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Abstract 
This master thesis deals with structural optimization of a pile foundation with the use of a 

Generative Design (GD) approach and Machine Learning (ML). The goal of this thesis has been to 

define and quantify what is regarded as an optimal design of a point bearing pile foundation, how 

it could be achieved and how ML can make the design process more efficient as well as contribute 

to better designs.  

 

The work of this master thesis is based on a combination of qualitative and quantitative research 

methodology, with an overview on how to design pile foundations, followed by Structural 

Optimization and ML. The work is limited to theoretical analyses carried out in OpenSeesPy with 

substantial use of Python programming.  The design process was performed according to the 

criteria given in the Eurocodes and from the Norwegian Public Roads Administration manuals, as 

well as the Norwegian committee on piles guidance.  

 

The results indicate that an optimal design of a pile foundation can be characterised with an 

antisymmetric, fan like, formation of the piles with an as small as possible diameter.  

 

Numerous different optimization methods has been tried out, trying to decrease the 

computational time for the problem at hand. This thesis found the Adaptive Genetic Algorithm to 

be superior in speed compared to other methods, with a moderately loss of accuracy.  

 

Various type of ML models and extensively tweaking of parameters where tried out, trying to 

create a well functional ML model. With the Random Forest Regressor showing a marginal 

superiority, an acceptable level of accuracy has not been possible to achieve in this thesis. Proving 

the huge amount of available, high quality, Training Data (TD) needed for ML. How Norconsult can 

obtain a functional ML model in the future is therefore presented in the end of this thesis.   
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Sammendrag 
Denne masteroppgaven handler om optimalisering av pelegruppe ved bruk av generativ design 

og maskinlæring. Formålet med denne oppgaven har vært å definere og kvantifisere hva et 

optimalt design av en spissbærende pelegruppe er, hvordan dette kan oppnås og hvordan 

maskinlæring kan effektivisere design prosessen og i tillegg bidra til bedre design.  

 

Arbeidet med denne masteroppgaven baserer seg på en kombinasjon av kvalitative og kvantitativ 

metode, med en oversikt over hvordan man dimensjonerer pelegrupper, etterfulgt av 

optimalisering og maskinlæring. Arbeidet er begrenset til teoretiske analyser i OpenSeesPy og 

utlagt bruk av Python programmering. Dimensjoneringen er utført i henhold til designkriteriene 

gitt i Eurokodene og fra Statens vegvesens manualer, samt den norske pelekomites veileder.  

 

Resultatene indikerer at et optimalt design av en pelegruppe kan karakteriseres ved en 

antisymmetrisk, vifteformasjon av pelene, med en så liten diameter som mulig.   

 

En rekke forskjellige optimaliseringsmetoder har vært prøvd ut, i et forsøk på å redusere 

beregningstiden for problemet. Denne oppgaven har funnet adaptive genetiske algoritmer til å ha 

overlegen hastighet i forhold til de andre metodene, med et moderat tap av nøyaktighet. 

 

Forskjellige typer maskinlæringsmodeller og omfattende justering av parametere har blitt testet, 

i et forsøk på å lage en velfungerende maskinlæringsmodell. Med Random Forest Regressor 

modellens marginale overlegenhet, har ett akseptabelt nivå av nøyaktighet ikke vært mulig å 

oppnå i denne oppgaven. Dette bevisstgjør den enorme mengden av tilgjengelig, høykvalitets, 

treningsdata som er nødvendig til maskinlæring. Hvordan Norconsult kan oppnå en 

velfungerende maskinlæringsmodell i fremtiden er derfor presentert i slutten av denne oppgaven.  
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1 Introduction 

1.1 Background 

Structural engineering has stood the time from the pyramids to the modern ages. The first 

structural engineer dates to 2700 B.C.E. [1] when the step pyramid for Pharaoh Djoser was built. 

Throughout the ancient and medieval history, architectural design and construction was carried 

out by skill craft workers such as stone masons and carpenters. No theory of structures existed 

and understanding of how structures worked and managed to stand was extremely limited. It was 

almost solely based on empirical evidence of what had worked before. Structures were repetitive 

and increases in scale was incremental. In Figure 1 we see the pyramids of Pharaoh Djoser (left) 

and the pyramids of Giza (right), which showcase how structures was scaled. A pyramid is 

inherently stable and can almost be infinitely scaled, as opposed to most other structures which 

cannot be linearly increased in size proportion to increased loads.   

The physical sciences underlying structural engineering first began to be understood in the 

Renaissance and has been developing ever since. The first real theoretical understanding of the  

behaviour of structural material and the strength of structural members was carried out by Galileo 

Galilei in the 17-century [2]. His work “Dialogues Relating to Two New Sciences” from 1638 marks 

the beginning of structural analysis. Later significant work includes: 

- Hooke’s Law by Robert Hook in 1676 

- “Philosophiae Naturalis Principia Mathematica” by Sir Isaac Newton in 1687 

- Euler-Bernoulli beam equation by Leonhard Euler and David Bernoulli in 1750 

- The mathematically formulation of general theory of elasticity by Claude-Louise Navier in 

1821. 

In the 19-century new material like reinforced concrete, steel and prestressed concrete pushed 

the boundary of what was possible. As time progressed the structures got thinner, curvier and 

more complex. The demands on the structural engineer increased and lead to the need for more 

Figure 1-1: Pyramid of Pharaoh Djoser (left) [49] and Pyramids of Giza (right) [50]. 
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accurate calculations. With this, and the rise of the computer, a new way of calculating structures 

began to rise.  Figure 1-2 shows the Sydney Opera House. Its curvy roof created the need for 

complex and accurate calculations.  

 

Figure 1-2: The Sydney Opera House with its curvy roof [3]. 

 

Finite Element Method (FEM) 

In 1956 the paper “Stiffness and Deflection of Complex Structures” was published. It introduced 

the name “Finite Element Method” (FEM) which is still regarded at the first comprehensive 

treatment of the method today. The development of Finite Element Analysis (FEA) programs 

enabled structural engineers to predict the stresses in complex structures accurately. Figure 1-3 

shows the results of a FEA where the stresses is plotted as a colour plot.  

 

Figure 1-3: FEA result of a bridge [4]. 

 

While the FEM only predict the stresses in the structures accurately, it does not define if the design 

of the structure is good or not. The geometrical configuration of the structure greatly affects its 
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structural properties. Traditionally the geometry is decided by the architect, and the structural 

engineer is left with the job of making the design work. Since the two aspect of the structure 

greatly affect each other, it cannot be separated from each other. By setting the geometry early, it 

leaves no room for the architect and engineer to play around with the form and shape together. 

To ensure an early collaboration, common and iterative modelling tools was developed.  

Parametric Design 

The idea of parametric design is to ensure an early collaboration between architects and 

engineers, with the ability to feed information directly into production machines like 3D printers 

and computer numerical controlled (CNC) machines. Parametric design is referred to design 

obtained with the use of some varying parameters optimising the structural expression, structural 

integrity and performance. In parametric design and modelling the variables will serve a 

hierarchy of mathematical and geometric relations which will immediately obtain possibly 

complex results in addition to enable multiple design option. An example where the synergy 

between shape and structural integrity are showcased is parametric shells. For a thin shell to be 

structurally sound and to minimise lateral forces on the footings, it generally must be doble 

curved. In order to obtain these shapes a form finding method must be used. Figure 1-4 shows an 

ultra-thin concrete shell where form finding algorithms was used to get the shape. The shell was 

created with a knitted formwork weighing just 55 kg and was developed at ETH Zürich [5].   

 

Figure 1-4: KnittCandela, an ultra-thin concrete shell by researchers at ETH Zürich [5]. 

A form finding method or an optimization routine in order to minimize bending forces can be 

tidies and computer power demanding. In an era when our resources get scarce, an optimization 

routine gets more and more common. We are then left with a big dataset which can be used to 

increase our knowledge about structures and to make better prediction on the initial design.  
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Artificial intelligent (AI) in structural analysis 

In order to speed up the process of optimization and to benefit from the dataset, AI could be used. 

AI is a computational method attempting to simulate human cognition capability through symbol 

manipulation and symbolically structured knowledge [6].  There has been a growing interest in 

the use of AI in engineering the recent years. Many AI branches has been used in structural 

engineering, such as: machine learning (ML), pattern recognition, neural networks, fuzzy logic, 

evolutionary computation, deep learning, expert systems probability theory, discriminant 

analysis, swarm optimization, metaheuristic optimization and decision trees. These has been used 

for the purpose of structural health monitoring (SHM)/damage detection, optimization, 

performance evaluation, structural reliability and structural parameter identification [6].  AI also 

make it possible to save time in otherwise time-consuming tasks. ML has been used to automate 

the steel connections detailing in a BIM model. The machine designed over 70% of the connections 

successfully without human intervention [7]. Figure 1-5 shows an overview of the process.  

 

Figure 1-5: Structure where ML was used for steel connection design [8]. 

For a structure of this size and complexity, almost 50% of the time goes to design of connections 

[9]. Automation reduces this time significantly, and eventually, get rid of it altogether. AI-powered 

tools can provide better quality, be more productive and profitable, and do thing that were not 

possible in the past.  

The productivity of the 10-trillion-dollar Architecture, Engineering and Construction (AEC) 

industry has not increase noticeably over the last 20 years [9]. With the large possibility of 

increased efficiency and the emerging trend of BIM models, making it possible to use the digital 
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information for quantitative research and providing more accessible and structured data, AI could 

be the solution to untangle the lag AEC industry is facing.   

1.2 Goal of this thesis 

The goal of this thesis is to learn what an optimal solution of a pile foundation is, which variables 

regarding this are of most importance and how ML can be used to make the design process more 

efficient and contribute to better designs. To do this a case study of a pile foundation was chosen. 

The case study was introduced, to the writer, by a Norwegian consultancy firm, Norconsult AS. 

For further description of the case-study see chapter 1.2.1 Case-study: Råna bridge, below. 

 

A pile foundation provides a multi variable problem, as many other structures are. This makes a 

pile foundation a good test object and will make transferable results. Norconsult design hundreds 

of pile foundations in their projects every year. Usually, the design that is chosen is the first that 

satisfies the design requirements from N400, with moderately adjustment in order to try to 

optimize the design. The reason for this is because a pile foundation, and how every parameters 

are affecting each other, is difficult to predict and interpret.  

 

The primary aim of this thesis is then to learn more about design of pile foundation and to see how 

ML can serve as a design tool in order to come up with better and more optimal design.  The goal 

is to end up with a digital helper that learn from optimal designs and can help engineers in the 

future to better design pile foundations. The aim for this thesis is therefore to answer the following 

research questions: 

 

Research questions: 

- What characterises an optimal design of pile foundation? 

- How can optimal design of pile foundations be achieved?  

- How can ML help engineers in making better designs of pile foundation and to make the 

design process more efficient? 

Norconsult would like to see how their process on designing pile foundation could be improved 

with the use of ML. A collected view on the research question and the issue from Norconsult could 

be preserved in the following main issue for this thesis: 

- How to ensure an optimal solution of a pile foundation, regarding structural properties, 

economic and buildability, with the use of machine learning.  
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The research questions try to break down and emphasize the main issue that Norconsult has for 

this thesis. 

1.2.1 Case-study: Råna bridge  

In order to answer the questions addressed in the previous chapter and to make the result of this 

thesis useful for Norconsult, a case study on a previously project by Norconsult was chosen. This 

will serve as the calculation model in order to preserve the results in something real.   

 

The case study is a pile foundation of a bridge. Specifically, the pile foundation of a prestressed 

beam bridge situation near Arendal in the project E18 Tvedestrand – Arendal, “Råna bru”. The pile 

foundation in axis 3 will serve as a model in the optimization part and will be altered to serve as 

training data for the ML part. The figures bellow shows an overview of the bridge.  

 

Figure 1-6: Elevation of Råna bridge. 

 

 

Figure 1-7: Plan view of Råna bridge. 

 

The pile foundation will be designed according to the Norwegian design criteria for bridges given 

in handbook N400 – bruprosjektering [10]. The loads will be taken from the global analysis model 

for Råna bridge and are in accordance with N400. The loads will later be change in order to build 

the data set for the ML. A detailed description of the model is given in chapter 5.1 Modell. 
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1.2.2 Limitations 

To be able to answer the research question in the available time, the following limitations has 

been adopted: 

- The model is limited to a 2D model. 

- Only steel core point bearing piles is considered.  

- Only one soil type is considered: loose sand. 

- Buckling is neglected. 

- Only linear springs is considered, second order effects are neglected. 

- Design of pile cap is neglected. 

- Contribution from downdrag and driving is neglected. 

It is assumed that driving and mounting is done according to the applicable rules and that the piles 

attain satisfactory properties after mounting.  

 

1.2.3 Outline of this thesis 

In order to learn more about piles and pile foundations a review on how piles and pile foundations 

are designed is presented in the beginning of this thesis. This forms the basis for the definition of 

the structural optimization of pile foundation. When all this is defined the numerical model as well 

as the initial results are presented. In this part of the thesis it is focused on a single load case rather 

than a load combination. In order to not complicate the analysis too much in the beginning and to 

better asses the algorithms more efficiently. When different solution methods are presented in 

chapter 6, the analysis move more over to include load combinations. In the end, different ML 

models has been built based on the results from the previous chapters. Results from this can be 

found in chapter 7, before discussion, conclusion and further work ties it all together and makes 

the end of this master thesis.  

 

 

  



   
 

8 
 

2 Methodology 
The goal of this thesis is to get a better understanding of what characterise an optimal pile 

foundation and to see how ML can help in the process of achieving an optimal solution. This is 

achieved by combining a qualitative and quantitative research methodology. The calculations are 

done based on quantitative data, where some of the data are made quantitative by a group of 

engineers collected qualitative knowledge. The choice of methodology is based on opportunities 

and available resources. Time limitations and the lack of available testing facility makes it difficult 

to obtain new empirical data, this limits the thesis to pure theoretical calculations. Accuracy in the 

calculations is emphasise, but since some of the quantitative data is based on qualitative 

knowledge, the quality of the calculation will be affected by this.   

2.1 Method 

Because of the authors limited experience in design of piles and pile foundations the thesis starts 

with an overview on how to design such structures. Acquired knowledge from this stage will also 

later be essential in order to be able to define what is thought to be an optimal pile configuration.  

“Hard data” related to piles is also systematically collected in this stage, for later to be used in the 

calculations. The Norwegian committee on piles guidance “Peleveiledningen” [11] gives guidance 

when designing piles as well as illuminating challenges and considerations. Based on this, N400 

[10], Eurocode 7 [12], handbook V220: Geoteknikk i veibygging [13] and other research papers 

makes chapter 3 Design of piles and pile foundations the basis for the analyse and optimization 

chapters. As well as serving as training data for the ML part, this also provides the basis for results 

and discussion, from which later a conclusion is drawn.  

 

The analyze and optimization methods chapters is based on a numerical model and FEA. By using 

an ordinary pile foundation as a test object, one acquires insight and understanding about the 

design process.  The optimization methods chapter introduces different methods of optimization 

and contributes to a large extent how the design process can be more efficient and enable search 

for optimal solutions. This chapter contributes to understanding on how different parameters 

affect the overall assessment of the solution, as well as each parameters importance. The ML 

chapter explains how AI can be used in order to make the design procedure more efficient, by 

utilize collected knowledge from the previously chapters.  
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2.1.1 Materials and software  

The calculation is based on the design rules given in Eurocode 7 and N400. All the numerical 

analysis is done in Python with the use of opensource library OpenSeesPy [14]. OpenSees was 

chosen for its speed benefits compared to other commercially available programs, which was 

critical for this thesis.  Other Python packages that has been used for visualisation and calculation 

includes: NumPy, matplotlib, h5py, math, and SciPy optimize. Python has been used throughout 

the entire thesis. For the ML part the opensource library Scikit-learn [15] was chosen.  

 

OpenSeesPy 

OpenSeesPy is a Python 3 interpreter of OpenSees, which enable the use of the FEM directly in 

Python. OpenSees has been developed as the computational platform for research in 

performance-based earthquake engineering at the Pacific Earthquake Engineering Research 

Center. It has advanced capabilities for modelling and analysing, with a wide range of material 

models, elements and solution algorithms. It is design for parallel computing to allow scalable 

simulations on high-end computers or for parameter studies.  

 

Scikit-learn 

Scikit-learn is a free ML library for Python and features various classification, regression and 

clustering algorithm. The Scikit-learn project initially started as a Google Summer of Code project 

by David Cournapeau but was later rewritten by other developers from the French Institute for 

Research in Computer Science and Automation. It was first publicly realised in February 2010. 

Scikit-Learn is one of the most popular ML libraries on GitHub.  

2.1.2 Procedure and implementation 

After acquiring the knowledge that forms the basis for the calculation, the focus is mainly on the 

design and analysis of a pile foundation. A test model of a common pile foundation for a bridge 

facilitates good, up to date and transferable observation and gives the assumptions needed for the 

analysis. Later, different optimization methods are used in order to speed up the process and to 

see which variables that plays an important role in the assessment of the feasible solutions. This 

knowledge is then used as training data for the ML model. How the ML is performing is then 

checked against the acquired results from the optimization methods. Based on the collocated 

knowledge, key features to obtain an optimal pile foundation and how ML can help to obtain this 

are considered.  
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2.2 Reflection and quality assurance 

2.2.1 Validity 

This thesis gives an indication on what characterise an optimal configuration of a pile foundation, 

and how to obtain it efficiently. However, an optimal pile foundation will vary dependent on 

project specifically features as well as national costume. The results is only relevant in the sense 

that there are agreement with the points given in chapter 4.2 Cost Function. All the points from 

this chapter are consultant with an expert group from Norconsult and prices are collected from 

“Norsk Prisbok” [16]. This makes the results primarily relevant for the firm as well as the 

Norwegian AEC industry.   

 

The optimal configuration that the model obtain will greatly depend on the forces it is subjected 

to. To ensure that the prediction by the ML model is accurate for as many load combinations as 

possible, and therefore its validity, a good spread in the loads when creating the training data is 

emphasised. 

2.2.2 Reliability 

Because the calculation is based on Eurocode 7 and N400 the reliability concerning the calculation 

can be comparable with the Eurocode and N400. Since all the calculations has been done in a non-

commercial program, the program has been tested and compared with ABAQUS in order to check 

the accuracy of the program and to ensure reliable results. The optimization and ML part 

extensively use available libraries for Python. In order to ensure reliable results in these phases, 

well known and documented libraries has been chosen.    

2.2.3 Generalisability   

By using a common and general pile foundation as the test object, we can obtain more general 

results then a very specific and complex pile foundation would give. The pile foundation at hand 

has been chosen specifically for this manner.  The variables of the calculation model that are kept 

free, enables varied types of foundations to form. This substantiates the generalisability of the 

model and then the results.   

 

The results from the calculation is tied up to a chosen depth to the bedrock and the lateral soil 

stiffness. The values for the soil stiffness are chosen conservatively within the given limitations of 

the thesis. Literature find the depth to bedrock to be of insignificant importance with the thesis 

limitations. This makes the result transferable for other values of the fixed variables as well.  
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3 Design of piles and pile foundations 
This chapter will describe more closely what a pile is and how it is designed, manufactured and 

constructed.  

3.1 Design of piles 

Based on the load transfer mechanism, a pile is classified either as a point bearing pile or as friction 

pile [17]. A point bearing pile reaches all the way down to the bedrock. It transfers all the applied 

load to the tip as axial loads and behaves as an ordinary column. The surrounding soil offers no 

additional load carrying capacity, but even weak soil does prevent lateral displacement and 

therefor prevent buckling [18]. Friction piles is not hammered down to bedrock and transfer the 

loads to the ground through skin friction. In Figure 3-1 a representation of the different 

classification is shown.  

 

 

Figure 3-1: Different load carrying categories; point bearing pile (a), combination of point bearing 
and friction pile (b) and friction pile (c) [19]. 

 

The total load carrying capacity (𝑄𝑈) is given as the sum of the contribution from skin friction 

(𝑄𝑆) and point bearing resistance (𝑄𝑃). The contribution to each category will vary dependent on 

the soil type.  

 𝑄𝑈 = 𝑄𝑃 + 𝑄𝑆 (3-1) 
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3.2 Friction piles 

Design of friction piles is separated into two different types of analysis: 

- 𝑆𝑈  – analysis: short term analysis for piles in clay. 

- 𝛼𝜑 – analysis: short- and long-term analysis for piles in sand and clay  

The friction force along the pile is dependent on the shear forces along the pile. In 𝑆𝑈  analysis the 

shear forces are dependent on the shear resistance of the soil, while in 𝛼𝜑 it is dependent on the 

normal stresses and the roughness of the pile [17].  

3.2.1 𝑺𝑼 - analysis 

The carrying capacity for 𝑆𝑈- analysis is given as: 

 𝑄𝑈 = 𝑄𝑆 + 𝑄𝑃 − 𝐺𝑃
′  (3-2) 

Where: 

𝑄𝑆 is the skin friction resistance. 

𝑄𝑃 is the point bearing resistance. 

𝐺𝑃
′  is the weight of the pile, optionally reduces for buoyancy. 

The skin friction resistance is calculated as: 

 𝑄𝑆 = 𝑓𝑟 ∗
𝑠𝑢𝑚

𝛾𝑚
∗ 𝐴𝑠 (3-3) 

Where:  

𝐴𝑠 is the surface area of the pile. 

𝑠𝑢𝑚  is the average undrained unstirred shear strength. 

𝛾𝑚 is a material coefficient. 

𝑓𝑟  is a reconsolidation factor which express the relationship between the shear 

resistance along the pile shaft after ramming and the original shear resistance in 

the soil. 𝑓𝑟  depends on soil type, pile material and shape. It can be taken from Figure 

3-2.  
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Figure 3-2: Reconsolidation factor as a function of shear resistance and pile type [17]. 

The point bearing resistance is calculated as: 

 𝑄𝑃 = 𝜎̅𝑣 ∗ 𝐴𝑝 (3-4) 

 𝑄𝑃 = (𝑁𝑐 ∗
𝑠𝑢𝑝   

𝛾𝑚
+ 𝛾̅′ ∗ 𝐷) ∗ 𝐴𝑝 (3-5) 

Where:  

𝑁𝑐  is a load carrying factor. Equal to 9 for a small deep foundation (pile).  

𝑠𝑢𝑝  is the shear strength at the pile tip.  

𝛾̅′ is the density of the suppressed soil. 

𝐷 is the depth of the pile. 

𝐴𝑝 is the area of the pile tip. 

3.2.2 𝜶𝝋 - analysis 

The carrying capacity for 𝛼𝜑 - analysis is given as: 

 𝑄𝑈 = 𝑄𝑆 + 𝑄𝑃 − 𝐺𝑃
′  (3-6) 

The skin friction resistance is calculated as: 

 𝑄𝑆 = 𝜏̅𝑠 ∗ 𝐴𝑠 = (𝜎𝐴
′ + 𝑎)𝑟 ∗ tan(𝜌) ∗ 𝐴𝑆 = 𝑆𝐴(𝜎𝐴

′ + 𝑎) ∗ 𝐴𝑆 (3-7) 

Where:  

𝜏̅𝑠 is the shear stress along the pile shaft. 

𝜎𝐴
′  is the average vertical stress along the pile shaft. i.e. at the depth D/2. 

𝑎 is the average attraction for the same area.  
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𝑆𝐴 is a shear stress coefficient. It is dependent on mobilised friction, tan 𝜌 = 
tan 𝜑

𝛾𝑚
 , and 

absolute roughness |𝑟|. 𝑆𝐴 can be taken from Figure 3-3. 

 

Figure 3-3: Shear stress coefficient as a function of roughness and mobilised friction [17]. 

 

The point bearing resistance is calculated as: 

 𝑄𝑃 = 𝜎̅𝑣
′ ∗ 𝐴𝑝 (3-8) 

 
𝑄𝑃 = (

1

2
∗ 𝑁𝛾 ∗ 𝛾̅′ ∗ 𝐵0 + 𝑁𝑞 ∗ 𝑝′ + (𝑁𝑞 − 1) ∗ 𝑎) ∗ 𝐴𝑝  (3-9) 

By neglecting the first term, because of small width (𝐵0), and setting the weight of the pile to the 

same as the suppressed soil, we get: 

 𝑄𝑃 = (𝑁𝑞 − 1)(𝑝′ + 𝑎) ∗ 𝐴𝑝 = 𝜎̅𝑣𝑛′ ∗ 𝐴𝑝  (3-10) 

Where:  

𝑝′ is the shear stress along the pile shaft. 

𝑁𝑞  is a load carrying factor and can be taken from Figure 3-4. 
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Figure 3-4: Load carrying factor [17]. 

3.3 Point bearing piles 

The characteristic load carrying capacity of a point bearing pile will either be decided by the 

strength of the pile material or tip, or the strength of the rock type its rammed into [11]. Point 

bearing piles is usually used when the bedrock is hard, so the pile capacity is therefore limited by 

the strength of the material and/or buckling. The capacity is therefore calculated as an ordinary 

column with lateral springs, see Figure 3-5.      
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Figure 3-5: Calculation model of a pile, with lateral springs. 

3.3.1 Lateral springs 

The lateral springs represents the support from the surrounding soil. As the soil is pushed by the 

pile a pressure between the pile and soil is mobilised. The lateral spring stiffness increases with 

the depth and is given as: 

 𝐾(𝑧) = 𝑘 ∗ 𝑑 ∗ 𝑧 (3-11) 

Where:  

𝑘 is the slope of the soil’s reaction modules. 

𝑑 is the diameter of the pile. 

𝑧 is the depth. 

There are great uncertainties around the soil’s characteristics, so the spring stiffness should 

always be chosen conservatively. Typical values for the slope of the soil’s reaction modules can be 

taken from Table 3-1. 

Table 3-1: Values for the slope of soil’s reaction modules, k [13]. 

Soil type 

k (KN/m3) 

Above groundwater Below groundwater 

Loose sand 5 000 4 500 

Middle firm sand 22 000 15 000 

Firm sand 60 000 34 000 
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3.3.2 Buckling 

Buckling is primary an issue that needs to be checked for all piles through water or air, and for 

slender steel piles or steel core piles in soft clays or other soils with low strength and stiffness 

[11].  For a straight homogenous pile, the theoretical buckling load is given as: 

 
𝑁𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 =

(𝜋2 ∗ 𝐸 ∗ 𝐼)

𝐿𝑘
2 +

𝐶 ∗ 𝐿𝑘
2

𝜋2
 (3-12) 

Where:  

𝐼 is the pile’s moment of inertia. 

𝐿𝑘 is the buckling length. 

𝐶  is the soil’s reaction module. 

The first term is the Euler buckling load for a pile in air, and the second term is the contribution 

from the soils lateral support.  

3.3.3 Capacity 

For piles in moderately firm clay or loose sand, buckling is commonly not an issue. The capacity 

of the pile can then be taken directly from a stress check of the section. This yield: 

 
𝑁𝑅𝑑 = 𝑓𝑎 ∗ 𝐴 ∗

𝑓𝑦

𝛾𝑚
 (3-13) 

Where:  

𝐴 is the area of the section of the pile. 

𝑓𝑦  is the characteristic yield strength of the pile. 

𝑓𝑎  is a reduction factor that accommodate the different between piles and other 

structural elements, as well as including specific conditions for the pile-work. 

Recommended values can be taken from Table 3-3 

If the pile is subjected to a combination of moments and axial forces the resultant stress must be 

checked against the resistance of the section: 

 𝑁𝐸𝑑

𝐴
 ± 

𝑀𝐸𝑑

𝑊
 ≤  

𝑓𝑦 ∗ 𝑓𝑎

𝛾𝑚
= 𝑓𝑦𝑑 (3-14) 

Where:  

𝑁𝐸𝑑 is the axial force in the pile. 

𝑀𝐸𝑑  is the moment in the pile. 

𝑊 is the modulus of the pile.  

𝑓𝑦𝑑 is the design yield strength of the pile. 
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3.3.4 Reduction factor 𝒇𝒂 

An assembly of condition that’s effect the reduction factor can be found in Table 3-2. The 

corresponding values of the reduction factor can be taken from Table 3-3. 

Table 3-2: Assembly of conditions that affects choice of 𝒇𝒂. 

 Favourable Unfavourable 

Soil conditions Homogenous and rock free 

soil. Increasing strength with 

depth. Even and well 

bedrock 

Corrosion harsh soil. Rocks 

and block in soil. Skew, 

uneven and hard bedrock 

Site investigation Comprehensive site 

investigation 

Inadequate site 

investigation.  

Number of piles in a group More than 5 piles. Small 

variation of pile lengths.  

Less than 3 piles. Great 

variation of pile lengths.  

Ramming equipment and 

execution 

Adequate weight of hammer 

and god driving cap. Vertical 

piles.  

Experience contractor.  

inadequate weight of 

hammer. Driving from raft. 

Unexperienced contractor.  

Installation method  Drilling, casting and 

grouting. 

Ramming/driving. 

Control of pile work.  God control of piles and 

ramming. Implementation of 

complete protocols.  

Little or lacking protocol.  

 

 

Table 3-3: Recommended reduction factors [12]. 

Conditions 𝒇𝒂 

Favourable 0.9 

Mean 0.75 

Unfavourable 0.6 
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3.4 Pile types 

Piles are usually made of concrete, timber or steel. Concrete is used for precast concrete piles, cast 

in place and prestressed concrete piles, while steel piles are used for permanent or temporary 

works. When wood is available at an economical price, timber can be used for temporary piles 

[18].  

3.4.1 Timber piles 

Timber piles was frequently used as friction piles in the older days, but are not much used in later 

years. Some countries still use timber piles for permanent work today. It is most suitable for long 

cohesion piling and piling beneath embankments. The timber needs to be in good condition and 

without insects.  

 

Keeping the timber below groundwater level protects the timber against decay and putrefaction. 

To protect and strengthen the tip of the pile, timber piles can be provided with toe cover. The 

usual method of protecting timber is with pressure creosoting. It is essential that the timber is 

driven in the right direction and should not be driven into firm ground, as this can easily damage 

the pile [20].  

 

In Table 3-4, advantages and disadvantages of timber piles can be found.  

Table 3-4: Advantages and disadvantages of timber piles 

Advantages Disadvantages 

The piles are easy to handle. Piles will rot above ground water level and 

have a limited bearing capacity. 

Relatively inexpensive where timber is 

plentiful. 

Can easily be damaged during driving by 

stones and boulders.  

Section can be joined, and excess length is 

easily removed. 

The piles are difficult to splice and are 

attacked by marine bores in saltwater.  

3.4.2 Concrete piles 

Concrete piles can be either precast or casted in place. 

3.4.2.1 Precast concrete piles 

Rammed concrete piles is widely used for ordinary foundation work. They are most used as point 

bearing piles, but are also used as friction piles in sand, gravel and solid clay.  
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Precast concrete piles are made of high-quality concrete and reinforcement. The section is usually 

square, triangle, circle or octagonal. They are produced in length of 3 to 13 meters and can easily 

be connected in order to reach required length. In Figure 3-6 a section of a concrete pile with 

reinforcement and the spigot/socket joint is shown.  

 

Figure 3-6: Precast concrete pile with detailing [21]. 

Advantages and disadvantaged of precast concrete piles can be found in Table 3-5. 

Table 3-5: Advantages and disadvantages of precast concrete piles. 

Advantages Disadvantages 

Can be driven in long lengths. Displacement, heave and disturbance of soil 

during driving. 

Can increase the relative density of granular 

founding stratum. 

Can be damage during driving. Replacement 

piles may be required. 

Are easy to splice and relatively inexpensive.  Cannot be driven with very large diameters 

or in condition of limited headroom.  

Stable in squeezing ground; soft clays and silts.  

 

This make precast concrete piles ideal when we have: 

- Moderately loads 

- Moderately depth 

- Non challenging rock conditions 

- Non rough rock substance 

- Piling from land  

- Non stability problems  
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3.4.2.2 Cast in place concrete piles or pillars 

Cast in place concrete piles, or pillars, are rough concrete piles formed by pouring concrete into a 

hole. The hole can be established by turning steel tubes into the ground and at the same time 

excavating the soil on the inside.  The pile is reinforced and casted while the tube is pulled up.  

 

Cast in place concrete piles can be friction or point bearing piles. For friction piles the tip is 

expanded in order to increase the load carrying capacity. The piles can range from 900 to 1500mm 

in diameter and have a large load carrying capacity [11].  

 

Advantages and disadvantaged of cast in place concrete piles can be found in Table 3-6. 

Table 3-6: Advantages and disadvantaged of cast in place concrete piles. 

Advantages Disadvantages 

Length can be readily varied to suit varying 

ground conditions.  

Concrete not placed under ideal conditions 

and cannot be subsequently inspected.  

Can be installed in very large diameters. Water under artesian pressure may pipe up 

pile shaft and wash out cement. 

End enlargement up to two or three 

diameters are possible in clays.  

Cannot be readily extended above ground 

level especially in river and marine 

structures.  

Material of piles is not dependent on handling 

or driving conditions.  

Boring methods may loosen sandy or gravely 

soils, requiring base grouting to achieve 

economic base resistance.  

Can be installed in very long lengths.   

 

This make cast in place concrete piles ideal when we have: 

- Big concentrated loads 

- Big depths 

- Stability issues 

- Need for little noise and vibrations during construction 

3.4.3 Steel piles 

Steel piles can be rammed or drilled into the ground. They are made of H, X, hollow pipes or solid 

pipes sections. The hollow pipes may be filled with concrete or even reinforced to add strength. 

Steel piles are suitable for handling and driving in long lengths. Their relatively small cross-section 

combined with their high strength makes penetration easier in firm soil.  
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Steel piles can easily be cut off or joined by welding. When driven into soil with low pH value the 

piles may corrode. Coating or cathodic protection may be employed, but it is common to allow for 

an amount of corrosion in design by simply over dimensioning.  

 

Advantages and disadvantaged of steel piles can be found in Table 3-7. 

Table 3-7: Advantages and disadvantaged of steel piles. 

Advantages Disadvantages 

The piles are easy to handle and can easily be 

cut to desired length.  

The piles will corrode. 

Can be driven through dense layers and into 

inclined and difficult rock.  

Will deviate relatively easy during driving.  

Can be driven hard and in very long lengths.  Are relatively expensive.  

Can carry heavy loads  

 

3.5 Selection of piles 

What kind of pile that is best suited for a project is dependent on many factors. It is not possible 

to determine an absolute and unambiguously recommendation. The statics, geotechnical, 

construction and environment all need to interact in order to have an optimal technical and 

economical solution [11]. Some aspects that need to be considered when choosing a pile type are 

found in Table 3-8. 

Table 3-8: Selection aspects for piles. 

Category Aspect 

Loads - How big are the loads? 

- Only vertical loads or combination of horizontal loads? 

- Is it tension forces? 

Soil conditions - How are the soil conditions? 

- How is the stability in the area? 

- Is it difficult to drive the pile through the soil? 

- Is the bedrock skewed?  

- Is the soil touchy for erosion during drilling? 

- Are there environmental impact demands? 

Neighbourly relations - Restriction of ramming because of noise and shaking? 

- Can piling cause stability issues or settlement for 

neighbouring site? 
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-  Can mud be released?  

Construction - Big or small site? Is it room for the piling machine? 

- Should it be piled from the terrain or in the pit?  

- Piling from raft?  

- Piling near and simultaneously with other construction 

activities? 

- Restrictions regarding road, train or high-voltage cables? 

Marked - Price on piles 

- Which pile type is uncomplicated to install in the area? 

 

The main reason for choosing a pile type is that it can carry all the applied forces. Therefore, a 

summary of typical capacities for different piles are displayed in Table 3-9. 

Table 3-9: Typical characteristic capacities and lengths for the most common piles [11]. 

Pile type Sectional design capacity without moments 

[KN] 

Lengths [m] 

Pre casted concrete piles 1 500 – 3 000 8 – 50 

Casted in place concrete 

piles 

5 000 – 25 000 5 – 50 

Steel piles 2 000 – 7 000 20 – 70 

Rammed steel pipe piles 4 000 – 16 000 20 – 70 

Drilled steel pipe piles 8 000 – 25 000 10 – 50 

Steel core piles 1 000 – 5 700 5 - 70 

 

3.6 Piles in group 

So far, we have only dealt with single piles. In order to obtain enough capacity and stability two 

or more piles are placed together to form a pile foundation. A group of piles can carry more loads 

than a single pile can carry alone. It can be made of many vertical or skewed piles with complex 

geometry.  Figure 3-7 shows a representation of a typical pile foundation.  
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Figure 3-7: Pile foundation with the two different carrying methods. 

 

For simple pile foundations only subjected to pure vertical loads, the loads can be distributed to 

the necessary amount of single piles. No analysis of the group is necessary, and the loads are 

carried as axial loads in each pile. When subjected to a combination of moment, vertical- and 

horizontal forces, the pile foundation acts as a space frame. The moments will only lead to a 

redistribution of the vertical loads compared to the situation of only vertical and horizontal forces 

[11]. In principal there three different ways a pile foundation can carry forces: 

- as axial load in piles 

- from the lateral carrying capacity for each pile 

- from the lateral support of the foundation  

 

Axial loads in piles  

Compression forces in piles is the ideal load carrying situation [11]. By placing piles in different 

direction, a stable system in which horizontal forces can be carried as axial forces may be obtained. 

The horizontal capacity is therefore limited by the inclination of the piles. An inclination of 4:1 

will for example only have the ability to carry a quarter of the axial capacity as horizontal force. 

Figure 3-8 shows how the forces are distributed as axial loads in the piles.  
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Figure 3-8: Illustration on how loads are carried as axial loads in piles. 

 

Lateral carrying capacity 

The relative displacement between the pile and the surrounding soil enable passive pressure to 

form. This pressure enables lateral carrying capacity, but the deformation that enables this 

pressure is not necessarily possible in practise, due to demand of compatibility between forces 

and deformation. The influence of piles standing to close to each other is also something that 

needs to be considered. There are desirable that the horizontal forces are transferred as axial load 

in piles, rather than lateral forces to the soil, but it is common to check against shear and bending. 

See Figure 3-9. 

 

 

Figure 3-9: Illustration on the lateral carrying capacity of a pile. 
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Lateral support from foundation 

This is not a direct part of the piles carrying capacity, but it is common to have a backfilling around 

the foundation in which the pile heads are encased.  Horizontal movements of the foundation will 

activate passive pressure and enable horizontal forces to be carried, see Figure 3-10. If this 

capacity should be included, it must be certain that the backfilling is not later removed. It is 

therefore not usual to include this in the capacity of the pile foundation.   

 

 

Figure 3-10: Illustration on the lateral carrying capacity from the slab. 

3.6.1 Static stability 

If the piles axis intersects each other in one point the group will only be stable if the force attacks 

in this point. If the pile foundation is subjected to other exterior forces or moments, the piles 

should be placed such that their axis does not intersect in just one point. Figure 3-11 shows an 

unstable configuration (A) and a stable configuration (B).  
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Figure 3-11: Example of an unstable (A) and stable (B) configuration. 

3.6.2 Geometrical formation of piles in group 

There are several aspects that decides the shape and size of the foundation. It will be a combined 

assessment of loads, stiffness, interaction with the overlying structure and pile type. The size of 

the foundation will for example be significantly smaller for drilled piles, compared to regular 

precast concrete piles [11]. 

 

When driving piles in sand, the surrounding soil will compress. The piles should therefore not be 

too close to each other, which may cause difficulties with driving. In clays the driving may cause 

stirring of the surrounding soil and increase earth pressure. These can cause the pile to draw 

against previously driven piles. Therefore, it is recommended to have a minimum spacing between 

piles. Recommended distance can be found in Table 3-10. The pile sequence should also be 

considered in order to limit these effects. For example, the direction of a skew pile is more 

important than a vertical one and should therefore be driven first in order to limit the dragging 

effect.  

Table 3-10: Recommended minimum distance between vertical rammed piles. 

Pile length [m] Friction piles 

In sand                                 In clay 

Point bearing piles 

< 12 3d 4d 3d 

12 – 24 4d 5d 4d 

> 24 5d 6d 5d 

d = Pile diameter or biggest section measure. 
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For drilled piles, the distance between piles will depend on execution method and direction 

requirement. The dragging effect for vertical rammed point bearing piles is also not consider to 

be a structural problem. For incidents like this the distance between piles may be less than the 

values given in Table 3-10. 

 

In order to maintain a good force transfer in the foundation, the edge distance for the outer pile 

needs to be limited. These distances are defined in design rules given in: N400 and “JD 525, Regler 

for prosjektering av bruer”. This minimum distance is 400mm according to N400.  

3.6.3 Analyses of piled structures 

Structures on pile foundation is statically undetermined. For structures like this, the analysis 

needs to account for interaction between the overlaying structure and the foundation. This is 

because the reactions from the foundation to the structure depends on the pile foundations 

displacements [11].  

 

The load distribution on the pile foundation and different parts of the structure is dependent on 

the relative stiffness of the whole structure. A rigid foundation will attract more forces than a 

flexible one. Example of factors that will influence the foundation stiffness are: 

- variation of soil condition  

- depth to bedrock  

- number of piles  

- pile type  

- placement of piles 

This implies that the pile foundations stiffnesses needs to be taken into consideration when 

analysing the overlaying structure.  

 

A piled structure can be separated into the overlaying structure and a given amount of pile 

foundations, in order to analyse this separately. The connections between the pile foundation and 

the overlaying structure is represented by nodes with 6 degrees of freedom (DOF), supported by 

springs.  In the system analysis of the overlaying structure, the nodes are represented as spring 

supports, while in the pile foundation analysis they are considered as displaceable points applied 

with the support loads from the system analysis, see Figure 3-12.  
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Figure 3-12: Illustration of the system model for piled bridges subjected to static forces [11].  

With the use of separate system analysis and pile foundation analysis, it is important to ensure 

that the displacements of the supports in the system analysis corresponds to the displacement of 

the support points from the pile foundation analysis.  This can be done by specifying a condensed 

stiffness matrix for the overlaying structure in every pile foundation analysis, or by representing 

the stiffness matrix for each pile foundation in the system analysis. The latter being the most 

common one. The stiffness matrix for the pile foundations can be generated by successively 

applying unit displacement in each of the 6 DOF’s for each foundation. The stiffness matrix will be 

symmetrical and be on the form: 

 

𝐾𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 =

[
 
 
 
 
 
 𝐾𝑥𝑥 
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⋮
⋮
⋮
⋮
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𝐾𝑧𝜙𝑧
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 (3-15) 

 

The solution method will be an iterative method in order to ensure compatibility between the 

displacement from the system analysis and the foundation analysis.  
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4 Structural optimization of pile foundation 
In order to find out what characterise a good solution of a pile foundation, a discussion with people 

in the industry and search in the literature has been carried out. This chapter describe these 

findings and investigate how different variables affect the overall evaluation of the design, and 

how an optimal design can be obtained. 

4.1 Optimal design of pile foundation 

An optimal design of a pile foundation is not one specific thing, and its characteristics will vary 

within the industry and across countries. Depending on who you are asking you will almost get a 

different answer every time, but there is some resemblance.  

 

A pile foundation consists of multiple variables that describes its strength, stress distribution and 

stiffness. The ability of quantifying, as well as evaluating, a design solution can therefore be 

challenging.  The need for the ability to choose the best design solution from a set of available 

alternatives makes it to an optimization problem. Optimization of a structure can be with respect 

to many things. Structural optimization is commonly performed with a goal to minimize stresses, 

weight or deflection.  In general, the idea of optimization is to select the best element from some 

set of available alternatives [22] and can be represented in the following way: 

 

Given: a function 𝑓: 𝐴 → ℝ from some set A to the real numbers. 

Sought: an element 𝐱𝟎 ∈ A such that f(𝐱𝟎) ≤ f(𝐱)  for all 𝐱 ∈ A  (minimization) or such    

that f(𝐱𝟎) ≥  f(𝐱) for all 𝐱 ∈ A (maximization). 

 

Here 𝐴 is some subset of the Eucludian space ℝn, often specified by a set of constraints that the 

members of 𝐴 must satisfy. The domain 𝐴 of 𝑓 is called the search space or the choice set, while 

the elements of 𝐴 are called candidate solutions or feasible solutions [22]. The function 𝑓 is called, 

variously, a penalty function or cost function, a utility or fitness function. A feasible solution that 

minimize (or maximize) the cost function is called an optimal solution.  

 

This cost function can therefore be adopted to quantify the evaluation of a design. The feasible 

design solution can then be evaluated with a score or a cost to that design. This makes it easy to 

evaluate two different design solutions, and to choose the solution with the highest score (lowest 

cost). The score of the design will be given by the cost function and constructing this right, so it 

represents what is known (or though) to be a good design, is key in order to succeed.  



   
 

31 
 

4.2 Cost Function 

The cost function should include all aspects that characterize a good design and then be able to 

separate a good design from a bad design. The relative weight or penalty for each variable then 

needs to be of appropriate size. The following variables has been found to be important for a good 

design, and has therefore been adopted into the cost function: 

4.2.1 Length and diameter of the pile 

The length of the pile is directly related to the construction cost of a pile. A long pile costs more 

than a short pile and will therefore lead to an overall more costly design. An expensive design is 

not regarded as a good design and the length of the piles should therefore give a penalty to the 

overall design. In this thesis the cost per meter of a pile is collected from the price database given 

in “Norsk Prisbok” [16].  The prices are presented in Table 4-1 below.  

Table 4-1: Prices for steel core piles. 

Name Unit Unit price 

Steel core pile Ø = 100mm m 3 517, - 

Steel core pile Ø = 130mm m 3 829, - 

Steel core pile Ø = 150mm m 4 350, - 

Steel core pile Ø = 180mm m 5 897, - 

Steel core pile Ø = 200mm m 6 711, - 

 

Dependent on project size, location, order volume and firm agreements the cost per meter of a 

pile will vary greatly across projects. In order to obtain correct results for a specific project the 

actual cost per meter of the piles should be used. This is not publicly available information, so the 

prices from “Norsk Prisbok” has therefore been adopted in this thesis.  

 

As Table 4-1 shows, the price increases with increasing diameter. This is a result from the 

increased manufacturing cost associated with the volume increase caused by the change in 

diameter. The contribution from the length and diameter of the pile, to the overall cost for a pile, 

has been set by a curve fitting through the points taken from Table 4-1. This yield: 

 𝐶𝑝𝑖𝑙𝑒
𝑖 (𝐴) = (284200 ∗ (𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝐴

𝑖)
2
− 51890 ∗ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝐴

𝑖 + 5820) ∗ 𝐿𝑒𝑛𝑔𝑡ℎ𝐴
𝑖  (4-1) 

 

Where both the diameter and length are given in meters. Figure 4-1 shows a graphical 

representation.  
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Figure 4-1: Cost development dependent on diameter 

4.2.2 Necessary foundation slab size 

In order to maintain a good load transfer between piles and columns, the size of the foundation 

need to be of satisfactory dimensions. All piles need to fit inside the foundation and there should 

be a minimum distance between the outmost pile and the edge of the foundation.  

 

The thickness of the foundation should be such that loads are transferred efficient and without 

large curvature of the foundation slab. The angle of the outermost strut in a strut and tie model 

[23] is therefore limited, and the thickness is varied in order to obtain this limit, see Figure 4-2. 

 

Figure 4-2: Strut and tie model of pile foundation. 
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Far spread piles will lead to a thick foundation slab and increased manufacturing cost of the 

foundation. This effects the design badly. The contribution to the cost function has been set to: 

 𝐶𝑠𝑙𝑎𝑏(𝐴) =  𝑊𝑖𝑑𝑡ℎ𝐴 ∗ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝐴 ∗ 4800 (4-2) 

The price of concrete/𝑚3 is taken from “Norsk Prisbok” and includes concrete and reinforcement. 

A reinforcement amount of 130 kg/𝑚3 is assumed.  

4.2.3 Tension in piles 

According to N400 there should be no tension in piles when designing bridges. The cost for 

achieving tension in piles should therefore be so high it eliminates the candidate solution 

completely. There is also a desire to give a penalty if the axial force is approaching tension, in 

order to increase the robustness of the design. The contribution to the cost function is therefore 

given as: 

 

𝐶𝐴𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒
𝑖 (𝐴) = {

109,                                𝑁𝐴
𝑖 ≤ 0

𝑁𝐴
𝑖 + 0.05 ∗ 𝑁𝑅𝑑

𝑖 ,  −0.05 ∗ 𝑁𝑅𝑑
𝑖 < 𝑁𝐴

𝑖 < 0

0,           𝑁𝐴
𝑖 ≤ −0.05 ∗ 𝑁𝑅𝑑

𝑖

 (4-3) 

Where: 

𝑁𝐴
𝑖  is the axial load in the pile, 𝑖, for the candidate solution 𝐴. 

𝑁𝑅𝑑
𝑖  is the axial capacity of the pile, 𝑖, for the candidate solution 𝐴. 

4.2.4 Yield in piles 

Yielding in piles is not wanted when designing pile foundations. The structure has some degree of 

redundancy, so to allow for yielding could have enable increased utilization of the structure, but 

at a cost of safety. It would also lead to a change in the system and decrease the overall stiffness 

of the pile foundation. This could lead to increased forces in the overlaying structure, caused by 

the increased displacement. If yielding occurs the cost is set to 109.  This should eliminate any 

designs where yielding occurs.  

 𝑖𝑓 𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 → 𝑓(𝐴) = 109 (4-4) 

4.2.5 Displacement 

Displacement is a very difficult variable to assign a cost to. Some displacement should be allowed, 

in order to reduce enforced forces in the overlaying structure, but should be limited to ensure 

sufficient stiffness and rigidity. N400 do not give clear limits of displacement, but recommends 

the following: 
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- The horizontal displacement in the bridge end should be smaller than 50 mm. 

- Grout and lamellae in the transverse direction of the bridge should be less than 80 mm 

and bigger than 50 mm. 

- The difference in vertical displacement in grouts should be less than 10 mm.   

 

Based on these recommendations a limitation of the displacement on 50 mm in the longitudinal 

and transversal direction and 10 mm in the vertical direction has been adopted. Up to this limits 

the cost is linearly increasing and jumps up to a high value when the limit values are reached. The 

contribution is given as: 

 

𝐶𝑈𝑥
(𝐴) = {

0,                   𝑈𝑥 ≤ 10
(𝑈𝑥 ∗ 1000 − 10 000),        10 < 𝑈𝑥 < 50

109,                    𝑈𝑥 ≥ 50
 

(4-5) 

 
𝐶𝑈𝑧

(𝐴) = {
 𝑈𝑧 ∗ 1000, 𝑈𝑧 < 10

109, 𝑈𝑧 ≥ 10
 (4-6) 

Where: 

𝑈𝑥 is the absolute value of the horizontal displacement. 

𝑈𝑧 is the absolute value of the vertical displacement. 

 

There is not any clear recommendation on the limits of the rotation of the foundations. The cost 

of rotation is also set to be linearly increasing up to a limit value of 2 degrees. 

 

𝐶ϕ(𝐴) = {

0,                    𝜙 ≤ 1
(𝜙 ∗ 40 00 − 40 000),           1 < 𝜙 < 2

109,                    𝜙 ≥ 2
 (4-7) 

Where: 

𝜙 is the absolute value of the rotation. 

4.2.6 Total cost 

The total sum for the whole configuration, and the cost for the candidate solutions, is then the sum 

of each contribution to the cost function and can be taken as: 

 

𝑓(𝐴) = ( ∑ 𝐶𝑝𝑖𝑙𝑒
𝑖 (𝐴) + 𝐶𝐴𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑖 (𝐴) + 𝐶𝑌𝑖𝑒𝑙𝑑
𝑖 (𝐴)

# 𝑃𝑖𝑙𝑒𝑠

𝑖=1

) 

               + 𝐶𝑠𝑙𝑎𝑏(𝐴) + 𝐶𝑈𝑥
(𝐴) + 𝐶𝑈𝑧

(𝐴) + 𝐶𝜙(𝐴)   

(4-8) 
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4.3 Parameter study 

In order to get a better understanding on how the cost function is working and to see how the 

different variables are affecting the overall evaluation of the design, a parameter study has been 

conducted. The cost function is plotted for two varying variables while all other variables are held 

constant. This will emphasise how each variable effects the overall quality of the design.   

4.3.1 Diameter and length of pile 

Figure 4-3 shows how the cost varies dependent on the diameter and length of the pile.  

 

 

Figure 4-3: Cost with varying diameter and length 

 

The cost varies linearly in the length direction and quadratically in the diameter direction. In the 

diameter direction it has a local minimum at diameter = 0.09. This can also be shown in Figure 

4-1. The pitch in the length direction is increasing with increasing diameter. In order to minimize 

the cost, the length should also be minimized, and the diameter should have a value of 90mm. 

4.3.2 Foundation volume and axial force 

Figure 4-4 shows the cost variation dependent on the volume of the foundation and the axial force 

in the pile.  
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Figure 4-4: Cost with varying foundation volume and axial force.  

 

The figure gives little information on how the cost is varying and blows up when the axial force in 

the pile is positive, i.e. when tension occurs. The cost function almost looks like a Dirac delta 

function [24] and work almost like a switch when tension occurs. This is exactly what was desired, 

and the plot confirm this.  

 

 

Figure 4-5: Closeup on how cost varies dependent on foundation volume and axial force.  
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A more closeup look on the function, revels how the cost is varying dependent on the foundation 

volume and the axial force, see Figure 4-5. The cost is varying linearly in the foundation volume 

direction and remains constant in the axial force direction, when the compression in the pile is 

bigger than 5% of the axial capacity. When the compression is less than 5% of the axial capacity, 

it varies linearly. This linearly increasement is due to the desire of robustness in the design. An 

optimal design is achieved when the foundation volume is minimized, and compression is kept 

above the 5% limit of the axial capacity.  

4.3.3 Displacement in Z- and X-direction 

Figure 4-6 shows the cost variation dependent on displacement in the horizontal and vertical 

direction.  

 

Figure 4-6: Cost with varying displacement in z- and x-direction.  

 

The cost is extremely big when the limits for the displacements is exceeded and even bigger when 

both are exceeded.  In the domain where neither of the limits are exceeded, Figure 4-7 shows the 

cost variation.  
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Figure 4-7: Cost variation within displacement limits.  

The optimal solution is then obtained when the displacement in the x-direction is held below 

10mm and when the displacement in the z-direction is minimized.  

4.3.4 Rotation  

Figure 4-8 shows how the cost varies dependent on the rotation of the pile foundation. It is zero 

when the rotation is below a limit value of 1 degree and increases linearly up to a threshold value 

of 2 degrees. Over this, the cost is set to a high value in order to prevent greater angles than this. 

An optimal solution regarding rotation is then obtained when the angle is below 2 degrees. 

 

 

Figure 4-8: Cost with varying rotation.  
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4.3.5 Summary  

The above plots substantiate the performance of the cost function to be as wanted, regarding the 

criteria described in: 4.2 Cost Function. By looking on the variables isolated we can obtain an idea 

on how each variable is affecting the cost, but this will not give the complete picture. How the 

different variables are weighed compared to each other, and how changing one variable affects 

the cost contribution from other variables, are of high importance. How the piles are placed in the 

group will also affect the distribution of the forces and stresses in the piles. This may change the 

cost for the different configurations greatly. A small change in the configuration could lead to 

tension in one or more pile(s). This will make the cost suddenly jump up and eliminated the 

candidate solution.  The cost function should therefore not be investigated in an isolated manner. 

A plot of the cost function with respect to all the 7 variables, would also not be possible to produce.   
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5 Numerical model and initial analysis   
This chapter gives a description of the numerical model with all its variables and constrains. The 

model is only subjected to a single load case in order to get an overview on how the model is 

performing. The result from the analysis, by a brute force method, are also presented.  

5.1 Modell 

As described in chapter 1.2.1 Case-study: Råna bridge, the numerical model of the pile foundation 

is limited to a 2D model. The model has 3 degrees of freedom (DOF) per node, two translation and 

one rotation. An illustration of the model is shown in Figure 5-1. 

 

 

Figure 5-1: Analytical model. 

 

A pile foundation is a multivariable problem, where its configuration describes its structural 

properties and response.  The model has been chosen to have a fixed amount of piles. This results 

in 9 different variables that describes the entire solution space, ℝ9 , and are the following: 

- Diameter of the piles.  

- 𝑋𝑖
𝑡𝑜𝑝  –  Position of the top of the pile. Where i = 1,2,3,4. 

- 𝜙𝑖   –  Angle of the pile. Where i = 1,2,3,4. 

 

In order to confine the solution space and to enable finding optimal solutions, the variables need 

to be discretised. The discretisation was chosen to be the following: 
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- Diameter  ∈   {0.09, 0.1, 0.11, 0.12, 0.13, 0.15, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23} 

- 𝑋𝑖
𝑡𝑜𝑝

 ∈  { −5 , −4.5 , −4.0…5 } 

- 𝜙𝑖   ∈   { −30 , −25 , −20…30} 

 

This results in a solution space, ℝ9 , that contains 66 654 862 092 possible combinations. The 

discretisation of the diameter is chosen according to available sizes. The position is discretised 

with agreement with the recommended minimum distance between piles, described in chapter 

3.6.2 Geometrical formation of piles in group. 

 

Discretising the analytical model and making a numerical model was done in OpenSees. The model 

in OpenSees, for a given configuration, is shown in Figure 5-2 below.  

 

Figure 5-2: Numerical model in OpenSees. 

Each pile is discretised into 10 elastic beam elements. The bottom node for each pile is fixed and 

the top nodes are connected to the “master” node in the middle by rigid links. All loads are applied 

to the “master” node, which is located in the centroid of the foundation slab. Each node along the 

piles is connected to a fixed node at the same location by a zero-length element. These zero-length 

elements, made of multiple uniaxial material, represents the lateral support from the surround 

soil as springs. The spring stiffnesses are according to the description in 3.3.1 Lateral springs with 

the slope of the soil’s reaction modules (𝑘) sett to 4500 KN/m3. 
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5.2 First analysis and results  

Fixing the diameter to 0.15 m, effectively reducing the number of combinations to 5.5 billion, and 

running the analysis for each possible configuration, it took too long time to finish. Introducing a 

coarser discretization made it possible to execute, with a runtime on three days. This was 

performed on a computer with a 2,7 GHz intel core i7 processor. Collecting the feasible solutions 

with lowest cost gave the following configurations, see Figure 5-3 below.  

 

Figure 5-3: low cost solutions from first analysis.  

For many of these configurations the piles are crossing each other. This is not wanted because it 

would cause problems during construction. By looping over all the variables in this way, it would 

also lead to calculation of equal configurations with new numbering. This is just wasting 

computation time and is not wanted. Some constrains to prevent this should therefore be 

implemented.  

5.3 Second analysis and results 

In order to avoid crossing piles and equal configurations with new numbering, the following 

constrains was introduced: 

- 𝑋𝑗
𝑡𝑜𝑝 ≥ 𝑋𝑖

𝑡𝑜𝑝  , 𝑤ℎ𝑒𝑟𝑒:  𝑖 = 1,2,3 𝑎𝑛𝑑 𝑗 = 2,3,4 

- 𝜙𝑗 ≥ 𝜙𝑖  , 𝑤ℎ𝑒𝑟𝑒:  𝑖 = 1,2,3  𝑎𝑛𝑑  𝑗 = 2,3,4 

This reduces the number of combinations by a factor of 287 and reduces the solution space to a 

magnitude of 19 339 320 possibilities. This made the algorithm much faster and enabled 

completion with the initial discretization. The runtime reduced to around 13.5 hours. The 6 

configurations with the lowest cost are shown in Figure 5-4. Now none of the piles is crossing each 

other, but it allows for piles in the same location. 
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Figure 5-4: low cost solutions from second analysis (with constrains). 

5.4 Discussion 

The above runtimes have only dealt with one fixed diameter and therefore reduced the problem 

to 8 variables instead of 9. Including varying diameter will lead to almost 12 times the 

computation time. This could be reduced by utilization parallelization [25], but it would still take 

a lot of time.  The solution method of using a brute force algorithm is shown not to be feasible.  

 

All these analyses have only dealt with a single load case, and not a load combination consisting 

of multiple load cases. Including this would lead to a massive increase in computation time. In a 

common global analysis of a bridge, there are 12 different load cases from a 3D model and 6 for a 

2D model. It would have been too time consuming to approach this with the same “Brute force” 

method as previously. This creates the need for a different design approach and a method with 

significantly better performance.  
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6 Optimization methods  
Previously chapters find the computational time to be too big in order to find an optimal solution 

in a sensible amount of time. This chapter describe different optimization methods that has been 

used in this thesis, in order to improve efficiency and save computation time.  

6.1 Use of unit load method  

Since all the analysis is linear, the principal of superposition is valid and therefore the unit load 

method may be used. The unit load method is a technique that utilize the concept of virtual work 

and makes it possible to calculate the effect of many forces in an efficiently manner. By calculating 

the effect of a unit load applied sequentially in each DOF, the combined action of an arbitrary load 

may be obtained by scaling and combining each response from the unit loads. Figure 6-1 gives a 

brief explanation on the method.  

 

Figure 6-1: Explanation of the unit load method. 

The resulting action for an arbitrary load is then given as: 

 
𝛿𝑗 = ∑𝑋𝑖 ∗ 𝛿𝑖𝑗

3

𝑖=1

 (6-1) 

Where 𝑋𝑖 represents the load in DOF 𝑖. The combined action is represented in Figure 6-2 below.  
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Figure 6-2: Combined action from an arbitrary load.  

In order to do this, one must first calculate the response from each unit load and store this 

information in order to use it later for scaling and combination. When doing this for the pile 

foundation in Figure 5-1 it created 55 GB of information and took a week to generate.  

 

An optimal solution subjected to a single load case can now be obtained by scaling the responses 

and combining them instead of calculating each configuration. However, the cost cannot be scaled 

in the same manner and need to be recalculated. This method reduced the computational time to 

2 hours in comparison with the previously 13.5 hours.  

 

When employing the unit load method on a load combination of six load cases, it still cannot find 

an optimal solution in a sensible amount of time. Other optimization method is therefore 

investigated, and the unit load method is used as a benchmark when testing other methods. The 

unit load method solves the optimization in an exact manner, by using “brute force”, and 

guarantees a global minimum, which may not be the case for other methods.  
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6.2 Generative design (GD) approach 

Generative design is a design procedure in which the designer collaborates with artificial 

intelligence algorithms to generate and evaluate hundreds of potential designs [26]. It employs 

Genetic algorithms (GA) in order to search a space of potential solution to find one (or several) 

which solves the problem [27]. The design procedure goes through the stages presented in Figure 

6-3 below.  

 

 

Figure 6-3: GD approach with the GA part highlighted in grey.   

It starts by defining the variables and constrains of the problem.  Then by using GA it goes through 

an evolvement phase which ends with an amount of high scoring feasible solutions that satisfies 

the constrains.  

6.2.1 Genetic Algorithm (GA) 

GA is stochastic search algorithms that are based on Charles Darwin’s theory on natural selection, 

the process that drives biological evolution [28]. The GA repeatedly modifies a population of 

individual solutions. At each step, the GA selects individuals from the current population to be 

parents and uses them to produce offspring for the new generation. Over successive generations, 

the populations evolve toward an optimal solution.  Figure 6-4 describes the typical process of a 

GA.  
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Figure 6-4: Typical genetic algorithm phases [29]. 

6.2.1.1 Evaluation 

How the evaluation of each individual is done will vary greatly dependent on the optimization 

problem at hand. In order to obtain good results from the GA, it is essential that the evaluation is 

done right. The evaluation is done with an objective function, which will measure the solutions 

against each other, to decide which is best. Therefore, it is crucial that the objective function is 

quantifiable and enables maximization or minimization [30]. 

 

In this thesis the cost function described in chapter 4.2 Cost Function has been used as the 

objective function and to evaluated each individual.  

6.2.1.2 Selection 

Selection is the process of selecting parents for reproduction. The purpose of selection is to 

emphasize fitter individuals in the population so that the offspring hence produced has higher 

fitness. Selection, however, must be balanced with variation from crossover and mutation. Very 

strong selection will lead to highly fit individuals taking over the population, thus reducing the 

diversity needed for change and progress. On the other hand, very weak selection may result in 

too slow evolution [30].  

 

The most used selection methods include Roulette Wheel Selection, Rank Selection, Tournament 

Selection and Boltzmann Selection. In this thesis the Roulette Wheel Selection was adopted.  
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6.2.1.3 Reproduction  

In the reproduction stage the selected parents produce offspring. In this part, recombination and 

mutation operators are used.  

Crossover 

Crossover is a genetic operator used to combine the genetic information of two parents to 

generate new offspring [31]. There are different methods of crossover and includes single point 

crossover, N-point crossover, uniform crossover, three parent crossover, arithmetic crossover, 

partially mapped crossover, crossover ORDER and cycle crossover [32]. The first three being the 

simplest ones. Figure 6-5 explains how the simples forms of crossover are performed.  

 

Figure 6-5: Single point, two point and uniform crossover method. 

In this thesis uniform crossover was chosen.  

Mutation 

Mutation is a genetic operator used to maintain genetic diversity from one generation to the next. 

It alters one or more gene in a chromosome from its initial state. Mutation occurs according to a 

user-defined mutation probability and should be set low in order to avoid the search to turn into 

a primitive random search. Mutation is used to avoid local minima by preventing too similar 

chromosomes in the population, thus slowing or even stopping convergence to the global 

optimum [33].  

 

Different types of mutation include bit string, flip bit, boundary, non-uniform, uniform, gaussian 

and shrink. In this thesis a uniform mutation type was chosen.  

6.2.1.4 New generation 

When the reproduction is done a new generation is form by the offspring. In order to improve 

GA’s performance, the best individuals must always participate in reproduction. Such individual 

may be lost if they are destroyed by crossover or mutation. To avoid this “Elitism” may be adopted 

into the algorithm. 
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Elitism 

Elitism is a process of making sure that the fittest individuals are not destroyed. The first or the 

few best chromosomes from a population are copied to the new generation. This will eliminate 

the possibility of losing the fittest individuals.  This can have dramatic impact on performance by 

ensuring that the GA does not waste time re-discovering previously discarded partial solutions 

[34]. Elitism has been implemented in this thesis.  

6.2.1.5 Results from the GA 

Since the value of the mutation rate and the crossover rate is key in order to get good results, 

varying values for each parameter has been tried out. The number of generations is fixed to a value 

of 50 and the number of parents is initially set to 10. This is later changed in order to check the 

influence. Figure 6-6 and Figure 6-7 shows the variation of the fittest individual for different 

values of crossover rate (CR) and mutation rate (MR).  

 

 

Figure 6-6: Cost development with constant MR (=0.05) and varying CR. 

In order to have a good converting algorithm, the cost of the population should go down as new 

generations is formed. By looking at Figure 6-6, we can see that the average slope for a CR of 60% 

is slightly positive and for a CR of 30% and 10% it is slightly negative. This may indicate that a CR 

below 30% should be used. Therefore, a CR on 20% has been adopted in this thesis.  
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Figure 6-7: Cost development with constant CR (=0.2) and varying MR.  

Varying the mutation rate shows that low mutation rate gives lower average slope of the cost. This 

corresponds to the advice given in [33]. In Figure 6-7 we see that a MR of 15% and 10% has a 

slightly positive average slope and with a MR of 5% the slope is slightly negative.  Based on this, 

the mutation rate is set to 5% in this thesis.  

 

Figure 6-8 shows the variation of the fittest individual for different number of parents. 

 

Figure 6-8 Cost development with different number of parents.  

The figure gives no inclusive evidence on whether certain number of parents is better than 

another. The development compared to one another look somewhat more random. The same 
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analysis has been run multiple times with the same inconclusive result. The number of parents is 

therefore considered not to be import regarding convergence.  

 

After tweaking the parameters, the algorithm still exhibits convergence problems. The algorithm 

quickly jumps to another local minima point and starts the procedure of finding the minima again. 

This can indicate that the solution space is highly nonlinear. In order to avoid this jumping 

between local minima areas, adjusting the mutation and crossover rate may prohibit the search 

engine to alter between local minima points. This will decrease the randomness in the algorithm. 

Another way to restrict the randomness is to completely avoid it, by changing to another 

optimization method before the GA jumps to another local minima. To increase refinement and to 

obtain a better local optimum, the use of Adaptive Genetic Algorithm (AGA) may be used.  

6.2.2 Adaptive Genetic Algorithm (AGA) 

The chosen value for the crossover and mutation rate greatly determine the accuracy and the 

convergence speed of the GA. Instead of using fix valued of CR and MR, AGAs utilize the population 

information in each generation. It then adaptively adjusts the CR and MR in order to maintain the 

population diversity as well as to sustain the convergence capacity.  

 

In addition to adjusting CR and MR it can be quite effective to combine GA with other optimization 

methods. GA tends to be quite good at finding generally good global solution, but fairly inefficient 

at finding the absolute global optimum. Other techniques, such as simple hill climbing, are very 

effective at finding absolute optimum in a limited region [34]. Combining GA with hill climbing 

may dramatically improve the efficiency of the GA, while overcoming the lack of robustness of hill 

climbing.  

 

In this thesis the GA was combined with the trust-constr optimization method, from the SciPy 

optimize library, in order to create an AGA that can handle constrains. The trust-constr method 

uses the trust-region interior point method when inequality constrains are imposed. For 

description of the method see [35].  

6.2.2.1 Results from the AGA 

By employing AGA, the algorithm does not longer have convergency issues. The accuracy as well 

as the computation time shows dramatically improvement.  Figure 6-9 Shows how AGA has 

improved the results from a previously GA run.  
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Figure 6-9: Cost development of AGA compared with GA.  

When to stop the GA and go over to the trust-constr optimization is up to the user to choose. 

Should it be after a certain amount of generations, begin from the best generation for a certain 

amount or just right after the initial generation is formed? This will not have a big effect on the 

final cost for the fittest individual, if the limitation of iteration is not set to be too small. In this 

thesis the trust-constr optimization is set to start after the initial generation. This is done to make 

the algorithm as efficient as possible. The maximum number of iterations is then set to a 

conservatively high number in order to prevent premature termination. This will lead the 

algorithm to function almost like a swarm optimization algorithm. An explanation of this is found 

in Figure 6-10.  
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Figure 6-10: Cost development of AGA with immediately trust-constr optimization. 

All the previously shown results are for a single load case and not for a given load combination. 

Employing the same AGA on a load combination of six loads will give the configuration that has 

the lowest cost subjected to six different load cases as the optimum. The optimum is then the 

highest cost the optimal configuration achieves when subjected to six different load cases. This 

cause the optimal cost to increase because the algorithm now must search for an intermediate 

solution. For results regarding AGA for load combination see chapter 6.3 Comparison between 

optimization methods. 

6.3 Comparison between optimization methods 

The presented method of finding an optimum all has their ups and downs. The unit load method 

of being exact, but with the large drawback on computational time. The efficiency of the genetic 

algorithms, but only giving the optima in an approximated manner.  The quality of the 

approximation from the GA’s is greatly dependent on algorithmic parameters chosen by the user.  

In order to get a good spread in the initial population and to avoid premature converge, a large 

enough size of the initial population should be chosen. This value has been found to be 50 000 or 

larger.  Employing the different methods on a pile foundation, subjected to a single load case and 

a load combination, gives the following results.  

Table 6-1: Optimal cost for different methods. 

 Unit load GA AGA  

Single load case 146 865 149 000 141 913 

Load combination 165 644 230 781 198 902 
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Subjected to a single load case the GA only gives a marginal increase in cost, compared to the exact 

unit load method. The cost is only increased with 1.5%. The AGA gives a lower price than the unit 

load method. This is because the AGA represents the variables as continuous rather than discrete. 

The AGA can then fine-tune the variables in between the discretization that the unit load method 

and GA has.  The AGA gives the best results, but its deduction in cost may results in a solution that 

is more difficult to build. 

 

Subjected to a load combination, the cost from each method has increased compared to the single 

load case. The lowest cost is now the highest cost the optimal configuration achieves when 

subjected to six different load cases. This favour the more robust solutions which can achieve a 

low cost for a variety of loads. This increase of robustness comes with an additional cost and 

therefore increases the cost of the global optima.  

 

The unit load method gives the lowest cost for the load combination. The GA and the AGA have an 

increased cost of 39.3% and 20% respectively. A change to one size bigger diameter results in a 

20% increase of cost, so the GA and the AGA does not give a significant increase in cost. With the 

AGA being 20 time faster it proves to be an effective and accurate algorithm.  
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7 Machine Learning (ML)  
The optimized configurations from chapter 6 have been used to train a machine learning 

algorithm. This chapter will briefly explain what ML is, different methods of creating a ML model 

and their accuracy for the problem at hand. 

7.1 What is Machine Learning? 

Machine learning is a technique used to perform specific task without using explicit instructions, 

relying on patterns and inference instead [36]. It is seen as a subset of AI. ML algorithms build a 

mathematical model based on sample data, known as “training data”, in order to make prediction 

on new data. It can be implemented by a multitude of algorithms. Machine learning techniques 

use supervised or unsupervised learning strategies. Supervised learning uses input data 

(features) that is labelled and then the algorithms try to find rules to map inputs into outputs 

(labels). Classification and regression are both types of supervised learning. Classification is used 

when output is restricted to a limited set of values, while regression is used when the output is 

continuous.  In unsupervised learning, the goal is to discover hidden patterns in the data [37].  

7.2 Training data 

For the ML algorithm to be able to make predictions, it needs training data. The training data is 

used to build the ML model and is a key factor in order to make reliable and accurate ML models.   

 

The problem at hand for this thesis is to create a ML model that can predict an optimal 

configuration (output) from a set of forces (input). For this we need output/input pair, linking the 

configuration wanted subjected to a given load combination, in order to train the model.  Such 

data has not been available for this thesis and has therefore been created synthetically. The first 

step is to create many load combinations. This could be taken from previously projects that 

Norconsult has done, but this mean looking through thousands of reports and manually 

structuring the data.  To save time the load combinations was created by picking random values 

from a confined region, inspired by the load combinations from previous projects.  

 

When creating a ML model there is always a question on how much Training Data (TD) is needed. 

The answer for this question is that no one knows. The amount of TD needed will vary greatly 

depended on: 

- the complexity of the problem  

- the complexity of the learning algorithm  
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In this thesis the TD consist of 4000 samples and are limited by time limitations. The optimal 

configurations for each load combination has been created using the AGA explained in chapter 

6.2.2 Adaptive Genetic Algorithm (AGA). It took over 200 hours to make with 8 parallel cores 

running simultaneously. The input/output pairs, consisting of load combination and optimal 

configuration, makes up the TD. 

 

Some learning algorithms are so called “closed-form solvers”, meaning it will not be able to make 

predictions on data that are outside the bounds of the TD. For such learning algorithms to give 

good prediction, a good spread in the TD, such that it covers as much of the solution space as 

possible, should be emphasised. This is also something that can help any solver increase it 

robustness, and to prevent the model from only being accurate for a confined space in the solution 

space. In general, we want a ML model that can generalize as accurately as possible [38]. Figure 

7-1 below tries to explain this concept.  

 

 

Figure 7-1: Illustration of well spread TD (left) and confined TD (right). 

7.3 Models 

When the TD is created, one can fit the ML model to the TD. Different ML models are best suited 

for different problems, therefore, variously ML models has been tested. The accuracy, before and 

after adjusting algorithmic parameters, as well as a short description for each method, is 

presented in the following chapters.  

 

The TD is split into a training set (75%) and a test set (25%). The test set is used to assess the 

accuracy of the model on new data and will reveal if the model generalizes well or not. This is 

measured with the coefficient of determination 𝑅2 of the prediction. This is defined as (1 −
𝑢

𝑣
 ), 

where 𝑢 is the residual sum of squares and v is the total sum of squares. The best possible score 
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is 1.0 and it can be negative (arbitrary worse), meaning the model fits the data worse than a 

horizontal hyperplane (constant guess) [38].  

 

Since the prediction is continuous-valued attributes, the different models are regression 

supervised learning algorithm. The scheme of the ML procedure of this thesis is shown in Figure 

7-2 below.  

 

Figure 7-2: ML procedure scheme. 

7.3.1 K-nearest neighbours (KNN) 

Description  

KNN is a non-parametric method used for classification or regression. The input consists of the k 

closest training examples in the feature space. For KNN regression the output value is the average 

of the values of k nearest neighbours, where k is specified by the user. By assigning different 

weights to the contribution of the neighbours the average becomes a weighted average. Weights 

can assign based on distance or a user defined function [39] [40].  

 

Accuracy 

The accuracy of the KNN model, with uniform weights and 5 neighbours (default), is: 

- Training set score: 24% 

- Test set score: -16% 

The model has a poor fit on the training set and a negative score on the test set. The model does 

not generalize well and has poor accuracy. It will not predict well.  

 

Manipulation 

Changing the number of neighbours and changing to weights dependent on the distance may 

improve the model. Figure 7-3 shows how the accuracy change with increasing number of 

neighbours and changing weights.  
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Figure 7-3: Accuracy as a function of number of neighbours. 

Increasing the number of neighbours increases the accuracy on the test set, but it does not go over 

to the positive side. When using distance weight scheme, the accuracy on the training set is 100% 

for all neighbours, the model is highly overfitted. Manipulation of the model parameters does not 

give improved results.  

7.3.2 Linear regression (least square) 

Description 

Linear regression fits a linear model with coefficients 𝑤 = (𝑤1 , … , 𝑤𝑝) to minimize the residual 

sum of squares between the observed targets in the dataset, and the targets predicted by the linear 

approximation [41]. When multiple variables are predicted, rather than a single scalar, the 

process is called multiple linear regression [42]. 

 

Accuracy 

The accuracy of the linear regression model is: 

- Training set score: 7% 

- Test set score: 6% 

The model has a low fit on both the training and test sett. This indicates that the model underfits 

the training data. The model will not predict well.  

 

Manipulation 

The only manipulation available for the linear regression model is normalization of the TD and 

whether to use interception in the calculations. Changing this does not give any improvement of 

the model.   
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7.3.3 Lasso  

Description 

Lasso is a linear model that estimates sparse coefficients. It tends to prefer solutions with fewer 

non-zero coefficients, effectively reducing the number of features upon which the given solution 

is dependent. It consists of a linear model with added regularization term (𝛼) [41].  

  

Accuracy 

The accuracy of the lasso model is: 

- Training set score: 7% 

- Test set score: 6% 

The model has a low fit on both the training and test sett. This indicates that the model underfits 

the training data. The model will not predict well.  

 

Manipulation 

Available parameter for manipulation of the lasso model is the same as the linear model, with the 

additional regularization term. Changing the parameters does not give any improvement of the 

model.   

7.3.4 Decision tree regressor 

Description 

Decision tree regressor is a non-parametric supervised learn method. The method predicts the 

value of a target variable by learning simple decision rules inferred from the data features. This 

could be a set of if-then-else decision rules. The deeper the tree, the more complex the decision 

rules and the fitter the model [43].  

 

Accuracy 

The accuracy of the decision tree regressor model is: 

- Training set score: 100% 

- Test set score: -83% 

The model has a perfect fit on the training set and a negative score on the test set. The model does 

not generalize well and has poor accuracy. It is highly overfitted and will not predict well.  

 

Manipulation 

The decision tree regressor model is created by deciding on the function that measure the quality 

of the split, the strategy used to choose the split at each node and the maximum depth of the tree. 

Varying these parameters gives the following improved accuracy:  
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- Training set score: 6% 

- Test set score:  2% 

This was achieved by limiting the depth of the tree to 4. The accuracy is still poor, and the model 

will not predict well.  

7.3.5 Random forest regressor 

Description 

Random forest is an ensemble learning method that operate by construction a multitude of 

decision trees at training and outputting the mean prediction of the individual trees. Random 

decision forest corrects the decision trees’ habit of overfitting to their training set [44].  

 

Accuracy 

The accuracy of the random forest model is: 

- Training set score: 81% 

- Test set score: -1% 

The model has a good fit on the training set and a slightly negative score on the test set. The model 

does not generalize well and has poor accuracy. It will not predict well.  

 

Manipulation 

The random forest model is created with the same decided parameters as decision tree regressor, 

with the additional number of trees in the forest that the average should be taken from. Varying 

these parameters gives the following improved accuracy:  

- Training set score: 87% 

- Test set score:  7% 

This was achieved by setting the number of trees to 100. The accuracy on the training set is fairly 

good, but the model still don’t generalize well.  

7.3.6 Gradient Boosted Decision Tree (GBDT)  

Description 

GBDT produces a prediction model in the form of an ensemble of decision trees. It builds the model 

in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing 

optimization of an arbitrary differentiable loss function. The algorithm iteratively chooses a 

function that point in the negative gradient direction, trying to correct the error of its predecessor 

[45]. It is one of the most popular ML models [38].  
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Accuracy 

The accuracy of the GBDT model is: 

- Training set score: 88% 

- Test set score: -32% 

The model has a good fit on the training set and a negative score on the test set. The model does 

not generalize well and has poor accuracy. It will not predict well.  

 

Manipulation 

Available parameters for the GBDT are the loss function to be optimized, learning rate 

(contribution of each tree), number of boosting stages to perform and the function to measure the 

quality of a split. Varying these parameters gives the following improved accuracy:  

- Training set score: 94% 

- Test set score:  2% 

This was achieved by changing the function to measure quality of a split to the mean square error 

(‘mse’), instead of the Friedman MSE, and the loss function to least absolute deviation (‘lad’). The 

learning rate was set to 0.07 and number of estimators to 50. The accuracy is still poor, and the 

model will not predict well.  

7.3.7 Multi-layer Perceptron (MLP) or Neural network 

Description 

MLP, or more commonly known as artificial neural network, is a supervised learning algorithm 

that learns a function 𝑓(∙) ∶ 𝑅𝑚 → 𝑅𝑜  by training on a dataset, where 𝑚  is the number of 

dimensions for input and 𝑜 is the number of dimensions for output. The model consists of multiple 

layers and trains using backpropagation. The scheme of the model is shown in Figure 7-4 below.  

 

Figure 7-4: Neural network with 3 hidden layers of size k. 
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The first layer (input layer) consist of a set of neurons {𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑚  } representing the input 

features 𝑿 = 𝑥1, 𝑥2, … , 𝑥𝑚 . Each neuron in the hidden layer transform the values from the 

previous layer with a weighted linear summation, follow by a non-linear activation function. The 

output layer receives the values from the last hidden layer and transform them into output values. 

The number of hidden layers and the size of the layers will vary dependent of the problem at hand 

and must be chosen by the user.  

 

Accuracy 

The accuracy of the MLP model is: 

- Training set score: -675240800% 

- Test set score: -1110190000% 

The accuracy of the MLP is completely rubbish and the model is not working at all. This is because 

MLP is highly sensitive to scaling of the data and to the choice of parameters [38]. The default 

parameters are not giving satisfactory results.  

 

Manipulation 

The MLP model needs a lot of tweaking in order to work. By rescaling the TD to have a mean of 0 

and a variance of 1 the results is drastically improved. After normalization of the TD the accuracy 

is:  

- Training set score: 14% 

- Test set score: 2% 

Further fine tuning of the size and the number of layers, as well as the activation function, solver 

for weight optimization, L2 penalty parameter (alpha), learning rate and the exponential decay 

rates, the accuracy is improved to: 

- Training set score: 8% 

- Test set score: 5 % 

This was achieved by setting the layer size to 8, number of layer to 9, 𝛼 to 0.4, the exponential 

decay rates to 0.6 (first moment vector) and 0.8 (second moment vector) and using a stochastic 

gradient-based optimizer as solver (‘adam’). 

7.4 Evaluation  

None of the presented models from the previous chapter have good accuracy. The best accuracy 

on the test set was achieved by the random forest model. While the accuracy score is only a 

measure on how well the prediction from the test set is equal to the given output from the test set, 

it will not premier solutions that are close to being equal. Since all the output labels are continuous 

a prediction of 3.2, when 3.15 is the correct value, will not contribute to increased accuracy. In the 



   
 

63 
 

engineering world we do not care about which one of this value we get, we will most likely round 

this value (position of pile or angle) to an even nice number anyway. Let’s then see what the 

models predict for the same load case used for the assessment of the optimization methods in 

chapter 6.3. See Table 7-1 below for the predictions and the cost of these predictions compared to 

the values given in Table 6-1. 

Table 7-1: Predictions from the ML models. 

ML models Prediction Cost 

KNN [ 0.18 , −2.11 , −0.03 , 1.95 , 2.50 , −24.98 , −4.98 , 19.03 , 26.00] 10e9 

Linear 

regression 
[ 0.19 , −2.20 , −0.49 , 1.63 , 2.86 , −23.28 , −1.00 , 18.73 , 25.88] 

10e9 

Lasso [ 0.19 , −2.20 , −0.49 , 1.63 , 2.87 , −23.28 , −1.00 , 18.73 , 25.88] 10e9 

Decision tree 

regressor 
[ 0.19 , −2.49 , −0.25 , 1.33 , 2.55 , −23.63 , −10.56 , 13.66 , 24.34] 

10e9 

Random 

forest 
[ 0.19 , −2.43 , −0.21 , 1.44 , 2.68 , −23.21 , −4.95 , 17.18 , 24.29] 

10e9 

GBDT [ 0.18 , −2.21 , −0.35 , 1.39 , 2.82 , −23.31 , −3.68 , 20.48 , 23.72] 10e9 

MLP / neural 

network 
[ 0.19 , −2.04 , −0.69 , 1.68 , 2.92 , −23.80 , 2.11 , 20.51 , 25.38] 

598 014 

Values from Table 6-1 

Unit load [ 0.13 , 0 , 0 , 0 , 0 , −10 , 5 , 5 , 5] 165 644 

GA  [0.15 , −1.5 , −1.0 , 1.5 , 2.0 , −20 , 5 , 5 , 20]  230 781 

AGA [ 0.11 , −0.5 , −0.5 , −0.4 , 0.2 , −12.4 , −5.6 , 7.7 , 13.3] 198 902 

 

In general, the ML model predicts a too big diameter and a wider position of the piles than the 

optimal solutions. The cost of the predicted configurations is all very high, except the one 

predicted by the MLP model. The high cost is caused by not satisfying the displacement criterions.  

 

From all the different model the MLP models is predicting the best solution, in the sense that it 

gives the solution with the lowest cost. The predictions in themselves are not that different from 

each other, so the fact that the prediction by the MLP model has a much lower cost could be just 

by chance. The predicted configurations satisfy the displacement criterions and therefore gets a 

big reduction in the cost.  

 

The performance of the models is not well. Apart from the MLP model, all the models predict 

invalid configurations.  
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7.5 Discussion 

All the different models that have been tested gives inadequate accuracy score and is not able to 

generalize the TD well. The reason for this may be the relatively small amount of data used for 

training. The six load cases, consisting of three loads each and the large amount of possible values 

for each load, enables a huge amount of different combinations to form. From this, only 4000 

samples were collected for training. If a larger set of TD had been available, the accuracy of the 

models may be greatly improved. Because of the lack of available TD and the tedious process of 

mining it, a larger TD set has not been possible to obtain for this thesis.  

 

The collection of the TD is based on AGA and may not always give the best configuration. In this 

case the ML models are trained with unwanted solutions (costly solutions). Filtering out such 

input/output pair from the TD will improve the accuracy of the models. The improved accuracy 

of the model after employing this is shown in Table 7-2 below.  

Table 7-2: Accuracy of ML models with filtered TD. 

ML models Training set score Test set score Cost of prediction 

KNN 29 % -10 % 10e9 

Linear regression 12 % 10 % 447 769 

Lasso 12 % 10 % 447 769 

Decision tree 

regressor 
11 % 2 % 10e9 

Random forest 88 % 14 % 10e9 

GBDT 77 % 1 % 10e9 

MLP / neural 

network 
18 % 7 % 888 841 

The loads that goes into the AGA, and that are used to create the TD, is also synthetical. We cannot 

be sure if this data is representable for real load cases. The created force combinations also may 

tend to favour a certain diameter size for the optimal configurations. This will lead to an unwanted 

bias in the models.  Bias in ML is defined as the phenomena of observing results that are 

systematically prejudiced due to faulty assumption [46]. Using real load combination from 

previous project may improve unwanted biases. This has not been available for this thesis, due to 

unfavourably storing structure and time limitations.  

 

The initial accuracy of the model, prior to manipulation, was very low. This, and the discussed 

effects of the quality and size of the TD, shows the importance of tuning the models and collecting 

big amount of high-quality TD, in order to avoid unwanted biases.  



   
 

65 
 

8 Discussion 
In the search for optimal solution in an optimization problem, the measurement of optima needs 

to be quantified. In this thesis, the measurement of optima is done with a cost function which 

includes several variables regarding pile foundation. The configurations that gives the lowest cost 

is then labeled as an optimal configuration. If these optimal configurations are in fact optimal or 

not is not explicitly given. The quantification of optimal pile foundation may be done differently 

dependent on available resources, cultural heritage, available technology, construction method 

and experience. By looking at the parameter study, a pile foundation with a diameter of 90mm 

that satisfies the yield and displacement criteria and have piles that are short and concentrated in 

the center, seems to be optimal. Here the variables are looked upon one by one. Because the cost 

itself is dependent on the displacement and stresses of the pile foundation, which again is 

dependent on the pile configuration and forces, makes the cost function a function of a function. 

This makes it more difficult to interpret each variable impact on the overall cost, hampering 

finding the minima point.  

 

In the initial analysis of the numerical model, the diameter has a fixed value and the loads are 

limited to one single load case. Even with these simplifications the computational time has proven 

to be significant with the use of a “brute force” method. The implemented constrains dramatically 

reduces the computational time, but at the same time, the constrains is logical to implement and 

should always be implemented. It avoids calculation of equal combinations and prevent 

unbuildable solutions. So, by implementing these constrains we obtain a much more realistic 

initial solution space. It functions almost like an initial filtering of the solution space. From the 

optimal configurations from the second analysis, we see that all the pile foundations are slightly 

tilted to the left and the top of the piles are gathering in a common point. The clustering of the top 

of the piles leads to a small foundation slab, limiting the cost contribution from the necessary 

foundation slab size. The tilt to the left is caused by the desire for compression in the piles, and 

that the load case contains a horizontal component to the right. If the horizontal component had 

been to the left, the piles would have tilted to the right. This indicates that an optimal pile 

configuration tends to tilt in the direction opposite of the horizontal component.  

 

Computational time has been a big issue for this thesis. Various method trying to decrease the 

computational time has been tried out. The use of unit load method brought the time down to 12 

hours, when calculation for a given load combination. This is a massive decrease in computational 

time, compared to the initial brute force method who used 13.5 hours for just one load case. The 

GD approach brought the computational time down to under an hour, but at some expense of the 
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accuracy. These solution methods rely on randomness and will be different for every run. You can 

be lucky and achieve good results or be unlucky and get bad results. In order to decrees this chance 

of being lucky or not, a big enough initial population should be chosen. This size has been found 

to be 50 000 for the problem at hand, only 0.26 % of the total solution space. For other problems, 

this number will differ and should always be investigated. For a pile foundation subjected to a load 

combination, instead of just one load case, the optimal configurations still have the clustering of 

the top of the piles, but the clear tilt of the pile foundation is now vaguer. The diameter has also 

increased. The vaguer tilt of the pile foundation may be due to the horizontal component of the 

load cases shifting between right and left, making none of the directions favorable over the other. 

The larger diameter is caused by the need for a more robust configuration, that can withstand a 

variation in the forces.  

 

All the ML models fail to generalize well and to give good and reliably predictions. Varies type of 

models and extensively tweaking of parameters where tried out, but an acceptable level of 

accuracy has not been possible to achieve. This is because of the moderately size of the training 

data. In the later part of this thesis the amount of TD was almost doubled but lead to no improved 

accuracy of the models. This can indicate that we need a lot more TD for the models to generalize 

well. For this to happen the loads from previous project should be stored in a way that makes it 

easily accessible, removing the need for synthetical TD, and have enough time for mining the TD 

and to train the models. This has not been available for this thesis. The TD should also be mined 

with the unit load method to ensure high quality TD. Although it would take almost 20 times 

longer.  
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9 Conclusion   
Every structure needs a good and solid foundation to stand on and are commonly achieved by 

using piles. This thesis has been about how this process of designing a pile foundation could be 

improved with the use of ML and how an optimal pile configuration may be attained. Throughout 

the work of this master thesis my knowledge about ML and pile foundation has grown. Based on 

this, an answer to the research questions may be presented:  

• Based on the defined measurement of optima in chapter 4.2, an optimal design of pile 

foundation may be characterised with: 

o Diameter of piles should be kept as small as possible. This is usually between 

0.11_m and 0.19 m. Piles with a diameter greater than 0.19 m should be avoided.  

o Fan like formation of piles, with top of piles clustered around a common point. 

Resembling the root system of a tree.  

o The pile foundation is antisymmetric. This contradict the recommendation from 

the Norwegian Pile Committee.  

 

• An optimal design of a pile foundation may be achieved by numerous different methods. 

This thesis found the brute force method to be way tidies and recommends a vector 

optimization method, or an approximated generative design approach with the use of 

AGA.  

 

• ML may help engineers in making better design of pile foundation in the sense that it can 

give design proposal fast and easy. Limiting the time-consuming process of trying different 

design in order to find an acceptable one. However, the quality of the prediction from the 

model is dependent on how the model is trained.  The available TD for this thesis has not 

been enough to create an accurate model, proving the huge amount of TD needed for ML.   

 

ML can definitely help Norconsult in order to ensure optimal solution of pile foundation regarding 

structural properties, economic and buildability. For this to happen the structure of storing data 

should be more accessible, removing the need for synthetical TD, and enough time and resources 

needs to be set aside for data mining. Working with ML is a time consuming and long-term 

commitment. If trained right, ML can serve as a collector of knowledge from the highly trained 

engineers, helping new engineers perform better, as well as transferring knowledge across 

departments and offices. ML and Optimization Algorithms may give a better understanding on 

how structures work and therefore not just only increase the artificial intelligent, but also our 

human intelligence.   
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10 Further work 
The assessment of ML in this thesis has proven to be inconclusive due to the amount of available 

TD.  In order to create an accurate ML model and to better investigate how ML can help in making 

better design of pile foundations, a larger amount of TD should be collected. Structuring and 

collecting real load combinations from previous projects, should also be executed in order to 

remove the need for synthetical TD.   

 

To get a more realistic view on what an optimal pile foundation is, a 3D model of a pile foundation 

should be created. The finalist 3D model can then be used to create TD, in order to make the ML 

model able to make prediction in 3D and directly applicable into design of pile foundations. The 

model should also be able to vary the number of piles in the group. 

 

The measurement of optima is also something that has been decide by an expert group in 

Norconsult. Other firms and people in the AEC industry may have additions and disagreements 

with the decided points. A survey on what is looked upon as an optimal solution of pile foundation 

may therefore be carried out.  
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12 Appendices 
The following appendices has been delivered digitally with this thesis. It can be made available by 

contacting the author or NTNU.  

 

 A   – Calculate the cost for a given configuration. 

B1 – Script to chapter 5.2. 

B2 – Script to chapter 5.3. 

C1 – Function: Calculate cost. 

C2 – Function: Calculate max stress in pile. 

C3 – Function: Make beam by start point endpoint.  

D1 – Script to chapter 6.1. Unit load method, load case based. 

D2 – Script to chapter 6.1. Unit load method, load combination based.  

E1 – Script to chapter 6.2.1. GA, load case based. 

E2 – Script to chapter 6.2.1. GA, load combination based.  

F1 – Script to chapter 6.2.2. AGA, load case based. 

F2 – Script to chapter 6.2.2. AGA, load combination based.  

G1 – Script to chapter 7. Make load matrix for training.  

G2 – Script to chapter 7. Make TD.  

G3 – Script to chapter 7. Different ML models.  

G4 – Script to chapter 7. Different ML models with excluding part of TD.  

G5 – Script to chapter 7. Different ML models with excluding part of TD   

         and larger TD.  
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