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Abstract

Today, many existing structures, such as bridges, aircrafts, offshore oil platforms
and buildings, are reaching the end of their original design life. It is not economi-
cal to replace these systems. Damage detection techniques are therefore a research
of interest, in order to develop and implement techniques that allow structures
to work safely, even if their service life has been reached. This thesis uses differ-
ent damage sensitive features to identify three damages introduced in a cantilever
beam: point masses, boundary damages and cuts. First, a numerical study was
performed in order to establish a sufficient sensor layout for experimental testing.
A finite element model was created, before a numerical damage identification study
was performed. Based on the results and assumptions made from the numerical
study, an experimental study was performed. The damage sensitive features evalu-
ated were Natural Frequency Shifts, Mode Shapes, Mode Shape Curvature, Modal
Flexibility and Statistical Moments. The thesis revolves around the difficulties in
which damage scenarios that can be identified by the use of acceleration measure-
ments, how large the damages has to be in order to be detected, and whether it
is possible to identify the severity of the damage. The thesis also discuss how the
results can be implemented in full scale monitoring of real-life structures.

The results show that for a low number of sensors, with unequal spacing, dam-
age identification can be difficult. Most point mass and boundary damages were
identified from the recorded response histories, while cut damages had to be severe
in order to get good results. Further, the results show that damage identification
is possible by the use of the simplest techniques: Natural Frequency Shifts, Mode
Shapes, and Modal Flexibility. These damage sensitive features identify and clas-
sify the point mass, boundary and cut damages. None of the evaluated features
managed to locate damages. The proposed damage features can contribute to the
identification of structural damage, as it proves that the simplest methods obtain
better result for damage identification.
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Sammendrag

Dagens vei og jernbanenett best̊ar av et stort antall bruer som enten nærmer seg
eller har overskredet levetiden som ble lagt til grunn for dimensjonering av disse
konstruksjonene. Det er ikke økonomisk å erstatte disse systemene fullstendig. Det
er derfor stor interesse for å utvikle og implementere deteksjonsteknikker av skader,
slik at konstruksjoner kan fortsette å fungere trygt selv om levetiden deres er n̊add.
Denne oppgaven utforsker forskjellige skade-features for å identifisere tre skader:
punktmasser, skader p̊a opplager og kutt.

En numerisk studie ble først utført for å utforme optimal sensor plassering for
eksperimentell testing. En numerisk modell ble etablert før en numerisk skadei-
dentifikasjon ble utført. En eksperimentell studie ble deretter utført basert p̊a
resultatene og antagelsene gjort fra den numeriske studien. Skademetodene som
ble evaluert var egenfrekvenser (”Natural Frequency Shifts”), modeformer (”Mode
Shapes”), kurvatur (”Mode Shape Curvature”), fleksibilitet (”Modal Flexibility”)
og statistiske momenter. Oppgaven dreier seg om identifisering av skadescenarioer
ved bruk av akselerasjonsm̊alinger, hvor store skader m̊a være for å bli oppdaget,
og om det er mulig å identifisere skadens alvorlighetsgrad. Avhandlingen drøfter
ogs̊a hvordan resultatene kan implementeres i fullskala overv̊aking av eksisterende
konstruksjoner.

Resultatene viser at skadeidentifikasjon kan være vanskelig for et lavt antall sen-
sorer, med ujevn avstand. De fleste punktmasse- og grense-skader ble identifisert,
men kuttene krevde store magnituder/dybder for å oppn̊a gode resultater. Videre,
viser resultatene at skadeidentifisering er mulig ved bruk av de enkleste teknikkene
basert p̊a egenfrekvens, modeformer, og fleksibilitet. De foresl̊atte skademetodene
kan forbedre skadeidentifisering av eksisterende konstruksjoner, da det viser seg at
de enkle metodene oppn̊ar bedre resultat for identifisering.
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Chapter 1

Introduction

Today, the road and railway network consists of a large number of bridges that are
either near the end of, or have already exceeded their original design life, which
was the basis of the dimensioning. Technological development, population growth
and global warming have led to a significant increase in the load on the bridges.
Larger axle loads, larger traffic volumes, more extreme wind, wave and snow loads
are affecting the load carrying capacity of these bridges [8]. Additionally, larger
structures will be wanted in areas of more exposed environments, such as offshore
wind turbines, bridges on high-speed railway networks and fjord crossings, requiring
larger utilization of the structures than what can be seen today. Ageing infrastruc-
ture, higher loads and the need of structures in areas with extreme environments
increases the probability of damages and fractures in critical infrastructure.

Structural health monitoring is a technology which uses continuous measures,
together with advanced signal processing techniques, to identify and warn of dam-
ages in structures, so that necessary rehabilitating and maintenance measures can
be implemented. By monitoring structures, expensive inspection programs can be
replaced by inaccessible structural elements. Today this is carried out by special-

Figure 1.1: Damaged joint (Photo: Gunnstein T. Frøseth).



2 Introduction

ized personnel, working in dangerous environments at frequent intervals. Thus,
structural monitoring can contribute to proper use and optimal maintenance of
critical infrastructure. This have resulted in the desire to analyse and detect pos-
sible damages at the structure in an easy and cost efficient way without stopping
the daily use of the structures.

In this thesis, damage identification of a cantilever beam has been studied
numerically and experimentally. Three different damages have been evaluated:
boundary damages, point mass damages and cut damages. The boundary dam-
ages, represented as removed bolts, are severe damages and also a quite common
damage scenario. Damages on the boundary conditions can be a result of fatigue,
wear and overloads. A point mass is usually easy to detect visually, but is included
in this thesis due to a lack of test pieces. The stiffness cannot be directly reduced
several times, as these type of damages are hard to reverse. Cuts are such stiffness
reducing damages, and are not always easy to detect by visual inspections. Typical
damages represented by cuts are corrosion, actual cuts or other local material dam-
ages, such as fatigue, in an element. This thesis investigates different methods and
features for damage identification based on acceleration measurements. The goal is
to determine which damages that can be identified by means of acceleration mea-
surements, how large the damage must be before it can be identified, and whether
the severity of identified damages can be determined from the measurement data.

The thesis is divided into 5 chapters and an appendix. A short presentation of
the chapters are given below.

Chapter 2: An introduction to the theory relevant for the work performed for
this thesis. The chapter includes theory of structural dynamics, Rayleigh damp-
ing, modal analysis, structural health monitoring and damage identification.

Chapter 3: The case study of the cantilever beam is presented. The experimental
setup and the system identification of the cantilever beam is presented, as well as
the Finite Element model constructed. Natural frequencies and modal shapes of the
experimental and numerical case studies are established. The chapter also includes
the numerical and experimental implementation of damages evaluated in the thesis.

Chapter 4: The results of the experimental case study is presented and discussed.
The strength of different damage features are discusses based on the results.

Chapter 5: Conclusion based on the results of the previous chapters are presented.

Appendix A: Relevant tables.



Chapter 2

Theory

Section 2.1 to 2.5 were written by the students during the fall of 2019, as a part of
projects in TKT4520 - Structural Dynamics [7, 12].

2.1 Multi Degree of Freedom Systems

Structures are complex models and must be modelled as multi-degree of freedom
systems. The equations of motion of a multi-degree of freedom system subjected
to external forces can be written on matrix form as

[M ]{ü}+ [C]{u̇}+ [K]{u} = {P (t)}, (2.1)

where [M ] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix
and {P (t)} is the vector containing the applied forces. For complex structural
systems, with a large number of degrees of freedom (DOFs), the equation of motion
will be very difficult to solve. These cases are often solved by performing a finite
element analysis. For structural systems with fewer degrees of freedom, the mass,
damping and stiffness matrices can be established, and the equation of motion can
be solved with the often used approach of modal analysis. The modal analysis
assumes a solution to the equation of motion in (2.1) on the form

{u(x, t)} =

N∑
n=1

{φn(x)}qn(t) = [Φ]{q(t)}, (2.2)

where φn is the modal shape of a generic solution with natural frequency ωn, and
qn(t) is a simple harmonic function dependent of time. The assumed solution is
a linear combination, where the modal shape represents the physical deformation
of a structure, when being excited by a dynamic force with the same frequency as
the natural frequency of the structure itself. The modal shape is a dimensionless
parameter, and therefore freely scalable. Figure 2.1 shows the first 5 theoretical
modes of a cantilever beam. These are important when evaluating the dynamic re-
sponse of a civil structure, as they indicate how a structure will behave at resonance
frequency.
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Figure 2.1: Natural modal shapes of cantilever beam

2.2 Estimation of Rayleigh Damping coefficients

This section presents a proposed approach to approximate Rayleigh Damping coeffi-
cients [3]. Damping is an important characteristic in dynamic analysis of structures.
Damping values are treated as Rayleigh Damping in the form of[

C
]

= α
[
M
]

+ β
[
K
]
, (2.3)

where [C] is the damping matrix of the system, and α and β are pre-defined con-
stants. When introducing Rayleigh damping to a model, an estimation of the
Rayleigh damping coefficient must be made. The modal transformation of the
damping matrix [C] above, result in:

2ζiωi = α+ βω2
i , (2.4)

which can be simplified to the following expression for the damping ratio:

ζi =
α

2ωi
+
βωi
2
. (2.5)

Equation (2.5) shows that the damping ratio is proportional to the natural fre-
quencies of the structure.

When evaluating structures with a large number of DOFs, difficulties arise when
obtaining meaningful values of the damping coefficients. For large structures, only
a certain amount of modes, those contributing to the dynamic behavior, are rele-
vant. The number of significant modes are decided from the the mass participation
factors. The modes that make up 95% of the total mass, are included in the
calculation of the Rayleigh damping coefficients [3].
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The Rayleigh damping coefficients are calculated based on three sets of data. The
results are compared to a linear interpolation, where the coefficients from the ap-
proach that best fits the interpolation is chosen.

In the first data set, an initial damping ratio ζ1 for the first mode of the system,
and a damping ratio ζm for themth significant mode, are selected. The intermediate
modes i are obtained through linear interpolation:

ζi =
ζm − ζ1
ωm − ω1

(ωi − ω1) + ζ1, i ≤ m (2.6)

where ζi is the damping ratio of the ith mode. Then the damping coefficient β is
calculated based on the 1st and mth fundamental frequencies (ω1 and ωm) as:

β =
2ζ1ω1 − 2ζmωm

ω2
1 − ω2

m

. (2.7)

The value of β is substituted back into equation (2.4) to obtain a value for α. The
second data set consists of ζ1, ζ2.5m, ω1 and ω2.5m. The intermediate modes greater
than m are extrapolated based on the following expression:

ζi =
ζm − ζ1
ωm − ω1

(ωi+1 − ωm) + ζ1, m < i ≤ 2.5m (2.8)

The Rayleigh damping coefficients are calculated by equation (2.4) and (2.7). The
third data set is calculated based on the averages of the first and second data sets.
The three different results are plotted against a linear interpolation calculated from
equation (2.5).

2.3 System Identification

By evaluating the dynamic response of the system, important information about the
system behavior can be revealed. Experimental tests have become a common tool
to use in order to gain knowledge about the dynamic response of civil structures.
Experimental identification of modal parameters, such as natural frequencies ωn,
damping ratios ζn and modal shapes φn, date back to the middle of the 20th century
[17]. By assuming modal expansion as in equation (2.2), the dynamic behavior can
be described by a linear combination of natural modes. Each mode has its own
characteristic set of parameters that depend on the geometry of the structure,
material properties and boundary conditions. These modal characteristics can be
identified from measurements obtained from experimental or operational modal
analysis.

Experimental Modal Analysis (EMA) is an analysis method where the system
of evaluation is subjected to a known vibration (input), and the vibration response
(input) of the structure is measured. The application of EMA on civil structures
can be challenging, due to the fact that structures can be of large dimensions, and
have a low frequency range, Therefore, the application of controlled and measur-
able excitation requires heavy and expensive devices to induce sufficient level of
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excitation [17]. This has led to an increased focus on Operational Modal Anal-
ysis (OMA), where the experimental estimation is reliant on ambient excitation
from the environment. The modal parameters obtained are therefore actual repre-
sentations of the structure’s vibration in its operational condition. The vibration
obtained will be small, therefore sensitive and low-noise measurement equipment
is necessary [17]. OMA is often used since it is fast and cheap, while EMA requires
expensive and heavy devices. Also, performing an OMA will not affect the use of
the structure.

2.4 Mathematical tools for application to MDOF
systems

2.4.1 Autocorrelation

In operational modal analysis the system under evaluation is assumed to be linear,
and the loading is assumed to have white noise characteristics [20]. This results in
a random response vector, y(t). The response is assumed to be ergodic with zero
mean. The correlation function is defined as [14]:

Ryy(τ) = E[y(t)y(t+ τ)]. (2.9)

Since the signals are assumed ergodic, time averaging can be used. For the time
average to be equal to the expected value, the signal must approach infinity:

Ryy(τ) = lim
T→∞

1

T

∫ T

0

y(t)y(t+ τ)dt (2.10)

A recorded system response is of finite length, thus, statistical errors are introduced,
and the correlation function must be estimated instead:

R̂yy(τ) =
1

T − τ

∫ T−τ

0

y(t)y(t+ τ)dt, 0 ≤ τ < T (2.11)

Statistical errors depending on the modal parameters, time length and lags of
signal, are introduced when a finite time length is considered [20].

2.4.2 Spectral density

The Fourier transform of two sample records x(t) and y(t), of finite length T, of a
stationary stochastic process is given by [17, p. 38]:

X(f, T ) =

∫ T

0

x(t)e−i2πftdt (2.12)

Y (f, T ) =

∫ T

0

y(t)e−i2πftdt (2.13)



Mathematical tools for application to MDOF systems 7

The one-sided auto- and cross-spectral density functions for positive frequencies,
are given by:

Gxx(f) = 2Syy(f) = 2 lim
T→∞

1

T
E
[∣∣X(f, T )

∣∣2] (2.14)

Gyy(f) = 2Syy(f) = 2 lim
T→∞

1

T
E
[∣∣Y (f, T )

∣∣2] (2.15)

Gxy(f) = 2Sxy(f) = 2 lim
T→∞

1

T
E
[
X∗(f, T )Y (f, T )

]
(2.16)

The power spectral densities (PSDs) above can be obtained by Welch’ approach.
The procedure is based on the direct computation of the Fast Fourier Transform
(FFT) of the sample records, and estimating the PSDs in agreement with equations
(2.14)-(2.16). The procedure require operations on the sample signals in order to
obtain good estimates.

According to equations (2.14)-(2.16), the one-sided spectral density function
can be estimated by dividing the sample record into nd continuous segments, each
segment of length T=N∆t, and applying the Fourier transform on each segment.
The auto-spectral density can then be computed through an ensemble averaging
operation over the nd data-subsets by the following [17, p. 42]:

Ĝxx(f) =
2

ndN∆t

nd∑
i=1

∣∣Xi(f)
∣∣2, (2.17)

where N is the number of data points in each segment for determination of the
FFT, and determines the frequency resolution of the estimates. The number of
averages nd determines the random error of the estimates.

As presented in [17], leakage can cause significant distortions when estimating
the spectral density. Leakage arise when the record is divided into nd segments,
due to spreading of energy at a certain frequency to the neighbouring frequencies,
causing large amplitude errors. This can be suppressed by making data periodic
by tapering them by a certain time window, eliminating discontinuities at the
beginning and end of the data records. In this thesis the Hanning window is used,
which is the full cosine tapering window [17, p. 43] given by:

uHanning(t) =

{
1− cos2

(
πt
T

)
0 ≤ t ≤ T

0 elsewhere
(2.18)

Despite minimizing leakage, the use of the Hanning window to compute spectral
density estimates implies a loss factor of 3/8 [17, p. 43], causing a need to re-scale
the spectral density estimates to obtain the correct magnitude. In addition to
the loss factor, the half power bandwidth of the main lobe also increases when
suppressing leakage, which may affect damping estimates [17]. The increase in half
power bandwidth can be avoided if the segment length is increased, such that the
FFT provides the same bandwidth with tapering as would have occurred without.
An increase in tapered segment lengths implies an increase in total record length.
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With a limited amount of data, increased tapered segment length is possible at
the cost of the number of averages nd. This cause the resulting PSD estimates
variability to increase. Therefore, in the case of limited amount of data, nd can be
increased by dividing the total record length into partially overlapping segments
[17, p. 43].

2.5 Frequency Domain Decomposition Method

The method is applied in order to estimate modal parameters, such as natural
frequencies and modal shapes of recorded acceleration time histories.

The modal expansion of the structural response is given by

{y(t)} = [Φ]{p(t)}, (2.19)

where [Φ] is the modal matrix, and {p(t)} is the vector containing the modal
coordinates. The auto-correlation matrix of the response becomes:

[Ryy(τ)] = E
[
{y(t)}{y(t+ τ)}T

]
= [Φ]

[
Rpp(τ)

]
[Φ]T . (2.20)

The first step is to estimate the PSD matrix:

GY Y (f) =


GY1Y1

(f) GY1Y2
(f) · · · GY1Yn

(f)
GY2Y1(f) GY2Y2(f) · · · GY2Yn(f)

...
...

. . .
...

GYnY1(f) GYnY2(f) · · · GYnYn(f)

 (2.21)

The diagonal elements (i = j, e.g. GY1Y1
) denote the auto-spectral densities, while

the off-diagonal elements (i 6= j, e.g. gY1Y2
) denote the cross-spectral densities. By

taking the Fourier transform of equation (2.20), the following relation is obtained:

[GY Y (f)] = [Φ]
[
GPP (f)

]
[Φ]H , (2.22)

where GPP (f) is the auto-spectral density matrix of the modal coordinates. If the
modal coordinates are uncorrelated, the PSD of the modal coordinates is diagonal.
The estimate of the output PSD, at discrete frequencies f = fi, can be obtained
by taking the Singular Value Decomposition (SVD) of the spectral matrix [17, p.
131], leading to the following factorization:

[GY Y (f)] = [U ][Σ][U ]H , (2.23)

where [U]=[u1, u2, ..., um] is a unitary matrix containing the singular vectors, and
[Σi] is a diagonal matrix containing the scalar singular values arranged in descend-
ing order. The relationship between equation (2.22) and (2.23) shows that the
singular values are related to the modal parameters [17, p. 131]. The singular
values can therefore be used to establish the spectrum of corresponding SDOF sys-
tems characterized by the same modal parameters as the modes contributing to the
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MDOF system evaluated. Due to the descending order of the singular values in [Σ],
at resonance, only the first singular value is sufficient to obtain information about
of the dominating mode at the given frequency f. Close to a peak corresponding to
the k-th mode in the spectrum, it is assumed that one mode will dominate. The
PSD matrix will then only consist of one term, and can be written as:

[GY Y (f)] = σ1{u1}{u1}H , f → fk (2.24)

where σ1 is the corresponding singular value belong to the auto PSD function of
the equivalent SDOF system corresponding to the mode of interest [17, p. 130].
The first singular vector u1 represents an estimate of the modal shape:

{φ̂k} = {u1(fk)} (2.25)

The SDOF PSD function is identified by isolating the peak and comparing the
mode shape estimate with the singular vectors obtained for frequency lines around
the peak [1, p. 168].

2.6 Analysis of Mode Shape Estimates

2.6.1 Modal Phase Collinearity

Modal analysis of the experimental results provide the modal estimates in the form
of complex eigenvalues and eigenvectors [17, p. 179]. This leads to a distinction be-
tween normal modes, characterized by real-value mode shape vectors, and complex
modes.

The post-processing of modal parameters is important because it provides mea-
sures of whether a complex mode shape estimate represents the dynamics of the
structure, or if it is a result of other factors, such as gyroscopic effects, aerody-
namic effects, non-linearities or non-proportional damping [9, p. 181]. One possible
method to address the mode shape complexity is by calculating the Modal Phase
Collinearity (MPC). It can be calculated by subtracting the mean of the r-th mode
shape vector component:

φ̃i,r = φi,r −
∑l
k=1 φk,r
l

, i = 1, 2, ..., l (2.26)

The MPC of the r-th mode shape is then given by

MPCr =

∣∣∣∣∣∣Re
(
{φ̃r}

)∣∣∣∣∣∣2 +
(

Re
(
{φ̃r}

)T
Im
(
{φ̃r}

))(
2(ε2MPC + 1) sin2 θMPC − 1

)
/εMPC∣∣∣∣∣∣Re

(
{φ̃r}

)∣∣∣∣∣∣2 +
∣∣∣∣∣∣ Im ({φ̃r})∣∣∣∣∣∣2 ,

(2.27)
where

εMPC =

∣∣∣∣∣∣ Im ({φ̃r})∣∣∣∣∣∣2 − ∣∣∣∣∣∣ Im ({φ̃r})∣∣∣∣∣∣2
2
(

Re
(
{φ̃r}

)T)(
Im
(
{φ̃r}

)) (2.28)
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θMPC = arctan
(
|εMPC |+ sgn

(
εMPC

)√
1 + ε2MPC

)
(2.29)

The MPC values are dimensionless and obtain a value between 0 and 1. Real modes
will obtain an MPC value close to unity, while lower values indicate complex modes.
A rejection level of 75 % has been chosen, hence modes with MPC<0.75 will not
be accepted as real structural modes.

2.6.2 Modal Assurance Criterion

The Modal Assurance Criterion (MAC) is a useful tool for comparing two mode
shapes. MAC is a measure used to quantify the correlation between two real-valued
modal shape vectors, and is given by:

MAC
(
{uj}, {φ̂k}

)
=

∣∣∣{uj}H{φ̂k}∣∣∣2(
{uj}H{uj}

)(
{φ̂k}

H
{φ̂k}

) , (2.30)

where {φk} is the mode shape estimate at the peak of the k-th mode under inves-
tigation, and {uj} is the generic singular vector in the vicinity of the peak in the
singular value plots. The MAC ranges between 0 and 1, representing inconsistent
and perfectly consistent correspondence between the two mode shapes. A typically
adopted MAC Rejection Level is about 0.8 [17, p. 132]. The MAC between ana-
lytical {φA} and experimental {φE} modal shapes are useful for verification and
model updating [17, p. 187]. It is important to use recordings from several sensors
in order to get good, reliable results from the MAC.

2.7 Structural Health Monitoring

Structural health monitoring (SHM) is the process of assessing the state of health
of a structure, and predicting its remaining life [9, p. 3]. To strongly develop and
implement the SHM process, sensor and material technology, modeling aspects
and computing technology must be understood correctly. SHM has become a topic
of interest for research of mechanical systems, offshore oil platforms, aerospace
structures, aircrafts, civil infrastructures and buildings. These structures have in
common that they all have finite life spans, and begin to deteriorate as soon as
they are put into service [9, p. 3]. Damages in civil structures may be material or
structural defects, formed during the stage of construction or during the structures
service life, as a result from natural disasters or man-made actions [13]. Some
examples of structural damage is corrosion, fatigue, erosion, wear and overloads.
If these damages are not detected and repaired early, the maintenance cost would
increase, as well as the structure would become unserviceable. In extreme cases,
the structure would collapse causing fatalities and injuries. To prevent this, it
is necessary to regularly carry out monitoring and detect structural damage at
an early state. A number of actions can be taken depending on the value of the
structure, the cost of repair and the consequences of failing [9, p. 3]. Ranged
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by increasing sticker price relative to repair cost and criticality, the actions are:
(1) wait until the structure breaks and dispose of it, (2) wait until the structure
breaks and repair it, and finally (3) examine the structure at periodic intervals
and determine whether remedial actions are needed or not. Many engineering
structures, including bridges and buildings, fall under category 3. Bridge collapse is
a possible consequence, therefore skilled engineers are needed to inspect structures
regularly in order to asses the structural health.

The basic idea in SHM is providing the structure of interest with sensing and
analysis capabilities, and to enable monitoring and evaluation to be carried out
periodically or continuously, and autonomously [9, p. 4]. Potentially, SHM result
in increased safety, avoids randomness of human behavior, and reduce ownership
costs. The benefits of SHM are as follows [9, p. 4]:

• Allowing optimal use of structures, minimizing downtime, and avoidance of
catastrophic failures;

• Giving the designer an improvement of his products; and

• Drastically change the work organization of maintenance services. This is
achieved by introducing performance-based (or condition-based) maintenance
(long term), or at least (short term) by reducing the present maintenance
labor. In particular, dismounting of parts with no hidden defect can be
avoided, and human involvement can be minimized. Thus, labor, downtime
and errors can be reduced, and the structural safety and reliability improved.

A structural health monitoring system consists of hardware elements, such as
sensors and associated instrumentation, and software elements, such as damage
modelling and damage detection algorithms [9, p. 5]. Measurement data does not
indicate defects or the type of defect in the structure. It is necessary to post-process
the data in order to obtain meaningful quantities that benefit when locating defects,
and quantify the severity of the defects. Therefore, modelling is an essential part
of the SHM process. The Finite Element Method (FEM) is a common modelling
tool, which is used to model damages in this thesis. It is important that the flaws
can be detected by the FE model, thus, the mesh size must be fine in order to
obtain accurate results of small flaws. This can result in large computational time,
and FEM might not be a suitable method.

SHM has two essential components: the ”diagnosis” and the ”prognosis” [9,
p. 5]. The diagnosis procedure determines the state of different parts in the struc-
ture, and the assembled structure as a whole. Hence, the outbreak of flaws and
damages, their location and extent will be identified. The prognosis procedure
determines the damage severity and the remaining life of the structure.

Generally, damage assessment can be defined at five levels [17, p. 309]. Ranged
in increasing order of difficulty, the five levels are: (1) identification of damage
existence, (2) localization of damage, (3) identification of the type of damage, (4)
quantification of damage severity, and (5) ability to carry out a safety evaluation
and prediction of the remaining service life of the structure. Researchers are still
working on developing methods that are non-destructive, quantifiable and objective
in order to achieve the five levels listed above.
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Dynamics-based SHM techniques involves detecting and analyzing the dynamic
response of a structure in order to evaluate the health of a component. These
techniques are classified by [9, p. 14]: (1) the type of response being considered for
the investigation, (2) the frequency range of interrogation, and (3) the modality
used to excite the structural component. The SHM techniques can also be classified
as ”passive” or ”active”. If an external excitation source is not needed to evaluate
the structural health of the system, the technique is classified as ”passive”. Hence,
an ”active” technique indicates the presence of damage by exiting an external
source in order to generate a structural response. In this thesis, the structure
under evaluation is a cantilever beam, thus mainly ”active” techniques are used.

SHM techniques based on vibration usually includes the entire structural com-
ponent, including the boundary conditions. Therefore, a detected damage can be
a defect located anywhere within the structure. Vibration-based techniques are
typically considered as ”global” tools [9, p. 18]. During the design process of a
component it is important to have knowledge about modal properties of the struc-
ture, and how they relate to the loading configuration. In most cases, variation of
the modal properties indicates deterioration in structural performance, dictating
maintenance, repair or replacement needs.

2.7.1 Damage-Sensitive Features

Different damage-sensitive features or parameters can be used in order to indicate
the presence of damage in a structure. From the system response data, these
quantities are extracted and used to accurately distinguish a damaged structure
from an undamaged one [6, p. 161]. Through a process of feature extraction,
the measured data is transformed to an alternative form, from which it is more
readily to observe the correlation with the damage. The feature selection process
determines which features to be used in a damage detection process. Features
that are insensitive to operational and environmental variability, and only sensitive
to the damage presence are most ideal. This is complicated in the real world as
features that are sensitive to damage often are sensitive to changes in the system
response not related to damage. When multiple types of damage occur, different
types of features may be required in order to identify the different type of damages.

The damage sensitive parameters presented in this section assume that the
measurements can be compared with results from the undamaged structure. In
real life, this might be difficult since necessary information about the undamaged
structure is not always available, and that the changes measured are only due to
damage [9, p. 408].

Natural Frequency Shifts

Generally, when a structure is subjected to damage, the structural stiffness and/or
damping ratio changes. In theory, changes in stiffness can be determined by natural
frequency and mode shape variations. Natural frequencies provide the simplest way
to detect the presence of damage [17, p. 309]. However, the natural frequencies only
provide information sufficient to identify level (1) of damage detection. It should
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be pointed out that natural frequency shifts do not necessarily provide adequate
information to uniquely identify the damage by itself [6, 9, 17]. Frequency shifts
are relatively insensitive to damage, thus, very accurate measurements or severe
damages are required for this feature to identify damage.

Mode Shapes

When detecting small damages, mode shapes and their spatial derivatives are more
effective, and better at locating the damage. Mode shapes provide spatially dis-
tributed information about the dynamic characteristics of the structure, and there-
fore offer the ability to locate the damage as well as establish the existence of
damage [6, p. 197]. This feature needs a large number of sensors to achieve the
required spatial resolution in order to characterize the mode shapes, and therefore
estimated with less accuracy compared to natural frequencies.

Mode Shape Curvature

The Mode Shape Curvature (MSC) method is an alternative method to mode
shapes, based on the mode shape derivatives. Beams have a direct relationship
between curvature and bending strain. At a given location, x, the curvature, v′′(x),
is approximated by [6, p. 207]:

v′′(x) ≈ M(x)

EI
, (2.31)

where E is the Young’s modulus, and I is the moment of inertia of the beam cross-
section. From this equation, it is evident that for a given moment, M(x), applied to
the structure, a reduction of stiffness related to damage leads to an increased curva-
ture. This structural effect can be used to detect and localize damages. The mode
shape curvature of a beam can be estimated using central difference approximation
as [6]:

v′′(φi) ≈
φi−1 − 2φi + φi+1

h2
, (2.32)

where h is the distance between equally spaced measurement points along the beam
length. The curvature at the beam ends can be approximated by backward and
forward difference operators. Equation (2.32) gives the curvature for a given mode
shape, φi, at the measured coordinate, i. The MSC for multiple modes can be used
as a damage indicator for a particular location [6], and is given by

MSC =
∣∣∣(φD)′′ − (φU)′′∣∣∣, (2.33)

where
(
φD
)′′

and
(
φU
)′′

indicates damaged and undamaged mode shape curvatures.
If cracks, or other damages, are introduced in a structure, it reduces the stiffness

of the structure, at the cracked section or in the damaged region, increasing the
curvature magnitude in the section. The curvature changes are local in nature,
hence, it can be used to detect and locate cracks and damages. The change in
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curvature increase as the stiffness reduce, therefore the amount of damage can be
obtained from the magnitude of change in curvature [16].

When sensors are placed with unequal spacing the finite difference scheme sug-
gested in equation (2.32) no longer applies. Therefore, a finite difference approx-
imation for a non-linear node spacing has been derived. A non-uniform 3-point
mesh can be considered [18]:

Mx = {a < b < c}, (2.34)

where the variable steps are denoted as h1 = b−a and h2 = c−b. By assuming that
h1, h2 > 0, and the function f(x) is a sufficiently smooth function attaining the
values {f(a), f(b), f(c)}, the second derivative approximations can be developed
by expanding the Taylor series of f(a) and f(c) about the x = b:

f(a) = f(b)− h1f ′(b) +
h21
2
f ′′(b) + ... (2.35)

f(c) = f(b) + h2f
′(b) +

h22
2
f ′′(b) + ... (2.36)

By solving equation (2.35) and (2.36), the following is obtained:

f ′′(b) =
2

h1(h1 + h2)
f(a)− 2

h1h2
f(b) +

2

h2(h1 + h2)
f(c) (2.37)

The central difference approximation with unequally spaced sensors can then be
rewritten as:

f ′′(b) = αf(a) + βf(b) + γf(c), (2.38)

where the coefficients α, β and γ are regarded as the weights, defined as:

α =
2

h1(h1 + h2)

γ =
2

h2(h1 + h2)

β = −α− γ

(2.39)

The order of accuracy of the derivative approximations are higher for the uniform
mesh, due to the lack of symmetry of the non-uniform meshes. The accuracy
improves for ratios between h1 and h2 close to unity.

The beam is mounted with bolts at x = 0 giving the boundary condition

f(x = 0) = 0 (2.40)

The boundary node makes equation (2.38) valid for the very first sensor closest to
the boundary. The following is given by Euler-Bernoulli beam theory

M = −EI d
2f(x)

dx2
. (2.41)

As there are no moments at the end of a cantilever beam, the second boundary
condition is f ′′(L) = 0.
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Modal Flexibility

The flexibility matrix [G] is defined as the inverse of the stiffness matrix [k] [6]:

{f} = [k]{y} ⇒ {y} = [k]−1{f} = [G]{f}, (2.42)

where {f} is the vector of applied static loads, and {y} is the deformation vector
associated with the static loads. Equation (2.42) shows that a reduction in the
stiffness matrix will cause an increase in the flexibility matrix. The indices of
the flexibility matrix Gij are defined as the displacement at DOF i caused by an
applied unit load in DOF j. Hence, the columns of G are deformation patterns the
structure will assume when a unit load is applied at the DOF associated with the
column.

If an undamaged structure has m mass-normalized modal shapes, obtained
from experimental data for n degrees of freedom, the n × n flexibility matrix can
be approximated as [6]:

[G] = [Φ][Λ]−1[Φ]T ≈
m∑
i=1

1

ω2
i

{φ}i{φ}Ti , (2.43)

where [Φ]=[φ1, φ2, ..., φm] is the mode shape matrix, [Λ]=diag(ω2
i ) is the modal

stiffness matrix, {φ}i and ωi are the i-th mass-normalized modal shape and modal
frequency. The scaling factor 1/ω2

i reduces the influence of the higher order modes
when estimating the flexibility matrix. The flexibility change caused by damage can
be obtained from the difference between the flexibility matrices of the undamaged
[G]U and damaged [G]D structure:

[∆G] = [G]U − [G]D (2.44)

The maximum absolute value of all elements in the j-th column of ∆G is defined
as:

δj = max
j
|gij |, i = 1, 2, ..., n (2.45)

where gij are elements of [∆G], measuring the flexibility change at each degree of
freedom i. The column j corresponding to the largest δj indicates the damaged
degree of freedom.

Since the Modal Flexibility method requires mass-normalised mode shapes,
challenges can arise when using data obtained from experimental vibration tests.
The method can still be used to locate damage if the mode shape normalization is
consistent [6].

Statistical Moments

Sensors along the structure yi record time series of finite length n. Different statis-
tics can be used to identify changes in the structural response due to damage.
Some of these statistical moments are listed in table 2.1. In the case of damage,
the stiffness of the system will be reduced, thus, the peak amplitude in (2.46) of the
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measured response will typically increase. Mean values, such as the mean in (2.47)
and the root-mean-square in (2.48), can be used to measure the typical value of a
probability distribution, as well as the data span. It should be noted that the mean
value is sensitive to outliners, meaning a few data points can significantly influence
the feature [6, p. 174]. In such cases, the median can be used instead as it is less
sensitive to outliners. The variance in (2.49) measures the amount of variation

Table 2.1: Signal statistics used as damage-sensitive features obtained from [6].

Peak amplitude (ypeak) ypeak = max |yi| (2.46)

Mean (y) y =
1

n

n∑
i=1

yi (2.47)

Root-mean-square (RMS) RMS =

√√√√ 1

n

n∑
i=1

(yi)2 (2.48)

Variance (σ2) σ2 =
1

n

n∑
i=1

(yi − y)2 (2.49)

Skewness (dimensionless) (γ) γ =
1
n

∑n
i=1(yi)

3

σ3
(2.50)

Kurtosis (dimensionless) (κ) κ =
1
n

∑n
i=1(yi)

4

σ4
(2.51)

with respect to the mean of the time-series amplitudes. A stiffness reduction due
to damage will generally tend to increase the variance of measured response, such
as acceleration [6, p. 175]. Another useful statistical moment is the skewness in
(2.50), which measures the symmetry of the probability distribution of a random
variable about its mean. Therefore, symmetrical distributions such as the Gaus-
sian distribution, will have a skewness of zero. The kurtosis in equation (2.51) is
a measure of the peaked nature of the distribution of the measured response. A
Gaussian distributed response will have a kurtosis equal to 3 [6, p. 177].

2.8 Statistical Principles

In the early stage of damage detection it is important to take the uncertainty of
damage related parameters into account, in order to distinguish small, physical
changes from statistical variability [5]. Parameters estimated from vibration mea-
surements can have statistical uncertainties, hence, it is important to distinguish
statistical uncertainties from actual damage. In this section, statistical properties
important for evaluation of measurement data for damage identification in SHM
are presented.
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2.8.1 The Gaussian Distribution

The Gaussian (or normal) distribution is one of the most important probability
density functions (PDFs), as it is completely fixed by knowledge of its mean and
variance [6, p. 131]. In statistics there is a big field of study to identify what kind
of distribution a series have. In many cases the income data are either right or
left skewed. This thesis will not perform this study, but assume that the data are
Gaussian distributed. The Gaussian PDF is

p(x) =
1√

2πσ2
exp
{
− 1

2

(x− x
σ

)2}
(2.52)

The shape of the Gaussian PDF is bell shaped, and often referred to the as the
bell curve.

2.8.2 Confidence interval

The confidence interval is a type of estimate computed from the observed data.
The main purpose of the confidence interval is to indicate the precision of the
sample study [2]. The width of the confidence interval is associated with standard
deviation, sample size and the degree of confidence. The most usual degree of
confidence is 95%. The 95% confidence level means that there is a 95% probability
that the interval covers the data parameter [10].

2.8.3 Bhattacharyya distance

The Bhattacharyya distance measures the similarity of two probability distribu-
tions, in terms of mean value and standard deviation. For two normal distributed
series, p and q, the Bhattacharyya distance, B, is calculated as [4]:

B(p, q) =
1

4
ln

(
1

4

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))
+

1

4

(
(µp − µq)2

σ2
p + σ2

q

)
, 0 ≤ B ≤ ∞ (2.53)

where σp and σq are the standard deviations of the two series, and µp and µp the
means. Two identical distributions will have B = 0, while unequal distributions
will have large B values.
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Chapter 3

Case Study

A case study of a cantilever beam was performed to investigate different methods
and features for damage identification. The main part of the study was based on
acceleration measurements done in the laboratory. A numerical model was also
established in order to find an optimal sensor layout, as well as testing the damage
impact before the real-life cantilever was subjected to damage. The first section
presents dimensions and material properties of the cantilever beam, before the FE
model and the experimental setup is presented An experimental and numerical
system identification are presented and compared, before the implementation of
the different damage scenarios are introduced.

3.1 The Cantilever Beam

The cross-section of the cantilever beam is shaped as a +, with a height and width
is 152mm, and a thickness of 2.5mm. The support consists of a welded end-plate
with a height of 100mm, a width of 320mm, and a thickness of 10mm. A systematic
overview of the beam and plate dimensions are shown in figure 3.1. The welded
end-plate was mounted to a rigid wall by four bolts with a diameter of 22mm. In
between the wall and the end-plate, four steel rings were placed in order to obtain
pinned connections. The aluminum beam was assumed to have a Young’s modulus
of 68.9GPa, a Poisson’s ratio of 0.33, and a density of 2700kg/m3. Since the exact
material properties were not known or established from testing, the numerical
results may differ slightly from experimental results.

3.2 The Numerical Model

A Finite Element model of the cantilever was created to evaluate the beam before
conducting experiments in the laboratory. The FE model was evaluated so that
the optimal sensor layout could be decided. The cantilever beam and end-plate
were created as a shell model in ABAQUS using 8-noded shell elements (S8R).
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Figure 3.1: Cantilever beam and end-plate dimensions [mm].

The mesh size of the beam was set to 10x10mm, as shown in figure 3.2. The bolt
holes in the end-plate were meshed using partitioning.

The aluminum beam is subjected to lateral and vertical bending, as well as
torsion. Due to the cross section of the beam, the modes of vibration are mainly
dominated by torsion. Figure 3.3 shows the first two torsional, vertical and lateral
modes of the cantilever. In the frequency range 0-320 Hz, the modal analysis of
the cantilever beam resulted in 24 modes. The eigenvalue analysis of the beam
resulted in the natural frequencies listed in table 3.4.

Figure 3.2: Finite element model of the cantilever beam.
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Figure 3.3: First and second torsional mode (top), vertical bending mode (middle)
and lateral bending mode (bottom).

3.2.1 Introducing Rayleigh Damping

The Rayleigh Damping coefficients of the cantilever beam were estimated by the
approach described in section 2.2. The significant mass participation factors and
natural frequencies were obtained from the eigenvalue analysis. Figure 3.4 shows
the three different calculation approaches, as well as the linear regression estima-
tion. The three approaches resulted in the estimates listed in table 3.1. The first

Table 3.1: Rayleigh damping coefficient estimates.

Approach α β
Linear regression 1.5693 1.6818e−05

72nd mode approximation 1.6474 4.0138e−05

Full range approximation 1.6474 3.0211e−05

Average data approximation 1.6474 3.5175e−05

approach evaluated the first 72 modes. An initial damping ratio of ζ1=2% for the
first mode, and a damping ratio of ζm=72=5% for the 72nd mode was chosen. For
the second approach, a total of M=2.5 · m=179 modes were included in the cal-
culation of the Rayleigh damping coefficients. The approach was based on ζ1 and
ζM=179=11%, obtained from the first approach. The third approach was calculated
from the average values of the first and second approach. Table 3.1 shows no varia-
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tion in the α-values of the three different approaches, and small β-values. The final
coefficients are chosen based on the results in figure 3.4, which clearly shows that
the method including the entire range of modes, i.e all 179 modes, correlates best
with the linear regression. Therefore, the Rayleigh Damping coefficient estimates
used in the FE model were α2 = 1.6474 and β2 = 3.0211e−05.
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Figure 3.4: Estimations of damping ratios

3.3 Placing of Sensors

The purpose of finding the most optimal sensor layout is to be able to measure the
response of all modes in the experimental tests. Optimal sensor placement is an
essential topic in SHM and there exists numerous automatic methods to determine
the optimal sensor layout numerically. However, due to time constraints and the
scope of this thesis, a manual approach with trial and error was used. A sensor
layout was chosen based on an overall assessment of the modes from the eigenvalue
analysis of the cantilever beam, and the ability to identify these modes with FDD.

3.3.1 Modal Analysis of Numerical Model

The dynamic characteristics of the aluminum cantilever beam were estimated by the
FDD method. Firstly, a static analysis was performed, using Simpsons integration
rule with 5 thickness integration points and a shell thickness of 1mm. An initial
force of 20N was placed on the right edge of the cantilever shown in figure 3.2.
The prescribed force was released, and the dynamic behavior of the beam was
evaluated. The time increment, dt, in the dynamic analysis affect the accuracy
of the natural frequency and mode shapes estimates. A time increment of 0.0016
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seconds was chosen. The natural frequencies obtained form the modal analysis are
listed in table 3.4.

3.3.2 Sensor Layout

In order to use as few accelerometers as possible, to identify as many modes as
possible, sensors were placed at every L/3 and L/4 resulting in a total of 7 sensors.
Figure 3.5 shows the sensors rotating around the x-axis as they are placed over
the length. The coordinates of the sensor locations are listed in table 3.2. The

A00

A01
A02

A03A04
A05

A06

x

y

z

Figure 3.5: Sensor layout.

strength of the sensor layout was established by evaluating the mode shapes of the
eigenvalue analysis with the mode shapes estimated by FDD. The first 24 modes
estimated by FDD correlate well with the first 24 modes of the eigenvalue analysis,
as figure 3.6 shows. The off-diagonal terms increased when fewer sensors were
used, but it was still possible to uniquely identify modes up to 24. Mode 3, 15
and 20 obtained low MAC values, while modes 21, and 24 to 28 were not possible

Table 3.2: Coordinate position of sensors.

Sensor Coordinates [mm]
x y z

A00 2990 -66 0
A01 2200 0 66
A02 2000 66 0
A03 1500 66 0
A04 1000 -66 0
A05 700 0 -66
A06 300 0 66
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Figure 3.6: MAC matrix of FEM and FDD (7 sensors) mode shapes.

to estimate with the chosen sensor layout. These modes might therefore be hard
to identify during the experiments in the laboratory. The results obtained in this
section justify the sensor layout in figure 3.5, and this was therefore used in the
experimental damage identification analysis.

3.4 Experimental Setup

As a consequence of the national shut-down, due to Covid-19, the experimental
study was postponed. In the laboratory, a total of 7 triaxial piezoelectric accelerom-
eters were used for the output-only modal analysis. The accelerometers used were
Dytran series 3583BT with a maximum sampling frequency of fs=640Hz, making
them capable of measuring frequencies up to 320Hz. The beam was examined
under ideal environments as the experiments were carried out in the laboratory.
The yellow wall in figure 3.7 was mounted in the middle of the room, thus not a

Table 3.3: Execution of all the laboratory tests.

Time [min] Action
0-1 White noise
1 Vertical tap flange
2 Vertical tap web
3 Horizontal tap web
4-5 White noise
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Figure 3.7: Laboratory setup.

part of the load carrying system of the building. However, the wall was mounted
to the floor, which may cause other experiments or people walking by to affect the
results.

Before introducing damages to the beam, the system identification of the ex-
perimental data was performed, and compared to the eigenvalue analysis of the FE
model. In this way the strength of the laboratory setup, the FE model, and the sys-
tem identification can be evaluated. As seen in figure 3.9(a), the cables were taped
to the beam. This was done to avoid unnecessary noise from the measurement
equipment, and eliminate a possible source of error.

The tests have been executed by the loads described in table 3.3. The first and
last minutes of the recording consists of white noise response. After each loading,
the beam was left to vibrate for one minute, before a load was applied in a different
direction. Different loadings were applied in order to execute all torsional, vertical
and lateral modes.

3.4.1 System Identification of the Undamaged Beam

The dynamic characteristics of the cantilever beam were estimated by output-only
modal analysis (OMA), and the Frequency Domain Decomposition (FDD) method
was applied to evaluate the measurement data. Figure 3.8 shows the first singular
value frequencies up to 220 Hz obtained for one of the acceleration recordings.
In Norway, a three-phase alternating current with f ≈50Hz is used in the public
distribution network. Therefore, the SV peak observed around 48Hz is not a peak
caused by dynamic vibration. The system identification resulted in a total of 24
modes listed in table 3.4. The SV peaks were easy to identify for the first 18 modes,
therefore only these modes have been evaluated in the damage identification in
chapter 4.
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Table 3.4: Experimental (FDD) and numerical (FEM) frequencies of the cantilever
beam.

Experimental Numerical

Mode
no.

Frequency
[Hz]

Type Frequency
[Hz]

Type

1 7.90 Bending (Lateral) 8.31 Bending (Lateral)
2 8.82 Torsion 8.50 Torsion
3 9.04 Bending (verti-

cal/torsion)
9.35 Bending (Vertical)

4 26.46 Torsion 25.72 Torsion
5 43.80 Torsion 43.00 Torsion
6 50.87 Bending (Lateral) 53.33 Bending (Lateral)
7 55.80 Bending (Vertical) 57.95 Bending (Vertical)
8 61.61 Torsion 60.47 Torsion
9 80.26 Torsion 78.20 Torsion
10 97.55 Torsion 96.27 Torsion
11 115.98 Torsion 114.76 Torsion
12 133.37 Torsion 133.72 Torsion
13 141.52 Bending (Lateral) 147.03 Bending (Lateral)
14 149.55 Bending (Vertical) 153.25 Torsion
15 156.33 Torsion 155.25 Bending (Vertical)
16 177.29 Torsion 173.39 Torsion
17 194.85 Torsion 194.23 Torsion
18 211.48 Torsion 215.84 Torsion
19 242.20 Torsion 238.27 Torsion
20 246.42 - 261.62 Torsion
21 255.78 - 261.75 Bending (Lateral)
22 268.17 - 270.75 Bending (Vertical)
23 272.13 - 286.96 Torsion
24 286.44 - 311.36 Torsion



Experimental Setup 27

0 20 40 60 80 100 120 140 160 180 200 220

Frequency [Hz]

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

S
in

g
u

la
r 

v
a

lu
e

s
 [

(m
/s

2
)2

/(
1

/s
)]

Figure 3.8: 1st singular value.

3.4.2 Damage Scenarios

Three different damage scenarios were evaluated in the numerical and experimental
damage identification studies. The three scenarios are point mass, cuts and removal
of bolts, and the experimental and numerical implementations are presented below.

Experimental Implementation of Damages

There was only one test piece available for the thesis, so it was crucial to apply
damages in the correct order. In order to limit the damage extent of the beam,
point masses (M) were added to the beam instead of reducing the stiffness. The
point masses were added in (2990, 66, 0) referring to coordinate system in figure
3.5. The four weights used for testing are listed in table 3.5. Before any permanent
damages were done to the beam, tests were performed with loose bolts. The three
boundary damages (B) are listed in table 3.5. The coordinates in the table indicates

Table 3.5: Summary of experimental damage cases.

M [kg] B [mm] C [mm] CR [mm]
0.05 (0, -50, 95) 1 40

0.1 (0, -50,+/-95) 10 70

0.25 (0,+/-50, -95) 20

1.0 40

60

70
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which bolt that was removed. The first boundary damage (B1) was removal of one
top bolt, the second (B2) was the removal of two side bolts, and the last (B3) was
the removal of two bottom bolts. The last damage case applied were cut damages.
First cuts (C) were only applied to the web in (1000, 0, 76), but due to low values
of the evaluated features, another cut was added in the flange at (1000, 76, 0),
resulting in CR-damages. The different cut depths evaluated in the laboratory
are listed in table 3.5. A total of 15 damages have been evaluated, where each
damage was subjected to vibrations 10 times, so that outliers and poorly executed
experiments would be detected. A summary of the experiments carried out can be
found in table A2-A5 in Appendix A. Figure 3.9 shows the experimental setup of
the different damage types.

(a) B2-damage (b) M-damage

(c) C-damage (d) CR-damage

Figure 3.9: Experimental set up of damages.

Numerical Implementation of Damages

In finite element analyses, damages can be implemented in several ways. In ABAQUS
the point mass was implemented as an Engineering Feature. The point mass should
be a part of the structure and not an external load. In this way the point mass
can be included in the modal analysis. The point mass was therefore included as
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X

Y

Z

Figure 3.10: Implementation of point mass

inertia with isotropic mass. No damping was added to the point mass. Figure
3.10 illustrates the point mass as a green square on the edge of the beam. The
cuts were created using partitioning. Since the FE model of the beam was made
of S8R elements, the partitioning was done by making a partitioning face in the
sketch. Figure 3.11 shows the implemented 40 mm cut in the web, with a thickness
of 1mm. By partitioning, the material in the area remains unchanged, which was
the case in the experiments. For a mesh size of 10x10mm, the cut hardly influences
the mesh. ABAQUS did not report any warnings at the triangular elements.

XY

Z

Figure 3.11: Implementation of a 40 mm deep cut.

In the laboratory the beam was attached to the wall by four bolts where spacers
were placed between the end-plate and the wall. These bolts were implemented
as boundary conditions in ABAQUS. The area of the spacers was implemented
as circle partitions around the holes of the bolts. The boundary conditions were
assigned to the circles as Encastre, meaning U1=U2=U3=UR1=UR2=UR3=0.
The boundary condition was Encastre because the plate was rigid in the area where
the bolt and the spacer were mounted. Figure 3.12 shows the implementation of
the removal of two side bolts.

The different damage scenarios were analysed in two ways: Modal Analysis
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X Y

Z

Figure 3.12: Implementation of removed bolts.

and FDD of the time series. The time series contains two white noise loads at
the edge of the beam, one lateral and one vertical. The white noises created in
Matlab were included in ABAQUS as load amplitudes. Two loads in two different
directions were applied, such that all modes would be excited. In this way the
system identification will be more similar to actual white noise.



Chapter 4

Results and Discussion

The goal of the study was to determine which damages that could be identified by
means of acceleration measurements, how large the damage must be before it could
be identified, and whether the severity of identified damages could be determined
from the measurement data. In this chapter, natural frequency shifts, mode shapes,
curvature and modal flexibility are investigated as features for experimental modal
analysis parameters. Also, statistical moments of the recorded response histories
are evaluated. The numerical study is included to support experimental finds and
exclude possible errors.

4.1 Natural Frequency Shifts

The experimental study of frequency shifts was based on the mean frequencies of
each damage. Figure 4.1 shows the natural frequencies and the relative frequency
error of the point mass damages. The figure shows that the largest point masses
(M3 and M4) result in the largest frequency shifts. The heavy point mass errors
drops considerably for mode 3. At first sight it seems incorrect as the mode was
the first vertical mode. The mode shape analysis shows that the mode was not
established, and it is therefore not good for comparison. The frequency shifts are
not as visible for the lower point masses (M1 and M2) as the error is approximately
1%.

Figure 4.2 shows the natural frequency shifts when the cantilever was subjected
to boundary damages. The boundary damages follow a similar frequency pattern
for all three damages. The first lateral bending mode 1 obtained a high relative
error of nearly 40% when removing two side bolts (B2). The bolt removal caused
a lateral stiffness reduction, i.e. a large reduction of the natural frequencies of the
lateral bending modes. The frequency error dropped with approximately 35% for
mode 2. The removal of two bottom bolts (B3) caused a relatively high frequency
shift of nearly 30% for the first and second mode. The two damage types differ, in
that the B2 damage caused the largest frequency shifts mainly for lateral bending
modes, while the B3 damage for both lateral and vertical bending modes. The
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Figure 4.1: Natural frequency and relative error of M-damages.
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Figure 4.2: Natural frequency and relative error of B-damages.

removal of one top bolt (B1) resulted in a frequency shift of around 15% for the
first mode. The B1 damage caused similar frequency shifts as the B2, though
slightly lower. The torsional behavior of the cantilever beam was hardly affected
by any of the boundary damages, as the natural frequencies of the torsional modes
did not shift. With this observation the B-, and M-damages are distinguished. The
frequencies of the M-damage shifted at every mode, while the frequencies of the
B-damages only shifted in the bending modes.
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Figure 4.3: Natural frequency and absolute relative error of C- and CR-damages.

The frequency shifts of the cut damages are shown in figure 4.3. The lower cut
damages C1 to C40 resulted in small frequency shifts, making them hard to iden-
tify. The FDD method estimated 17 modes instead of 18 of C60, C70, C70R40 and
C70R70, indicating a merging of the second and third mode. This will be investi-
gated in the following section about mode shapes. Since only natural frequencies
were analyzed, both mode 2 and 3 were excluded, such that the frequency pattern
of the C- and CR-damages can be illustrated properly. Figure 4.3 shows that cuts
in both web and flange increased the frequency compared to cuts in the top web
only. The C-damages obtained peaks for mode 1, 6, 7, 11, 14 and 16. When the
CR-damages were introduced the relative errors of mode 6 and 13 increased sig-
nificantly. Modes 4, 9 and 12 hardly shifted for the cut damages. The frequency
error in figure 4.3 clearly increased with increasing cut depth.

The natural frequency shifts were used to evaluate the strength of natural fre-
quencies as damage indicators. Feature vectors were established for each damage
case before the MAC matrix was calculated. The natural frequency shift feature
vector for each damage was established as:

~d = [∆f1 ∆f4 ∆f5 ... ∆fm], (4.1)

where

∆fi = f i,U − f i,D, i = 1, 4, ...,m (4.2)

where m is the number of modes, U indicates the undamaged beam and D indicates
the damage scenarios listed in table 3.5. The higher cut damages only recorded
17 modes, hence mode 2 and 3 were also excluded from the natural frequency
feature vector comparison. The MAC matrix of the frequency shift feature vectors
is shown in figure 4.4. The damage classes show different frequency patterns. An
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Figure 4.4: MAC matrix of frequency shift feature vectors.

interesting observation is that the lower levels of the C-damage did not correlate
with the higher levels. Due to small frequency shifts, it was necessary to evaluate
whether a damage was an actual damage or just a deviation from the estimated
natural frequencies of the undamaged beam. Figure 4.5 shows the 5th and 95th
percentiles of the first 8 natural frequencies of the damaged beam compared to the
confidence interval of the undamaged beam. If the estimated damaged frequency is
within the frequency domain of the undamaged beam, the damage will be classified
as undamaged. The figure shows that the damaged frequencies deviates from the
undamaged beam for some modes. The undamaged frequency domains of modes 1
to 18 are presented in table A6 in Appendix A.

Figure 4.5 clearly illustrates how the natural frequency decreased as the point
mass increased, which corresponds with the relationship ωn =

√
k/m. For B-

damages the frequencies vary more depending on which bolts that were removed,
and what kind of mode that was analyzed. For the first and second lateral mode (1
and 6), the removal of two side bolts resulted in the lowest fundamental frequency,
hence the largest shift. For the first and second vertical modes (3 and 7), the
removal of two bottom bolts obtained the lowest frequency and largest shift. For
such severe damages some of the modes shifts. It is re-emphasized that this will
be analyzed in the following section 4.2.

It is obvious that the cuts provide the smallest frequency shifts. For the C-
damages, where the cut was made in the cross-sectional web, the vertical stiffness
decreased. By investigating the vertical modes (3 and 7), the frequency drop was
detected for a 40mm deep cut. For the CR-damages, the lateral stiffness did de-
crease. These were severe cuts and did therefore affect the lateral and torsional
modes. From the lateral modes (1 and 6), the frequency drop was detected for a
40mm cut.
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Figure 4.5: Confidence interval of undamaged beam and percentiles of damages.
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For the smallest cuts the frequency of mode 1, 3 and 6 did increase, which was
not expected. From the numerical study the frequencies deviated at the vertical
modes only. Section 4.2 obtains high MAC values for these mode shapes, which
indicates that the correct mode has been examined. The increase of frequencies
was not obtained for any other damage scenario, but it occurred for several cuts.
Therefore, it is hard to tell if there was an error in either the original tests or the
cuts. A possible explanation to the increased frequency, is that the B-damages have
been introduced in-between the measurements of the undamaged beam and the C-
damages. When the B-damages were reversed, the cantilever beam could have been
mounted in a slightly different way, as the mounting was done by different people.
In that way, the stiffness of the boundary could have been changed, resulting in a
frequency increase.

In order to evaluate other statistics, the probability distributions were estab-
lished from the 10 tests. The natural frequencies are assumed to be Gaussian
distributed based on the mean and standard deviation of the system identifica-
tions. A way to distinguish the probability distribution of the undamaged beam
with damaged ones is to calculate the Bhattacharyya distance. The Bhattacharyya
distance of the four damage types are plotted in figure 4.6(a)-(d).

The confidence intervals in figure 4.5 clearly showed frequency shifts for the M- and
B-damages. These observations were approved by the Bhattacharyya distances
where the M- and B-damages in figure 4.6(a)-(b) obtained high values for the
bending modes. In figure 4.6(c) a cut depth of 40mm was detected in the vertical
modes (3, 7 and 14). The CR-damages in figure 4.6(d) show that the Bhattacharyya
distances also increased for the lateral modes.

When measuring natural frequency shift, it is necessary to have many measure-
ments in order to make sufficient estimates of the statistical variations. A large
number of measurements will give better estimations of the probabilities for sep-
arating damages and deviations. The recorded natural frequencies were assumed
to be Gaussian distributed, which may be incorrect. The distributions are often
approximated from a bar plot, but a bar plot from 10 tests does not make a good
approximation. The 5th and 95th percentile for the undamaged beam are listed
in table A6 in Appendix A. According to [6, 11] errors of type I and type II can
occur, meaning that a system can be withdrawn from service even though it is
healthy, or a damaged system can continue operating in a damaged state. The
acceptance/significance level is set to 5%, in order to prevent type II errors that
could potentially threaten the structural safety, or result in a complete loss of the
structure and human life.

In both the numerical and experimental study, the natural frequency decreased
as the point mass increased. The relative error of the frequency shift of M1 and M2
is between 0-3% as shown in figure 4.1, while M3 and M4 obtained much higher
errors in the domain-between 3-25%. Figure 4.5 clearly shows that even the smallest
point mass of 0.05kg was detected by frequency shifts. In future studies, it would
have been interesting to evaluate the point mass damage level that is required
in order to record a mass damage by natural frequency shifts. The removal of
bolts caused the lateral and vertical bending modes to shift significantly in natural
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Figure 4.6: Bhattacharyya distance of M, B and C damages.

frequency. The errors in figure 4.2 indicate that the first modes have errors between
15-40%, depending on which bolts that are removed. When removing bolts the
modes are rearranged, which will cause errors at the wrong modes. Even if the
figure gives errors at some torsional modes, the error peaks are in the area where
the bending modes originally were. When studying figure 4.5 the B-damages were
not detected in most torsional modes, but deviated at the bending modes. This
differs from the point mass damage where the frequency dropped at every mode.

The natural frequency shift feature vector manages to identify the presence of
damage in the structure. Based on the results presented in this section, it is also
possible to classify the different damages into M, B and C damages. By observing
which modes that were shifting, B2- and B3-damages could be differentiated as
well.
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4.2 Mode Shapes

Mode shapes contain more information about the structural behavior than natural
frequencies, as they give a representation of the actual deformation. In order to
determine whether there was a damage present or not, a MAC acceptance level
was determined. The MAC confidence interval of the undamaged cantilever was
established by comparing the mode shape estimates of the 10 tests. Damaged
modes with MAC values lower than the acceptance level were classified as damaged.
Since the arguments are probabilistic, errors in the diagnosis can be a problem. The

Table 4.1: Percentiles of MAC values of undamaged beam.

Mode 5% 2% Mode 5% 2%
1 0.9977 0.9975 10 0.9997 0.9997
2 0.8724 0.8375 11 0.9997 0.9997
3 0.9598 0.9553 12 0.9983 0.9979
4 0.9995 0.9995 13 0.9967 0.9959
5 0.9996 0.9993 14 0.9946 0.9944
6 0.9987 0.9986 15 0.9967 0.9955
7 0.9991 0.9987 16 0.9979 0.9977
8 0.9993 0.9990 17 0.9983 0.9975
9 0.9998 0.9998 18 0.9945 0.9944

2nd and 5th MAC percentiles of the undamaged beam are listed in table 4.1. If
damages occur in-between the 2nd and 5th percentile, they should be investigated
further.

By establishing the average mode shape matrix Φ, possible deviations can be
excluded. The average mode shape matrix was calculated by:

[
ΦD

]
=

1

N

N∑
i=1

[
ΦD,i

]
, (4.3)

where D indicates the damage scenarios in table 3.5, and N are the 10 test per-
formed of each damage. Figure 4.7 to 4.10 show the MAC matrices of the average
damaged and undamaged mode shapes. The correlation between the M-damaged
and the undamaged beam are shown in figure 4.7. The magnitude of the point
mass strongly affected the dynamic behavior of the cantilever. As the point mass
at the cantilever tip increased, the MAC values became more distorted. The M1
damage showed a slight reduction of MAC values of mode 2 and 3, which decreased
as the point mass increased. The second point mass damage level also obtained a
merging of mode 12 and 13. As the mass increased for M3 and M4, several mode
shapes merged and switched. Figure 4.7 indicates that the point mass must be of
a certain level before it starts changing the dynamic behavior of the system.

Figure 4.8 shows the MAC matrices of the three different boundary damages.
All the B-damages affected the first three mode shapes. Both B1 and B2 reduced
the vertical stiffness in such a way that the vertical mode became the second mode.
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Figure 4.7: MAC matrices of M-damages.

The B3 damage reduced the vertical stiffness further, as the first vertical mode
became the first fundamental mode. Removing two top or side bolts obtained a
larger effect on the system than removing one. The MAC matrices of the point
mass damages indicate that the M-damages changed the mode shapes, while the
B-damages caused shift of the mode shapes.

The MAC values for the cut damages and the undamaged beam are shown in
figure 4.9 and 4.10. The figure shows that cuts had to be at least 60mm deep to
obtain any changes in the dynamic behavior. The original mode 2 of the undamaged
beam could not be identified, and the MAC value of mode 3 have been reduced.
This also applied to C70R40 in figure 4.10. The increased cut depth from 40 to 70
mm reduced the MAC of mode 13 heavily.
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Figure 4.8: MAC matrices of B-damages.
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Figure 4.9: MAC matrices of C-damages.
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Figure 4.10: MAC matrices of CR-damages.

Mode shape feature vectors were established for each damage so that the different
damages could be compared. The feature vectors were established by rearranging
the average mode shape matrix in equation (4.3), to feature vector:

~d =
[
φ∗,1 φ∗,2 φ∗,3 ... φ∗,18

]
. (4.4)

The correlation between the resulting mode shape feature vectors were evaluated
by the modal assurance criterion. Figure 4.11 shows the resulting MAC matrix of
the M-, B-, C- and CR-damages, as well as the undamaged (O) mode shape feature
vector. The figure shows high correlation between the C-damages, however five of
the C-damages correlate well with the lower point mass damages (M1 and M2) and
the undamaged beam. High correlation with the undamaged mode shapes indicates
no damage present in the structure. The MAC matrix indicates that modal shapes,
as a damage sensitive feature, are sensitive to the size of the damage. It is worth
pointing out that M1 and M2 show high correlation with other mode shapes, while
the higher point masses only obtain high correlation with the other point mass
damages. This raises an interesting question about the necessary damage size
needed for using mode shapes as damage indicator. Based on the results of the
MAC matrix, the necessary point mass should be somewhere between 0.1kg and
0.5kg. Figure 4.11 also shows that B-damages can be distinguished from all other
recorded mode shapes.

The mode shapes of the numerical model were not influenced by close modes,
and all modes were classified as either pure bending or torsion. The modes of
the experimental cantilever were influenced by local and closely spaced modes.
Especially, the first vertical bending mode (mode 3) which was influenced by torsion
in real life.

By combining the MAC matrix in figure 4.11 with the MAC matrices in figure
4.7-4.8 all of the M-, and B-damages can be identified. The M1-damage did not
affect the structure much, but a damage was detected when comparing it with the
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Figure 4.11: MAC matrix of damages based on average mode shapes.

values in table 4.1. An interesting observation about the boundary damages was
the rearranged mode order due to the decrease of natural frequency of the pure
bending modes. The rearranging was significant to the boundary damage compared
to the point masses.

By studying figure 4.9, the cuts must be significant in order to be identified
as a damage in the structure. For the 60mm cut, mode 2 and 3 merged, and
mode 2 could not be identified. Also, mode 3 obtained a lower MAC value. This
observation was also made for the CR-damages. For the 40mm flange cut, there
were no obvious changes in the MAC matrix compared to the C70 damages. When
increasing the flange cut to 70mm, mode 13 could not be identified. In further
work, it would be interesting to investigate if it is possible to estimate the cut
depth based on the decrease in MAC values. Also, if a critical level for the cut
depth can be estimated in order to estimate the damage level necessary to obtain
changes in the mode shape feature.

The mode shape feature reached damage assessment level (3), identification and
classification of damage. Still, the method did not locate damages.

4.3 Mode Shape Curvature

Mode shape derivatives, such as curvature, can be used as an alternative to the
mode shape feature for structures that exhibit bending behavior. The derivative
will amplify discontinuities in mode shapes, which have been subjected to damage.
Figure 4.12 and 4.13 show the mode shape curvature of different C and CR damages
in x=1.0m. All of the mode shapes have been analyzed, but it was the first lateral
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and vertical mode that gave the best results considering locating the damage. The
grey lines illustrate the MSC of all 10 damage recordings, and the black line shows
the mean MSC. The figures show large curvature peaks in x=2.0m for both modes,
which clearly is a misinterpretation of the damage location. As the cut depth
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Figure 4.12: Experimental MSC of C-damages.
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increase, the magnitude of the lateral MSC decrease, as figure 4.12(a), (c) and (d)
illustrates. The vertical mode in figure 4.12(b), (d) and (f) shows that the peak in
x=2.0m decrease relative to the peak in x={0.7, 1.0}, as the cut depth increases.
However, the curvature obtains the largest peak in x=0.7m and the damage is still
localized incorrectly.

The first lateral mode of the CR-damages in figure 4.13(a) and (c), obtains the
larges MSC in two points along the x-axis. The lateral mode of the C70R70 damage
in figure 4.13(c) shows a correctly located damage. The grey lines around the peak
in 2.0m have a large spread. The big variations make the MSC untrustworthy. The
removed bolts in figure 4.14(a) and (b) obtained peaks at x=2.0m, which makes
the method unsatisfactory for boundary damages.

The numerical study did not obtain good results. Probably because of more
pure bending modes in combination with a more sensitive behavior to small cut
damages. Figure 4.15-4.18 show the results obtained from the numerical model,
where the mode shapes are calculated from a modal analysis in ABAQUS. The cuts
were modelled in the top web at x = {0.2m, 1.0m, 1.2m, 1.5m, 2.0m} with varying
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Figure 4.13: Experimental MSC of CR-damages.



46 Results and Discussion

0 0.5 1 1.5 2 2.5 3

x[m]

0

0.2

0.4

0.6

0.8

1

1.2

M
S

C

B1

B2

B3

(a) First lateral mode.

0 0.5 1 1.5 2 2.5 3

x[m]

0

2

4

6

8

10

12

M
S

C

B1

B2

B3

(b) First vertical mode.

Figure 4.14: Experimental MSC of B-damages.
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Figure 4.15: Numerical MSC of cuts at (200, 0, 76).

deepness. The error peak in x=2.0m is observed for the lateral bending mode for
the numerical model as in the experimental test, but the peak is not affecting the
results in the vertical mode.

As examined in section 2.7.1, the Mode Shape Curvature method is originally
designed for uniformly spaced sensors. Figure 4.19 shows the MSC for a numerical
study modelled with uniformly spaced sensors of 10cm along the top web. The
figure shows three different cuts of 10mm at different locations. The numerical
MSC was based on the mean value of the first 24 modes obtained in the modal
analysis, and the damages are perfectly located.

The Mode Shape Curvature is found by calculating the second derivative of the
mode shape. When having non-uniformly sensor spacing there is a bigger error
due to the central difference method. This, in combination with sensors placed at
different webs and flanges, gives insufficient results. For the experimental tests the
MSC feature did localize the deeper cuts, but it was first at 70mm that the damage
was approximately located. This is close to the half of the cross-section height and
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Figure 4.16: Numerical MSC of cuts in (1200, 0, 76).
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Figure 4.17: Numerical MSC of cuts at (1500, 0, 76).
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Figure 4.18: Numerical MSC of cuts at (2000, 0, 76).
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Figure 4.19: Numerical MSC for equally spaced sensors at the top web.

is considered as a severe damage. This makes the feature too insensitive in order
to have a reliable structure. For pure bending modes as from the numerical study,
5mm cuts were detected and localized correctly, which is considered as a high degree
of accuracy. Since the numerical study of uniformly spaced sensors along the top
web gave good results, it would have been interesting to do an experimental test
with equal sensor spacing in future work. It would also have been interesting to do
an experiment with sensors along the top web with non-uniform spacing in order
to identify whether the error was caused by the spacing or the varied mounting
locations at the cross-section, i.e. mounting at different flanges and webs.

4.4 Modal Flexibility

Modal data from the system identifications of the damaged and undamaged can-
tilever were used to calculate the change in flexibility as given in equation (2.44).
Flexibility changes, due to damages in the real-life cantilever, were calculated based
on the average flexibility matrix. Meaning that the mean natural frequencies and
average mode shapes were the basis for the calculation of the modal flexibility
change. The modal average flexibility is given by:

[G] ≈
m∑
i=1

1

ω2
i

{φ}i{φ}Ti . (4.5)

The modal flexibility matrix converges as the modal frequency increases, there-
fore, only the first 7 modal contributions were used in the calculation of the modal
flexibility change. The flexibility matrix was established by considering the trans-
lational degrees of freedom in both the transverse and vertical direction. Due to



Modal Flexibility 49

B
1

B
2

B
3

M
1

M
2

M
3

M
4

C
1

C
1

0

C
2

0

C
4

0

C
6

0

C
7

0

C
7

0
R

4
0

C
7

0
R

7
0

Damage

-200

-150

-100

-50

0

50

R
e

la
ti
v
e

 d
if
f.

 i
n

 f
le

x
ib

ili
ty

 [
%

]

(a) Experimental damages

B
1

B
2

B
3

M
1

M
2

M
3

M
4

C
5

C
1

0

C
2

0

C
4

0

Damage

-120

-100

-80

-60

-40

-20

0

20

R
e

la
ti
v
e

 d
if
f.

 i
n
 f

le
x
ib

ili
ty

 [
%

]

(b) Numerical damages

Figure 4.20: Relative maximum modal flexibility change.

the mode reduction of some cut damages, mode 2 was excluded from the analysis
for all damages. Figure 4.20(a) shows the relative maximum change in flexibility
of the experimental damage scenarios. The relative maximum flexibility change for
damage k is calculated as:

∆Gmax = 100 · Gmax,U −Gmax,Dk

Gmax,U
, (4.6)

hence, ∆gmax < 0 indicates an increase in flexibility. The removal of two bottom
and side bolts caused the largest flexibility change of the real-life cantilever. The
flexibility was increased by almost 200%. The point masses obtained an increasing
flexibility for increasing damage level. The cut damages hardly affected the flexibil-
ity compared to the other two damages. It should be noted that the experimental
and numerical flexibility results obtained quite different results. Figure 4.20(b)
shows the absolute maximum change in flexibility of the numerical damages. The
numerical flexibility change was calculated based on the modal parameters from
the eigenvalue analysis. The removal of two bottom bolts resulted in the largest
change of flexibility of the numerical damages. An interesting observation is how
some point masses reduced the flexibility instead of increasing it. The modal flex-
ibility method requires mass-normalized modes, which is difficult to obtain for
experimental test. Therefore, the experimental mode shapes were normalized in
such a way that the largest element in each mode shape vector was equal to unity.

The Modal Flexibility method could not locate damages in the cantilever beam.
This is because the degrees of freedom are translational DOFs along the beam axis
that gain stiffness from the structure as a whole. Thus, changes in flexibility in one
of the DOFs cannot be linked to damage close to that degree of freedom. One must
look at the pattern in the flexibility matrix and connect it to a pattern for a known
damage. The flexibility change feature vector was established by rearranging the
flexibility change matrix to row-vectors as:

~d1 =
[
∆G∗,1 ∆G∗,2 ... ∆G∗,N

]
, (4.7)
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Figure 4.21: MAC matrix of modal flexibility change feature vectors.

where N is the number of sensors. Figure 4.21 shows the resulting MAC matrix of
the modal flexibility change feature. The MAC matrix shows that the cut damages
did not correlate with B- nor M-damages, while the latter two damages show signs
of correlation. Also, the flexibility change feature vector of the B3 damage does
not correlate with any other damage. In addition to the MAC matrix of the modal
flexibility change, the flexibility feature vectors, given by:

~d2 =
[
G∗,1 G∗,2 ... G∗,N

]
, (4.8)

were evaluated by the damage index, DI. The damage index is the correlation
coefficient between the damaged and undamaged cantilever beam, and is defined
as [19]:

DI = 1− ρ~dD ~dU = 1−
σ~dU ~dD
σ~dDσ~dU

(4.9)

where dD and dU are the feature vectors of the damaged and undamaged can-
tilever. σ~dD and σ~dU are the corresponding standard deviations, and σ~dU ~dD is the
covariance matrix. The damage indicator in equation (4.9) gives a non-dimensional
measure of the similarity in the different damage behaviors. The damage indicator
is low if the two feature vectors are similar, i.e. no presence of damage, and high
if the vectors have a different behavior due to the presence of damage. Figure 4.22
shows the DI of the flexibility feature vectors as presented in equation (4.8) of the
experimental damages. The figure shows the largest DI value for the B3 damage.
The DI of the point mass damages increased as the point mass damage level in-
creased. The different cut damages showed no trend for increased damage levels.
The Modal Flexibility feature reached damage identification level (2). The method
was successful in identifying severe damages, such as boundary damages and point
masses, but could not locate damages in the structure. The use of the method to
localize damages could not be justified for the sensor layout in this thesis. The
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Figure 4.22: Damage Index of modal flexibility feature vectors.

method has been applied successfully for damage identification in studies evaluat-
ing other shell models [15, 21]. Shell models can easily relate the flexibility matrix
to a location in the model, while in the case of this thesis, the degrees of freedom
obtained flexibility change from the global stiffness. The numerical damages were
most likely located at the tip, since the stiffness on the tip of the cantilever depends
on the stiffness of the entire beam.

The flexibility matrix was estimated by equation (2.43), which is based on the
natural frequency and mode shape estimates. Damages that cause a reduction in
natural frequencies are a result of either a stiffness reduction or an increase in mass.
Since most of the damages evaluated in this thesis reduced the natural frequen-
cies, the flexibility of the damaged system increased. The removal of two bottom
bolts resulted in the largest frequency shift, and the largest flexibility change was
recorded for the B3 damage in both studies. Furthermore, the removal of two side
bolts caused a large change in the flexibility. Both damages obtained a much higher
flexibility compared to removing one single bolt. The experimental study showed
an increasing trend when increasing from the B1 boundary damage level to B2 and
B3.

The numerical study was investigated for mass normalized mode shapes, as the
method requires. The experimental study was evaluated for mode shapes normal-
ized by the maximum entry in each mode shape. The two different methods of
normalization may be the reason for the slightly different results. The flexibility
change of the experimental mass damages showed an increasing trend as the point
mass damage level increase. This pattern cannot be seen for the numerical point
mass damages, as the largest point mass measures a significant flexibility change.
The cut damages experienced quite different behaviors for the finite element model
and the real-life cantilever. The numerical results showed that the maximum flex-
ibility change increased with increasing cut depth in x=0.2m, while a decreasing
trend could be observed for constant cut depth of 20mm with increasing distance
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from the support. The global stiffness will be higher as the cut occurs further away
from the support, since a larger part of the structural beam remains undamaged.
The experimental study could not have been performed with cuts at different lo-
cations, as only one test piece was available. The maximum change in flexibility
remained relatively constant for the lower cut damage levels (C1-C40). The cut
damages did not show any monotonic trends, indicating that the maximum flexibil-
ity change was not a good feature for cut damages. The largest cut damages C60,
C70 and C70R40 recorded only 17 modes, which caused difficulties when applying
the Modal Flexibility method. Based on the results from the natural frequency and
mode shape analyzes, it was decided to exclude the second mode from all damages
in the analysis. Some damages cause modes to shift, therefore the second mode
could have been important for the flexibility calculations.

Based on the flexibility results presented in this section, the flexibility will
be a good damage indicator for damages causing large frequency shifts, such as
B-damages and large M-damages. The method gave inconsistent results for the
experiments and the numerical model. It is reemphasized that the normalization
of mode shapes play an important role in the flexibility estimations. It is proposed
as future work to evaluate if the method obtains better results if the experimental
mode shapes are mass-normalized, and the numerical flexibility based on FDD
estimated modal parameters instead of the eigenvalue results.

4.5 Statistical Moments

Statistical moments can give statistical information about the acceleration response
histories. The peak amplitude, mean, root-mean square, variance, skewness and
kurtosis given in table 2.1, were used to characterize the irregular response of the
beam. Vertical acceleration responses recorded by the sensor at the tip are shown
in figure 4.23. The figure clearly shows that the applied loads varies in magnitude
and duration, which is due to the use of tapping as load. Statistical moments as
damage feature were first evaluated for the white noise intervals. Each 5-minute
recording includes 60 seconds of white noise response at the beginning and end
of the response history. 10 seconds were removed from the start and end of both
intervals in order to remove deviations resulting from human errors. In order to
ensure that only white noise signals were included, the intervals evaluated were:
10-50 seconds and 270-300 seconds. The last interval was reduced so that the
vibration due to the third applied load would have stabilized.

Statistical moments were calculated for each time series, and due to a large
spread in the experimental data, in addition to a low number of tests, a mean
value was established for each sensor for each damage. Figure 4.24(a)-(f) shows
the statistical moments of sensor A00z for the interval from 10 to 50 seconds. A00z
was investigated due to the assumption that the sensor would experience the largest
acceleration amplitudes. Figure 4.25(a)-(f) shows the statistical moments of the
time interval from 270 to 300 seconds.

The peak amplitude statistic differentiates between the two white noise inter-
vals. The largest peak amplitude of the first interval was obtained for the B3
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Figure 4.23: Response time-histories of sensor A00z.

damage, while the second time interval recorded largest peak amplitude of the B1
damage, as shown in figure 4.24(a) and 4.25(a). Figure 4.24(b) and 4.25(b) show a
significant increase in mean acceleration when a damage was present. The bound-
ary and cut damages obtained approximately the same mean. However, the mean
slightly increases as the cut depth increased. The largest mean acceleration was
obtained for the M-damages, except from M4 in both cases. The root-mean square
and variance values are shown in figure 4.24(c)-(d) and 4.25(c)-(d). The largest
root-mean square (RMS) was recorded for the M4 damage, and the RMS and vari-
ance were increasing as the point mass damage level increased. The B-damages
resulted in approximately the same RMS as the undamaged beam, where the B1
damage deviated the most. Both figures show an overall decreasing pattern when
the cut depth increase.

The skewness of a Gaussian distributed variable, such as white noise, is ap-
proximately 0, while the kurtosis is approximately 3. Figure 4.24(f) and 4.25(f)
show two deviations. The B3-damage slightly deviates from the zero-line in figure
4.24(e), while M1 recorded a larger negative skewness for the second time interval in
figure 4.25(e). The damages with skewness-deviations also obtained large kurtosis
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values. These large values might have been caused by signal errors in the vibration
recording from the white noise load. The statistical moments in figure 4.24 and
4.25 show no clear tendencies besides the increasing mean due to the presence of
damage.

The statistical features of the load-intervals are shown in figure 4.26(a)-(f). The
beam was put in vibration by tapping the tip of the beam. Therefore, the peak
acceleration is a very sensitive parameter when the applied load is inconsistent.
The peak amplitude will typically increase when a damage reduces the structural
stiffness. This only applies when the input to the system remains stationary, which
was not the case in this thesis. Therefore, the peak amplitude was not a good indi-
cator for the acceleration response histories. The variance, skewness and kurtosis
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Figure 4.24: Statistical moments of white noise interval from 10-50s (sensor A00z).
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produce biased estimates of the statistics. This is a possible error, as there were
not sufficient acceleration history recordings of the damages [6]. Thus, neither of
these features would be good indicators for the acceleration response histories. The
mean acceleration values show somewhat similar trends as the means of the white
noise intervals. The load response history also indicates the presence of damage
by an increase in the mean acceleration. The mean of the largest point mass did
not increase as much as the other M-damages. The mean value is sensitive to
outliers which can be the reason for this effect. Since the median is a statistic
similar to the mean value, but less sensitive to outliers, this could be a better fea-
ture. The mean value is a statistic that successfully indicated if the structure was
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Figure 4.25: Statistical moments of white noise interval from 270-300s (sensor
A00z).



56 Results and Discussion

subjected to damage, but could not be used to separate the different B-, M-, C-
and CR-damages. The other statistical moments in figure 4.26(c)-(f) show a large
dispersion between the statistics of the different loads. An interesting observation
was how the root-mean square of some damage levels were lower than root-mean
square of the undamaged beam. The mean spectral density of the C-damaged
beam subjected to a vertical load, is shown in figure 4.27. The first peak around
8.8Hz shows that for C1-C40 the energy associated with the mode increased when
the C-damages were present. an interesting observation was that the C60 and C70
damages measured less energy in the system than the undamaged beam. The other
peaks around 26.3Hz, 43.8Hz, 55.6Hz and 61.5Hz show that the cuts tend to reduce
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Figure 4.26: Statistical moments of load intervals: • vertical tap flange , • vertical
tap web and • horizontal tap web (sensor A00z).
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the amount of energy associated with the mode. The second peak shows a quite
large reduction in the peak, still there are no obvious trends in the reduction. The
higher order modes from the peak around 133.8Hz shows that the energy in the
undamaged structure was less than the lower cut damage levels. The figure shows
that as the cut depth increased, the two peaks around 142Hz to 152Hz merged and
shifted slightly to the left.
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Figure 4.27: Average power spectral density of cut damages for 60-120s load interval
(sensor A00z).

The root-mean square shows no clear tendencies for either the white noise in-
tervals and the load intervals. The root-mean square acceleration gives information
about the energy in the system, and the power spectral density gives information
about the energy in the context of frequency. The power spectral density of the
first recorded peak shows that all cut damages reduced in energy related to the
mode. The recorded spectral density of the C60 and C70 damages were lower
than the undamaged beam, while higher for the lower cut damages. The spectral
densities neither showed any clear trends for the spectral density peaks. Thus, a
reasonable explanation was not found for why some damages obtained lower RMS
estimations than the undamaged beam. The root-mean square will therefore not
be a good damage feature. The variance also measures spread of data about the
mean value of the acceleration amplitudes. Variance obtain very similar patterns
to the root-mean square.

The symmetry of the probability distribution of the response history was eval-
uated in terms of skewness. The Gaussian distributed white noise acceleration
histories obtained skewness close to zero. The recorded deviations were a result of
error in the recorded signal as well as small vibration amplitudes of the beam. The
skewness of the load response series obtained much larger skewness magnitudes.
The skewness did not indicated any reasonable trend for the increased damage
levels. This also applied for the kurtosis. 10 recordings were proven insufficient in
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order to obtain good statistical results and may illuminate trends that exist.
The statistical moments can give more information about the damage if the

statistical moments are formed as a feature vector:

~d = [~ypeak ~y ~RMS ~σ2 ~γ ~κ], (4.10)

where each statistical moment vector within ~d consists of average values of all
sensors. The peak amplitude feature vector of a given damage is:

~ypeak,D = [ypeak,s1 ypeak,s2 ... ypeak,s14], (4.11)

where the peak values of each sensor are the average value of the 10 test for dam-
age D. The remaining vectors in equation (4.10) were established like the peak
amplitude in equation (4.11). Figure 4.28(a) shows the DI values of the feature
vector in equation (4.10) for the three load intervals. The feature vectors show
much higher DI values for the vertical loads than the lateral. Due to the sensitive
and bias behavior of the recordings, the peak amplitude, variance, skewness and
kurtosis were excluded. The DI of the resulting feature vector is shown in figure
4.28(b). The largest DI values were obtained for the higher point mass damage
levels. Still, the different loads showed no clear tendencies.
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Figure 4.28: Damage index of different statistical moment feature vectors of load
intervals.

The entire response histories from 0 to 300 seconds were also evaluated by the two
statistical moment feature vectors. The time interval shows little variation in the
DI of the different feature vectors, as shown in figure 4.29. Both feature vectors
obtained an increasing DI for increasing point mass damages. As the sensitive
moments were excluded, the point mass damage separates more from the other
damages. It should be noted that the DI magnitude heavily decreased as the
variance, skewness and kurtosis were excluded. Figure 4.29 indicates that higher
point mass damages could be separated by statistical moments when the entire
response history was evaluated. Since the feature vectors of the load intervals show
no trends, the strength of the statistical moment feature vectors is weakened. A
future study should include a larger number of samples, in addition to evaluating
the statistical moments for consistent loading.
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Figure 4.29: Damage index of different statistical moment feature vectors of 5-
minute response histories.
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Chapter 5

Conclusion

Based on acceleration measurements of numerical and experimental studies, the
simplest damage features, such as natural frequencies and mode shapes, are proven
to be the most sufficient in detecting damages. These are the only damage features
proven to work correctly in this thesis, and will also give good results for real-life
structures. The results show that cut damages must have been at least 40mm deep
in order to detect the damage. This is a severe damage compared to the dimensions
of the structure and should be detected way earlier in order to have a comfortable
and reliable structure. The modal flexibility combines the natural frequencies and
mode shapes into one feature. The modal flexibility feature will estimate damages
causing large frequency shifts, but will not classify the damage type. Thus, the
natural frequency shifts, mode shapes and modal flexibility features reach damage
identification level (3). None of the methods manages to locate the damage.

The mode shape curvature suffers from the sensor layout limitations, but did
manage to localize cuts of 70mm. The numerical results show that the mode shape
curvature method was successfully applied for cut damages when a larger number of
sensors were used, and the spacing between the sensors was uniform. The statistical
moments were proven insufficient for damage identification. From the statistical
moment analysis, only the mean value showed a consistent increase for all damages.
The mean acceleration feature should be questioned as the smallest cut damage
and the largest point mass damage indicates equal shifts.

In addition to presenting which damage indicators that are reliable, the thesis
has presented typical trends of the different damage types for the different features.
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Appendix A

Table A1: Natural frequencies obtained from FDD of numerical model with 7
sensors. MAC and relative error with results from eigenvalue analysis of FE model.

Mode no. Frequency
FEM [Hz]

Frequency
FDD [Hz]

MAC Relative
Error [%]

1 8.31 8.33 0.93 0.32
2 8.50 8.57 0.99 0.75
3 9.35 9.35 0.63 0.06
4 25.72 25.71 1.00 0.07
5 43.00 42.88 1.00 0.27
6 53.33 53.09 1.00 0.45
7 57.95 57.59 1.00 0.62
8 60.47 60.06 1.00 0.68
9 78.20 77.27 1.00 1.19
10 96.27 94.45 1.00 1.19
11 114.76 111.66 1.00 2.70
12 133.72 128.84 1.00 3.65
13 147.03 140.61 1.00 4.36
14 153.25 146.25 0.94 4.57
15 155.25 148.40 0.63 4.83
16 173.39 163.11 0.99 5.93
17 194.23 180.09 1.00 7.28
18 215.84 197.00 1.00 8.73
19 238.27 213.66 1.00 10.33
20 261.62 231.54 0.78 11.50
21 261.75
22 270.75 235.54 0.93 13.00
23 286.96 246.33 0.98 13.86
24 311.36 262.69 0.98 15.63
25 337.91 281.62 0.01 16.66
26 340.82 301.62 0.01 11.47
27 345.16 324.07 0.09 6.11
28 365.71 337.14 0.01 7.81
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Table A2: Description of time series for boundary damages.

Damage Filename Length of
time series [s]

Sensor
placement

No damage

2020-04-30-08-53-15Z 306.8

See fig. 3.5

2020-04-30-09-01-36Z 325.1
2020-04-30-09-07-06Z 335.3
2020-04-30-09-12-52Z 304.1
2020-04-30-09-18-12Z 302.7
2020-04-30-09-23-26Z 302.0
2020-04-30-09-35-47Z 303.9
2020-03-12-1 310.8
2020-03-12-2 353.1
2020-03-12-3 303.1

B1

2020-05-04-07-52-00Z 303.6

See fig. 3.5

2020-05-04-07-07-15Z 313.6
2020-05-04-08-02-40Z 307.6
2020-05-04-08-08-06Z 307.2
2020-05-04-08-13-29Z 304.1
2020-05-04-08-18-40Z 303.1
2020-05-04-08-23-53Z 304.1
2020-05-04-08-29-10Z 307.2
2020-05-04-08-34-40Z 301.7
2020-05-04-08-39-56Z 303.8

B2

2020-05-04-09-02-25Z 305.6

See fig. 3.5

2020-05-04-09-08-57Z 304.0
2020-05-04-09-14-17Z 303.2
2020-05-04-09-19-32Z 301.8
2020-05-04-09-24-47Z 414.9
2020-05-04-09-32-01Z 302.7
2020-05-04-09-37-16Z 301.7
2020-05-04-09-42-26Z 300.6
2020-05-04-09-47-35Z 311.3
2020-05-04-09-53-02Z 304.7

B3

2020-05-04-10-22-02Z 323.8

See fig. 3.5

2020-05-04-10-27-37Z 303.9
2020-05-04-10-32-53Z 303.3
2020-05-04-10-38-26Z 302.7
2020-05-04-10-43-40Z 304.2
2020-05-04-10-48-53Z 303.1
2020-05-04-10-54-08Z 301.9
2020-05-04-10-59-28Z 302.9
2020-05-04-11-04-40Z 302.3
2020-05-04-11-09-56Z 300.8
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Table A3: Description of time series for point mass.

Damage Filename Length of
time series [s]

Sensor
placement

M1

2020-05-04-10-22-02Z 300.8

See fig. 3.5

2020-04-30-10-38-36Z 303.8
2020-04-30-10-44-04Z 312.1
2020-04-30-10-49-26Z 306.8
2020-04-30-10-55-06Z 305.9
2020-04-30-11-00-29Z 304.4
2020-04-30-11-05-45Z 304.2
2020-04-30-11-11-00Z 305.2
2020-04-30-11-16-18Z 320.5
2020-04-30-11-21-29Z 305.3

M2

2020-04-30-11-26-58Z 305.3

See fig. 3.5

2020-04-30-11-42-56Z 308.7
2020-04-30-11-48-13Z 315.0
2020-04-30-11-53-31Z 301.9
2020-04-30-11-58-57Z 328.9
2020-04-30-12-04-14Z 302.4
2020-04-30-12-09-52Z 310.2
2020-04-30-12-15-00Z 310.2
2020-04-30-12-20-21Z 303.4
2020-04-30-12-25-41Z 302.8

M3

2020-04-30-12-39-20Z 304.3

See fig. 3.5

2020-04-30-12-44-32Z 302.7
2020-04-30-12-49-47Z 306.0
2020-04-30-12-55-04Z 302.5
2020-04-30-13-00-14Z 302.5
2020-04-30-13-05-26Z 301.4
2020-04-30-13-10-35Z 305.3
2020-04-30-13-15-53Z 300.8
2020-04-30-13-21-05Z 306.9
2020-04-30-13-26-18Z 306.9

M4

2020-05-04-06-46-05Z 306.4

See fig. 3.5

2020-05-04-06-51-24Z 303.4
2020-05-04-06-56-37Z 303.4
2020-05-04-07-01-50Z 303.5
2020-05-04-07-07-05Z 302.5
2020-05-04-07-12-32Z 302.9
2020-05-04-07-17-46Z 300.7
2020-05-04-07-22-59Z 328.0
2020-05-04-07-28-50Z 304.3
2020-05-04-07-34-06Z 303.1
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Table A4: Description of time series for C1-C40.

Damage Filename Length of
time series [s]

Sensor
placement

C1

2020-05-04-11-38-09Z 302.3

See fig. 3.5

2020-05-04-11-43-26Z 308.8
2020-05-05-07-27-37Z 302.9
2020-05-05-07-32-51Z 304.3
2020-05-05-07-38-05Z 302.1
2020-05-05-07-43-19Z 302.0
2020-05-05-07-48-30Z 302.4
2020-05-05-07-53-44Z 304.0
2020-05-05-07-59-01Z 307.5
2020-05-05-08-12-39Z 301.5

C10

2020-05-05-08-24-23Z 306.5

See fig. 3.5

2020-05-05-08-29-42Z 304.0
2020-05-05-08-35-00Z 303.6
2020-05-05-08-40-12Z 303.2
2020-05-05-08-45-31Z 302.7
2020-05-05-08-50-42Z 310.2
2020-05-05-08-55-59Z 303.8
2020-05-05-09-01-11Z 302.7
2020-05-05-09-06-31Z 304.4
2020-05-05-09-11-46Z 305.1

C20

2020-05-05-09-21-11Z 302.6

See fig. 3.5

2020-05-05-09-29-09Z 303.2
2020-05-05-09-34-21Z 302.5
2020-05-05-09-39-34Z 304.6
2020-05-05-09-44-48Z 306.3
2020-05-05-09-50-13Z 305.1
2020-05-05-09-55-32Z 302.4
2020-05-05-10-00-43Z 303.2
2020-05-05-10-05-57Z 303.0
2020-05-05-10-11-11Z 302.7

C40

2020-05-05-10-20-27Z 324.7

See fig. 3.5

2020-05-05-10-26-08Z 303.1
2020-05-05-10-31-20Z 302.7
2020-05-05-10-36-32Z 302.0
2020-05-05-10-57-00Z 300.8
2020-05-05-11-02-17Z 300.4
2020-05-05-11-07-29Z 307.3
2020-05-05-11-12-47Z 304.7
2020-05-05-11-18-04Z 313.0
2020-05-05-11-23-34Z 307.1
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Table A5: Description of time series for C60-C70R70.

Damage Filename Length of
time series [s]

Sensor
placement

C60

2020-05-22-09-19-47Z 301.1

See fig. 3.5

2020-05-22-09-25-13Z 303.1
2020-05-22-09-34-57Z 301.7
2020-05-22-09-40-10Z 304.5
2020-05-22-09-45-23Z 302.8
2020-05-22-09-50-35Z 305.6
2020-05-22-09-56-28Z 302.2
2020-05-22-10-01-41Z 304.0
2020-05-22-10-07-04Z 304.9
2020-05-22-10-12-21Z 304.4

C70

2020-05-22-10-53-34Z 302.0

See fig. 3.5

2020-05-22-10-58-55Z 302.2
2020-05-22-11-04-06Z 304.7
2020-05-22-11-09-23Z 304.0
2020-05-22-11-14-36Z 302.0
2020-05-22-11-21-29Z 314.7
2020-05-22-11-29-28Z 304.5
2020-05-22-11-34-47Z 303.9
2020-05-22-11-40-02Z 303.4
2020-05-22-11-45-23Z 300.9

C70R40

2020-05-22-11-59-27Z 301.6

See fig. 3.5

2020-05-22-12-04-41Z 300.8
2020-05-22-12-09-52Z 301.3
2020-05-22-12-15-02Z 303.0
2020-05-22-12-20-15Z 303.3
2020-05-22-12-25-38Z 301.5
2020-05-22-12-32-12Z 303.8
2020-05-22-12-39-50Z 303.9
2020-05-22-12-45-05Z 301.2
2020-05-22-12-50-32Z 302.5

C70R70

2020-05-22-13-02-18Z 305.8

See fig. 3.5

2020-05-22-13-07-38Z 300.5
2020-05-22-13-12-48Z 301.7
2020-05-22-13-17-58Z 304.6
2020-05-22-13-23-13Z 300.5
2020-05-22-13-28-25Z 300.4
2020-05-22-13-33-36Z 302.7
2020-05-22-13-38-49Z 300.7
2020-05-22-13-44-00Z 302.0
2020-05-22-13-49-15Z 303.2
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Table A6: Percentiles for the undamaged beam.

Mode 5% 95% Mode 5% 95%
1 7.89 7.91 10 97.50 97.60
2 8.81 8.83 11 115.93 116.03
3 9.03 9.05 12 133.30 133.40
4 26.45 26.47 13 141.49 141.64
5 43.78 43.82 14 149.43 149.62
6 50.86 50.89 15 156.31 156.36
7 55.77 55.81 16 177.20 177.31
8 61.53 61.62 17 194.79 194.88
9 80.24 80.28 18 211.37 211.60

Table A7: Max and min frequencies for point masses.

Mode
M1 M2 M3 M4

5% 95% 5% 95% 5% 95% 5% 95%
1 7.79 7.82 7.69 7.74 6.82 6.83 5.96 5.97
2 8.68 8.70 8.55 8.55 7.45 7.47 6.67 6.67
3 8.96 8.98 8.93 8.96 8.81 8.82 8.62 8.63
4 26.21 26.29 26.08 26.10 24.39 24.46 22.98 23.09
5 43.22 43.34 42.97 43.04 39.54 39.71 37.28 37.76
6 50.16 50.20 49.62 49.64 46.55 46.57 44.19 44.54
7 55.03 55.23 54.47 54.49 51.56 51.58 50.28 50.31
8 60.99 61.12 60.61 60.63 58.74 58.80 57.58 57.71
9 79.78 79.84 79.18 79.22 75.87 76.02 74.69 74.86
10 96.91 96.95 96.20 96.23 92.27 93.67 90.51 92.06
11 115.33 115.41 114.74 114.79 110.80 112.86 107.90 109.10
12 132.36 132.39 131.14 131.31 123.99 126.84 123.60 125.92
13 138.80 139.07 137.60 138.78 128.61 129.83 127.40 128.10
14 147.68 147.76 145.38 145.70 141.01 141.19 139.40 140.01
15 154.97 155.03 154.38 154.46 152.94 153.35 150.00 152.30
16 176.06 176.16 175.22 175.50 169.50 172.00 162.90 164.00
17 193.68 193.89 192.79 193.62 181.60 183.67 179.90 180.80
18 209.94 210.10 208.30 208.92 196.50 197.21 195.62 196.23
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Table A8: Max and min frequencies for removed bolts.

Mode
B1 B2 B3

5% 95% 5% 95% 5% 95%
1 6.60 6.62 4.68 4.70 5.43 5.43
2 8.61 8.62 8.29 8.30 6.31 6.31
3 8.80 8.82 8.80 8.83 8.81 8.83
4 26.47 26.50 26.46 26.50 26.37 26.46
5 43.81 43.85 43.43 43.47 43.79 43.83
6 47.23 47.27 44.05 44.06 44.39 44.41
7 53.80 53.86 52.42 52.46 46.63 46.64
8 61.56 61.58 61.55 61.58 61.52 61.54
9 80.29 80.32 80.26 80.29 80.23 80.25
10 97.55 97.57 97.53 97.55 97.52 97.54
11 115.92 115.95 115.86 115.90 115.74 115.76
12 131.95 132.07 128.74 128.89 127.81 128.77
13 137.02 137.07 135.21 135.29 131.74 131.98
14 145.26 145.40 142.74 142.85 136.66 136.74
15 156.15 156.18 156.07 156.14 155.90 155.96
16 177.23 177.29 177.17 177.29 177.05 177.09
17 194.77 194.83 194.70 194.78 194.60 194.67
18 211.16 211.36 211.13 211.33 209.47 209.83

Table A9: Max and min frequencies for cuts.

Mode
C1 C10 C20 C40

5% 95% 5% 95% 5% 95% 5% 95%
1 8.01 8.03 8.02 8.03 8.01 8.03 8.02 8.02
2 8.80 8.81 8.79 8.82 8.79 8.81 8.77 8.78
3 9.07 9.08 9.05 9.06 9.02 9.03 8.91 8.91
4 26.46 26.48 26.43 26.48 26.39 26.47 26.39 26.47
5 43.79 43.84 43.80 43.82 43.76 43.79 43.66 43.70
6 51.39 51.41 51.39 51.41 51.38 51.39 51.38 51.39
7 55.98 56.02 55.92 55.94 55.79 55.80 55.24 55.25
8 61.59 61.61 61.55 61.57 61.51 61.53 61.25 61.32
9 80.19 80.24 80.19 80.22 80.18 80.22 80.16 80.20
10 97.52 97.58 97.49 97.53 97.45 97.48 97.25 97.32
11 116.00 116.07 116.02 116.05 115.89 115.92 115.52 115.55
12 133.41 133.49 133.41 133.48 133.34 133.39 133.26 133.33
13 142.32 142.37 142.32 142.37 142.29 142.35 142.28 142.32
14 149.82 149.94 149.56 149.66 148.99 149.04 146.75 146.81
15 156.32 156.38 156.28 156.32 156.14 156.20 155.78 155.82
16 177.14 177.19 177.08 177.14 176.94 176.99 176.41 176.45
17 194.65 194.72 194.61 194.67 194.52 194.61 194.38 194.44
18 211.19 211.31 211.23 211.38 211.04 211.24 210.91 211.16
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