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Abstract

In concrete structures, one will find regions with a nonlinear response caused by sudden changes
in geometry or loading. Two modeling approaches for such regions, called D-regions, are non-
linear finite element analysis and strut-and-tie modeling. The objective of the thesis is to com-
pare these two methods applied to a concrete D-region.

Large concrete structures typically include many D-regions possibly exposed to a large number
of load combinations. With this in mind, the strut-and-tie modeling has been solved with a Mat-
lab code [1] capable of generating and calculating models for many load cases at a rapid speed.
The code calculates through several possible strut-and-tie models for each load case, and finally
chooses the most optimal model based on minimum strain energy. The resulting strut-and-tie
models for each load case are compared to nonlinear finite element analyses in two different
softwares: DIANA [2] and IDEA StatiCa [3].

The D-region assessed in this thesis is a T-connection between two walls. Three load cases
have been tested and the calculation time used by the Matlab code for all three load cases is
0.1-0.2 seconds in total. For the nonlinear finite element analyses, base models have been made
in the two softwares, providing six analyses. With the desire of testing the effect of the tensile
softening behavior of the concrete, an additional DIANA analysis has been run for the load case
exposing the D-region to a dominating tension force. This gives in total seven nonlinear finite
element analyses. Five of these showed a capacity larger than what was found in the strut-and-
tie models. One of the seven reached failure at a load factor of 1.00. The final analysis reached
a maximum load factor of 0.631. Some unexpected cracking was observed at the loading in this
analysis. It is argued that this is caused by the arc-length procedure inducing a premature un-
loading as neither concrete crushing nor reinforcement rupture is observed at the ultimate load
factor. The fact that for this load case, the largest difference (∆3 = 0.449) in load factor between
the two softwares was observed, substantiates the argument. The difference in load factors be-
tween the analyses of the two other load cases were significantly less (∆1 = 0.08 & ∆2 = 0.02).

The different approaches to reduction in concrete compressive strength due to transverse ten-
sile strains have been assessed for both the nonlinear finite element analyses and strut-and-tie
models. A comparison of the results show that in the most critical compression fields of the
strut-and-tie models, the reductions are on the conservative side of what is observed in the
nonlinear finite element analyses. However, in areas with little compression stresses, the lat-
ter shows larger reductions than what is recommended by Eurocode 2 [4] for the nodes of the
strut-and-tie models. All things considered, the results in this thesis suggest that strut-and-tie
modeling gives conservative results with respect to the nonlinear finite element analyses.
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Sammendrag

I betongkonstruksjoner vil man finne regioner med en ikkelineær respons forårsaket av plut-
selige endringer i geometri eller last. To tilnærminger for modellering av slike regioner, kalt
D-regioner, er ikkelineære elementanalyser og stavmodeller. Målet ved denne oppgaven er å
sammenligne disse to metodene anvendt på en D-region av betong.

Store betongkonstruksjoner vil typisk ha mange D-regioner som kan være utsatt for et stort
antall lastkombinasjoner. Med dette i tankene, har modelleringen med stavmodeller blitt løst
med en Matlabkode [1] i stand til å generere og beregne modeller for mange lastsituasjoner på
kort tid. Koden regner gjennom flere mulige stavmodeller for hver lastsituasjon og velger tilslutt
den mest optimale modellen basert på minste tøyningsenergi. De resulterende stavmodellene
for hver lastsituasjon blir sammenlignet med ikkelineære elementanalyser i to forskjellige pro-
gramvarer: DIANA [2] og IDEA StatiCa [3].

D-regionen som har blitt undersøkt i denne oppgaven er et T-knutepunkt mellom to vegger.
Tre lastsituasjoner har blitt testet og beregningstiden brukt av Matlabkoden for alle tre lastsi-
tuasjonene er 0.1-0.2 sekunder totalt. For de ikkelineære elementanalysene har basismodeller
blitt lagd i begge programvarene. Dette gir seks analyser. Med ønske om å sjekke effekten
av valgt strekkmodell i betong-materialmodellen, har en ekstra analyse i DIANA blitt utført
for lastsituasjonen som utsetter D-regionen for en dominerende strekkraft i den ene veggen.
Dermed har det totalt blitt utført syv ikkelineære elementanalyser. Fem av disse viste en kap-
asitet større enn hva som ble funnet i stavmodellene. Én av de syv nådde brudd ved lastfaktor
1.00. Den siste analysen nådde en maksimal lastfaktor lik 0.631. Noe uforventet opprissing ble
observert ved lastpåføringen i denne analysen. Det har blitt argumentert for at dette er forårsaket
av at buelengdeprosedyren leder til for tidlig avlastning siden hverken knusing av betong eller
armeringsbrudd er observert ved den maksimale lastfaktoren. Det faktum at denne lastsituasjo-
nen viste størst forskjell (∆3 = 0.449) i lastfaktor mellom de to programvarene underbygger
dette argumentet. Forskjellen observert for de to andre lastsituasjonene var betydelig mindre
(∆1 = 0.08 & ∆2 = 0.02).

De forskjellige tilnærmingene til reduksjon av betongtrykkfastheten forårsaket av transversale
strekktøyninger er blitt vurdert for både de ikkelineære elementanalysene og stavmodellene. En
sammenligning av resultatene viser at reduksjonene i de mest kritiske trykkfeltene i stavmodel-
lene er på den konservative siden av hva som er sett i de ikkelineære elementanalysene. Derimot,
i områder med lite trykkspenninger viser sistnevnte større reduksjoner enn hva som er anbefalt
av Eurokode 2 [4] for nodene i stavmodellene. Med alt tatt i betraktning, antyder resultatene at
stavmodeller gir konservative resultater sammenlignet med ikkelineære elementanalyser.
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Chapter 1

Introduction

In concrete structures, one will find regions experiencing sudden changes in loads or geometry.
These sudden changes result in a nonlinear response of the region typically called a D-region.
Because of these effects, a linear analysis is no longer sufficient and a nonlinear modeling ap-
proach has to be utilized in order to model the behavior of the region. Two modeling approaches
which may be used to model the nonlinear behavior of D-regions are NLFEA and strut-and-tie
modeling.

In this thesis, a comparison between these two modeling approaches is carried out. This is
done by applying the two modeling approaches to a T-connection between two concrete walls
exposed to three different load cases. The strut-and-tie modeling has in this thesis been executed
by making a Matlab code able to generate and calculate STMs at a rapid speed. The motivation
for this is to find an effective approach for dealing with a large number of D-regions and/or load
cases. This is relevant for large concrete structures, as they typically may have many D-regions
possibly exposed to a large number of load cases. The objective of this thesis is to compare
the two modeling approaches applied to a D-region with focus on the different aspects of the
respective modeling choices. Also, an attempt to demonstrate that NLFEA produces mean esti-
mates while strut-and-tie modeling provides lower-bound estimates is made.

In order to answer the problem description, the D-region is tested for three different load cases.
First, the Matlab code calculates through the three load cases and gives the three respective
STMs as output. Then, the NLFEAs are made using the reinforcement, loads, and geometry
calculated by the Matlab code for the STMs. In that way, the two modeling approaches can be
compared more accurately. Finally, comparisons of the results are made. The discussion fo-
cuses on utilized material models and the numerical modeling of the NLFEAs and the approach
used for the strut-and-tie modeling, and in addition the accuracy of the results obtained from
these two modeling approaches.

First, the theoretical background of NLFEA and strut-and-tie modeling will be covered in
chapter 2 and chapter 3, respectively. In chapter 4, the solution method for the two model-
ing approaches will be presented. An explanation of assumptions and the process of the Matlab
code are provided. Also, the approaches for the NLFEAs in DIANA and IDEA StatiCa will be
presented. In chapter 5, the results from both modeling approaches are presented. For the strut-
and-tie modeling, the resulting STM accompanied by the truss forces, necessary reinforcement,
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and resulting compression fields with the respective compressive reductions are provided. Re-
sults from the FEM-analyses will be provided from two softwares: DIANA and IDEA StatiCa.
In chapter 6, the results are discussed with respect to the objective set for the thesis. Conclusions
are drawn in chapter 7, followed by some suggestions for future work in chapter 8.
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Chapter 2

Nonlinear Finite Element Analysis for Con-
crete Structures

2.1 Numerical solution

A time independent NLFEA problem can be described by

[K]{D} = {R} (2.1)

where the stiffness, [K], and the load, {R}], may be dependent on the displacement history
{D}]. This means that in most cases, an iterative process is needed in order to find the displace-
ment.

2.1.1 Iterative Scheme

A popular choice for NLFEA problems is the Newton-Raphson method. The full Newton-
Raphson method updates the tangent stiffness at each iteration. This reduces the number of
iterations needed in order to find a solution which satisfies the convergence criterion. While
the full Newton-Raphson method updates the tangent stiffness at every iteration, the modified
Newton-Raphson method only updates it occasionally. Thus, the computational time of each it-
eration is reduced. In exchange, the modified Newton-Raphson method requires more iterations
in order to achieve convergence. An increased number of iterations means a slower convergence
rate. According to Cook [13], the overall computational time is typically reduced when using
the Modified Newton-Raphson method compared to the full Newton-Raphson method.

2.1.2 Arc-Length Method

A load-displacement curve may include both points with zero tangent stiffness and infinite
tangent stiffness. These points are called limit points and turning points, respectively. When
using load control, failure is experienced at the limit points. Meanwhile, if displacement control
is utilized, it is the turning points which cause failure of the numerical scheme [14]. In order
for the numerical scheme to get past the critical points, the arc-length method may be applied.
The total iterative increment can be described by ([8])

δui = δuI
i + ∆λiδu

II
i (2.2)
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where
δuI

i = K−1i (fint − fint,i) and uI
i = K−1i f̂ (2.3)

One way of finding the load factor ∆λ is to use the updated normal plane method where a
linearized constraint is applied. This results in the following load factor ([8])

λi = − (∆ui−1)TδuI
i

(∆ui−1)TδuII
i

(2.4)

2.1.3 Convergence Criteria

When using the Newton-Raphson method, a proper convergence criterion has to be in place in
order to secure a satisfying solution to the problem at hand. The convergence criterion has to be
chosen such that a sufficiently high accuracy of the solution is obtained while also ensuring that
the iterative process is not unnecessarily slowed down by a too strict criterion. Convergence
criteria can be both be based on displacement and force [13]. These may be formulated as:

‖∆D‖ < εD‖∆D0‖ (2.5)

‖eR‖ < εR‖R‖ (2.6)

A third convergence criterion is the energy criterion. According to Mathisen [14], using this
combined with line search may in some cases be inadvisable. A line search algorithm is used to
find the optimal incremental step, which is done by minimizing the residual force. Utilizing a
line search algorithm can be useful when dealing with concrete because of the rapid changes in
response due to cracking and reinforcement yield [14]. According to Mathisen, the line search
algorithm may both increase the speed of the iteration process and in some cases obtain a
solution where it would not have been possible without the line search. In DIANA, the problem
of combining line search with an energy criterion is solved by using the internal force instead of
the out-of-balance force. If using an energy norm based on the out-of-balance force combined
with a line search, the line search could minimize the norm before actual convergence [8]. By
using the internal force, the following energy criterion is obtained:∥∥∥δuT

i (fint,i+1 + fint,i)
∥∥∥ < εE

∥∥∥∆uT
0 (fint,1 + fint,0)

∥∥∥ (2.7)

When choosing a convergence criterion, it might for instance prove to be insufficient to only
use a displacement criterion. If the solution lies in an area with a large tangent stiffness (a small
change in displacement gives a large change in force), a displacement criterion may indicate
convergence while there still is a significant force imbalance [13]. Dutch guidelines [7] recom-
mends using a combination of the force and energy criteria, and that a convergence criterion
based solely on the displacement should be avoided. The recommended values for the force
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and energy norm ratio are as follows:
εR = 0.01

εE = 0.001

2.2 Material Model - Concrete

A proper material model is necessary in order to represent the behavior of the concrete satisfy-
ingly. Concrete crack models can be divided into two main groups: Discrete crack models and
smeared crack models. These two different types of crack models are illustrated in Figure 2.1.

Figure 2.1: Discrete and smeared crack models [6].

There are several smeared crack models to choose between and some examples are [15]:

– Decomposed-strain based smeared crack models

– Total-strain based models

– Plasticity based crack models

Dutch Guidelines suggest using the total-strain based crack model. From here, only this will
presented further.

2.2.1 Total Strain Crack Model

The total strain crack model can be formulated with either a fixed or a rotating set of axes. When
using a fixed crack model, it is necessary to define shear retention parameters. This is used in
order to find the shear stresses resulting from the rotation of principal stresses and strains rela-
tive to the fixed cracks. Dutch guidelines recommends using a variable shear retention model
[7]. According to Rots [15], a fixed crack model may experience stress-locking when there are
large rotations of stresses after the crack initiation. The stress-locking results in an overestima-
tion of the capacity. In a rotating crack model, the axes rotate with the principal strain direction.
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A rotating crack model will usually experience less shear-locking compared to a fixed crack
model and thus give a more conservative capacity.

It is necessary to define the linear-elastic properties of the concrete and the two parameters
needed for this are the Poisson ratio and Young’s modulus. Dutch guidelines proposes an initial
Poisson ratio of 0.20 [7]. This should be reduced during progressive cracking. A reduction in
Young’s modulus is also recommended.

It is necessary to have a proper representation of both the tensile and the compressive behavior
of the concrete. For the representation of the tensile behavior, a mesh dependent exponential-
type softening curve is favored [7]. One example of such a curve is the tensile softening curve
proposed by Hordijk [16]. This is shown in Figure 2.2, where the tensile behavior consists of
a linear stress-strain relationship up to the tensile strength ft followed by an exponential soft-
ening of the stresses. Other parameters necessary to provide values for are the tensile fracture
energy, Gf , and the crack band width, heq. The area below the curve is defined as the tensile
fracture energy divided by the crack band width. This means that the curve is mesh dependent
and reduces the results dependency on the used mesh. The crack band width is related to the
dimensions of the used elements in the finite element model. An automatic procedure is recom-
mended by Dutch guidelines for the calculation of the crack band width.

Figure 2.2: Hordijk softening [7].

When using this softening curve, the concrete contribution to tensile stiffness vanishes at the
ultimate strain εu:

εu = 5.136
GF

heqft
(2.8)

For the compressive behavior of the concrete, Dutch guidelines [7] recommends using the
parabolic stress-strain diagram with softening. Necessary input parameters are the compres-
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sive fracture energy, Gc, the crack band width, heq, and the compressive strength, fc, of the
concrete. The parabolic compression curve according to Feenstra [17] is shown in Figure 2.3.

Figure 2.3: Parabolic compression curve [8].

The strains αc/3 and αc are calculated independent of the element size:

αc = −5

3

fc
E

= 5αc/3 (2.9)

In contrast, the ultimate strain, αu, is mesh dependent as the crack band width, heq, is included
in the equation:

αu = −3

2

Gc

heqfc
(2.10)

Another compression curve is proposed in Eurocode 2, where a parabola-rectangular compres-
sion curve is used. This is shown in Figure 2.4. The parabola-rectangular compression curve
only limits the compressive strength of the concrete. Thus, it is necessary to do a post-analysis
check of the strains [7]. Concrete failure can be assumed if the ultimate compressive strain of
the concrete, εcu2, is reached. For concrete classes C50/60 and lower, the Eurocode 2 gives the
following ultimate compressive strain [4]:

εcu2 = −3.5 · 10−3 (2.11)

It is also necessary to consider any interaction between tension and compression in the concrete.
As cracking of the concrete increases, the compressive strength decreases. Thus, the material
model should include a reduction in compressive strength when the concrete experiences lateral
cracking. This may be provided by using the strength reduction curve proposed by Vecchio and
Collins (1993) [18]. The reduction curve is shown in Figure 2.5.
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Figure 2.4: The parabolic-rectangular compression curve used in Eurocode 2 [7].

Figure 2.5: Reduction of compressive strength according to Vecchio and Collins [7].

The concrete compressive strength is reduced by a factor βσcr :

βσcr =
1

1 +Kc

(2.12)

where
Kc = 0.27(

αlat
ε0
− 0.37) (2.13)

In order to not reduce the compressive strength excessively, Dutch guidelines recommends using
a lower limit of βσcr > βmin = 0.4 [7].

2.3 Material Model - Reinforcement

One way to add reinforcement into the NLFEA model is to use embedded reinforcement. This
is the preferred method of modeling the reinforcement according to Dutch guidelines [7]. Em-
bedded reinforcement is placed in the structural elements without independent DOFs [8]. The
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reinforcement strains are calculated from the displacement field of the structural elements.

In the software IDEA StatiCa Detail, the reinforcement is modeled using the tension chord
model [9, 19]. Figure 2.6 shows reinforcement stresses and change in concrete stresses along
with the considered stress-strain relationship of the reinforcement using the tension chord model.
The reinforcement stresses experiences the lowest stresses in the middle of the concrete ele-
ments in the figure. Here, the contribution from the tension stiffening effect is at its largest.
At the crack openings, the reinforcement does not experience any tension stiffening. Thus the
stresses here are equal to what is obtained with naked steel.

Figure 2.6: Tension stiffening when using the tension chord model [9].
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Chapter 3

The Concept of the Strut-and-Tie-Model

3.1 General

The idea of STMs is that the forces through the assessed region are carried by an imaginary truss
system. Further, it is assumed that the concrete represents the trusses in compression (struts),
while the reinforcement is placed where trusses in tension (ties) are located. Also, the tensile
strength contribution from the concrete is conservatively neglected.

3.2 B- and D-Regions

A structure may be divided into two different types of regions: B-regions and D-regions. A
region may be defined as a B-region if the Bernoulli hypothesis is valid in it. This means that
plane sections has to remain plane during bending [10]. If that is the case, classic beam theory
is still possible to use in these regions, given that the deformations are assumed to be small.
A D-region appears because of a discontinuity in the structure. This discontinuity may be an
abrupt change in geometry, a concentrated load, or a support. The discontinuity causes nonlin-
ear effects to appear in the D-region, which means that the Bernoulli hypothesis is no longer
valid [12]. Therefore, the solution method used in the B-regions can not be applied here. In
order to divide a structure into the two different types of regions, St. Venant’s principle may
be used. This states that the area of a D-region usually extends to a distance equal the cross
section height from the discontinuity [12]. Some examples of D-regions defined according to
this principle are shown in Figure 3.1. Outside the area of the D-region, the nonlinear effects
from the discontinuity can be assumed as negligible. The disturbed stress field occurring in the
D-regions can be assessed by the method of strut-and-tie modeling. Although the disturbance
in the stress field can be assumed gone in the B-regions, strut-and-tie modeling can also be used
in these regions if desired [12].
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Figure 3.1: Examples of different types of D-regions [10].

3.3 Design Rules and Optimization

As stated by Schlaich et al. [12], a strut-and-tie model is designed according the the lower
bound theorem of plasticity if the model is developed in an appropriate manner. They further
state that it is important to limit the expected deformation of the struts as concrete only allows
for limited plastic deformation.

By using the Load path method, the STM will often result in being kinematic [12]. In the
load path method, an STM is made in the D-region by predicting the path the loads follows
through the region and placing the trusses in this path. The motivation of this method is the
fact that forces will often choose the shortest way through the D-region. By running a elastic
FEM-analysis, the load path through the D-region may be easier to find.

There are many possible configurations of the STM in a D-region. In order to find the opti-
mal configuration, the following optimization criterion can be used [12]:

ΣFiliεmi = Minimum (3.1)
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In this equation, the product of the truss force, Fi, truss length, li, and mean strain, εmi, is
summed over every truss member i to find the total strain energy of the considered STM. When
multiple STMs are considered, the model with the minimum strain energy is chosen. As the
strain obtained in the ties are often expected to dominate, it may be sufficient to optimize for
the reinforcement strain only [12].

3.4 Sectional Forces

For many D-regions, it is necessary to find the sectional forces acting on the edges of the D-
region. Further, the sectional forces effects has to be converted to point loads which satisfies
both moment equilibrium and force equilibrium. These point loads are applied to the truss
system at the edge of the D-region where the sectional forces are acting.

3.5 Dimensioning of Strut-and-Tie Models

3.5.1 Capacity Control of Struts

The struts are a simplification of compression fields in the D-region. There are mainly three
types of compression fields: The fan, the bottle and the prism [12]. Dependent on the type
of compression field located in a strut, transverse tensile forces may appear. To account for
these tensile forces, reinforcement can be placed according to 6.5.3 in Eurocode 2 [4]. Another
possibility is to reduce the maximum allowable stress in the strut by 6.5.2 in the Eurocode.
For a compression field experiencing transverse tension, as in ”the bottle”-type, the maximum
allowable stress is as follows:

σRd,max = 0.6ν ′fcd (3.2)

where
ν ′ = 1− fck

250
(3.3)

The reduction factor ν ′ takes into account the reduction in concrete strength of cracked concrete
due to the brittle behavior [4]. If no transverse tension occurs in the compression field, no
reduction of the dimensioning concrete strength is needed:

σRd,max = fcd (3.4)
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3.5.2 Capacity Control of Ties

The ties are dimensioned such that yield is reached for the acting tensile forces. No work-
hardening is conservatively assumed. The necessary reinforcement can be calculated as.

As =
F

fyd
(3.5)

where F is the tensile forces in the tie while fyd is the design yield stress of the reinforcement.
The center of gravity of the reinforcement is placed at the location of the tie. This means that
both the diameter of the rebar, the number of layers, and the concrete cover has to be known
before the truss forces are calculated. If the placement of the tie is changed by for example
adding another layer of reinforcement, the forces has to be recalculated.

3.5.3 Capacity Control of Nodes

In Eurocode 2 [4], the capacity control of the nodes are carried out by the use of clause 6.5.4.
The governing maximum allowable nodal stress, σRd,max, depends on the number of ties an-
chored in the node. σRd,max is reduced when the number of anchored ties in the node increases.
If there are no ties anchored in the node, 6.5.4(4)a gives the following maximum allowable
nodal stress:

σRd,max = 1.0ν ′fcd (3.6)

With one anchored tie, σRd,max is given by 6.5.4(4)b:

σRd,max = 0.85ν ′fcd (3.7)

Lastly, if there are two or more ties anchored in the node, 6.5.4(4)c gives the following govern-
ing maximum stress:

σRd,max = 0.75ν ′fcd (3.8)

Further, 6.5.4(5) states that the capacity of the node can be increased with up to 10% if at least
one of the following conditions are fulfilled [4]:

– triaxial compression is present

– all angles between struts and ties are ≥ 55◦

– stresses applied at supports or in point loads are evenly distributed and the node is con-
fined of stirrups

– the reinforcement is placed in more than one layer

– the node is sufficiently confined with the help of the support or friction
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In clause 6.5.4(6), Eurocode 2 opens up for a node in triaxial compression to be dimensioned
with an upper limit of

σRd,max ≤ 3.0ν ′fcd (3.9)

if the distribution of the compression in all three directions is known.

Schlaich et al. [12] present another method of determining the maximum allowable compres-
sive stress, f ∗cd, which is used for both struts and nodes. If the concrete experiences a uniaxial
compressive state, the limit value for the stress can be assumed as equal to the design strength
fcd. The different limit compressive stresses are summarized in Table 3.1.

Table 3.1: Reduction in compressive stress according to Schlaich et al. [12]

f ∗cd Description
1.0 · fcd Uniaxial compressive stress state
0.8 · fcd Transverse tensile strains or transverse reinforcement. Cracking parallel to the strut.
0.6 · fcd Skew cracking or reinforcement.
0.4 · fcd Skew cracks width significant width.
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Chapter 4

Solution Methods

In this chapter the solution methods for both the strut-and-tie modeling and the FEM-analyses
are presented. First, the solution method behind the calculation and optimization of the STMs
is explained. Following this, the approaches in the two FEM-softwares will be presented.

4.1 D-Region

The D-region assessed in this thesis is based on Example 14 in the fib Bulletin 61 [20]. This in-
cludes geometry, materials, and load cases. The D-region is a T-connection between two walls.
The height of the two walls are shown in Figure 4.1.

Figure 4.1: Height of the two cross sections in the D-region.

As the D-region is made of two intersecting walls, the values of the loads are given per meter.
Thus, the width of the cross sections is considered as 1m/m. The range of the D-region varies
between the D-regions and is calculated as a part of the STM optimization. The code allows
for a region larger than the D-region defined by St. Venants principle, which means parts of the
analyzed region may be B-regions. According to Schlaich et al. [12], STMs may be used for B-
regions as well. From here and for the rest of the chapters, the assessed regions will be named
”D-regions” although the regions may include B-regions. The concrete class used is C50/60
while the reinforcement used is B500NC. Relevant material properties are listed in Table 4.1
and Table 4.2, respectively. For the longitudinal reinforcement, a bar diameter of Ø25 is used.
Bundles of two bars is allowed in a layer. With the assumed centering distance of c200, this
results in a maximum number of 10 bars per meter allowed in each layer. The concrete cover
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used is 50mm

Table 4.1: Concrete material data for C50/60 [4]

Material Data - Concrete
Parameter Value

fck 50MPa
fcm 58MPa
fctm 4.1MPa
Ecm 37GPa

Table 4.2: Reinforcement material data for
B500NC [4]

Material Data - Reinforcement
Parameter Value

fyk 500MPa
Esm 200GPa

The D-region is tested for three different load cases. These are shown in Table 4.3 and are acting
at the center of the intersection. The directions of the forces and moments in the different load
cases are shown in Figure 4.2. The axial force is defined as positive in tension and negative in
compression, while the positive direction of the shear force is according to the defined coordi-
nate system shown in the figure. Finally, the moment is positive when clockwise. The effect of
external forces are not assessed in this thesis. Thus, only the moments acting at the edges of
the D-region have to be recalculated from the values given in Table 4.3. This will be treated in
subsection 4.2.1.

Table 4.3: Load cases tested.

Axial force [kN
m

] Shear force [[kN
m

] Moment [kNm
m

]

Load case 1
Left edge −3424 695 683

Right edge −2753 47 6
Top edge −742 −671 −689

Load case 2
Left edge −1701 −452 −467

Right edge −1699 −498 480
Top edge 950 −2 −13

Load case 3
Left edge −2735 −894 −498

Right edge −3603 257 −141
Top edge 637 868 639

(a) Load case 1. (b) Load case 2. (c) Load case 3.

Figure 4.2: Directions of forces and moments in the three load cases.
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4.2 Strut-and-Tie Models

In order to calculate the STMs for the three load cases, a Matlab code is made (see Appendix B).
The Matlab code is made such that it can take an arbitrary load case (axial force, shear force,
and moment) and give the user a resulting STM.

When considering a multiple number of load cases, most likely a multiple number of differ-
ent load paths has to be taken into account. In order to be able to model any kind of load path,
it is necessary to be able to place trusses in various directions in the STM. For instance, the di-
rection of the shear forces determines the direction of the resulting diagonal compression fields.
Thus, both possible directions of the shear force has to be represented in the pool of possible
trusses. Then, by checking the direction of the shear force when choosing a set of trusses in the
considered STM, the trusses not representing the correct direction of these compression fields
can be omitted for the given load case. In that way, a large number of unnecessary analyses
testing STMs providing invalid results may be avoided.

When modeling an STM for a given D-region and load case, there are may possible config-
urations which give sufficient capacity. Thus, by testing mulitple STMs and optimizing each
one, a more economical reinforcement layout may be calculated. In the Matlab code, an or-
thogonal reinforcement layout is assumed. This limits the STM optimization as models with
inclined reinforcement will be discarded even if they prove to be more efficient when using the
minimum strain energy criterion in Equation 3.1.

The concrete cover will only be considered for the longitudinal reinforcement in this thesis.
This is to be able to test STMs with compression fields where the compressive stress is close
to the maximum allowable stress. By removing the restriction of the concrete cover for the
shear reinforcement, any present longitudinal struts may be placed in a distance determined by
the resulting compression field from the surface. This is achieved by a geometric optimization
procedure. Dependent on the signs of the forces in the longitudinal trusses, chosen nodes are
moved such that compression fields utilize their available space to produce the maximum al-
lowable stress. By moving the nodes in this manner, the moment lever arm is maximized and
the contribution from the moment minimized. The geometric optimization procedure will be
explained further as a part subsection 4.2.4.

4.2.1 Application of Sectional Forces

In order to calculate the forces in the D-region, the sectional forces acting at the ends of the
region has to be applied appropriately. The sectional forces obtained at the intersection of the
walls is used as input in the calculations. This means that the sectional forces has to be cal-
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culated to their correct values at the edge of the D-region. With no external loads, only the
moment changes from the middle of the intersection where the loads in Table 4.3 are extracted
from.

The definition of positive directions of forces and moments results in two different equations
for calculating the moment at the end of the D-region. By using the moment (Mi) and shear
force (Vi) obtained at the intersection combined with the distance (xi) from the intersection to
the edges, the moment at the edge (Mi(xi)) is calculated. For the left side and the top side of
the D-region, the following equation is used:

Mi(xi) = Mi − Vi · xi (4.1)

For the right side of the D-region, the moment can be calculated as following:

Mi(xi) = Mi + Vi · xi (4.2)

Figure 4.3 shows the sectional forces at one end of the D-region and the point loads which
represents them in the strut-and-tie-model. All three sectional forces make up a pair of forces
where the two forces are applied at opposite sides of the model.

Figure 4.3: Sectional forces represented by corresponding pairs of forces.

For all three force pairs, both a force equilibrium and a moment equilibrium have to be satisfied
in order to correctly represent the sectional forces. When adding the contributions from all
sectional forces, the point loads F1 and F2 are obtained. These point loads are placed in the
nodes at the ends of the D-region, placed in a distance of a1 and a2 from the surface, respectively.
The point loads F1 and F2 are found as:

F1 = FN1 + FV V 1 + FM1 (4.3)
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F2 = FN2 + FV V 2 + FM2 (4.4)

Axial Force

First, the force equilibrium is satisfied:

FN1 + FN2 = N (4.5)

The axial force does not contribute to any moment. Thus, the two forces representing the axial
force should also not contribute to any moment:

− FN1 · (
h

2
− a1) + FN2 · (

h

2
− a2) = 0 (4.6)

By combining Equation 4.5 and Equation 4.6, the following two expressions for the truss forces
are obtained:

FN2 = N ·
h
2

h− a1 − a2
FN1 = N − FN2 (4.7)

Shear Force

In order to apply the shear force to the strut-and-tie-model, it can be decomposed as shown in
Figure 4.4a.

(a) Decomposition of the shear
force.

(b) Line of attack.

Figure 4.4: Application of Fv due to the shear force.

The force Fvv can be converted to truss forces in the same manner as the axial force, while the
force Fv can be applied directly in the node lying in its line of attack. It is important that the
shear force is obtained at a distance from the wall intersection such that this diagonal force has
a line of attack through the node it is applied to. If not, an additional moment caused by the
eccentricity occurs and the moment equilibrium of the model is destroyed. The line of attack is
shown in Figure 4.4b Both Fvv and Fv are calculated from the shear force V and the assumed
angle θ. According to Eurocode 2 clause 6.2.3(2), the angle may be chosen in the interval
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1 ≤ cot θ ≤ 2.5. From here, an angle of θ = 45o (cot θ = 1) is used.

FV V =
V

tan(θ)
FV =

V

sin(θ)
(4.8)

FV V 2 = FV V ·
h
2

h− a1 − a2
FV V1 = FV V − FV V 2 (4.9)

Moment

The force pair representing the moment should not contribute to additional forces in the model:

FM1 + FM2 = 0 (4.10)

Also, the force pair has to represent the moment M correctly:

− FM1 · (
h

2
− a1) + FM2 · (

h

2
− a2) = M (4.11)

When combining Equation 4.10 and Equation 4.11, the following expressions for the force pair
is obtained:

FM2 =
M

h− a1 − a2
FM1 = −FM2 (4.12)

Placement of Trusses

The placement of the struts and ties which the sectional forces are applied to are governed by
the variables a1 and a2. For a tie, the corresponding ai equals the distance from the surface to
the center of the reinforcement. In the case of a strut, the value of ai can be chosen more freely.
The strut has to be placed such that the necessary width of its compression field is not greater
than the available width.

As the ties are placed in the center of gravity of the reinforcement, the number of bars needed
for the longitudinal reinforcement has to be calculated. As already mentioned, bundles of two
bars is allowed in a layer, which results in 10 bars in each layer with the centering distance of
c200.

4.2.2 The Geometry of the Strut-and-Tie Models

The calculation of the length from the intersection to the ends of the D-region is illustrated in
Figure 4.5 for the left side. The length of truss 2, 4, 6, and 8 in x-direction is the same as the
length of truss 1. This is done in order to make sure that the angle of truss 3 and 7 is as close
as possible to 45 degrees. With this angle, the contribution from the shear forces to the longi-
tudinal trusses are reduced. The calculation of the distance from truss 1 to the left side of the
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D-region is shown in Figure 4.4b.

Figure 4.5: Range of D-region.

The longitudinal trusses are initially placed as if one layer of the chosen reinforcement is
needed. This placement may however be changed in the geometric optimization procedure.
With the concrete cover c = 50mm and the bar diameter of Ø = 25mm, the distance from the
surface to the truss is as follows:

a = c+
Ø

2
= 62.5mm (4.13)

4.2.3 Node Check

Maximum Allowable Stress in Nodes

The maximum allowable stress in each node is found according to 6.5.4(4) in the Eurocode 2
[4]. In the Matlab Code, this is executed by counting the number of ties in each node and then
assigning the correct σRd,max to the nodes.

Nodal Zones

In order to check the capacity of the nodes, the D-region is divided into nodal zones where each
node is assigned an individual area. An illustration of these nodal zones in the D-region is found
in Figure 4.6. The area of a nodal zone ends at half the distance to certain neighboring nodes.
For instance, node 12 is limited by half the distance to node 5, 13, and 14. The limits of all
nodal zones may be found in Appendix A.

The D-region is made up of 16 nodal zones. For each node, a maximum possible width of each
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Figure 4.6: Example of nodal zones in the D-region.

strut is calculated. This is done by finding the shortest distance, measured normal to the strut, to
either the end of the zone or to a neighboring truss. If a neighboring truss is a strut, the distance
is measured from the truss in focus to the end of the compression field of this neighboring strut.
The stress in the compression field of a neighboring strut is assumed to be equal to the maxi-
mum allowable stress in the nodal zone at hand. Figure 4.7 shows how the maximum width of a
strut may be found. The shortest distance from the strut in focus to the neighboring strut (blue)
or tie (red) is used as the half of the maximum allowed width:

0.5 · wmax = min{w1

2
,
w2

2
}

Figure 4.7: Finding maximum allowed width.
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The capacity check is carried out by checking this maximum width of each strut in every node
and comparing it to the necessary width. This is done in the following:

wnec. =
F

b · σRd,max
(4.14)

wnec. 6 wmax =⇒ OK capacity (4.15)

A maximum width of a strut has to be calculated in both of its nodes. It is chosen to use the
minimum value from the two nodes for the entire strut. This is done in order to ensure that
compression fields from two different nodal zones do not overlap. The full calculations of the
maximum widths are included in Appendix A.

4.2.4 Process

The process of finding and calculating STMs for the load cases can be divided into seven steps.
The first step is the only one which requires any action from the user.

Step 1 - Initialization

First, geometry, material data, and load case(s) have to be defined. In regards of the geometry,
the height (and width) of the two intersecting walls have to be provided. Additionally, the con-
crete cover on both sides of all three ends of the D-region (1-6 in Figure 4.8) has to be defined.
If desired, it is possible to give different covers for all of the six sides. The necessary material
parameters are shown in Table 4.4.

Table 4.4: Necessary material input.

Necessary Material Data
Concrete Reinforcement
fck fyk
fcm Esm
fctm

For the reinforcement, it is also necessary to provide the spacing of the longitudinal reinforce-
ment and the rebar diameter. As for the concrete cover, a value has to be given for both sides of
all three ends of the D-region.

Step 2 - Choose STM

For each load case, eight possible sets of trusses will be tested. These different sets is made up
of different combinations of the four green trusses in Figure 4.8. The two green diagonal trusses
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Figure 4.8: Available trusses to include in the STM.

is not used in the same sets, thus resulting in 23 = 8 combinations. The two diagonal trusses
are limited to compression. This limitation ensures that no diagonal reinforcement is necessary,
which gives an easier reinforcement layout in terms of the construction process. However,
if the possibility of inclined reinforcement is desired, this is easily included by removing the
limitation. The direction of the shear forces determines which of the purple diagonal trusses
are used. Thus, none of the purple trusses overlap in the chosen STM. Lastly, the black trusses
are used in every STM. Figure 4.9a shows a possible load case, where the D-region experiences
a closing moment on the left side. This will be used as an example throughout the steps. A
possible STM for this load case is shown in Figure 4.9b.

(a) (b)

Figure 4.9: Possible load case and STM for the D-region.

Step 3 - Application of Sectional Forces

Sectional forces are calculated and applied according to subsection 4.2.1, and the forces in the
STM are calculated. If the code is in its first iteration, the calculation of the STM will be done
in two stages. First, an initial calculation is carried out. This calculation uses the STM in
Figure 4.9b where the longitudinal trusses placed according to Equation 4.13, and is only done
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in the first iteration. Stage two of the calculation uses the signs of the truss forces in the previous
STM calculation in order to alter the orientations of the longitudinal trusses if needed, and then
do the updated calculations. This stage is performed in every iteration.

Step 4 - Repositioning of Trusses

Trusses are moved such that they satisfy the needed reinforcement and strut widths of the con-
figuration in step 3. A change in the truss placements will change the force distribution in the
STM and thus also the necessary reinforcement and strut widths.

The configuration of the STM in the continuous wall depends on the force distribution. As
the longitudinal reinforcement is restricted to be placed parallel to its corresponding surface,
any tie representing this reinforcement can not be placed diagonal. Figure 4.10 shows one pos-
sible configuration of the bottom trusses. The following may also be applied to the top trusses.

Figure 4.10: One possible configuration of the trusses at the bottom of the D-region.

Truss 2 & 18 has been restricted to be horizontal in the Matlab Code. These two struts are
placed in a distance a2 and a3, respectively, from the surface. If a2 6= a3, at least one of the
three other trusses has to be diagonal in order to connect the two sides. Which one(s) that has to
be diagonal depends on whether they are struts or ties. As the three other trusses (6, 10, and 14)
either will be in tension or compression, there are eight possible force combinations. In seven
of these, only one of the three trusses is allowed to be diagonal. The last case, where truss 10
is in tension while truss 6 & 14 are in compression, it may be necessary for both 6 & 10 to be
diagonal. The eight cases with the corresponding configurations are given in Table 4.5.

The combinations in Table 4.5 are based on the assumption that both truss 9 & 13 are active. If
for instance truss 9 is excluded from the STM, both truss 6 & 10 have to be either horizontal or
diagonal with the same inclination if none of the two diagonal trusses in this node is used. This
is required in order to secure the equilibrium in the node connecting the two trusses.
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When the geometry of the STM is changed, the reinforcement check of the ties and the node
check of the struts has to be done again. As the geometry of the STM configuration in this step
is based on the capacity needs of the STM in the previous step, the new configuration may give
insufficient results in regards to the convergence criteria. If this is the case, a new iteration is
needed. This happens in step 5.

Table 4.5: Finding the diagonal truss.

Strut Tie Diagonal
6 & 10 & 14 - 10

6 & 10 14 10
10 & 14 6 10

6 10 & 14 6
10 6 & 14 6
14 6 & 10 14
- 6 & 10 & 14 -

6 & 14 10 6 & 14

Step 5 - Iteration

Step 3 and 4 are repeated until satisfied convergence is achieved.

Step 6 - Check

After step 5 is finished, the D-region has been checked for one possible set of trusses. As there
may be other sets which may give more efficient results, these should also be checked. This is
done by repeating step 2 to 5 for all relevant STMs.

Step 7 - Final STM

When all sets of trusses have been tested, the most efficient STM is chosen out of the valid ones.
This is found by utilizing the minimum strain energy criterion in Equation 3.1.

4.3 Nonlinear Finite Element Analysis with DIANA

4.3.1 Material Models

Concrete

The concrete material model is to a great extent made according to recommendations of Dutch
guidelines [7]. A total strain rotating crack model is applied. For material parameters, the
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mean values are used. The Hordijk softening curve is used for the modeling of the tensile
behavior. In addition, load case 2 has been tested with a linear-ultimate crack strain tensile
softening. The ultimate strain used for this analysis is εu =

fyk
Esm

= 0.0025. A parabolic curve is
used for the compressive behavior. Compression-tension interaction is taken into account by a
reduction in compression strength according to Vecchio and Collins (1993) [18]. A lower limit
of βσcr = 0.6 is used, thus reducing the concrete compressive strength with 40% at most. In
addition, a reduction in the Poisson ratio due to lateral cracking is applied. Where possible,
material parameters are found in Eurocode 2 [4]. The initial Poisson ratio used is 0.20.

Reinforcement

An elastic perfectly plastic material model is used. The two material parameters used to model
the reinforcement behavior are the characteristic yield stress and the Young’s modulus:

fyk = 500
N

mm2

Esm = 2 · 105 N

mm2

Embedded reinforcement is used.

4.3.2 Loading

The sectional forces acting on the ends of the D-region are calculated as in subsection 4.2.1.
The sectional forces acting on the right and top side of the D-region are applied to the respective
edges, while the left side edge is constrained from both displacement and rotation. The two
loaded edges are enforced to be straight by adding beam elements along these edges. A large
value of the thickness combined with a small Young’s modulus is used:

tedge = 106mm

Eedge = 10
N

mm2

This is done in order to keep the line elements stiff in bending while keeping a relatively low
axial stiffness. The axial force is calculated to an evenly distributed force and applied to the
edge, while the shear force is loaded directly into the middle node of the edge. As the beam
elements have rotational degrees of freedom, the moment is added directly to the middle node
of both edges. Figure 4.11 shows how the axial force, shear force, and moment are applied to
the finite element model. The loaded edge and middle node are marked as red.
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Figure 4.11: An illustration of the application of loads in the DIANA analyses.

4.3.3 Geometry and Reinforcement

The geometry of the D-region is extracted from the STMs such that the results from the STMs
and the NLFEAs depict the same load situation. This also applies for the reinforcement, as the
reinforcement is placed in the same locations as in the STMs. The cross-sectional area of the
reinforcement is as calculated in the STMs.

4.3.4 Analysis

The Regular Newton-Raphson method is the chosen method for the equilibrium iteration. The
arc-length method is applied, where the updated normal plane method is used. As the D-region
is tested for ULS, there is an increased possibility of critical points in the equilibrium path. In
order to find the optimal next load increment, a line search algorithm is applied. Default settings
in DIANA [2] is used for both the arc-length method and the line search algorithm.

Figure 4.12: The mesh used for Load Case 2. The same approximate element size is used for all three
load cases.
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The D-region is meshed with quadrilateral plane stress elements of quadratic order. An approx-
imate size of 25 × 25mm is used. The resulting mesh for load case 2 is shown in Figure 4.12.
The mesh has a similar layout for the two other load cases as only the range of the D-region
varies between the cases.

A combined convergence criterion of both energy and force is chosen. The convergence cri-
teria for the energy and force are as follows:

εE = 0.001

εF = 0.01

A maximum number of 100 iterations is calculated for each load increment. Convergence is
assumed to be satisfied when both criteria are satisfied. If convergence is not achieved in the
100 iterations, the analysis is continued.

A summary of the modeling choices in the numerical analysis is shown in Table 4.6. Table 4.7
shows a summary of the material models used in DIANA.

Table 4.6: Summary of numerical analysis in DIANA.

Property Value
Iterative procedure Regular Newton-Raphson

Line search Default
Arc-length method Updated normal plane

Maximum number of iterations per step 100
Load step size 0.05

Convergence criterion Force < 10−2 and Energy < 10−3

No convergence Continue

Table 4.7: Summary of material model in DIANA.

Property Value
Concrete class C50/60 [4]
Crack model Total strain rotating crack

Crack band width Govindjee [21]
Poisson ratio Variable, Initial=0.20

Fracture energy 0.7 · 0.073f 0.18
cm [7]

Compressive fracture energy 250 · fck
fcm
· 0.073f 0.18

cm [7, 22]
Reinforcement Embedded

Tension softening Hordijk (and one with Linear ultimate crack strain)
Compression softening Parabolic

Stress reduction Vecchio and Collins (1993)
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4.4 Nonlinear Finite Element Analysis with IDEA StatiCa

4.4.1 Material

Mean values are used for both reinforcement and concrete in order to describe the material be-
havior. All necessary material parameters are found in Eurocode 2 [4]. The reinforcement is
modeled with no work hardening.

The concrete compression curve implemented in the software is the parabolic-rectangular curve
shown in Figure 2.4. The curve is modified with a factor ηfc for brittle behavior [5]:

ηfc =

(
30

fck

) 1
3

(4.16)

This results in the curve reaching its maximum compressive stress ηfc · fc at the strain ηfc · εc2.
The reduction is included to account for the analysis being allowed to exceed the ultimate strain
found in Eurocode 2 (εcu2 = 0.0035) [11]. The reduction factor is η = 0.80 for concrete class
C50/60 when using two digits of precision. This results in the same reduction as ν ′ used in the
STMs. Compression softening due to transverse tensile strains is dealt with by the factor kc2
shown in Figure 4.13. When compression softening is necessary, the new resulting compressive
strength becomes kc · fc where kc = ηfckc2. This new compressive strength is reached at the
strain kc · εc2

Figure 4.13: The reduction factor for compression softening in IDEA StatiCa [11]

No concrete contribution to tensile strength is assumed, apart from the tension stiffening
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effect on the reinforcement [9]. The reinforcement is modeled using the tension chord model
[19].

4.4.2 Loading

The loads in Table 4.3 are inserted in the analysis. The software then calculates the moments
at the edges of the D-region, as done in subsection 4.2.1 for the STMs. The loads are applied
to the model through a St.Venant transfer zone [11]. This is to ensure a realistic stress flow
resulting from the load application. The software does not assess the concrete behavior in the
transfer zone. Edges are constrained to remain straight, while still being able to rotate.

4.4.3 Geometry and Reinforcement

The geometry used for the D-region is identical to what is obtained in the calculation of the
STM. For the reinforcement, IDEA StatiCa takes the bar diameter, number of bars and number
of layers as input. Thus, identical reinforcement amounts as in the STM is not possible. The
number of reinforcement bars and stirrups, in addition to the bar diameters, are chosen such that
the bar area is as close as possible to what was calculated for the STM. Reinforcement amounts
on the conservative side is preferred. The cross-section areas of the reinforcement is provided
in the results.

4.4.4 Analysis

The Regular Newton-Raphson method is used for the numerical analysis. The D-region is
meshed with the smallest elements possible in the software, where quadrilateral shell elements
are applied. IDEA StatiCa stops the analysis of the D-region either when load factor=1.00 is
reached or the capacity is found to be insufficient. In order to find the maximum capacity of the
D-region, other analyses are run for every load case where the loads are scaled up with a factor
larger than the ultimate load factor.
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Chapter 5

Results

In this chapter, the results from the three different load cases are presented in order. For every
load case, the results from the STM optimization will be presented first. This includes the truss
forces in the STM, the necessary reinforcement in the ties, and the resulting stress field in the
D-region based on the necessary widths of the struts. A compressive stress equal to the maxi-
mum allowable stress, σRd,max is used for these calculations. The STMs are made of blue struts
and red ties. The Matlab code uses in total 0.1-0.2 seconds for all three load cases. Next, the
results from the NLFEA are presented. First the analyses from DIANA and then from IDEA
StatiCa. Lastly, the results are compared.

5.1 Load Case 1: Closing Moment

5.1.1 Strut-and-Tie Model

The STM found for load case 1 is shown in Figure 5.1. The STM gives no longitudinal rein-
forcement in the left side and right side wall.

Figure 5.1: Resulting STM for load case 1.
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Forces

The acting forces in the STM are shown in Table 5.1. The largest tension force is located in
truss 13 while the largest compression force is obtained in truss 8.

Table 5.1: Acting forces in the STM calculated for load case 1

Truss Number Force [kN
m

] Truss Number Force [kN
m

]
1 695.0 21 47.0
2 −1249.8 22 −1301.4
3 −982.9 23 −955.0
4 −1479.2 24 1238.9
5 695.0 25 671.0
6 −554.8 26 −630.4
7 −982.9 27 −948.9
8 −2174.2 28 559.4
9 −9.7 29 671.0
10 −554.8 33 −66.5
11 −1540.2 34 −66.5
12 −1362.4 F1 −784.2
13 1303.2 F2 −1944.8
14 −1390.7 F3 −1484.7
16 −1315.3 F4 −1221.3
17 47.0 F5 −111.6
18 −1437.7 F6 40.6
20 −1268.3

Nodes

The necessary widths of the struts are shown in Figure 5.2. The figure shows that several struts
are placed with virtually no extra space for the compression field. This applied to truss 8 which
also is shown to be the strut with the largest compression force. Table 5.2 shows the maximum
allowable stress, σRd,max, in the nodes. As there are no ties anchored in node 5 and 16, these
two nodes have the highest allowable stress. In comparison, nodes 7, 13, and 15 have more than
two ties anchored in the nodes and thus experience the lowest σRd,max.
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Figure 5.2: Necessary widths of struts for load case 1.

Table 5.2: Maximum allowable stress, σRd,max, in the nodes for load case 1.

kred σRd,max[
N

mm2 ]
Node 1 0.68 39.44
Node 2 0.68 39.44
Node 3 0.68 39.44
Node 4 0.68 39.44
Node 5 0.8 46.40
Node 6 0.68 39.44
Node 7 0.6 34.80
Node 8 0.68 39.44
Node 9 0.68 39.44

Node 10 0.68 39.44
Node 11 0.68 39.44
Node 12 0.68 39.44
Node 13 0.6 34.80
Node 14 0.6 34.80
Node 15 0.6 34.80
Node 16 0.8 46.40

Reinforcement

The necessary reinforcement in the ties are shown in Table 5.3. The calculation of the amounts
assumes yield in the reinforcement. The need for shear reinforcement is significantly lower on
the right side than the left side of the D-region.
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Table 5.3: Necessary reinforcement in ties for load case 1.

Truss Number Reinforcement [mm2

m
]

1 1390
5 1390
13 2606
17 94.0
21 94.0
24 2478
25 1342
28 1119
29 1342

5.1.2 Nonlinear Finite Element Analysis

DIANA

Figure 5.3 shows the load-displacement curve obtained for load case 1. The horizontal displace-
ment of the middle node of the top edge is used. The maximum obtained load factor is 1.18.
It is observed that the failure is induced by concrete compression softening in the area most
exposed to compressive stresses, namely the corner between the top wall and the left side wall.

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.3: Load-displacement curve for load case 1 with limit points and ultimate load.

Two limit points occur at load step 20 and 21, where the load factors are 0.654 and 0.605, re-
spectively. The vertical crack widths obtained in both load increments are shown in Figure 5.4.
A developing crack pattern is observed between the two limit points, both along the longitudinal
reinforcement and through the top wall. Furthermore, it is seen that the deformation mode at
the cracked part of the top wall changes between the two limit points.
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(a) Load increment 20 (b) Load increment 21

Figure 5.4: Vertical crack widths for the two highlighted limits points at load case 1.

Figure 5.5 shows the reinforcement stresses obtained at load step 1.00. Yield is reached for
parts of the longitudinal reinforcement on the right side of the top wall. Moreover, the shear
reinforcement also reaches the largest utilization in the top wall. In contrast, the shear reinforce-
ment in the bottom wall is at most 16% utilized with respect to the yield stress at load factor
1.00.

Figure 5.5: The reinforcement stress for load case 1 with a load factor=1.00.

The principal strains ε1 are shown in Figure 5.6. It is observed that large parts of the D-region
experience maximum principal strains in the elastic area of the tension curve. The maximum
principal strain in the corner between the top wall and the left hand side wall is observed to
be negative. Also, maximum principal strains larger than the ultimate strain εu = 0.00546 is
observed along the longitudinal reinforcement at the right hand side of the top wall.
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Figure 5.6: The maximum principal strain, ε1, for load case 1 with a load factor=1.00

Figure 5.7 shows the in-plane principal stress components in the D-region. The largest com-
pressive stresses are obtained at the corner between the left wall and the top wall, where both
σ1 and σ2 are in compression. Here, the compressive stress is observed to be σ2 = −45.8 N

mm2 .

Figure 5.7: The in-plane principal stress components, for load case 1 with a load factor=1.00.

Figure 5.8 shows the development of vertical cracks in the D-region. At load factor 1.00, the
vertical cracks have developed far through the top wall, leaving a small compression zone of
uncracked elements on the left hand side. Moreover, the development of a diagonal crack is
evident in the top wall. No diagonal cracks are observed in the bottom wall. This is in line
with the observed utilization of the shear reinforcement. Finally, it is observed that cracks have
developed along the entire right side of the top wall.
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(a) Vertical crack widths (b) Crack strains

Figure 5.8: Cracking for load case 1 at load factor=1.00.

IDEA StatiCa

Figure 5.9 shows the concrete principal stresses and reinforcement stresses obtained. The
minimum concrete principal stress, located at the corner between the left and top wall, is
σ2 = −46.3 N

mm2 . A check of the concrete principal strains shows a minimum strain value
of ε2 = −2.7 · 10−3 is reached at load factor 1.00. It is observed that parts of the reinforcement
at the right side of the top wall is fully utilized. The D-region reaches εcu2 = −0.0035 at the
load factor of 1.10. When the analysis is run past this load factor, failure is obtained at load
factor 1.26, where a strain of ε2 = −0.00891 is observed. The insufficient concrete strength at
the corner between the top and left wall proved to be the reason for failure.

(a) Concrete principal stress (b) Reinforcement stress

Figure 5.9: Concrete and reinforcement stress obtained for load case 1 at load factor=1.00.

In Figure 5.10, the resulting reductions of the concrete compressive strength due to transverse
tensile strains are shown by the governing kc2-factors. The most significant reductions are ob-
served at the right side of the top wall. At most, the compressive strength is reduced with a
kc2-factor of 0.59. This, combined with the reduction factor ηfc = 0.80 for brittle behavior,
gives a total reduction factor of kc = 0.47.
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Table 5.4: Reinforcement amounts for load case 1 in IDEA StatiCa.

Reinforcement amount [mm2

m
] Fraction of calculated reinforcement in STM

Truss 1 1385 0.996
Truss 5 1385 0.996
Truss 13 2513 0.964
Truss 17 95 1.01
Truss 21 95 1.01
Truss 24 2454 0.990
Truss 25 1321 0.984
Truss 28 1078 0.963
Truss 29 1321 0.984

F6 75 0.924

Figure 5.10: Reduction factor kc2 for load case 1 at load factor=1.00.

5.1.3 Comparison

Both FEM-analyses show a capacity larger than what was calculated in the STM, where the
analysis from IDEA StatiCa shows highest capacity. Concrete failure was the source of failure
in both NLFEAs.

The two NLFEAs show similar results when considering the principal stress σ2. Both analyses
show a minimum value of the stress at virtually the same location, namely the corner between
the top and left wall. Furthermore, the obtained values of the minimum principal stress in this
area are very close, where the analysis run in IDEA StatiCa shows a stress which is 0.94% lower
than what was obtained in DIANA.

The reinforcement stresses show a similar utilization between the the two NLFEAs. In both
analyses, the reinforcement corresponding to truss 28 is most utilized. Compared to the STM,
this is the truss with the least reinforcement of the three trusses along right surface of the top
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wall. Meanwhile, the truss (nr. 13) that gave the largest reinforcement amount in the STM is
the least utilized of these three.

When comparing the reductions in compressive strength in Table 5.2 with Figure 5.10, it is
observed that the reductions are in general more conservative in the STM. However, this is not
the case in node 13 in the STM. While the calculation from the Eurocode 2 gives a reduction
factor of 0.6, the compressive strength is reduced by a factor of kc = 0.8 · 0.59 = 0.47 in
the NLFEA. Furthermore, the comparison shows that the NLFEA obtains the same reduction
factors as the STM in node 5 and 16. Equation 3.6 shows the calculation of σRd,max in a node
where there are no anchored ties. By using Equation 3.3, a reduction factor of ν ′ = 0.8 is
obtained for such nodes.
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5.2 Load Case 2: Dominating Tension

5.2.1 Strut-and-Tie Model

Then STM found for load case 2 is shown in Table 5.5. According to the STM found, no
longitudinal reinforcement is necessary in the left side and right side wall.

Figure 5.11: Resulting STM for load case 2.

Forces

The forces acting in the STM are shown in Table 5.5. The largest tensile force is located in truss
24 while the largest compression force is located in truss 10.
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Table 5.5: Truss forces for load case 2.

Truss Number Force [kN
m

] Truss Number Force [kN
m

]
1 452.0 21 498.0
2 −721.9 22 438.6
4 −527.1 23 −2.8
5 452.0 24 513.4
6 −1173.9 25 2.0
8 −75.1 26 440.6
9 452 27 −2.8
10 −1625.9 28 511.4
11 −17.9 29 2.0
12 −63.6 30 −639.2
13 513.1 31 −639.2
14 −1137.4 F1 −979.1
15 −704.3 F2 −269.9
16 63.6 F3 −141.4
17 498.0 F4 −1059.6
18 −639.4 F5 509.4
19 −704.3 F6 442.6
20 −561.6

Nodes

The necessary widths and the resulting compression fields are shown in Figure 5.12. It is
observed that the widest compression field is located in truss 10 at the bottom of the intersection,
which also experiences the largest compression force. The maximum allowable stress in the
nodes of the STM are shown in Table 5.6. It is observed that every node have at least one
anchored tie, which reduces the allowable stress in the nodes.

Figure 5.12: Necessary widths of struts for load case 2.
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Table 5.6: Maximum allowable stress, σRd,max, in the nodes for load case 2.

kred σRd,max[
N

mm2 ]
Node 1 0.68 39.44
Node 2 0.68 39.44
Node 3 0.68 39.44
Node 4 0.68 39.44
Node 5 0.6 34.80
Node 6 0.68 39.44
Node 7 0.6 34.80
Node 8 0.68 39.44
Node 9 0.68 39.44

Node 10 0.68 39.44
Node 11 0.68 39.44
Node 12 0.6 34.80
Node 13 0.6 34.80
Node 14 0.6 34.80
Node 15 0.6 34.80
Node 16 0.68 39.44

Reinforcement

The necessary reinforcement for the ties are shown in Table 5.7. The largest demand of longitu-
dinal reinforcement is located along the right side surface of the top wall. The area of the shear
reinforcement (truss 25 & 29) in the top side wall is virtually zero.

Table 5.7: Necessary reinforcement in ties for load case 2.

Reinforcement amount [mm2

m
]

Truss 1 904
Truss 5 904
Truss 9 904

Truss 13 1026
Truss 17 996
Truss 21 996
Truss 22 877
Truss 24 1027
Truss 25 4.0
Truss 26 881
Truss 28 1023
Truss 29 4.0

F5 1005
F6 1019
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5.2.2 Nonlinear Finite Element Analysis

DIANA - Hordijk Softening

Figure 5.13 shows the load-displacement curve obtained for load case 2. The vertical displace-
ment of the middle node of the right side wall is used. The maximum obtained load factor is
1.00. At this load factor, a crack snaps horizontally through the top wall close to shear rein-
forcement representing truss 29. The last converged step occurs at a load factor of 0.999, which
is one load step before 1.00 is reached and two steps before the ultimate load factor of 1.00.
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Figure 5.13: Load-displacement curve for load case 2 with limit points and ultimate load.

The two marked limit points (before ultimate load) happen at load increment 15 and 26, with
load factors 0.602 and 0.520, respectively. The crack development at these two limit points
are shown in Figure 5.14. The propagation of a diagonal crack is observed in the center of the
intersection.

(a) Load increment 15 (b) Load increment 26

Figure 5.14: Vertical crack widths for the two highlighted limits points at load case 2.

Figure 5.15 shows the reinforcement stresses obtained with a load factor of 1.00. Yield is
reached in parts of the longitudinal reinforcement on the right hand side of the top wall. The
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utilization of the shear reinforcement is observed to be low.

Figure 5.15: The reinforcement stress for load case 2 with Hordijk softening. Load factor=1.00.

The maximum principal strains, ε1, are shown in Figure 5.16. Substantial tension softening is
observed along the major part of the longitudinal reinforcement on the right side of the top wall.
Large parts of the D-region are observed to experience maximum principal strains in the elastic
area, resulting in no tension softening in these parts.
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Figure 5.16: The maximum principal strain, ε1, for load case 2 using Hordijk softening. Load fac-
tor=1.00.

Figure 5.17 shows the in-plane principal stress components. The largest compression stresses
are obtained at the bottom middle of the D-region, where the value is σ2 = −33.4 N

mm2 . The
corresponding minimum strain is found to be ε2 = −9.4 · 10−4.
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Figure 5.17: The in-plane principal stress components for load case 2 using Hordijk softening. Load
factor=1.00.

Figure 5.18a shows the development of vertical cracks in the D-region. The crack strains at
load factor 1.00 are shown in Figure 5.18b. Cracks have developed along large parts of the
longitudinal reinforcement at the right hand side of the top wall. The beginning of a diagonal
shear crack is observed in the wall to the left.

(a) Vertical crack widths (b) Crack strains

Figure 5.18: Cracking for load factor 2 with Hordijk softening at load factor=1.00.
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DIANA - Linear Tensile Softening

An analysis with a tensile behavior using linear-ultimate crack strain softening has also been
run. The load-displacement curve for the analysis, using an ultimate strain εu = fyk/Esm=0.0025,
is shown in Figure 5.19. It is observed that a load factor of 1.15 is obtained using this tensile
behavior. The failure is caused by a crack snapping horizontally through the top wall just below
the shear reinforcement corresponding to truss 29.
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Figure 5.19: Load-displacement curve for load case 2 with limit points and ultimate load.

Two limit points are observed at load increment 16 and 20, with load factors of 0.749 and 0.592
(respectively). The vertical crack patterns for these two load steps are shown in Figure 5.20.
Between the two limit points, vertical cracks develop along the longitudinal reinforcement at
the right hand side of the top wall.

(a) Load increment 16 (b) Load increment 20

Figure 5.20: Vertical crack widths for the two limits points at load case 2 using a linear tensile softening.

Figure 5.21 shows the stresses obtained in the reinforcement at load factor 1.00. It is noted that
the reinforcement is in general far from being fully utilized. The shear reinforcement in the top
wall experiences compressive stress.
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Figure 5.21: The reinforcement stress for load case 2 using linear tensile softening. Load factor=1.00.

The maximum principal strains, ε1, are shown in Figure 5.22. Large parts of the D-region does
not experience maximum principal strains past the elastic area of the tension curve. The tension
softening observed is located in the middle of the D-region, below the top wall. In this area,
strains past the ultimate strain εu = 0.0025 is observed.
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Figure 5.22: The maximum principal strain, ε1 for load case 2 using linear tensile softening. Load
factor=1.00.

Figure 5.23 shows the in-plane principal stress components obtained in the D-region. The
largest compressive stress, located at the bottom middle, is σ2 = −31.50 N

mm2 . The correspond-
ing minimum principal strain is ε2 = −8.8 · 10−4.
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Figure 5.23: The in-plane principal stress components for load case 2 using linear tensile softening.
Load factor=1.00.

Figure 5.24a shows the resulting vertical crack pattern at load factor=1.00. The major part of
the cracking is located in the intersection between the three ends of the D-region.

(a) Vertical crack widths (b) Crack strains

Figure 5.24: Cracking for load case 2 with linear tensile softening at load factor=1.00.

IDEA StatiCa

Figure 5.25a and Figure 5.25b show the concrete principal stress and reinforcement stress at
load factor 1.00. A check of the concrete principal strains shows that the minimum value
reached for the compressive strains is ε2 = −5.5 · 10−4. The largest obtained minimum princi-
pal stress is σ2 = −26.5 N

mm2 . It is observed that the reinforcement in truss 13, 22, 24, and 26 is
fully utilized, but the largest strain is obtained in truss 13. The concrete is most utilized at the
bottom middle of the D-region. Failure is reached at a load factor of 1.02. The reinforcement
depicting truss 24 shows to be the critical part of the D-region.
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(a) Concrete principal stresses. (b) Reinforcement stresses

Figure 5.25: Concrete and reinforcement stresses obtained for load case 2 at load factor=1.00.

Table 5.8: Reinforcement amounts for load case 2 in IDEA StatiCa.

Reinforcement amount [mm2

m
] Fraction of calculated reinforcement in STM

Truss 1 905 1.00
Truss 5 905 1.00
Truss 9 905 1.00
Truss 13 1005 0.979
Truss 17 982 0.986
Truss 21 982 0.986
Truss 22 851 0.970
Truss 24 1005 0.979
Truss 25 3.9 0.975
Truss 26 851 0.966
Truss 28 1005 0.983
Truss 29 3.9 0.975

F5 1005 0.986
F6 851 0.961

The reductions in the concrete compressive strength due to transverse tensile strains are shown
in Figure 5.26. It is observed that the compressive softening due to compression-tension inter-
action is located in the top wall and along the longitudinal reinforcement. The largest reductions
are found in the corners where the walls intersect.
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Figure 5.26: Reduction factor kc2 for load case 2 at load factor=1.00.

5.2.3 Comparison

All three analyses reach at least load factor of 1.00, where the analysis with linear tension
softening obtained the largest capacity while the analysis with Hordijk softening obtained the
smallest. Failure was located in the top wall for all three analyses.

Differences are observed between the two analyses from DIANA testing the tensile soften-
ing branch. When using a linear tensile softening based on ultimate crack strain, a higher load
factor is reached. Differences also occur in the crack patterns. The crack pattern in the analysis
using Hordijk softening (Figure 5.14) propagated more diagonally than in the analysis using
linear-ultimate crack strain softening (Figure 5.20). Moreover, wider cracks are in general ob-
served at load factor 1.00 when using the Hordijk softening. Lastly, the vertical cracks have
developed further along the longitudinal reinforcement in the model using Hordijk softening.

Both FEM-analyses give the highest utilization of the reinforcement between truss 13 and 24.
The analysis from IDEA StatiCa shows in general higher reinforcement stresses in the longitu-
dinal reinforcement.

Table 5.6 and Figure 5.26 show the difference in the reduction of the compressive strength
between the STM and the NLFEA, respectively. The largest reduction of compressive strength
in the NLFEA is obtained in the area of node 7 in the STM. Here, the NLFEA results in a larger
reduction of the compressive strength than the STM. Furthermore, the NLFEA gives a reduction
factor kc2 between 0.92−1.0 in the area around node 6 and 16. Multiplied with ηfc = 0.80, this
gives a total reduction factor of kc2 = 0.74 − 0.80. As these two nodes have one anchored tie
each, a reduction factor of 0.68 is used in the STM.
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5.3 Load Case 3: Opening Moment

5.3.1 Strut-and-Tie Model

The calculated STM for load case 3 is shown in Figure 5.27. In the bottom wall, reinforcement
is found to be necessary at the bottom left corner. Only two trusses are found in node 6, which
enforces them to be parallel and equal in force.

Figure 5.27: Resulting STM for load case 3.

Forces

The acting forces in the STM are given in Table 5.9. The largest tension force is found in truss
F5 while the largest compression force is located in truss F1. Thus, both the largest tension
force and compression force are found in the point loads representing the sectional forces.
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Table 5.9: Truss forces for load case 3.

Truss Number Force [kN
m

] Truss Number Force [kN
m

]
1 894.0 25 868.0
2 −448.4 26 741.5
4 −1392.6 28 763.5
5 894.0 29 868.0
6 −1342.4 30 −1264.3
8 −498.6 31 −1264.3
9 1598.7 32 −947.7
10 −1695.3 33 −261.4
12 −498.7 34 −363.5
14 −1695.3 35 −1227.5
16 −1724.4 36 −1227.5
17 257.0 F1 −2286.6
18 −1878.6 F2 445.6
20 −1467.4 F3 −2135.6
21 257 F4 −1210.4
22 1609.5 F5 1631.5
24 −104.5 F6 −126.5

Nodes

The necessary widths of the struts are shown in Figure 5.28. The figure shows that several struts
are placed such that their compression fields cover most of the available space. It is noted that
the struts along the top surface of the right hand side wall have very little space left for the
compression fields. The maximum allowable stresses in the nodes are shown in Table 5.10. It
is seen that node 6 and 7 have the largest allowable maximum concrete compressive strength.

Figure 5.28: Necessary widths of struts for load case 3.
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Table 5.10: Maximum allowable stress, σRd,max, in the nodes for load case 3.

kred σRd,max[
N

mm2 ]
Node 1 0.6 34.80
Node 2 0.68 39.44
Node 3 0.68 39.44
Node 4 0.68 39.44
Node 5 0.6 34.80
Node 6 0.8 46.40
Node 7 0.8 46.40
Node 8 0.68 39.44
Node 9 0.68 39.44

Node 10 0.68 39.44
Node 11 0.68 39.44
Node 12 0.6 34.80
Node 13 0.6 34.80
Node 14 0.6 34.80
Node 15 0.6 34.80
Node 16 0.68 39.44

Reinforcement

The necessary reinforcement for the ties are shown in Table 5.11. Significantly larger amounts
of shear reinforcement is needed for the top and left walls compared to the right hand side wall.

Table 5.11: Necessary reinforcement in ties for load case 3.

Reinforcement amount [mm2

m
]

Truss 1 1788
Truss 5 1788
Truss 9 3197

Truss 17 514
Truss 21 514
Truss 22 3219
Truss 25 1736
Truss 26 1483
Truss 28 1527
Truss 29 1736

F2 891
F5 3263
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5.3.2 Nonlinear Finite Element Analysis

DIANA

Figure 5.29 shows the load-displacement curve obtained for load case 3. The horizontal dis-
placement of the middle node of the top edge is used. The maximum obtained load factor is
0.631. The two limit points reached at load increment 18 and 19 are highlighted, where the
load factors are 0.540 and 0.494 (respectively). The vertical cracks at these two increments
are shown in Figure 5.30a and Figure 5.30b. An increased cracked area along the longitudinal
reinforcement along the left surface of the top wall is observed. Also, the cracking along the
top loading edge is observed at these two limit points. Finally, the figures show a developing
diagonal crack in the top wall between the two limit points.
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Figure 5.29: Load-displacement curve for load case 3 with limit points and ultimate load.

(a) Load increment 18 (b) Load increment 19

Figure 5.30: Vertical crack widths for the two highlighted limits points at load case 3.
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Figure 5.31 shows the reinforcement stresses obtained at at load factor=0.631. The reinforce-
ment is in general observed to be far from fully utilized. The highest utilization of the shear
reinforcement is found in the top wall.

Figure 5.31: The reinforcement stress for load case 3. Load factor=0.631.

The maximal principal strains, ε1 at failure are shown in Figure 5.32. The majority of the ten-
sion softening is located in the top wall, where strains past the ultimate strain εu = 0.00546 is
observed. The bottom wall experiences in general maximum principal strains in the elastic area
of the tension curve. An area with negative maximum principal strains are observed below the
corner between the top wall and right hand side wall.
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Figure 5.32: The maximum principal strain, ε1, for load case 3. Load factor=0.631.

The in-plane principal stress components are shown in Figure 5.33. Here, the largest compres-
sive stress is observed in the corner between the top wall and the right wall with a value of σ2 =

−21.7 N
mm2 . The corresponding minimum compressive strain in this area is ε2 = −6.03 · 10−4.
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Figure 5.33: The in-plane principal stress components, for load case 3. Load factor=0.631.

Figure 5.34a shows the development of cracks in the D-region. The figure shows substantial
cracking in the top wall, with both diagonal cracks and cracking along the major length of the
longitudinal reinforcement. Also, the cross section is cracked along the top edge where loads
are applied. This is also observed along the left edge, but not as extensive.

(a) Vertical crack widths (b) Crack strains

Figure 5.34: Cracking for load case 3 at load factor=0.631.
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IDEA StatiCa

Figure 5.35a and Figure 5.35b show the stresses obtained in the concrete and reinforcement,
respectively. A check of the compressive strains show a maximum value of ε2 = −9.5 · 10−4 is
reached, which is less than the ultimate compression strain εcu2 defined by Eurocode 2 [4]. The
ultimate load factor obtained is 1.08. It is observed that the reinforcement replicating truss 26
is the source of failure.

(a) Concrete principal stress (b) Reinforcement stress

Figure 5.35: Concrete and reinforcement stresses obtained for load case 3 at load factor=1.00.

Table 5.12: Reinforcement amounts for load case 3 in IDEA StatiCa.

Reinforcement amount [mm2

m
] Fraction of calculated reinforcement in STM

Truss 1 1732 0.969
Truss 5 1732 0.969
Truss 9 3186 1.00
Truss 17 509 1.01
Truss 21 509 1.01
Truss 22 3186 0.990
Truss 25 1718 0.990
Truss 26 1473 1.01
Truss 28 1521 1.00
Truss 29 1718 0.990

F2 884 0.992
F5 3186 0.976

Figure 5.36 shows the reduction factors kc2 for the concrete compressive strength. The most
significant reductions are observed in the top wall, where the concrete compressive strength is
at most reduced by 65.6% (1− 0.8 · 0.43).
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Figure 5.36: Reduction factor kc2 for load case 3 at load factor=1.00.

5.3.3 Comparison

The highest capacity was obtained in IDEA StatiCa with a load factor 1.08. In contrast, the
analysis run in DIANA resulted in a load factor 0.631 << 1.00. Thus, the two analyses give a
capacity on each side of the capacity obtained with the STM. A comparison of the two analyses
show a substantially higher utilization of both concrete strength and reinforcement in the IDEA
StatiCa analysis (at load factor 1.00). The analysis in IDEA Statica also showed the largest
compressive strain (ε2 = −9.50 · 10−4 vs. ε2 = −6.03 · 10−4). Both these strains are located in
the corner between the top wall and the right hands side wall.

The reduction factors obtained from the STM and NLFEA are shown in Table 5.10 and Fig-
ure 5.36, respectively. In the top wall, a larger reduction is observed in the NLFEA. For in-
stance, the largest reduction in the NLFEA is located around node 15 of the STM, where the
stress is reduced by a factor of 0.60.
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Chapter 6

Discussion

6.1 Discussion of Results

6.1.1 Numerical Model

As the analyses in DIANA have been allowed to continue if convergence is not satisfied af-
ter 100 iterations, the convergence history should be assessed. This is necessary as a poorly
satisfied convergence criterion might lead to an inaccurate solution. When studying the three
presented load-displacement curves with capacity ≥ 1.00 obtained from the DIANA analyses,
it is observed that apart from load case 2 with Hordijk softening, converged steps are reached
at load factors > 1.00. In the analysis of load case 2 with Hordijk softening, the last con-
verged step is one step before load factor 1.00 is reached and two before the ultimate load. At
both these steps, the energy criterion is closest to convergence with relative energy variations
of 1.894 · 10−3 and 1.506 · 10−3. The analyses were run with a combined criterion of force and
energy, where the analyses consider the steps as converged if both are satisfied. However, in
the post-processing, any step where at least one criterion was satisfied has been considered con-
verged. This is done as it was observed several times that the energy criterion was satisfied at an
iteration where the force criterion still was significantly far from being converged. According
to Cook [13], the force criterion may in some cases be difficult to satisfy because of local force
imbalances not affecting the structural response significantly. By running the analyses past a
satisfied energy criterion, a reduction of the imbalance in forces may be achieved.

When studying the load-displacement curves of the executed analyses, it is evident that the
use of an arc-length method is necessary. In all four load-displacement curves presented, the
D-region experiences snap-throughs. After the snap-throughs highlighted (by the limit points)
in each load-displacement curve, the tangent stiffness of the response changes. This effect is
most visible for load case 2 with Hordijk tensile softening, shown in Figure 5.13. The snap-
through is followed by a significant drop in the tangent stiffness, where the post-peak tangent
stiffness is found to be KT,post ≈ KT,pre

18
. Crack development and a redistribution of stresses are

also observed between the two limit points.

An important part of the analyses is the application of the loads to the edges of the D-region.
In the analyses executed in DIANA, the axial force was applied as a distributed force, while the
shear force and moment were applied as concentrated loads in the middle nodes. When using
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concentrated loads for application of loads, one may experience notable stresses concentrated
around the loaded node. This may result in numerical failure before the analysis reaches the
ultimate load [7]. When studying the principal stress plots from the three load cases, no such
concentrations of stresses are observed at the loaded nodes. Thus, this should not be the reason
for the early failure of the DIANA analysis of load case 3.

Another key aspect of the load application is the response of the edges where the loads are ap-
plied. While IDEA StatiCa has a built-in possibility of adding sectional forces to the D-region
by the use of a St.Venant transfer zone, this had to be done manually in DIANA by enforcing the
edges to remain straight. The normalized deformation plots of the load cases suggest that the
bending stiffness is sufficiently high in order to fulfill this constraint. In addition, a relatively
small axial stiffness is desired in order to not excessively constrain the transverse displacement
along the edges. The normalized displacement for load case 3 in Figure 5.30 may indicate that
the top edge is to certain degree constrained transversely.

A point of interest concerning the load application is the observed cracking along the edges.
This is present in both load cases 2 and 3 at the ultimate load factor, although most significant
in the latter load case. In addition, this is also observed at the highlighted limit points for load
case 3 (Figure 5.34), where the load factor is around 0.5. This cracking along the edges at the
observed load factors may influence the response of the D-region and possibly be coupled to
the early failure.

6.1.2 Concrete Material Model

The compressive behavior of the concrete is a crucial aspect of the material model. The two
different compression curves tested in this report are shown in Figure 6.1 along with the dif-
ference in stress in the domain ε ∈ [0,−0.00891]. This domain is based on the observed
compression strains in the IDEA StatiCa analysis of load case 1, as it experienced the largest
compressive strains. The parabola-rectangular compression curve from Eurocode 2 [4], which is
implemented in IDEA StatiCa, shows a slightly steeper curve towards its compressive strength
ηfc · fc = −46.4 N

mm2 . Where the parabola-rectangular curve reaches its maximum compres-
sive strength at a strain of ηfc · εc2 = −0.0016, the extrema of the parabolic curve is located
at a strain of αc = −0.0026. At most, the difference between the two curves in favor of the
parabola-rectangular curve is ∆fc = −6.0 N

mm
. Isolated, this difference in concrete strength may

allow for a stiffer response. However, the comparison of the two compression curves shows that
after a strain of ε = −0.0014, the parabolic curve results in a larger compressive strength. Thus,
which of the two compression curves that gives the stiffest response, depends on what magni-
tude of compressive strains is present in the concrete.
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Figure 6.1: Parabolic and parabola-rectangular compression diagrams. Both calculated for concrete
class C50/60.

The three NLFEAs of load case 2 show three different values of the largest compressive strains
obtained. Where the DIANA analyses with Hordijk and linear tension softening obtained com-
pressive strains of ε2 = −9.4 · 10−4 and ε2 = −8.8 · 10−4, respectively, the analysis in IDEA
StatiCa only reached a compressive strain of ε2 = −5.5 · 10−4. These strains are found in the
domain where the compressive strength of the parabolic-rectangular curve is larger than what is
obtained with the parabolic curve. Of the three compressive strains assessed, the one obtained
from IDEA StatiCa is located at the largest difference between the two curves. For this strain,
the parabolic-rectangular curve results in a stress which is ∆fc = −5.9 N

mm2 larger. This may
be one of the reasons for smaller compression strains obtained in the IDEA StatiCa analysis.
However, because of the differences in compressive strains observed in the two DIANA analy-
ses, the difference in the two compression curves can not be the only reason for the differences
in the observed compressive strains.

Another, more obvious difference between the two compressive curves is the softening branch.
While the parabolic curve assumes a softening of the compressive behavior after the compres-
sive strength, fcm, is reached, no softening is included in the parabola-rectangular curve. This
is taken into account in IDEA StatiCa by reducing the compressive strength, which for concrete
class C50/60 is done with a reduction factor of ηfc = 0.80. Thus, as observed in Figure 6.1, the
softening branch of the parabolic curve produces stresses above the parabola-rectangular curve
for the compressive strains observed in all three load cases.

The NLFEAs of load case 1 are the only two analyses which shows compressive strains be-
yond what is needed for the maximum compressive strength. As already stated, failure was
reached before maximum compressive strength in the two other load cases. In the analysis of
load case 1 in IDEA StatiCa, failure was observed to be caused by concrete failure in the corner
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between the top and left wall where a compressive strain of ε2 = −0.00891 was observed. In
the DIANA analysis of the same load case, a compressive strain of ε2 = −3.93 · 10−3 was
obtained in the same area of the D-region. This peak compressive strain was obtained after the
ultimate load factor was reached. With these results, the analysis run in IDEA StatiCa reaches
a higher load factor despite the fact that it uses a compression curve with a lower compressive
stress for large parts of the observed compressive strain domain.

When attempting to model the concrete behavior, it is critical to assess the interaction between
tension and compression. As compressive capacity of concrete is reduced when it experiences
lateral cracking, it is important to include this effect in a numerical model. The analyses run in
IDEA StatiCa show significant reductions in compressive strength for parts of the D-region in
all three load cases. For instance, the analysis of load case 3 results in a minimum reduction
factor of kc2 = 0.43. Although this reduction is not observed at a location with considerable
compressive stresses, significant reductions are also observed in the middle of the top wall
where the shear forces produce compressive stresses of notable size. Load case 1, which was
the only analysis (from IDEA StatiCa) where concrete failure was observed, shows no reduction
in concrete strength due to transverse tension at the location of failure.

The two DIANA analyses of load case 2 show the importance of the modeling of the tensile
behavior. By using a linear tensile softening curve with an ultimate strain of εu = 0.0025, a
load factor of 1.15 is obtained compared to 1.00 with Hordijk softening. Furthermore, the ef-
fects of the tensile behavior are also observed in the utilization of reinforcement and the crack
patterns. While yielding is reached with Hordijk softening, a reinforcement utilization above
80% is barely observed with the linear tensile softening at load factor 1.00. In contrast, a no-
table amount of the reinforcement is utilized above 80% with the Hordijk softening. In line
with the differences in reinforcement utilization, a significantly more developed crack pattern
is observed when using Hordijk softening (comparing at load factor 1.00). The two different
approaches for the tensile softening are compared in Figure 6.2. For the Hordijk softening curve
in the figure, an equivalent length of 25mm is used.

While the linear tensile softening is defined such that it reaches fully open cracks (no concrete
tensile contribution) at the yielding of the reinforcement (εu = 0.0025), the Hordijk softening
shows a contribution to about double this strain (εu = 0.00546). However, when considering
the area under the curves, the linear softening (0.0049 N

mm2 ) shows a larger contribution to the
tensile strength than the Hordijk softening (0.0042 N

mm2 ). As a smeared crack model has been
used, the area under a mesh dependent softening branch changes with the crack band width.
With only the Hordijk softening being mesh dependent, the difference between the two soften-
ing branches will vary along with the crack band width.
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Figure 6.2: Hordijk and linear ultimate crack strain tensile softening.

Another difference between the two tensile softening curves is the initial curvature of the soft-
ening curves. With an equivalent length of heq = 25mm, the Hordijk softening shows an initial
slope which is ≈ 3.3 times as steep as the linear softening. According to Dutch guidelines [7],
exponential-type softening curves are a preferred choice as they will give more localized cracks
[7]. An indication of this may be seen when comparing the model with Hordijk softening in
Figure 5.18a to the model with linear softening in Figure 5.24a.

When comparing the maximum strain plots for the two DIANA analyses of load case 2, it
is observed that large parts of the D-region experiences maximum principal strains in the linear-
elastic area of the tension curve for both of the analyses. That being said, the model using
Hordijk softening experiences significantly more tension softening compared to the model using
linear tensile softening. This difference is especially located along the longitudinal reinforce-
ment at the right side of the top wall and is consistent with the difference observed in the crack
width plots. The linear softening also results in less softening than the Hordijk softening at the
bottom middle of the D-region, although this difference is not as significant. These strains are
located in the area where both analyses show the largest compression forces. The positive max-
imum principal strains may result in a strength reduction when using the tension-compression
relationship by Vecchio and Collins (1993) [18]. Equation 2.12 and Equation 2.13 show that a
reduction of the compressive strength is obtained when αlat

ε0
> 0.37. As the maximum principal

strains observed in the area of maximum compression is below ε1 = 10−3, no reduction in
compressive strength appears at the locations of the largest compressive strains.

A difference in reinforcement utilization is observed for load case 2 when comparing the two
analyses from DIANA with the analysis from IDEA StatiCa. The latter analysis shows a much
higher utilization of the reinforcement. This can be expected as in this analysis, concrete tensile
strength is neglected apart from its stiffening effect on the reinforcement [9]. The higher ultiliza-
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tion of reinforcement in the analysis from IDEA StatiCa suggests that the tension stiffening in
this analysis contributes less than the tension curves used in DIANA. With less contribution
from the concrete, the reinforcement has to carry more of the load.

An important aspect of the material model is the determination of the crack band width. In
all Diana-analyses, an automatic determination of the crack band width has been used by ap-
plying Govindjees projection method [21]. As quadratic elements (25× 25mm) has been used,
an estimation of the crack band width of a cracked element may vary between the length of the
sides, h, and the length of the diagonal,

√
2 · h. For both the tensile and compressive behavior,

mesh dependent softening branches have been used in the base models for the DIANA analyses.
In other words, the curves depend on the crack band width as a smeared crack model has been
applied. Figure 6.3a shows the Hordijk softening curves for the tensile behavior for the two val-
ues of the crack band width. The effect of the crack band width on the compressive behavior,
using a parabolic compression curve, is shown in Figure 6.3b.
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Figure 6.3: Effect of crack band width on softening branches

As the area under the softening branches are defined as G/heq, a crack band width of heq =

25mm will result in an area which is (
√

2− 1) ·100% = 41% larger. This underlines the impor-
tance of an accurate calculation of the crack band width. If automatic evaluation of the crack
band width is not possible, a conservative approach would be to use heq =

√
2 ·h [7]. However,

if the goal is to obtain a mean estimate of the concrete capacity, an automatic evaluation is pre-
ferred as crack directions will vary throughout the D-region. The variation of crack directions
is evident in for instance Figure 5.34b.

Comparing the linear tensile softening used in load case 2 with the two Hordijk softening
branches in Figure 6.3a, shows that the difference between the two types of softening increases
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with the crack band width. This may be one of the reasons for the different crack patterns re-
sulting from the two tension softening branches. Cracks are observed to form more diagonally
in the model using Hordijk softening, producing a larger value of the crack band width.

The choice between using a rotating or fixed total strain crack model may influence the response
of the numerical model. As stated in subsection 2.2.1, a fixed crack model may overestimate
the capacity if significant rotation of stresses from their initial directions is present in the model.
Such rotations of stresses are observed in the model from load case 2. The vertical crack strain
tensors along the longitudinal reinforcement in Figure 5.18b are observed to appear as horizon-
tal at earlier load increments, which means that they experience significant rotation. Thus, if a
fixed crack model had been applied instead of the rotating model, this area may have experi-
enced stress locking resulting in an overestimation of the capacity.

6.1.3 Strut-and-Tie Models

A crucial aspect of Strut-and-tie modeling is the maximum allowable stress, σRd,max, in the
compression fields represented by the struts. As already stated, the compressive behavior of
concrete is reduced when lateral cracking is present. The presence of lateral cracking may vary
along the length of a strut, which means that in order to remain conservative, a sufficient reduc-
tion has to be made for the entire strut. For instance, if a compression field is formed as ”the
bottle”-type mentioned in subsection 3.5.1, transverse reinforcement across the compression
field should be unnecessary when using Equation 3.2 for σRd,max. The capacity control of the
nodes according to Eurocode 2 clause 6.5.4(4) also takes the presence of tensile stresses into
account. Here, the reductions are determined by the number of ties anchored in the considered
node.

In order to find an explanation of the early failure of the DIANA analysis of load case 3, the pos-
sibility of insufficient reductions of the compressive stresses has to be taken into account. When
looking at the compression fields in Figure 5.28 loaded with the maximum allowable stresses,
it is seen that several of these have very little space left in the case of an insufficient strength re-
duction. However, when comparing the maximum allowable stresses in the nodes (Table 5.10)
to the in-plane principal stress components from the NLFEA, it is seen that σRd,max in the STM
is far from being exceeded at the ultimate load factor. In addition, no compression fields depict-
ing the ”bottle”-field are observed.

It is also interesting to study this area of the D-region for load case 3 in the plot of the maxi-
mum principal strain in Figure 5.32. The compressive strength reduction applied in the DIANA
analysis (Vecchio and Collins, 1993 [18]) uses the relationship between the lateral tensile strain
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αlat and the peak compressive strain ε0 in order to calculate the necessary strength reduction.
Comparing the maximum principal strain plot with the compression fields of the STM in Fig-
ure 5.28 shows that principal strains > 0 in the elastic area are present along most of the struts
in the bottom wall. However, the most critical struts, in terms of utilization of the available
space, are observed to be located in the most stressed areas of Figure 5.33, resulting in small or
none reductions. As the strength in all compression fields of the STM are at least reduced with
ν = 0.8 (for brittle behavior), the NLFEA should not suffer from insufficient strength reduc-
tions in these areas.

When studying the compressive stresses in the NLFEAs of load case 1 with the struts in the
corresponding STM, it is observed that the largest compressive stresses obtained are very close
to what the STM allows in this area. The DIANA and IDEA StatiCa analyses show stresses
of −45.8 N

mm
and −46.3 N

mm
, respectively, which is just below what is used as σRd,max in node

5 in the STM (σRd,max = 46.4 N
mm

). These small differences are interesting as the two struts
(truss 8 & 22) which are placed in this area have enough space to produce compressive stresses
lower than what is observed. Although truss 8 only have enough space to produce a stress equal
to the σRd,max found in node 4 (σRd,max = −39.44 N

mm
), truss 22 should be able to produce

stresses far below what is observed. A possible explanation for this may be that the forces have
found another load path than what is proposed by the STM. If so, an STM representing this
load path would have produced a lower strain energy in Equation 3.1. As the lengths of the
trusses are included in the strain energy equation, an STM assuming a short load path through
the D-region is preferred. This is in line with Schlaich et al. [12] who states that the forces will
typically find the shortest way through the D-region. This is also one of the principles of the
load path method. When comparing the STM in Figure 5.1 with the stress flow in Figure 5.7,
resemblance is found to a certain extent. This suggests that the STMs in general represent the
load paths obtained in the NLFEAs although more optimal models most likely exist.

In the NLFEAs from load case 2, the area most exposed to compressive stresses is found to
be on the bottom middle of the D-region. When comparing with the STM, it is found that the
strut in this area (nr. 10) has a maximum allowable stress of σRd,max = −39.44 and virtually no
available space left beyond what is already covered by the compression field. The large com-
pressive stresses obtained in this area of the NLFEAs are in line with what is predicted of the
STM. However, as seen throughout the D-region, the NLFEAs produce compressive stresses
which are below the maximum allowed stresses used in the STMs.

As stated in section 3.3, the expected deformation of the struts has to be limited in order for
the STM to be dimensioned according to the lower bound theorem of plasticity. As already
stated, the principal stress plots from the NLFEAs show stress flows resembling the directions
of the compression fields in the STMs to a certain degree. This suggests that unrealistic STMs
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and therefore also too high deformation capacities have not been assumed in the STMs.

6.2 Estimation of Actual Capacity

When comparing the two modeling approaches’ ability to estimate the actual capacity of a D-
region, it is important to look at their respective reductions in concrete strength due to transverse
tension. As stated by Schlaich et al. [12], the compressive strength depends significantly on the
stress state and the degree of disturbances from reinforcement and cracks. In the analyses from
IDEA StatiCa, the reduction factors for the compression softening are given as output. Compar-
ing these to the ones used in the nodes of the STMs shows that neither of the two consistently
produces more conservative reductions than the other. In the analyses of load case 1, it is ob-
served that IDEA StatiCa reduces the compressive strength less than in the STM. For instance,
in node 7 of the STM, the compressive strength is reduced by the factor 0.75ν ′ as it consists
of two ties. Looking at the same area in the NLFEA, a reduction factor ≥ 0.83ηfc is observed
(ν ′ = ηfc = 0.80 for C50/60). Meanwhile, the largest reduction observed in the NLFEA is
found to be 0.59ηfc , which is lower than what is recommended for any of the nodes when di-
mensioning according to Eurocode 2.

Whereas the NLFEAs can use compressive strength reduction models based on the degree of
transverse tensile stresses, the nodal check in Eurocode 2 6.5.4(4) uses the number of anchored
ties in the nodes in order to determine the strength reduction. With the latter approach, the same
reduction in stress will be used in two nodes with the same number of anchored ties, regardless
of any difference in tension forces in the ties. For instance, the nodes containing the shear ties
in the bottom wall of the STM from load case 1 are applied the same compressive strength
reductions even though the acting shear forces the left hand side is much larger than what is
applied on the right hand side. In terms of the ability to model a realistic reduction in stress,
the approach used in the NLFEAs is more favorable. This is because it takes into account the
magnitude the compressive and/or tensile strains in the concrete, whereas the reductions for
the nodes in the STMs are determined solely on the number of ties. That being said, the latter
approach is much more practical to apply in the used Matlab code. This also applies when com-
paring the reductions proposed by Eurocode 2 to the reductions presented by Schlaich et al [12]
in Table 3.1. Using reductions only based on the number of ties is much easier implemented in
an automated process, such as in the Matlab code, compared to reductions based on the degree
of cracking in the concrete.

When looking at the maximum capacities obtained in the NLFEAs, it is seen that five out of the
seven analyses showed a larger capacity, one reached a load factor of 1.00 while the last only
reached 0.631. Thus, the STMs produce capacities which in general are on the conservative
side compared to the FEM-analyses. Regarding the one NLFEA showing insufficient capacity,
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several possible sources for the early failure have been discussed. The problems do not stem
from the concrete or reinforcement strength as neither concrete crushing nor reinforcement rup-
ture is observed at the ultimate load factor. Some cracking is observed at the top edge where
loads are applied which may affect the response of the analysis. However, the early failure is be
blamed on the arc-length procedure inducing a premature unloading. This argument is substan-
tiated by the notable difference between the two NLFEAs of the considered load case. Here,
a difference of 0.449 is observed between the load factors of the two analyses. In comparison,
the differences between the NLFEAs of the two other load cases are 0.08 and 0.02.

The STMs in this thesis have been chosen with regards to a minimum strain energy criterion
(Equation 3.1) from a pool of up to eight STMs (several discarded because of lack of equi-
librium or need for inclined reinforcement). While the tension forces are more constrained to
follow the reinforcement, the compression forces are more free to choose other load paths. As
already stated, loads will typically find the shortest way through the structure. As a limited set
of trusses has been considered for the STMs, the most optimal STM for the D-region has most
likely not been taken into account. Looking at the obtained stress fields in the NLFEAs reveals
a resemblance to the compression fields obtained in the STMs. This suggests that the STMs
considered are able to predict the stress flow to a certain degree. Out of the three load cases,
the most resemblance is observed in load case 2. This is also the load case which displays the
smallest difference in ultimate capacity between the STM and the NLFEAs (ignoring the anal-
ysis with linear tension softening).

An aspect of the concrete behavior not assessed in the FEM-analyses is the compression-
compression interaction. If accurate, rather than conservative, results is the goal of the NLFEA,
this is important to include in the material model [7]. With a compression-compression interac-
tion, the strength of the concrete will increase. The plots of the maximum principal strain, ε1,
for the three load cases show some areas with compression-compression interaction, although
most of the D-regions experience ε1 > 0. Load case 1, where failure was caused by insufficient
concrete strength, experiences compression-compression interaction in the area most exposed
to compressive stress. Thus, including confinement effects here may result in a higher capac-
ity. This applies to load case 3 as well, as also here compression-compression interaction is
observed in the area most exposed to compressive stresses.

The compression-compression interaction can also be taken into account in the strut-and-tie
models. Clause 6.5.2(1) of Eurocode 2 [4] states that compression fields with transverse com-
pression or without transverse tension can be allowed a stress of σRd,max = fcd. Further, 6.5.4(4)
allows for an increase of up to 10% of the dimensioning compression strength if one or more
of the stated criteria are fulfilled. One of these criteria is a triaxial compressive stress state. In
the case of a three dimensional stress state, which has not been covered in this thesis, this is an
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aspect which should be considered in order to increase the accuracy of the solution. However,
ignoring the allowable strength increase is a conservative approach.

When aiming for mean estimates of the capacity of reinforced concrete, it is also important
to model the steel behavior accurately. In the NLFEAs, the material behavior of the reinforce-
ment steel has been modeled using an elastic ideal plastic material model. In reality, this is a
conservative approach as steel will experience work-hardening after reaching the yield stress.
An approach to model the work-hardening is to use a bi-linear diagram [7]. This is also pro-
vided in Eurocode 2, clause 3.2.7(2) [4].

Although the reinforcement contributes significantly more to the tensile strength of the rein-
forced concrete, it is observed in the NLFEAs that the modeling of tensile behavior of the con-
crete is important as well. For instance, the two DIANA analyses of load case 2 show a notable
difference (∆ = 0.15) in ultimate load factor when changing the tensile softening behavior.
The importance of the tensile behavior of concrete can also be observed when comparing these
two analyses with the one from IDEA StatiCa. In the latter, a much higher utilization of the
reinforcement is observed, suggesting that the tension stiffening effect from the concrete in this
analysis contributes less.

It is also relevant to assess the accuracy and the modeling choices of the Matlab codes in terms
of the STMs. As already stated, the limited number of possible STMs results in the final STM
most likely overestimating the necessary reinforcement. Another point which limits the load
path of the STM is the restriction from rotation of some of the struts. If all were allowed to ro-
tate freely through the iteration process, more optimal models may have been found. However,
this requires a more complicated Matlab code in terms of calculations and restricting STMs
exceeding the deformation limit of the struts. Also, this would result in a longer computational
time for the code as larger differences in the force distribution would be expected between the
geometric optimizations as more nodes are moved. Even though this difference in time would
most likely be negligible for the three load cases, where the used time is 0.1-0.2 seconds, the
effect could be significant for a large number of load cases.
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Chapter 7

Conclusion

In this thesis, strut-and-tie modeling and NLFEA have been compared. Three load cases have
been tested for both methods. The strut-and-tie models have been made and calculated in an
attached Matlab code, while the NLFEA has been executed by the use of two softwares, namely
DIANA and IDEA StatiCa.

The Matlab code generated STMs which utilized the height of the cross sections such that the
moment arm between the trusses were maximized with respect to the limitations of the code.
The total time used of the Matlab code for all three load cases was 0.1-0.2 seconds in total.

The three calculated STMs have been tested in both DIANA and IDEA StatiCa, with four
analyses in the former software and three in the latter. The reason for the extra analysis in DI-
ANA was the desire of testing additional tension softening curve to see the effect of the tension
softening. Of these seven analyses, five reached a capacity larger than the STMs, one reached
a capacity equal to its STM and the final only got to a load factor of 0.631. In the first load
case, the load factors obtained were 1.18 for the DIANA analysis and 1.26 for the analysis from
IDEA StatiCa. In both, failure was caused by lack of concrete strength. Reduction in compres-
sive strength due to transverse tension in the location of failure showed to be equal to what was
used in the STM. In addition, both NLFEAs gave compressive stresses about equal to the STM
in this area. The largest reinforcement utilization was predicted in the same ties of the STM
for both analyses, but the reinforcement in multiple ties still have a notable capacity left at load
factor 1.00.

The second load case was tested with two different tension softening models in DIANA in
addition to the IDEA StatiCa analysis. Out of the two DIANA analyses, the largest capacity
was obtained with linear tension softening defined by ultimate strain. A load factor of 1.15 was
reached with this tension softening. The analysis using Hordijk softening reached a load fac-
tor of 1.00. The two softening models produced different crack patterns and the latter analysis
showed significantly more cracking along the longitudinal reinforcement when comparing the
results at load factor=1.00. Both analyses experienced failure by the sudden propagation of a
crack transverse to the length of the top wall. A load factor of 1.02 was obtained in the analysis
from IDEA StatiCa. Failure was here observed to be caused by a lack of capacity in the longi-
tudinal reinforcement in the top wall. The analysis from IDEA StatiCa showed a reinforcement
utilization significantly larger than what was observed in the DIANA analyses.
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The DIANA analysis of the third load case was the only FEM-analysis which did not reach
a sufficient capacity with the reinforcement layout from the STM. A load factor of 0.631 was
obtained. Unexpected cracks were observed along the entire top edge of the D-region where
loads are applied. The NLFEA from IDEA StatiCa reached failure at load factor 1.08, where
reinforcement rupture was reached. In the DIANA analysis, neither reinforcement rupture nor
concrete crushing was observed. It was argued that the early failure of the analysis is caused by
the arc-length procedure resulting in a premature unloading. This statement has been supported
by the large difference in ultimate load factor between the two NLFEAs of the load case.

The importance of stress reductions due to transverse tensile strains has been discussed. A
comparison of the STMs and the analyses from IDEA StatiCa shows that neither produces
reductions which consistently are more conservative than the other. However, nodes with sig-
nificant compressive forces in the STM show larger reductions in compressive strength than
what was obtained in the analyses from IDEA StatiCa.

The results suggest that strut-and-tie modeling produces results on the conservative side of
NLFEA. In terms of the NLFEA being able to produce mean estimates, the need for a correctly
modeled concrete behavior has been emphasized. Accurate material models of the concrete and
reinforcement combined with a good numerical model is necessary. With this in place, it is sug-
gested that the NLFEA will produce the most accurate results. However, for a large number of
load cases, running an NLFEA on all load cases might prove to be cumbersome. As the Matlab
code produces models which are relatively close to the NLFEAs, the code could for instance be
used in a preliminary analysis where governing load cases for the D-region are found.
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Chapter 8

Further Work

Extend the code to include external loads

External loads are important to consider when present in the D-region. This could be solved
by load lumping into the nodes. It is important that the resultant of any distributed load is un-
changed when lumping the forces into the nodes.

Compare the two modeling approaches to more load cases

The strut-and-tie models produced by the Matlab code are shown to in general be on the con-
servative side of the nonlinear finite element analyses. Testing a large number of different load
cases will of course give a better picture of the ability of the Matlab code, but the number of
load cases had to be limited because of time.

Study the effect of including compression-compression interaction in the NLFEAs

As stated, a compression-compression interaction in the concrete would in reality result in a
higher concrete strength in the affected area. Ignoring the effects is conservative, but in order
to model the concrete behavior closest to reality, this should be considered. A study of these
effects could be performed with a load case exposing the top wall to a dominating compression
force.
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Appendix A

Strut Width Calculations

In the following, the calculations behind the widths of the compression fields in the STMs
are presented. The similarity of several nodes are utilized such that an individual calculation
for every of the 16 nodes is not necessary. Instead, the calculation of each ”type” of node
is presented followed by a table showing how to switch the parameters in order to obtain the
equations for other nodes of the same type. The nodes presented with calculations are node 2,
4, 5, 12, and 16. In the figures, the nodal zones are marked with green lines, while the end of
the compression fields of struts are drawn with blue lines. The trusses and the necessary widths
are drawn with black lines. The numbering of the trusses are placed at the location where
the trusses are exiting the nodal zones. For each truss, there may be more than one possible
limit of the width of the compression field. Which of the limits that are used is decided by
the necessary width of the neighboring compression fields. The notations for the widths are
wi,j , where subscript i is the truss number and subscript j distinguishes between the different
possible limits of the maximum width.

Node 2

Figure A.1 shows the geometry of nodal zone 2 and the trusses within the node.

Figure A.1: Node 2.

Maximum allowed widths of struts

wF1 = 2a1 (A.1)

w30,1 = sin
π

4
·

(
l1 −

w1

tan π
4

)
(A.2)
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Figure A.2: Maximum width of truss 30

w30,2 = sin
π

4
·

(
l1 −

w4

tan π
4

)
(A.3)

Figure A.3: Maximum width of truss 4

w4,1 = 2a1 (A.4)

w4,2 = tan
π

4
·

(
l1 −

w30

sin π
4

)
(A.5)

Change to similar nodes

Node 2 Node 1 Node 10 Node 11 Node 14 Node 15
Truss 1 Truss 1 Truss 21 Truss 21 Truss 25 Truss 25
Truss 30 Truss 3 Truss 34 Truss 19 Truss 27 Truss 36
Truss 4 Truss 2 Truss 18 Truss 20 Truss 28 Truss 26
F1 F2 F3 F4 F5 F6

a1 a2 a3 a4 a5 a6
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Node 4

The variables ani used in this node refers to the distance in z-direction from the surface to the
node.

Figure A.4: Node 4.

Angles

α1 = arccos
l1
l8

(A.6)

α2 = arctan
l1

l5 + an16 − an3
(A.7)

α3 = arccos
l5
l3

=
π

4
(A.8)

Maximum allowed widths of struts

Figure A.5: Maximum width of truss 4

w4,1 = 2 · a1 (A.9)

w4,2 = sin (
π

2
− α3)

(
l1

cos (π
2
− α3)

− w3

tan (π
2
− α3)

− w3 · tan (
π

2
− α3)

)
(A.10)

w4,3 = l5 (A.11)
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Figure A.6: Maximum width of truss 3

w3,1 = sin (
π

2
− α3)

(
l1 −

w4

tan (π
2
− α3)

)
(A.12)

w3,2 = sinα3

(
l5 −

w5

tanα3

)
(A.13)

(a) (b)

Figure A.7: Maximum width of truss 31

w31,1 = sinα2 ·
(
l5 −

w5

tanα2

)
(A.14)

w31,2 = sin (
π

2
− α2 + sign(an4 − an5) · α1)

·

(
l1

cosα1

− w8

tan (π
2
− α2 + sign(an4 − an5) · α1)

− sign(an4 − an5)

·w8 · tan (
π

2
− α2 + sign(an4 − an5) · α1)

) (A.15)

w8,1 =
2a1 − sign(an4 − an5) · l1 · tanα1

cosα1

(A.16)

The calculation of w8,2 is explained in more detail in the following. The method of calculating
this width is the same for struts in other nodes which also has the ability of rotating. The
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maximum width w8,2 has to take into account that truss 8 may rotate, and the method of finding
this maximum width is dependent on the direction of rotation. This is shown in Figure A.8.

Figure A.8: Finding the maximum width.

The width w8,4 in Figure A.8 can be written as:

w8,4 = tan (
π

2
− α2 − α1) ·

(
l1

cosα1

− w31

sin (π
2
− α2 − α1)

)
(A.17)

The width w8,2 in Figure A.8 can be written as:

w8,2 = tan (
π

2
− α2 + α1) ·

(
l1

cosα1

− w31

sin (π
2
− α2 + α1)

− w8,2 · tanα1

)
(A.18)

As w8,2 appears on both sides of the equation, it can be rewritten to:

w8,2 =
tan (π

2
− α2 + α1)

1 + tanα1 · tan (π
2
− α2 + α1)

·

(
l1

cosα1

− w31

sin (π
2
− α2 + α1)

)
(A.19)

It is possible to include the equation for w8,4 in the equation for w8,2 and thus reducing the
number of equations by one. First, the different sign of α1 is taken account for by multiplying
the angle with sign(an4 − an5). In addition to this, the second term in the denominator of the
first fraction in Equation A.19 is omitted for w8,4 by multiplying it with the true-false statement
(an4 > an5). These changes results in:

w8,2 =
tan (π

2
− α2 + sign(an4 − an5) · α1)

1 + tanα1 · tan (π
2
− α2 + α1) · (an4 > an5)

·

(
l1

cosα1

− w31

sin (π
2
− α2 + sign(an4 − an5) · α1)

) (A.20)
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w8,3 = cosα1 · (l5 + l1 · tanα1) (A.21)

Change to similar nodes

Node 4 Node 3 Node 8 Node 9
Truss 4 Truss 2 Truss 18 Truss 20
Truss 5 Truss 5 Truss 17 Truss 17
Truss 3 Truss 30 Truss 19 Truss 34

Truss 31 Truss 7 Truss 33 Truss 15
Truss 8 Truss 6 Truss 14 Truss 16
Truss 1 Truss 1 Truss 17 Truss 17
a1 a2 a3 a4
an4 an3 an8 an9
an5 an16 an6 an7
an3 an4 an9 an8
an16 an5 an7 an6

Node 5

Figure A.9: Node 5.

Angles

α2 = arctan
abs(an7 − an5)

l25
(A.22)

α3 = arctan
l25

l9 + an16 − an6
(A.23)

α4 = arccos
l212 + l223 − l224

2l12l23
(A.24)

α5 = arctan
abs(an4 − an5)

l1
(A.25)

α6 = arctan
l9 + an16 − an3

l7
(A.26)
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Maximum allowed widths of struts

w22 :

w22,1 = 2a6 (A.27)

w22,2 = tan (
π

2
− α4) · (l22 −

w23

sin π
2

) (A.28)

w22,3 = l25/2 (A.29)

w23 :

(a) (b)

Figure A.10: Maximum width of truss 23

w23,1 = sin (
π

2
− α4) · (l22 −

w22

tan (π
2
− α4)

) (A.30)

w23,2 = sin (α4 + sign(an7 − an5) · α2)

·( l25
cosα2

− w12

tan (α4 + sign(an7 − an5) · α2)
+ sign(an5 − an7) · w12 · tanα2)

(A.31)

w12 :

(a) (b)

Figure A.11: Maximum width of truss 12

w12,1 =
tan (α4 + sign(an7 − an5) · α2)

1 + tanα2 · tan (α4 + sign(an7 − an5) · α2) · (an7 > an5)

·
(

l25
cosα2

− w23

sin (α4 + sign(an7 − an5) · α2)

) (A.32)
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w12,2 =
tan (π

2
− α3 − sign(an7 − an5) · α2)

1 + tanα2 · tan (π
2
− α3 − sign(an7 − an5) · α2) · (an5 > an7)

·

(
l25

cosα2

− w11

sin (π
2
− α3 − sign(an7 − an5) · α2)

) (A.33)

w11 :

(a) (b)

Figure A.12: Maximum width of truss 11

w11,1 = sin (
π

2
− α3 − sign(an7 − an5) · α2)

·

(
l25

cosα2

− w12

tan (π
2
− α3 − sign(an7 − an5) · α2)

+ w12 · tanα2

)
(A.34)

w11,2 = sinα3(l9 −
w9

tanα3

) (A.35)

w9 :

Figure A.13: Maximum width of truss 9

w9,1 = tanα3(l9 −
w11

sinα3

) (A.36)

w9,2 = tanα6(l9 −
w7

sinα6

) (A.37)
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w7 :

(a) (b)

Figure A.14: Maximum width of truss 7

w7,1 = sinα4(l9 −
w9

tanα4

) (A.38)

w7,2 = sin (
π

2
− α4 − sign(an4 − an5) · α5)

·

(
l1

cosα5

− w8

tan (π
2
− α4 − sign(an4 − an5) · α5)

+ sign(an4 − an5) · w8 · tanα5

)
(A.39)

w8 :

(a) (b)

Figure A.15: Maximum width of truss 8

w8,1 =
tan (π

2
− α6 − sign(an4 − an5) · α5)

1 + tanα5 · tan (π
2
− α6 − sign(an4 − an5) · α5) · (an5 > an4)

·

(
l1

cosα5

− w7

sin (π
2
− α6 − sign(an4 − an5) · α5)

) (A.40)

91



w8,2 = (2a1 + 2a6 tanα5) cosα5 · (an4 > an5) + (2a1 − l1 tanα5) · (an5 > an4) (A.41)

w8,3 = cosα5(l9 + l1 · tanα5) (A.42)

Change to similar nodes

Node 5 Node 7
Truss 22 Truss 24
Truss 24 Truss 22
Truss 23 Truss 35
Truss 12 Truss 12
Truss 11 Truss 32
Truss 9 Truss 13
Truss 7 Truss 33
Truss 8 Truss 16
Truss 1 Truss 17

Truss 25 Truss 25
a6 a5
a1 a4
an5 an7
an7 an5
an6 an16
an16 an6
an3 an8
an4 an9

Node 12

Figure A.16: Node 12.

92



Angles

α1 = arctan
l25

l22 + an5 − an7
(A.43)

α2 = arccos
l26
l27

(A.44)

Maximum allowed widths of struts

Figure A.17: Maximum width of truss 22

w22,1 = 2a6 (A.45)

w22,2 = tanα1 ·
(
l22 −

w35

sinα1

)
(A.46)

w22,3 = l25 (A.47)

Figure A.18: Maximum width of truss 35

w35,1 = sinα1 ·
(
l22 −

w22

tanα1

)
(A.48)

w35,2 = sin (
π

2
− α1) ·

(
l25 −

w25

tan π
2
− α1

)
(A.49)

w27,1 = sinα2 ·
(
l25 −

w26

tanα2

)
(A.50)
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Figure A.19: Maximum width of truss 27

w27,2 = sin (
π

2
− α2) ·

(
l25 −

w25

tan (π
2
− α2)

)
(A.51)

Figure A.20: Maximum width of truss 26

w26,1 = 2a6 (A.52)

w26,2 = tanα2 ·
(
l25 −

w27

sinα2

)
(A.53)

w26,3 = l25 (A.54)

Change to similar nodes

Node 12 Node 13
Truss 26 Truss 28
Truss 27 Truss 36
Truss 25 Truss 25
Truss 35 Truss 23
Truss 22 Truss 24
a6 a5
an5 an7
an7 an5
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Node 16

Figure A.21: Node 16.

Angles

α7 = arctan
abs(an3 − an16)

l1
(A.55)

α8 = arctan
l1

l9 + abs(an5 − an4)
(A.56)

α9 = arctan
l25

l9 + abs(an5 − an7)
(A.57)

α10 = arctan
abs(an6 − an16)

l25
(A.58)

Maximum allowed widths of struts

w6 :

(a) (b)

Figure A.22: Maximum width of truss 6

w6,1 = cosα7 ·
(
2an16 + sign(an3 − an16) · l1 · tanα7

)
(A.59)
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w6,2 =
tan (π

2
− α8 + sign(an16 − an3) · α7)

1 + tan (π
2
− α8 + sign(an16 − an3) · α7) · tanα7 · (an16 > an3)

·

(
l1

cosα7

− w31

sin (π
2
− α8 + sign(an16 − an3) · α7)

) (A.60)

w31 :

(a) (b)

Figure A.23: Maximum width of truss 31

w31,1 = sin (
π

2
− α8 + sign(an16 − an3) · α7)

·

(
l1

cosα7

− w6

tan (π
2
− α8 + sign(an16 − an3) · α7)

− sign(an16 − an3) · w6 tanα7

)
(A.61)

w31,2 = sinα8 ·
(
l9 −

w9

tanα8

)
(A.62)

w9 :

Figure A.24: Maximum width of truss 9

w9,1 = tanα8

(
l9 −

w31

sinα8

)
(A.63)

w9,2 = tanα9

(
l9 −

w32

sinα9

)
(A.64)

w9,3 = l1 (A.65)

w9,4 = l25 (A.66)
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w32 : The method for finding w32,max is the same as for w31,max, but mirrored over truss 9.

w32,1 = sinα9

(
l9 −

w9

tanα9

)
(A.67)

w32,2 = sin (
π

2
− α9 + sign(an16 − an6) · α10)

·

(
l25

cosα10

− w10

tan (π
2
− α9 + sign(an16 − an6) · α10)

)
(A.68)

w10 : The method for finding w10,max is the same as for w6,max, but mirrored over truss 9.

w10,1 =
tan (π

2
− α9 + sign(an16 − an6) · α10)

1 + tan (π
2
− α9 + sign(an16 − an6) · α10) · tanα10 · (an16 > aan6)

·

(
l25

cosα10

− w32

sin (π
2
− α9 + sign(an16 − an6)α10)

) (A.69)

w10,2 = cosα10 ·
(
2an16 − sign(an16 − an6) · l25 tanα10

)
(A.70)

Change to similar nodes

Node 16 Node 6
Truss 6 Truss 14

Truss 31 Truss 15
Truss 9 Truss 13

Truss 32 Truss 11
Truss 10 Truss 10
Truss 1 Truss 17

Truss 25 Truss 25
an3 an8
an16 an6
an6 an16
an5 an7
an4 an9
an7 an5
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Appendix B

Matlab Code

The numbering of the trusses in the STMs are shown in Figure B.1. Figure B.2 shows the
numbering of the nodes.

(a) (b)

Figure B.1: Numbering of trusses used in the STMs.

Figure B.2: Numbering of nodes used in the STMs.

Matlab Code

Main Script

1 %IMPORTANT: Make sure that the positive directions of forces and moments in

2 %input data coincides with the definition in this code

3

4 %The code runs faster if drawing of strut-and-tie model is turned off in
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5 %line 95.

6

7 %Units: Length (mm), Force (N/m), Moment (Nmm/m), Area (mmˆ2), Stress (N/mm

ˆ2)

8 clear

9 tic

10 %Available reinforcement (in bar diameter)

11 AR=[25,25;25,25;25,25];

12

13 %spacing longitudinal reinforcement

14 s=[200,200;200,200;200,200];

15

16 %Angle of shear force at end of D-region

17 theta=[45,45,45]*2*pi/360;

18

19 %Predefining

20 n_bars=[0,0;0,0;0,0];

21

22 %Geometry

23 h1=550; %Height of continuous wall

24 h2=450; %Height of intersecting wall

25 b=1000; %mm/m

26 h=[h1;h1;h2];

27 c=[50,50;50,50;50,50]; %Concrete cover

28 a=c+AR/2;

29

30 %Material data

31 fctm=4.1;

32 fyk=500;

33 fcm=58;

34 Ey=200*10ˆ3;

35

36 %EC2 - Safety factors turned off for the analyses in the thesis

37 yc=1;

38 acc=1;

39 ys=1;

40

41 %Material data

42 fck=fcm; %The mean value is used in the thesis. Normally: fck=fcm-8MPa

43 fcd=acc/yc*fck;

44 fyd=fyk/ys;

45

46 %Predefining variables

47 Armering_opt=0;

48 n_bars_opt=0;

49 check_opt=0;

50
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51 %Making matrix of variable trusses in the middle of the D-region

52 q=1;

53 for N9=1:-1:0

54 for N11=1:-1:0

55 for N13=1:-1:0

56 N_var(q,:)=[N9,N11,N13,N11==0];

57 q=q+1;

58 end

59 end

60 end

61

62 %Load cases

63 Rtot=[-3424,-2753,-742, 695,47,-671, 683*10ˆ3,6*10ˆ3,-689*10ˆ3;

64 -1701,-1699,950, -452,-498,-2, -467*10ˆ3,480*10ˆ3,-13*10ˆ3;

65 -2735,-3603,637, -894,257,868, -498*10ˆ3,-141*10ˆ3,639*10ˆ3]*10ˆ3; %

includes all load combinations

66

67 %Finding the STMs

68 for i = 1:length(Rtot(:,1))

69 U_opt=inf;

70 %Extracting load case

71 R=[Rtot(i,1:3)’,Rtot(i,4:6)’,Rtot(i,7:9)’]; %R=[N1,V1,M1;N2,V2,M2,N3,

V3,M3]

72 for j=1:length(N_var)

73

74 %Choosing set of trusses for the STM

75 N=[1,1,(R(1,2)>=0),1,1,1,(R(1,2)>=0),1,N_var(j,1),1,N_var(j,2),1,N_var(

j,3),1,(R(2,2)<0),1,1,1,(R(2,2)<0),1,1,1,(R(3,2)<0),1,1,1,(R(3,2)<0)

,1,1,(R(1,2)<0),(R(1,2)<0),N_var(j,4),(R(2,2)>=0),(R(2,2)>=0),(R

(3,2)>=0),(R(3,2)>=0)];

76

77 %Optimization of the set of trusses

78 [a_mid,Armering,n_bars_mid,U,check,w,check_force,N_STM,l,a_nodes] =

Optimization(R,a,fck,fyd,h,b,s,theta,AR,c,n_bars,N,Ey);

79

80 %Check of equilibrium, capacity of trusses and if the current STM is

81 %the most efficient

82 if check==0 && check_force==0

83 if U<U_opt

84 U_opt=U;

85 a_opt=a_mid;

86 Armering_opt=Armering;

87 n_bars_opt=n_bars_mid;

88 check_opt=check;

89 N_draw=N;

90 end

91 end
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92 end

93

94 %Drawing the STM

95 draw_STM(N_draw,l,a_nodes) %increase speed of script by turning this

off

96 end

97 toc

Optimization

1 function [a,As,n_bars,U,checked,w,check_force,N_STM,l,a_nodes] =

Optimization(R,a,fck,fyd,h,b,s,theta,AR,c,n_bars,N,Ey)

2

3 %EC2 - Unused in the thesis

4 yc=1.5;

5 acc=0.85;

6 fcd=acc/yc*fck;

7

8

9 %Optimalization of strut placements

10 N_STM1=Forces_initial(R,N,theta,a,h); %Another Forces-function has to

be used as the one used later requires already calculated forces

11 [N_STM,l,a_nodes,F,Fvv,Fv]=Forces(R,theta,a,h,N,N_STM1); %The STM is

fixed according to the initial calculations in the line above.

12

13

14 %Sorting all forces in one array

15 F_nodes = [N_STM,F(1,:),F(2,:),F(3,:)];

16

17 %Trusses which are assessed in the optimization of the six sides

18 truss_numbers

=[37,4,8,12,16;38,2,6,10,14;39,18,14,10,6;40,20,16,12,8;41,28,24,28,13;42,26,22,26,9];

%In order to have equal amounts of entries in each row, the trusses are

repeated in the discontinuous wall. This does not affect the process.

19

20 %Nodes which are assessed in the optimization of the six sides

21 node_numbers=[2,4,5,7;1,3,16,6;10,8,6,16;11,9,7,5;15,13,7,6;14,12,5,16];

22

23 %Predefining

24 check=zeros(3,2);

25

26 %Counter to make sure the while loop does not run indefinitely

27 z=0;

28

29 %Optimzation loop

30 while (sum(sum(check)) < sum(size(check))) && (z<200)

31 z=z+1;
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32

33 %Checking which trusses that should be assessed

34 check_active=[1,1,1,(N_STM(8)>0)+(N_STM(8)<0)*(N_STM(12)<0),(N_STM(4)>0)*(

N_STM(8)>0)*(N_STM(12)>0) ; 1,1,1,(N_STM(6)>0)+(N_STM(6)<0)*(N_STM(10)

<0),(N_STM(6)>0)*(N_STM(10)>0)*(N_STM(14)>0) ; 1,1,1,(N_STM(14)>0)+(

N_STM(14)<0)*(N_STM(10)<0),(N_STM(14)>0)*(N_STM(10)>0)*(N_STM(6)>0) ;

1,1,1,(N_STM(16)>0)+(N_STM(16)<0)*(N_STM(12)<0),(N_STM(16)>0)*(N_STM(12)

>0)*(N_STM(8)>0) ; 1,1,1,0,1 ; 1,1,1,0,1];

35

36 %Finding the force which determines placement of longitudinal trusses

37 N_check=F_nodes(truss_numbers).*check_active;

38

39 %Finding all necessary widths of struts

40 [˜,w]=node_check(N_STM,F,l,b,a,a_nodes,fck);

41

42 %Maximum tension force if any. If not, maximum compression force

43 F_max = [max(N_check(1:2:5,:)’) + (min(N_check(1:2:5,:)’)-max(N_check

(1:2:5,:)’)).*(max(N_check(1:2:5,:)’)<=0) ; max(N_check(2:2:6,:)’) + (

min(N_check(2:2:6,:)’)-max(N_check(2:2:6,:)’)).*(max(N_check(2:2:6,:)’)

<=0)]’;

44

45 %Finding the necessary width which determines placement of longitudinal

46 %trusses

47 for j=1:3

48 w_opt(j,1)=max(max(w(node_numbers(2*j-1,:),truss_numbers(2*j-1,:)))

);

49 w_opt(j,2)=max(max(w(node_numbers(2*j,:),truss_numbers(2*j,:))));

50 end

51

52 %Giving struts half of the cross section if necessary width is less than

53 %the available. If so, several calculations has to be updated

54 a = a + (0.25*[h,h]-a).*(2*a<w_opt).*(F_max<0);

55 [N_STM,l,a_nodes,F]=Forces(R,theta,a,h,N,N_STM);

56 F_nodes = [N_STM,F(1,:),F(2,:),F(3,:)];

57 check_active=[1,1,1,(N_STM(8)>0)+(N_STM(8)<0)*(N_STM(12)<0),(N_STM(4)>0)*(

N_STM(8)>0)*(N_STM(12)<0) ; 1,1,1,(N_STM(6)>0)+(N_STM(6)<0)*(N_STM(10)

<0),(N_STM(6)>0)*(N_STM(10)>0)*(N_STM(14)<0) ; 1,1,1,(N_STM(14)>0)+(

N_STM(14)<0)*(N_STM(10)<0),(N_STM(14)>0)*(N_STM(10)>0)*(N_STM(6)<0) ;

1,1,1,(N_STM(16)>0)+(N_STM(16)<0)*(N_STM(12)<0),(N_STM(16)>0)*(N_STM(12)

>0)*(N_STM(8)<0) ; 1,1,1,0,1 ; 1,1,1,0,1];

58 N_check=F_nodes(truss_numbers).*check_active;

59 F_max = [max(N_check(1:2:5,:)’) + (min(N_check(1:2:5,:)’)-max(N_check

(1:2:5,:)’)).*(max(N_check(1:2:5,:)’)<=0) ; max(N_check(2:2:6,:)’) + (

min(N_check(2:2:6,:)’)-max(N_check(2:2:6,:)’)).*(max(N_check(2:2:6,:)’)

<=0)]’;

60 [˜,w]=node_check(N_STM,F,l,b,a,a_nodes,fck);

61 for j=1:3
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62 w_opt(j,1)=max(max(w(node_numbers(2*j-1,:),truss_numbers(2*j-1,:)))

);

63 w_opt(j,2)=max(max(w(node_numbers(2*j,:),truss_numbers(2*j,:))));

64 end

65 %Necessary reinforcement area

66 As=(F_max>0).*(F_max./fyd)./(AR.ˆ2*pi/4*b./s);

67

68 %Number of bars needed. Maximum two bars in each layer

69 n_bars=(F_max>0).*(floor(As) + ceil( (As-floor(As))./0.5) * 0.5);

70

71 %Calculating the new placement of longitudinal trusses

72 a=a.*(F_max<0) + (((c+floor(n_bars/2)/2.*AR) .* floor(n_bars/2)*2.*AR.ˆ2*pi

/4+(c + floor(n_bars/2).*AR+AR/2) .* rem(n_bars,2).*AR.ˆ2*pi/4) ./ (

floor(n_bars/2)*2.*AR.ˆ2*pi/4 + rem(n_bars,2).*AR.ˆ2*pi/4 + (F_max<0)))

.*(F_max>0); %(z_i*A_:)/A_i The reason for the added F_max<0 in the

denominator is to avoid dividing by zero. This added part is removed

when everything is multiplied by (F_max>0).

73 a=a.*(F_max>0) + (a+(w_opt/2-a)./2).*(F_max<0);

74

75 %Calculating new forces

76 [N_STM,l,a_nodes,F]=Forces(R,theta,a,h,N,N_STM);

77 F_nodes = [N_STM,F(1,:),F(2,:),F(3,:)];

78

79 %Executing new check of widths of struts

80 check_active=[1,1,1,(N_STM(8)>0)+(N_STM(8)<0)*(N_STM(12)<0),(N_STM(4)>0)*(

N_STM(8)>0)*(N_STM(12)<0) ; 1,1,1,(N_STM(6)>0)+(N_STM(6)<0)*(N_STM(10)

<0),(N_STM(6)>0)*(N_STM(10)>0)*(N_STM(14)<0) ; 1,1,1,(N_STM(14)>0)+(

N_STM(14)<0)*(N_STM(10)<0),(N_STM(14)>0)*(N_STM(10)>0)*(N_STM(6)<0) ;

1,1,1,(N_STM(16)>0)+(N_STM(16)<0)*(N_STM(12)<0),(N_STM(16)>0)*(N_STM(12)

>0)*(N_STM(8)<0) ; 1,1,1,0,0 ; 1,1,1,0,0];

81 N_check=F_nodes(truss_numbers).*check_active;

82 F_max = [max(N_check(1:2:5,:)’) + (min(N_check(1:2:5,:)’)-max(N_check

(1:2:5,:)’)).*(max(N_check(1:2:5,:)’)<=0) ; max(N_check(2:2:6,:)’) + (

min(N_check(2:2:6,:)’)-max(N_check(2:2:6,:)’)).*(max(N_check(2:2:6,:)’)

<=0)]’;

83 n_bars=(F_max>0).*(floor(As) + ceil( (As-floor(As))./0.5) * 0.5);

84 [˜,w]=node_check(N_STM,F,l,b,a,a_nodes,fck);

85 for j=1:3

86 w_opt(j,1)=max(max(w(node_numbers(2*j-1,:),truss_numbers(2*j-1,:)))

);

87 w_opt(j,2)=max(max(w(node_numbers(2*j,:),truss_numbers(2*j,:))));

88 end

89 %Check of both struts and ties

90 check=(F_max>0).*(F_max./fyd < n_bars.*b./s.*AR.ˆ2/4*pi) + (F_max<0).*((2*a

-w_opt).ˆ2<1.0);

91

92 end
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93

94 %Finding values for output of function

95 [checked,w]=node_check(N_STM,F,l,b,a,a_nodes,fck);

96

97 %Necessary reinforcement for output

98 As=N_STM/fyd.*(N_STM>0);

99

100 %Strain energy

101 U=sum(N_STM.*l.*N_STM./(As.*Ey+(As==0)).*(1-(As==0)));

102

103 %Check of equilibrium of forces

104 check_force = force_check(N_STM,F,Fv,theta,l,a_nodes);

105

106 end

Forces Initial

1 function [N_STM,l,a_nodes] = Forces_initial(R,N,theta,a,h)

2

3 %Placement of nodes

4 a_nodes = [0,0,0,0,a(3,2),a(3,1),a(3,1),0,0,0,0,a(3,2),a(3,1),a(3,2),a(3,1)

,a(3,2); %a_x: node 1-16

5 a(1,2),a(1,1),a(1,2),a(1,1),a(1,1),a(2,1),a(2,2),a(2,1),a(2,2),a(2,1),a

(2,2),0,0,0,0, a(1,2)];%a_z: node 8-16

6

7 %Lengths of trusses

8 l1=h(1)-a(1,1)-a(1,2);

9 l2=l1;

10 l4=l1;

11 l3=sqrt(l1ˆ2+l4ˆ2);

12 l5=l1;

13 l6=sqrt(l1ˆ2 + (a_nodes(2,16)-a_nodes(2,3))ˆ2);

14 l8=sqrt(l1ˆ2 + (a_nodes(2,5)-a_nodes(2,4))ˆ2);

15 l7=sqrt(l1ˆ2+(l5+a_nodes(2,4)-a_nodes(2,5))ˆ2); %change du to other changes

16 l9=h(1) - a_nodes(2,16) - a_nodes(2,5);

17 l10=sqrt((a_nodes(2,16) - a_nodes(2,6))ˆ2 + (h(3)-a_nodes(1,16)-a_nodes

(1,6))ˆ2); %the minus separates the height of the two nodes

18 l25=h(3)-a(3,1)-a(3,2);

19 l11=sqrt(l25ˆ2 + (h(1)-a_nodes(2,5)-a_nodes(2,6)));

20 l12=sqrt((a_nodes(2,5) - a_nodes(2,7))ˆ2 + (h(3)-a_nodes(1,5)-a_nodes(1,7))

ˆ2); %the minus separates the height of the two nodes

21 l13=h(2) - a_nodes(2,6) - a_nodes(2,7);

22 l17=h(2)-a_nodes(2,1)-a_nodes(2,2);

23 l14=sqrt(l17ˆ2+(a_nodes(2,6)-a_nodes(2,8))ˆ2);

24 l16=sqrt(l17ˆ2+(a_nodes(2,7)-a_nodes(2,9))ˆ2);

25 l15=sqrt(l17ˆ2+(l17+a_nodes(2,8)-a_nodes(2,6))ˆ2);

26 l21=l17;
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27 l18=l17;

28 l20=l17;

29 l19=sqrt(l17ˆ2+l20ˆ2);

30 l22=l25+a_nodes(2,5)-a_nodes(2,4);

31 l24=l25+a_nodes(2,7)-a_nodes(2,9);

32 l23=sqrt(l22ˆ2+l25ˆ2);

33 l26=l25;

34 l28=l25;

35 l27=sqrt(l25ˆ2+l28ˆ2);

36 l29=l25;

37 l32=sqrt(l25ˆ2+(h(2)-a_nodes(2,7)-a_nodes(2,16))ˆ2);

38 l30=sqrt(l1ˆ2+l2ˆ2);

39 l31=sqrt(l1ˆ2+(l5+a_nodes(2,3)-a_nodes(2,16))ˆ2);

40 l33=sqrt(l17ˆ2+(l17+a_nodes(2,9)-a_nodes(2,7))ˆ2);

41 l34=sqrt(l17ˆ2+l18ˆ2);

42 l35=sqrt(l24ˆ2+l25ˆ2);

43 l36=sqrt(l25ˆ2+l26ˆ2);

44

45 %Preallocating

46 F=zeros(3,2);

47 Fv=zeros(3,1);

48

49 %Distance from center of D-region to the three edges

50 x=[h(3)/2-a(3,2)+l1+l4+(h(1)/2-a(1,1)*(N(3)==1)-a(1,2)*(N(30)==1))/(tan(

theta(1))),h(3)/2-a(3,1)+l17+l20+(h(2)/2-a(2,1)*(N(19)==1)-a(2,2)*(N(34)

==1))/(tan(theta(2))),h(1)/2-a_nodes(2,5)+l22+l26+(h(3)/2-a(3,1)*(N(36)

==1)-a(3,2)*(N(27)==1))/(tan(theta(3)))];

51

52 %Calculation of loads at edges

53 for i=1:length(R(:,1)) %Obtaining inital forces for the STM

54 n=R(i,1);

55 v=R(i,2);

56 m=R(i,3)-x(i)*v*(1-2*(i==2)); %The last parentheses takes account of

the difference in definition of positive directions

57 Fvv=abs(v/tan(theta(i)));

58 F(i,2)=n*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2))+m/(h(i)-a(i,1)-a(i,2))+

Fvv*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2));

59 F(i,1)=(n-n*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2)))-m/(h(i)-a(i,1)-a(i,2)

)+(Fvv-Fvv*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2)));

60 Fv(i)=-abs(v/sin(theta(i)));

61 end

62

63 %Calculation of truss forces

64 N1 = -Fv(1)*sin(theta(1))*(N(1)==1);

65 N30 = -N1*l30/l1*(N(30)==1);

66 N4 = (Fv(1)*cos(theta(1))*(N(30)==0)+F(1,1)-N(30)*l4/l30)*(N(4)==1);

67 N3 = -N1*l3/l1*(N(3)==1);
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68 N2 = (F(1,2)-N3*l2/l3+Fv(1)*cos(theta(1))*(N(3)==0))*(N(2)==1);

69 N5 = (-N3*l5/l3-N30*l5/l30)*(N(5)==1);

70 N31 = -N5*l31/l5*(N(31)==1);

71 N8 = (N4+N3*l4/l3-N31*l8/l31)*(N(8)==1);

72 N7 = -N5*l7/l5*(N(7)==1);

73 N6 = (N2-N7*l6/l7+N30*l2/l30)*(N(6)==1);

74 N21 = -Fv(2)*sin(theta(2))*(N(21)==1);

75 N34 = -N21*l34/l21*(N(34)==1);

76 N18 = (F(2,1)+Fv(2)*cos(theta(2))*(N(34)==0)-N34*l18/l34)*(N(18)==1);

77 N19 = -N21*l19/l21*(N(19)==1);

78 N20 = (F(2,2)-N19*l20/l19+Fv(2)*cos(theta(2))*(N(19)==0))*(N(20)==1);

79 N17 = (-N19*l17/l19-N34*l17/l34)*(N(17)==1);

80 N33 = -N17*l33/l17*(N(33)==1);

81 N14 = (N18+N19*l18/l19-N33*l14/l33)*(N(14)==1);

82 N15 = -N17*l15/l17*(N(15)==1);

83 N16 = (N20-N15*l16/l15+N34*l20/l34)*(N(16)==1);

84 N29 = (-Fv(3)*sin(theta(3)))*(N(29)==1);

85 N36 = -N29*l36/l29*(N(36)==1);

86 N26 = (F(3,2)+Fv(3)*cos(theta(3))-N36*l26/l36)*(N(26)==1);

87 N27 = -N29*l27/l29*(N(27)==1);

88 N28 = (F(3,1)-N27*l28/l27+Fv(3)*cos(theta(3))*(N(27)==0))*(N(28)==1);

89 N25 = (-N27*l25/l27-N36*l25/l36)*(N(25)==1);

90 N35 = -N25*l35/l25*(N(35)==1);

91 N22 = (N26+N27*l26/l27-N35*l22/l35)*(N(22)==1);

92 N23 = -N25*l23/l25*(N(23)==1);

93 N24 = (N28-N23*l24/l23+N36*l28/l36)*(N(24)==1);

94 N13 = 1/(1+(N(10)==1)*(N(11)==1)*(N(32)==1)) * (N24+N35*l24/l35-N33*l13/l33

-l13/l32*(N(32)==1)*(N6*l32/l10+N31*l6/l31*l32/l10+(-N14*l32/l10-N15*l14

/l15*l32/l10+l32/l13*N15*l13/l15*(N(11)==1)))*(N(10)==1));

95 N11 = -(N13+N15*l13/l15)*l11/l13*(N(11)==1);

96 N10 = (N14+N15*l14/l15-N11*l10/l11)*(N(10)==1);

97 N32 = (N6*l32/l10+N31*l6/l31*l32/l10-N10*l32/l10)*(N(32)==1);

98 N12 = (N16+N33*l16/l33-N32*l12/l32-N35)*(N(12)==1);

99 N9 = (-N32*l9/l32-N31*l9/l31)*(N(9)==1);

100

101 %Sorting the lengths and forces in arrays

102 l=[l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13,l14,l15,l16,l17,l18,l19,l20,

l21,l22,l23,l24,l25,l26,l27,l28,l29,l30,l31,l32,l33,l34,l35,l36];

103 N_STM=[N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N12,N13,N14,N15,N16,N17,N18,N19,

N20,N21,N22,N23,N24,N25,N26,N27,N28,N29,N30,N31,N32,N33,N34,N35,N36];

104

105 end

Forces

1 function [N,l,a_nodes,F,Fvv,Fv] = Forces(R,theta,a,h,N,N_STM)

2 %Closing moment on left side - can be used for closing moment on right side
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3 %by mirroring sectional forces.

4 %a=[50,50;50,50;50,50];

5 fyd=434;

6 fyd=500;

7 AR=[25,25];

8 b=1000;

9 s=[200,200];

10 c=[50,50];

11

12 %a7 - Placement of truss 10 if truss 6 & 14 are in compression while truss

13 %12 is in tension

14 a7=0;

15 a8=0;

16 if N_STM(10)>0

17 As_a7=(N_STM(10)/fyd)/(AR(1,2)ˆ2*pi/4*b/s(1,2)); %Necessary

reinforcement area for the odd number force

18 n_bars_a7=floor(As_a7) + ceil( (As_a7-floor(As_a7))/0.5) * 0.5; %Number

of bars needed. Maximum two bars in each layer

19 a7=((c(1,2)+floor(n_bars_a7/2)/2*AR(1,2)) * floor(n_bars_a7/2)*2*AR

(1,2)ˆ2*pi/4+(c(1,2) + floor(n_bars_a7/2)*AR(1,2)+AR(1,2)/2) * rem(

n_bars_a7,2)*AR(1,2)ˆ2*pi/4) / (floor(n_bars_a7/2)*2*AR(1,2)ˆ2*pi/4

+ rem(n_bars_a7,2)*AR(1,2)ˆ2*pi/4); %(z_i*A_i)/A_i

20 end

21 %a8 - Placement of truss 12 if truss 8 & 16 are in compression while truss

22 %12 is in tension

23 if N_STM(12)>0

24 As_a8=(N_STM(12)/fyd)/(AR(1,1)ˆ2*pi/4*b/s(1,1)); %Necessary

reinforcement area for the odd number force

25 n_bars_a8=floor(As_a8) + ceil( (As_a8-floor(As_a8))/0.5) * 0.5; %Number

of bars needed. Maximum two bars in each layer

26 a8=((c(1,1)+floor(n_bars_a8/2)/2*AR(1,1)) * floor(n_bars_a8/2)*2*AR

(1,1)ˆ2*pi/4+(c(1,1) + floor(n_bars_a8/2)*AR(1,1)+AR(1,1)/2) * rem(

n_bars_a8,2)*AR(1,1)ˆ2*pi/4) / (floor(n_bars_a8/2)*2*AR(1,1)ˆ2*pi/4

+ rem(n_bars_a8,2)*AR(1,1)ˆ2*pi/4); %(z_i*A_i)/A_i

27 end

28

29 a_nodes = [0,0,0,0,a(3,2),a(3,1),a(3,1),0,0,0,0,a(3,2),a(3,1),a(3,2),a(3,1)

,a(3,2); %a_x: node 1-16

30 a(1,2),a(1,1),a(1,2),a(1,1), a(1,1)*((N_STM(8)>0)+(N_STM(8)<0)*(N_STM

(12)<0))+a(2,2)*(N_STM(16)>0)*(N_STM(12)>0)*(N_STM(8)<0) + a8*(N_STM

(12)>0)*(N_STM(8)<0)*(N_STM(16)<0) , a(2,1)*((N_STM(14)>0)+(N_STM

(14)<0)*(N_STM(10)<0))+a(1,2)*(N_STM(6)>0)*(N_STM(10)>0)*(N_STM(14)

<0)+a7*(N_STM(10)>0)*(N_STM(6)<0)*(N_STM(14)<0) , a(2,2)*((N_STM(16)

>0)+(N_STM(16)<0)*(N_STM(12)<0))+a(1,1)*(N_STM(8)>0)*(N_STM(12)>0)*(

N_STM(16)<0)+a8*(N_STM(12)>0)*(N_STM(8)<0)*(N_STM(16)<0) , a(2,1),a

(2,2),a(2,1),a(2,2),0,0,0,0, a(1,2)*((N_STM(6)>0)+(N_STM(6)<0)*(

N_STM(10)<0))+a(2,1)*(N_STM(14)>0)*(N_STM(10)>0)*(N_STM(6)<0)+a7*(
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N_STM(10)>0)*(N_STM(6)<0)*(N_STM(14)<0)];

31

32 %Truss lengths needed for the following correction

33 l1=h(1)-a(1,1)-a(1,2);

34 l17=h(2)-a(2,1)-a(2,2);

35 l25=h(3)-a(3,1)-a(3,2);

36

37 %Correcting for nonactive trusses

38 a_nodes(2,6)=(a_nodes(2,16)-a_nodes(2,8))*l17/(l17+l25)*(N(15)==0)*(N(13)

==0)*(N(11)==0)*(a_nodes(2,6)˜=a_nodes(2,16)) + (a_nodes(2,8)-a_nodes

(2,16))*l25/(l17+l25)*(N(15)==0)*(N(13)==0)*(N(11)==0)*(a_nodes(2,6)˜=

a_nodes(2,8)) + a_nodes(2,6)*(1-(N(15)==0)*(N(13)==0)*(N(11)==0)*(

a_nodes(2,6)˜=a_nodes(2,16))*(a_nodes(2,6)˜=a_nodes(2,8)));

39 a_nodes(2,16)=(a_nodes(2,6)-a_nodes(2,3))*l1/(l1+l25)*(N(31)==0)*(N(9)==0)

*(N(32)==0)*(a_nodes(2,16)˜=a_nodes(2,6)) + (a_nodes(2,3)-a_nodes(2,6))*

l25/(l1+l25)*(N(31)==0)*(N(9)==0)*(N(32)==0)*(a_nodes(2,16)˜=a_nodes

(2,3)) + a_nodes(2,16)*(1-(N(31)==0)*(N(9)==0)*(N(32)==0)*(a_nodes(2,16)

˜=a_nodes(2,6))*(a_nodes(2,16)˜=a_nodes(2,3)));

40

41 %The rest of the truss lengths

42 l2=l1;

43 l4=l1;

44 l3=sqrt(l1ˆ2+l4ˆ2);

45 l5=l1;

46 l6=sqrt(l1ˆ2 + (a_nodes(2,16)-a_nodes(2,3))ˆ2);

47 l8=sqrt(l1ˆ2 + (a_nodes(2,5)-a_nodes(2,4))ˆ2);

48 l7=sqrt(l1ˆ2+(l5+a_nodes(2,4)-a_nodes(2,5))ˆ2);

49 l9=h(1) - a_nodes(2,16) - a_nodes(2,5);

50 l10=sqrt((a_nodes(2,16) - a_nodes(2,6))ˆ2 + (h(3)-a_nodes(1,16)-a_nodes

(1,6))ˆ2); %the minus separates the height of the two nodes

51 l25=h(3)-a(3,1)-a(3,2);

52 l11=sqrt(l25ˆ2 + (h(1)-a_nodes(2,5)-a_nodes(2,6))ˆ2);

53 l12=sqrt((a_nodes(2,5) - a_nodes(2,7))ˆ2 + (h(3)-a_nodes(1,5)-a_nodes(1,7))

ˆ2); %the minus separates the height of the two nodes

54 l13=h(2) - a_nodes(2,6) - a_nodes(2,7);

55 l17=h(2)-a(2,1)-a(2,2);

56 l14=sqrt(l17ˆ2+(a_nodes(2,6)-a_nodes(2,8))ˆ2);

57 l16=sqrt(l17ˆ2+(a_nodes(2,7)-a_nodes(2,9))ˆ2);

58 l15=sqrt(l17ˆ2+(l17+a_nodes(2,8)-a_nodes(2,6))ˆ2);

59 l21=l17;

60 l18=l17;

61 l20=l17;

62 l19=sqrt(l17ˆ2+l20ˆ2);

63 l22=l25+(a_nodes(2,5)-a_nodes(2,7))*(a_nodes(2,5)>a_nodes(2,7));

64 l24=l25+(a_nodes(2,7)-a_nodes(2,5))*(a_nodes(2,7)>a_nodes(2,5));

65 l23=sqrt(l22ˆ2+l25ˆ2);

66 l26=l25;
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67 l28=l25;

68 l27=sqrt(l25ˆ2+l28ˆ2);

69 l29=l25;

70 l32=sqrt(l25ˆ2+(h(2)-a_nodes(2,7)-a_nodes(2,16))ˆ2);

71 l30=sqrt(l1ˆ2+l2ˆ2);

72 l31=sqrt(l1ˆ2+(l5+a_nodes(2,3)-a_nodes(2,16))ˆ2);

73 l33=sqrt(l17ˆ2+(l17+a_nodes(2,9)-a_nodes(2,7))ˆ2);

74 l34=sqrt(l17ˆ2+l18ˆ2);

75 l35=sqrt(l24ˆ2+l25ˆ2);

76 l36=sqrt(l25ˆ2+l26ˆ2);

77

78

79

80 %Preallocating

81 F=zeros(3,2);

82 Fv=zeros(3,1);

83

84 %Distance from center of D-region to the three edges

85 x=[h(3)/2-a(3,2)+l1+l4+(h(1)/2-a(1,1)*(N(3)==1)-a(1,2)*(N(30)==1))/(tan(

theta(1))),h(3)/2-a(3,1)+l17+l20+(h(2)/2-a(2,1)*(N(19)==1)-a(2,2)*(N(34)

==1))/(tan(theta(2))),h(1)/2-a_nodes(2,5)+l22+l26+(h(3)/2-a(3,1)*(N(36)

==1)-a(3,2)*(N(27)==1))/(tan(theta(3)))];

86

87 %Calculation of loads at edges

88 for i=1:length(R(:,1)) %Obtaining inital forces for the STM

89 n=R(i,1);

90 v=R(i,2);

91 m=R(i,3)-x(i)*v*(1-2*(i==2)); %The last parentheses takes account of

the difference in definition of positive directions

92 Fvv=abs(v/tan(theta(i)));

93 F(i,2)=n*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2))+m/(h(i)-a(i,1)-a(i,2))+

Fvv*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2));

94 F(i,1)=(n-n*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2)))-m/(h(i)-a(i,1)-a(i,2)

)+(Fvv-Fvv*(h(i)/2-a(i,1))/(h(i)-a(i,1)-a(i,2)));

95 Fv(i)=-abs(v/sin(theta(i)));

96 end

97

98 %Calculation of truss forces

99 N(1) = -Fv(1)*sin(theta(1))*(N(1)==1);

100 N(30) = -N(1)*l30/l1*(N(30)==1);

101 N(4) = (Fv(1)*cos(theta(1))*(N(30)==0)+F(1,1)-N(30)*l4/l30)*(N(4)==1);

102 N(3) = -N(1)*l3/l1*(N(3)==1);

103 N(2) = (F(1,2)-N(3)*l2/l3+Fv(1)*cos(theta(1))*(N(3)==0))*(N(2)==1);

104

105 N(5)=-1/(1+((a_nodes(2,5)-a_nodes(2,4))*(N(30)==0)*(N(31)==1)+(a_nodes

(2,16)-a_nodes(2,3))*(N(3)==0)*(N(7)==1))/(l5+a_nodes(2,4)-a_nodes(2,5)-

a_nodes(2,16)+a_nodes(2,3))) * (N(3)*l5/l3+N(30)*l5/l30+(a_nodes(2,5)-
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a_nodes(2,4))/l1*(N(4)+N(3)*l4/l3+(a_nodes(2,5)-a_nodes(2,4))/(l5+

a_nodes(2,3)-a_nodes(2,16)-a_nodes(2,5)+a_nodes(2,4))*(N(4)+N(3)*l4/l3)

*(N(31)==1))*(N(30)==0)+(a_nodes(2,16)-a_nodes(2,3))/l1*(N(2)+N(30)*l2/

l30+(a_nodes(2,16)-a_nodes(2,3))/(l5+a_nodes(2,4)-a_nodes(2,5)-a_nodes

(2,16)+a_nodes(2,3))*(N(2)+N(30)*l2/l30)*(N(7)==1))*(N(3)==0))*(N(5)==1)

;

106 N(31)=-l31/(l5+a_nodes(2,3)-a_nodes(2,16)-a_nodes(2,5)+a_nodes(2,4))*(N(5)

+(a_nodes(2,5)-a_nodes(2,4))/l1*(N(4)+N(3)*l4/l3))*(N(31)==1);

107 N(7)=-l7/(l5+a_nodes(2,4)-a_nodes(2,5)-a_nodes(2,16)+a_nodes(2,3))*(N(5)+(

a_nodes(2,16)-a_nodes(2,3))/l1*(N(2)+N(30)*l2/l30))*(N(7)==1);

108 N(6)=(N(2)+N(30)*l2/l30-N(7)*l1/l7)*l6/l1*(N(6)==1);

109 N(8)=(N(4)+N(3)*l4/l3-N(31)*l1/l31)*l8/l1*(N(8)==1);

110

111 N(21) = -Fv(2)*sin(theta(2))*(N(21)==1);

112 N(34) = -N(21)*l34/l21*(N(34)==1);

113 N(18) = (F(2,1)+Fv(2)*cos(theta(2))*(N(34)==0)-N(34)*l18/l34)*(N(18)==1);

114 N(19) = -N(21)*l19/l21*(N(19)==1);

115 N(20) = (F(2,2)-N(19)*l20/l19+Fv(2)*cos(theta(2))*(N(19)==0))*(N(20)==1);

116

117 N(17)=-1/(1+((a_nodes(2,7)-a_nodes(2,9))*(N(19)==0)*(N(15)==1)+(a_nodes

(2,6)-a_nodes(2,8))*(N(34)==0)*(N(33)==1))/(l17+a_nodes(2,9)-a_nodes

(2,7)-a_nodes(2,6)+a_nodes(2,8))) * (N(34)*l17/l34+N(19)*l17/l19+(

a_nodes(2,7)-a_nodes(2,9))/l17*(N(20)+N(34)*l20/l34+(a_nodes(2,7)-

a_nodes(2,9))/(l17+a_nodes(2,8)-a_nodes(2,6)-a_nodes(2,7)+a_nodes(2,9))

*(N(20)+N(34)*l20/l34)*(N(15)==1))*(N(19)==0)+(a_nodes(2,6)-a_nodes(2,8)

)/l17*(N(18)+N(19)*l18/l19+(a_nodes(2,6)-a_nodes(2,8))/(l17+a_nodes(2,9)

-a_nodes(2,7)-a_nodes(2,6)+a_nodes(2,8))*(N(18)+N(19)*l18/l19)*(N(33)

==1))*(N(34)==0))*(N(17)==1);

118 N(15)=-l15/(l17+a_nodes(2,8)-a_nodes(2,6)-a_nodes(2,7)+a_nodes(2,9))*(N(17)

+(a_nodes(2,7)-a_nodes(2,9))/l17*(N(20)+N(34)*l20/l34))*(N(15)==1);

119 N(33)=-l33/(l17+a_nodes(2,9)-a_nodes(2,7)-a_nodes(2,6)+a_nodes(2,8))*(N(17)

+(a_nodes(2,6)-a_nodes(2,8))/l17*(N(18)+N(19)*l18/l19))*(N(33)==1);

120 N(14)=(N(18)+N(19)*l18/l19-N(33)*l17/l33)*l14/l17*(N(14)==1);

121 N(16)=(N(20)+N(34)*l20/l34-N(15)*l17/l15)*l16/l17*(N(16)==1);

122

123 N(29) = (-Fv(3)*sin(theta(3)))*(N(29)==1);

124 N(36) = -N(29)*l36/l29*(N(36)==1);

125 N(26) = (F(3,2)+Fv(3)*cos(theta(3))*(N(36)==0)-N(36)*l26/l36)*(N(26)==1);

126 N(27) = -N(29)*l27/l29*(N(27)==1);

127 N(28) = (F(3,1)-N(27)*l28/l27+Fv(3)*cos(theta(3))*(N(27)==0))*(N(28)==1);

128 N(25) = (-N(27)*l25/l27-N(36)*l25/l36)*(N(25)==1);

129 N(35) = -N(25)*l35/l25*(N(35)==1);

130 N(22) = (N(26)+N(27)*l26/l27-N(35)*l24/l35)*(N(22)==1);

131 N(23) = -N(25)*l23/l25*(N(23)==1);

132 N(24) = (N(28)-N(23)*l22/l23+N(36)*l28/l36)*(N(24)==1);

133

134 N(10)=l10/l25*((N(6)*l1/l6+N(31)*l1/l31-N(32)*l25/l32)*(N(32)==0)*(N(11)
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˜=0)+(N(14)*l17/l14+N(15)*l17/l15-N(11)*l25/l11)*(N(11)==0))*(N(10)==1);

135 N(12)=l12/l25*((N(8)*l1/l8+N(7)*l1/l7-N(23)*l25/l23-N(11)*l25/l11)*(N(11)

==0)*(N(32)˜=0)+(N(16)*l17/l16+N(33)*l17/l33-N(35)*l25/l35-N(32)*l25/l32

)*(N(32)==0))*(N(12)==1);

136 N(9)=(-(N(6)*(a_nodes(2,3)-a_nodes(2,16))/l6+N(31)*(l5+a_nodes(2,3)-a_nodes

(2,16))/l31+N(10)*(a_nodes(2,6)-a_nodes(2,16))/l10)*(N(32)==0)+(N(22)+N

(23)*l22/l23+N(12)*(a_nodes(2,5)-a_nodes(2,7))/l12+N(8)*(a_nodes(2,5)-

a_nodes(2,4))/l8-N(7)*(l5+a_nodes(2,4)-a_nodes(2,5))/l7)*(N(11)==0)*(N

(32)˜=0))*(N(9)==1);

137 N(13)=(-(N(14)*(a_nodes(2,8)-a_nodes(2,6))/l14+N(15)*(l17+a_nodes(2,8)-

a_nodes(2,6))/l15+N(10)*(a_nodes(2,16)-a_nodes(2,6))/l10)*(N(11)==0)+(N

(24)+N(35)*l24/l35+N(12)*(a_nodes(2,7)-a_nodes(2,5))/l12+N(16)*(a_nodes

(2,7)-a_nodes(2,9))/l16-N(33)*(l17+a_nodes(2,9)-a_nodes(2,7))/l33)*(N

(32)==0)*(N(11)˜=0))*(N(13)==1);

138 N(11)=-l11/(l13+a_nodes(2,7)-a_nodes(2,5)) * ((N(14)*(a_nodes(2,8)-a_nodes

(2,6))/l14+N(15)*(l13+a_nodes(2,7)-a_nodes(2,9))/l15+N(13)+N(10)*(

a_nodes(2,16)-a_nodes(2,6))/l10)*(N(9)˜=0)+(N(7)*(l5+a_nodes(2,4)-

a_nodes(2,5))/l7+N(8)*(a_nodes(2,4)-a_nodes(2,5))/l8+N(12)*(a_nodes(2,7)

-a_nodes(2,5))/l12-N(22)-N(23)*l22/l23)*(N(9)==0))*(N(11)==1);

139 N(32)=-l32/(l9+a_nodes(2,5)-a_nodes(2,7)) * ((N(6)*(a_nodes(2,3)-a_nodes

(2,16))/l6+N(31)*(l9+a_nodes(2,5)-a_nodes(2,4))/l31+N(9)+N(10)*(a_nodes

(2,6)-a_nodes(2,16))/l10)*(N(13)˜=0)+(N(33)*(l17+a_nodes(2,9)-a_nodes

(2,7))/l33+N(16)*(a_nodes(2,9)-a_nodes(2,7))/l16+N(12)*(a_nodes(2,5)-

a_nodes(2,7))/l12-N(24)-N(35)*l24/l35)*(N(13)==0))*(N(32)==1);

140

141 %%Sorting the lengths in array

142 l=[l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13,l14,l15,l16,l17,l18,l19,l20,

l21,l22,l23,l24,l25,l26,l27,l28,l29,l30,l31,l32,l33,l34,l35,l36];

143

144 end

Node Check

1 function [checked,w] = node_check(N_STM,F,l,b,a,a_nodes,fck)

2

3 %EC2 - Safety factors turned off in the thesis

4 yc=1;

5 acc=1;

6 %Material data

7 fcm=58; %Used as concrete strength in the thesis

8 fck=50; %For the calculation of upsilon. The imported fck is equal to fcm

in the thesis, which means that fck has to be redefined

9 fcd=acc/yc*fcm;

10

11 %EC2 6.5.4

12 upsilon=1-fck/250;

13 k1=1;
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14 k2=0.85;

15 k3=0.75;

16

17

18 %Here, the variable "node" indicates the active trusses in each node. The

19 %six forces representing the sectional forces are arranged from 37-42.

20 node=[1,1,1,zeros(1,33),0,1,zeros(1,4);%1

21 1,0,0,1,zeros(1,25),1,zeros(1,6),1,zeros(1,5);%2

22 0,1,0,0,1,1,1,zeros(1,22),1,zeros(1,6),zeros(1,6);%3

23 0,0,1,1,1,0,0,1,zeros(1,22),1,zeros(1,5),zeros(1,6);%4

24 zeros(1,6),1,1,1,0,1,1,zeros(1,9),1,1,zeros(1,13),zeros(1,6);%5

25 zeros(1,9),1,1,0,1,1,1,zeros(1,21),zeros(1,6);%6

26 zeros(1,11),1,1,0,0,1,zeros(1,7),1,zeros(1,7),1,1,0,1,0,zeros(1,6);%7

27 zeros(1,13),1,0,0,1,1,1,zeros(1,13),1,0,0,0,zeros(1,6);%8

28 zeros(1,14),1,1,1,0,0,1,zeros(1,13),1,0,0,zeros(1,6);%9

29 zeros(1,17),1,0,0,1,zeros(1,12),1,0,0,0,0,1,0,0,0;%10

30 zeros(1,18),1,1,1,zeros(1,15),zeros(1,3),1,0,0;%11

31 zeros(1,21),1,0,0,1,1,1,zeros(1,7),1,0,zeros(1,6);%12

32 zeros(1,22),1,1,1,0,0,1,zeros(1,7),1,zeros(1,6);%13

33 zeros(1,25),1,0,0,1,zeros(1,6),1,zeros(1,5),1;%14

34 zeros(1,26),1,1,1,zeros(1,7),zeros(1,4),1,0;%15

35 zeros(1,5),1,0,0,1,1,zeros(1,20),1,1,zeros(1,4),zeros(1,6)];%16

36

37

38 %Making a common array for all forces in order to carry out the lines below

.

39 F_nodes = [N_STM,F(1,:),F(2,:),F(3,:)];

40

41 %Checking number of ties anchored in each node

42 n_tension = sum(((node.*F_nodes)>0)’);

43

44 %Max. allowed nodal stress

45 sigma_Rd_max = ((n_tension>1)’*k3+(n_tension==1)’*k2+(n_tension==0)’*k1)*

fcd*upsilon; %Max. allowed nodal stress

46

47 %Necessary width

48 w = -(node.*F_nodes)./(b.*sigma_Rd_max);

49

50 %storing the w matrix while temporarily changing all signs to positive

51 w_store = w;

52 w=w.*(w>0);

53

54

55 %Calcuation of maximum allowed widths in nodes. s1,s2,... are the angles

56 %between various trusses. They are named alpha1,alpha2,... in thesis

57

58 %node1
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59 wmax(1,38) = 2*a(1,2); %F2

60 wmax(1,2) = min([2*a(1,2) , tan(pi/4)*(l(1)-w(1,3)/sin(pi/4))]);

61 wmax(1,3) = min([sin(pi/4)*(l(1)-w(1,1)/tan(pi/4)) , sin(pi/4)*(l(1)-w(1,2)

/tan(pi/4))]);

62 wmax(1,1) = 0;

63

64 %node2

65 wmax(2,37) = 2*a(1,1); %F1

66 wmax(2,4) = min([2*a(1,1) , tan(pi/4)*(l(1)-w(2,30)/sin(pi/4))]);

67 wmax(2,30) = min([sin(pi/4)*(l(1)-w(2,1)/tan(pi/4)) , sin(pi/4)*(l(1)-w

(2,4)/tan(pi/4))]);

68 wmax(2,1) = 0;

69

70 %node3

71 s1=acos(l(1)/l(6));

72 s2=atan(l(1)/(l(5)+a_nodes(2,5)-a_nodes(2,4)));

73 s3=acos(l(5)/l(30));

74

75 wmax(3,2) = min([2*a(1,2) , tan(pi/4)*(l(1)-w(3,30)/sin(pi/4)) , l(5)]);

76 wmax(3,30) = min([sin(pi/2-s3)*(l(1)-w(3,2)/tan(pi/2-s3)) , sin(s3)*(l(5)-w

(3,5)/tan(s3))]);

77 wmax(3,5) = 0;

78 wmax(3,7) = min([sin(s2)*(l(5)-w(3,5)/tan(s2)) , sin(pi/2-s2+sign(a_nodes

(2,3)-a_nodes(2,16))*s1)*(l(1)/cos(s1)-w(3,6)/tan(pi/2-s2+sign(a_nodes

(2,3)-a_nodes(2,16))*s1)-sign(a_nodes(2,3)-a_nodes(2,16))*w(3,6)*tan(pi

/2-s2+sign(a_nodes(2,3)-a_nodes(2,16))*s1))]);

79 wmax(3,6) = min([(2*a(1,2)-sign(a_nodes(2,3)-a_nodes(2,16)))/cos(s1) , tan(

pi/2-s2+sign(a_nodes(2,3)-a_nodes(2,16))*s1)/(1+tan(pi/2-s2+s1)*tan(s1)

*(a_nodes(2,16)>a_nodes(2,3)))*(l(1)/cos(s1)-w(3,7)/sin(pi/2-s2+sign(

a_nodes(2,3)-a_nodes(2,16))*s1)) , cos(s1)*(l(5)+l(1)*tan(s1))]);

80

81 %node4

82 s1=acos(l(1)/l(8));

83 s2=atan(l(1)/(l(5)+a_nodes(2,16)-a_nodes(2,3)));

84 s3=acos(l(5)/l(3));

85

86 wmax(4,4) = min([2*a(1,1) , tan(pi/4)*(l(1)-w(4,3)/sin(pi/4)) , l(5)]);

87 wmax(4,3) = min([sin(pi/2-s3)*(l(1)-w(4,4)/tan(pi/2-s3)) , sin(s3)*(l(5)-w

(4,5)/tan(s3))]);

88 wmax(4,5) = 0;

89 wmax(4,31) = min([sin(s2)*(l(5)-w(4,5)/tan(s2)) , sin(pi/2-s2+sign(a_nodes

(2,4)-a_nodes(2,5))*s1)*(l(1)/cos(s1)-w(4,8)/tan(pi/2-s2+sign(a_nodes

(2,4)-a_nodes(2,5))*s1)-sign(a_nodes(2,4)-a_nodes(2,5))*w(4,8)*tan(pi/2-

s2+sign(a_nodes(2,4)-a_nodes(2,5))*s1))]);

90 wmax(4,8) = min([(2*a(1,1)-sign(a_nodes(2,4)-a_nodes(2,5)))/cos(s1) , tan(

pi/2-s2+sign(a_nodes(2,4)-a_nodes(2,5))*s1)/(1+tan(pi/2-s2+s1)*tan(s1)*(

a_nodes(2,5)>a_nodes(2,4)))*(l(1)/cos(s1)-w(4,31)/sin(pi/2-s2+sign(
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a_nodes(2,4)-a_nodes(2,5))*s1)) , cos(s1)*(l(5)+l(1)*tan(s1))]);

91

92 %node 5

93 s2=atan(abs(a_nodes(2,7)-a_nodes(2,5))/l(25));

94 s3=atan(l(25)/(l(9)+a_nodes(2,16)-a_nodes(2,6)));

95 s4=acos((l(12)ˆ2+l(23)ˆ2-l(24)ˆ2)/(2*l(12)*l(23)));

96 s5=atan(abs(a_nodes(2,4)-a_nodes(2,5))/l(1));

97 s6=acos((l(9)+a_nodes(2,16)-a_nodes(2,3))/l(7));

98

99 wmax(5,22) =min([2*a(3,2) , tan(pi/2-s4)*(l(22)-w(5,23)/sin(pi/2-s4)) , l

(25)]);

100 wmax(5,23) =min([sin(pi/2-s4)*(l(22)-w(5,22)/tan(pi/2-s4)) , sin(s4+sign(

a_nodes(2,7)-a_nodes(2,5))*s2)*(l(25)/cos(s2)-w(5,12)/tan(s4+sign(

a_nodes(2,7)-a_nodes(2,5))*s2)-sign(a_nodes(2,7)-a_nodes(2,5))*w(5,12)*

tan(s2))]);

101 wmax(5,12) =min([tan(s4+sign(a_nodes(2,7)-a_nodes(2,5))*s2)/(1+tan(s2)*tan(

s4+s2)*(a_nodes(2,7)>a_nodes(2,5)))*(l(25)/cos(s2)-w(5,23)/sin(s4+sign(

a_nodes(2,7)-a_nodes(2,5))*s2)) , tan(pi/2-sign(a_nodes(2,7)-a_nodes

(2,5))*s2-s3)/(1+tan(s2)*tan(pi/2+s2-s3)*(a_nodes(2,5)>a_nodes(2,7)))*(l

(25)/cos(s2)-w(5,11)/sin(pi/2-sign(a_nodes(2,7)-a_nodes(2,5))*s2-s3))]);

102 wmax(5,11) =min([sin(pi/2-sign(a_nodes(2,7)-a_nodes(2,5))*s2-s3)*(l(25)/cos

(s2)-w(5,12)/tan(pi/2-sign(a_nodes(2,7)-a_nodes(2,5))*s2-s3)+sign(

a_nodes(2,7)-a_nodes(2,5))*w(5,12)*tan(s2)) , sin(s3)*(l(9)-w(5,9)/tan(

s3))]);

103 wmax(5,9) =min([tan(s3)*(l(9)-w(5,11)/sin(s3)) , tan(s4)*(l(9)-w(5,7)/sin(

s4))]);

104 wmax(5,7) =min([sin(s6)*(l(9)-w(5,9)/tan(s6)) , sin(pi/2-s4-sign(a_nodes

(2,4)-a_nodes(2,5))*s5)*(l(1)/cos(s5)-w(5,8)/tan(pi/2-s4-sign(a_nodes

(2,4)-a_nodes(2,5))*s5)+sign(a_nodes(2,4)-a_nodes(2,5))*w(5,8)*tan(s5))

]);

105 wmax(5,8) =min([tan(pi/2-sign(a_nodes(2,4)-a_nodes(2,5))*s5-s4)/(1+tan(pi

/2+s5-s4)*tan(s5)*(a_nodes(2,5)>a_nodes(2,4)))*(l(1)/cos(s5)-w(5,7)/sin(

pi/2-sign(a_nodes(2,4)-a_nodes(2,5))*s5-s4)) , (2*a(1,1)+2*a(3,2)*tan(s5

))*cos(s5)*(a_nodes(2,4)>a_nodes(2,5))+(2*a(1,1)-l(1)*tan(s5))*(a_nodes

(2,5)>=a_nodes(2,4)) , cos(s5)*(l(9)+l(1)*tan(s5))]);

106

107 %node 6

108 s7=atan(abs(a_nodes(2,8)-a_nodes(2,6))/l(17));

109 s8=atan(l(17)/(l(17)+a_nodes(2,5)-a_nodes(2,4)));

110 s9=atan(l(25)/(l(13)+a_nodes(2,5)-a_nodes(2,7)));

111 s10=atan(abs(a_nodes(2,16)-a_nodes(2,6))/l(25));

112

113 wmax(6,14) = min([cos(s7)*(2*a_nodes(2,6)+sign(a_nodes(2,8)-a_nodes(2,6))*l

(17)*tan(s7)) , tan(pi/2-s8-sign(a_nodes(2,8)-a_nodes(2,6))*s7)/(1+tan(

pi/2-s8+s7)*tan(s7)*(a_nodes(2,6)>a_nodes(2,8)))*(l(17)/cos(s7)-w(6,15)/

sin(pi/2-s8-sign(a_nodes(2,8)-a_nodes(2,6))*s7)) , cos(s7)*(l(13)+l(17)*

tan(s7))]);
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114 wmax(6,15) = min([sin(pi/2-sign(a_nodes(2,8)-a_nodes(2,6))*s7-s8)*(l(17)/

cos(s7)-w(6,14)/tan(pi/2-sign(a_nodes(2,8)-a_nodes(2,6))*s7-s8)+sign(

a_nodes(2,8)-a_nodes(2,6))*w(6,14)*tan(s7)) , sin(s8)*(l(13)-w(6,13)/tan

(s8))]);

115 wmax(6,13) = min([tan(s8)*(l(13)-w(6,15)/sin(s8)) , tan(s9)*(l(13)-w(6,11)/

sin(s9)) , l(17) , l(25)]);

116 wmax(6,11) = min([sin(s9)*(l(13)-w(6,13)/tan(s9)) , sin(pi/2-sign(a_nodes

(2,16)-a_nodes(2,6))*s10-s9)*(l(25)/cos(s10)-w(6,10)/tan(pi/2-sign(

a_nodes(2,16)-a_nodes(2,6))*s10-s9)+sign(a_nodes(2,16)-a_nodes(2,6))*w

(6,10)*tan(s10))]);

117 wmax(6,10) = min([cos(s10)*(2*a_nodes(2,6)+sign(a_nodes(2,16)-a_nodes(2,6))

*l(25)*tan(s10)) , tan(pi/2-s9-sign(a_nodes(2,16)-a_nodes(2,6))*s10)/(1+

tan(pi/2-s9-sign(a_nodes(2,16)-a_nodes(2,6))*s10)*tan(s10)*(a_nodes(2,6)

>a_nodes(2,16)))*(l(25)/cos(s10)-w(6,11)/sin(pi/2-s9-sign(a_nodes(2,16)-

a_nodes(2,6))*s10)) , cos(s10)*(l(13)+l(25)*tan(s10))]);

118

119 %node 7

120 s2=atan(abs(a_nodes(2,5)-a_nodes(2,7))/l(25));

121 s3=atan(l(25)/(l(13)+a_nodes(2,6)-a_nodes(2,16)));

122 s4=acos((l(12)ˆ2+l(35)ˆ2-l(22)ˆ2)/(2*l(12)*l(35)));

123 s5=atan(abs(a_nodes(2,9)-a_nodes(2,7))/l(17));

124 s6=acos((l(13)+a_nodes(2,6)-a_nodes(2,8))/l(33));

125

126 wmax(7,24) =min([2*a(3,1) , tan(pi/2-s4)*(l(24)-w(7,35)/sin(pi/2-s4)) , l

(25)]);

127 wmax(7,35) =min([sin(pi/2-s4)*(l(24)-w(7,24)/tan(pi/2-s4)) , sin(s4+sign(

a_nodes(2,5)-a_nodes(2,7))*s2)*(l(25)/cos(s2)-w(7,12)/tan(s4+sign(

a_nodes(2,5)-a_nodes(2,7))*s2)-sign(a_nodes(2,5)-a_nodes(2,7))*w(7,12)*

tan(s2))]);

128 wmax(7,12) =min([tan(s4+sign(a_nodes(2,5)-a_nodes(2,7))*s2)/(1+tan(s2)*tan(

s4+s2)*(a_nodes(2,5)>a_nodes(2,7)))*(l(25)/cos(s2)-w(7,35)/sin(s4+sign(

a_nodes(2,5)-a_nodes(2,7))*s2)) , tan(pi/2-sign(a_nodes(2,5)-a_nodes

(2,7))*s2-s3)/(1+tan(s2)*tan(pi/2+s2-s3)*(a_nodes(2,7)>a_nodes(2,5)))*(l

(25)/cos(s2)-w(7,32)/sin(pi/2-sign(a_nodes(2,5)-a_nodes(2,7))*s2-s3))]);

129 wmax(7,32) =min([sin(pi/2-s2-s3)*(l(25)/cos(s2)-w(7,12)/tan(pi/2-s2-s3)+

sign(a_nodes(2,5)-a_nodes(2,7))*w(7,12)*tan(s2)) , sin(s3)*(l(13)-w

(7,13)/tan(s3))]);

130 wmax(7,13) =min([tan(s3)*(l(13)-w(7,32)/sin(s3)) , tan(s4)*(l(13)-w(7,33)/

sin(s4))]);

131 wmax(7,33) =min([sin(s6)*(l(13)-w(7,13)/tan(s6)) , sin(pi/2-s4-sign(a_nodes

(2,9)-a_nodes(2,7))*s5)*(l(1)/cos(s5)-w(7,16)/tan(pi/2-s4-sign(a_nodes

(2,9)-a_nodes(2,7))*s5)+sign(a_nodes(2,9)-a_nodes(2,7))*w(7,16)*tan(s5))

]);

132 wmax(7,16) =min([tan(pi/2-sign(a_nodes(2,9)-a_nodes(2,7))*s5-s4)/(1+tan(pi

/2+s5-s4)*tan(s5)*(a_nodes(2,7)>a_nodes(2,9)))*(l(1)/cos(s5)-w(7,33)/sin

(pi/2-sign(a_nodes(2,9)-a_nodes(2,7))*s5-s4)) , (2*a(2,2)+2*a(3,1)*tan(

s5))*cos(s5)*(a_nodes(2,9)>a_nodes(2,7))+(2*a(2,2)-l(17)*tan(s5))*(
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a_nodes(2,7)>=a_nodes(2,9)) , cos(s5)*(l(13)+l(1)*tan(s5))]);

133

134 %node8

135 s1=acos(l(17)/l(14));

136 s2=atan(l(17)/(l(17)+a_nodes(2,7)-a_nodes(2,9)));

137 s3=acos(l(17)/l(19));

138

139 wmax(8,18) = min([2*a(2,1) , tan(pi/4)*(l(17)-w(4,19)/sin(pi/4)) , l(17)]);

140 wmax(8,19) = min([sin(pi/2-s3)*(l(17)-w(8,18)/tan(pi/2-s3)) , sin(s3)*(l

(17)-w(8,17)/tan(s3))]);

141 wmax(8,17) = 0;

142 wmax(8,33) = min([sin(s2)*(l(17)-w(8,17)/tan(s2)) , sin(pi/2-s2+sign(

a_nodes(2,8)-a_nodes(2,6))*s1)*(l(17)/cos(s1)-w(8,14)/tan(pi/2-s2+sign(

a_nodes(2,8)-a_nodes(2,6))*s1)-sign(a_nodes(2,8)-a_nodes(2,6))*w(8,14)*

tan(pi/2-s2+sign(a_nodes(2,8)-a_nodes(2,6))*s1))]);

143 wmax(8,14) = min([(2*a(2,1)-sign(a_nodes(2,8)-a_nodes(2,6)))/cos(s1) , tan(

pi/2-s2+sign(a_nodes(2,8)-a_nodes(2,6))*s1)/(1+tan(pi/2-s2+s1)*tan(s1)*(

a_nodes(2,6)>a_nodes(2,8)))*(l(17)/cos(s1)-w(8,33)/sin(pi/2-s2+sign(

a_nodes(2,8)-a_nodes(2,6))*s1)) , cos(s1)*(l(17)+l(17)*tan(s1))]);

144

145 %node9

146 s1=acos(l(17)/l(16));

147 s2=atan(l(17)/(l(17)+a_nodes(2,6)-a_nodes(2,8)));

148 s3=acos(l(17)/l(34));

149

150 wmax(9,20) = min([2*a(2,2) , tan(pi/4)*(l(17)-w(4,34)/sin(pi/4)) , l(17)]);

151 wmax(9,34) = min([sin(pi/2-s3)*(l(17)-w(9,20)/tan(pi/2-s3)) , sin(s3)*(l

(17)-w(9,17)/tan(s3))]);

152 wmax(9,17) = 0;

153 wmax(9,15) = min([sin(s2)*(l(17)-w(9,17)/tan(s2)) , sin(pi/2-s2+sign(

a_nodes(2,9)-a_nodes(2,7))*s3)*(l(17)/cos(s1)-w(9,16)/tan(pi/2-s2+sign(

a_nodes(2,9)-a_nodes(2,7))*s3)-sign(a_nodes(2,9)-a_nodes(2,7))*w(9,16)*

tan(pi/2-s2+sign(a_nodes(2,9)-a_nodes(2,7))*s3))]);

154 wmax(9,16) = min([(2*a(2,2)-sign(a_nodes(2,9)-a_nodes(2,7)))/cos(s1) , tan(

pi/2-s2+sign(a_nodes(2,9)-a_nodes(2,7))*s1)/(1+tan(pi/2-s2+s1)*tan(s1)*(

a_nodes(2,7)>a_nodes(2,9)))*(l(17)/cos(pi/2-s2)-w(9,15)/sin(pi/2-s2+sign

(a_nodes(2,9)-a_nodes(2,7))*s1)) , cos(s1)*(l(17)+l(17)*tan(s1))]);

155

156 %node10

157 wmax(10,39) = 2*a(2,1);%F3

158 wmax(10,18) = min([2*a(2,1) , tan(pi/4)*(l(21)-w(10,34)/sin(pi/4))]);

159 wmax(10,34) = min([sin(pi/4)*(l(21)-w(10,21)/tan(pi/4)) , sin(pi/4)*(l(21)-

w(10,18)/tan(pi/4))]);

160 wmax(10,21) = 0;

161

162 %node11

163 wmax(11,40) = 2*a(2,2);%F4
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164 wmax(11,20) = min([2*a(2,2) , tan(pi/4)*(l(21)-w(11,19)/sin(pi/4))]);

165 wmax(11,19) = min([sin(pi/4)*(l(21)-w(11,21)/tan(pi/4)) , sin(pi/4)*(l(21)-

w(11,20)/tan(pi/4))]);

166 wmax(11,21) = 0;

167

168 %node12

169 s1=atan(l(25)/(l(22)+a_nodes(2,5)-a_nodes(2,7)));

170 s2=acos(l(26)/l(27));

171

172 wmax(12,22) = min([2*a(3,2) , tan(s1)*(l(22)-w(12,35)/sin(s1)) , l(25)]);

173 wmax(12,35) = min([sin(s1)*(l(22)-w(12,22)/tan(s1)) , sin(pi/2-s1)*(l(25)-w

(12,25)/tan(pi/2-s1))]);

174 wmax(12,25) = 0;

175 wmax(12,27) = min([sin(s2)*(l(25)-w(12,26)/tan(s2)) , sin(pi/2-s2)*(l(25)-w

(12,25)/tan(pi/2-s2))]);

176 wmax(12,26) = min([2*a(3,2) , tan(s2)*(l(25)-w(12,27)/sin(s2)) , l(25)]);

177

178 %node13

179 s1=atan(l(25)/(l(24)+a_nodes(2,7)-a_nodes(2,5)));

180 s2=acos(l(28)/l(36));

181

182 wmax(13,24) = min([2*a(3,1) , tan(s1)*(l(24)-w(13,23)/sin(s1)) , l(25)]);

183 wmax(13,23) = min([sin(s1)*(l(24)-w(13,24)/tan(s1)) , sin(pi/2-s1)*(l(25)-w

(13,25)/tan(pi/2-s1))]);

184 wmax(13,25) = 0;

185 wmax(13,36) = min([sin(s2)*(l(25)-w(13,28)/tan(s2)) , sin(pi/2-s2)*(l(25)-w

(13,25)/tan(pi/2-s2))]);

186 wmax(13,28) = min([2*a(3,1) , tan(s2)*(l(25)-w(13,36)/sin(s2)) , l(25)]);

187

188 %node14

189 wmax(14,42) = 2*a(3,2);%F6

190 wmax(14,26) = min([2*a(3,2) , tan(pi/4)*(l(25)-w(14,36)/sin(pi/4))]);

191 wmax(14,36) = min([sin(pi/4)*(l(25)-w(14,26)/tan(pi/4)) , sin(pi/4)*(l(29)-

w(14,29)/tan(pi/4))]);

192 wmax(14,29) = 0;

193

194 %node15

195 wmax(15,41) = 2*a(3,1);%F5

196 wmax(15,28) = min([2*a(3,1) , tan(pi/4)*(l(25)-w(15,27)/sin(pi/4))]);

197 wmax(15,27) = min([sin(pi/4)*(l(25)-w(15,28)/tan(pi/4)) , sin(pi/4)*(l(29)-

w(15,29)/tan(pi/4))]);

198 wmax(15,29) = 0;

199

200 %node 16

201 s7=atan(abs(a_nodes(2,3)-a_nodes(2,16))/l(1));

202 s8=atan(l(1)/(l(1)+a_nodes(2,5)-a_nodes(2,4)));

203 s9=atan(l(25)/(l(9)+a_nodes(2,5)-a_nodes(2,7)));
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204 s10=atan(abs(a_nodes(2,6)-a_nodes(2,16))/l(25));

205

206 wmax(16,6) = min([cos(s7)*(2*a_nodes(2,16)+sign(a_nodes(2,3)-a_nodes(2,16))

*l(1)*tan(s7)) , tan(pi/2-s8-sign(a_nodes(2,3)-a_nodes(2,16))*s7)/(1+tan

(pi/2-s8+s7)*tan(s7)*(a_nodes(2,16)>a_nodes(2,3)))*(l(1)/cos(s7)-w

(16,31)/sin(pi/2-s8-sign(a_nodes(2,3)-a_nodes(2,16))*s7)) , cos(s7)*(l

(9)+l(1)*tan(s7))]);

207 wmax(16,31) = min([sin(pi/2-sign(a_nodes(2,3)-a_nodes(2,16))*s7-s8)*(l(1)/

cos(s7)-w(16,6)/tan(pi/2-sign(a_nodes(2,3)-a_nodes(2,16))*s7-s8)+sign(

a_nodes(2,3)-a_nodes(2,16))*w(16,6)*tan(s7)) , sin(s8)*(l(9)-w(16,9)/tan

(s8))]);

208 wmax(16,9) = min([tan(s8)*(l(9)-w(16,31)/sin(s8)) , tan(s9)*(l(9)-w(16,32)/

sin(s9)) , l(1) , l(25)]);

209 wmax(16,32) = min([sin(s9)*(l(9)-w(16,9)/tan(s9)) , sin(pi/2-sign(a_nodes

(2,6)-a_nodes(2,16))*s10-s9)*(l(25)/cos(s10)-w(16,10)/tan(pi/2-sign(

a_nodes(2,6)-a_nodes(2,16))*s10-s9)+sign(a_nodes(2,6)-a_nodes(2,16))*w

(16,10)*tan(s10))]);

210 wmax(16,10) = min([cos(s10)*(2*a_nodes(2,16)+sign(a_nodes(2,6)-a_nodes

(2,16))*l(25)*tan(s10)) , tan(pi/2-s9-sign(a_nodes(2,6)-a_nodes(2,16))*

s10)/(1+tan(pi/2-s9-sign(a_nodes(2,6)-a_nodes(2,16))*s10)*tan(s10)*(

a_nodes(2,16)>a_nodes(2,6)))*(l(25)/cos(s10)-w(16,32)/sin(pi/2-s9-sign(

a_nodes(2,6)-a_nodes(2,16))*s10)) , cos(s10)*(l(9)+l(25)*tan(s10))]);

211

212

213

214 %Setting the lowest value of wmax from the two nodes of each strut as wmax

215 %in both nodes

216 wmax=(wmax˜=0).*min((wmax==0).*max(wmax)+wmax);

217

218 %w=0 in ties

219 w=w_store;

220 w=w.*((node.*F_nodes)<0);

221

222 %A check is conducted widths and the two trusses which are not allowed to

223 %be ties (11 & 32)

224 checked=sum(sum((w./(wmax+(wmax==0)).*(1-(wmax==0)))>1.01))+(N_STM(11)>0)+(

N_STM(32)>0);

225

226 end

Force Check

1 function check = force_check(N,F,Fv,theta,l,a_nodes)

2

3 %Predefining

4 eq=0*a_nodes;

5
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6 %Node 1

7 eq(1,1)=N(2)+N(3)*l(2)/l(3)-F(1,2)-Fv(1)*cos(theta(1))*(N(3)==0);

8 eq(2,1)=N(1)+N(3)*l(1)/l(3)+Fv(1)*sin(theta(1))*(N(3)==0);

9 %Node 2

10 eq(1,1)=N(4)+N(30)*l(4)/l(30)-F(1,1)-Fv(1)*cos(theta(1))*(N(30)==0);

11 eq(2,1)=N(1)+N(30)*l(1)/l(30)+Fv(1)*sin(theta(1))*(N(30)==0);

12 %Node 3

13 eq(1,3)=N(6)*l(1)/l(6)+N(7)*l(1)/l(7)-N(30)*l(1)/l(30)-N(2);

14 eq(2,3)=N(30)*l(5)/l(30)+N(5)+N(7)*(l(5)+a_nodes(2,4)-a_nodes(2,5))/l(7)+N

(6)*(a_nodes(2,16)-a_nodes(2,3))/l(6);

15 %Node 4

16 eq(1,4)=N(8)*l(1)/l(8)+N(31)*l(1)/l(31)-N(3)*l(1)/l(3)-N(4);

17 eq(2,4)=N(3)*l(5)/l(3)+N(5)+N(31)*(l(5)+a_nodes(2,3)-a_nodes(2,16))/l(31)+N

(8)*(a_nodes(2,5)-a_nodes(2,4))/l(8);

18 %Node 5

19 eq(1,5)=N(12)*l(25)/l(12)+N(23)*l(25)/l(23)+N(11)*l(25)/l(11)-N(8)*l(1)/l

(8)-N(7)*l(1)/l(7);

20 eq(2,5)=N(22)-N(9)+N(23)*l(22)/l(23)+N(12)*(a_nodes(2,5)-a_nodes(2,7))/l

(12)-N(11)*(l(13)+a_nodes(2,7)-a_nodes(2,5))/l(11)-N(7)*(l(5)+a_nodes

(2,4)-a_nodes(2,5))/l(7)+N(8)*(a_nodes(2,5)-a_nodes(2,4))/l(8);

21 %Node 6

22 eq(1,6)=-N(15)*l(17)/l(15)+N(11)*l(25)/l(11)+N(10)*l(25)/l(10)-N(14)*l(17)/

l(14);

23 eq(2,6)=N(13)+N(15)*(l(17)+a_nodes(2,8)-a_nodes(2,6))/l(15)+N(11)*(l(13)+

a_nodes(2,7)-a_nodes(2,5))/l(11)+N(14)*(a_nodes(2,8)-a_nodes(2,6))/l(14)

+N(10)*(a_nodes(2,16)-a_nodes(2,6))/l(10);

24 %Node 7

25 eq(1,7)=N(12)*l(25)/l(12)+N(35)*l(25)/l(35)+N(32)*l(25)/l(32)-N(16)*l(17)/l

(16)-N(33)*l(17)/l(33);

26 eq(2,7)=N(24)-N(13)+N(35)*l(24)/l(35)+N(12)*(a_nodes(2,7)-a_nodes(2,5))/l

(12)-N(32)*(l(9)+a_nodes(2,5)-a_nodes(2,7))/l(32)-N(33)*(l(17)+a_nodes

(2,9)-a_nodes(2,7))/l(33)+N(16)*(a_nodes(2,7)-a_nodes(2,9))/l(16);

27 %Node 8

28 eq(1,8)=N(14)*l(17)/l(14)+N(33)*l(17)/l(33)-N(19)*l(17)/l(19)-N(18);

29 eq(2,8)=N(19)*l(17)/l(19)+N(17)+N(33)*(l(17)+a_nodes(2,9)-a_nodes(2,7))/l

(33)+N(14)*(a_nodes(2,6)-a_nodes(2,8))/l(14);

30 %Node 9

31 eq(1,9)=N(16)*l(17)/l(16)+N(15)*l(17)/l(15)-N(34)*l(17)/l(34)-N(20);

32 eq(2,9)=N(34)*l(17)/l(34)+N(17)+N(15)*(l(17)+a_nodes(2,8)-a_nodes(2,6))/l

(15)+N(16)*(a_nodes(2,7)-a_nodes(2,9))/l(16);

33 %Node 10

34 eq(1,10)=F(2,1)+Fv(2)*cos(theta(2))*(N(34)==0)-N(34)*l(18)/l(34)-N(18);

35 eq(2,10)=Fv(2)*sin(theta(2))*(N(34)==0)+N(21)+N(34)*l(21)/l(34);

36 %Node 11

37 eq(1,11)=F(2,2)+Fv(2)*cos(theta(2))*(N(19)==0)-N(19)*l(20)/l(19)-N(20);

38 eq(2,11)=Fv(2)*sin(theta(2))*(N(19)==0)+N(21)+N(19)*l(21)/l(19);

39 %Node 12

120



40 eq(1,12)=N(27)*l(25)/l(27)+N(25)+N(35)*l(25)/l(35);

41 eq(2,12)=N(26)+N(27)*l(26)/l(27)-N(35)*l(24)/l(35)-N(22);

42 %Node 13

43 eq(1,13)=N(36)*l(25)/l(36)+N(25)+N(23)*l(25)/l(23);

44 eq(2,13)=N(28)+N(36)*l(28)/l(36)-N(23)*l(22)/l(23)-N(24);

45 %Node 14

46 eq(1,14)=N(29)+Fv(3)*sin(theta(3))*(N(36)==0)+N(36)*l(29)/l(36);

47 eq(2,14)=F(3,2)+Fv(3)*cos(theta(3))*(N(36)==0)-N(26)-N(36)*l(26)/l(36);

48 %Node 15

49 eq(1,15)=N(29)+Fv(3)*sin(theta(3))*(N(27)==0)+N(27)*l(29)/l(27);

50 eq(2,15)=F(3,1)+Fv(3)*cos(theta(3))*(N(27)==0)-N(28)-N(27)*l(28)/l(27);

51 %Node 16

52 eq(1,16)=-N(31)*l(1)/l(31)+N(32)*l(25)/l(32)+N(10)*l(25)/l(10)-N(6)*l(1)/l

(6);

53 eq(2,16)=N(9)+N(31)*(l(5)+a_nodes(2,3)-a_nodes(2,16))/l(31)+N(32)*(l(13)+

a_nodes(2,6)-a_nodes(2,16))/l(32)+N(6)*(a_nodes(2,3)-a_nodes(2,16))/l(6)

+N(10)*(a_nodes(2,6)-a_nodes(2,16))/l(10);

54

55 %Check of forces in nodes

56 check=sum(sum(abs(eq)>max(abs(N))*4*10ˆ(-3)));

57 end

Draw STM

1 function draw_STM(N,l,a_nodes)

2

3

4

5

6 base_x = [0 0 l(4) l(4)+l(1) l(4)+l(1)+l(25) l(4)+l(1)+l(25)+l(17) l(4)+l

(1)+l(25)+l(17)+l(20) l(4)+l(1)+l(25)+l(17)+l(20) l(4)+l(1)+l(25)+l(17)+

l(20)-l(18) l(4)+l(1)+l(25)+l(20)-l(18) l(4)+l(1)+l(20)-l(18) l(4)+l(20)

-l(18) l(4)+l(20)-l(18)-l(2)];

7 base_y = [a_nodes(2,1) a_nodes(2,1)+l(1) a_nodes(2,3)+l(5) a_nodes(2,16)+l

(9) a_nodes(2,6)+l(13) a_nodes(2,8)+l(17) a_nodes(2,10)+l(21) a_nodes

(2,10) a_nodes(2,8) a_nodes(2,6) a_nodes(2,16) a_nodes(2,3) a_nodes(2,1)

];

8

9 top_x = [l(4)+l(1) l(4)+l(1) l(4)+l(1) l(4)+l(1)+l(29) l(4)+l(1)+l(29) l(4)

+l(1)+l(29) l(4)+l(1)];

10 top_y = [a_nodes(2,16)+l(9) a_nodes(2,16)+l(9)+l(22) a_nodes(2,16)+l(9)+l

(22)+l(26) a_nodes(2,16)+l(9)+l(22)+l(26) a_nodes(2,16)+l(9)+l(22)+l(26)

-l(28) a_nodes(2,16)+l(9)+l(22)+l(26)-l(28)-l(24) a_nodes(2,16)+l(9)];

11 shear_left_x = [0 l(2)*(N(3)==1) l(2)*(N(3)==1) (l(2)+l(1))*(N(3)==1) (l(2)

+l(1))*(N(30)==0) (l(2)+l(1))*(N(30)==0)+l(2)*(N(30)==1) (l(2)+l(1))*(N

(30)==0)+l(2)*(N(30)==1) (l(2)+l(1))*(N(30)==0)+(l(2)+l(1))*(N(30)==1) (

l(2)+l(1))*(N(30)==0)+(l(2)+l(1))*(N(30)==1) (l(2)+l(1))*(N(30)==0)+(l

121



(2)+l(1))*(N(30)==1)];

12 shear_left_y = [a_nodes(2,1) a_nodes(2,1)*(N(3)==0)+(a_nodes(2,3)+l(5))*(N

(3)==1) a_nodes(2,1)*(N(3)==0)+a_nodes(2,3)*(N(3)==1) a_nodes(2,1)*(N(3)

==0)+(a_nodes(2,16)+l(9))*(N(3)==1) (a_nodes(2,16)+l(9))*(N(30)==0)+(

a_nodes(2,1)+l(1))*(N(30)==1) (a_nodes(2,16)+l(9))*(N(30)==0)+a_nodes

(2,3)*(N(30)==1) (a_nodes(2,16)+l(9))*(N(30)==0)+(a_nodes(2,3)+l(5))*(N

(30)==1) (a_nodes(2,16)+l(9))*(N(30)==0)+a_nodes(2,16)*(N(30)==1) ((

a_nodes(2,16)+l(9))*(N(30)==0)+a_nodes(2,16)*(N(30)==1))*(N(9)==0)+

a_nodes(2,16)*(N(9)==1) ((a_nodes(2,16)+l(9))*(N(30)==0)+a_nodes(2,16)*(

N(30)==1))*(N(9)==0)+(a_nodes(2,16)+l(9))*(N(9)==1)];

13

14 shear_right_x = [(l(4)+l(1)+l(25)+l(17)+l(20)) (l(4)+l(1)+l(25)+l(17)+l(20)

)*(N(34)==0)+(l(4)+l(1)+l(25)+l(17))*(N(34)==1) (l(4)+l(1)+l(25)+l(17)+l

(20))*(N(34)==0)+(l(4)+l(1)+l(25)+l(17))*(N(34)==1) (l(4)+l(1)+l(25)+l

(17)+l(20))*(N(34)==0)+(l(4)+l(1)+l(25))*(N(34)==1) (l(4)+l(1)+l(25))*(N

(19)==0)+(l(4)+l(1)+l(25)+l(17)+l(20))*(N(19)==1) (l(4)+l(1)+l(25))*(N

(19)==0)+(l(4)+l(1)+l(25)+l(17))*(N(19)==1) (l(4)+l(1)+l(25))*(N(19)==0)

+(l(4)+l(1)+l(25)+l(17))*(N(19)==1) (l(4)+l(1)+l(25))*(N(19)==0)+(l(4)+l

(1)+l(25))*(N(19)==1) (l(4)+l(1)+l(25))*(N(19)==0)+(l(4)+l(1)+l(25))*(N

(19)==1) (l(4)+l(1)+l(25))*(N(19)==0)+(l(4)+l(1)+l(25))*(N(19)==1)];

15

16 shear_right_y = [a_nodes(2,10) a_nodes(2,10)*(N(34)==0)+(a_nodes(2,8)+l(17)

)*(N(34)==1) a_nodes(2,10)*(N(34)==0)+a_nodes(2,8)*(N(34)==1) a_nodes

(2,10)*(N(34)==0)+(a_nodes(2,6)+l(13))*(N(34)==1) (a_nodes(2,6)+l(13))*(

N(19)==0)+(a_nodes(2,10)+l(21))*(N(19)==1) (a_nodes(2,6)+l(13))*(N(19)

==0)+a_nodes(2,8)*(N(19)==1) (a_nodes(2,6)+l(13))*(N(19)==0)+(a_nodes

(2,8)+l(17))*(N(19)==1) (a_nodes(2,6)+l(13))*(N(19)==0)+a_nodes(2,6)*(N

(19)==1) ((a_nodes(2,6)+l(13))*(N(19)==0)+a_nodes(2,6)*(N(19)==1))*(N

(13)==0)+a_nodes(2,6)*(N(13)==1) ((a_nodes(2,6)+l(13))*(N(19)==0)+

a_nodes(2,6)*(N(19)==1))*(N(13)==0)+(a_nodes(2,6)+l(13))*(N(13)==1)];

17 shear_top_x = [(l(2)+l(1)) l(2)+l(1)+l(25)*(N(36)==1) l(2)+l(1) l(2)+l(1)+l

(25)*(N(36)==1) l(2)+l(1)+l(25) l(2)+l(1)+l(25)*(N(36)==1) l(2)+l(1)+l

(25) l(2)+l(1)+l(25)*(N(36)==1)];

18 shear_top_y = [a_nodes(2,16)+l(9)+l(22)+l(26) (a_nodes(2,16)+l(9)+l(22)+l

(26))*(N(36)==0)+(a_nodes(2,6)+l(13)+l(24))*(N(36)==1) (a_nodes(2,16)+l

(9)+l(22)+l(26))*(N(36)==0)+(a_nodes(2,16)+l(9)+l(22))*(N(36)==1) (

a_nodes(2,16)+l(9)+l(22)+l(26))*(N(36)==0)+(a_nodes(2,6)+l(13))*(N(36)

==1) (a_nodes(2,6)+l(13))*(N(36)==1)+(a_nodes(2,6)+l(13)+l(24)+l(28))*(N

(27)==1) (a_nodes(2,6)+l(13))*(N(36)==1)+(a_nodes(2,16)+l(9)+l(22))*(N

(27)==1) (a_nodes(2,6)+l(13))*(N(36)==1)+(a_nodes(2,6)+l(13)+l(24))*(N

(27)==1) (a_nodes(2,6)+l(13))*(N(36)==1)+(a_nodes(2,16)+l(9))*(N(27)==1)

];

19

20 int_11_x = [(l(2)+l(1))*(N(11)==1) (l(2)+l(1)+l(25))*(N(11)==1)];

21 int_11_y = [a_nodes(2,1)*(N(11)==0)+(l(9)+a_nodes(2,16))*(N(11)==1) a_nodes

(2,1)*(N(11)==0)+a_nodes(2,6)*(N(11)==1)];

22 int_32_x = [(l(2)+l(1))*(N(32)==1) (l(2)+l(1)+l(25))*(N(32)==1)];
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23 int_32_y = [a_nodes(2,1)*(N(32)==0)+a_nodes(2,16)*(N(32)==1) a_nodes(2,1)*(

N(32)==0)+(l(13)+a_nodes(2,6))*(N(32)==1)];

24

25

26 figure

27 hold on

28 plot(base_x, base_y,’-k’)

29 plot(top_x, top_y,’-k’)

30 plot(shear_left_x, shear_left_y,’-k’)

31 plot(shear_right_x, shear_right_y,’-k’)

32 plot(shear_top_x, shear_top_y,’-k’)

33 plot(int_11_x, int_11_y,’-k’)

34 plot(int_32_x, int_32_y,’-k’)

35 xlim([-100,(l(1)*2.5+l(25)+l(17)*2.5)])

36 ylim([-100,(max(l(9),l(13))+l(25)*2.5)])

37

38 end
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