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Abstract

U-splines were introduced by Derek C. Thomas, Luke Engvall, Steven K. Schmith,
Kevin Tew and Michael A. Scott. U-splines are a novel approach for representing
smooth geometry for use in computer aided design (CAD) and computer aided
engineering (CAE). Their development has been motivated by the vision of iso-
geometric analysis (IGA), which is to unify the geometric representations used in
both CAD and CAE.

U-splines provide many promising attributes like local refinement, integration of
triangles and backwards compatibility with T-splines and NURBS. It is conjec-
tured that the U-spline basis is positive, forms a partition of unity, is linearly
independent and provides optimal approximation properties when used in analy-
sis. They also provide great flexibility for setting customized continuity constraints
over a mesh.

An interpretation and a possible implementation of the basic concepts used in
the construction of U-splines is presented. U-splines are then used in several plane
stress problems to assess the effect of setting different continuity conditions over the
mesh. Specifically, a case with only C0 conditions is compared with a conventional
multi-patch spline case and a special U-spline case. These cases are tested for
several different plane-stress problems and their convergence rates are compared
for uniform refinement.

The results show that some of the special cases give low convergence rates. It
is concluded that the reason for this may be a combination of high continuity
constraints and an irregular mesh resulted from the projection of the modelled
geometry. This is assumed to cause an over-constrained mesh and may have been
the reason for the low convergence rates. It is also concluded that due to the
flexibility that U-splines provide, they seem to have great potential within both
CAD and CAE in the future.
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Sammendrag

U-splines ble introdusert av Derek C. Thomas, Luke Engvall, Steven K. Schmith,
Kevin Tew and Michael A. Scott og er en ny tilnærming for hvordan glatt geometri
kan representeres til bruk i design og analyse. Utviklingen av U-splines har vært
motivert av konseptet, isogeometrisk analyse (IGA), som er å kunne benytte den
samme geometriske representasjonen i både design og analyse.

U-splines har flere lovende egenskaper som mulighet for lokal forfining, integrering
av trekanter og bakoverkompatibilitet meg T-splines og NURBS. Det er antatt at
U-splines basisfunksjonene alltid er positive, utgjør en enhetspartisjon, er lineært
uavhengige og har optimale tilnærmingsegenskaper når de benyttes i analyse. U-
splines er også veldig fleksibel når det kommer til det å sette vilkårlige kontinu-
itetsbetingelser for et elementnett.

En tolkning og en mulig implementering av de mest essensielle konseptene som
ligger til grunn for å konstruere en U-spline basis, blir presentert. U-splines blir
deretter benyttet i ulike plan-spennings problemer for å undersøke effekten av å
sette forskjellige kontinuitetsbetingelser i elementnettene. Tre hovedtilfeller blir
sammenlignet for hvert av problemene; et tradisjonelt C0 elementnett, et spline
multi-patch elementnett og et egendefinert elementnett.

Resultatene viser at det egendefinerte elementnettet gir generelt dårligere konver-
gensrater. Det blir konkludert med at grunnen til dette kan være en kombinasjon
av høye kontinuitetskrav og et irregulær elementnett. Det antas at dette skaper et
for stivt elementnett og kan være årsaken til den lave konvergensraten. Det blir
også konkludert med at U-splines trolig har stort potensiale innen både design og
analyse i fremtiden grunnet deres utmerkede fliksibilitet.
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1 Introduction

1.1 Motivation

Computer Aided Design (CAD) and Computer Aided Engineering (CAE) are
industries that strongly relies on the representation of geometry. However, the
mathematical approaches used, have not been consistent between the industries.
In finite element analysis (FEA), which is the predominant technique used for
simulation in CAE, Lagrangian polynomials are still widely used as basis for the
elements [1]. The elements are typically linear or quadratic and C0 continuous
at the interelement interfaces. In the CAD industry, higher order splines like
non-uniform, rational B-splines (NURBS) are frequently used [2]. The geometric
representation used in CAD is therefore usually of higher order and have higher
continuities between the sub-domains than what are used in traditional FEA.

The difference in geometric representation has long been causing challenges for
analysts. One of them is the process of meshing [3]. Meshing is a necessary pro-
cess for traditional FEA programs to run analyses on CAD models. It involves
the extraction of geometrical data from a CAD model and the generation of an
analysis suitable geometric model. In many cases, this generated geometry is only
an approximation of the CAD geometry. Unfortunately this can lead to unde-
sirable inaccuracies in the analysis results [4]–[6]. Shell structures are especially
sensitive to geometric imperfections and it is therefore essential that the geometric
representation is accurate [7]. The meshing process can also be very complicated
due to complex geometry [8]–[10], thus it is often done manually in combination
with some meshing algorithm. This is usually a very time consuming task. For
CAE used for industrial purposes it is estimated that about 80% of all time spent
on analysis is used on mesh generation [11]. It is clear that eliminating the need
for a meshing process would substantially benefit the CAE industry.

These benefits were the motivation behind the concept of isogeometric analysis
(IGA) that was introduced by Hughes [11], [12]. The vision of IGA is to integrate
the geometric representation used in both design and analysis. Although some
efforts had already been made on the subject [13], it was not until the introduction
of IGA that extensive research was initiated on a larger scale.

One of the challenges related to fulfilling the vision of IGA has been to develop a
spline that has the ability of local refinement. Local refinement is something that
concerns both the CAD and CAE industry. From a designers perspective, it can
be beneficial to have less control points where the geometry has less details. An
example of this is shown in Figure 1. More control points are required in order
to capture the persons face rather than the upper parts of the head. By having a
locally refined mesh as shown in Figure 1b, one can easily edit the upper parts of
the persons head without having to move many separate control points and still
be able to capture all the necessary details of the face. Thus, local refinement

1



CHAPTER 1. INTRODUCTION

makes the design process easier and more efficient. From an analysts perspective,
the same concept applies, but for the solution field of the simulation problem.
If the solution field requires more details at certain parts of the problem, it is
only necessary to refine at these parts in order to obtain an accurate solution.
Furthermore, for problems involving singularities, e.g. re-entrant corners, there is
a need for proper adaption of the grid in the vicinity of the singularities to achieve
optimal convergence order.

(a) NURBS (b) T-splines

Figure 1: Necessary control points when using NURBS (a) versus when using T-
splines (b). T-splines allows for local refinements, thus superfluous control points
are omitted. Figure is found in [14].

The classical B-splines [15] and NURBS does not have the ability of true local
refinement. This is because of their limited topology inherited from the tensor
product. Therefore, several approaches have been developed in order to achieve
locally refinable splines. The following approaches were developed for the pur-
pose of design. Hierarchical B-splines were introduced by Forsey and Bartels [16].
Further developments on hierarchical B-splines include the truncated basis for hier-
archical B-splines (THB-splines) [17]. T-splines were introduced by Sederberg [14],
[18] and also solved the challenges related to "watertightness" [19]. An important
advantage of T-splines is their compatibility with NURBS. Further developments
based on T-splines include PHT-splines [20] and polynomial splines over T-meshes
[21]. All these approaches were developed for the purpose of design and possesses
the ability of local refinement.

Substantial work commenced on the development of refinable splines for use in
analysis. Some efforts include the use of T-splines for analysis [22], [23]. T-splines
had some limitations due to linear dependence of the basis functions [24], but
was overcome by the introduction of analysis suitable T-splines [25]–[27]. Other
approaches like LR B-splines [28]–[32] and truncate hierarchical B-splines [17], [23],
[33] followed. New splines were also developed for the purpose of analysis. Among
them are smooth macro-elements based on Clough-Tocher triangle splits [34] and
splines over Powell-Sabin Triangulations [35]–[37]. Some approaches have been
based on the combined solution of continuity constraints and the governing partial
differential equations [38]–[40]. Some multi-degree splines (MD-splines) have also
been proposed, but for the main purpose of design [41]–[43]. Despite all these new
developments, isogeometric analysis has remained in the research stage.

2



CHAPTER 1. INTRODUCTION

U-splines are a new type of splines that were introduced in a preprint [44] in 2018
by Derek C. Thomas, Luke Engvall, Steven K. Schmith, Kevin Tew and Michael
A. Scott. These new splines have many promising attributes like local refinement,
integration of triangles, backwards compatibility with T-splines and NURBS. It is
conjectured that the U-spline basis is positive, forms a partition of unity, is linearly
independent and provides optimal approximation properties when used in analysis
[44].

Unlike many spline approaches that have a mesh extracted from a B-spline or
a NURBS mesh, U-splines are constructed by "gluing" Bernstein-like bases (ele-
ments) together by setting continuity conditions between them. The U-spline basis
functions are then found by solving a null-space problem that is constructed from
the set of continuity conditions defined over the mesh. This type of problem is
generally known to be NP-hard [45], [46], so the U-spline approach is to indirectly
solve this problem by constructing a set of highly localized null-space problem
that can easily be solved by linear programming. How these local null-space prob-
lems are constructed is an important aspect of the U-spline approach and will be
explored in this thesis.

The flexibility of U-splines enables maximum continuity over meshes with complex
topology. Several spline approaches uses the concept of multi-patch modelling
to achieve complex topology. However, the continuities between these patches
have been limited to C0 as illustrated in Figure 2a. U-splines enables maximum
continuity also across these patches. This is illustrated in Figure 2b. The potential
impact this can have on analysis will be assessed in this thesis.

(a) (b)

Figure 2: Part a) shows a mesh constructed using a typical multi-patch approach
where the patches are separated by C0 lines. Part b) shows a mesh that can be
constructed using U-splines. Black and orange lines represents interfaces with C0

and C1 continuity conditions respectively.

1.2 Scope

The basic concepts and procedures used in the construction of U-splines are in-
terpreted from the preprint [44] and presented here in this thesis. A possible
implementation of these is then presented with pseudo codes. (The actual code,
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CHAPTER 1. INTRODUCTION

written in MATLAB, will be accessible at a later point). Additionally, U-splines
are constructed by using what is implemented and then used to create bases with
different sets of continuity conditions for use in plane stress problems. The results
are compared and discussed.

The concepts that are about Latent index blocks presented in the last section of
the preprint [44] are not presented here nor implemented. This limits the code
to not handle nested T-junctions, multiple polynomial degrees and some cases of
crossing continuities as would be possible with a full implementation of U-splines.
In addition, only quadrilateral elements will be considered.

1.3 Outline

The first two chapters include the necessary theoretical basis needed to under-
stand how U-splines are constructed. This includes Bernstein basis functions and
smoothness constraints in a univariate and bivariate setting. An interpretation
of the concepts and algorithms presented in the preprint for U-splines [44] is then
presented in Chapter 5. This is followed by a suggested implementation in Chapter
6. Finally, the effect of continuity constraints in 2D plane-stress problems will be
assessed in Chapter 7 by adopting U-spline bases for analysis.
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2 Bernstein-Bézier representation

2.1 Bernstein basis functions

The Bernstein polynomials [47] in the univariate setting are defined by

Bi,p(s) =

(
p

i

)
si(1− s)p−i, (1)

where
(
p
i

)
is a binomial coefficient, p is the polynomial degree and i ∈ (0, 1, ..., p)

is the index of the current basis function. Figure 3a and 3b shows the univariate
quadratic and cubic Bernstein bases respectively.

(a) p = 2 (b) p = 3

Figure 3: Bernstein basis functions.

In the multivariate setting the basis functions can be defined by the tensor product
of the univariate bases:

Bp,q
i,j (s, t) =

∏
Bp
i (s)B

q
j (t), (2)

where p and q are the polynomial degrees in each parametric direction respectively.

Bernstein basis functions have a property that is essential in the construction of
U-splines. A Bernstein basis function and its n derivatives will be zero at an end
point if its origin is an index distance (see Figure 4) greater than n away from that
end point. This means that the coefficient corresponding that basis function will
be excluded from any continuity constraint that is less than or equal to n at that
end point. This property is essential for the algorithm constructing the U-splines
to work properly. In fact any basis that possesses this property can be used in
the construction of U-splines [44]. Such bases will be referred to as Bernstein-like
bases and includes rational basis functions which will be use in this thesis.
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CHAPTER 2. BERNSTEIN-BÉZIER REPRESENTATION

Figure 4: Two elements e1 and e2 sharing an interface I. The index distance dI
from the marked index to the interface I is dI = 2. The corresponding Bernstein
basis function and its dI −1 = 1 derivatives will be zero at I and will have no part
in any continuity conditions k(I) < dI .

2.2 Mesh topology

The domain of one single Bernstein basis will be referred to as an element. A
mesh can then be defined as a set of elements each having a local basis assigned
to it. Any global piece-wise function that lies within the domains of the elements
can then be defined as a linear combination of the local basis functions of the
elements. This form of a function is known as the Bernstein-Bézier form and can
be expressed as

f =
N∑
i=1

Bibi (3)

where f is a piece-wise function defined over multiple elements and i is a global
index id assigned to each local basis function in the mesh. Bi and bi are the local
basis functions and coefficients respectively corresponding the global index id i. N
is the total number of local basis functions in the mesh.
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3 Smoothness constraints and spline bases

A smoothness constraint in the context of U-splines, is a continuity requirement
Ck at an interface I between two elements e1 and e2 for a parameter going per-
pendicular to I. How these constraints are applied for Bernstein bases will first be
illustrated for the univariate setting and then for the bivariate setting. Although
there are some additional challenges when applying smoothness constraints in the
bivariate setting, the concept is very much the same as for the univariate setting.

3.1 Univariate smoothness constraints

For two univariate elements like in Figure 5, the following equations must be
satisfied in order for the constraints at I to be satisfied:

∂rfe1
∂sr

=
∂rfe2
∂sr

⇒
∂rBT

e1

∂sr
be1 =

∂rBT
e2

∂sr
be2

⇒
∂rBT

e1

∂sr1

(
1

le1

)r
be1 =

∂rBT
e2

∂sr2

(
1

le2

)r
be2 , (4)

for r = 0, 1, . . . , k(I) and the local parameters s1 and s2 are set to the values
corresponding the position of the interface I. k(I) is the continuity requirement
of interface I. For the elements in Figure 5, the local parameters will for instance
be s1 = 1 and s2 = 0 for e1 and e2 respectively. The Jacobian for each element
are the parametric lengths le1 and le2 . It is assumed that the local parameters are
going in the same direction. If this is not the case, the sign of the Jacobian on one
of the elements needs to be switched.

Equation 4 can be represented by a matrix equation:


∂0B0,p1

∂s01
. . .

∂0Bp1,p1

∂s01... . . . ...
∂kB0,p1

∂sk1
. . .

∂kBp1,p1

∂sk1



be10
...

be1p1

 =


ρ0
∂0B0,p2

∂s02
. . . ρ0

∂0Bp2,p2

∂s02... . . . ...

ρk
∂kB0,p2

∂sk2
. . . ρk

∂kBp2,p2

∂sk2



be20
...

be2p2

 , (5)

where ρ is le1
le2

and p1 and p2 are the polynomial degrees for element e1 and e2
respectively. In a multivariate setting these would be the polynomial degrees for
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CHAPTER 3. SMOOTHNESS CONSTRAINTS AND SPLINE BASES

the parameters going perpendicular to the interface. Notice that the first row just
represents the function values at the interface.

Figure 5: Two univariate elements e1 and e2 sharing an interface I. Their polyno-
mial degrees are p1 = 3 and p2 = 2 respectively.

For the two elements shown in Figure 5, where p1 = 3, p2 = 2 and k(I) = 1,
Equation 5 will be:

0 0 0 1

0 0 −3 3



be10

be11

be12

be13

 =

 1 0 0

−2ρ 2ρ 0



be20

be21

be22



Writing Equation 5 in a compact form gives

Se1be1 = Se2be2

and rewriting

Se1be1 − Se2be2 = 0[
Se1 −Se2

] be1
be2

 = 0 (6)

Equation 6 can be written as a general equation for two elements sharing an
interface I with a specified continuity condition,

SIbI = 0, (7)

where bI are the local Bernstein coefficient vectors stacked on top of each other as
in Equation 6.
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CHAPTER 3. SMOOTHNESS CONSTRAINTS AND SPLINE BASES

3.2 Bivariate smoothness constraints

The concept used for applying smoothness constraints in the bivariate setting is
very much the same as for the univariate setting, although some new complexities
arises. The simplest case is when the elements have matching interfaces and will
be illustrated first. The other case is when they have a non-matching interface
and will be illustrated last.

3.2.1 Matching interfaces

A matching interface is when an interface I traces the full side of both elements
and the elements have the same polynomial degree in the parallel direction of the
interface as illustrated in Figure 6. Univariate constraints can then be applied
to each row of indices going perpendicular to the interface as also illustrated in
Figure 6. The smoothness constraints equations for matching interfaces can then
be represented by the following equation:

(InrRows ⊗ Se1)T e1be1 = (InrRows ⊗ Se2)T e2be2 (8)

where InrRow is the identity matrix of same size as the number of index rows
going perpendicular to the interface. Se1 and Se2 are the matrices defined for
univariate elements with the same degrees as those in the perpendicular direction
of the interface. These are given in Equation 5. T e1 and T e2 are transformation
matrices that transforms the order of be1 and be2 to match the expected order from
the Kronecker product before them.

By rearranging the terms, Equation 8 can be written in a general form as in
Equation 7 for the univariate case

Ŝ
I
bI = 0, (9)

where bI are the local Bernstein coefficient for both elements stacked on top of
each other as in Equation 6.
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Figure 6: Two elements with a matching interface. The element sides matches
perfectly as well as their polynomial degree in the direction parallel to the interface.
Each marked row of indices can be treated as a univariate case when applying
smoothness constraints to the interface.

3.2.2 Non-matching interfaces

When the interface is a non-matching interface, one would have to express the
original coefficients of each element basis in terms of some bases that do match.
Applying univariate constraints for these matching bases will indirectly constrain
the original element bases. The smoothness constraints equations for non-matching
interfaces can then be represented by the following equation:

(InrRows ⊗ Se1)T e1M e1be1 = (InrRows ⊗ Se2)T e2M e2be2 (10)

where M e1 and M e2 are transformation matrices that transforms be1 and be2 to
the coefficients of the bases that match across the interface. T e1 and T e1 are the
same as for matching interfaces, but corresponds to the matching temporary bases
in stead of the original bases.

In order to construct bases that match across the interface, two transformation
matrices [47] will be used and are given below.

Order elevation matrix

Given a set of coefficients, b, for a Bernstein-Bezier function of degree p, the
coefficients, b̄, for a replicating function of degree p+ r are given by

b̄ = Ep,rb (11)

where the non-zero components of the matrix Ep,r are given by

10
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Ep,r
i,j =

(
r
i−j

)(
p
j

)(
p+r
i

) ,max(0, i− r) ≤ j ≤ min(p, i) (12)

and the the row and column number starts at 0.

Change of interval matrix

Given a set of coefficients, b, for a Bernstein-Bezier function of any degree, the
coefficients, b̄, for a replicating function having the same degree, but a unit interval
defined within the interval [s0, s1] of the original unit interval, are given by

b̄ = Rs0,s1b (13)

where the non-zero components of the matrix Rs0,s1 are given by

Rs0,s1
ij =

min(i,j)∑
n=max(0,i+j−p)

Bp−i
j−n(s0)B

i
n(s1), i ≤ p, 0 ≤ j (14)

and the row and column number starts at 0.

Example of non-matching interface

An example of how smoothness constraints are applied to a non-matching inter-
face is illustrated in Figure 7. Part a) shows the initial setting. Both elements are
given a parametric length l = (1, 1) and a polynomial degree p = (3, 2). Thus the
polynomial degrees in the parallel direction of the interface are p1‖ = 2 and p2‖ = 3
for e1 and e2 respectively. The intervals for which the interface traces each side
of the elements are t1 ∈ [0, 0.75] and s2 ∈ [0, 0.75] for e1 and e2 respectively. Due
to the difference in polynomial degrees in the parallel direction of the interface,
a temporary order elevated basis is constructed on e1 in order to match e2. This
is done by using the order elevation matrix on each column of coefficients going
parallel to the interface on e1 as illustrated in Figure 7b. The resulting temporary
basis is shown in Figure 7c. Due to the interface not covering both sides com-
pletely, a temporary basis is constructed on each element that has a unit interval
matching the interface. This is done by using the change of interval matrix from
Equation 14 on each column of coefficients going parallel to the interface as shown
in Figure 7d. The resulting temporary bases are shown in Figure 7e. Because these
temporary bases do match across the interface, univariate smoothness constraints
can be applied as for matching interfaces as shown in Figure 7f and will indirectly
constrain the original element bases. A plot of one basis function for the current
case when k(I) = 1 is shown in Figure 8a. The black dots in Figure 8b indicates
the non-zero Bernstein coefficients for the current basis function.
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Figure 7: Smoothness constraints applied on a non-matching interface. Both ele-
ments have parametric lengths l = (1, 1) and polynomial degrees p = (3, 2) The
interface traces each side in their corresponding parametric intervals t ∈ [0, 0.75]
and s ∈ [0, 0.75] for e1 and e2 respectively.
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(a)

(b)

Figure 8: Two non-conforming elements having the same polynomial degrees p =
(3, 2), but with different orientations. A C1 continuity constraint is applied at their
interface. Part a) shows a plot of one basis function that satisfies the continuity
requirement. Part b) shows what local Bernstein coefficients that are non-zero for
the current basis function.
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3.3 Splines as solution to a null-space problem

Having a mesh with multiple elements and interfaces, it is possible to build a global
smoothness constraint matrix SM by combining the local smoothness constraint
matrices from each interface. This results in a global null-space problem,

SMbM = 0, (15)

where SM is the global smoothness constraint matrix built from each interface in
the mesh and bM are all the local Bernstein coefficients in the mesh stacked on
top of each other.

It follows from Equation 15 that any combination of the local Bernstein coefficients
that lies in the null-space of SM will satisfy the continuity constraints defined over
the whole mesh. A set of basis vectors that spans this null-space can be put in the
rows of a matrix C which is commonly referred to as the extraction operator, such
that SMCT = 0, where 0 is a matrix of zeros. The local Bernstein coefficients can
be expressed by a linear combination of the rows of the extraction operator,

bM = CTa, (16)

where a represents the coefficients of the resulting spline basis.

It can be shown that the sparsest extraction operator C, thus the sparsest basis for
the univariate case in Equation 6 when ρ = 1, is the one shown below in Equation
17.

C =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 3
5

3
5

0 0

0 0 0 2
5

2
5

1 0

0 0 0 0 0 0 1


(17)

A similar case is illustrated in Figure 9. Figure 9a shows the local basis functions
for each element in Figure 5 when their parametric lengths are l1 = 3 and l2 = 2
respectively. Without smoothness constraints, the global basis is just the set of
the local bases and are expressed by N , where each N corresponds to one local
Bernstein basis function B. The matrices in Figure 9 illustrates what entries of the
extraction operator C that will be non zero for the case shown. Figure 9b shows a
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global basis satisfying k(I) = 1. Notice that the number of global basis functions
is less than the total number of local basis functions after continuity constraints
are applied.
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(a)

(b)

Figure 9: Two univariate elements sharing an interface. Their polynomial degrees
are 3 and 2 for element 1 and 2 respectively and their parametric lengths are 3
and 2 respectively. Part a) shows a global basis defined over the mesh without
any continuity constraints. Part b) shows a new basis as a result of applying a
C1 continuity constraint at the interface. The matrices illustrates what local basis
functions that are active for each global basis function.
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3.4 Setting control points of new spline basis

There are probably multiple ways to model geometry with a spline basis extracted
from a null-space problem. In this thesis, this will be done by first modelling the
geometry with the local Bernstein control points and then project these control
points onto the new basis (U-spline basis) by a least square fit.

Given an extraction operator C built by solving the global null-space problem
given in Equation 15 and a set of local Bernstein control points bM describing the
geometry,

CTa = bM (18)

â = (CCT )−1CbM , (19)

where â is the least square fit solution [48] to Equation 18 and represents the
projected control points for the new spline basis. The local Bernstein coefficients
for the projected geometry can then easily be found by setting a = â and solve,

b̂
M

= CT â (20)

Note that if the initially modelled geometry can be represented by the new spline
basis exactly, there will be no change to the local control points due to the pro-
jection.
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4 Isogeometric analysis

4.1 Error measures

The relative energy norm error is given by

η =
||e||
||U ||

× 100%, (21)

where ||e|| is the energy norm that measures the error in strain energy and is given
by

||e||2 =
∫
V

(ε− εh)TC(ε− εh)dV (22)

and ||U || is the energy norm for the exact solution and is given by

||U ||2 =
∫
V

εTCεdV (23)

Here C is the matrix containing material properties. ε and εh are the analytical
and numerical strains respectively.

For measurement of energy error within each element, the following expression will
be used.

ηe =
||ee||
||U ||

, (24)

where ||ee|| is given by Equation 22 for the current element domain.

The L2-norm for displacement is given by

||eu||2L2
=

∫
V

(u− uh)T (u− uh)dV, (25)

where u and uh are the analytical and numerical displacements respectively.
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The optimal asymptotic energy error norm is given by

||e||E = Chp = Cn
−p/2
dof , (26)

where the constant C among others depends on the mesh topology and the shape
of the elements.
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5 U-spline basis construction

In this chapter an overview of the construction of U-spline bases is given. The
essential concepts and algorithms are interpreted from the preprint for U-splines
[44] and presented here. The procedure of constructing a U-spline basis will be
referred to as the U-spline algorithm.

5.1 Introduction to U-spline basis construction

The construction of a U-spline basis can be summarized in three main steps:

1. Definition of the mesh

2. Construction of the basis functions

3. Normalization of the basis functions

A brief description of each step is given below.

5.1.1 Definition of the mesh

A U-spline mesh is constructed by first defining the elements with a corresponding
local basis. The local bases must have the properties of Bernstein-like bases. The
elements can either be simplical or cuboidal elements. Only cuboidal elements are
considered in this thesis. Secondly, the interelement interfaces needs to be defined
and given a continuity requirement.

5.1.2 Construction of the basis functions

This step is definitely the main part in the construction of a U-spline basis. As
shown in Chapter 3, a spline basis can be constructed by solving a null-space
problem. A U-spline basis is defined as the sparsest basis for the null-space of the
global smoothness-constraint matrix SM defined over a mesh. Thus the set of the
sparsest basis vectors {bM} satisfying

SMbM = 0 (27)

will represent a U-spline basis. This problem is known as the null-space problem
and is shown to be NP-hard [45][46]. The approach to solve this problem proposed

20



CHAPTER 5. U-SPLINE BASIS CONSTRUCTION

in the preprint is to use the properties of Bernstein-like basis functions to find the
sets of indices that corresponds to the non-zero components of each basis vector.
Each basis function can then be found by solving a set of local one-dimensional
null-space problems which can easily be solved by linear programming. To find
these sets of indices, a flood algorithm is used. This algorithm is essential in the
construction of U-spline bases and will be the main part of the implementation in
this thesis.

An example of how one local null-space problem is extracted from the global null-
space problem when the non-zero Bernstein coefficients are known is illustrated in
Figure 10. The U-spline algorithm will find the the indices that corresponds to
the non-zero coefficients of one basis function and are the ones marked in Figure
10a. The corresponding columns in the global smoothness constraint matrix SM

shown in part b) will then be extracted to form the local smoothness constraint
matrix Sφ shown in part c). The subscript φ denotes the current U-spline basis
function. Because the resulting matrix will have a one-dimensional null space, the
rank of Sφ must be two, thus only two rows are needed in Sφ for this example.
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Figure 10: Example of how columns are extracted from the global smoothness
constraint matrix SM to form a local matrix Sφ that corresponds to the non-zero
coefficients of the basis function φ. The U-spline algorithm is run once to find the
indices shown in part a). The corresponding columns in SM shown in part b) are
extracted and used to form Sφ shown in part c). Because the resulting matrix
will have a one-dimensional null space, the rank of Sφ must be two, thus only two
rows are needed in Sφ for this example.
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5.1.3 Normalization of the basis functions

Once the coefficient values for each U-spline basis function are determined, it is
convenient to normalize the basis so it forms a partition of unity. This can be done
by solving linear a system.

5.2 Interpretation of the U-spline algorithm

The concepts used in the U-spline algorithm is presented in the following. It should
be noted that this is based on the authors interpretation of what is presented in
the preprint and might not be completely accurate. The preprint does not give a
detailed description of every concept, thus some interpretation was inevitable.

5.2.1 Index

An index is a unique reference object that points to one local Bernstein basis
function. Thus an index will belong to an element and have some local coordinates
(i, j). In addition it will be provided a unique global id during the construction of
the mesh (see Figure 19). The index id will also be the same as the column number
in the smoothness constraint matrix SM that corresponds to the local Bernstein
coefficient of the index as indicated in Figure 10.

5.2.2 Element index block

An element index block βe defined on element e is a selection of some indices
belonging to that element. An example of an element index block is illustrated
in Figure 11. The block will have an outward orientation indicated by the round
corner. This orientation will be described by a vector σ with respect to the element
coordinate system. The element index block in Figure 11 will for instance have
σ = (−1, 1). The block will always be rectangular so it can be defined by one inner
and one outer corner index. These will be denoted µi and µo respectively and
are marked with different colors in the figure. In addition there will be a barrier
index µb which will be necessary in some special cases (e.g. different polynomial
degrees). Thus an element index block is defined by the five components; the
element e, the orientation σ, the inner bound index µi, the barrier index µb and
the outer bound index µo.
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s

t

Figure 11: An element with an arbitrary element index block (marked in gray)
having an outward orientation σ = (−1, 1). The bound indices are marked with
the colors indicated in the figure. For each bound index the corresponding index
distances are annotated in both the perpendicular and parallel direction of interface
I marked in blue.

Some useful index distances are listed below and are also illustrated in Figure 11.

diI⊥ - The index distance measured perpendicular to the interface I from
the inner bound index µi to the side in the inward direction

diI‖ - The index distance measured parallel to the interface I from the
inner bound index µi to the side in the inward direction

dbI⊥ - The index distance measured perpendicular to the interface I from
the barrier index µb to the side in the inward direction

dbI‖ - The index distance measured parallel to the interface I from the
barrier index µb to the side in the inward direction

doI⊥ - The index distance measured perpendicular to the interface I from
the outer bound index µo to the side in the outward direction

doI‖ - The index distance measured parallel to the interface I from the
outer bound index µo to the side in the outward direction

Notice that the index distances are always measured in the inward direction for the
inner and barrier index and in the outward direction for the outer bound index.
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5.2.3 Constrained index block

A constrained index block κ will consist of a set of element index blocks and
represents an atomic unit in the construction of U-spline basis functions. It is
constructed by what is referred to as a flood algorithm. It is this algorithm that
uses the properties of Bernstein-like basis functions.

An example of a constrained index block is illustrated in Figure 12. The index
marked in red is called the seed index. The arrows indicates the outward orienta-
tion of the first element index block added to the set. Running the flood algorithm
from the seed with the indicated orientation will result in the set of element index
blocks shown in Figure 12.

Figure 12: A constrained index block constructed from the seed index marked
in red and the orientation indicated by the arrows. The constrained index block
consists of the element index blocks marked in gray. Each interface in the mesh
has a continuity requirement of k(I) = 2.

5.2.4 Block transfers

A block transfer is what happens in the flood algorithm producing a constrained
index block. It will involve an initial element index block βe1 defined on element
e1 and an interface I. The block will then transfer across I by expanding its inner
side to the side of the interface and then constructing a new element index block
βe2 on the adjacent element e2. If the interface is non-matching, some additional
considerations are also required.
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Block transfer across matching interfaces

An example of a block transfer across a matching interface is illustrated in Figure
13. The new element index block will have an outer bound index such that the
total perpendicular index length of both blocks is k(I). The general conditions for
a block transfer are given in Equations (28) to (33). In addition the orientation
σ2 must be reflected across I as shown in Figure 13.

diI⊥(βe1) = 0 (28)
diI⊥(βe2) = 0 (29)
dbI⊥(βe2) = doI⊥(βe2) = k(I)− dbI⊥(βe1) (30)
diI‖(βe2) = diI‖(βe1) (31)

dbI‖(βe2) = dbI‖(βe1) (32)

doI‖(βe2) = doI‖(βe1) (33)

Figure 13: A block transfer across a matching interface with k(I) = 2. The initial
element index block βe1 is transferred across interface I to produce a new element
index block βe2 on the adjacent element. The annotated index distances illustrates
the conditions given in Equations (28) to (33).

Block transfer across non-matching interfaces

For block transfers across non-matching interfaces some additional considerations
are required. If there exist a T-junction in the inward direction of an element index
block βe1 , the block must be expanded to the side causing the T-junction. This
is illustrated in Figure 14a. If there exist a T-junction in the outward direction
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of an element index block βe1 , a new index block β′e1 must be constructed as
illustrated in Figure 14b. The new block must have an opposite orientation in
the parallel direction and the inner bound index must align with the side causing
the T-junction. In addition the barrier index of the new block must be the outer
bound index of the original block and the outer index of the new block must be
the barrier index of the original block. These requirements are given by Equation
(34) to (36). More examples of block transfer with T-junctions are illustrated in
Figure 15.

diI‖(β
′
e1
) = 0 (34)

dbI‖(β
′
e1
) = doI‖(βe1) (35)

doI‖(β
′
e1
) = dbI‖(βe1) (36)

(a)

(b)

Figure 14: Part a) shows the expanded initial element index block βe1 because of
the presence of a T-junction in the inward direction of βe1 . Part b) shows the new
mirrored element index block β′e1 created because of the presence of a T-junction
in the outward direction of βe1
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Examples of block transfers across non-matching interfaces. All the
block transfers starts on the left element with the dark index block and transfers
across the interface to the right element. k(I) = 2 in all cases.
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5.2.5 Example of flood algorithm

As explained in Section 5.2.3, a flood algorithm is used to construct the constrained
index blocks. An example of how this works in a mesh with T-junctions is illus-
trated in Figure 16. Figure 16a shows the initial element index block β1 marked
with 1. The flood will toggle between the horizontal and vertical direction. First,
the initial element index block will transfer across all interfaces in its horizontal
inward direction. In this case this is only I1, so β1 transfers across I1 to produce
β2 on the adjacent element shown in Figure 16b. A connection is now made be-
tween β1 and β2 across I1, so they can never transfer across that interface again.
β2 will then immediately transfer across all its open interfaces in its horizontal
inward direction. This goes on until no element index blocks have interfaces they
can transfer across in their horizontal inward directions. Figure 16c shows the
element index blocks produced during the first horizontal flood. The flood direc-
tion is then shifted so that only horizontal interfaces are to be flooded. Each new
element index block including the first, will transfer across all interfaces in their
vertical inward directions. β1 and β2 will transfer across I4 and I5 respectively
to produce β7 and β8 shown in Figure 16d. β3 and β4 have no interfaces in their
vertical inward directions, so a placeholder is constructed for each of them to close
those directions. These are marked with 9 and 10 in Figure 16d. Finally β5 and β6
will transfer across I4 and I5 respectively to produce β11 and β12 shown in Figure
16e. The algorithm would now shift its flood direction to flood all new element
index blocks in their horizontal inward directions. Because all new element index
blocks are subsumed by other element index blocks that have connections across
all interfaces in their inward horizontal directions, the algorithm now stops. The
final set of indices that belongs to the resulting constrained index block are shown
in Figure 16f.
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(e) (f)

Figure 16: Example of flood algorithm constructing the constrained index block
shown in part f). The continuity requirements are 1 and 2 for the horizontal
and vertical interfaces respectively. The polynomial degrees are p = (2, 2) for all
elements.
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5.2.6 Function index support

A function index support φ is the set of indices associated with the non-zero Bern-
stein coefficients of one U-spline basis function. It is the the union of the indices
of all constrained index blocks belonging to the current support. To construct a
function index support, an initial constrained index block having a given seed as a
corner is added to the support. New constrained index blocks are then constructed
from the corners of this in all possible directions and added to the support. This
goes on until no new constrained index blocks extends the support of the func-
tion. Figure 17 shows a function index support consisting of two constrained index
blocks and with the index marked in red as a seed.

Figure 17: A function index support constructed from the seed index marked in
red. Each interface in the mesh has a continuity requirement of k(I) = 2.

The possible directions to expand a function index support is illustrated in Figure
18.
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Figure 18: Possible orientations of new constrained index blocks constructed from
a corner of a function index support.

5.2.7 Parametric size

The parametric size of an index block is used when adding new constrained index
blocks to the function index support and is defined by

parametricSize(indexBlock) =
∑
e

neiAe
nei,tot

(37)

where nei is the number of indices in indexBlock on element e and nei,tot is the total
number of indices on element e. Ae is the parametric area of the element which is
the product of the parametric lengths in each direction.

5.2.8 Outline of U-spline basis construction

The introduction of the concepts presented in this chapter allows for an outline of
U-spline basis construction and is given below.

1. Definition of the mesh

(a) Create elements for the mesh

(b) Provide each element with a Bernstein-like basis

(c) Connect the elements together by defining interfaces between them with
a corresponding continuity requirement.

2. Construction of the basis functions
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(a) For each index in the mesh:

i. Create an empty function index support
ii. Construct a constrained index block having the seed as a corner

and add it to the empty function index support.
iii. Construct new constrained index blocks from the corners of the

current function index support in all open directions and add the
largest of these to the function index support.

iv. Repeat the last step until no new constrained index block will ex-
tend the support of the function index support.

v. If the seed index is not a corner to the function index support,
discard the current function index support and continue to the next
available seed index.

(b) If the support already exists, discard it.

(c) If the support is new:

i. Form a local smoothness constraint matrix having only the columns
of the global smoothness constraint matrix corresponding the in-
dices of the support.

ii. Calculate the basis vector spanning the one-dimensional null-space
of the local smoothness constraint matrix.

3. Normalize the basis functions so they form a partition of unity.

Latent index blocks

For more complex meshes with nested T-junctions, crossing continuities and mul-
tiple polynomial degrees, activation of what is referred to as latent index blocks is
sometimes necessary. This step is not implemented in this thesis. To implement it,
it is necessary to construct latent index blocks as well as augmented constrained
index blocks which are briefly described in the preprint for U-splines [44]. These
must be calculated after a constrained index block is added to the function index
support. All latent index blocks that intersects with any of the corners of the aug-
mented index blocks in the support must then be activated by adding them to the
support. The corners of the new function index support must then be recalculated
before new constrained index blocks can be added.
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6 Implementation of U-spline algorithm

In this chapter a possible implementation of the U-spline algorithm is presented.
Some necessary definitions are given and essential algorithms are then described
in pseudo codes. The actual codes will be uploaded later on GitHub.

6.1 Definitions

The global numbering order of the indices is illustrated in Figure 19.
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121110

Figure 19: The global numbering order of the element indices where element e1 is
the first element defined in the mesh.

The local numbering order of the element sides is illustrated in Figure 20.

2

3

4

1

s

t

Figure 20: The local numbering order for the element sides is starting from 1 at
the bottom side and going anti-clockwise.

Figure 21 shows the numbering order of the two inward directions of an element
index block pointing towards their corresponding element sides.
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s

t

1

2

Figure 21: Numbering order of the inward directions of an element index block.
The arrows points to their corresponding element sides.

Figure 22 shows a T-junction inflicted by e1 on e2.

Figure 22: A T-junction inflicted by e1 on e2.

6.2 Classes

The relations between the classes are illustrated in Figure 23. An arrow going from
a class A to a class B indicates that an instance of class A will have references to
some instances of class B. The corresponding number indicates how many instances
of B, A refers to. For example an instance of the ElementIndexBlock class, will
refer to the two sides in the inward directions of the element index block and
therefore the corresponding number of the arrow will be 2. In addition to the
classes shown in Figure 23, there is a mesh class that all other classes refers to.
The mesh class ensures easy access from each class to another.
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Function Index Support

Constrained Index Block

Element Index Block Interface

Side

Element

Index

1

1

1

1

2
2

4

≥1

≥1

≥1≥1

≥1

≥1

≥0

≥0

1

Figure 23: Map showing the relations between the different classes. An arrow
going from a class A to class B indicates that an instance of class A will have
references to some instances of class B. The number indicates how many of these
references there are.

Mesh:

Property Description

Elements Array of all element objects in the current mesh.

Indices Array of all index objects in the current mesh.

Interfaces Array of all interface objects in the current mesh.
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Index:

Property Description

ID A unique integer used to identify the index.

Element The element that the index belongs to.

i First local index coordinate.

j Second local index coordinate.

NeighbourIDs An array of the neighbour index ids of current index.

Mesh The mesh that the current index belongs to.

Element:

Property Description

ID A unique integer used to identify the element.

Degree Polynomial degree of element in each parametric direc-
tion.

Length Parametric length of element in each parametric direction.

Indices List of indices belonging to element.

EntryIndexID The global index ID of the first element index.

Sides The four sides of the element.

Mesh The mesh that the current element belongs to.
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Side:

Property Description

ID A unique integer used to identify the side.

LocalID An integer between 1 and 4 that corresponds to the local
number of the side. The sides are numbered anti-clockwise
starting from the bottom side (see Figure 20).

Interfaces A list of interfaces that exists on the side.

ParaID The id of the parameter going parallel to side (1 or 2).

PerpID The id of the parameter going perpendicular to side (1 or
2).

Mesh The mesh that the current side belongs to.

Interface:

Property Description

ID A unique integer used to identify the interface.

Sides The two side objects sharing the interface. (The side ob-
jects will have their own reference to the corresponding
elements.)

Intervals The parametric intervals for each element where the in-
terface traces their corresponding sides.

k The continuity requirement of the interface.

ParaID The id of the parameter going parallel to interface (1 or
2).

PerpID The id of the parameter going perpendicular to interface
(1 or 2).

Connections A matrix of ids of the element index blocks having con-
nections across the current interface.

Mesh The mesh that the current interface belongs to.
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ElementIndexBlock:

Property Description

ID A unique integer used to identify the element index block.

sigma The corresponding orientation vector σ.

mu_i The inner bound index µi of the element index block.

mu_b The barrier index µb of the element index block.

mu_o The outer bound index µo of the element index block.

ParentCIB The constrained index block that the element index block
belongs to.

Interfaces All the interfaces in the inward directions of the element
index block.

Connections A matrix used for book keeping of which interfaces the
element index block have connections across.

Mesh The mesh that the current element index block belongs
to.

ConstrainedIndexBlock:

Property Description

ID A unique integer used to identify the constrained index
block.

EIBs Array of the element index blocks belonging to the con-
strained index block.

CornerIDs The global index IDs of the corners of the constrained
index block.

CornerSigmas The corresponding orientation vectors for the corners of
the constrained index block.

Size Parametric size of constrained index block.

Mesh The mesh that the current constrained index block be-
longs to.
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FunctionIndexSupport:

Property Description

ID A unique integer used to identify the function index sup-
port.

CIBs Array of constrained index blocks belonging to the func-
tion index support.

CornerIDs The index IDs of the corners of the function index support.

CornerSigmas The corresponding orientation vectors for the corners of
the function index support.

IndexIDs List of all index IDs extracted from the constrained index
blocks belonging to the current function index support.
These IDs will correspond to the non-zero coefficients of
the current U-spline basis function.

MarkMatrix Matrix used for book keeping of what directions have been
processed for each index in the support.

Mesh The mesh that the current function index support belongs
to.

6.3 Algorithms

6.3.1 Building the smoothness constraint matrix

The following describes the process of building the global smoothness constraint
matrix SM for a given mesh.

Given a list of interface objects, interfaces:

1. Construct an empty global smoothness constraint matrix SM that has as
many columns as the total number of Bernstein coefficients in the mesh.

FOR EACH interface in interfaces:

IF the current interface does not trace the full side of each element:

1. Construct two change of interval matrices R̄1 and R̄2 that trans-
forms the original coefficients of each element to the coefficients of
bases that has a unit interval within the interface range.

ELSE

1. Set both change of interval matrices to be the identity matrix.

END IF
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IF the corresponding elements have different polynomial degrees in the
parallel direction of the interface:

1. Construct an order elevation matrix Ē that transforms the coeffi-
cients of the element of lowest degree to a basis that has the same
polynomial degree as the element of highest degree.

ELSE

1. Set the order elevation matrix Ē to be the identity matrix.

END IF

1. Construct the univariate smoothness constraint matrices Se1 and Se2
given in Equation 4 using the polynomial degrees in the perpendicular
direction of the interface.

2. Construct the expanded smoothness constraint matrices S̄ei = Ip‖+1 ⊗
Sei for both elements, where Ip‖+1 is the identity matrix of size p‖ + 1
and p‖ is the highest polynomial degree going parallel to the interface.

3. Construct the matrices M 1 and M 2 that transforms the order of the
coefficients of the bases that do match across the interface, so that they
corresponds to the expected order given in S̄ei for both elements.

4. Construct the combined smoothness constraint matrix
SI =

[
S̄e1M 1Ē1R̄1 −S̄e2M 2Ē2R̄2

]
that represents the contribu-

tion from the current interface to the global smoothness constraint ma-
trix SM .

5. Add as many new rows to SM as the total number of rows in SI .

6. Place each column of SI into the new empty part of SM so they match
with their corresponding Bernstein coefficient of the global Bernstein
coefficient vector bM .

END FOR EACH

6.3.2 Block transfer

The following describes the steps required to transfer an element index block across
an interface.

Given an initial element index block βe1 and an interface I:

1. Expand βe1 so that the inner bound index aligns with the interface.

2. Construct a new element index block βe2 on the adjacent element having the
following properties:

(a) The orientation relative to the interface should be the same as for βe1 in
the parallel direction and opposite in the perpendicular direction. (See
Figure 13)
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Distances in the perpendicular direction:

(b) The inner bound index should align with the interface.

(c) The barrier and outer bound indices should have a perpendicular dis-
tance to I that is k(I) minus the perpendicular distance of the barrier
index of βe1 to the interface.

Distances in the parallel direction:

(d) The parallel distance measured from the barrier index to the element
side in the inward direction of βe2 should be the same as for the corre-
sponding distance of βe1 .

(e) The parallel distance measured from the outer bound index to the ele-
ment side in the outward direction of βe2 should be the same as for the
corresponding distance of βe1 .

IF there are no T-junctions in the inward direction of either βe1 or βe2 :

1. The parallel distance measured from the inner bound index to the
element side in the inward direction of βe2 should be the same as
for the corresponding distance of βe1 .

ELSE:

1. The inner bound index of βe2 should align with its barrier index.

END IF

Further adjustments and constructions due to the presence of T-junctions :

IF there exists a T-junction inflicted by e1 on e2 in the inward direction of βe1 :
(See Figure 14a.)

1. Expand βe1 so that the inner bound index aligns with the side causing the
T-junction.

END IF

IF there exists a T-junction inflicted by e1 on e2 in the outward direction of βe1 :
(See Figure 14b.)

1. Construct a new element index block β′e1 that is mirrored from βe1 in the
parallel direction and has the inner bound index aligned with the side causing
the T-junction.

END IF

IF there exists a T-junction inflicted by e2 on e1 in the inward direction of βe2 :
(See Figure 15a.)
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1. Expand βe2 so that the inner bound index aligns with the side causing the
T-junction.

END IF

IF there exists a T-junction inflicted by e2 on e1 in the outward direction of βe2 :
(See Figure 15b.)

1. Construct a new element index block β′e2 that is mirrored from βe2 in the
parallel direction and has the inner bound index aligned with the side causing
the T-junction.

END IF

6.3.3 Flood algorithm

The flood algorithm is used to build constrained index blocks. It is implemented
as a recursive function and is described in the following.

FUNCTION FloodCIB(β1,dir1):

Given an initial element index block β1 and a flood direction dir1:

IF β1 is closed OR has connections across all interfaces in dir1:

1. RETURN

ELSE IF NOT β1 have any interfaces in dir1:

1. Close β1 in the given direction dir1.

2. Construct a place holder element index block β′1 and add it to κ.

3. RETURN

ELSE

FOR EACH interface I in direction dir1 that β1 have no connections
across:

IF db⊥I > k(I):
1. Close β1 in the given direction dir1.
2. RETURN
ELSE

IF β1 is subsumed by any other EIBs that do have connections
across I:
1. Connect β1 to the EIB on the adjacent element that is con-

nected to the EIB that subsumes β1.
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END IF

IF β1 still has no connections across I:
1. Run β2 = ProcessBeta(β1,I)
2. Run FloodCIB(β2,dir1)
ELSE
1. RETURN
END IF

END IF

END LOOP

END IF

END FUNCTION

6.3.4 Construction of a function index support

The process of constructing a function index support given a seed index, is de-
scribed in the following.

Given a seed index, seed:

1. Create an empty function index support object φ and set the seed index to
be seed.

2. Given the seed index, seed, and an arbitrary orientation σ0, construct a
constrained index block κ0.

3. Add κ0 to φ.

4. Update the corners of φ and mark their corresponding inward orientations
as closed.

DO WHILE new constrained index blocks were added to φ during last
loop:

1. Create an empty list of constrained index blocks, potentialCibs.

FOR EACH corner index, corner, of φ:

FOR EACH open direction, σOPEN of corner:
1. Construct a new constrained index block potentialCib from
corner and σOPEN .

2. Add potentialCib to the list of potential constrained index
blocks, potentialCibs.

END FOR EACH

END FOR EACH
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2. Sort potentialCibs by their parametric size.

3. Add the largest potentialCib to φ.

4. Update the corners of φ and mark their corresponding orientations as
closed.

END DO WHILE

6.4 Functions

A short overview of the most essential functions is given in the following.

BuildSM()

Syntax:

SM = BuildSM(I)

Description

SM = BuildSM(I) returns an object containing the smoothness con-
straint matrix calculated from the interface objects passed with the
parameter I.

TransferBlock()

Syntax:

[eib2, eib_] = TransferBlock(eib1, I)

Description

[eib2, eib_] = TransferBlock(eib1, I) returns a new element index
block eib2 constructed by transferring the element index block eib1
across interface I. eib_ will contain the mirrored element index blocks
(if any) resulted from the block transfer. All blocks are added to the
corresponding constrained index block (eib1.ParentCIB).

FloodCIB()

Syntax:

FloodCIB(eib1, dir)

Description
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FloodCIB(eib1, dir) is a recursive function that represents the flood
algorithm used in the construction of a constrained index block. It will
run from the element index block eib1 in its inward direction dir (1
or 2). If a block transfer is conducted, the function is run from the
new element index block constructed from the transfer. If no transfer
is conducted, it stops.

BuildCIB()

Syntax:

cib = BuildCIB(seed, sigmaID)

Description

cib = BuildCIB(seed, sigmaID) returns a constrained index block
constructed from the seed index, seed, and the orientation indicator
sigmaID.

BuildPHI()

Syntax:

BuildPHI(phi)

Description

BuildPHI(phi) will expand the support of the function index support,
phi, by constructing constrained index blocks from its open corners.

46



7 U-splines in plane stress problems

The problems presented in this chapter have all been modelled with U-splines.
The first problem is a patch test that was used to verify the implementations. The
last three problems were used to assess the impact of setting different continuity
conditions over the meshes.

7.1 Patch test

7.1.1 Problem definition

A patch test [49] was conducted on the problem illustrated in Figure 24. The left
side of the plate was fixed in the horizontal direction and the lower left corner
was fixed in both directions. A uniform load q was applied to the right end of the
plate. The properties that were used are listed to the right of Figure 24. Three
different meshes were tested and are illustrated in Figure 25. The third case was
of special interest because of the way continuity constraints were applied which is
unique for U-splines. All elements were assigned a polynomial Bernstein basis of
degree p = (2, 2).

L

h q

Figure 24: Setup for patch test.

Properties :

L = 6

h = 3

t = 1

q = 1

E = 1

v = 0.25

7.1.2 Results

The results from the patch test were found to be satisfactory within machine
precision for all cases and are given in Table 1. The relative L2-norm is calculated
from Equation 24. Figure 25 shows the displacements for each case. Black and
white lines corresponds to C0 and C1 continuity conditions respectively.
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Case Displacement at right end Relative L2-norm error of displacements

C0 5.999999999999996 8.1144 · 10−16

C1/C0 6.000000000000013 1.6770 · 10−14

C1 6.000000000000006 1.7934 · 10−14

Table 1: Results from patch test.

(a)

(b)

(c)

Figure 25: Displacements in the horizontal direction for the three meshes that
was used for the patch test. Black and white interfaces corresponds to C0 and C1

continuity conditions respectively.
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The results from the patch test shows that the implementation of the U-spline
algorithms and the codes used for analysis worked as intended. A potential fatal
error in the code would probably have been revealed during the patch test. Thus,
it is not expected that the other tests contains any serious errors as a result of
implementation error.

Other patch tests have also been conducted, but are not presented here in this the-
sis. This includes constant strain tests with rational Bernstein basis functions with
different weights and distorted geometry. The results were found to be satisfactory
within machine precision.

7.2 Infinite plate with circular hole

7.2.1 Problem definition

A widely used plane stress problem which has a known analytical solution is the
infinite plate with a circular hole. The horizontal normal stresses in the plate
goes to the uniform stress q as the distance from the hole goes to infinity. This is
illustrated in Figure 26a. Figure 26b illustrates what physical part of the problem
that was analyzed. Exact tractions was applied to the left and top side and rollers
at the bottom and right side.
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Figure 26: Infinite plate with circular hole. Part a) shows the chosen coordinate
systems. Part b) indicates what physical part of the problem that was analyzed
as well as the boundary conditions that was used.

The specific properties that was used are listed below.

R = 1 mm

L = 4 mm

q = 10MPa

E = 200 GPa

v = 0.29

It can be shown that the exact stresses [50] for this problem is given by,
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σr(r, θ) =
q
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)
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where the symbols are illustrated in Figure 26a.

A plot of the exact normal stresses in the the horizontal direction is shown in
Figure 27.

Figure 27: Analytical solution for the horizontal normal stresses for problem, "in-
finite plate with circular hole".

Three main cases were tested. The cases differed in continuity conditions. All
cases were modelled with the initial local control points as shown in Figure 29a.
The first case had all interfaces set to C0 as indicated in Figure 28a. The second
case had all interfaces set to Cp−1 except the diagonal line which was set to C0.
The latter case is indicated in Figure 28b. The third case had all interfaces set to
Cp−1 except the upper left interface as indicated in Figure 28c. The three cases
will be referred to as the C0-, Cp−1/C0- and Cp−1-case respectively. The meshes
were uniformly refined as well as order elevated from p = 2 to 4. In order to
represent the circular arc exactly, rational Bernstein basis functions were used.
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(a) C0-case (b) Cp−1/C0-case

(c) Cp−1-case

Figure 28: The non-refined modelled geometry with corresponding continuity con-
ditions for the three main cases that were tested. Only the upper left interface
was set to C0 for the third case when refined.
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(a) p = 2, C0 and Cp−1/C0 (b) p = 2, Cp−1

(c) p = 3, C0 and Cp−1/C0 (d) p = 3, Cp−1

(e) p = 4, C0 and Cp−1/C0 (f) p = 4, Cp−1

Figure 29: Initial non-refined geometry with local Bernstein control points. The
figures on the left corresponds to the first and second main case as illustrated
in Figure 28. The figures on the right corresponds to the third main case. The
projection of the modelled geometry onto the U-spline basis makes the geometry
of case 3 to be distorted.
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7.2.2 Results

The results for the problem "infinite plate with circular hole" are given in Table 2.
nref , ne and ndof are the number of refinements, elements and degrees of freedom
respectively. η is the relative energy norm error given in Equation 22.

p=2

nref ne

0 4

1 16

2 64

3 256

4 1024

(a) C0

ndof η (%)

50 9.308449

162 4.093283

578 1.490427

2178 0.442781

8450 0.117568

(b) C1/C0

ndof η (%)

40 9.926257

84 4.751965

220 1.709808

684 0.481057

2380 0.121870

(c) C1

ndof η (%)

34 8.915413

74 4.848779

202 1.787069

650 0.513901

2314 0.136859

p=3

nref ne

0 4

1 16

2 64

3 256

4 1024

(d) C0

ndof η (%)

98 4.126070

338 1.290315

1250 0.284425

4802 0.046830

18818 0.006426

(e) C2/C0

ndof η (%)

70 5.264842

126 2.064366

286 0.462015

798 0.071620

2590 0.009850

(f) C2

ndof η (%)

54 5.940848

102 2.887526

246 0.680750

726 0.199379

2454 0.067197

p=4

nref ne

0 4

1 16

2 64

3 256

4 1024

(g) C0

ndof η (%)

162 1.782291

578 0.371365

2178 0.051098

8450 0.005888

33282 0.000323

(h) C3/C0

ndof η (%)

108 2.896803

176 0.867220

360 0.125074

920 0.010938

2808 0.000955

(i) C3

ndof η (%)

78 3.372975

134 1.531127

294 0.502375

806 0.195412

2598 0.066502

Table 2: Results from infinite plate with circular hole. The first, second and third
row of tables represents the results from when p = 2, 3 and 4 respectively. nref
and ne are the number of refinements and elements respectively. ndof and η are
the number of degrees of freedom and the relative energy norm error respectively.
The expression for η is given in Equation 22.

Figure 30 shows the convergence plots for p = 2, 3 and 4. The dashed lines are the
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optimal asymptotic convergence rates O(n−1dof ), O(n
−3/2
dof ) and O(n−2dof ) for p = 2, 3

and 4 respectively.

(a) p = 2

(b) p = 3

(c) p = 4

Figure 30: Convergence plots for p = 2, 3 and 4. N is the number of degrees
of freedom and η is the relative energy norm error in percent given in Equation
22. C0, C(p − 1)/C0 and C(p − 1) indicates the first, second and third main
cases respectively. The dashed lines are the optimal asymptotic convergence rates
O(N−1), O(N−3/2) and O(N−2) for p = 2, 3 and 4 respectively.
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The differences between the three main cases are illustrated in the convergence
plots above in Figure 30. The rate of convergence for the C0-cases, seems to
go towards the optimal asymptotic convergence rate O(n−p/2dof ) for all polynomial
degrees. This is as expected and substantiates the validity of the analysis. The
Cp−1/C0-cases illustrates the potential advantage of using higher order splines for
analysis. The decrease in the number of degrees of freedom clearly outweighs the
loss of accuracy due to continuity constraints. However, for the Cp−1-cases, the
convergence rate seems to decrease with the number of refinements.

A possible explanation for the decrease in convergence rate for the Cp−1-cases is
that the geometry could have been too distorted when projected on to the U-spline
basis. Distorted elements are generally known to have a negative impact on the
convergence rates [51]. Figure 31c, 31f and 31i illustrates the distribution of error
in energy across the elements for all cases when p = 3. It is clear that the error for
the C4-case is concentrated over the diagonal. This is where the elements are most
distorted as seen from Figure 31g and may be the main reason for the decrease in
convergence rate. To test this assumption, an additional case was tested and is
illustrated in the following.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 31: Results for p = 4 and nref = 3. Each row of figures represents a case
starting with the C0-case at the top. Each column from left to right represents
the current mesh, normal stresses in the horizontal direction σx and relative error
within each element ηe respectively. Black and red lines in a), d) and g) represents
interfaces with C0 and C3 continuity conditions respectively.

Problem definition for additional case

For the additional case, the upper left corner of the initial physical problem was
replaced with a circular arc as illustrated in Figure 32. Since the error seemed to
intensify with higher polynomial degrees, only the case where p = 4 was tested
and all interfaces were set to C3. The results are given in Table 3 together with
the results from the original cases. Figure 33 shows a convergence plot for all cases
when p = 4.
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Figure 32: Setup for new case. The upper left corner was modelled with a circular
arc.

Results for additional case

p=4

nref

0

1

2

3

4

(a) C0

ndof η (%)

162 1.782291

578 0.371365

2178 0.051098

8450 0.005888

33282 0.000323

(b) C3/C0

ndof η (%)

108 2.896803

176 0.867220

360 0.125074

920 0.010938

2808 0.000955

(c) C3

ndof η (%)

78 3.372975

134 1.531127

294 0.502375

806 0.195412

2598 0.066502

(d) C13, new

ndof η (%)

72 2.454586

128 0.621207

288 0.075360

800 0.007331

2592 0.000867

Table 3: Results from infinite plate with circular hole for p = 4 with additional
case included. nref is the number of refinements. ndof and η are the number of
degrees of freedom and the relative energy norm error respectively. The expression
for η is given in Equation 22.
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Figure 33: Convergence plots of what is given in Table 3 where the new case is
included. N is the number of degrees of freedom and η is the relative energy norm
error in percent given in Equation 22. The dashed line is the optimal asymptotic
convergence rate O(N−2) for p = 4.

(a) (b) (c)

Figure 34: Results for p = 4 and nref = 3 of new case with circular outer corner.
Part a), b) and c) represents the current mesh, normal stresses in the horizontal
direction σx and relative error within each element ηe respectively.

From the convergence plots shown in Figure 33 it is clear that the remodelling of
the C3-case to the new case shown in Figure 32 made a significant impact on the
convergence rate. This illustrates the importance of having a regular mesh.

It can be argued that it was the combination of an irregular mesh and high conti-
nuity constraints that caused the low convergence rate for the Cp−1-cases. Figure
35b shows the energy error distribution for a mesh that has the same continuity
conditions as the C3/C0, but has the same distorted geometry as the C3-case.
Part a) and c) illustrates the error distributions for the C3/C0- and C3-case re-
spectively. The polynomial degree for these cases were p = 4 and the number of
refinements were nref = 2. It is clear when comparing Figure 35a and 35b that the
energy error within the mesh increases when the geometry is distorted. The error
increases even more when continuity constraints are added on top of the distorted
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geometry as seen from Figure 35b and 35c. Thus, the combination of distorted
geometry and high continuity constraints seems to increase the energy error within
a mesh and may be the reason for the low convergence rates for the Cp−1-cases.

(a) (b) (c)

Figure 35: Distribution of energy error. Part a) and c) represents case 2 and 3
respectively. Part b) represents case 2 with the geometry of case 3. The polynomial
degree was p = 4 and the number of refinements was nref = 2 for all cases.

Another interesting observation is that the difference in the number of degrees of
freedom between the Cp−1/C0-case and the Cp−1-case seems to become insignifi-
cant as the number of refinements increases. This can be seen from the convergence
plot shown in Figure 33. The horizontal distance between the red and green graph
is largest before any refinements are conducted. This distance decreases as the
number of refinements increases. Thus, the advantage of achieving less degrees of
freedom in the Cp−1-cases seems to be limited for this specific problem. However,
this may be more beneficial for other types of problems.

7.3 Problem with manufactured solution

7.3.1 Problem definition

A problem with a manufactured solution was modelled and tested. The chosen
problem was a plate with two holes where all edges were fixed as illustrated in Fig-
ure 36. The loading was derived from a displacement field satisfying the boundary
conditions.

The cases for this problem were chosen so that they would correspond to the cases
for the infinite plate with a circular hole. However, only C1 continuity was achieved
for case 3. Maximum continuity is presumably possible between the patches when
Latent index blocks are implemented.
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2R 2R R R R RRR

R

R

R

R

R

R

x

y

Figure 36: Setup for problem with manufactured solution.

Properties :

R = 1

t = 1

E = 1

v = 0.3

The chosen displacement field and its corresponding Von-Mises stresses are illus-
trated in Figure 37 and 38 respectively. Equal displacement fields were used for
both directions.

Figure 37: Exact displacement field for problem with manufactured solution.
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Figure 38: Exact Von-Mises stresses for problem with manufactured solution.

Three main cases were tested for this problem. Figure 39 shows the modelled
geometry that were used for all cases. Figure 40, 41 and 42 illustrates the different
continuity conditions that were set for each case. Notice that orange lines in Figure
41 and 42 are Cp−1 and C1 respectively. The cases were tested for p = 2, 3 and 4.

Figure 39: Modelled geome-
try for problem with manu-
factured solution. Rational
Bernstein basis functions of
degree p = (2, 2) were used
in order to represent the cir-
cular holes exactly.

Figure 40: C0-case when
nref = 2. All interfaces
were set to C0 indicated by
the black lines.
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Figure 41: Cp−1/C0-case
when nref = 2. The
black and orange lines indi-
cates interfaces with C0 and
Cp−1 continuity conditions
respectively.

Figure 42: C1-case when
nref = 2). The black and
orange lines indicates inter-
faces with C0 and C1 con-
tinuity conditions respec-
tively.

7.3.2 Results

The results for the problem with a manufactured solution are given in Table 4.
nref , ne and ndof are the number of refinements, elements and degrees of freedom
respectively. η is the relative energy norm error given in Equation 22.
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p=2

nref ne

0 12

1 48

2 192

3 768

(a) C0

ndof η (%)

130 39.136632

454 11.858619

1678 2.774469

6430 0.724162

(b) C1/C0

ndof η (%)

130 39.136632

268 16.058123

688 3.430962

2104 0.781257

(c) C1

ndof η (%)

130 39.136632

208 17.170566

548 4.384154

1844 1.864009

p=3

nref ne

0 12

1 48

2 192

3 768

(d) C0

ndof η (%)

268 14.163720

970 1.794453

3670 0.368721

14254 0.046407

(e) C2/C0

ndof η (%)

268 14.163720

454 3.425015

970 0.947891

2578 0.089977

(f) C1

ndof η (%)

268 14.163720

608 2.514682

1884 1.076703

6780 0.465293

p=4

nref ne

0 12

1 48

2 192

3 768

(g) C0

ndof η (%)

454 3.898228

1678 0.647605

6430 0.031084

25150 0.002121

(h) C3/C0

ndof η (%)

454 3.898228

688 2.457995

1300 0.343022

3100 0.014210

(i) C1

ndof η (%)

454 3.898228

1200 0.939382

3988 0.236121

14788 0.109406

Table 4: Results from problem with manufactured solution. The first, second and
third row of tables represents the results from when p = 2, 3 and 4 respectively.
nref and ne are the number of refinements and elements respectively. ndof and η are
the number of degrees of freedom and the relative energy norm error respectively.
The expression for η is given in Equation 22.
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(a) p = 2

(b) p = 3

(c) p = 4

Figure 43: Convergence plots for p = 2, 3 and 4 for problem with manufactured
solution. N is the number of degrees of freedom and η is the relative energy norm
error in percent given in Equation 22. C0, C(p − 1)/C0 and C1 indicates the
first, second and third main cases respectively. The dashed lines are the optimal
asymptotic convergence rates O(N−1), O(N−3/2) and O(N−2) for p = 2, 3 and 4
respectively.
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(a) C0, p = 2 (b) C1, p = 2

(c) C0, p = 3 (d) C1, p = 3

(e) C0, p = 4 (f) C1, p = 4

Figure 44: Energy error distribution for case 1 and 3 for problem with manufac-
tured solution. The number of refinements is nref = 3.

The convergence plots from the problem with a manufactured solution shown in
Figure 43 shows some of the same tendencies as for the infinite plate with a circular
hole. The rate of convergence for the C0-case seems to go towards the optimal
asymptotic convergence rates. The rate of convergence for the Cp−1/C0-case is the
highest of the three cases. As for the C1-case, the rate of convergence decreases
with the number of refinements as it did for the infinite plate with a circular hole.
The effect is not that apparent for when p = 2, but seems to increase with the
polynomial degree.

The decrease in convergence rate for the C1-case is also reflected in the error plots
shown in Figure 44 where the figures on the left and right represents the C0- and
C1-case respectively and the number of refinements is nref = 3. Here one can see
how the difference in error increases with the polynomial degree which is consistent
with the corresponding convergence plots shown in Figure 43.

The error distribution for the C1-case shown on the right in Figure 44 clearly shows
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a concentration of error near the extraordinary points for where the variation of
stresses was relatively high. The variation of stresses can be seen from Figure 38.
This can explain why there is an amplified concentration of error at these points.

Apart from the most concentrated areas shown in Figure 44, one can see that
the rest of the error lies between the patches of relatively regular meshes for the
C1-case. This is consistent with the results from the infinite plate with a circular
hole. Thus, the assumption that a combination of an irregular mesh and high
continuity constraints may cause low convergence rates, may still be relevant also
for the current problem.

7.4 Second problem with manufactured solution

7.4.1 Problem definition

To see what happened when the mesh around the circular area for the latter
problem was modelled with a more regular mesh, another similar problem was
tested. The problem setup for this problem is illustrated in Figure 45.

2R 2R R R R R RRRR

R

R

R

R

R

R

x

y

Figure 45: Setup for second problem with manufactured solution.

Properties :

R = 1

t = 1

E = 1

v = 0.3

The chosen displacement field and its corresponding Von-Mises stresses are illus-
trated in Figure 46 and 47 respectively. The same displacement field were used for
both directions.
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Figure 46: Exact displacement field for problem with manufactured solution.

Figure 47: Exact Von-Mises stresses for problem with manufactured solution.

Three main cases were tested for this problem. Figure 48 shows the modelled
geometry that were used for all cases. Figure 49, 50 and 51 illustrates the different
continuity conditions that were set for each case. Notice that orange lines in Figure
49 and 51 are Cp−1 and C1 respectively. The cases were tested for p = 2, 3 and 4.

68



CHAPTER 7. U-SPLINES IN PLANE STRESS PROBLEMS

Figure 48: Modelled geome-
try for problem with manu-
factured solution. Rational
Bernstein basis functions of
degree p = (2, 2) were used
in order to represent the cir-
cular holes exactly.

Figure 49: C0-case when
nref = 2. All interfaces
were set to C0 indicated by
the black lines.

Figure 50: Cp−1/C0-case
when nref = 2. The
black and orange lines indi-
cates interfaces with C0 and
Cp−1 continuity conditions
respectively.

Figure 51: C1-case when
nref = 2). The black and
orange lines indicates inter-
faces with C0 and C1 con-
tinuity conditions respec-
tively.

7.4.2 Results

The results for the second problem with a manufactured solution are given in
Table 5. nref , ne and ndof are the number of refinements, elements and degrees of
freedom respectively. η is the relative energy norm error given in Equation 22.
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p=2

nref ne

0 21

1 84

2 336

3 1344

(a) C0

ndof η (%)

214 19.647216

766 5.493736

2878 1.376810

11134 0.345556

(b) Cp−1/C0

ndof η (%)

214 19.647216

448 6.066569

1168 1.414851

3616 0.348308

(c) C1

ndof η (%)

214 19.647216

328 6.540060

888 1.612237

3096 0.428339

p=3

nref ne

0 21

1 84

2 336

3 1344

(d) C0

ndof η (%)

448 3.614884

1654 0.335781

6334 0.052285

24766 0.006671

(e) Cp−1/C0

ndof η (%)

448 3.614884

766 0.492367

1654 0.118700

4438 0.012485

(f) C1

ndof η (%)

448 3.614884

1008 0.555584

3176 0.164776

11624 0.056009

p=4

nref ne

0 21

1 84

2 336

3 1344

(g) C0

ndof η (%)

766 0.345243

2878 0.073287

11134 0.003880

43774 0.000242

(h) Cp−1/C0

ndof η (%)

766 0.345243

1168 0.275594

2224 0.033362

5344 0.001498

(i) C1

ndof η (%)

766 0.345243

2024 0.173064

6808 0.036759

25528 0.012523

Table 5: Results from second from problem with manufactured solution. The first,
second and third row of tables represents the results from when p = 2, 3 and 4
respectively. nref and ne are the number of refinements and elements respectively.
ndof and η are the number of degrees of freedom and the relative energy norm
error respectively. The expression for η is given in Equation 22.
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(a) p = 2

(b) p = 3

(c) p = 4

Figure 52: Convergence plots for second problem with manufactured solution for
p = 2, 3 and 4. N is the number of degrees of freedom and η is the relative energy
norm error in percent given in Equation 22. C0, C(p−1)/C0 and C1 indicates the
first, second and third main cases respectively. The dashed lines are the optimal
asymptotic convergence rates O(N−1), O(N−3/2) and O(N−2) for p = 2, 3 and 4
respectively.
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(a) C0, p = 2 (b) C1, p = 2

(c) C0, p = 3 (d) C1, p = 3

(e) C0, p = 4 (f) C1, p = 4

Figure 53: Energy error distribution for the C0-case and the C1-case for second
problem with manufactured solution. The number of refinements is nref = 3.

The same behavior as the two last problems can be seen for this problem. The
convergence rate for the C1-case shown in Figure 52 decreases with the number of
refinements for the higher polynomial degrees (p = 3 and 4). In addition it is clear
from the error distribution plots shown in Figure 53 that the error is concentrated
at the transitions between the patches. This is consistent with the results from
the other problems. It can also be seen that the error is smaller at the inner part
of each patch where the mesh is more regular.

Considering the results from all the presented problems, it may be assumed that
setting higher continuity constraints than C0 between two patches that are irreg-
ular towards each other, may cause low convergence rates. The effect also seems
to increase with polynomial degree.
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8 Concluding remarks

In this thesis the process of constructing U-spline bases has been interpreted from
the preprint for U-splines [44] and a possible implementation has been presented
with pseudo codes. The results have been used to construct U-splines for use in
plane stress problems and the effect of setting different continuity constraints has
been assessed.

The flexibility that U-splines provides for setting custom continuity conditions is
clearly unprecedented. All the problems in this thesis have been modelled with U-
splines. This illustrates some of the variety of meshes that are possible to construct
when using U-splines. In addition, there are many other properties of U-splines
that have not been tested in this thesis and remains to be explored. Thus, due
to the flexibility that U-splines provide, they seem to have great potential within
both CAD and CAE in the future.

The results from the plane stress problems showed some interesting differences
between the cases. The isogeometric multi-patch cases where Cp−1 conditions
were set for all interfaces except between the patches, seemed to always converge
faster than the traditional C0-cases. This indicates that isogeometric analysis gives
higher accuracy per degree of freedom than traditional FEA. For the cases where
higher continuity constraints were added also between the uniform patches, the
convergence rates seemed to decrease for higher polynomial degrees (p = 3 and 4).
It was discussed that a possible reason for this could be the irregular mesh that
resulted from the projection of the modelled geometry and rather the combination
of this and high continuity constraints. Some indications of this were shown and
discussed in the end of Section 7.2.2. Either way, the results show that there
are some additional considerations that emerges when having the flexibility that
U-splines now provides.

Future work

The advantages of using U-splines is probably better illustrated for other types
of problems than what is presented in this thesis. For instance, it may be more
beneficial to use U-splines when modelling Kirchhoff-Love plate and shell problems
as these problems require C1-continuity. Thus, having the flexibility of setting
customized continuity conditions may be more advantageous for these types of
problems.

U-splines have many properties that introduces several new possibilities within
adaptive refinement. Properties like multiple polynomial degrees, the support for
nested T-junctions and crossing continuities makes it possible to develop numerous
new refinement strategies. Thus, for future work, it is highly relevant to explore
these new possibilities.
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A Control Points

The control points and the weights for the modelled geometry of each plane stress
problem are given in the following. All elements were of degree p = (2, 2).

A.1 Patch test

Figure A.1.1: Mesh with element ids.

Element 1

Local ID x y

1 0.000 0.000

2 0.500 0.000

3 1.000 0.000

4 0.000 0.500

5 0.500 0.500

6 1.000 0.500

7 0.000 1.000

8 0.500 1.000

9 1.000 1.000

Element 2

x y

1.000 0.000

2.500 0.000

4.000 0.000

1.000 0.500

2.250 0.500

3.500 0.500

1.000 1.000

2.000 1.000

3.000 1.000

Element 3

x y

4.000 0.000

4.000 1.500

4.000 3.000

3.500 0.500

3.500 1.500

3.500 2.500

3.000 1.000

3.000 1.500

3.000 2.000

Element 4

x y

4.000 3.000

2.500 3.000

1.000 3.000

3.500 2.500

2.250 2.500

1.000 2.500

3.000 2.000

2.000 2.000

1.000 2.000

Table A.1.1: Element control points for element 1 to 4.
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Element 5

Local ID x y

1 1.000 3.000

2 0.500 3.000

3 0.000 3.000

4 1.000 2.500

5 0.500 2.500

6 0.000 2.500

7 1.000 2.000

8 0.500 2.000

9 0.000 2.000

Element 6

x y

0.000 1.000

0.500 1.000

1.000 1.000

0.000 1.500

0.500 1.500

1.000 1.500

0.000 2.000

0.500 2.000

1.000 2.000

Element 7

x y

1.000 1.000

2.000 1.000

3.000 1.000

1.000 1.500

2.000 1.500

3.000 1.500

1.000 2.000

2.000 2.000

3.000 2.000

Element 8

x y

4.000 0.000

5.000 0.000

6.000 0.000

4.000 1.500

5.000 1.500

6.000 1.500

4.000 3.000

5.000 3.000

6.000 3.000

Table A.1.2: Element control points for element 5 to 8.
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A.2 Infinite plate with circular hole

(a) Original case. (b) Additional case.

Figure A.2.2: Mesh with element ids.

Element 1

Local ID x y

1 -4.000 0.000

2 -3.250 0.000

3 -2.500 0.000

4 -4.000 2.000

5 -3.213 1.588

6 -2.427 1.177

7 -4.000 4.000

8 -3.177 3.177

9 -2.354 2.354

Element 2

x y

-2.500 0.000

-1.750 0.000

-1.000 0.000

-2.427 1.177

-1.640 0.765

-1.000 0.414

-2.354 2.354

-1.530 1.530

-0.707 0.707

Element 3

x y

-4.000 4.000

-3.177 3.177

-2.354 2.354

-2.000 4.000

-1.588 3.213

-1.177 2.427

0.000 4.000

0.000 3.250

0.000 2.500

Element 4

x y

-2.354 2.354

-1.530 1.530

-0.707 0.707

-1.177 2.427

-0.765 1.640

-0.414 1.000

0.000 2.500

0.000 1.750

0.000 1.000

Table A.2.3: Element control points for original case.
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Element 1

Local ID x y

1 -4.000 0.000

2 -3.250 0.000

3 -2.500 0.000

4 -4.000 1.657

5 -3.250 1.346

6 -2.500 1.036

7 -2.828 2.828

8 -2.298 2.298

9 -1.768 1.768

Element 2

x y

-2.500 0.000

-1.750 0.000

-1.000 0.000

-2.500 1.036

-1.750 0.725

-1.000 0.414

-1.768 1.768

-1.237 1.237

-0.707 0.707

Element 3

x y

-2.828 2.828

-2.298 2.298

-1.768 1.768

-1.657 4.000

-1.346 3.250

-1.036 2.500

0.000 4.000

0.000 3.250

0.000 2.500

Element 4

x y

-1.768 1.768

-1.237 1.237

-0.707 0.707

-1.036 2.500

-0.725 1.750

-0.414 1.000

0.000 2.500

0.000 1.750

0.000 1.000

Table A.2.4: Element control points for additional case.

Element 1

i ws wt

0 1.000 1.000

1 1.000 0.924

2 1.000 1.000

Element 2

ws wt

1.000 1.000

1.000 0.924

1.000 1.000

Element 3

ws wt

1.000 1.000

1.000 0.924

1.000 1.000

Element 4

ws wt

1.000 1.000

1.000 0.924

1.000 1.000

Table A.2.5: Element weights for original and additional case.
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A.3 First problem with manufactured solution

Figure A.3.3: Mesh with element ids.

Element 1

Local ID x y

1 -5.000 1.000

2 -3.000 1.000

3 -1.000 1.000

4 -5.000 2.000

5 -3.000 2.000

6 -1.000 2.000

7 -5.000 3.000

8 -3.000 3.000

9 -1.000 3.000

Element 2

x y

-1.000 1.000

0.000 0.000

1.000 -1.000

-1.000 2.000

0.000 1.500

1.000 1.000

-1.000 3.000

0.000 3.000

1.000 3.000

Element 3

x y

-1.000 -3.000

0.000 -3.000

1.000 -3.000

-1.000 -1.000

0.000 -1.500

1.000 -2.000

-1.000 1.000

0.000 0.000

1.000 -1.000

Element 4

x y

1.000 -3.000

3.000 -3.000

5.000 -3.000

1.000 -2.000

3.000 -2.000

5.000 -2.000

1.000 -1.000

3.000 -1.000

5.000 -1.000

Table A.3.6: Element control points for element 1 to 4.
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Element 5

Local ID x y

1 -5.000 -3.000

2 -3.000 -3.000

3 -1.000 -3.000

4 -4.354 -2.354

5 -3.000 -2.354

6 -1.646 -2.354

7 -3.707 -1.707

8 -3.000 -2.414

9 -2.293 -1.707

Element 6

x y

-1.000 -3.000

-1.000 -1.000

-1.000 1.000

-1.646 -2.354

-1.646 -1.000

-1.646 0.354

-2.293 -1.707

-1.586 -1.000

-2.293 -0.293

Element 7

x y

-1.000 1.000

-3.000 1.000

-5.000 1.000

-1.646 0.354

-3.000 0.354

-4.354 0.354

-2.293 -0.293

-3.000 0.414

-3.707 -0.293

Element 8

x y

-5.000 1.000

-5.000 -1.000

-5.000 -3.000

-4.354 0.354

-4.354 -1.000

-4.354 -2.354

-3.707 -0.293

-4.414 -1.000

-3.707 -1.707

Table A.3.7: Element control points for element 5 to 8.

Element 9

Local ID x y

1 1.000 -1.000

2 3.000 -1.000

3 5.000 -1.000

4 1.646 -0.354

5 3.000 -0.354

6 4.354 -0.354

7 2.293 0.293

8 3.000 -0.414

9 3.707 0.293

Element 10

x y

5.000 -1.000

5.000 1.000

5.000 3.000

4.354 -0.354

4.354 1.000

4.354 2.354

3.707 0.293

4.414 1.000

3.707 1.707

Element 11

x y

5.000 3.000

3.000 3.000

1.000 3.000

4.354 2.354

3.000 2.354

1.646 2.354

3.707 1.707

3.000 2.414

2.293 1.707

Element 12

x y

1.000 3.000

1.000 1.000

1.000 -1.000

1.646 2.354

1.646 1.000

1.646 -0.354

2.293 1.707

1.586 1.000

2.293 0.293

Table A.3.8: Element control points for element 9 to 12.
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Element 1

i ws wt

0 1.000 1.000

1 0.707 0.707

2 1.000 1.000

Element 2

ws wt

1.000 1.000

1.000 0.707

1.000 1.000

Element 3

ws wt

1.000 1.000

1.000 0.707

1.000 1.000

Element 4

ws wt

1.000 1.000

0.707 0.707

1.000 1.000

Table A.3.9: Element weights for element 1 to 4.

Element 5

i ws wt

0 1.000 1.000

1 0.707 1.000

2 1.000 1.000

Element 6

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 7

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 8

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Table A.3.10: Element weights for element 5 to 8.

Element 9

i ws wt

0 1.000 1.000

1 0.707 1.000

2 1.000 1.000

Element 10

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 11

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 12

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Table A.3.11: Element weights for element 9 to 12.
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A.4 Second problem with manufactured solution

Figure A.4.4: Mesh with element ids.

Element 1

Local ID x y

1 -6.000 -3.000

2 -5.207 -3.000

3 -4.414 -3.000

4 -6.000 -2.207

5 -5.207 -2.207

6 -4.414 -2.207

7 -6.000 -1.414

8 -5.207 -1.414

9 -4.414 -1.414

Element 2

x y

-4.414 -3.000

-3.000 -3.000

-1.586 -3.000

-4.414 -2.207

-3.000 -2.914

-1.586 -2.207

-4.414 -1.414

-3.000 -2.828

-1.586 -1.414

Element 3

x y

-1.586 -3.000

0.000 -3.000

1.586 -3.000

-1.586 -2.207

0.000 -2.207

1.586 -2.207

-1.586 -1.414

0.000 -1.414

1.586 -1.414

Element 4

x y

1.586 -3.000

3.000 -3.000

4.414 -3.000

1.586 -2.207

3.000 -2.914

4.414 -2.207

1.586 -1.414

3.000 -2.828

4.414 -1.414

Table A.4.12: Element control points for elements 1 to 4.
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Element 5

Local ID x y

1 4.414 -3.000

2 5.207 -3.000

3 6.000 -3.000

4 4.414 -2.207

5 5.207 -2.207

6 6.000 -2.207

7 4.414 -1.414

8 5.207 -1.414

9 6.000 -1.414

Element 6

x y

-6.000 -1.414

-5.207 -1.414

-4.414 -1.414

-6.000 0.000

-5.914 0.000

-5.828 0.000

-6.000 1.414

-5.207 1.414

-4.414 1.414

Element 7

x y

-1.586 -1.414

0.000 -1.414

1.586 -1.414

-0.172 0.000

0.000 0.000

0.172 0.000

-1.586 1.414

0.000 1.414

1.586 1.414

Element 8

x y

4.414 -1.414

5.207 -1.414

6.000 -1.414

5.828 0.000

5.914 0.000

6.000 0.000

4.414 1.414

5.207 1.414

6.000 1.414

Table A.4.13: Element control points for element 5 to 8.

Element 9

Local ID x y

1 -6.000 1.414

2 -5.207 1.414

3 -4.414 1.414

4 -6.000 2.207

5 -5.207 2.207

6 -4.414 2.207

7 -6.000 3.000

8 -5.207 3.000

9 -4.414 3.000

Element 10

x y

-4.414 1.414

-3.000 2.828

-1.586 1.414

-4.414 2.207

-3.000 2.914

-1.586 2.207

-4.414 3.000

-3.000 3.000

-1.586 3.000

Element 11

x y

-1.586 1.414

0.000 1.414

1.586 1.414

-1.586 2.207

0.000 2.207

1.586 2.207

-1.586 3.000

0.000 3.000

1.586 3.000

Element 12

x y

1.586 1.414

3.000 2.828

4.414 1.414

1.586 2.207

3.000 2.914

4.414 2.207

1.586 3.000

3.000 3.000

4.414 3.000

Table A.4.14: Element control points for element 9 to 12
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Element 13

Local ID x y

1 4.414 1.414

2 5.207 1.414

3 6.000 1.414

4 4.414 2.207

5 5.207 2.207

6 6.000 2.207

7 4.414 3.000

8 5.207 3.000

9 6.000 3.000

Element 14

x y

-4.414 -1.414

-3.000 -2.828

-1.586 -1.414

-4.061 -1.061

-3.000 -2.121

-1.939 -1.061

-3.707 -0.707

-3.000 -1.414

-2.293 -0.707

Element 15

x y

-1.586 -1.414

-0.172 0.000

-1.586 1.414

-1.939 -1.061

-0.879 0.000

-1.939 1.061

-2.293 -0.707

-1.586 0.000

-2.293 0.707

Element 16

x y

-1.586 1.414

-3.000 2.828

-4.414 1.414

-1.939 1.061

-3.000 2.121

-4.061 1.061

-2.293 0.707

-3.000 1.414

-3.707 0.707

Table A.4.15: Element control points for elements 13 to 16.

Element 17

Local ID x y

1 -4.414 1.414

2 -5.828 0.000

3 -4.414 -1.414

4 -4.061 1.061

5 -5.121 0.000

6 -4.061 -1.061

7 -3.707 0.707

8 -4.414 0.000

9 -3.707 -0.707

Element 18

x y

1.586 -1.414

3.000 -2.828

4.414 -1.414

1.939 -1.061

3.000 -2.121

4.061 -1.061

2.293 -0.707

3.000 -1.414

3.707 -0.707

Element 19

x y

4.414 -1.414

5.828 0.000

4.414 1.414

4.061 -1.061

5.121 0.000

4.061 1.061

3.707 -0.707

4.414 0.000

3.707 0.707

Element 20

x y

4.414 1.414

3.000 2.828

1.586 1.414

4.061 1.061

3.000 2.121

1.939 1.061

3.707 0.707

3.000 1.414

2.293 0.707

Table A.4.16: Element control points for elements 17 to 20.
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Element 1

i ws wt

0 1.000 1.000

1 1.000 1.000

2 1.000 1.000

Element 2

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 3

ws wt

1.000 1.000

1.000 1.000

1.000 1.000

Element 4

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Table A.4.17: Element weights for element 1 to 4.

Element 5

i ws wt

0 1.000 1.000

1 1.000 1.000

2 1.000 1.000

Element 6

ws wt

1.000 1.000

1.000 0.707

1.000 1.000

Element 7

ws wt

1.000 1.000

1.000 0.707

1.000 1.000

Element 8

ws wt

1.000 1.000

1.000 0.707

1.000 1.000

Table A.4.18: Element weights for element 5 to 8.

Element 9

i ws wt

0 1.000 1.000

1 1.000 1.000

2 1.000 1.000

Element 10

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 11

ws wt

1.000 1.000

1.000 1.000

1.000 1.000

Element 12

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Table A.4.19: Element weights for element 9 to 12.
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Element 13

i ws wt

0 1.000 1.000

1 1.000 1.000

2 1.000 1.000

Element 14

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 15

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 16

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Table A.4.20: Element weights for element 13 to 16.

Element 17

i ws wt

0 1.000 1.000

1 0.707 1.000

2 1.000 1.000

Element 18

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 19

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Element 20

ws wt

1.000 1.000

0.707 1.000

1.000 1.000

Table A.4.21: Element weights for element 17 to 20.
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