1; 

            else %43-45   

                PS_moment(:,i,n) = -Load_x(:,i,n).*abs_distY(i); 

                d=d+1; 

            end  

        end    

    end  

end  

H = [2 3 4 5 6]; %%Corrline names  

for n=1:5 

    TSPointLoadCorrline(n).Corrline = H(n); 

    TSPointLoadCorrline(n).Fz1 = Load_y(:,:,n); 

    TSPointLoadCorrline(n).Fz2 = Load_y2(:,:,n); 

    TSPointLoadCorrline(n).Fx1 = Load_x(:,:,n); 

    TSPointLoadCorrline(n).Fx2 = Load_x2(:,:,n); 

    TSPointLoadCorrline(n).M1 = PS_moment(:,:,n); 

    TSPointLoadCorrline(n).M2 = PS_moment2(:,:,n); 

end  

  

  

%save('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\Po

stProccessing\Time Series Pont Load\TS_Corrline10_00_903_000', 

'TSPointLoadCorrline') 

  

  

end %if corrline  
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%% distributed forces on correlation line 1 

clc 

clear all  

close all 

  

filename = '10_00_906_000_Line1.jpg'; 

filenamePressure = '10_00_906_000_Line1.jpg'; 

  

fname = 'C:\Users\theah\NTNU\Gruppeområde - General\10 testing\05 Distributed 

Load plot'; 

fnamePressure = 'C:\Users\theah\NTNU\Gruppeområde - General\10 testing\06 

Distributed Pressure Plot'; 

%importing pressure and sorting it 

load('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\DataCu

tted\Master2020TD_10_00_906_000.mat') 

p=WT.Data.ProcessedData(8).Data; %pressure from scanners  

[p1_1, p1_2, p1_3, p1_4, p1_5, p1_6, p2_1, p2_2, p2_3, p2_4, p2_5, p2_6] = 

SortPressure2(p); 

p1_1 =mean(p1_1,1); 

p2_1 = mean(p2_1,1); 

  

%% importing coordinates 

[x_taps, y_taps, x_taps2, y_taps2, x_coord, y_coord, x_coord2, y_coord2,  

dist, A,... 

    x_taps_16, y_taps_16, x_taps2_16, y_taps2_16, x_coord_16, y_coord_16, 

x_coord2_16, y_coord2_16] = ImportingCoordinatesFunc; 

%x_taps2, y_taps2 = coordinates for taps only on upstream box corrline 1. 

%x_taps, y_taps = coordinates for taps only on downstream box corrline 1. 

%x_coord2, y_coord2 = coordinates for taps and corners on upstream box 

corrline 1. 

%x_coord, y_coord = coordinates for taps and corners on downstream box 

corrline 1. 

%x_taps2_16, y_taps2_16 = coordinates for taps only on upstream box corrline 

2-6. 

%x_taps_16, y_taps_16 = coordinates for taps only on downstream box corrline 

2-6. 

%x_coord2_16, y_coord2_16 = coordinates for taps and corners on upstream box 

corrline 2-6. 

%x_coord_16, y_coord_16 = coordinates for taps and corners on downstream box 

corrline 2-6. 

figure(1); hold on; 

plot(x_coord,y_coord, 'displayname', 'downstream') 

plot(x_coord2,y_coord2, 'displayname', 'upstream') 

legend show 

axis equal 

  

  

  

%% new coordinates box 1 = downstream box  

Ncord = [191, 36, 110, 121, 81]; %number of coordinates on each side  

x_start = [x_coord(1), x_coord(19), x_coord(25), x_coord(39), x_coord(51)]; 

y_start = [y_coord(1), y_coord(19), y_coord(25), y_coord(39), y_coord(51)]; 

dt = 1; %spacing of coordinates [mm] 

angle=[0 45.0 30.0 0 90]; 

%creates new coordinates with spacing dt 

%Xcoord = zeros(sum(Ncord),1); 



[Xcoord6, Ycoord6] = NewCoordinates(x_start(1), y_start(1), dt, 180-angle(1), 

Ncord(1));  

[Xcoord7, Ycoord7] = NewCoordinates(x_start(2), y_start(2), dt, 180-angle(2), 

Ncord(2));  

[Xcoord8, Ycoord8] = NewCoordinates(x_start(3), y_start(3), dt, angle(3), 

Ncord(3));  

[Xcoord9, Ycoord9] = NewCoordinates(x_start(4), y_start(4), dt, angle(4), 

Ncord(4));  

[Xcoord10, Ycoord10] = NewCoordinates(x_start(5), y_start(5), dt, 

180+angle(5), Ncord(5));  

  

% %% new coordinates box 2 = upstream box 

x_start2 = [x_coord2(1), x_coord2(19), x_coord2(25), x_coord2(39), 

x_coord2(51)]; 

y_start2 = [y_coord2(1), y_coord2(19), y_coord2(25), y_coord2(39), 

y_coord2(51)]; 

dt = 1; %spacing of coordinates [mm] 

%creates new coordinates with spacing dt 

%Xcoord = zeros(sum(Ncord),1); 

[Xcoord1, Ycoord1] = NewCoordinates(x_start2(1), y_start2(1), dt, angle(1), 

Ncord(1));  

[Xcoord2, Ycoord2] = NewCoordinates(x_start2(2), y_start2(2), dt, angle(2), 

Ncord(2));  

[Xcoord3, Ycoord3] = NewCoordinates(x_start2(3), y_start2(3), dt, 180-

angle(3), Ncord(3));  

[Xcoord4, Ycoord4] = NewCoordinates(x_start2(4), y_start2(4), dt, 180-

angle(4), Ncord(4));  

[Xcoord5, Ycoord5] = NewCoordinates(x_start2(5), y_start2(5), dt, 

180+angle(5), Ncord(5));  

  

Xcoord_2 = [Xcoord1, Xcoord2, Xcoord3, Xcoord4, Xcoord5]; 

%Xcoord(end+1)=Xcoord(1); 

Ycoord_2 = [Ycoord1, Ycoord2, Ycoord3, Ycoord4, Ycoord5]; 

%Ycoord(end+1)=Ycoord(1); 

  

Xcoord = [Xcoord6, Xcoord7, Xcoord8, Xcoord9, Xcoord10]; 

%Xcoord(end+1)=Xcoord(1); 

Ycoord = [Ycoord6, Ycoord7, Ycoord8, Ycoord9, Ycoord10]; 

%Ycoord(end+1)=Ycoord(1); 

  

  

%% converting point loads to distributed loads 

%by using spline interpolation function 

for k=1:10 

        if k==1 %Side 1 upstream box = box 2 

            s_x1 = x_coord2(1:18); 

            s_y1 = y_coord2(1:18); 

            s_x=s_x1; 

            s_y=s_y1; 

            s_taps1 = p2_1(1:16);  

            s_taps=s_taps1; 

        elseif k==2 %side2 

            s_x2 = x_coord2(19:24); 

            s_y2 = y_coord2(19:24); 

            s_x=s_x2; 

            s_y=s_y2; 

            s_taps2 = p2_1(17:20); 



            s_taps=s_taps2; 

        elseif k==3 %side3 

            s_x3 = x_coord2(25:38); 

            s_y3 = y_coord2(25:38);  

            s_x = s_x3; 

            s_y=s_y3; 

            s_taps3 = p2_1(21:32); 

            s_taps=s_taps3; 

       elseif k==4 %side4 

            s_x4 = x_coord2(39:50); 

            s_y4 = y_coord2(39:50); 

            s_x=s_x4; s_y=s_y4; 

            s_taps4 = p2_1(33:42);  

            s_taps=s_taps4; 

        elseif k==5 %side5 

            s_x5 = x_coord(51:58); 

            s_y5 = y_coord(51:58); 

            s_x=s_x5; s_y=s_y5; 

            s_taps5 = p2_1(43:48); 

            s_taps=s_taps5; 

        elseif k==6 %Side 1 box 1 = downstream box 

            s_x6 = x_coord(1:18); 

            s_y6 = y_coord(1:18); 

            s_x=s_x6; 

            s_y=s_y6; 

            s_taps6 = p1_1(1:16);  

            s_taps=s_taps6; 

        elseif k==7 %side2 box 1 = downstream box 

            s_x7 = x_coord(19:24); 

            s_y7 = y_coord(19:24); 

            s_x=s_x7; 

            s_y=s_y7; 

            s_taps7 = p1_1(17:20); 

            s_taps=s_taps7; 

        elseif k==8 %side3 box 1 = downstream box 

            s_x8 = x_coord(25:38); 

            s_y8 = y_coord(25:38);  

            s_x = s_x8; 

            s_y=s_y8; 

            s_taps8 = p1_1(21:32); 

            s_taps=s_taps8; 

       elseif k==9 %side4 box 1 = downstream box 

            s_x9 = x_coord(39:50); 

            s_y9 = y_coord(39:50); 

            s_x=s_x9; s_y=s_y9; 

            s_taps9 = p1_1(33:42);  

            s_taps=s_taps9; 

        elseif k==10 %side5 box 1 = downstram box 

            s_x10 = x_coord(51:58); 

            s_y10 = y_coord(51:58); 

            s_x=s_x10; s_y=s_y10; 

            s_taps10 = p1_1(43:48); 

            s_taps=s_taps10; 

        end  

      

        S_L = zeros(1,length(s_x)); 

        for i=2:(length(s_x)) 



            S_L(i)=S_L(i-1)+sqrt((s_x(i)-s_x(i-1))^2+(s_y(i)-s_y(i-1))^2);  

        end  

        X_s = S_L(2:end-1); 

        xx_s = S_L(1):dt:S_L(end); 

        yy_s = spline(X_s, s_taps,xx_s); 

         

%         figure; hold on; 

%         plot(X_s, s_taps, 'o', xx_s, yy_s) 

%         plot(xx_s, yy_s, 'r', 'Displayname', 'yy_s') 

%         %plot(Xcoord, Ycoord, 'r') 

%         axis equal 

%         legend show  

  

        if k==1 

            PS_1 = yy_s; 

            S_LS1 = S_L;            

        elseif k==2 

            PS_2 = yy_s; 

            S_LS2 = S_L; 

        elseif k==3 

            PS_3 = yy_s; 

            S_LS3 = S_L; 

            tap_end3 = yy_s(end); 

        elseif k==4 

            PS_4 = yy_s; 

            S_LS4 = S_L; 

        elseif k==5 

            PS_5 = yy_s; 

            S_LS5 = S_L; 

        elseif k==6 

             PS_6 = yy_s; 

            S_LS6 = S_L; 

        elseif k==7 

            PS_7 = yy_s; 

            S_LS7 = S_L; 

        elseif k==8 

            PS_8 = yy_s; 

            S_LS8 = S_L; 

        elseif k==9 

            PS_9 = yy_s; 

            S_LS9 = S_L; 

        elseif k==10 

            PS_10 = yy_s; 

            S_LS10 = S_L;         

       

        end  

end  

  

  

%% deocomponents of pressures 

%edges on the cross section  

a = zeros(6,2); %upstream box = box 2 

a(1,:) = [x_coord2(1), y_coord2(1)]; 

a(2,:) = [x_coord2(18), y_coord2(18)]; 

a(3,:) = [x_coord2(24), y_coord2(24)]; 

a(4,:) = [x_coord2(38), y_coord2(38)]; 

a(5,:) = [x_coord2(50), y_coord2(50)]; 



a(6,:) = [x_coord2(1), y_coord2(1)]; 

  

b = zeros(6,2); %downstream box = box 1 

b(1,:) = [x_coord(1), y_coord(1)]; 

b(2,:) = [x_coord(18), y_coord(18)]; 

b(3,:) = [x_coord(24), y_coord(24)]; 

b(4,:) = [x_coord(38), y_coord(38)]; 

b(5,:) = [x_coord(50), y_coord(50)]; 

b(6,:) = [x_coord(1), y_coord(1)]; 

  

%distance between two edges 

dxdy=zeros(5,2); %upstream box  

dxdy(1,:)= abs(a(2,:)-a(1,:)); 

dxdy(2,:)=abs(a(3,:)-a(2,:)); 

dxdy(3,:)=abs(a(4,:)-a(3,:));  

dxdy(4,:)=abs(a(5,:)-a(4,:));  

dxdy(5,:)=abs(a(6,:)-a(5,:)); 

  

dxdy2=zeros(5,2); %downstream box 

dxdy2(1,:)= abs(b(2,:)-b(1,:)); 

dxdy2(2,:)=abs(b(3,:)-b(2,:)); 

dxdy2(3,:)=abs(b(4,:)-b(3,:));  

dxdy2(4,:)=abs(b(5,:)-b(4,:));  

dxdy2(5,:)=abs(b(6,:)-b(5,:)); 

  

%normal vectors  

n1 = dxdy(1,:)/norm(dxdy(1,:)); %upstream 

n2 = dxdy(2,:)/norm(dxdy(2,:)); %upstream 

n3 = dxdy(3,:)/norm(dxdy(3,:)); %upstream 

n4 = dxdy(4,:)/norm(dxdy(4,:)); %upstream 

n5 = dxdy(5,:)/norm(dxdy(5,:)); %upstream 

n6 = dxdy2(1,:)/norm(dxdy2(1,:)); %downstream 

n7 = dxdy2(2,:)/norm(dxdy2(2,:)); %downstream 

n8 = dxdy2(3,:)/norm(dxdy2(3,:)); %downstream 

n9 = dxdy2(4,:)/norm(dxdy2(4,:)); %downstream 

n10 = dxdy2(5,:)/norm(dxdy2(5,:)); %downstream 

  

%% upstream deck, PS_x1,PS_y1-PS_x5,PS_y5 

PS_x = PS_1.*-n1(2); 

PS_y = PS_1*-n1(1); 

PS = PS_1; 

PS_y1 = PS_y; PS_x1=PS_x; 

name=sprintf('S%d.mat',1); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_2.*n2(2); 

PS_y = PS_2.*-n2(1); 

PS = PS_2; 

PS_xy2=[PS_x; PS_y]'; 

PS_y2 = PS_y; PS_x2=PS_x; 

name=sprintf('S%d.mat',2); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x =PS_3.*n3(2); 

PS_y = PS_3.*n3(1); 

PS = PS_3; 

PS_y3 = PS_y; PS_x3=PS_x; 



name=sprintf('S%d.mat',3); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_4.*n4(2); 

PS_y = PS_4.*n4(1); 

PS = PS_4; 

PS_y4 = PS_y; PS_x4=PS_x; 

name=sprintf('S%d.mat',4); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_5.*-n5(2); 

PS_y = PS_5.*n5(1); 

PS = PS_5(1:end); 

PS_y5 = PS_y; PS_x5=PS_x; 

name=sprintf('S%d.mat',5); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

%% upstream deck, PS_x6,PS_y6-PS_x10,PS_y10 

PS_x = PS_6.*-n6(2); 

PS_y = PS_6.*-n6(1); 

PS = PS_6; 

PS_y6 = PS_y; PS_x6=PS_x; 

name=sprintf('S%d.mat',6); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_7.*-n7(2); 

PS_y = PS_7.*-n7(1); 

PS = PS_7; 

PS_y7 = PS_y; PS_x7=PS_x; 

name=sprintf('S%d.mat',7); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_8.*-n8(2); 

PS_y = PS_8.*n8(1); 

PS = PS_8(1:end); 

PS_y8 = PS_y; PS_x8=PS_x; 

name=sprintf('S%d.mat',8); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_9.*n9(2); 

PS_y = PS_9.*n9(1); 

PS = PS_9(1:end); 

PS_y9 = PS_y; PS_x9=PS_x; 

name=sprintf('S%d.mat',9); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

PS_x = PS_10.*n10(2); 

PS_y = PS_10.*n10(1); 

PS = PS_10(1:end); 

PS_y10 = PS_y; PS_x10=PS_x; 

name=sprintf('S%d.mat',10); 

save(name, 'PS_y', 'PS_x', 'PS'); 

  

  

%% plotting pressure distribution  

P_x1 = (Xcoord1+PS_x1); 

P_y1 = (Ycoord1+PS_y1); 



P_x2 = Xcoord2+PS_x2; 

P_y2 = Ycoord2+PS_y2; 

P_x3 = Xcoord3+PS_x3; 

P_y3 = Ycoord3+PS_y3; 

P_x4 = Xcoord4+PS_x4; 

P_y4 = Ycoord4+PS_y4; 

P_x5 = Xcoord5+PS_x5; 

P_y5 = Ycoord5+PS_y5; 

  

P_x6 = (Xcoord6+PS_x6); 

P_y6 = (Ycoord6+PS_y6); 

P_x7 = Xcoord7+PS_x7; 

P_y7 = Ycoord7+PS_y7; 

P_x8 = Xcoord8+PS_x8; 

P_y8 = Ycoord8+PS_y8; 

P_x9 = Xcoord9+PS_x9; 

P_y9 = Ycoord9+PS_y9; 

P_x10 = Xcoord10+PS_x10; 

P_y10 = Ycoord10+PS_y10; 

  

Pressure_x_2 = [P_x1, P_x2, P_x3, P_x4, P_x5]; 

Pressure_y_2 = [P_y1, P_y2, P_y3, P_y4, P_y5]; 

Pressure_x = [P_x6, P_x7, P_x8, P_x9, P_x10]; 

Pressure_y = [P_y6, P_y7, P_y8, P_y9, P_y10]; 

  

  

xy = zeros(length(Xcoord)*2,2); 

xy_pressure = zeros(length(Xcoord)*2,2); 

xy(1:length(Xcoord),:) = [Xcoord', Ycoord']; 

xy(length(Xcoord)+1:end,:) = [Xcoord_2', Ycoord_2']; 

xy_pressure(1:length(Xcoord),:) = [Pressure_x', Pressure_y']; 

xy_pressure(length(Xcoord)+1:end,:) = [Pressure_x_2', Pressure_y_2']; 

  

  

%plotting distributed pressure  

figure(); hold on 

plot(x_coord2, y_coord2) 

plot(x_coord, y_coord) 

axis equal 

hn=arrow3(xy, xy_pressure, '|-1',[0.1,0.1]); 

c=colorbar ; 

title('Distributed pressure') 

xlabel('x') 

ylabel('z') 

ylim([-150 150]) 

set(gca, 'fontsize',20) 

xlabel(c,'Pressure, [Pa]') 

saveas(gca, fullfile(fnamePressure, filenamePressure), 'fig'); 

saveas(gca, fullfile(fnamePressure, filenamePressure), 'jpg'); 

  

  

  

%% convert pressure to loads 

w=2.68; Dt=dt*10^-3; 

for i=1:10 

    name = sprintf('S%d.mat', i); 

    load(name); 



  

    F = zeros(1, length(PS)); 

    Fy = zeros(1, length(PS_y)); 

    Fx = zeros(1,length(PS_x)); 

     

    F(2:end-1)=PS(2:end-1).*Dt*w; 

    F(1)=PS(1)*Dt*w/2; 

    F(end)=PS(end)*Dt*w/2; 

     

    Fy(2:end-1)=PS_y(2:end-1).*Dt*w; 

    Fy(1)=PS_y(1).*Dt*w/2; 

    Fy(end)=PS_y(end).*Dt*w/2; 

     

    Fx(2:end-1)=PS_x(2:end-1).*Dt*w; 

    Fx(1)=PS_x(1).*Dt*w/2; 

    Fx(end)=PS_x(end).*Dt*w/2; 

     

    name = sprintf('S%d_loads.mat', i); 

    save(name, 'Fx', 'Fy', 'F');  

end  

%Load 1-5, upstream deck and load 6-10 downstream deck.  

name = sprintf('S%d_loads.mat', 1); 

load(name); 

Fy_1 = Fy; 

Fx_1 = Fx; 

F_1 = F; 

  

name = sprintf('S%d_loads.mat', 2); 

load(name); 

Fy_2 = Fy; 

Fx_2 = Fx; 

F_2 = F; 

  

name = sprintf('S%d_loads.mat', 3); 

load(name); 

Fy_3 = Fy; 

Fx_3 = Fx; 

F_3 = F; 

  

name = sprintf('S%d_loads.mat', 4); 

load(name); 

Fy_4 = Fy; 

Fx_4 = Fx; 

F_4 = F; 

  

name = sprintf('S%d_loads.mat', 5); 

load(name); 

Fy_5 = Fy; 

Fx_5 = Fx; 

F_5 = F; 

  

name = sprintf('S%d_loads.mat', 6); 

load(name); 

Fy_6 = Fy; 

Fx_6 = Fx; 

F_6 = F; 

  



name = sprintf('S%d_loads.mat', 7); 

load(name); 

Fy_7 = Fy; 

Fx_7 = Fx; 

F_7 = F; 

  

name = sprintf('S%d_loads.mat', 8); 

load(name); 

Fy_8 = Fy; 

Fx_8 = Fx; 

F_8 = F; 

  

name = sprintf('S%d_loads.mat', 9); 

load(name); 

Fy_9 = Fy; 

Fx_9 = Fx; 

F_9 = F; 

  

name = sprintf('S%d_loads.mat', 10); 

load(name); 

Fy_10 = Fy; 

Fx_10 = Fx; 

F_10 = F; 

  

Fx2 = [Fx_1, Fx_2, Fx_3, Fx_4, Fx_5]; %upstream  

Fy2 = [Fy_1, Fy_2, Fy_3, Fy_4, Fy_5]; %upstream 

Fx = [Fx_6, Fx_7, Fx_8, Fx_9, Fx_10]; %downstream 

Fy = [Fy_6, Fy_7, Fy_8, Fy_9, Fy_10]; %downstream  

  

SumFx2=sum(Fx_1)+sum(Fx_2)+sum(Fx_3)+sum(Fx_4)+sum(Fx_5); 

SumFx1=sum(Fx_6)+sum(Fx_7)+sum(Fx_8)+sum(Fx_9)+sum(Fx_10); 

  

SumFz2=sum(Fy_1)+sum(Fy_2)+sum(Fy_3)+sum(Fy_4)+sum(Fy_5); 

SumFz1=sum(Fy_6)+sum(Fy_7)+sum(Fy_8)+sum(Fy_9)+sum(Fy_10); 

%% plotting loads F; 

scale=100;  

Load_x1 = (Xcoord1+Fx_1*scale); 

Load_y1 = (Ycoord1+Fy_1*scale); 

Load_x2 = Xcoord2+Fx_2*scale; 

Load_y2 = Ycoord2+Fy_2*scale; 

Load_x3 = Xcoord3+Fx_3*scale; 

Load_y3 = Ycoord3+Fy_3*scale; 

Load_x4 = Xcoord4+Fx_4*scale; 

Load_y4 = Ycoord4+Fy_4*scale; 

Load_x5 = Xcoord5+Fx_5*scale; 

Load_y5 = Ycoord5+Fy_5*scale; 

  

Load_x6 = (Xcoord6+Fx_6*scale); 

Load_y6 = (Ycoord6+Fy_6*scale); 

Load_x7 = Xcoord7+Fx_7*scale; 

Load_y7 = Ycoord7+Fy_7*scale; 

Load_x8 = Xcoord8+Fx_8*scale; 

Load_y8 = Ycoord8+Fy_8*scale; 

Load_x9 = Xcoord9+Fx_9*scale; 

Load_y9 = Ycoord9+Fy_9*scale; 

Load_x10 = Xcoord10+Fx_10*scale; 

Load_y10 = Ycoord10+Fy_10*scale; 



  

  

Loadx2 = [Load_x1, Load_x2, Load_x3, Load_x4, Load_x5]; 

Loady2 = [Load_y1, Load_y2, Load_y3, Load_y4, Load_y5]; 

Loadx = [Load_x6, Load_x7, Load_x8, Load_x9, Load_x10]; 

Loady = [Load_y6, Load_y7, Load_y8, Load_y9, Load_y10]; 

  

  

xy = zeros(length(Xcoord)*2,2); 

xy_Load = zeros(length(Xcoord)*2,2); 

xy(1:length(Xcoord),:) = [Xcoord', Ycoord']; 

xy(length(Xcoord)+1:end,:) = [Xcoord_2', Ycoord_2']; 

xy_Load(1:length(Xcoord),:) = [Loadx', Loady']; 

xy_Load(length(Xcoord)+1:end,:) = [Loadx2', Loady2']; 

  

  

% %plotting distributed load   

% figure(); hold on 

% plot(x_coord2, y_coord2) 

% plot(x_coord, y_coord) 

% axis equal 

% hn=arrow3(xy, xy_Load, '|-1',0); 

% c=colorbar; 

% title('Distributed Load') 

% xlabel('x') 

% ylabel('z') 

% set(gca, 'fontsize',20) 

% ylim([-100 100]) 

% xlabel(c,'Force, [N]\cdot10^{-2}') 

  

% saveas(gca, fullfile(fname, filename), 'fig'); 

%saveas(gca, fullfile(fname, filename), 'jpg'); 

%  

%% moment forces  

centerX = (x_coord2(1)+x_coord(1))/2; centerY=0;   

%(y_coord2(1)+y_coord(1))/2; 

distX=zeros(1, length(Ncord)); distY=zeros(1,length(Xcoord)); 

for i = 1:length(Xcoord) 

    distX(i) = Xcoord(i)-centerX; 

    distY(i) = Ycoord(i)-centerY; 

    distX2(i) = Xcoord_2(i)-centerX; 

    distY2(i) = Ycoord_2(i)-centerY; 

end  

m1=length(Xcoord1); m2=length(Xcoord2); m3=length(Xcoord3); 

m4=length(Xcoord4); m5=length(Xcoord5); 

  

% figure(16); hold on 

% plot(x_coord, y_coord) 

% plot(x_coord2, y_coord2) 

% plot(centerX, centerY, 'o') 

% plot(x_taps, y_taps, 'o') 

% plot(x_taps2, y_taps2, 'o') 

% plot(10) 

% axis equal 

  

%absoulte vale of moment arm and converting from mm to m. 

abs_distX=abs(distX*10^(-3)); 



abs_distY=abs(distY*10^(-3)); 

abs_distX2=abs(distX2*10^(-3)); 

abs_distY2=abs(distY2*10^(-3)); 

  

a=0;b=0;c=0;d=0; 

PS_moment2=zeros(1,length(Xcoord)); 

for i=1:length(Xcoord_2) % upstream box, box 2 

    if Xcoord_2(i)<=centerX && Ycoord_2(i)>=centerY %taps nr 1-24 and 48,47, 

46 box 2 

        if i>=(m1+m2+1) %21,22,23 

            PS_moment2(i) = Fy2(i).*abs_distX2(i) + Fx2(i).*abs_distY2(i); 

            a = a+1; 

        elseif i>=(m1+1) && i<=(m1+m2) %17-20 

            PS_moment2(i) = Fy2(i).*abs_distX2(i) + Fx2(i).*abs_distY2(i); 

            a = a+1; 

        elseif i<=m1 %1-16 

            PS_moment2(i) = Fy2(i).*abs_distX2(i); 

            a = a+1; 

        else %46-48 

            PS_moment2(i) = Fx2(i).*abs_distY2(i); 

            a = a+1; 

        end  

    elseif Xcoord_2(i)<=centerX && Ycoord_2(i) <=centerY %taps nr 24-45 

       if i>=(m1+m2+4) && i<=(m1+m2+m3) %taps 25-32 

           PS_moment2(i) = Fy2(i).*abs_distX2(i)-Fx2(i).*abs_distY2(i); 

           b=b+1; 

       elseif i>=(m1+m2+m3+1) && i<=(m1+m2+m3+m4) %% 

           PS_moment2(i) = Fy2(i).*abs_distX2(i); 

           b=b+1; 

       else %43-45   

           PS_moment2(i) = -Fx2(i).*abs_distY2(i); 

           b=b+1; 

       end 

    end  

end  

moment=zeros(1,length(Xcoord)); 

for i=1:length(Xcoord) %downstream box, nr.1 

    if Xcoord(i)>= centerX && Ycoord(i)>=centerY %%downstream box, nr.2 

         if i>=(m1+m2+1) %21,22,23 

            moment(i) = -Fy(i).*abs_distX(i) + Fx(i).*abs_distY(i); 

            c = c+1; 

        elseif i>(m1) && i<=(m1+m2) %17-20 

            moment(i) = -Fy(i).*abs_distX(i) + Fx(i).*abs_distY(i); 

            c = c+1; 

        elseif i<=m1 %1-16 

            moment(i) = -Fy(i).*abs_distX(i); 

            c = c+1; 

        else %46-48 

            moment(i) = Fx(i).*abs_distY(i); 

            c = c+1; 

        end  

    else  %Ycoord(i)<=centerY && Xcoord(i)>=centerX; %taps nr 24-45 

       if  i<=(m1+m2+m3) %taps 24-32 i>=(m1+m2+5) && 

           moment(i) = -Fy(i).*abs_distX(i)-Fx(i).*abs_distY(i); 

           d=d+1; 

       elseif i>(m1+m2+m3) && i<=(m1+m2+m3+m4) %33-42 

           moment(i) = -Fy(i).*abs_distX(i); 



           d=d+1; 

       else %43-45  Pressure_y_2 

           moment(i) = -Fx(i).*abs_distY(i); 

           d=d+1; 

       end  

    end    

end 

  

SumM1=sum(moment) 

SumM2=sum(PS_moment2); 

  

 

 



Functions

Functions used in both the piece-wise point load method and the interpolated load method.

• Function SortPressure: Finding the right value of each tube from the pressure trans-
ducer data.

• Function Distance16Taps: Finding surface area for correlation line 2-6, used in the
calculation of forces.

• Function ImportingCoordinates: Imports the coordinates from the cross-section,
finding the angles of the sides of the cross-section and finding the surface area for
correlation line 1.

• Function NewCoordinates: Gives new coordinates/points on the cross-section with
spacing dt. Used in the interpolated load method.
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%% pressure  

% sorting the pressure from the pressure transducers  

 

  

function [p1_1, p1_2, p1_3, p1_4, p1_5, p1_6, p2_1, p2_2, 

p2_3, p2_4, p2_5, p2_6] = SortPressure2(p) 

% function sorting pressure from pressure scanners after 

correlation line 

% and box 

% p1_1 = correlation line 1 box 1 etc.  

% p2_1 = correlation line 1 box 2 etc. 

  

%% box 1, scanner 179 and 182, downstream box 

%Corr line 1  

p_corrline1=zeros(size(p,1), 48); 

p_corrline1(:,1) = p(:,193); 

p_corrline1(:,2) = p(:,195); 

p_corrline1(:,3) = p(:,197); 

p_corrline1(:,4) = p(:,199); 

p_corrline1(:,5) = p(:,201); 

p_corrline1(:,6) = p(:,203); 

p_corrline1(:,7) = p(:,205); 

p_corrline1(:,8) = p(:,207); 

p_corrline1(:,9) = p(:,209); 

p_corrline1(:,10) = p(:,211); 

p_corrline1(:,11) = p(:,213); 

p_corrline1(:,12) = p(:,215); 

p_corrline1(:,13) = p(:,217); 

p_corrline1(:,14) = p(:,219); 

p_corrline1(:,15) = p(:,221); 

p_corrline1(:,16) = p(:,223); 

p_corrline1(:,17) = p(:,243); 

p_corrline1(:,18) = p(:,245); 

p_corrline1(:,19) = p(:,247); 

p_corrline1(:,20) = p(:,249); 

p_corrline1(:,21) = p(:,230); 

p_corrline1(:,22) = p(:,232); 

p_corrline1(:,23) = p(:,234); 

p_corrline1(:,24) = p(:,236); 

p_corrline1(:,25) = p(:,238); 

p_corrline1(:,26) = p(:,240); 

p_corrline1(:,27) = p(:,242); 

p_corrline1(:,28) = p(:,244); 

p_corrline1(:,29) = p(:,246); 



p_corrline1(:,30) = p(:,248); 

p_corrline1(:,31) = p(:,250); 

p_corrline1(:,32) = p(:,252); 

p_corrline1(:,33) = p(:,27); 

p_corrline1(:,34) = p(:,29); 

p_corrline1(:,35) = p(:,31); 

p_corrline1(:,36) = p(:,2); 

p_corrline1(:,37) = p(:,4); 

p_corrline1(:,38) = p(:,6); 

p_corrline1(:,39) = p(:,8); 

p_corrline1(:,40) = p(:,10); 

p_corrline1(:,41) = p(:,12); 

p_corrline1(:,42) = p(:,14); 

p_corrline1(:,43) = p(:,34); 

p_corrline1(:,44) = p(:,36); 

p_corrline1(:,45) = p(:,38); 

p_corrline1(:,46) = p(:,40); 

p_corrline1(:,47) = p(:,42); 

p_corrline1(:,48) = p(:,44); 

  

%coorline 2 

p_corrline2=zeros(size(p,1), 16); 

  

p_corrline2(:,1) = p(:,194); 

p_corrline2(:,2) = p(:,196); 

p_corrline2(:,3) = p(:,198); 

p_corrline2(:,4) = p(:,200); 

p_corrline2(:,5) = p(:,202); 

p_corrline2(:,6) = p(:,251); 

p_corrline2(:,7) = p(:,254); 

p_corrline2(:,8) = p(:,256); 

p_corrline2(:,9) = p(:,1); 

p_corrline2(:,10) = p(:,16); 

p_corrline2(:,11) = p(:,18); 

p_corrline2(:,12) = p(:,20); 

p_corrline2(:,13) = p(:,22); 

p_corrline2(:,14) = p(:,24); 

p_corrline2(:,15) = p(:,46); 

p_corrline2(:,16) = p(:,46); 

  

%corrline3  

p_corrline3=zeros(size(p,1), 16); 

p_corrline3(:,1) = p(:,204); 

p_corrline3(:,2) = p(:,206); 



p_corrline3(:,3) = p(:,208); 

p_corrline3(:,4) = p(:,210); 

p_corrline3(:,5) = p(:,212); 

p_corrline3(:,6) = p(:,253); 

p_corrline3(:,7) = p(:,3); 

p_corrline3(:,8) = p(:,5); 

p_corrline3(:,9) = p(:,7); 

p_corrline3(:,10) = p(:,26); 

p_corrline3(:,11) = p(:,28); 

p_corrline3(:,12) = p(:,30); 

p_corrline3(:,13) = p(:,32); 

p_corrline3(:,14) = p(:,33); 

p_corrline3(:,15) = p(:,50); 

p_corrline3(:,16) = p(:,52); 

  

%corrline4  

p_corrline4=zeros(size(p,1), 16); 

p_corrline4(:,1) = p(:,214); 

p_corrline4(:,2) = p(:,216); 

p_corrline4(:,3) = p(:,218); 

p_corrline4(:,4) = p(:,220); 

p_corrline4(:,5) = p(:,222); 

p_corrline4(:,6) = p(:,255); 

p_corrline4(:,7) = p(:,9); 

p_corrline4(:,8) = p(:,11); 

p_corrline4(:,9) = p(:,213); 

p_corrline4(:,10) = p(:,35); 

p_corrline4(:,11) = p(:,37); 

p_corrline4(:,12) = p(:,39); 

p_corrline4(:,13) = p(:,41); 

p_corrline4(:,14) = p(:,43); 

p_corrline4(:,15) = p(:,54); 

p_corrline4(:,16) = p(:,56); 

  

  

%corrline5  

p_corrline5=zeros(size(p,1), 16); 

p_corrline5(:,1) = p(:,224); 

p_corrline5(:,2) = p(:,225); 

p_corrline5(:,3) = p(:,227); 

p_corrline5(:,4) = p(:,229); 

p_corrline5(:,5) = p(:,231); 

p_corrline5(:,6) = p(:,226); 

p_corrline5(:,7) = p(:,15); 



p_corrline5(:,8) = p(:,17); 

p_corrline5(:,9) = p(:,19); 

p_corrline5(:,10) = p(:,45); 

p_corrline5(:,11) = p(:,47); 

p_corrline5(:,12) = p(:,49); 

p_corrline5(:,13) = p(:,51); 

p_corrline5(:,14) = p(:,53); 

p_corrline5(:,15) = p(:,58); 

p_corrline5(:,16) = p(:,60); 

  

%corrline6 

p_corrline6=zeros(size(p,1), 16); 

p_corrline6(:,1) = p(:,233); 

p_corrline6(:,2) = p(:,235); 

p_corrline6(:,3) = p(:,237); 

p_corrline6(:,4) = p(:,239); 

p_corrline6(:,5) = p(:,241); 

p_corrline6(:,6) = p(:,228); 

p_corrline6(:,7) = p(:,21); 

p_corrline6(:,8) = p(:,23); 

p_corrline6(:,9) = p(:,25); 

p_corrline6(:,10) = p(:,55); 

p_corrline6(:,11) = p(:,57); 

p_corrline6(:,12) = p(:,59); 

p_corrline6(:,13) = p(:,61); 

p_corrline6(:,14) = p(:,53); 

p_corrline6(:,15) = p(:,62); 

p_corrline6(:,16) = p(:,64); 

  

  

%% box 2, scanner 179 and 182 

%Corr line 1  

p_corrline7=zeros(size(p,1), 48); 

p_corrline7(:,1) = p(:,129); 

p_corrline7(:,2) = p(:,131); 

p_corrline7(:,3) = p(:,133); 

p_corrline7(:,4) = p(:,135); 

p_corrline7(:,5) = p(:,137); 

p_corrline7(:,6) = p(:,139); 

p_corrline7(:,7) = p(:,141); 

p_corrline7(:,8) = p(:,143); 

p_corrline7(:,9) = p(:,145); 

p_corrline7(:,10) = p(:,147); 

p_corrline7(:,11) = p(:,149); 



p_corrline7(:,12) = p(:,151); 

p_corrline7(:,13) = p(:,153); 

p_corrline7(:,14) = p(:,155); 

p_corrline7(:,15) = p(:,157); 

p_corrline7(:,16) = p(:,159); 

p_corrline7(:,17) = p(:,179); 

p_corrline7(:,18) = p(:,181); 

p_corrline7(:,19) = p(:,183); 

p_corrline7(:,20) = p(:,185); 

p_corrline7(:,21) = p(:,166); 

p_corrline7(:,22) = p(:,168); 

p_corrline7(:,23) = p(:,170); 

p_corrline7(:,24) = p(:,172); 

p_corrline7(:,25) = p(:,174); 

p_corrline7(:,26) = p(:,176); 

p_corrline7(:,27) = p(:,178); 

p_corrline7(:,28) = p(:,180); 

p_corrline7(:,29) = p(:,182); 

p_corrline7(:,30) = p(:,184); 

p_corrline7(:,31) = p(:,186); 

p_corrline7(:,32) = p(:,188); 

p_corrline7(:,33) = p(:,91); 

p_corrline7(:,34) = p(:,93); 

p_corrline7(:,35) = p(:,95); 

p_corrline7(:,36) = p(:,66); 

p_corrline7(:,37) = p(:,68); 

p_corrline7(:,38) = p(:,70); 

p_corrline7(:,39) = p(:,72); 

p_corrline7(:,40) = p(:,74); 

p_corrline7(:,41) = p(:,76); 

p_corrline7(:,42) = p(:,78); 

p_corrline7(:,43) = p(:,98); 

p_corrline7(:,44) = p(:,100); 

p_corrline7(:,45) = p(:,102); 

p_corrline7(:,46) = p(:,104); 

p_corrline7(:,47) = p(:,106); 

p_corrline7(:,48) = p(:,108); 

  

%coorline 8 aka corrline 2 box 2 

p_corrline8=zeros(size(p,1), 16); 

  

p_corrline8(:,1) = p(:,130); 

p_corrline8(:,2) = p(:,132); 

p_corrline8(:,3) = p(:,134); 



p_corrline8(:,4) = p(:,136); 

p_corrline8(:,5) = p(:,138); 

p_corrline8(:,6) = p(:,187); 

p_corrline8(:,7) = p(:,190); 

p_corrline8(:,8) = p(:,192); 

p_corrline8(:,9) = p(:,65); 

p_corrline8(:,10) = p(:,80); 

p_corrline8(:,11) = p(:,82); 

p_corrline8(:,12) = p(:,84); 

p_corrline8(:,13) = p(:,86); 

p_corrline8(:,14) = p(:,88); 

p_corrline8(:,15) = p(:,110); 

p_corrline8(:,16) = p(:,112); 

  

%corrline9 aka corrline 3 box2  

p_corrline9=zeros(size(p,1), 16); 

p_corrline9(:,1) = p(:,140); 

p_corrline9(:,2) = p(:,142); 

p_corrline9(:,3) = p(:,144); 

p_corrline9(:,4) = p(:,146); 

p_corrline9(:,5) = p(:,148); 

p_corrline9(:,6) = p(:,189); 

p_corrline9(:,7) = p(:,67); 

p_corrline9(:,8) = p(:,69); 

p_corrline9(:,9) = p(:,71); 

p_corrline9(:,10) = p(:,90); 

p_corrline9(:,11) = p(:,92); 

p_corrline9(:,12) = p(:,94); 

p_corrline9(:,13) = p(:,96); 

p_corrline9(:,14) = p(:,97); 

p_corrline9(:,15) = p(:,114); 

p_corrline9(:,16) = p(:,116); 

  

%corrline10 aka corrline 4 box2  

p_corrline10=zeros(size(p,1), 16); 

p_corrline10(:,1) = p(:,150); 

p_corrline10(:,2) = p(:,152); 

p_corrline10(:,3) = p(:,154); 

p_corrline10(:,4) = p(:,156); 

p_corrline10(:,5) = p(:,158); 

p_corrline10(:,6) = p(:,191); 

p_corrline10(:,7) = p(:,73); 

p_corrline10(:,8) = p(:,75); 

p_corrline10(:,9) = p(:,77); 



p_corrline10(:,10) = p(:,99); 

p_corrline10(:,11) = p(:,101); 

p_corrline10(:,12) = p(:,103); 

p_corrline10(:,13) = p(:,105); 

p_corrline10(:,14) = p(:,107); 

p_corrline10(:,15) = p(:,118); 

p_corrline10(:,16) = p(:,120); 

  

  

%corrline11 aka corrline 5 box2 

p_corrline11=zeros(size(p,1), 16); 

p_corrline11(:,1) = p(:,160); 

p_corrline11(:,2) = p(:,161); 

p_corrline11(:,3) = p(:,163); 

p_corrline11(:,4) = p(:,165); 

p_corrline11(:,5) = p(:,167); 

p_corrline11(:,6) = p(:,162); 

p_corrline11(:,7) = p(:,79); 

p_corrline11(:,8) = p(:,81); 

p_corrline11(:,9) = p(:,83); 

p_corrline11(:,10) = p(:,109); 

p_corrline11(:,11) = p(:,111); 

p_corrline11(:,12) = p(:,113); 

p_corrline11(:,13) = p(:,115); 

p_corrline11(:,14) = p(:,117); 

p_corrline11(:,15) = p(:,122); 

p_corrline11(:,16) = p(:,124); 

  

%corrline12 aka corrline 6 box2 

p_corrline12=zeros(size(p,1), 16); 

p_corrline12(:,1) = p(:,169); 

p_corrline12(:,2) = p(:,171); 

p_corrline12(:,3) = p(:,173); 

p_corrline12(:,4) = p(:,175); 

p_corrline12(:,5) = p(:,177); 

p_corrline12(:,6) = p(:,164); 

p_corrline12(:,7) = p(:,85); 

p_corrline12(:,8) = p(:,87); 

p_corrline12(:,9) = p(:,89); 

p_corrline12(:,10) = p(:,119); 

p_corrline12(:,11) = p(:,121); 

p_corrline12(:,12) = p(:,123); 

p_corrline12(:,13) = p(:,125); 

p_corrline12(:,14) = p(:,127); 



p_corrline12(:,15) = p(:,126); 

p_corrline12(:,16) = p(:,128); 

  

  

  

%% saving pressure 

p1_1 = p_corrline1; 

p1_2 = p_corrline2; 

p1_3 = p_corrline3; 

p1_4 = p_corrline4; 

p1_5 = p_corrline5; 

p1_6 = p_corrline6; 

  

p2_1 = p_corrline7; 

p2_2 = p_corrline8; 

p2_3 = p_corrline9; 

p2_4 = p_corrline10; 

p2_5 = p_corrline11; 

p2_6 = p_corrline12; 

  

end  

 



 

%%  Finding surface area for point loads for correlation line 2-6 

%length between taps, first number is edge to tap, last number is tap to 

edge 

  

function [A] = Distance16Taps; 

  

dist1 = [17.63, 42.38, 41.25, 44.39, 40.86, 3.5]; 

dist2 = [12.83, 22.66]; 

dist3 = [4, 37.20, 37.20, 31.40]; 

dist4 = [3.5, 22.60, 22.60, 25.42, 42.38, 3.5]; 

dist5 = [18.10, 43.80, 18.10]; 

dist = [dist1, dist2, dist3, dist4, dist5]; 

  

  

%% Surface area for point loads 

%side 1 

A(1) = dist(1)+dist(2)/2; 

for i=2:4 

    A(i) = (dist(i)+dist(i+1))/2;  

end  

A(5) = dist(5)/2+dist(6); 

%side 2 

A(6) = dist(7)+dist(8); 

%side 3 

A(7) = dist(9)+dist(10)/2; 

A(8) = (dist(10)+dist(11))/2; 

A(9) = dist(11)/2+dist(12); 

%side 4 

A(10) = dist(13)+dist(14)/2; 

A(11) = (dist(14)+dist(15))/2; 

A(12) = (dist(15)+dist(16))/2; 

A(13) = (dist(16)+dist(17))/2; 

A(14) = dist(17)/2 + dist(18); 

%side 5 

A(15)=dist(19)+dist(20)/2; 

A(16) = dist(20)/2+dist(21); 

A=A'; 

 



%% importing coordinates and angles of the cross-section and finding the 

surface area for line 1.  

 

function [x_taps, y_taps, x_taps2, y_taps2, x_coord, y_coord, x_coord2, 

y_coord2,  dist, A,... 

    x_taps_16, y_taps_16, x_taps2_16, y_taps2_16, x_coord_16, y_coord_16, 

x_coord2_16, y_coord2_16] = ImportingCoordinatesFunc 

[Coordinates_cross, txt, raw] = xlsread('kordinater_edge.xlsx', 1); 

[Pressure, txt, raw] = xlsread('kordinater_edge.xlsx', 3); %pressure  

[Coordinates, txt1, raw1] = xlsread('kordinater_edge.xlsx', 4); %coordinates 

to pressure taps only' 

[Coordinates_16_cross, txt, raw1] =xlsread('kordinater_edge.xlsx',2); 

%coordinates cross-section corrline 2-6 

[Coordinates_16, txt, raw1] =xlsread('kordinater_edge.xlsx',5); %coordinates 

taps only corrline 2-6 

  

  

%% box 2 = upstream box 

x_taps2 = Coordinates(1:end,2); 

y_taps2 = Coordinates(1:end,3); 

pressure2 = Pressure(1:end,2); 

x_coord2= Coordinates_cross(1:end,2); 

y_coord2 = Coordinates_cross(1:end,3); 

  

x_taps2_16 = Coordinates_16(1:end,2); 

y_taps2_16 = Coordinates_16(1:end,3);  

x_coord2_16 = Coordinates_16_cross(1:end,2); 

y_coord2_16 = Coordinates_16_cross(1:end,3);  

  

%% box 1 = downstream box  

w=160; %distance between upstream and downstream box. 

x_coord = -x_coord2+w; %mirro2 the coordinates to get the second box.  

y_coord = y_coord2; 

x_taps = -x_taps2+w; 

y_taps = y_taps2; 

  

x_coord_16 = -x_coord2_16+w; %mirro2 the coordinates to get the second box.  

y_coord_16 = y_coord2_16; 

x_taps_16 = -x_taps2_16+w; 

y_taps_16 = y_taps2_16; 

  

  

%angels box 1 

a_S11 = atan(abs(y_coord(18)-y_coord(1))/abs(x_coord(18)-x_coord(1)))*180/pi; 

a_S21 = atan(abs(y_coord(24)-y_coord(19))/abs(x_coord(24)-

x_coord(19)))*180/pi; 

a_S31 = atan(abs(y_coord(38)-y_coord(25))/abs(x_coord(38)-

x_coord(25)))*180/pi; 

a_S41 = atan(abs(y_coord(50)-y_coord(39))/abs(x_coord(50)-

x_coord(39)))*180/pi; 

a_S51 = atan(abs(y_coord(58)-y_coord(51))/abs(x_coord(58)-

x_coord(51)))*180/pi; 

  

angle1 = [a_S11, a_S21, a_S31, a_S41, a_S51]; 

  

%angles box 2 



a_S12 = atan(abs(y_coord2(18)-y_coord2(1))/abs(x_coord2(18)-

x_coord2(1)))*180/pi; 

a_S22 = atan(abs(y_coord2(24)-y_coord2(19))/abs(x_coord2(24)-

x_coord2(19)))*180/pi; 

a_S32 = atan(abs(y_coord2(38)-y_coord2(25))/abs(x_coord2(38)-

x_coord2(25)))*180/pi; 

a_S42 = atan(abs(y_coord2(50)-y_coord2(39))/abs(x_coord2(50)-

x_coord2(39)))*180/pi; 

a_S52 = atan(abs(y_coord2(58)-y_coord2(51))/abs(x_coord2(58)-

x_coord2(51)))*180/pi; 

  

angle2 = [a_S12, a_S22, a_S32, a_S42, a_S52]; 

  

%length between taps, first number is edge to tap, last number is tap to edge 

dist1 = [3.5, 14.125, 14.125, 14.125, 14.125, 13.749975, 13.749975, 13.749975, 

13.749975,... 

    10.21429971, 10.21429971, 10.21429971, 10.21429971, 10.21429971, 

10.21429971, 10.21429971, 3.5]; 

dist2 = [3.5, 9.33, 9.33, 9.33, 4];  

dist3 = [4, 9.30090909, 9.30090909, 9.30090909, 9.30090909, 9.30090909, 

9.30090909, 9.30090909, 9.30090909, 9.30090909, 9.30090909, 9.30090909, 3.5]; 

dist4 = [3.5, 11.298, 11.298, 11.298, 11.298, 11.298, 14.125, 14.125, 14.125, 

14.125, 3.51]; 

dist5 = [3.5, 14.6, 14.6, 14.6, 14.6, 14.6, 3.5]; 

  

dist = [dist1, dist2, dist3, dist4, dist5]; 

  

%% Surface area for point loads 

%side 1 

A(1) = dist(1)+dist(2)/2; 

for i=2:15 

    A(i) = (dist(i)+dist(i+1))/2;  

end  

A(16) = dist(16)/2+dist(17); 

%side 2 

A(17) = dist(18)+dist(19)/2; 

A(18) = (dist(19)+dist(20))/2; 

A(19) = (dist(20)+dist(21))/2; 

A(20) = dist(21)/2+dist(22); 

%side 3 

A(21) = dist(23)+dist(24)/2; 

for i=22:31 

    A(i) = (dist(i+2)+dist(i+3))/2; 

end  

A(32) = dist(34)/2+dist(35); 

  

%side 4 

A(33) = dist(36)+dist(37)/2; 

for i = 34:41 

    A(i) = (dist(i+3)+dist(i+4))/2; 

end  

A(42) = dist(45)/2+dist(46); 

  

%side 5 

A(43) = dist(47)+dist(48)/2; 

for i = 44:47 

    A(i) = (dist(i+4)+dist(i+5))/2; 



end 

A(48) = dist(52)/2+dist(53); 

A=A'; 

 

 



%% new coordinates for the distributed pressure  

%functions that makes new points/coordinates on the cross section with spacing 

equal to dt.  

function [Xcoord, Ycoord] = NewCoordinates(xcord, ycord, dt, angle, Ncord) 

  

Xcoord=zeros(1,Ncord); 

Ycoord=zeros(1, Ncord); 

Xcoord(1)=xcord; 

Ycoord(1)=ycord; 

for i = 2:Ncord 

    Xcoord(i) = -dt*cos((pi/180)*angle)+Xcoord(i-1); 

    Ycoord(i) = -dt*sin((pi/180)*angle)+Ycoord(i-1); 

end  

  

  

end  

 

 



C Matlab script for Admittance Functions
The Matlab scrip for the three methods, general, equivalent and cross-spectral, for the
estimation of the Aerodynamic Admittance Functions are given below.
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%% Admittance functions  

  

clc 

clear all 

close all 

%loading time series of forces and turbulences  

load('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\PostPr

occessing\Time Series Pont Load\TS10_00_903_000.mat') 

load('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\DataCu

tted\Master2020TD_10_00_903_000.mat') 

load('C:\Users\theah\Documents\NTNU\master\TESTER2\WindTunnelSystemMain\PostPr

occessing\Time Series Pont Load\TS_Corrline10_00_903_000.mat') 

%file=005; 

  

U = WT.Data.ProcessedData(1).Data; %Measured mean wind velocity 

u = WT.Data.ProcessedData(2).Data; %Measured displacements 

Fs=str2num(WT.Data.Root.Property(5).Value{1}(1:end-3)); %Sampling frequency 

t=0:1/Fs:(size(u,1)-1)/Fs; % Time vector 

rhostr=num2str(strrep(WT.Data.Root.Property(10).Value{1},',','.')); %Air 

density 

rho=str2num(rhostr(1:regexp(rhostr,' '))); 

dt=t(2)-t(1); 

T=t(end); 

u=WT.Data.ProcessedData(7).Data(:,1); 

v=WT.Data.ProcessedData(7).Data(:,2); 

w=WT.Data.ProcessedData(7).Data(:,3); 

U=mean(u); %mean wind flow 

V=U; 

  

B=0.59; %witdh  

L=2.68; %length  

  

%% LIFT 

Fz_upstream = TSPointLoad.Fz2; 

Fz_downstream = TSPointLoad.Fz1; 

Fz_total=Fz_upstream+Fz_downstream; 

  

  

%% DRAG 

Fx_upstream = TSPointLoad.Fx2; 

Fx_downstream = TSPointLoad.Fx1; 

Fx_total = Fx_upstream+Fx_downstream; 

  

%% Moment 

M_upstream = TSPointLoad.M2; 

M_downstream = TSPointLoad.M1; 

M_total = M_upstream+M_downstream; 

  

%-------------------- 

DragForce_upstream = zeros(size(Fz_upstream,1),1); 

DragForce_downstream = zeros(size(Fz_upstream,1),1); 

DragForce_total = zeros(size(Fz_upstream,1),1); 

LiftForce_upstream = zeros(size(Fz_upstream,1),1); 

LiftForce_downstream = zeros(size(Fz_upstream,1),1); 

LiftForce_total = zeros(size(Fz_upstream,1),1); 

Moment_upstream = zeros(size(Fz_upstream,1),1); 

Moment_downstream = zeros(size(Fz_upstream,1),1); 



Moment_total = zeros(size(Fz_upstream,1),1); 

  

for n=1:48 

    DragForce_upstream = DragForce_upstream + Fx_upstream(:,n); 

    DragForce_downstream = DragForce_downstream + Fx_downstream(:,n); 

    DragForce_total = DragForce_total + Fx_total(:,n); 

     

    LiftForce_upstream = LiftForce_upstream + Fz_upstream(:,n); 

    LiftForce_downstream = LiftForce_downstream + Fz_downstream(:,n); 

    LiftForce_total = LiftForce_total + Fz_total(:,n); 

   

    Moment_upstream = Moment_upstream + M_upstream(:,n); 

    Moment_downstream = Moment_downstream + M_downstream(:,n); 

    Moment_total = Moment_total + M_total(:,n); 

end  

  

  

    DragForce_upstream = DragForce_upstream - mean(DragForce_upstream); 

    DragForce_downstream = DragForce_downstream -mean(DragForce_downstream); 

    DragForce_total = DragForce_total -mean(DragForce_total); 

     

    LiftForce_upstream = LiftForce_upstream -mean(LiftForce_upstream); 

    LiftForce_downstream = LiftForce_downstream - mean(LiftForce_downstream); 

    LiftForce_total = LiftForce_total -mean(LiftForce_total); 

   

    Moment_upstream = Moment_upstream -mean(Moment_upstream); 

    Moment_downstream = Moment_downstream - mean(Moment_downstream); 

     

    Moment_total = Moment_total -mean(Moment_total); 

     

%% ---------- Buffeting force spectrum ---------------- %%  

Nwelch=20; 

Nwindow = round(length(t)/Nwelch); 

nfft = 2^nextpow2(Nwindow); 

  

[SL_upstream, f] = cpsd(LiftForce_upstream, LiftForce_upstream, 

hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[SL_downstream, f] = cpsd(LiftForce_downstream, LiftForce_downstream, 

hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[SL_total, f] = cpsd(LiftForce_total, LiftForce_total, hanning(Nwindow), [], 

nfft, Fs, 'onesided'); 

  

[SD_upstream, f] = cpsd(DragForce_upstream, DragForce_upstream, 

hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[SD_downstream, f] = cpsd(DragForce_downstream, DragForce_downstream, 

hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[SD_total, f] = cpsd(DragForce_total, DragForce_total, hanning(Nwindow), [], 

nfft, Fs, 'onesided'); 

  

[SM_upstream, f] = cpsd(Moment_upstream, Moment_upstream, hanning(Nwindow), 

[], nfft, Fs, 'onesided'); 

[SM_downstream, f] = cpsd(Moment_downstream, Moment_downstream, 

hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[SM_total, f] = cpsd(Moment_total, Moment_total, hanning(Nwindow), [], nfft, 

Fs, 'onesided'); 

%  

%  



figure(); hold on 

plot(f, SL_upstream, 'displayname', 'upstream'); 

plot(f, SL_downstream, 'displayname', 'downstream'); 

plot(f, SL_total, 'displayname', 'total'); 

title('lift spectra') 

legend show 

%% Corrline 2-6 

  

for n=1:5 

    %lift 

    Fz_n_upstream(:,:,n) = TSPointLoadCorrline(n).Fz2; 

    Fz_n_downstream(:,:,n) = TSPointLoadCorrline(n).Fz1; 

    Fz_n_total = Fz_n_upstream+Fz_n_downstream; 

    %drag 

    Fx_n_upstream(:,:,n) = TSPointLoadCorrline(n).Fx2; 

    Fx_n_downstream(:,:,n) = TSPointLoadCorrline(n).Fx1; 

    Fx_n_total = Fx_n_upstream+Fx_n_downstream; 

    %moment 

    M_n_upstream(:,:,n) = TSPointLoadCorrline(n).M2; 

    M_n_downstream(:,:,n) = TSPointLoadCorrline(n).M1; 

    M_n_total = M_n_upstream+M_n_downstream; 

     

end  

  

DragForce_n_upstream = zeros(size(Fz_n_upstream,1),1,5); 

DragForce_n_downstream = zeros(size(Fz_n_upstream,1),1,5); 

DragForce_n_total = zeros(size(Fz_n_upstream,1),1,5); 

LiftForce_n_upstream = zeros(size(Fz_n_upstream,1),1,5); 

LiftForce_n_downstream = zeros(size(Fz_n_upstream,1),1,5); 

LiftForce_n_total = zeros(size(Fz_n_upstream,1),1,5); 

Moment_n_upstream = zeros(size(Fz_n_upstream,1),1,5); 

Moment_n_downstream = zeros(size(Fz_n_upstream,1),1,5); 

Moment_n_total = zeros(size(Fz_n_upstream,1),1,5); 

  

for k=1:5 

    for n=1:16 

        DragForce_n_upstream(:,k) = DragForce_n_upstream(:,:,k) + 

Fx_n_upstream(:,n,k); 

        DragForce_n_downstream(:,k) = DragForce_n_downstream(:,:,k) + 

Fx_n_downstream(:,n,k); 

        DragForce_n_total(:,k) = DragForce_n_total(:,:,k) + Fx_n_total(:,n,k); 

  

        LiftForce_n_upstream(:,k) = LiftForce_n_upstream(:,:,k) + 

Fz_n_upstream(:,n,k); 

        LiftForce_n_downstream(:,k) = LiftForce_n_downstream(:,:,k) + 

Fz_n_downstream(:,n,k); 

        LiftForce_n_total(:,k) = LiftForce_n_total(:,:,k) + Fz_n_total(:,n,k); 

  

        Moment_n_upstream(:,k) = Moment_n_upstream(:,:,k) + 

M_n_upstream(:,n,k); 

        Moment_n_downstream(:,k) = Moment_n_downstream(:,:,k) + 

M_n_downstream(:,n,k); 

        Moment_n_total(:,k) = Moment_n_total(:,:,k) + M_n_total(:,n,k); 

    end  

     

end  

for i=1:5 



    DragForce_m_upstream(:,i) = DragForce_n_upstream(:,:,i) - 

mean(DragForce_n_upstream(:,:,i)); 

    DragForce_m_downstream(:,i) = DragForce_n_downstream(:,:,i) -

mean(DragForce_n_downstream(:,:,i)); 

    DragForce_m_total(:,i) = DragForce_n_total(:,:,i) -

mean(DragForce_n_total(:,:,i)); 

     

    LiftForce_m_upstream(:,i) = LiftForce_n_upstream(:,:,i) -

mean(LiftForce_n_upstream(:,:,i)); 

    LiftForce_m_downstream(:,i) = LiftForce_n_downstream(:,:,i) - 

mean(LiftForce_n_downstream(:,:,i)); 

    LiftForce_m_total(:,i) = LiftForce_n_total(:,:,i) -

mean(LiftForce_n_total(:,:,i)); 

   

    Moment_m_upstream(:,i) = Moment_n_upstream(:,:,i) -

mean(Moment_n_upstream(:,:,i)); 

    Moment_m_downstream(:,i) = Moment_n_downstream(:,:,i) - 

mean(Moment_n_downstream(:,:,i)); 

    Moment_m_total(:,i)= Moment_n_total(:,:,i) -mean(Moment_n_total(:,:,i)); 

end  

  

%% ------------ Buffeting force spectrum for corrline 2-6---------------------

------- 

for j=1:5 

    [SL_n_upstream(j,:), f] = cpsd(LiftForce_m_upstream(:,j), 

LiftForce_m_upstream(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

    [SL_n_downstream(j,:), f] = cpsd(LiftForce_m_downstream(:,j), 

LiftForce_m_downstream(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

    [SL_n_total(j,:), f] = cpsd(LiftForce_m_total(:,j), 

LiftForce_m_total(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

  

    [SD_n_upstream(j,:), f] = cpsd(DragForce_m_upstream(:,j), 

DragForce_m_upstream(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

    [SD_n_downstream(j,:), f] = cpsd(DragForce_m_downstream(:,j), 

DragForce_m_downstream(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

    [SD_n_total(j,:), f] = cpsd(DragForce_m_total(:,j), 

DragForce_m_total(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

     

    [SM_n_upstream(j,:), f] = cpsd(Moment_m_upstream(:,j), 

Moment_m_upstream(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

    [SM_n_downstream(j,:), f] = cpsd(Moment_m_downstream(:,j), 

Moment_m_downstream(:,j), hanning(Nwindow), [], nfft, Fs, 'onesided'); 

    [SM_n_total(j,:), f] = cpsd(Moment_m_total(:,j), Moment_m_total(:,j), 

hanning(Nwindow), [], nfft, Fs, 'onesided'); 

  

end 

  

  

  

  

%% --------------------Admittance Functions---------------------- %% 

% Turbulence  

  

u = u-mean(u); 

w = w-mean(w); 

  

%% ------------Turbulence spectrum------------------------------------- 



[Su, f] = cpsd(u, u, hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[Sw, f] = cpsd(w, w, hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[Suw, f] = cpsd(w, u, hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[Swu, f] = cpsd(u, w, hanning(Nwindow), [], nfft, Fs, 'onesided'); 

  

% figure(); hold on 

% plot(f, Su, 'displayname', 'Su'); 

% plot(f, Sw, 'displayname', 'Sw'); 

% title('Turbulence spectra') 

% legend show 

  

%% -----------------Cross spectrum total------------------------------------ 

[SLu, f] = cpsd(LiftForce_total, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SLw, f] = cpsd(LiftForce_total, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

[SDu, f] = cpsd(DragForce_total, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SDw, f] = cpsd(DragForce_total, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

[SMu, f] = cpsd(Moment_total, u, hanning(Nwindow), [], nfft, Fs, 'onesided'); 

[SMw, f] = cpsd(Moment_total, w, hanning(Nwindow), [], nfft, Fs, 'onesided'); 

  

  

  

%% -----------------cross spectrum upstream-----------------------------------

- 

[SLu_up, f] = cpsd(LiftForce_upstream, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SLw_up, f] = cpsd(LiftForce_upstream, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

[SDu_up, f] = cpsd(DragForce_upstream, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SDw_up, f] = cpsd(DragForce_upstream, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

[SMu_up, f] = cpsd(Moment_upstream, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SMw_up, f] = cpsd(Moment_upstream, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

%% -----------------cross spectrum downstream---------------------------------

--- 

[SLu_down, f] = cpsd(LiftForce_downstream, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SLw_down, f] = cpsd(LiftForce_downstream, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

[SDu_down, f] = cpsd(DragForce_downstream, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SDw_down, f] = cpsd(DragForce_downstream, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  



[SMu_down, f] = cpsd(Moment_downstream, u, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

[SMw_down, f] = cpsd(Moment_downstream, w, hanning(Nwindow), [], nfft, Fs, 

'onesided'); 

  

  

%% ----------General admittance functions--------------------- 

Aw_lift=SL_total./Sw; 

Au_drag=SD_total./Su; 

Aw_moment=SM_total./Sw; 

  

  

%% Equivalente admittance functions and cross-spectral admittance functions  

%% ------------Total Box------------------------------------------------------ 

Cd=0.9949; Cl=0.05852; Cm=0.1653; 

dCd=1.031; dCl=4.129; dCm=1.173; 

  

%af 

aD=2*Cd; 

aL=2*Cl; 

aM=2*Cm; 

  

%bf 

bD=(dCd-Cl); 

bL=(dCl+Cd); 

bM=dCm; 

%Sears approximated function  

fred=f.*B/(V); 

for n=1:length(f) 

    sears(n) = (1/(1+2*pi^2*fred(n))); %approximated sears function |ø(f*)|^2 

end 

%------------AL---------------------------------------------------------------

- 

AL = SL_total./((0.5*rho*B*V).^2*(aL.^2*Su + bL.^2*Sw)); 

ALw = (Su.*SLw-Suw.*SLu)./((0.5*rho*B*V).^1*(bL*(Su.*Sw-Swu.*Suw))); 

ALu = (Sw.*SLu-Suw.*SLw)./((0.5*rho*B*V).^1*(aL*(Su.*Sw-Swu.*Suw))); 

%------------- AD-------------------------------------------------------------

-  

AD = SD_total./((0.5*rho*B*V)^2*(aD.^2*Su +bD.^2*Sw)); 

ADw = (Su.*SDw-Suw.*SDu)./((0.5*rho*B*V).^1*(bD*(Su.*Sw-Swu.*Suw))); 

ADu = (Sw.*SDu-Suw.*SDw)./((0.5*rho*B*V).^1*(aD*(Su.*Sw-Swu.*Suw))); 

%------------AM--------------------------------------------------------------- 

AM = SM_total./((0.5*rho*B*B*V).^2*(aM.^2*Su +bM.^2*Sw)); 

AMw = (Su.*SMw-Suw.*SMu)./((0.5*rho*B*B*V).^1*(bM*(Su.*Sw-Swu.*Suw))); 

AMu = (Sw.*SMu-Suw.*SMw)./((0.5*rho*B*B*V).^1*(aM*(Su.*Sw-Swu.*Suw))); 

  

%------------------AL corrline 2:6---------------------------- 

AL6 = SL_n_total(5,:)'./((0.5*rho*B*V).^2*(aL.^2*Su + bL.^2*Sw)); 

AD6 = SD_n_total(5,:)'./((0.5*rho*B*V).^2*(aD.^2*Su + bD.^2*Sw)); 

AM6 = SM_n_total(5,:)'./((0.5*rho*B*B*V).^2*(aM.^2*Su + bM.^2*Sw)); 

  

figure(); hold on; 

plot(fred, AL, 'displayname', 'A_L') 

%plot(fred, AL6, 'displayname', 'A_L - Line 6') 

plot(fred, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fred,(abs(ALw)).^2, 'displayname', 'A_{Lw}') 

plot(fred, (abs(ALu)).^2, 'displayname', 'A_{Lu}') 



set(gca, 'Yscale', 'log', 'Xscale', 'log') 

%xlabel('f*=fB/V') 

xlabel('f*=fB/V', 'fontsize', 30) 

ylabel('|A_i|^2', 'fontsize', 30) 

legend show 

title('Admittance functions Lift', 'fontsize', 30) 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_Lift.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_Lift.fig',file)) 

  

  

figure(); hold on; 

plot(fred, AD, 'displayname', 'A_D') 

%plot(fred, AD6, 'displayname', 'A_D - Line 6') 

plot(fred, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fred,(abs(ADw)).^2, 'displayname', 'A_{Dw}') 

plot(fred, (abs(ADu)).^2, 'displayname', 'A_{Du}') 

set(gca, 'Yscale', 'log', 'Xscale', 'log') 

xlabel('f*=fB/V', 'fontsize', 30) 

ylabel('|A_i|^2', 'fontsize', 30) 

legend show 

title('Admittance functions Drag', 'fontsize', 30) 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_Drag.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_Drag.fig',file)) 

  

  

  

figure(); hold on; 

plot(fred, AM, 'displayname', 'A_M') 

%plot(fred, AM6, 'displayname', 'A_M - Line 6')  

plot(fred, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fred,(abs(AMw)).^2, 'displayname', 'A_{Mw}') 

plot(fred, (abs(AMu)).^2, 'displayname', 'A_{Mu}') 

set(gca,'Yscale', 'log', 'Xscale', 'log') 

xlabel('f*=fB/V', 'fontsize', 30) 

ylabel('|A_i|^2', 'fontsize', 30) 

legend show 

title('Admittance functions Moment', 'fontsize', 30) 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_Moment.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_Moment.fig',file)) 

  

  

  

  

%% ----------------------Upstream box----------------------- 

CdU=0.5092; ClU=0.1219; CmU=0.1171; 

dCdU=1.891; dClU=2.68; dCmU=2.24; 

%af 

aDU=2*CdU; 

aLU=2*ClU; 

aMU=2*CmU; 

  

%bf 

bDU=(dCdU-ClU); 

bLU=(dClU+CdU); 



bMU=dCmU; 

  

fredU=f*B/V; 

Sears=1./(1+2*pi^2*fredU); 

  

%------------AL------------------------------------------------------------ 

AL_up = SL_upstream./((0.5*rho*B*V).^2*(aLU.^2*Su + bLU.^2*Sw)); 

ALw_up = (Su.*SLw_up-Suw.*SLu_up)./((0.5*rho*B*V).^1*(bLU*(Su.*Sw-Swu.*Suw))); 

ALu_up = (Sw.*SLu_up-Suw.*SLw_up)./((0.5*rho*B*V).^1*(aLU*(Su.*Sw-Swu.*Suw))); 

%------------- AD-------------------------------------------------------------

-  

AD_up = SD_upstream./((0.5*rho*B*V)^2*(aDU.^2*Su +bDU.^2*Sw)); 

ADw_up = (Su.*SDw_up-Suw.*SDu_up)./((0.5*rho*B*V).^1*(bDU*(Su.*Sw-Swu.*Suw))); 

ADu_up = (Sw.*SDu_up-Suw.*SDw_up)./((0.5*rho*B*V).^1*(aDU*(Su.*Sw-Swu.*Suw))); 

%------------AM--------------------------------------------------------------- 

AM_up = SM_upstream./((0.5*rho*B*B*V).^2*(aMU.^2*Su +bMU.^2*Sw)); 

AMw_up = (Su.*SMw_up-Suw.*SMu_up)./((0.5*rho*B*B*V).^1*(bMU*(Su.*Sw-

Swu.*Suw))); 

AMu_up = (Sw.*SMu_up-Suw.*SMw_up)./((0.5*rho*B*B*V).^1*(aMU*(Su.*Sw-

Swu.*Suw))); 

  

  

  

figure(); hold on; 

plot(fredU, AL_up, 'displayname', 'A_L') 

%plot(fredU, sears,'displayname', 'Sears', 'linewidth', 2) 

%plot(fredU,(abs(ALw_up)).^2, 'displayname', 'A_{Lw}') 

%plot(fredU, (abs(ALu_up)).^2, 'displayname', 'A_{Lu}') 

set(gca, 'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Lift Upstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamLift.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamLift.fig',file)) 

  

figure(); hold on; 

plot(fredU, AD_up, 'displayname', 'A_D') 

plot(fredU, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fredU,(abs(ADw_up)).^2, 'displayname', 'A_{Dw}') 

plot(fredU, (abs(ADu_up)).^2, 'displayname', 'A_{Du}') 

set(gca, 'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Drag Upstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamDrag.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamDrag.fig',file)) 

  

figure(); hold on; 

plot(fredU, AM_up, 'displayname', 'A_M') 

plot(fredU, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fredU,(abs(AMw_up)).^2, 'displayname', 'A_{Mw}') 

plot(fredU, (abs(AMu_up)).^2, 'displayname', 'A_{Mu}') 

set(gca,'Yscale', 'log', 'fontsize', 20) 



xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Moment Upstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamMoment.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamMoment.fig',file)) 

  

figure() 

plot(f, SL_upstream); 

title('Force lift upstream spectra') 

  

  

figure(); hold on; 

plot(f, AL_up, 'displayname', 'A_L') 

plot(f, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(f,(abs(ALw_up)).^2, 'displayname', 'A_{Lw}') 

plot(f, (abs(ALu_up)).^2, 'displayname', 'A_{Lu}') 

set(gca, 'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Lift Upstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamLift.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamLift.fig',file)) 

  

figure(); hold on; 

plot(f, AD_up, 'displayname', 'A_D') 

plot(f, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(f,(abs(ADw_up)).^2, 'displayname', 'A_{Dw}') 

plot(f, (abs(ADu_up)).^2, 'displayname', 'A_{Du}') 

set(gca, 'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Drag Upstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamDrag.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamDrag.fig',file)) 

  

figure(); hold on; 

plot(f, AM_up, 'displayname', 'A_M') 

plot(f, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(f,(abs(AMw_up)).^2, 'displayname', 'A_{Mw}') 

plot(f, (abs(AMu_up)).^2, 'displayname', 'A_{Mu}') 

set(gca,'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Moment Upstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamMoment.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_UpstreamMoment.fig',file)) 

  

  

%% ----------------------Downstream box----------------------- 



CdD=0.4857; ClD=-0.06335; CmD=0.0482; 

dCdD=-0.8596; dClD=1.46; dCmD=-1.086; 

  

aDD=2*CdD; 

aLD=2*ClD; 

aMD=2*CmD; 

  

%bf 

bDD=(dCdD-ClD); 

bLD=(dClD+CdD); 

bMD=dCmD; 

  

fredD=f*B/V; 

Sears=1./(1+2*pi^2*fredD); 

  

%------------AL---------------------------------------------------------------

- 

AL_down = SL_downstream./((0.5*rho*B*V).^2*(aLD.^2*Su + bLD.^2*Sw)); 

ALw_down = (Su.*SLw_down-Suw.*SLu_down)./((0.5*rho*B*V).^1*(bLD*(Su.*Sw-

Swu.*Suw))); 

ALu_down = (Sw.*SLu_down-Suw.*SLw_down)./((0.5*rho*B*V).^1*(aLD*(Su.*Sw-

Swu.*Suw))); 

%------------- AD-------------------------------------------------------------

-  

AD_down = SD_downstream./((0.5*rho*B*V)^2*(aDD.^2*Su +bDD.^2*Sw)); 

ADw_down = (Su.*SDw_down-Suw.*SDu_down)./((0.5*rho*B*V).^1*(bDD*(Su.*Sw-

Swu.*Suw))); 

ADu_down = (Sw.*SDu_down-Suw.*SDw_down)./((0.5*rho*B*V).^1*(aDD*(Su.*Sw-

Swu.*Suw))); 

%------------AM--------------------------------------------------------------- 

AM_down = SM_downstream./((0.5*rho*B*B*V).^2*(aMD.^2*Su +bMD.^2*Sw)); 

AMw_down = (Su.*SMw_down-Suw.*SMu_down)./((0.5*rho*B*B*V).^1*(bMD*(Su.*Sw-

Swu.*Suw))); 

AMu_down = (Sw.*SMu_down-Suw.*SMw_down)./((0.5*rho*B*B*V).^1*(aMD*(Su.*Sw-

Swu.*Suw))); 

  

  

  

figure(); hold on; 

plot(fredD, AL_down, 'displayname', 'A_L') 

plot(fredD, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fredD,(abs(ALw_down)).^2, 'displayname', 'A_{Lw}') 

plot(fredD, (abs(ALu_down)).^2, 'displayname', 'A_{Lu}') 

set(gca, 'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Lift Downstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_DownstreamLift.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_DownstreamLift.fig',file)) 

  

figure(); hold on; 

plot(fredD, AD_down, 'displayname', 'A_D') 

plot(fredD, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fredD,(abs(ADw_down)).^2, 'displayname', 'A_{Dw}') 

plot(fredD, (abs(ADu_down)).^2, 'displayname', 'A_{Du}') 



set(gca, 'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

title('Admittance functions Drag Downstream') 

ylim([0 10]) 

% saveas(gcf,sprintf('10_00_%d_000_DownstreamDrag.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_DownstreamDrag.fig',file)) 

  

figure(); hold on; 

plot(fred, AM_up, 'displayname', 'A_M') 

plot(fred, sears,'displayname', 'Sears', 'linewidth', 2) 

plot(fred,(abs(AMw_up)).^2, 'displayname', 'A_{Mw}') 

plot(fred, (abs(AMu_up)).^2, 'displayname', 'A_{Mu}') 

set(gca,'Yscale', 'log', 'fontsize', 20) 

xlabel('f*=fB/V') 

ylabel('|A_i|^2') 

legend show 

ylim([0 10]) 

title('Admittance functions Moment Downstream') 

% saveas(gcf,sprintf('10_00_%d_000_DownstreamMoment.jpg',file)) 

% saveas(gcf,sprintf('10_00_%d_000_DownstreamMoment.fig',file)) 

  

 

 


