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ASR is a chemical reaction occurring in concrete made of alkali-reactive aggregates reacting together with alkali in 
the cement. This process forms a swelling gel which leads to an expansion of the concrete. Elgeseter Bridge is 
estimated to have elongated 200 mm since construction. This thesis contains an assessment of the additional 
imposed forces due to this elongation. The resulting forces are included in the original decisive load situation for 
Elgeseter bridge found by Stemland and Nordhaug (2018) in a previous master thesis.  
 
Two linear elastic FE models were established to evaluate the additional forces in the bridge due to ASR expansion. 
Model 1 consists of beam and truss elements, whereas model 2 is a volume model of solid elements. 
 
To evaluate the capacity in ULS of the strengthened parts of Elgeseter Bridge, design rules from Fib Bulletin 90 
(2019) are considered. The material used is carbon fiber reinforcement (CFRP) which is a strong and light 
composite material. The purpose is to increase both moment and shear capacity. 
 
The most utilized section is in an unstrengthened, originally zero moment section with a bending moment utilization 
of 2.91 in model 1 and 3.02 in model 2. CFRP strengthening reduced the utilization ratio with about 70\% in critical 
sections. Though, regarding debonding issues of the CFRP, all strengthened sections were found to be insufficient. 
Only the support sections have an acceptable utilization ratio when considering axial forces combined with bending 
moment.  
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Abstract

This master thesis a thorough condition assessment of Elgeseter Bridge has been
performed focusing on the effect external reinforcement has on ASR exposed
concrete. Elgeseter bridge is a 200 m long beam bridge placed in Trondheim
consisting of nine spans. Core samples have shown harmful alkali-silica reac-
tions (ASR) in the bridge. Severe cracks are observed in critical sections and
are strengthened with externally bonded fiber reinforcement.

ASR is a chemical reaction occurring in concrete made of alkali-reactive aggre-
gates reacting together with alkali in the cement. This process forms a swelling
gel which leads to an expansion of the concrete. Elgeseter Bridge is estimated to
have elongated 200 mm since construction. This thesis contains an assessment
of the additional imposed forces due to this elongation. The resulting forces
are included in the original decisive load situation for Elgeseter bridge found by
Stemland and Nordhaug (2018) in a previous master thesis.

Two linear elastic FE models were established to evaluate the additional forces
in the bridge due to ASR expansion. Model 1 consists of beam and truss ele-
ments, whereas model 2 is a volume model of solid elements.

To evaluate the capacity in ULS of the strengthened parts of Elgeseter Bridge,
design rules from Fib Bulletin 90 (2019) are considered. The material used is
carbon fiber reinforcement (CFRP) which is a strong and light composite ma-
terial. The purpose is to increase both moment and shear capacity.

The most utilized section is in an unstrengthened, originally zero moment sec-
tion with a bending moment utilization of 2.91 in model 1 and 3.02 in model
2. CFRP strengthening reduced the utilization ratio with about 70% in critical
sections. Though, regarding debonding issues of the CFRP, all strengthened
sections were found to be insufficient. Only the support sections have an ac-
ceptable utilization ratio when considering axial forces combined with bending
moment.
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Sammendrag

Det er i denne oppgaven utført en tilstandsvurdering av Elgeseter Bru med
et fokus p̊a lastvirkninger av alkalireaksjoner og utvendig fiberforsterkning av
bruen. Elgeseter Bru er en 200 m bjelkebru i Trondheim som best̊ar av ni spenn.
Kjerneprøver av betongen har vist at bruen er utsatt for ASR ekspansjon. Om-
fattende sprekker er observert i kritiske snitt. Disse er forsterket med utvendig
fiberforsterkning (CFRP).

ASR er en kjemisk reaksjon i betongen som oppst̊ar av at alkali-reaktivt aggre-
gat reagerer med alkali i sementen. Denne prosessen danner en ekspanderende
gel som leder til en ekspansjon i betongen. Det er estimert at Elgeseter Bru har
forlenget seg med 200 mm siden den ble bygget. Denne oppgaven inneholder en
gjennomgang av de ytterlige kreftene som oppst̊ar i bruen p̊a grunn av ekspan-
sjonen. De originale lastvirkningene er inkludert i kapasitetsberegningen. Disse
er funnet i Stemland og Nordhaug (2018) sin masteroppgave.

To lineær-elastiske FE modeller ble etablert for å evaluere tilleggskreftene fra
ASR ekspansjonen. Modell 1 best̊ar av bjelkeelementer, mens modell 2 er bygd
opp av volumelementer.

For å evaluere kapasiteten i bruddgrensetilstanden i de forsterkede delene p̊a
Elgeseter Bru, er det brukt dimensjoneringsregler fra Fib Bulletin 90 (2019).
Materialet som er brukt er karbonfiberforsterkning som er et sterkt og lett kom-
posittmateriale. Hensikten er å øke b̊ade moment- og skjærkapasitet.

Det mest p̊akjente snittet opptrer i et av de originale momentnullpunktene i
den uforsterkede delen av innerbjelken. Utnyttelsesgraden her er 2.91 i modell
1 og 3.02 i modell 2. CFRP forsterkningen bidrar til å redusere utnyttelsen av
kritiske momentnullpunkt med nesten 70%. En vurdering av heftbrudd mellom
CFRP og betongen viser derimot at alle forsterkede snitt i bruen er kritiske.
Ved å inkludere de opptredende aksialkreftene sammen med bøyemomentet er
det kun snittene over støttene som har en akseptabel utnyttelsesgrad.

vii



viii



Contents

1 Introduction 1

2 Alkali Silica Reactions 3
2.1 Mechanical Aspect . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Loads from ASR . . . . . . . . . . . . . . . . . . . . . . . 8

3 Carbon Fiber Reinforced Polymers 13
3.1 Products and Application Techniques . . . . . . . . . . . 13

3.1.1 Assumptions for Application and Design . . . . 16
3.2 Benefits and Challenges with FRP . . . . . . . . . . . . . 17

3.2.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . 17

3.3 Materials and Mechanical Properties . . . . . . . . . . . . 18
3.3.1 Carbon fiber Reinforcement . . . . . . . . . . . . 18
3.3.2 Mechanical Properties . . . . . . . . . . . . . . . 20
3.3.3 Debonding Mechanisms . . . . . . . . . . . . . . 23

4 Elgeseter Bridge 25
4.1 Properties of the Bridge . . . . . . . . . . . . . . . . . . . 26
4.2 Alkali-silica Reaction in Elgeseter Bridge . . . . . . . . . 27

4.2.1 Condition of the Columns . . . . . . . . . . . . . 30
4.2.2 Condition of the Bridge Deck . . . . . . . . . . . 30
4.2.3 Condition of the Beams . . . . . . . . . . . . . . 30
4.2.4 External Carbon Fiber-Reinforcement at Beams 31
4.2.5 Development of ASR in Elgeseter Bridge in the

Future . . . . . . . . . . . . . . . . . . . . . . . 33

5 Load Situation for Elgeseter Bridge 35
5.1 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Concrete . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Reinforcement . . . . . . . . . . . . . . . . . . . 37

5.3 Cross-section . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Permanent Loads . . . . . . . . . . . . . . . . . 39
5.4.2 Traffic Loads . . . . . . . . . . . . . . . . . . . . 39
5.4.3 Wind Loads . . . . . . . . . . . . . . . . . . . . 41
5.4.4 Thermal Loads . . . . . . . . . . . . . . . . . . . 42

ix



x CONTENTS

5.4.5 Deformation Loads . . . . . . . . . . . . . . . . 43
5.5 Load-combinations in ULS . . . . . . . . . . . . . . . . . 43

6 Design of External Fiber Reinforcement 45
6.1 Anchorage Capacity . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Debonding at End Anchorage Zone . . . . . . . 47
6.1.2 Debonding at Intermediate Cracks . . . . . . . . 48

6.2 Moment Capacity in ULS . . . . . . . . . . . . . . . . . . 48
6.2.1 Intermediate Crack Debonding . . . . . . . . . . 49

6.3 Shear Capacity in ULS . . . . . . . . . . . . . . . . . . . . 51
6.3.1 General Procedure . . . . . . . . . . . . . . . . . 51
6.3.2 Shear Strengthening in Relation to Insufficient

Capacity . . . . . . . . . . . . . . . . . . . . . . 52
6.3.3 Shear Strengthening in Relation to Flexural Debond-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 CFRP Strengthening on ASR Damaged Concrete . . . . . 56

7 Models in Abaqus/CEA 59
7.1 Model 1: Frame model . . . . . . . . . . . . . . . . . . . . 60

7.1.1 Elements and Mesh . . . . . . . . . . . . . . . . 62
7.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . 63
7.1.3 Material Properties . . . . . . . . . . . . . . . . 64
7.1.4 Reinforcement . . . . . . . . . . . . . . . . . . . 64
7.1.5 Loading and Temperature Field . . . . . . . . . 65
7.1.6 Modeling of Crack . . . . . . . . . . . . . . . . . 66
7.1.7 Derivation of Results . . . . . . . . . . . . . . . 67

7.2 Model 2: 3D Solid Model . . . . . . . . . . . . . . . . . . 68
7.2.1 Elements and Mesh . . . . . . . . . . . . . . . . 68
7.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . 69
7.2.3 Materials . . . . . . . . . . . . . . . . . . . . . . 70
7.2.4 Reinforcement . . . . . . . . . . . . . . . . . . . 70
7.2.5 Loading and Temperature Field . . . . . . . . . 71
7.2.6 Modeling of Crack . . . . . . . . . . . . . . . . . 72
7.2.7 Derivation of Results . . . . . . . . . . . . . . . 72

7.3 Verification of the Models . . . . . . . . . . . . . . . . . . 74
7.3.1 Free Expansion . . . . . . . . . . . . . . . . . . . 75
7.3.2 Restrained with Constant Temperature Fields . 78
7.3.3 Restrained with Temperature field 1 & 2 . . . . 80
7.3.4 Cracked Sections . . . . . . . . . . . . . . . . . . 82

7.4 Carbon Fiber Reinforcement in Abaqus . . . . . . . . . . 87
7.4.1 Modeling of CFRP in Frame model . . . . . . . 88
7.4.2 Modeling of CFRP in Solid model . . . . . . . . 89

8 Influence of Modifications in Abaqus 91
8.1 Influence of Simulation of Crack in Abaqus . . . . . . . . 91

8.1.1 Influence of Cracks in the Frame Model . . . . . 93
8.1.2 Influence of Cracks in the Solid Model . . . . . . 95

8.2 Influence of Simulation of CFRP in Abaqus . . . . . . . . 97
8.2.1 Influence of CFRP in Frame Model . . . . . . . 97
8.2.2 Influence of CFRP in Solid Model . . . . . . . . 99



CONTENTS xi

8.3 Evaluation of Global Behaviour . . . . . . . . . . . . . . . 100

9 Capacity Control in ULS 103
9.1 Moment Capacity in ULS . . . . . . . . . . . . . . . . . . 103

9.1.1 Effective Flange Width . . . . . . . . . . . . . . 104
9.1.2 Sections over Supports . . . . . . . . . . . . . . 105
9.1.3 Sections in Fields . . . . . . . . . . . . . . . . . 106
9.1.4 Zero Moment Sections . . . . . . . . . . . . . . . 108

9.2 Capacity of Moment and Axial Force Combined in ULS . 109
9.3 Shear Capacity in ULS . . . . . . . . . . . . . . . . . . . . 113

9.3.1 Shear Capacity in ULS without Axial Forces . . 113
9.3.2 Combined Shear and Axial Force Capacity in ULS115

10 Capacity of CFRP in ULS 117
10.1 Moment Capacity . . . . . . . . . . . . . . . . . . . . . . 117

10.1.1 Design Bending Moment Capacity in ULS . . . 117
10.1.2 Combined Moment and Axial Force Capacity . . 118
10.1.3 Intermediate Crack Debonding . . . . . . . . . . 121

10.2 Shear capacity . . . . . . . . . . . . . . . . . . . . . . . . 122
10.2.1 Shear Strengthening due to Insufficient Shear

Capacity . . . . . . . . . . . . . . . . . . . . . . 122
10.2.2 Shear strengthening due to Flexural Debonding 125

11 Results 127
11.1 Resulting ASR-Loads . . . . . . . . . . . . . . . . . . . . 127

11.1.1 Elongation of Models . . . . . . . . . . . . . . . 127
11.1.2 Acting Axial Forces due to ASR . . . . . . . . . 129
11.1.3 Acting Bending Moments Due to ASR . . . . . . 130
11.1.4 Acting Shear Forces Due to ASR . . . . . . . . . 130

11.2 Resulting ASR-Loads in the Future . . . . . . . . . . . . . 131
11.2.1 Acting Axial Forces with Additional Expansion 131
11.2.2 Acting Moment with Additional Expansion . . . 132

11.3 Utilization of Elgeseter Bridge in ULS . . . . . . . . . . . 132
11.3.1 Without CFRP . . . . . . . . . . . . . . . . . . 133
11.3.2 Including CFRP . . . . . . . . . . . . . . . . . . 136

11.4 Utilization of Elgeseter Bridge in the Future . . . . . . . . 139
11.5 Evaluation of Intermediate Crack Debonding . . . . . . . 140

11.5.1 Moment Induced . . . . . . . . . . . . . . . . . . 140
11.5.2 Shear Induced . . . . . . . . . . . . . . . . . . . 143

12 Discussion 145
12.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . 145

12.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . 145
12.1.2 ASR Effects . . . . . . . . . . . . . . . . . . . . 147
12.1.3 CFRP Effects . . . . . . . . . . . . . . . . . . . 148

12.2 Evaluation of Results and Utilization in ULS . . . . . . . 149
12.2.1 Elongation due to ASR . . . . . . . . . . . . . . 149
12.2.2 Axial Forces . . . . . . . . . . . . . . . . . . . . 150
12.2.3 Bending Moments . . . . . . . . . . . . . . . . . 151
12.2.4 Shear Forces . . . . . . . . . . . . . . . . . . . . 153



xii CONTENTS

12.2.5 Additional Considerations . . . . . . . . . . . . . 153

13 Conclusion 155

Appendices 163

A Original Drawings of Elgeseter Bridge 163

B Reinforcement in Frame Model 167
2.1 Inner Beams . . . . . . . . . . . . . . . . . . . . . . . . . 167
2.2 Outer Beams . . . . . . . . . . . . . . . . . . . . . . . . . 168
2.3 Zero moment section . . . . . . . . . . . . . . . . . . . . . 169

C Section Capacities in ULS 171
C.A Effective Flange Width . . . . . . . . . . . . . . . . . . . . . . . . 171
C.B Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.B.1 Inner Beams . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.B.2 Outer beams . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.B.2.1 Zero Moment Sections . . . . . . . . . . . . . . . 188
C.C Moment Capacity in ULS . . . . . . . . . . . . . . . . . . . . . . 190

C.C.1 Sections over the Supports . . . . . . . . . . . . . . . . . 190
C.C.1.1 Support 1 . . . . . . . . . . . . . . . . . . . . . . 190
C.C.1.2 Support 2-8 . . . . . . . . . . . . . . . . . . . . . 192
C.C.1.3 Support 9 . . . . . . . . . . . . . . . . . . . . . . 193

C.C.2 Field Sections . . . . . . . . . . . . . . . . . . . . . . . . . 194
C.C.2.1 Field 1 . . . . . . . . . . . . . . . . . . . . . . . 194
C.C.2.2 Field 2-8 . . . . . . . . . . . . . . . . . . . . . . 196
C.C.2.3 Field 9 . . . . . . . . . . . . . . . . . . . . . . . 197

C.C.3 Zero Moment Sections . . . . . . . . . . . . . . . . . . . . 198
C.C.4 Combined Moment and Axial Force capacities . . . . . . . 200

C.C.4.1 Field Sections 2-8 . . . . . . . . . . . . . . . . 200
C.C.4.2 Support sections 2-8 . . . . . . . . . . . . . . . . 204
C.C.4.3 Zero Moment Sections . . . . . . . . . . . . . . . 208

C.D Shear Capacity in ULS . . . . . . . . . . . . . . . . . . . . . . . . 213
C.D.1 Zero Moment Section . . . . . . . . . . . . . . . . . . . . 213

D Equivalent Stiffness 215
D.A Stage 2 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
D.B Carbon Fiber Reinforcement . . . . . . . . . . . . . . . . . . . . 218

E Capacity of CFRP in ULS 221
E.A Moment capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

E.A.1 Bending Moment Capacity of Cross Section . . . . . . . . 223
E.A.1.1 Field Section . . . . . . . . . . . . . . . . . . . . 223
E.A.1.2 Zero Moment Section . . . . . . . . . . . . . . . 224

E.A.2 Combined Moment and Axial Force Capacity with CFRP 225
E.A.2.1 Field Section . . . . . . . . . . . . . . . . . . . . 226
E.A.2.2 Zero Moment Section . . . . . . . . . . . . . . . 229
E.A.2.3 Intermediate Crack Debonding . . . . . . . . . . 232

E.A.3 Shear Capacity . . . . . . . . . . . . . . . . . . . . . . . . 235
E.A.3.1 Insufficient Shear Capacity . . . . . . . . . . . . 235



CONTENTS xiii

E.A.3.2 Shear Strengthening due to Flexural Debonding 237

F Design Forces Intermediate Crack Debonding 239

G MATLAB Codes 241



xiv CONTENTS



Chapter 1

Introduction

During the past decades, the world has been exposed to a vast and rapid change
seen from an environmental point of view. The population has increased enor-
mously, leading to more consumption of our commodities, as well as an increased
emission of greenhouse gases. This results in extreme weather and higher ex-
posure to existing structures. Concrete is one of the most common building
materials, and lately, it is observed that it is more subjected to deterioration
than assumed in the first place.

The environmentally induced degradation of concrete structures is only one
aspect. Many structures have been attributed to aging, micro-environmental
issues, poor initial design or lack of maintenance. There is also the issue that
the existing structures can not meet the new demands for extreme weather and
earthquakes or an increase in traffic volume. To avoid more environmental emis-
sions, it is convenient to strengthen the existing structures instead of building
new ones.

Having considered the challenges above, carbon fiber reinforcement seems like a
promising solution. It is a very strong and light composite material which with
an adequate application can contribute significantly to the load bearing capacity.

Elgeseter Bridge is a representative example of a deteriorated concrete structure.
A chemical reaction occurs due to the appearance of alkali reactive aggregates
in the concrete, leading to an expansion of the concrete. This chemical reaction
is referred to as alkali-silica reactions (ASR). It affects the bridge at a struc-
tural level, and relatively large cracks have occurred in several places. External
carbon fiber reinforcement serves as an attempt to restore the capacity.

This study is a condition assessment of Elgeseter Bridge focusing on the effect
external reinforcement has on ASR exposed concrete.

ASR reactions lead to an elongation of the bridge as well as imposing external
loads on the concrete. Quantifying the loads is challenging due to many un-
certainties in the extent of ASR. A considerable part of this assignment is to
determine the effects imposed on the structure due to the ASR-exposure. This
is performed by using an FEA software to create an idealized frame model and

1



2 CHAPTER 1. INTRODUCTION

a solid volume model. By using two approaches, weaknesses in the respective
models will be visualized. This is an interesting aspect to study and is ac-
counted for throughout the report when comparing and evaluating the results.
The analyses are linear elastic, but with the implementation of non-linearity in
the cracked areas. This can be challenging to include and the impact of this
simulation must be thoroughly assessed.

The utilization of sections in the bridge is evaluated including the ASR-loads
in addition to the decisive acting loads. The original acting load situation for
Elgeseter Bridge has been studied in 2018 by Norhaug and Stemland and their
results have been used for further calculations in this investigation. Capacity
calculations have been performed by using the outdated guideline NS 3473 edi-
tion from 2003.

Calculations of the fiber reinforcement capacities in ULS are executed following
the guidelines in Fib Bulletin 90 (2019). The effects of carbon fiber reinforce-
ment are assumed to contribute differently to a local and global scale. By
studying the external reinforcement locally in sections, an increase in shear and
moment capacity can be determined. While studying the whole bridge, the im-
pact on the expansion and possible redistribution of forces can be observed.

Furthermore, this report demonstrates the fundamental aspects regarding both
alkali-silica reactions and carbon fiber reinforcement. A review of the conditions
in the Bridge is also presented. The two FE models are thoroughly compared to
isolate deviations. The effects of different modeling of non-linearity and external
reinforcement are analyzed and determined. Hence, the utilization ratio and the
general assessment of the bridge’s condition at the current state are concluded.
A brief review of the effects occurring in the future has similarly been examined.



Chapter 2

Alkali Silica Reactions

Alkali-silica reaction (ASR) is a chemical reaction occurring in concrete made
of alkali-reactive aggregates reacting together with alkali in the cement. This
process forms a swelling gel, which leads to an expansion of the concrete. The
expansion induces tensile stresses in the concrete and leads to a formation of
cracks in the structure. Further damage and decomposition of the concrete
can occur in combination with chloride- or carbonation-induced corrosion or
freeze-thaw cycles. This is resulting in a reduction of the structure’s capacity.
A thorough damage assessment must, therefore, be performed on all structures
affected by ASR [1].

Figure 2.1: Concrete with ASR-gel [2]

Concrete exposed to ASR-damage gets a multi-directional pressure that causes
a characteristic intensive map cracking at the surface. It imposes a compression
on the concrete near the steel reinforcement and creates additional stress in
the steel. The extent of the ASR-damage can be classified by the crack width,
patterns and intensity, expansion history and splitting strength [3].

A large number of structures in Norway are exposed to ASR. A common assump-
tion was that ASR had an insignificant influence on the structures in Norway
due to a low mean temperature and a slow-reacting pace of the most common
aggregates. Nowadays, many structures have reached the point of fifty years in

3
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service life and the visible damage is more severe than first assumed [4].

The chemical reaction happens at a small scale but gives reaction products at a
long term perspective leading to consequences on a structural level. ASR gives
implications for both the serviceability and the load bearing capacity [4]. The
reaction mainly depends on three factors:

• At least 20% reactive aggregates (SiO2)

• Sufficient alkalis in the cement (Na+, K+) and hydroxyl ions (OH−)

• Moist environment with a relative humidity of at least 80-90%

Figure 2.2: Necessary factors for ASR-reaction

With the presence of hydroxyl, alkali metal, calcium ions and water the re-
action begins. The hydroxyl ions provoke the destruction of atomic bonds of
the siliceous compounds, whereas the alkali ions react with Si(OH)4 complexes
which form a fluid (Na,K)−Si−OH gel. This gel then substitutes Na and K
with Ca and the gel solidifies. The solidified gel swells by water absorption lead-
ing to the mentioned expansion [6]. As the gel is swelling, pressure is obtained
in the gel and this must be balanced by tensile stresses in the concrete. This
happens locally so that micro-cracks appear both in the cement paste and the
aggregate. The crack pattern will consist of diffuse micro-cracks but is easily
recognized as the shapes are very typical for ASR and the gel can be visible as
white spots or stripes. Consequently, the strength and stiffness of the concrete
are reduced [5].

Due to the demand for high relative humidity, outdoor concrete structures are
more often exposed to ASR such as dams, tunnels and bridges. The expansion
may vary in size over the structure itself and locally in smaller parts. This is
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due to different exposure of humidity or aggregates in the concrete. The vari-
ation in the expansion can also be visible over the cross-section and therefore
it is important to notice that the measured exposure on the surface is just an
average value [1].

The outer part of the exposed concrete will alternately be humidified and dried
out depending on the weather conditions. Each time the concrete is drying,
the water will take away some of the alkalies leading to that the outer layer
(5-10 cm) has a lower ratio of alkali-ions. Consequently, the conditions for ASR
reactions are favorable a few centimeters within the concrete and a greater ex-
pansion will occur here. A combination of this, as well as some shrinkage in
the concrete, leads to macro-cracking of the outer layer where the tensile stress
is exceeding the capacity of the concrete. Once the surface has cracked, these
cracks will be filled with water when exposed to rain or splashes. The high hu-
midity within the cracks gives a favorable environment for further ASR reaction
leading to greater cracks. The cracks develop vertically down in the concrete
until the reinforcement is reached, then they turn in direction growing parallel
to the surface. As a consequence, the surface gets rotation and cracks will be
wider at the surface. Damages on the concrete can also occur in the form of
large single cracks and delamination of the concrete [4].

Figure 2.3: Characteristic map-cracking in concrete due to ASR [7]

The severity of the damages caused by ASR strongly depends on the design and
geometry of the structure, the type of reinforcement (normal or prestressed) and
the distribution of the expansion over the cross-section. Since the challenges re-
lated to ASR are quite new, limited research has been done regarding the effects
on the capacity. For calculation of the effects due to ASR, one can assume there
are many similarities to the calculation model for shrinkage in concrete. Yet the
size of the expansion due to ASR compared to the shrinkage in concrete is a lot
higher. Furthermore, the alkali-silica reaction is also affecting the strength and
stiffness of the concrete.
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2.1 Mechanical Aspect

ASR is leading to an internal micro-cracking of the concrete and the mechanical
properties of the concrete are affected. This mainly influences the compressive
strength, the tensile strength and Young’s modulus of the material.

Even though the research regarding ASR mainly has focused on the internal
chemical mechanisms it is important to know how the mechanical properties
are affected by the expansion. The Institution of Structural Engineers came
up with a relation between expansion, compressive and tensile strength and
Young’s modulus in the nineties and this is still used as guidance [4]. This is
shown in table 2.1

Property
Exspansion [mm/m]
0.5 1.0 2.5 5.0 10.0

Cubic
compression strength

100 85 80 75 70

Uniaxial
compression strength

95 80 60 60 -

Tensile strength 85 75 55 40 -
Young’s modulus 100 70 50 35 30

Table 2.1: Properties [%] with increasing expansion [h]

Clearly, the tensile strength is most affected when the concrete develops micro-
cracking. This is the only one that changes significantly when the expansion is
below 0.5 h. The table shows that from this point the properties mentioned
above are gradually more influenced as the expansion increases, but the reduc-
tion is not severe for the total capacity until the expansion has reached 2.5 h
[4]. This is a quite high expansion and this rarely occurs in structures. Often
the expansion is somewhere between 1-1.5 h and from research projects and
master theses, it is shown that the effects can be significant in this area as well.
Consequently, it is believed that the results from The Institution of Structural
Engineers are somewhat imprecise.

An important aspect is that the impact on the properties depends on in which
direction the strength is measured compared to the dominating micro-crack di-
rection. Strains induced by the ASR will be reduced in the compressed direction
compared to the tensioned part [8]. Meaning that the stress state in the con-
crete affects the expansion resulting in an anisotropic material behavior when
it comes to stiffness and strengths. Several research projects have investigated
this by testing strength and stiffness in different directions to get an overview
of the correlations, but no clear relationship between compressive strength and
stress state has been found. From a study made by Barbosa et al.[9] it was con-
cluded that the compressive strength and stiffness became lower in the direction
perpendicular to the cracks compared to the direction going parallel with the
cracks. This statement was supported by a research project done by Giaccio
et al.[10]. Their results showed that the compressive strength and stiffness was
higher with cracks in the same direction as the loading. The theory that the
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expansion, cracking and change in stiffness and strength were directional with
the stress state was confirmed by Gautam et al. [11] who tested many drilled
cubes with different stress states.

Regarding the influence of the load bearing capacity, the reduction in the com-
pressive strength is not decisive until the expansion has reached a high value,
about 2-3h, according to The Norwegian Public Road Administration. Delam-
ination of concrete can also impact the compressive strength negatively [1]. An
investigation done by Kongshaug et al. states that the compressive strength is
not suited as a damage indicator since it is not affected by ASR expansion at
the same rate as the elastic modulus. The reduction in compressive strength
can be correlated to other properties rather than longitudinal expansions [8].

The Norwegian Public Road Administration’s report of ASR [1] states that with
an expansion of 1 h, the tensile strength of the concrete is almost equal to zero
in some directions due to the crack formations. The shear strength and bond
strength depend on the tensile strength of the concrete which may not be suffi-
cient when the tensile strength is lost. A critical place is in the anchorage zone
where the reinforcement is limited. This can strongly affect the load carrying
capacity of the structure.

From a stiffness damage tests (SDT) it is possible to assess the degree of damage
in the concrete. The test is done by performing five loading cycles in compres-
sion on concrete specimens. By recording stresses and strains it is possible to
calculate the damage parameters. Such parameters are the modulus of elas-
ticity, stiffness damage index, plastic damage index, and non-linearity index.
The damage is characterized as a function of the expansion level using a load
equal to 40% of the compressive strength. From an investigation done with SDT
testing performed by Kongshuag et al. it has been concluded that the relative
modulus of elasticity decreases with increasing levels of expansion due to ASR[8].

The anisotropic behavior of ASR affected concrete was also investigated in the
same research project by looking at the behavior with restrained samples. They
observed that the ASR induced expansion was prevented in the restrained di-
rection and the expansion did not get transferred between the directions. Con-
sequently, uniaxial compressive stress on the concrete will reduce the overall
damage caused by ASR. Since the restraint prevents the expansion it also pre-
vents the reduction in the elastic modulus. Concrete subjected to compressive
stresses about 3 MPa will not get a reduction in Young’s modulus [1].

The magnitude of micro-cracking is correlated to the degree of expansion in a
given direction, and the number of cracks and their orientation is generating the
reduction of the anisotropic stiffness. The general conclusion from Kongshaug
et al. was that all the damage indicators showed a reduction in damage in the
restrained directions [8].

There are no researches in Norway stating that ASR expansion will wear out
in time [1]. Nevertheless, this is if the structure is free to move. As earlier
explained, structures with restraints will stop expanding in one direction when
the compressive stresses in this direction are about 2-5 MPa.
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2.2 Loads from ASR

The expansion from ASR does not solely affect the mechanical properties of
the concrete, it may also impose additional forces in structures. For reinforced
concrete, the expansion due to ASR is to be considered as a long term load.

A reinforced concrete structure exposed to ASR expansion gets an internal re-
straint from the reinforcement. If the structure is statically indeterminate it will
also have an external restraint as deflection and displacement get prevented. In
addition, if parts of the structure expand more than other parts, this will give
imposed forces in the structure. Following, these three cases are explained in
detail.

Internal Restraint from Reinforcement

Only the concrete will expand when exposed to ASR. Due to the bond between
the concrete and the reinforcement, the steel bars will be strained as it is fol-
lowing the concrete. This results in stresses both in the reinforcement and the
concrete. Internal equilibrium is obtained such that the force in the steel is
equal to the force over the reinforced cross-section. This is shown in the form
of an axial-load in the gravity center and an eccentric moment shown in figure
2.4. This is an internal rearrangement of the forces and for a situation with
statically determined structure it will not give external loading [1].

Figure 2.4: ASR-loads on reinforced concrete [1]

Internal stresses are developing as long as the material is linear elastic. Since
the ultimate moment capacity is calculated when the steel is yielding the initial
strain from ASR give little impact on the capacity of the cross-section. In this
way, it is possible to look at these internal stresses as an inner pre-tension effect.
Even though the internal stresses give a small impact, the stage of the cross-
section has a significant impact. Whether it is in stage I or II is very important
for how the cross-section is responding [1]. Usually a structure, during its ser-
vice life, will be in stage II as it is exposed to dead load and live load. Being in
stage II means that only the reinforcement is obtaining the tensile stresses. In
some cases, structures may have parts in stage I and stage II at the same time,
and this should be taken into account in capacity controls.
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External Restraint

Once the structure is fixed for elongation or rotation, it gets an external re-
straint. The prevented expansion induced by ASR will lead to an external load
contribution.

This can be understood by looking at a cross-section where the free expansion
has a linear distribution over the height. Typically the upper part of a beam is
more exposed to ASR than the lower part, which results in a higher expansion
in the top giving a uniform gradient in the free expansion, ε0. This induces
a greater tensile force in the top, making the beam tend to curve upwards. If
the beam is without external constraints, the beam would be subjected to such
curvature and no external loads would appear.

In a statically indeterminate structure, the beam would be prevented to curve
due to the external constraints. This is occurring in the form of a secondary
moment giving compression in the upper part and tension in the lower part.
This provides stress-contributing strains, εσ, in the cross section. To get the
actual resulting strain in the beam, ε, the stress-contributing strains are added
to the free expansion.

ε = ε0 + εσ

This is illustrated in figure 2.5:

Figure 2.5: Effect of external constraints

The beam gets an expansion due to the ASR-loads, but since the curvature is
prevented, the elongation is uniform and a secondary moment is present. This
external moment imposes stresses on the concrete and is defined by equation
(2.1).

My =

∫
A

z · εσE dA (2.1)
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External Restraint from Adjoining Parts

The expansion of a structure due to ASR is often not uniform throughout the
whole structure. Factors as more humidity and reactive aggregates locally in
the structure could make some parts expand more than adjoining parts.

Figure 2.6 displays two connected beams, where beam 1 is subjected to an initial
strain ε0 from ASR and beam 2 is not. If both beams were subjected to the
same ε0, they would both expand equally and there would not be any forces in
the beams due to the expansion of ε0. When beam 1 expands more compared
to beam 2 it will strain beam 2, since this beam is forced to follow, to maintain
compatibility in the section. This strain will subject beam 2 to a tension force
N2 from the adjoining beam. Furthermore, beam 2 will resist the strain from
beam 1, which will give a compression force in beam 1, N1. The resulting strain
of the beams ε is illustrated in figure 2.6 by the blue line.

Figure 2.6: Effect of external restrain from adjoining parts

An important aspect of this situation is the difference in the resulting strain
ε and the stress contributing strain εσ. The stress contributing strain is an
imaginary strain state that represents the stresses in the cross section. The
initial strain must be subtracted from the resulting strain to achieve the stress
contributing strain. Such that:

εσ = ε− ε0

The initial strain does not contribute to any stresses itself, as the expansion is
due to ASR. It is the retaining forces from the section trying to be in compati-
bility that introduce these forces. Figure 2.7 illustrates the stress contributing
strain of the sections.
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Figure 2.7: Strain of beam 1 and 2

The resulting axial forces in the section is found by the following equation:

Nx =

∫
A

εσE dA (2.2)

Resulting Loads form ASR

Depending on the boundary conditions, different load effects can be obtained.
The effects caused by the constraints also depend on the stress state in the
concrete. In addition, the support system, the size of the affected parts, the
reinforcement layout and the variation in expansion over the structure parts
decide the resulting load effects from ASR.

The resulting moment coming from ASR includes the effects of both the internal
and external constraints. These effects result in a positive moment, leading to
an increase in field moments and a reduction over the supports. The shift in the
moment may introduce significant moments in places originally designed with
poor reinforcement such as zero moment sections illustrated in figure 2.8. Since
such sections are not designed for high bending moments they are possibly very
critical. At these places, the elastic moment capacity can be exceeded leading
to the formation of plastic hinges. The static system changes and capacities
may be exceeded elsewhere as well.
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Figure 2.8: Shift in moment distribution due to ASR-loads

If a part within the structure is imposed to a higher ASR-expansion, the part
will be compressed, whereas the less exposed parts are set in tension. This may
occur locally in the beam or extend over the entire structure. The axial forces
occurring due to different expansions can become very high and impact the load
bearing capacity of the structure.



Chapter 3

Carbon Fiber Reinforced
Polymers

The performance requirements for many existing civil engineering structures do
not satisfy today’s demands. The need for upgrading structures has become an
arising issue that needs to be solved. This has led to an innovation in methods
used for strengthening. During the last 20-30 years a new technique has become
common for strengthening concrete structures. This method consists of using
externally bonded fiber reinforced polymer composites, also known as FRP [12].

Figure 3.1: CFRP fabric [13]

3.1 Products and Application Techniques

The fibers can either be of glass, aramid, basalt or carbon and are combined with
a polymer matrix. Together they make a strong composite material working
with the original material. The matrix is typically a polymer of thermosetting
and has the function to protect and bind the fibers and to distribute the loads.
The fibers together with a matrix define the FRP material and its mechanical
properties [14].

Fibers made of carbon is preferable when dealing with concrete structures and
is featured as CFRP. The properties of the fibers depend on how they are made
and the amount of carbon. All types of carbon fiber offer high yield strength-
and modulus materials [12].

13
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(a) FRP Sheets[15] (b) FRP Strips [16]

(c) FRP Rods [17]

Figure 3.2: FRP Products

The Application of FRP can be divided into different categories in the field of
civil engineering. Further in this report, only the strengthening of structures
with externally bonded FRP will be treated. The FRPs are mainly used for
strengthening structures and are available in the form of thin unidirectional
strips, flexible sheets/fabrics or rods. The strips are approximately 1 mm thick
and the rods have a diameter of a few millimeters. Both are made by pultrusion.
The sheets have fibers in one or several directions [18].

There are different ways to apply the FRP strengthening and the type of method
must be carefully chosen by evaluating the aspect of the situation. The struc-
ture part must be considered as well as the purpose of the strengthening. The
different methods are mainly separated into two categories:

• Cured in-situ systems

• Pre-cured (prefabricated) systems

When providing flexural strength, the fibers must be placed in the longitudinal
direction on the tensioned area, see figure 3.3. It is also beneficial to attach
fibers at the sides of a beam. Flexural strengthening FRP is often in the form
of long strips, fiber sheets or laminates.

For increasing the shear capacity, FRP shear-reinforcement is installed in three
different configurations; side bonding covering two sides, U-wrapped and com-
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Figure 3.3: Flexural strengthening on the tension side [19]

pletely wrapped beams. Completely wrapped beams have the highest strength-
ening effect, but can be challenging to install due to availability. U-wrapping of
a beam provides a certain possibility of debonding which reduces the effective-
ness of the material. Even though, one can almost achieve the same strength
as a complete wrap by sufficient anchoring which is preventing delamination of
the U-wrap’s ends. In the same way as for steel stirrups, the shear reinforce-
ment can be laid orthogonal on the member’s longitudinal axis or in an inclined
position [19].

Figure 3.4: Configurations of shear reinforcement [19]

Figure 3.5: Lateral view of FRP strengthening [19]

The most common and basic technique of applying external bonded FRP is a
manually bonding of the reinforcement onto the surface [18]. Three elements
need to be evaluated; the substrate, the adhesive and the FRP reinforcement.
The surface must be controlled for unevenness, cracks and imperfections. The
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levels of humidity, chloride and sulphate must be considered, as well as the
strength and carbonization of the existing parts.

The deteriorated concrete must be removed and restored with shrink-free ce-
ment and measures to prevent corrosion of existing steel must be done. If the
surface is too rough it can be leveled by using epoxy paste. The next step is
to sandblast the concrete surface to a suitable roughness degree. Furthermore,
the surface must be cleaned to remove any dust, foreign particles, oil or other
materials that could prevent the bonding. When treating a concrete member
with sharp corners or edges, these have to be rounded to a radius of minimum
20 mm [19].

Afterwards a suitable bonding agent must be chosen. This can be a multiple-
component system or a single bonding agent. Eventually the FRP reinforcement
can be connected [18].

There are some general requirements for the conditions around the applica-
tion of FRP concerning temperature and humidity. Even though FRP can be
installed on structural elements in both dry and humid environments, a very
moist environment can delay the curing of the resin [18]. In the case where fire
can occur, protection for fire must also be provided. Fire insulation can be done
by using protective plasters or panels [19].

When installing FRP outdoors it is necessary to prevent chemical-physical re-
actions in the matrix and the reinforcement must therefore be protected against
sunlight. This can be done by using a protective acrylic paint [19].

The FRP material needs sufficient anchoring to maintain the desired capacity
both for bending and shear. This can either be done by different applications
of FRP-material, bolts or steel plates. Concerning flexural strengthening, the
most common method is the use of U-shaped straps placed orthogonal to the
flexural strengthening. This solution maintains the position of the longitudinal
strip and prevents debonding [19].

3.1.1 Assumptions for Application and Design

The right application of the FRP materials is extremely important as it is the
basis of the design rules. Some assumptions of the application and the properties
of the composites are made to be able to design the strengthening and these
must be fulfilled [18]:

• Steel stirrups have sufficient deformation capacity such that the FRP can
reach its design strength

• Slip between FRP and the concrete is negligible. This is provided for as
long as the adhesive used is of high quality and has at least a thickness
of 1.0 mm. In this way it is justified that viscoelastic phenomena are
negligible.

• Interlaminar shear strength of FRP is higher than the adhesive bond shear
strength. To ensure this, it is important to choose a resin of high quality.
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• Preparation done at the surface is good enough to achieve the required
bond strength.

• An elastic analysis method of a cracked cross section can be used to de-
termine the strain in the existing steel reinforcement at the time of FRP
application.

3.2 Benefits and Challenges with FRP

3.2.1 Benefits

FRP is often used in cases where low weight combined with high strength and
stiffness is needed. Also, it offers a lot of other advantages as a strengthening
of reinforced concrete structures. Compared to steel, the same volume of FRP
only weights one fourth, which makes it easier to work with and will reduce
labour costs. It has a very high tensile strength and is immune to corrosion.
This compensates the high costs of FRP compared to steel by providing the
same strength with a smaller volume. In addition, the FRP strengthening so-
lutions are flexible in size and geometry and even the stiffness can be tailored
to suit the design requirements [18].

The most common use of FRP is to increase the flexural stiffness and the mo-
ment capacity [20]. By using FRP it is possible to increase the strength in
reinforced concrete beams with up to 200% [21]. Furthermore, the composite
material has very convenient properties for shear strengthening. According to a
scientific research project the shear strength can be increased by 60 – 120% for
reinforced concrete beams [21]. Columns in compression can also benefit from
strengthening with FRP. Referring to a scientific research project by Jan Arve
Øverli and Erik Thorenfeldt in 2001 [22] shows that one layer of fiber sheet on
a column provided a 20% increase in the capacity and two layers increased it
by 50%. Considering the torsion capacity of reinforced concrete beams, the use
of FRP reinforcement increases the capacity significantly. A research project
performed by Salom, Gergley and Young [23] shows the increase of torsion ca-
pacity by 70% with the use of laminates. As for seismic strengthening, FRP is a
very beneficial method for both repair and retrofitting [18]. FRP strengthening
can provide sufficient shear capacity when retrofitting columns and is a very
effective method to prevent critical shear collapses [24].

3.2.2 Challenges

Aside from the increased capacity of reinforced concrete with the use of FRP,
there are some challenges by using this method. FRP-materials are costly and
there is often a demand for low investments and minimal assembling of cost
during its service life. As previously mentioned, the application of the material
requires thorough processing of the surface before installation and the surfaces
must be available. Other parts of the structure may prevent the availability, and
this can also make it hard to provide the necessary anchoring length. There is
also a problem associated with temperature, fire, sunlight and other environmen-
tal degradation effects. The effects of the material can be challenging, especially
in a composite material, such as shrinkage, creep and fatigue. It depends on
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the adherence to the concrete and this must be thoroughly taken care of. It
is essential to be aware that the FRP materials need to be protected from me-
chanical damage as it is exposed and vulnerable at the surface. In addition, the
failure mode of an FRP strengthened element is brittle and often occurs with
little or no indication of failure [24].

3.3 Materials and Mechanical Properties

3.3.1 Carbon fiber Reinforcement

Carbon Fiber-reinforced Polymers (CFRP) is a composite containing fibers of
carbon, matrix and adhesive. The carbon fibers are a discontinuous material
that gives the composite most of its strength and stiffness, while the matrix is a
continual material that binds the fibers [12]. In this way, the CFRP is similar to
concrete composites, with reinforcement made of fibers and the matrix having
the same purpose as the concrete. The resin is used as the bonding adhesive
between the CFRP plate and the concrete. Hence, the resin can be used as the
matrix in the CFRP.

Carbon Fibers

Carbon fiber composites have a higher strength, stiffness and a lower density
than steel [12]. It is five times lighter and can be ten times stronger than steel
[24]. The fibers’ geometric properties, such as the ratio between the fiber length
and its diameter, makes it possible to transfer the tension from the fibers to the
matrix. Carbon fibers have a high resistance to corrosion, and is favorable in
many chemical environments.

Material Elastic modulus Tensile Strength Ultimate tensile strain

High Strength Carbon 215-235 GPa 3500-4800 MPa 1.4-2.0 %
Ultra High Strength Carbon 500-700 GPa 2100-2400 MPa 0.2-0.4 %

Steel 185 GPa 3070 MPa 1.5-2.0 %

Table 3.1: Properties of carbon fibers compared to steel [18].

Compared to steel, carbon fibers have different tensile properties such as a much
lower ductility and a more brittle behavior. Carbon fibers are linear elastic until
their final rupture.

Matrix

The matrix in a composite has multiple purposes, such as binding the fibers,
distribute the load between the fibers and protect the fibers from external en-
vironmental impacts [12]. Furthermore, the matrix has mechanical properties
in the composite such as transverse modulus and strength, shear capacity and
compression capacity [18]. The matrices normally have low yield stress and
stiffness and are sensitive to high temperatures. The advantages of the matrix
material are their chemical resistance, low price, low density and that they are
easy to facilitate [12].
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Polymers are sensitive for temperature changes and as a result, the mechanical
and bonding properties of the matrix can be affected by this. There are two
types of polymers, thermoset and thermoplastic. The most significant difference
between the two polymers is their behavior when subjected to high tempera-
tures. The glass transition temperature Tg is defined as the temperature where
a polymer transfers from a stiff to a more rubbery state and the mechanical
properties of the polymer changes. See figure 3.6 illustrating the behavior of
the thermoset and thermoplastic exposed to temperatures above Tg. This has
to be considered while designing, in case of high temperatures such as a fire
situation [18].

Figure 3.6: Transition behavior of thermosets and thermoplastic [12].

The thermosets epoxy, polyester and vinyl ester are the most common polymeric
matrix materials used in structures and detailing in the construction industry.
This is because of their good mechanical properties, high chemical resistance
and processability [18]. Epoxy resins are favorable due to their good mechan-
ical properties, durability and low weight. Epoxies will also bind to several
types of fibers, resist humidity and chemical degradation, and shrink less dur-
ing the hardening process [12]. Compared to epoxy, polyester and vinyl ester are
cheaper [18]. See table 3.2 for characteristic properties of polyester and epoxy.

Property Polyester Epoxy
Density [kg/m3] 1100-1400 1200-1300

Tensile strength [MPa] 35.5-103.5 55.0-130.0
Young’s modulus (tension) [GPa] 0.5-4.4 0.5-10
Young’s modulus (comp) [GPa] 0.5-6.0 0.5-12.0

Table 3.2: Properties polyester and epoxy [12].
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The matrix must have a good bond strength with the fibers. To achieve this,
one can modify the chemical structure of the matrix.

Adhesives

The adhesive is the bonding agent between the concrete surface and the FRP
composite. It provides shear load distribution between the two composites and
prevents interfacial failures. Since the concrete is weak in comparison to the
adhesive, the interfacial failures most commonly occur in the concrete itself and
not in the adhesive. Debonding in the adhesive is only realistic if the strength
of the concrete is very high, or the temperatures are higher than the glass tran-
sition temperature Tg [18]. The most commonly used adhesive is epoxy which
consists of epoxy resin and hardeners.

3.3.2 Mechanical Properties

Figure 3.7 and table 3.3 shows typical tensile stress-strain behavior of the fiber,
matrix and FRP composite. Comparatively, one can see that the fibers have
a higher stiffness and a lower ultimate strain than the matrix, and as a conse-
quence of this, the matrix has a stiffness in between. The FRP fails at the same
ultimate strain as the fibers.

Figure 3.7: Tensile stress-strain behavior of fiber, FRP and matrix [19].

Estimation of some mechanical properties in a composite such as a CFRP plate
can be found by using the rule of mixtures [18]. This rule states that:

Ef = Efib · Vfib + Em · Vm (3.1)

ff = ffib · Vfib + fm · Vm (3.2)
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CFRP low modulus CFRP high modulus
Modulus of
elasticity

Ef 160 GPa 300 GPa
Efib 210-230 GPa 350-500 GPa

Ultimate
strength

ff 2800 MPa 1500 MPa
ffib 3500-4800 MPa 2500-3100 MPa

Ultimate
strain

εfu 1.6 % 0.5 %
εfib,u 1.4-2.0 % 0.4-0.9 %

Table 3.3: Properties of fibers (fib) and FRP (f) [19].

Where E is the elastic modulus, f is the tensile strength, V is the volume frac-
tion. The sub notes f , fib and m are “FRP”, “fiber” and “matrix”, respectively.

The equations are based on the hypothesis of a perfect bond between the fibers
and matrix [19]. Thus this rule can give a quite accurate modulus of elasticity for
unidirectional composites, the rule of mixtures can be unconservative, especially
for obtaining the ultimate strength [18]. For such predictions, one should test the
material. For FRP composites impregnated in-situ, one shall use the direction
perpendicular to the direction the impregnation is applied for computations of
Vfib [19]. This is because of the volumetric fraction of the fibers may vary
in this direction. Fib Bulletin 90 [18] recommends calculating the mechanical
properties of the FRP composite by only using the fiber fraction and a reduction
factor, r, such that:

r · Efib · tfib = Ef · tf (3.3)

A CFRP plate is linear elastic until its final rupture, and do not have the same
ductile behavior as steel have. This must be accounted for when designing
carbon-fiber reinforced concrete [24]. See figure 3.8 below that illustrates the
stress-strain curve for both CFRP and steel.

Figure 3.8: Tensile stress-strain behavior of CFRP compared to mild steel [24].
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To understand the mechanical properties of a fiber-reinforced concrete beam, it
is essential to comprehend the bond behavior between the FRP composite and
concrete beam. The term debonding describes failure occurring due to loss of
shear strength between the concrete and FRP composite. This failure can occur
inside the concrete, in the adhesive-concrete or adhesive-FRP interfaces, and in
the adhesive or FRP itself. See figure 3.9 for different locations of debonding.
The most common, which is concrete failure, happens often a few millimeters
within the concrete as a result of the adhesive’s penetration in a thin layer of
the concrete which then attains a higher strength [18]. This creates an interface
in the concrete with different mechanical properties and a critical zone. An-
other failure mode in the concrete is along the steel reinforcement line which is
a weakened layer.

Figure 3.9: Typical locations of debonding for a FRP strengthened concrete
member [18].

The bond behavior can be described by the differential equation:

ds2

dx2
− pf (

1

Ef ·Af
+

1

Ec ·Ac
)τb(s) = 0 (3.4)

Where s is the slippage, E, A is the elastic modulus and cross-section, respec-
tively. Sub notes f and c is the FRP reinforcement and the concrete, respec-
tively. τb(s) is the local bond stress-slip law. ρf describes the bonded perimeter,
and varies for different types of FRP reinforcement.

The concrete deformation 1
Ec·Ac

can most commonly be neglected, which gives
a simpler differential equation:

ds2

dx2
− pf
Ef ·Af

τb(s) = 0 (3.5)

Typically, the bond behavior can be explained by the relationship between the
shear stress at interface τb and the corresponding slip s. This relationship de-
scribes the shear stress transfer behavior and the debonding process and can
be found by using experimental results and mode 2 fracture energy [18]. The
relation τb − s depends on the geometry of the components and the mechanical
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properties of the materials.

Recommended by Fib bulletin 90 [18], the bond behavior for a surface bonded
FRP can be expressed by figure 3.10. The figure shows a linear increasing curve
until reaching its maximum shear stress τb1, followed by a decreasing curve as
a result of the damage that occurs in the materials. The maximum shear bond
stress τb1 and the ultimate slip s0 depends on the properties of the concrete,
the strengthening system and other geometric properties. Also, the maximum
shear bond strength correlates with the concrete tensile strength. The slope of
the increasing curve k1 depends on both the thickness and shear modulus of the
adhesive layer and the concrete.

Figure 3.10: Bilinear bond-slip consitutive law [18].

3.3.3 Debonding Mechanisms

Debonding initiates with a localized debonding, which happens at a limited area
often close to a formation of a shear or flexural crack. This localized debonding
does not necessarily affect the capacity of the strengthened element. But if the
crack propagates along the length of the beam and composite action between
the FRP and the beam is lost, bond failure is a fact. This failure often happens
in an abrupt and brittle matter. There are essentially two types of debonding
in flexural strengthened concrete structures; end debonding and intermediate
crack debonding.

As the name suggests, end debonding initiates at the end of the FRP plate,
caused by high interfacial shear and normal stresses due to the abrupt termina-
tion of the FRP reinforcement [24]. Interfacial debonding at the anchorage zone
has a strong correlation with the bond stresses such as the shear and normal
stresses in the FRP-concrete interface near the end of the FRP plate. These
stresses establish tensile stresses, and usually the debonding process happens at
a very thin layer of the concrete adjacent to the adhesive illustrated in figure
3.11. This crack will further propagate along the beam, often from the end of
the FRP soffit. Other times, the crack can be induced by the first crack closest
to the beam support and propagate towards the end [18].
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Figure 3.11: Debonding due to flexural cracks [26]

Concrete cover separation is another type of end debonding where the concrete
cover is torn off, with a critical inclined crack at the level of the steel rein-
forcement illustrated in figure 3.12. This failure is often caused by high shear
forces and negligible bending moment [18]. A study from Smith and Teng [25]
showed that when the plate end was closer to the support, the crack at the
end became more critical inclined. This shows the importance of shear force
in such failures since the shear force is increasing while the bending moment
decreases closer to the supports. This type of failure can be understood by two
different approaches. The first analogy is to have a critical inclined crack at
the unstrengthened part of the beam, and the concrete cover behaving like a
composite with the FRP attached to the rebars. The curvature of the beam
will create high interfacial stresses between the concrete cover and the rebars,
resulting in horizontal debonding along with the steel reinforcement. The other
analogy is to consider the shift in tensile forces between the FRP and the rebars
and the missing shear ties between the two of them. If the tie becomes too large
to be carried by the concrete this induces the concrete cover to fail, and the
crack will propagate along the rebars.

Figure 3.12: Debonding due to concrete cover separation [26]

Debonding can appear at intermediate flexural or shear-flexural cracks, which is
a case of intermediate crack debonding. This often occurs in sections with high
moments and shear forces which leads to a crack and creates high shear interfa-
cial stresses between the FRP and concrete. This again leads to detachment of a
thin layer in the concrete, and the cracks propagate towards the end of the beam.

Unevenness in the concrete surface can cause debonding, especially localized
debonding. This can be prevented by proper concrete surface preparation, as
explained in 3.1.
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Elgeseter Bridge

Elgeseter bridge is a concrete bridge located in Trondheim, opened in 1951
after two years of construction. With its slender columns and simple design,
the bridge has a high architectural value and is an important landmark in the
city of Trondheim. As a part of the European highway E6, it crosses the river
Nidelva from Elgeseter street in the south to the city center in the north. The
bridge was constructed by dr. ing. A. Aas-Jakobsen, designed by the architects
G. Blakstad and H. Munthe-Kaas and built by Ingeniør F. Selmer AS [27].

Figure 4.1: Overview of Elgeseter bridge seen from the west [28]

Throughout the history, there have existed several bridges at the same location
as Elgeseter bridge. The earliest documentation of a bridge is in 1178, which
probably was a footbridge of wood. This bridge was the only connection crossing
Nidelva until 1683 when The Old Town Bridge was built on the east side of the
river. After this, the bridge decayed quickly. About 200 years later, a new
bridge was built at this location as a part of the new railroad Størensbanen in
1864. This was a railway bridge made of wood called Kongsgaard Bridge and
was later used as a tram and road bridge until the opening of Elgeseter Bridge
[29].

25
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Figure 4.2: Kongsaard Bridge [30]

In 2004 Elgeseter Bride received the award “Betongtavlen” justified by the fact
that the bridge is an outstanding, forward-looking and beautiful structure [31].
Since 2008 the bridge has been protected as an industrial heritage by the Nor-
wegian Directorate for Cultural Heritage [27].

4.1 Properties of the Bridge

Elgeseter bridge has a total length of 200 meters and its girder is ranging 15
meters above the river. It consists of 9 spans with a length varying from 21.25
m at the end spans to 22.5 m in the remaining spans. The bridge has a width
of 23.4 meters which accommodates four vehicle lanes, two pedestrian lanes at
each side and two bike trails. On the south side of the bridge, there are 5 vehicle
lanes and smaller pedestrian lanes.

Figure 4.3: Elevation view of Elgeseter brigde [32]
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The girder consists of four continuous beams cast in the bridge deck. The beams
have cross sections of 800x1430 mm and a distance between each other of 5.5
m from the center of the cross sections. The thickness of the bridge deck is
varying from 230-380 mm. The beams are supported by 8 column rows that are
monolithically connected to the beams in column row nr. 1-7, where column
row nr. 1 is at the south side of the bridge. At column row 9, at the north
side, the beams have a pinned connection to the columns. The columns have a
diameter of 800 mm and a length of 15 m in column row 2-7 whereas they are
10 m at each end. The columns are fixed at the bottom by approximately 80
friction piles made of wood [32].

Figure 4.4: Cross section of the bridge [4]

The abutment in the south is fixed, whereas the abutment in north is roller
supported with a CIPEC extension joint. The static system of the bridge is
presented in figure 4.5

Figure 4.5: Static system of Elgesterer Bridge [4]

4.2 Alkali-silica Reaction in Elgeseter Bridge

In 1990, concrete core samples of Elgeseter Bridge showed harmful alkali-silica
reactions. The structure has shown signs of the expansion in the bridge by ver-
tical cracks in the columns, horizontal displacement of columns and reoccurring
closing of the extension joint. In 1995, the extension joint needed rehabilitation
because the joint was closed, 10 years after the last replacement. In 2000 it
was estimated an extension of 20 mm since 1992 based on measurements of the
opening in the joint. In 2013, the gap in the expansion joint was measured to be
about 10 mm shorter compared to 2004. There are several uncertainties in these
measurements, such as expansion due to temperature, temperature coefficient
and movement in the abutments [32].

Based on the measurements of the gap in the extension joint, Dr. Ing. Aas-
Jakobsen estimated a chart describing the extension of the bridge deck in the
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longitudinal direction, see figure 4.6. Point 1-4 describes measured points in
the transverse direction of the bridge in the northern abutment. All values are
corrected for expansion due to temperature. By this chart, the bridge has had
an estimated extension of 3.2 mm per year, and in total about 140-180 mm.

Figure 4.6: Deformation based on gap in extension joint [32]

Measurements of horizontal displacement at the column tops were done in 1991.
These results show a total average displacement of 100 mm, which gives an av-
erage expansion of 2.5 mm each year. See figure 4.7. These measurements may
be more accurate, as they don’t have the same uncertainties such as expansion
due to temperature and movements in the abutments [32].

Figure 4.7: Deformation based on measurement from columns [32]

Aas-Jakobsen has estimated that in the worst case, the total extension of the
bridge deck might be as large as 200 mm if the bridge has continued expanding
since the last inspection. This will give a total strain of 1 h in the longitudinal
direction.

Results from concrete core samples in 1991 showed that there were severe alkali-
silica reactions in the bridge deck, columns and the outer beams. In the inner
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beams, there was no sign of ASR [32]. This can be explained due to the fact that
the ASR-damaged parts of the bridge are exposed to humidity in a much higher
degree than the inner beams. This was also visible during an inspection in 2012,
where it was significant signs of water exposure in the outer beams, see figure
4.8. Due to earlier rehabilitation of pavements, it is reasonable to believe that
membranes in these areas may be impaired which may lead to more humidity
around the pavements [32].

Figure 4.8: Observation of water exposure on outer beam [32]

These observations and core samples have led to an assumption of the variations
in expansion at the bridge made by H. Johansen [33]. The suggestion assumes
that the bridge has a gradient from top to bottom where the upper face has
a higher expansion compared to the lower face. In addition, it assumes that
the outer beam expands more than the inner beam. The expansion in the
longitudinal direction of the bridge is assumed to be constant. Further in this
report, it is assumed that the bridge has this strain field with a = 0.5. See figure
4.9 illustrating the suggestion from H. Johansen.

Figure 4.9: Suggestion of strain field in beams, with respect to the central axis
of beams
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This variation in expansion leads to the occurrence of additional moments and
axial forces. The inner beams are subjected to a tensile force whereas the outer
beams obtain a compression force as explained in section 2.2.

4.2.1 Condition of the Columns

The columns have shown severe damages due to ASR. Expansion in the columns
was measured to be up to 2-3h in some parts and it was discovered cracks up
to 7 mm [1],[4]. Columns in axis 9 were measured to have a horizontal displace-
ment of 150 mm, which can lead to significant moment forces in the columns.

In 2003 it was decided to move the columns in axis 7-9. The columns in axis
9 had their foundation moved, while the columns in axis 7-8 were blasted in
the top and re-casted. Furthermore, the columns were wrapped in CFRP at
several places in two of the columns. Over a period of 8 years, the humidity and
development of cracks were investigated in the columns. The results showed
that the CFRP wrap might reduce the rapidity of the crack propagation and
prevent further cracking in existing cracks. In addition, it was found that the
transverse compressive forces due to ASR were not extensive enough to reduce
the expansion in the columns, which needs compressive stresses at 3-5 MPa.
This led to the conclusion that it is not necessary to provide additional CFRP
on the columns unless there are significant signs of further expansion of crack
widths [35].

The condition of the columns is not treated further in this study.

4.2.2 Condition of the Bridge Deck

Core samples have shown that the bridge deck is subjected to severe ASR dam-
age. Both STD tests and microscopy studies show that the bridge deck is more
exposed to ASR than the beams. It is found horizontal cracks in core samples
and newly casted concrete has needed replacement [36].

An intact and adequate condition of the bridge deck is necessary to transfer
horizontal moments and in-plane stresses. Though, this assignment mainly fo-
cuses on the beams and the load bearing capacity in the longitudinal direction
where the condition of the deck probably has a modest influence [33].

4.2.3 Condition of the Beams

During an inspection done by Aas-Jakobsen in 2012 [32], it was discovered large
cracks up to 6 mm in the inner beams about 4.5 m from the columns. The
largest cracks were found in the western beam between axis 3-4 towards axis
4, and the eastern beam between axis 6-7 towards axis 7. See figure 4.10 for
locations of critical cracks. At these mentioned parts, it was typically only one
extensive crack which was propagating continuously throughout the cross sec-
tion.
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Figure 4.10: Locations of severe cracks in Elgeseter Bridge [32]

At sections 4.5 m from the columns, the moment due to self weight is zero. As
a consequence of this, the amount of reinforcement in these sections is as mod-
est as only 3Ø32 in the bottom of the beams. As explained earlier, the inner
beams are subjected to a tension force due to the ASR expansion in the outer
beams and bridge deck. At these originally zero moment sections, the amount
of reinforcement is not sufficient to handle neither the additional tensile forces
nor the acting moment, which leads to extensive cracks in these sections.

Figure 4.11: Severe cracks found in zero moment section north of axis 8 [32]

Smaller cracks were found in the middle of the spans, with a magnitude of about
2 mm. These cracks were typically closed at the top and bottom of the beams
with its largest width in the middle, which is not typical for a flexural crack.
The shape of these cracks is a result of the effect ASR has on the reinforcement.
When the concrete expands due to ASR, the reinforcement will be strained,
causing an effect similar to pre-tensioned reinforcement. This will cause the
crack to close at the height of the rebars [32].

4.2.4 External Carbon Fiber-Reinforcement at Beams

As the cracks detected in the inner beams had a magnitude that might have
been crucial for the capacity of the beams, it was decided to reinforce the most
critical cracks with CFRP. The beams are strengthened with externally bonded
carbon fiber reinforced polymers (CFRP). The fiber-reinforcement chosen for
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flexural capacity was Sika CarboDur M, placed in the beams longitudinal di-
rection at the soffit. SIKA Wrap Hex-230C was used as shear reinforcement,
placed at the sides of the beams with an angle of 45 degrees. The CFRP was
bonded with epoxy. Figures 4.12, 4.13 and 4.2.4 shows the details of the chosen
CFRP reinforcement [34]. The flexural reinforcement is anchored 200 mm from
both columns, while the shear reinforcement was placed only at the areas with
severe cracks.

Figure 4.12: Details of CFRP reinforcement from the side of the beam [34]

Figure 4.13: Details of CFRP reinforcement at cross section of beam [34]
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Figure 4.14: Details of CFRP reinforcement at the beam seen from underneath
[34]

The fiber reinforcements are placed differently in the east-facing and west-facing
beam. On the east-facing beam both flexural and shear reinforcement are placed
in span 3, span 6 and span 8. Whereas for the west-facing beam is strengthened
in span 3, span 4 and span 6, but in span 3 there is only the externally bonded
shear reinforcement.

Different rehabilitation measures of the beams were considered prior to the ap-
plication of the CFRP, such as external post-tensioning. This was considered
to be an uncertain solution due to the alkali-silica reactions in the bridge. By
post-tensioning the bridge at confined areas, the effects from expansions due to
ASR might contribute to higher stresses at other locations of the bridge [34].
It was also considered to mechanically anchor the CFRP, but problems such as
limited cover for the reinforcement and a considerable amount of reinforcement
made solutions with anchoring unfavorable. The chosen solution was considered
to be sufficient due to its anchoring of the CFRP in the beam’s compression zone
and CFRPs favorable effects on ASR such as possible restraining of additional
expansion.

4.2.5 Development of ASR in Elgeseter Bridge in the Future

There are not documented any instances where alkali-silica reactions cease in
Norway. For a structure that is not restrained, the expansion is assumed to con-
tinue unlimited. Otherwise, it is presumed to stop if the compressive stresses
are about 3-5 MPa in a given direction [32]. Further expansion can also be
prevented if the humidity and/or the alkalinity is reduced in the concrete. Un-
less measures are taken to reduce the ASR expansion in the bridge, one should
assume that expansion continues.

Results from a report of The Norwegian Public Road Administration shows
that the expansion joint only had a reduction of 3 mm in 2012 compared to
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2004, compared to Aas-Jakobsen’s measurements that showed a 10 mm reduc-
tion from 2003 to 2013 [32], [35]. The Norwegian Public Road Administration
concluded that their measurements indicated that the expansion of the bridge
deck has stopped [35]. This illustrates the difficulties of measuring the expansion
joints due to many uncertain factors, and as well as the difficulties of concluding
further expansion of the bridge based on measurements, especially when only
looking at a short period of the bridge’s lifetime.

The consequences of further expansion of the bridge might be continuous crack-
ing due to ASR which can lead to frost damage and corrosion of the concrete
[35]. As well, the alkali-silica reactions may reduce the strength of the concrete.
The zero-moment areas are especially prone to further axial forces which may
lead to rearrangement of forces in the bridge. These possible outcomes present a
great uncertainty of the future capacity of Elgeseter Bridge. The consequences
may be on a scale that it is sensible to consider that the expansion of the bridge
due to ASR continues in its service life.

Trøndelag County Council has evaluated the expansion with bolt measuring
equipment that was installed in the bridge deck in 1991. It was found that the
average expansion in the longitudinal direction was 1.2 mm each year by these
measurements. Also, the average reduction in the opening of the expansion joint
was 2.1 mm each year, based on collected measurements since 1951. In light of
these results, it was concluded that one should expect additional expansion of
50 mm during the bridge’s lifetime, and that possible expansion as of today is
200 mm. This would mean a total expansion of 250 mm is predicted [37].
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Load Situation for Elgeseter
Bridge

Load calculations and capacity control of Elgeseter Bridge is thoroughly done in
the previous master thesis of Stemland and Nordhaug [4] as well as Myklebust
[5]. The background for these calculations will be given in this section and the
results will be evaluated and used later in this report.

5.1 Guidelines

During the construction of Elgeseter Bridge in 1951, the guideline NS 427 was
used. In 1973 this was replaced by the guideline NS 3473 [38] which was used
until the Eurocode was introduced in 2010. NS 3473 has been renewed several
times in its service life and the last edition was published in 2003. There are
some differences in these regulations and it is recommended to use the current
building code of the time the bridge was made when performing a bridge clas-
sification.

Since Elgeseter Bridge was build before NS 3473 was published, the first edition
should be used for the bridge classification. Despite this, the evaluation done by
Stemland and Nordhaug [4] is performed after the newest version of NS 3473.
In addition, they have supplemented their calculations with today’s rules in the
Eurocode. Handbooks published by The Norwegian Public Road Administra-
tion are also used in the study. These are Handbook N400 [39] regarding bridge
design and Handbook R412 [40] regarding bridge classification.

5.2 Materials

5.2.1 Concrete

The Norwegian Public Road Administration has provided guidelines for existing
bridges [40]. According to this, Elgeseter Bridge has concrete of class A with
reference to NS 427. Transferred to the classifications in NS 3473 of concrete
quality, this is a C25 concrete, which provides a characteristic cubic strength of

35
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25 MPa.

However, it is expected that the ASR-damage has reduced the strength. During
the rehabilitation of the bridge in 2014-2015, core samples were drilled out and
tested. This was done during a special investigation in 2019 as well.

The results from the inspection in 2014 gave a mean value of 36.8 MPa and
a standard deviation of 9.1 MPa. By following the NS 3473, 11.1.3, the most
important resulting strengths were calculated and they were a little higher com-
pared to the strength of a C25 concrete, but not of a significant magnitude. As
the test-results and the computed ones correspond quite well, it seems safe to
use a C25 concrete in the calculations.

One interesting aspect to consider, is the high deviation in the test samples. It
is almost twice as big as in other general cases. The high variation can indi-
cate that the effects of ASR are different over the bridge due to locally varying
amounts of reactive aggregates. Based on the tests from 2014-2015, this could
mean that the strength is reduced by 60% at the most exposed areas.

For the plate and the beam it is assumed a C25 concrete with the following
properties:

Compressive cylinder strength fck 20.0 MPa
Compressive cubic strength fcck 25.0 MPa

Structural strength fcn 16.8 MPa
Tensile strength of concrete fctk 2.10 MPa
Structural tensile strength ftn 1.40 MPa
Material factor for concrete γc 1.4
Design compressive strength fcd = fcn/γc 12 MPa

Design tensile strength ftd = ftn/γc 1.0 MPa

Table 5.1: Properties of concrete C25

The short-term Young’s modulus of the concrete is calculated by point 9.2.1 in
NS 3472. This is found to be:

Ec = 23300MPa

Since ASR-loading is a long-term load, it is necessary to calculate the reactions
with the long term Young’s modulus, which is found by equation (5.1)

Ec,longterm =
Ec,shortterm

1 + φ
(5.1)

With creep number φ = 2. This is based on an estimation of the concrete qual-
ity and the degree of damage. The long term modulus becomes:

Ec,longterm = 7766 MPa
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5.2.2 Reinforcement

In the bridge, it is used smooth steel bars with two different steel strengths,
St. 52 and St.32. Since the main longitudinal reinforcement, as well as the
transverse reinforcement, is made of St. 52, this quality is used for the entire
reinforcement.

Referring to Lyse and Wige’s book [41] typical work diagrams for different steel
qualities are shown in figure 5.1.

Figure 5.1: Work diagrams for steel strengths [41]

The yield strength of St. 52 is set to 340 MPa. The fracture strain is estimated
to 1h, which also is the limit defined by NS 3473 [38]. The steel’s Young’s
modulus is 200 000 MPa with characteristic yield strain of 1.0h.

fsk 340 MPa
γs 1.25

fsd = fsk/γc 272 MPa

Table 5.2: Steel St.52 properties

Elgeseter Bridge is exposed to splashes and the exposure class is determined to
be XD3 in NS 3473. This class of exposure is recommended to have a cover of
50 mm. Aas-Jakobsen suggests a cover of 55 mm for the beam [34] and this is
used further in the calculations.

5.3 Cross-section

Over the beams there is a variation in thickness of the bridge deck. At both
ends the thickness is 150 mm, while in the middle the thickness is 380 mm. This
is simplified to a uniform thickness of 280 mm.

The cross-section of the bridge is consisting of four T-beams. The web has a
width equal to 800 mm. The flange in each T-cross-section has a length of 5500
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mm, which also is the center distance between the beams. The total height of
the cross-section is 1710 mm, where the web is 1430 mm and the plate is 280
mm. The mass center is placed 1206 mm from the lower face of the cross-section.

Figure 5.2: Simplified cross-section

These simplifications of the cross-section are counting for all the beams and are
also used by Aas-Jakobsen [34] in their calculations.

5.4 Loads

The handbook N400 [39] gives a categorization of different load types depending
on their variation over time. It is four main classifications separating the loads
into permanent loads, variable loads, deformation loads and accidental loads.

This has been used in the previous investigation done by Stemland and Nord-
haug [4]. The different loads have been analyzed in a Robot model to find the
acting moments. The bridge was analyzed with its total length and width, in-
cluding columns. The cross-section of the bridge in the model is corresponding
to the cross-section shown in figure 5.2. Columns were fixed at the bottom and
monolithically cast to the beams. Furthermore, the bridge was fixed at axis
1 and had roller supports at axis 10. To simulate the different stiffnesses in
the bridge due to the altering amount of reinforcement along the bridge, the
stiffness was modified in different sections [4].

The highest moment occurring in different sections for different loads are re-
ported below. Only the temperature load will have an impact on the section of
zero moment.
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5.4.1 Permanent Loads

The permanent loads include the self-weight and the super-self-weight. The
super-self-weight consists of weight due to permanent elements such as the coat-
ing on the road, crash barriers and banisters. According to the computational
models done by The Norwegian Public Road Administration, the self-weight for
one beam with a concrete-density of 25 kN/m3 is modeled as 70 kN/m [33].
The super self-weight depends on whether it is the inner or outer beam that is
considered. The inner beams have a super self-weight of 20 kN/m whereas the
outer beams have a super self-weight of 28 kN/m.

The resulting moments and shear forces due to permanent loads are reported
in table 5.3 and 5.4.

Section Moment [kNm]
Support 1 -2995

Support 2-8 -3480
Support 9 -4086

Field 1 1497
Field 2-8 1740
Field 9 2827

Table 5.3: Design moments, permanent loads

Section Shear force [kN]
Support 2-8 935
Support 9 961

Zero moment section, field 6 606
Zero moment section, field 8 631

Table 5.4: Design shear forces, permanent loads

5.4.2 Traffic Loads

For calculation of the traffic load on existing bridges, the Handbook R412 chap-
ter 3 is used [40]. Traffic loads arise from vehicles, cyclists and pedestrians
placed in the driving lane, hard shoulder, cycle track and sidewalk. Since the
load can be at several places, the worst placement for the inner and outer beam
must be investigated. The bridge must be classified in a way that reflects the
amount of traffic load allowed. This is done by calculation controls after the
partial factor method and assures that the decisive load effects do not exceed
the resistance capacity. Elgeseter Bridge is characterized as class Bk 10/50 and
this is used to find the suited load situation.

The traffic load must be defined for both the longitudinal and the transverse
direction. R412 gives six different load models which is listed below:

• Wheel load model

• Axle load model
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• Bogie load model

• Triple bogie load model

• Vehicle load model

• Lorry load model

Commonly, in long-spanning structures it is the vehicle load model or the lorry
load model which is decisive. For Elgeseter Bridge the lorry load model is the
most critical one. This load consists of distributed loads as well as an axle load
found for bk 10. The dynamic impact is included in all the loads given in the
handbook R412.

According to the handbook, R412 [40], maximally two lanes can be loaded with
traffic load form a vehicle. There is no other specification about the placement
and according to the research done by Stemland and Nordhaug [4], two trucks
being placed in different lanes at each side of a support creates a critical situa-
tion.

Both breaking and acceleration over the road will induce horizontal traffic loads
on the bridge. Furthermore, there are centrifugal and transverse forces. As
Elgeseter Bridge is simply supported in one end, Myklebust states that the ef-
fects due to horizontal traffic loads in the longitudinal direction can be neglected
[5].

Due to a recommendation in N400, it is not necessary to calculate snow together
with traffic and since this is a highly trafficked bridge, there is no need to
calculate the snow load at all.

This acting moments and shear forces due to traffic are found in table 5.5 and
table 5.6.

Section Moment [kNm]
Support 1 -2895

Support 2-8 -1805
Support 9 -1884

Field 1 1587
Field 2-8 2257
Field 9 2618

Table 5.5: Design moments, traffic load

Section Shear force [kN]
Support 2-8 661
Support 9 666

Zero moment section, field 6 456
Zero moment section, field 8 460

Table 5.6: Design shear forces, traffic load
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5.4.3 Wind Loads

Depending on if there is traffic or not, the load on the sidewalk and the wind
load will vary in magnitude. The wind load will affect the bridge both in the
vertical and horizontal directions. Since this load situation will most likely not
be decisive, only the vertical load effects are studied.

The calculations are based on NS-EN 1991-1-4 [42] in combination with Hand-
book N400 [39]. Elgeseter Bridge is classified as bridge type 1 which neglects
the dynamic response. Properties have been estimated based on the location of
the bridge, wind direction, terrain and environment.

For the calculations, a reference area of the bridge has been used. This is defined
by the area in the relevant direction of the wind over a reference length of 1 m.
The area will depend on if there is traffic load working simultaneously.

The resulting moments and shear forces are reported in the tables below de-
pending on whether it is traffic or not:

Without traffic

Section Moment [kNm]
Support 1 -518

Support 2-8 -333
Support 9 -386

Field 1 326
Field 2-8 483
Field 9 464

Table 5.7: Design moments, wind load without traffic

Section Shear force [kN]
Support 2-8 90
Support 9 58

Zero moment section, field 6 92
Zero moment section, field 8 60

Table 5.8: Design shear forces, wind load without traffic

With traffic
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Section Moment [kNm]
Support 1 -307

Support 2-8 -198
Support 9 -229

Field 1 193
Field 2-8 287
Field 9 275

Table 5.9: Design moments, wind load with traffic

Section Shear force [kN]
Support 2-8 90
Support 9 58

Zero moment section, field 6 92
Zero moment section, field 8 60

Table 5.10: Design shear forces, wind load with traffic

5.4.4 Thermal Loads

Thermal loading occurs in the structure since the concrete will expand when
heated and shrink with decreasing temperatures. A free structure will elongate
as a result of high temperatures. The thermal loads are divided into different
impacts:

• Evenly distributed temperature

• Vertically varying temperature

• Horizontal varying temperature

• Difference in evenly distributed temperature over different structure parts

• Difference in temperature over wall thickness between inner and outer
walls

Since temperature loads are assumed not to be decisive for Elgester Bridge, it
seems sufficient to control only evenly and vertical varying temperatures. The
loads are obtained from Stemland and Nordhaug [4] and calculated after NS-
EN-1991-1-5 [43].

To find the thermal effects due to an evenly distributed load, the values for the
highest and lowest temperatures are defined. This is done by following point 6.1
where Elgeseter Bridge is categorized as type 3 as it is a beam-bridge in concrete.

Vertical variation of temperature gives a variation in expansion and contraction
as well. Forces will be induced if the cross-section is retained for curving or
friction in the rotation supports.

With both the thermal effects considered together, different combinations occur:
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Section Moment [kNm]
Support 1 -1037

Support 2-8 -1087
Support 9 -1296

Field 1 -1926
Field 2-8 -1922
Field 9 1254

Zero moment 1922

Table 5.11: Design moments, temperature load

Section Shear force [kN]
Support 2-8 30
Support 9 20

Zero moment section, field 6 30
Zero moment section, field 8 20

Table 5.12: Design shear forces, temperature load

5.4.5 Deformation Loads

The deformation loads consist of creep and shrinkage. The effects due to creep
are maintained by using the long-term E-modulus in the calculations based on
an estimated creep number. The shrinkage of the concrete is not calculated in
specific because Elgeseter is an outdoor bridge in a moist climate. Despite this,
the shrinkage will work opposite of the expansion due to ASR, so that when
measuring the expansion, a contribution may be missing and ASR effects are
higher than assumed.

5.5 Load-combinations in ULS

Rules for load-combinations are found in Handbook R412 [40]. Decisive load-
combinations of characteristic loads are used in dimension calculations. The
goal is to find the worst case scenario for the structure by combing different
loads with load factors. Stemland and Nordhaug performed the control only in
the ultimate limit state [4].

Two sets of load-combinations were controlled, a and b. The differences be-
tween the two combinations are the load factors for self-weight and for variable
loads. The loads were combined with different load factors and with different
unfavorable main loads.
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Combination SW DEF TR TEMP W W-TR
ULSa-TR 1,15/1,0 1,0 1,3 - - -

ULSa-TEMP 1,15/1,0 1,0 - 1,0 - -
ULSa-W 1,15/1,0 1,0 - - 1,6 -
ULSb-TR 1,0 1,0 1,2 0.8 - 0,8
ULSb-W 1,0 1,0 - 0,8 1,3 -

ULSb-W-TR 1,0 1,0 0,8 0,8 - 1,3

Table 5.13: Load factors for different combinations

By controlling the different load-combinations, the worst combination is found
for each section. Regarding the decisive moments, the ULSb-TR combination
is the worst for all the section, except the section of zero moment. ULSb-TR is
the combination with dominating traffic load. In the section of zero moment,
the ULSa-TE is the worst, where the temperature load is dominating.

Section Moment [kNm] Load Combination
Support 1 -7544 ULSb-TR

Support 2-8 -6674 ULSb-TR
Support 9 -7567 ULSb-TR

Field 1 5097 ULSb-TR
Field 2-8 6216 ULSb-TR
Field 9 7192 ULSb-TR

Zero moment 1922 ULSa-TE

Table 5.14: Decisive load combination, moment

For the decisive shear force, the ULSa-TR gave the worst scenarios.

Section Shear force [kN] Load combination
Support 2-8 1935 ULSa-TR
Support 9 1971 ULSa-TR

Zero moment section, field 6 1290 ULSa-TR
Zero moment section, field 8 1324 ULSa-TR

Table 5.15: Decisive load combination, shear forces

In addition to the acting loads considered in this chapter, the effects of ASR
must be quantified.



Chapter 6

Design of External Fiber
Reinforcement

As for today, there are no official standards for design rules for externally bonded
carbon fiber reinforcement in Norway. A new annex for EC 1992-1-1 is under
development and is based on the technical report Fib Bulletin 90 (2019) [18].
To evaluate the capacity in ULS of the strengthened parts of Elgeseter Bridge,
design rules from Fib Bulletin 90 is considered with a focus on the draft of the
new annex in EC 1992-1-1. These design rules are presented in the following
chapter.

6.1 Anchorage Capacity

To prevent debonding of the externally bonded reinforcement the FPR material
must be properly anchored by introducing a bond length. This must be able to
transfer the maximum force between the FRP reinforcement and the concrete.
The effective bond length gives a minimum demand to ensure this and must
therefore be verified.

The maximum force taken by the external FRP depends on the stress in the
FRP, the cross-sectional area and the bond length. The attained force can in-
crease up to a certain value proportional to the extended bonded length. Up to
one point, the force will remain approximately constant as the bonded length
still increases. The length at this certain point is referred to as the effective
bond length le.

45
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Figure 6.1: Maximum stress transmitted by FRP strengthening in the case of
lb > le [18].

The effective bond length can also be defined from the τ − s constitutive law of
bonding. By this law, the length must be able to take the ultimate slip s0 in a
bond-slip test. The other parameter is the shear stress, which gives a perspec-
tive of the bond strength. These characteristics together with the FRP stiffness
define the effective length. In addition to the relations in the constitutive law of
bonding, it is derived from the boundary conditions and by using the assump-
tion of a rigid-softening bi-linear law.

le =
π

2
·
√
Ef · tf · s0

τb1
(6.1)

Since the relation between deformation capacity and strength of the system
gives the fracture energy, one can also define the effective length from this value.

le = π · s0 ·

√
Ef · tf
8 ·Gf

(6.2)

The fracture energy can also be written directly as a function of the mean
compressive- or tensile strength of the concrete. This is due to the bond strength
itself, τb1, which depends on the concrete strength and the fracture energy
which correlates only with the strength of the adhesives and the concrete. This
is regardless of the relationship between slip and strength, assuming a proper
application of the external FRP. The fracture energy can now be written as:

Gf = k2
b · k2 · fc

2
3
m (6.3)

Where kb is a shape factor

kb =

√√√√2− bf
b

1 +
bf
b

(6.4)

bf and b is the width of the FRP plate and the width of the concrete, respec-
tively. k is a coefficient accounting for the assumed value of the ultimate slip,
s0 = 0.025, and varies for mean and characteristic values. Combining 6.2 and
6.3 the effective length can be written as:
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le =
π

kb
·
√
Ef · tf
8 · fc

2
3
m

(6.5)

For mean value with k = km = 0.25

le = 1.5 · π
kb
·
√
Ef · tf
8 · fc

2
3
m

(6.6)

For characteristic value (5%) with k = kk = 0.17

6.1.1 Debonding at End Anchorage Zone

The definitions in the previous section lay the basis for the simplified method in
Eurocode 1992 1-1 for calculation of the anchorage capacity [18]. Verifications
must be done by evaluating issues related to peeling-off and cover separation.
Peeling-off can be controlled by checking the reinforcement’s ends as in a bond-
test. This will ensure that the capacity in the anchorage is sufficient depending
on the bond length. The cover-separation is treated in section 6.3.3 [18]. To be
able to verify the issues the ultimate strength of the bond must be known.

The maximum tensile stress ffb and the maximum tensile force Ffb obtained in
the fiber defines the capacity of the anchorage and is given as:

ff b(lb) = βl(lb) ·

√
2Ef ·Gf

tf
(6.7)

Ff b(lb) = βl(lb) · bf ·
√

2Ef · tf ·Gf (6.8)

The beta factor depends on the bonded length.

β1 =

{
lb
le
· (2− lb

le
) < 1 for lb < le

1 for lb > le
(6.9)

Rewritten with the earlier definition of fracture energy eq.(6.3), the mean debond-
ing strength and the characteristic debonding strength is given respectively:

ff bm = km · kb · βl

√
2Ef
tf

fc
2
3
m (6.10)

ff bk =
kk
γf b
· kb · βl

√
2Ef
tf

fc
2
3
m (6.11)

The design bonding strength can be achieved by dividing kk with the safety
factor γfb.
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6.1.2 Debonding at Intermediate Cracks

Intermediate debonding is the same process as end debonding, just located
another place. Therefore, the maximum strain in the fiber can be used to
control this failure as well in a simplified approach. The strain in the FRP
can become larger at the intermediate part of the beam compared to the end.
This is due to the unfavorable local mechanism at the end of the bond. The
maximum strength found in section 6.1.1 for end debonding must therefore be
corrected by a factor, kcr. The requirement for the ultimate strength is now
given as:

ffbm,IC = kcr,m · ffbm (6.12)

ffbk,IC = kcr,k · ffbk (6.13)

ffbd,IC =
kcr,k
γf b

· ffbk (6.14)

Where kcr,m = 2.1 and kcr,k = 1.8. The subnote IC refers to intermediate
cracks. By using the safety-factor we obtain the design value of the bond
strength. This value limits the ultimate bending moment.

6.2 Moment Capacity in ULS

Concrete beams subjected to bending can be strengthened by FRP reinforce-
ment at the tension zone with fibers in the direction of the tension force resul-
tant. This increases its flexural capacity, but the increase in stiffness may reduce
the deflection of the beam. The FRP reinforcement may therefore reduce the
ductility of the concrete beam and lead to a brittle failure mode. Furthermore,
the beam commonly achieves more but smaller cracks. Typically the failure
mode due to bending moment emerges as debonding of the FRP reinforcement
occurring after steel yielding. Debonding modes that happen in beams sub-
jected to bending are intermediate crack debonding and end debonding. Other
flexural failure modes that may occur are steel yielding followed by either con-
crete crushing or FRP rupture and concrete crushing before steel yielding [18].
Such failure modes need to be controlled according to Eurocode 1992-1-1 [44].

To analyze the ultimate limit state of beams under these conditions, it is re-
quired that the issue of debonding is given particular attention and that the
contribution of the FRP reinforcement is properly considered. Besides, several
assumptions need to be taken into account, mentioned in section 3.1.1.

The analysis is based on the assumption that plane sections remain plane and
strain compatibility with full composite action, requiring that at each cross-
section of the beam the applied load is lower than the designed resistance.
Furthermore, the analysis is based on horizontal and flexural equilibrium. For
a full analysis of the ultimate limit state of the beam, shear resistance should
also be considered, further discussed in section 6.3.
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6.2.1 Intermediate Crack Debonding

The concept of intermediate crack debonding was discussed in section 3.3.3.
The bond behavior is based on the theory of shear-stress slip relation. Fib Bul-
letin 90 [18] discusses two different methods for ULS calculations of intermediate
crack debonding; simplified and accurate. The simplified method is conservative
and based on ultimate strain state, while the accurate method is based on force
differences at intermediate crack elements.

Simplified method

This method is more conservative since strains are typically lower than assumed
by this method. It assumes that end debonding failure is designed to not occur.
It is based on the stress of the FRP, eq. 6.12, 6.13 and 6.14 found in chapter
6.1.2, simplifying the analysis to a flexural load-bearing capacity.

Applying the simplified method, the stress capacity of the FRP at ULS is the
minimum of the bond strength in intermediate crack debonding ffbd,IC found
in section 6.1.2 and the design tensile strength ff d.

More accurate method

This method is based on the change of the tensile force between cracks, which
must be lower than the bond resistance. Each concrete element between cracks
in the structure should be considered, and the transmission of bond stress should
be used to estimate the ultimate limit state values. In this way, the necessary
shear force the FRP needs to transfer to the concrete element can be obtained.
The resistance of stress change in the FRP between two cracks is correlated to
the bond-slip law, the distance between cracks and the stress level of the FRP.

Figure 6.2: Illustration of tensile force FfEd in the CFRP

The change in the design FRP bond force over a element between two cracks is
predicted by:

∆FfEd = FfEd(x+ sr)− FfEd(x) (6.15)

Where sr is the average crack spacing, which could be found by a detailed anal-
ysis, or with the simpler estimation; sr = 1, 5 · le,0. le,0 is the transfer length of
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the reinforcing steel, which can be found by the following analysis.

le,0 =
Mcr

zs · Fbsm
(6.16)

Where Mcr is the cracking moment, zs= 0,85h and Fbsm is the bond force per
length.

Mcr = κfl · fctm ·Wc,0 (6.17)

The factor κfl is a constant depending on the bond conditions of the longitudinal
rebars. Fbsm can be obtained by:

Fbsm =

n∑
i=1

ns,iπφs,i · fbsm (6.18)

Where ns,i is the number of steel rebars, φs,i is the bar-diameter and fbsm is the
mean bond stress of the reinforcing steel, depending on compressive strength
and bond conditions.

The FRP force, FfEd(x), can be found by the acting bending moment and geom-
etry of the structure and depends on the tensile strength of the reinforcing steel.

FfEd(x) =

{
∆MEd(x)

zm
· dfEfAf

dfEfAf+dsEsAs
for σs(x) < fyd

MEd(x)
zm

−As · fyd for σs(x) = fyd
(6.19)

∆MEd is defined as the additional bending moment after application of CFRP,
such that ∆MEd = MEd −MEd,0.

The resistance of change in tensile forces in the FRP is given as:

∆FfRd =
∆Ffk,B + ∆Ffk,F + ∆Ffk,C

γfb
(6.20)

∆Ffk,B represents the transmission bond strength due to the adhesive of the
FRP. ∆Ffk,F is the bond strength due to the friction in the intermediate layer,
while ∆Ffk,C is the bond strength due to the curvature of the element between
intermediate cracks.

Assuming the resistance is a sum of these three components, one can estimate
the design bond resistance force which may limit the moment capacity. The
verification of the bond transmission strength can be obtained by two different
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approaches.

The most accurate method applies detailed calculation methods to obtain ∆Ffk,B ,
∆Ffk,F and ∆Ffk,C . Change in bond strength due to the adhesive can be found
by using a bilinear approach of the bond law, and depends on the width and
thickness of FRP, tensile load at the lower stressed crack, ultimate strength of
FRP strip, maximum shear bond stress and ultimate slip. ∆Ffk,F depends on
bond friction strength, stiffness of the FRP, ultimate slip, thickness and width
of the FRP, crack spacing and tensile force of the FRP. Change in bond strength
due to member curvature is correlated to characteristics such as crack spacing,
the strain of concrete, width and thickness of FRP and strain of FRP at the
lower stressed crack. The weakness with this method is its dependence on the
tensile load of the FRP at the stressed crack, and as a consequence the super-
position principle is invalid. This method will not be further discussed in this
assignment.

As an alternative to the detailed method, one can use a more simple and con-
servative method. In this analysis, it is assumed that the strain of steel rein-
forcement is evaluated and that the strain of the FRP is not larger than 0.01
or fbd/Ef at any point in the structure. Elements between cracks start at the
crack at the location of the maximum moment and end at the crack closest to
the position of the zero moment. The simplified method states that:

∆Ffk,B = 2.3 · τb1k
√
sr · bf (6.21)

∆Ffk,F = 0.1 · τbFk · s4/3
r · bf (6.22)

∆Ffk,C =
κh
h
· s1/3
r · bf (6.23)

Whereas τb1k is the characteristic maximum shear bond stress and τbFk is the
characteristic bond friction strength. The values 1.3 and 0.1 can be replaced
with 1.85 and 0.095 to achieve mean values, respectively. κh = 2000 for rein-
forced concrete and κh = 0 for prestressed reinforced concrete since the curva-
ture is assumed to be small.

6.3 Shear Capacity in ULS

6.3.1 General Procedure

Shear strengthening is achieved by applying FRP systems externally to the
member as mentioned briefly in section 3.1. Eurocode 1992-1-1 [44] is still
used for calculations regarding shear resistance of FRP strengthened reinforced
concrete beams. This also includes all practical detailing rules. Additional re-
quirements are needed if the members also have adhesively bonded longitudinal
reinforcement as shown later.
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When applying FRP, the members are often reinforced concrete members mean-
ing that all the internal steel is already placed in the member. The strengths
must be verified due to new loads or detoration and eventual deviations from
the capacity must be covered by additional external reinforcement. It is also
important to do a shear resistance analysis after attachment of flexural bond-
ing. This is to prevent that shear failure is the dominant failure mode and if so,
this must be avoided by applying additional shear reinforcement. If it is a need
for external reinforcement, the contribution of shear strength from the fibers is
added to the strength of the steel shear-reinforcement:

VRd = VRd,s + VRd,f (6.24)

Following the procedure in Eurocode 1992-1-1 [44], the first calculation should
be regarding the requirement of design shear reinforcement. As long as the act-
ing shear force VEd is lower than the shear resistance VRd,c after strengthening
there is no need for design shear reinforcement in addition to the minimum de-
mand.

In the case of calculating VRd,c for a member with FRP strengthening in the
longitudinal direction, the area of FRP shall not be included in the area of ten-
sile reinforcement Asl.

Cases where the internal shear steel reinforcement is not enough to cover the
minimum demand, FRP material must be applied to achieve adequate shear
reinforcement. Besides, there is a requirement given in Eurocode 1992-1-1 [44]
that states that half the minimum reinforcement should be internal stirrups and
not other rebars. If this does not apply for the member, FRP must be applied
to fulfill the demand.

If the concrete member needs externally bonded FRP, controls must be done
concerning insufficient shear capacity and in regards to flexural debonding. The
latter only applies for members having flexural FRP strengthening while verifi-
cation in relation to insufficient shear capacity regards all cases [18]. Insufficient
shear capacity indicates that shear cracks are appearing in the member and can
lead to brittle failure.

6.3.2 Shear Strengthening in Relation to Insufficient Capacity

The contribution from the FRP systems to the total shear strength is treated
similarly as the steel reinforcement. VRd,f is the design shear force taken by
FRP and gives a contribution to the total VRd for the member. The shear force
taken by the FRP is given as:

VRd,f =
Afw
sf

hf · ffwd · (cot θ + cotα) sinα (6.25)

Where
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- Afw is the area of the externally bonded reinforcement measured perpendicular
to the direction of the fibers.
- sf is the spacing of strips parallel to the member’s length axis
- hf is the height of FRP crossing the shear crack
- α is the angle between fibers and the member’s axis perpendicular to the shear
force
- ffwd is the design value of the average stress on the FRP intersected by the
shear crack.
- θ is the inclination of the strut in the truss model.

Figure 6.3: FRP shear reinforcement [18]

The values of the parameters strongly depend on the details of the FRP system.
Important factors are the degree of bonded area, the number of FRP layers (as
many layers will reduce the effective thickness) and the configuration of the sys-
tem. In section 3.1, three configurations of shear reinforcement were introduced;
complete wrap, U-wrap and side-wrap. The choice of configuration has a huge
impact on the design value of the average stress.

For a closed FRP configuration, the design value of the stress becomes the
highest, hence this is the most favorable. Calculations of the system’s strength
ffwd is taking into account the non-uniform stress distribution in the FRP over
a shear crack as well as bending of fibers around the corners of the cross-section
by introducing the factor kr. A long-term factor, at, is also accounted for.

ffwd = ffwd,c = kr · at · ff d (6.26)

The U-wrap configuration covers three sides and will not provide the same
strength as the closed system, fwd,c. This is due to that the bond strength,
ffbwb, is often lower and thus will be the design strength for the fiber. The
bond strength will strongly vary with the bond length. To verify that the bond
length is ≥ le the conditions in equation (6.27) must be satisfied.

hf/ sinα ≥ le and le ≥ sf/(cot θ + cotα) sinα < hf/ sinα (6.27)

If all the external shear reinforcements have lb ≥ le, the bond strength is equal
to ffwd determined by the bond-slip law, where the characteristic bond strength
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is obtained by equation (6.11).

ffbwd =
ffbk
γf b

(6.28)

If the bond length in some or all of the fibers is below the effective bond length
the strength is reduced. How much the strength is reduced depends on the
spacing (sf ), the inclination of the crack (θ) and fibers (α), number of strips
in total covering the crack (n) and number of strips with a low bond length (m).

If just some of the strips have a smaller length than le, the second condition
in equation (6.27) will not be satisfied and the bond strength is obtained by
equation (6.29).

ffbwd = [1− (1− 2msf
3le

)
m

n
]
ffbk
γf

(6.29)

Further, if all of the strips have a smaller length than le, none of the conditions
in equation (6.27) will be satisfied and the bond strength is obtained by equa-
tion (6.30).

ffbwd =
2

3

(nsf )/(cot θ + cotα) sinα

le

ffbk
γf

(6.30)

Though, with the right anchorage in the compression zone, a three-sided con-
figuration can reach the strength of a closed system. The anchoring system is
given an effectiveness factor through testing, ka, and can provide up to 90% of
the strength of a closed system.

ffwd = ka · ffwd,c (6.31)

6.3.3 Shear Strengthening in Relation to Flexural Debonding

For concrete members where shear reinforcement is not required based on shear
capacity, shear control must still be performed. The flexural FRP might fail
due to high shear forces providing cracks in the concrete near the end or in the
intermediate part leading to debonding, see section 3.3.3. These problems can
be solved by attaching external shear reinforcement and therefore some addi-
tional requirements must be controlled.

A problem that may occur is a detachment of the concrete cover near the sup-
ports when using flexural FRP strengthening as explained in 3.3.3. To avoid a
failure in the concrete due to tensile stresses, one can attach transverse shear
strips at the end of the flexural FRP. This must be done if the acting shear
force, VEd, is higher than the modified shear strength, VRd,c,fe.

VRs,c,fe = 0, 75[1 + 19, 6 · (100ρs)
0.15

af
]VRd,c (6.32)
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This strength gives an adjusted shear capacity accounting for the distance of
the longitudinal strip from the support and the amount of steel reinforcement.

A simple method to design the strap conservatively is to require that it sustains
the maximum anchorage force possible in the longitudinal strip:

FfwEd = ffbd · bf · tf · tan θ (6.33)

Another method is to design it by taking the difference between the acting shear
force VEd and VRd,c,fe. When applying external strips for this case it will count
as shear reinforcement when calculating shear capacity by equation (6.25) [18].

External straps along the member are also needed to prevent intermediate
debonding due to offset crack edges. If the shear force provides high stresses in
the ties and struts these cracks may occur. A limit is made based on a ratio of
the acting shear, the shear resistance and the tension stress in the existing links.

VEd · σsw
Vrd,max

≤

{
75 MPa for ribbed links

25 MPa for smooth links
(6.34)

Where the stress in the stirrups is given as:

σsw =

√
VEd

Asw

s z · (cotθ + cotα)sinα
(6.35)

Additional shear straps will ensure the tensile resistance of the longitudinal re-
inforcement if the limit is exceeded. These are designed for the value:

VfEd = max

{
Ef ·Af

Ef ·Af+Es·As
VEd

VEd − VRd,max
(6.36)

Regardless of the problems above, all members strengthened with adhesively
bonded longitudinal reinforcement need to have shear straps if the concrete
shear-compression capacity is critical. It occurs when the acting shear force
exceeds the given limit:

VEd ≤ 0, 33 · f
2
3

ck · bw · ds (6.37)

If needed, the shear reinforcement is designed in the same way as above (6.36).
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6.4 CFRP Strengthening on ASR Damaged Concrete

Strengthening structures with fiber reinforcement seem like a promising solution
for ASR-damaged concrete. An external composite material would suppress the
stresses and might be able to limit the damage. CFRP, with its great properties
and the strength-weight ratio, seems like a good choice for strengthening and
extending the service life for ASR-damaged concrete. Some researches report
a high capability to do so, but contradicting results have also been reported.
What can be a challenge is a need for a good adherent with the concrete.

The existing design rules discussed earlier do not apply for concrete with severe
large cracks and damage. This is due to the fact that the theory is based on
an assumption of no severe damage and only small cracks in the structure. In
circumstances with lager cracks, one must execute extraordinary design calcu-
lations. Regarding the alkali-silica reaction, a lot of stresses are induced and
cracks will occur. The effect of an open crack due to further ASR reaction is
hard to characterize and the influence on the fiber’s strength capacity is difficult
to determine. Besides, the question arises of whether FRP strengthening can
prevent the expansion by inducing a contradicting pressure on the concrete [45].

Externally Bonded CFRP at Damaged RC Beams

Elgeseter Bridge is externally reinforced with CFRP at areas with cracks up to
6 mm. As the beams are u-wrapped with CFRP, the condition of the beams
underneath are unknown. This might be a factor of uncertainty regarding the
beams’ capacity in these sections. Considering the typically brittle failure mode
of beams with externally bonded CFRP, it is crucial to know that the applied
CFRP prevents failure and if so, how the structure responds. Large cracks con-
tribute to high local stresses in the carbon fibers and high shear stresses in the
adhesive interface. This may lead to local debonding and following, a propaga-
tion of the crack leading to failure.

An experimental and theoretical analysis conducted by M. I. Kabir et al. [46]
studied three different beams that were loaded up to its ultimate strength and
then repaired using CFRP. The results showed that two of the beams exceeded
its original capacity, while the third only gained 54% of original capacity after
strengthening. All of the beams’ ductility was found to be less than the con-
trol beams and had brittle failure modes. The poor performance of the third
beam was believed to be a consequence of its pre-existing large deformation
and severely large tension cracks. Another discussed aspect is the possibility
of existing yielding in the rebars that led to no contribution in resistance and
higher forces in the CFRP. It was discussed if a greater amount of CFRP would
contribute to a higher capacity. The results from this analysis show that the
severity of the damage is crucial to determine the capacity of the structure. The
reduction in capacity could be catastrophic and the applied CFRP would only
contribute to false security.

Experimental analysis on shear strengthened pre-cracked beams by F. Yu et
al. [47] studied the effects of pre-cracked degree. The study included 18 shear
strengthened beams with different shear span and degree of damage. It was con-
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cluded that the debonding area decreased with decreasing pre-cracked degrees.
In addition, it was found that beams with a high pre-cracked degree (80%)
had a lower increase of capacity than specimens with a low (40%) or no pre-
cracked degree. Following, the beams with a low pre-cracked degree (40%) had
a comparable increase in capacity compared to the non-cracked specimens. This
led to the conclusion that especially in high pre-cracked beams, the degree of
pre-cracking had a great effect on the shear capacity of the strengthened beams.

A third study by O. Bjenddou et al. analyzed strengthened beams with damage
level from 0% to 100% found that all beams exceeded original capacity after
strengthening. Whereas the beam with no initial damage increased its capacity
with 87% and the beam with 100% initial damage increased its capacity with
44%. It was also noticed that the mechanical behavior of all repaired beams
changed from elastoplastic to elastic, and all failures were brittle and sudden.
The conclusion from this study was that beams in all degrees of damage in-
creased its moment capacity when strengthened with CFRP [48].

The conflicting results from the presented analyses demonstrate the uncertain-
ties with this subject. They all indicate that the capacity of the repaired beams
decreases when the damage level is high compared to undamaged beams, but
the results vary. An aspect of this might be a variation of deflection in the
original beam, yielding in reinforcement and sizes of cracks.

Externally Bonded CFRP at RC Beams Subjected to ASR

There are mainly two favorable effects on the ASR damage concrete that is in-
troduced by CFRP. The external material will isolate the concrete and prevents
a moist environment which is necessary for developing ASR. Also, it will reduce
the active stresses caused by ASR by creating a confinement action.

In addition to the formation of cracks, the concrete will continue to expand. A
study done by Diab et al. shows that the degree of expansion in the concrete
has a high impact on the resulting strengthening effect [45]. The magnitude of
the expansion at the time of application is more important than the mechani-
cal properties of the composite material. At the early stages of the expansion,
the effect of CFRP gives a considerable impact on the expansion. The same
research project was done by Diab et. Al shows that concrete cores in an ASR-
friendly environment expanded 0.282% between the first and second month,
while a core with CFRP only expanded in the range of one-tenth of the original
one, approximately 0.024% under the same conditions. Regarding the specimen
strengthened at later ages, the CFRP was considerably less effective since at a
late age the concrete seems to have reached a stable maximum in expansion.
The study shows that applying the CFRP after one month reduces the expan-
sion with 31.4% while applying it after two months it is only reduced with 4.1%
[45].

An investigation on the bond behavior done by Haddad and Al-Sayed [3] sup-
ports the theory that ASR-damage reduces the strength of CFRP strengthen-
ing. Concrete blocks with ASR-damage were tested with CFRP and compared
to non-reactive blocks with the same CFRP solution. The research project re-
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ported that the ultimate bond force of the CFRP was limited to almost 69% as
ASR propagated. They also found clear connections between the reduction in
the ultimate bond force and the bond width, bond length, and ASR-treatment
level.

It is therefore claimed to be a high level of risk connected to the external re-
inforcement of ASR-damaged concrete. The main reason to believe that this
is somewhat dangerous is the lack of data regarding the effects on the bond
behavior to ASR-damaged concrete.

The conclusions made by Haddad and Al-Sayed is stating that the use of CFRP
on ASR-damaged concrete loses its potential when applied on severely damaged
concrete.

This is not enough investigation to place any conclusion about whether CFRP
is a suitable reinforcement method or not. On the other hand, it enlightens the
issues regarding the subject. This will be relevant further in the report regard-
ing the use of CFRP on an ASR-damaged concrete bridge.

The applied CFRP on Elgeseter Bridge is not designed by the proposed new
annex in Eurocode as it was applied in 2014 and the calculations were based on
publication 36 by The Norwegian Concrete Association from 2006. Since then,
the design rules have evolved. Thus, existing design rules are not recommended
to use when the structure is severely damaged. The severity of damage in the
reinforced beams at Elgeseter Bridge is today uncertain. It may be more or
bigger cracks beneath the CFRP compared to when it was applied, and it is
unknown if there is yielding in the reinforcement and if it is contributing to the
load distribution. A method to examine the condition of the beams may be to
use infrared thermography to detect cracks under the CFRP [49]. It is necessary
to investigate the capacity of the beams when including all new information of
the forces acting on the bridge, especially considering the forces due to ASR.
Furthermore, it is important to consider the possible effects due to the large
cracks and the ASR effects on the beams.



Chapter 7

Models in Abaqus/CEA

Abaqus/CAE, “Complete Abaqus Environment”, is a finite element analysis
software suited for modeling, analyzing, and visualizing complex simulations.
Abaqus/CAE is a user-friendly software with many possibilities to design prop-
erties of features such as geometry and material, as well as defining the desired
analysis of the structure. The software consists of different modules where each
module represents a logical aspect of the modeling process, such as defining
material, geometry, mesh, and assembling of different parts. Abaqus/CAE is
considered to be well suited for this problem, considering its ability to create
materials, assemblies and constraints with desired behaviors.

The scope of using Abaqus/CEA is to simulate the behavior of the alkali-silica
reactions in Elgeseter Bridge and its corresponding forces. Self-weight, live load,
and other variable loads are not included in this analysis. The initial analysis
consists of two different models where only expansion from the ASR is consid-
ered to evaluate the reactions in the bridge. The first model is a 3D frame model
of the whole bridge consisting of beam and truss elements. The second is a 3D
solid model of four spans from axis 6-10. The second model is established to
compare the results to the idealized frame model.

When using FEA software, it is important to be aware of the simplifications
that are made and its possible effects. Also, it is important to verify the results
with other calculations. Abaqus/CEA is an FEA software with many possible
approaches to a problem, which requires a high awareness of the choices that
are made and its potential outcome.

To find the effects of ASR expansion on the bridge, there are some important
aspects to be considered to simulate the true reactions. The models are applied
to a variable temperature field to resemble the variations of expansions in the
different parts of the bridge according to figure 4.9. The reinforcement is de-
signed without an expansion coefficient, which will simulate the contribution in
the concrete from the strain of the reinforcement. To achieve realistic effects,
the reinforcement must be modeled as accurately as possible.

There are some limitations in the two different models which makes it difficult
to design all properties and aspects similar. The differences are assumed to
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have a minimal effect on the results and might explain deviations in results. All
material properties and dimensions of the concrete are similar in both models.
Furthermore, only a linear elastic analysis is evaluated in this case.

7.1 Model 1: Frame model

The frame model is based on a suggestion from The Norwegian Public Road
Administration by H. Johansen to be used in further calculations of the bridge
[33]. To take care of the crucial effects of ASR induced expansion, the whole
bridge is modeled with all nine spans and four beams. Due to the complexity
and size of the model, it is beneficial to make it as a simple frame model. In
this way, the running time is less, and it is easier to interpret the results in the
post-processing.

The model is built up by 3D beam- and 3D truss-elements representing the
concrete and reinforcement, respectively. Using beam elements for the concrete
section, the analysis will preserve the classical beam theory in every element.
By using a shear flexible element, the Timoshenko Beam Theory is used and
not Euler Bernoulli’s. This retains Navier’s hypothesis claiming that all plane
sections remain plane, but not necessarily perpendicular to the neutral axis.
This is due to that the shear deformations are accounted for in the Timoshenko
Theory and make the beam lesser stiff compared to Euler Bernoulli Theory.
The effect is important when the beam elements are defined as thick beams.

The beams and their respective part of the plate are formed as longitudinal
elements illustrated in figure 7.1 (a). These are modeled and placed in the
T-cross section’s center of mass. The elements are given the dimension of the
cross-section as shown in figure 7.1 (b).

(a) Frame model with elements (b) Frame model with rendered elements

Figure 7.1: Frame model in Abaqus

To make sure that the beams act in a compatible system, transverse beam el-
ements are connecting the longitudinal beams. The marked lines in figure 7.2
shows how the transverse elements lie between the beams and are placed within
the plate’s thickness. This figure also shows the placement of the reinforcement
as dark circles above and below the mass center. The mass center is indicated
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with a hollow circle below the flange.

Figure 7.2: Placement of transverse elements and reinforcement

The transverse elements will transfer loads between the beams and are sup-
posed to preserve the effect of the stiff and continuous plate in the bridge. If
the inner beam is loaded, the transverse elements will get vertical moments
and shear forces, and the vertical load effects are transferred to the adjoined
beams as presented in figure 7.3. To have good compliance between the lon-
gitudinal elements, as it occurs in reality, the low vertical bending stiffness is
preserved by giving the elements a low height equal to the thickness of the plate.

Figure 7.3: Transfer of vertical loads on the inner beam [33]

If the outer beams are given a higher expansion than the inner beams the trans-
verse elements will get horizontal shear forces illustrated in figure 7.3. This will
preserve the effect that the inner beams are set in tension trying to follow the
outer beams. Providing the transverse elements a considerably great width, a
large horizontal flexural- and shear stiffness is preserved. In this way, the lon-
gitudinal deformations are modeled realistically.
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Figure 7.4: Load effects on transverse element when different expansion occur
in the beams [33]

7.1.1 Elements and Mesh

The 3D-frame model is made in Abaqus, where the beams are made as a lon-
gitudinal beam element in the form of wire elements. In each span, the beam
consists of 1.25 meter long elements, such that span 1 and 9 consists of 17 ele-
ments with a total length of 21.25 m, and the rest of the spans have 18 elements
providing a length of 22.5 m. Some of the elements are divided into smaller
parts to preserve some important effects. This occurs in the area of zero mo-
ment sections, which is placed four meters on each side of the supports and
spans over 0.5 m. These elements have a size of 0.1 m. Also, it is chosen to
separate the beam into support areas and span areas. The support areas are set
to 4 meters on each side of the support, such that the point of zero moments is
in the transition between a positive and a negative moment.

The mesh must coincide with the drawn elements and is set to 1.25 meters and
is adapting to the places where the elements are smaller. The elements used in
the mesh are beam elements B31 which is a 2-node linear beam in space with
shear flexibility.

Initially, the transverse elements are given rectangular cross-sections with a
thickness of 280 mm and a width of 1.25 m, such that the entire surface of
the bridge is covered by these elements. Since the transverse elements need to
preserve the bridge’s bending stiffness and the shear stiffness some adjustment
may be done to the cross-section. This can be calibrated with the solid model
which has modeled the continuous plate directly. The transverse elements are
connected in the mass center of each longitudinal beam and have a length of 4.7
meters.

The reinforcement is included in the analysis and is modeled as wire elements.
These wire elements are drawn and meshed as truss elements. Compared to
beam elements, they transmit only axial force. The element type is called T32D
and is a 2-node linear 3D truss. The total reinforcement in different sections is
calculated as one area for the upper reinforcement and one area for the lower
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reinforcement. These properties are given to their representative truss elements.

7.1.2 Constraints

To ensure adequate behavior between the transverse and longitudinal elements,
the choice of connection is important. A general multi-point constraint (MPC)
is chosen. This is a constraint that allows the motion of the slave node, or a
region of slave nodes, to be connected to the motion of a single point being a
master node. The master node is in the center of mass in the longitudinal beam
and the slave node(s) is at the end of the transverse beam elements as shown in
figure 7.5. This constraint will preserve the important effects of the transverse
elements and represent the connection between the beams with approximately
the right stiffness.

Figure 7.5: MPC-constraint between beam elements

The bridge is fully constrained on the south end and simply supported in the
north end, allowing the bridge to move in the longitudinal direction. Also,
a boundary condition is set at the point of each support. Even though the
columns in axis 2-8 are monolithically connected to the beams, it is shown that
they deform as the bridge is expanding due to ASR-loading. The column rows
are therefore modeled as roller supports, illustrated in figure 7.6.

Figure 7.6: Bondary conditions in Abaqus

The boundary conditions are defined in the initial step in the model. This means
that the conditions are set before any loading is applied.

To maintain a compatible relationship between the concrete and the steel, a
multi-point connection is used. Instead of using a beam type connection as be-
tween the longitudinal and transverse beam elements, a tie connection is applied.
This ensures that all active degrees of freedom are equal at each slave node and
the control point. The control point is the master node in the beam’s mass
center. In this way, the beam elements contain the master nodes for both the
reinforcement and transverse elements. The multi-point constraint is attached
in the nodes of each element and it is therefore crucial that the steel and the
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concrete elements are meshed equally. The connection is illustrated in figure 7.7.

Figure 7.7: MPC-constraint between concrete and steel

7.1.3 Material Properties

Different types of material are defined and assigned to the different parts of
the model. The longitudinal beam elements are assigned to a concrete material
with the properties in table 7.1. Since ASR- expansion is a long term effect the
long term E-modulus is used.

For the transverse elements, the concrete has initially the same properties as in
the longitudinal ones, but with a density equal to zero.

The material properties of the reinforcement are presented in table 7.1.

Concrete Steel
Young’s modulus [MPa] 7766 200 000

Poisson’s ratio 0.3 0.3
Density [g/mm3] 2400 7830

Yield stress [MPa] 12 272
Expansion coefficient 1 · 10−5 0

Table 7.1: Material properties in model 1

The yield limit for the steel is defined. This is done in the perfect plastic module
in Abaqus. The steel’s design yield limit is correlated to a plastic strain of 0.0
h. This means that the steel cannot get any higher stress than 272 MPa, and
the forces will be rearranged. It is important to notice that even though the
stresses are limited to the yielding stress, the strain will continue to increase. To
ensure that this is happening, a non-linear geometry is activated in the analysis.

7.1.4 Reinforcement

The amount of reinforcement varies in different parts of the bridge and is, in
this case, simplified in a total of twelve different sections in the inner and outer
beams:
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- Support 1, upper face and lower face
- Support 2-8, upper face and lower face
- Support 9, upper face and lower face
- Support 10, upper face and lower face
- Field 1
- Field 2-8
- Field 9
- Zero moment

The amount of reinforcement is shown in the drawings made by Aas-Jakobsen.
Certain modification is done when choosing the active bars:

- The shear reinforcement is not accounted for
- The inclined bars are not included
- Only the reinforcement in the effective flange width has

been included when calculating the amount in the upper face
- The anchoring bars of the shear reinforcement is not counted

as longitudinal reinforcement
- The distribution reinforcement in the plate is not included

The main reinforcement is listed next to the cross-sectional drawings from Aas-
Jakobsen. These amounts are included in the model. The total area has been
summed up and is applied as the section area of their respective reinforcement
in the model.

The center of mass has been calculated from the placement of the reinforcement
in the drawings. Aas-Jakobsen has assumed a cover equal to 55 mm and the
shear reinforcement in the beam is mostly ø13. With a longitudinal reinforce-
ment of ø32, the effective depth will be:

c = 55 + 13 + 32/2 = 84 mm for the lower and upper reinforcement

Further, a spacing of 67 mm between each bar row is assumed. In Annex B the
number of bars, steel area, and eccentricity from the mass center is given for
each section.

7.1.5 Loading and Temperature Field

To simulate the ASR loading in Abaqus, predefined temperature fields are used.
In the initial step, all four beams are given a temperature field of 0 degrees. Fur-
ther, a new step is defined where temperature equal to the ASR expansion is set.

The temperature field used is recommended by H. Johansen [33] which is showed
in figure 4.9 with a = 0.5 h. In Abaqus, the temperature in the mass center
is defined in addition to a gradient over the cross-section. This gives the right
variation of temperature over the height. Due to limitations in Abaqus regard-
ing beam elements, it is not possible to model linear variations in the transverse
directions. Therefore, the temperature is equal over the top flange in each beam.
The mistake done is considered to be small since the temperature is right in the



66 CHAPTER 7. MODELS IN ABAQUS/CEA

center axis of the beams. A jump in the stresses between the beams is expected
as the variation is not linear.

The predefined temperature module is following the relationship between the
change in temperature and the expansion coefficient together with the free ex-
pansion given as strain.

∆T = ε0
αT

This results in the following temperatures equal to the assumed linear expansion:

Point αT ε0 ∆T
Inner beam, top flange 10−5 0.001 100◦C

Inner beam, bottom 10−5 0.0005 50◦C
Outer beam, top flange 10−5 0.0015 150◦C

Outer beam, bottom 10−5 0.001 100◦C

Table 7.2: Temperatures equal to free expansion

In the beam’s mass center the temperature magnitude is imposed. The gradient
over the cross-section is 29.2◦C/m and gives the following magnitudes:

Part Temperature in mass center
Inner beams 85.28◦C
Outer beams 135.28◦C

Table 7.3: Temperature in mass center

7.1.6 Modeling of Crack

Large cracks have been observed in the sections of zero moments to the left
of support four and the left of support 7 in both of the inner beams and four
meters to the right of support 8 on the inner beam facing east. To evaluate
the current condition of the bridge, it is desirable to analyze the effects of the
existing cracks and to implement this in the model. To do so, locations where
the cracks appear is given a modified Young’s modulus. In reality, the cracked
section behaves differently with no tensile strength in the concrete. This is not
possible to model in the frame model since using beam elements limits the pos-
sibilities of changing material properties within a section. The modification of
the stiffness in these areas is considered as a sufficient approach. The crack
areas have a size of 0.5 m, and is located 4.0-4.5 m to the left from support 4
and support 7 and similarly 4.0-4.5 m to the right from support 8.

The modification of Young’s modulus must represent the reduction in bending
stiffness equivalent to a cracked section. In Appendix D.A the equivalent bend-
ing stiffness for the area with reinforcement in stage I and stage II is found. The
calculations gave a reduction in the bending stiffness with approximately 75%
from stage I to stage II. The same reduction is implemented in Young’s modulus
going from 7766 MPa to 1941 MPa. This will also affect the axial stiffness, EA,
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in the model.

In the cracked section the mass center of the concrete will change due to the
stage II assumption. Despite this, the beam elements are still placed in the stage
I mass center. This will not be entirely correct since the stress distribution will
be different in the stage II section where a non-linear behavior is simulated.

7.1.7 Derivation of Results

Results are obtained by using Probe Values in Abaqus. Probe Values displays
the desired results at chosen elements and nodes. When post-processing the
model with free expansion, the forces can be obtained directly in each beam.
When reinforcement is present in the analysis, the forces from the concrete sec-
tion and reinforcement needs to be summarized to obtain the total forces and
moments in the section, this is visualized in figure 7.8.

N = Nc +N ′s +Ns (7.1)

Where Nc is the axial force in the concrete and Ns is the lower face reinforcement
and N ′s is the upper face reinforcement.

V = Vc (7.2)

To obtain the total bending moment, the reinforcement forces in the upper and
lower face is multiplied with its respective lever arm. If in tension, the lower
reinforcement contributes to a positive moment while the upper reinforcement
contributes to a negative moment, such that:

M = Mc +Ns · es −N ′s · e′s (7.3)

Where e′s and es is the eccentricity from the mass center of the concrete for the
upper and lower reinforcement, respectively.

Figure 7.8: Forces obtained in the inner beam
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7.2 Model 2: 3D Solid Model

The 3D solid model is designed to be as equivalent as possible to the properties
of Elgeseter Bridge in reality. Considering the much higher computational pro-
cessing with solid elements, it includes only 4 spans with two of the four bridge
beams. This simplification is justified by the fact that the third span is repre-
sentative for the rest of the bridge from axis 7-1, which was also verified in the
frame model. Due to the bridge’s symmetrical behavior, it is found sufficient to
only model two of the beams, due to its symmetrical behavior.

Figure 7.9: Solid model in Abaqus/CEA

Model 2 is modeled with solid elements. Following, Classical Beam Theory is
not applied in this model and there is no assumption of plane sections remaining
plane. Solid elements maintain local effects and variations in the section. Using
solid elements is beneficial when analyzing beams with a high height to length
ratio and when properties in the cross-section vary. Solid elements require a
much higher computational effort and are often not necessary in large struc-
tures with a low height to length ratio. Though, solid elements are favorable
when local effects are relevant. When modeling ASR expansion in Elgeseter
Bridge, solid elements have benefits such as greater possibilities in the modeling
and the opportunity to consider local effects.

The purpose of this second model is to validate the frame model, to see if it is
suitable to use in similar situations. To achieve a satisfactory reference model,
the model must be as true to reality as possible. Also, it is crucial to understand
the differences in the models and which effects this might lead to.

7.2.1 Elements and Mesh

Concrete and steel reinforcements are meshed individually, which makes the
mesh finer and the processing of the analysis run faster.

The concrete consists of cubic elements C3D8R, an 8-node linear brick with
reduced integration and hourglass control. This is the standard element type
in solid 3D computations and is considered to be adequate for this analysis. To
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make the transitions of the elements sufficient, the mesh transition is minimized
to reduce the mesh distortions. The size of each element is about 150 mm. This
is a small element size compared to the dimensions of the bridge but is consid-
ered necessary to perceive the axial stresses in the cross-section of the bridge as
the bridge deck is thin compared to the beam length.

Figure 7.10: Mesh of Solid model

The reinforcement is modeled as wire elements, which is common when mod-
eling reinforcement in Abaqus. Wire elements are idealizing solid 3D elements
where the depth and height of the element are considerably small compared to
the length. The sections of the reinforcements are chosen to be trusses, which
will describe its behavior adequately. The reinforcement is meshed in T3D2, a
2-node linear 3D truss. The approximate size of these elements is 250 mm.

7.2.2 Constraints

Conservative simplifications were made to the boundary conditions that were
evaluated to be the most reasonable conditions of the bridge. At the column
rows in axis 7-10, the bridge is only restrained in the vertical direction, while at
column row 6 the cross-section is restrained in all directions which is equivalent
to a fully constrained boundary condition. At the symmetry axis of the bridge,
the cross-section is restrained in Ux, Ry and Rz when referring to the axis’ in
figure 7.9. The columns are evaluated to have low stiffness, which justifies the
boundary conditions in axis 7-10 to be reasonable.

Figure 7.11: Static system in Abaqus, solid model
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Embedded region is used to maintain the constraints between the reinforcement
and the concrete, where the concrete is the host region.

7.2.3 Materials

The material properties in the solid model are equal to the ones in the frame
model, presented in table 7.1. Young’s modulus is not reduced due to ASR
effects, because there are uncertainties about how much this affects the modu-
lus. Non-linear effects are included in the analysis to take the yield stress into
account.

7.2.4 Reinforcement

The reinforcement is modeled as accurately as possible according to the original
drawings of Elgeseter Bridge presented in annex A. This is easier to achieve in
a solid model compared to the frame model, though it increases the workload.
The benefit of modeling the reinforcement as exactly as possible is to achieve a
sufficient reference model to compare with the frame model.

Figure 7.12: Reinforcement in Solid model

The concrete cover is assumed to be 55 mm which places the center of bars
84 mm from the bottom and top when including stirrups. The center distance
between each bar is assumed to be 67 mm. All longitudinal bars are included in
the analysis to retain the effects of ASR expansion. The distribution reinforce-
ment in the plate and stirrups is not included. In certain sections, there are no
section drawings available, and deviations are expected. The length of bars is
found by scaling analysis and this might lead to some deviations as well. The
deviations are small and the most critical sections have nearly exact positions
of the bars.
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7.2.5 Loading and Temperature Field

Two temperature fields are used in the solid model to simulate the strain field
in the cross-sections due to ASR. The advantages of modeling two scenarios
are the fact that there are uncertainties about how the ASR expansion behaves.
Examining the bridge’s response to different strain models gives a better picture
of how the chosen model affects the results. In addition, analyzing one model
that is equal to the frame model is important to verify results.

Temperature field 1 is modeled equivalent to the temperature field in the frame
model. The outer beam is subjected to a vertically linear varying temperature,
whereas the top has a temperature of 150 ◦C, which will give a strain at 1.5h
and 100 ◦C at the bottom. The inner beam varies from 1h in the top to 0.5h
in the bottom. See figure 7.13.

Figure 7.13: Temperature field 1 in Solid model

Temperature field 2 is modeled with a horizontal linear varying field in addition
to the vertical one. The strain in the center axis of the beams is equal to the
ones in temperature field 1. As a consequence, the top of the beam has a field
varying from 1.75h to 1.25h. See figure 7.14 illustrating temperature field 2.
Creating this strain field in the frame model is not possible in Abaqus, due to
limits using beam elements.

Figure 7.14: Temperature field 2 in Solid model

The temperature fields are defined with Analytical Fields in Abaqus, and the
desired parts are subjected to the fields in Predefined Fields at a step. Temper-
ature field 1 is modeled by two analytical fields depending on the vertical axis,
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whereas each beam is subjected to one field. Temperature field 2 is modeled
with one analytical field depending on the vertical and horizontal axis.

Temperature Field 1 - Outer Beam

T = 150− (50/1710) · y (7.4)

Temperature Field 1 - Inner Beam

T = 100− (50/1710) · y (7.5)

Temperature Field 2

T = 175− (50/5500) · x− (50/1710) · y (7.6)

Where the origin of the function (where x=y=0) is at the top of the outer beam
and z is the longitudinal axis of the beam.

To evaluate the effects of the temperature change, the temperature in the initial
step is 0◦C, and increases over time to the final result as described. As the rein-
forcement does not have an expansion coefficient, only the concrete will expand
and all effects from the reinforcement are retained.

7.2.6 Modeling of Crack

To simulate the condition of the bridge as of today, a field of 0.5 meters have a
reduced Young’s Modulus in the web. Young’s modulus in the web is 78 MPa,
whereas the flanges have its original long-term modulus of 7766 MPa. Other
than the reduced Young’s modulus, the properties of the cracked section are
identical to the rest of the bridge, see table 7.1. The field is placed at the
location of a large crack in span 8, 4-4.5 meters from column row 8 at the inner
beam. Compared to the frame model, the crack is modeled differently due to
the higher possibilities by using solid 3D-elements. It is believed that reducing
Young’s modulus in only the crack zone of the section would give more accurate
results and would be a good approach to the non-linearity of the problem.

7.2.7 Derivation of Results

Results of stresses and displacement are derived by Field and History Outputs.
Field Output Requests visualize expansion and stress by field maps.

To obtain forces and bending moments in the bridge, Free Body Cut (FBC) has
been used. FBC can derive resultants and components of forces and moments in
chosen sections. Sections are accessed by View Cut throughout the model. As
FBC only shows components of the total section in its respective concrete mass
center, the forces are required to be decomposed to obtain the forces in each of
the two bridge beams. Axial forces are decomposed in two equal axial forces
at each beam’s mass center (N). Similarly, the bending moments about the
transverse horizontal axis (My) and vertical shear forces (Vz) are decomposed
into equal components. The bending moment about the vertical axis (Mz) is de-
composed in two force resultants at each beam’s mass center which contributes
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to the axial forces.

As a consequence of not being able to obtain resulting forces in each beam
directly by FBC, the model is not suitable to analyze the different bending
moment and vertical shear forces in each beam. Some deviations may occur
when they are decomposed equally. By treating this at the start of the modeling,
obtaining forces in each beam separately would be possible. This should be
considered earlier in the process for similar cases. Although, deviations are
expected to be small when both beams have approximately the same stiffness
and are only subjected to ASR loads. In analyses where the inner beam has
a simulated crack, it might be larger deviations and results need to be verified
with the frame model.

Figure 7.15: Illustration of Free Body Cut in Solid model

Free Body Cut does not include the forces in the reinforcements, these need to
be obtained individually by using Probe Values. In each section, reinforcement
stresses in each element are summarized by Probe Values, and forces are found
by an equivalent section area. Total reinforcement forces at each beam (Ns)
in different sections are afterward added to their respective resultants obtained
by Free Body Cut. To find the total bending moment, reinforcement forces are
multiplied with their respective arm to the concrete mass center. This leads to
the correct results in each section.

The total forces at each beam section in the bridge is found by:

N =
Fx
2

+
Mz

5.5 m
+Ns (7.7)

Where Ns = σs,tot ·Aeq

Vz =
Fz
2

(7.8)

My =
My

2
+Ns · e (7.9)

Vy = Fy (7.10)
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7.3 Verification of the Models

Simple analyses have been performed to compare and verify the two models.
The source of the deviations and the impacts must be found and quantified. To
examine the deviations between the two models, it is necessary to isolate the
effects of each change in the model step by step. To do so, results have been
compared in the following situations:

- Free expansion with temperature field 1 & 2
- Restrained expansion with a constant temperature field of 1h throughout the
bridge
- Restrained expansion with both temperature fields.
- Restrained expansion with cracked sections and both temperature fields.

The models are based on different theories due to the elements used in the anal-
yses. This will affect the results and some deviations are expected already at
this point in the analysis.

The reinforcement will not expand when the temperature field is imposed. Due
to the connection between steel and concrete, the steel will restrain the expan-
sion of the concrete. This provides an internal constraint and the total elonga-
tion of the bridge will become smaller. Further, this will strain the reinforcement
and create additional compression in the concrete, as well as supplementary mo-
ments due to the tensioned wires. This restraining effect is explained thoroughly
in section 2.2.

In the solid model, the reinforcement is placed accurately in the entire length
and span. On the contrary, the frame model only accounts for the main upper
and lower face reinforcement. The main difference will show in the resulting
forces in the beam as the volume model activates more reinforcement when
looking at different sections.

This difference in modeling will especially apply in the sections of zero moment.
The frame model simplifies the section of zero moment by placing it over a
length of 0.5 m with only 3ø32. When including all reinforcement from the
original drawings, the solid model has more reinforcement in this section, see
figure 7.16. This might lead to greater deviation in the forces in these areas.
The cracked sections are imposed over the point of zero moment and spans over
the same 0.5 m.
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(a) Illustration of modelled reinforcement
in Solid model

(b) Drawing of reinforcement

Figure 7.16: Reinforcement in zero moment section

Another important aspect is the behavior of the two models regarding the re-
straining effect by the reinforcement. The reinforcement will strain the solid
model locally in the cross section. On the contrary, the frame model will attain
restraining from the reinforcement more evenly over the cross section. This is
due to the preconditions of the models.

Both of the models are subjected to temperature field 1. It is assumed that
this temperature field will not cause deviations due to the similarities in the
modeling. The differences in temperature field 1 and 2 are expected to give
deviations in the axial forces in the solid model.

What first arose as a problem with the frame model, was the axial forces drop-
ping in magnitude further away from the end compared to the solid model. This
was expected to be a problem as the transverse elements behave separately and
not as a continuous plate. The solid model has a much stiffer plate and the
frame model gets a shear stiffness and bending stiffness in plane that is too low.
On the other hand, the vertical bending moments occurring in both the models
were quite similar. This shows that the vertical bending stiffness induced by
the transverse beam elements is adequate. The transverse elements are there-
fore adjusted in the cross-sectional area to impose a higher bending stiffness
in plane, but retain the original vertical bending stiffness. By optimizing the
cross-section calibrated with the solid model, the height becomes 230 mm and
the width becomes 2.26 m. This is done before comparing the two models fur-
ther.

7.3.1 Free Expansion

Running the analysis without reinforcement will simulate the free expansion of
the bridge. By not including the self-weight, the external forces caused by ASR
will be isolated.

External forces appear when imposing a temperature field with a gradient over
the height and a different expansion in the inner and outer beams. This can be
explained by the different stress-contributing strains occurring as explained in
section 2.2. This results in a tensile force in the inner beams, compression force
in the outer beams, and an almost constant positive moment over the entire
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bridge.

The models are exposed to temperature fields with gradients. Three cases were
investigated:

1. Frame model with temperature field 1
2. Solid model with temperature field 1
3. Solid model with temperature field 2

Axial forces and moments for the three cases are shown in figure 7.17, 7.18 and
7.19, respectively. The graphs are starting at support section 7, which is 133.75
m from support 1.

Figure 7.17: Axial forces in inner beam

Figure 7.18: Axial forces in outer beam

As the figures illustrate, there is small deviations between the frame model and
the solid model subjected to temperature field 1 whereas greater deviations oc-
cur for temperature field 2.
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Figure 7.19: Total moment over inner and outer beam

Case 1 vs Case 2

The percentage difference is listed for the inner beam in table 7.4. The frame
model deviates with 4.1% to -13.6% compared to the solid model. The variation
becomes higher closer to the end of the bridge. This might be a result of the
bending stiffness in plane still is somewhat insufficient in the frame model.
Better optimization of the cross-sectional area of the transverse elements would
maybe improve the accuracy between the two models regarding axial forces.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation 4.1 1.8 -0.4 -2.1 -3.4 -4.7 -7.5 - 10.4 -13.0 -13.6

Table 7.4: Deviations [%] in the frame model compared to the solid model
Axial force inner beam, temperature field 1

Figure 7.19 shows small variations in the total moment over one inner and outer
beam. The moments in the frame model have a variation of 5.3% to -6.3% com-
pared to the solid model. This is a good result considering the differences in the
models. Table 7.5 presents the deviations in the total bending moment between
the two models.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation 5.3 3.8 0.4 -2.6 -4.6 -4.1 -1.9 -0.8 -1.3 -6.3

Table 7.5: Deviations [%] in the frame model compared to the solid model
Total moment, temperature field 1

Regarding the total strain, case 1 and case 2 only differs with 0.7%.

Case 2 vs Case 3

The deviations presented in table 7.6 shows that temperature field 2 results in
forces that are about 20% higher compared to temperature field 1. This is a
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result of the strain gradient in the horizontal direction. It is varying between
1.75-1.25h in the top of the beam in TF 2, whereas it is only 1.5 and 1h in
TF 1. This shows the effects of the chosen temperature gradient, although their
respective mass center has the same gradient in both cases. This is important
to bear in mind while using the different models. The flexural bending only
deviates with about 1 % between the two models. This is since the vertical
gradient is equal in both situations.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation -20 -20 -20 -19 -19 -19 -19 -19 -20 -23

Table 7.6: Deviations [%] in the solid model with TF1 compared to solid
model with TF2

Axial force in inner beam

Case 1 vs Case 3

The deviations between the frame model with temperature field 1 and the solid
model with temperature field 2 is similar to the ones in table 7.6, as expected.
The deviations are higher at the end spans due to the lower transverse shear
stiffness and bending stiffness in plane as explained earlier. The deviations in
flexural bending are similar to the ones in table 7.5.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation -15 -18 -20 -22 -23 -25 -28 -31 -36 -40

Table 7.7: Deviations [%] in the frame model compared to the solid model
Axial force inner beam, temperature field 2

Considering the total strain in the model, case 1 and case 3 get a deviation of
1.7%

7.3.2 Restrained with Constant Temperature Fields

To control the post-processing of the model in Abaqus, an analysis with constant
temperature and reinforcement is submitted. The temperature field is constant
at 100◦ C, which will give a strain of 1h in the concrete.

The forces in the concrete elements added to the force in the steel elements
should become zero as there are no external axial forces. To obtain the correct
result, the axial forces in the concrete and steel, as well as the moment in the
concrete must be gathered as output data from Abaqus. The moment caused
by the reinforcement must be added manually by multiplying the axial forces
and their respective arms. The results are verified, and the method is used for
the further gathering of outputs in the models with reinforcement.
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Section Frame model [kN] Solid model [kN]
Support 7 104 53

Zero moment 107 200
Field 7 111 300

Zero moment 110 3.5
Support 8 107 45

Zero moment 110 41
Field 8 116 365

Zero moment 111 204
Support 9 112 133

Field 9 91 83

Table 7.8: Axial forces in inner beams
Temperature field 1

Restrained

The total force in the sections is close to zero. The frame model has an average
deviation of 100 kN, whereas the solid model varies more in its deviation.

As earlier mentioned, the reinforcement forces in the solid model are found by
summarizing the stresses at each element in the desired section. Forces are
found by multiplying stresses with an average equivalent reinforcement section
area. As different reinforcement sections also have different stresses, the equiv-
alent area is weighted by stresses and area. This is done approximately and
only by one representing section, as performing this at each section would be
unnecessarily time-consuming. Results show that the more accurate the equiv-
alent reinforcement section area is, the total forces in the beam becomes close
to zero, such that Nconcrete = Nsteel. Accordingly, it is reasonable to believe
that total forces in each section would become closer zero if the equivalent area
were more precisely calculated at each section in the solid model.

When evaluating the total moment in the beams, there are some deviations
seemingly with a pattern. The supports obtain a higher moment in the solid
model, about 60% while deviations in the zero moment sections lie about 130%.
Generally, the deviations are increasing towards the end of the bridge, as re-
ported in table 7.9. In the fields the frame model gives higher moments. These
deviations are a consequence of the different modeling. The amount of re-
inforcement differs in the models which give different tension forces from the
reinforcement. This again gives deviations in the moment. The most important
aspect is the preconditions of the two models. The transverse elements in the
frame model adequately transfer the axial forces but do not distribute the bend-
ing moment satisfactorily. This is handled more sufficiently in the solid model.
In addition, the frame model transfers forces point-wise and not continuously
as the solid model.
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Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation -63.4 -126.9 47.3 -139 -66.9 -161 32 -283 -86.5 61.3

Table 7.9: Deviations [%] in the frame model compared to the solid model
Total moment, constant temperature

7.3.3 Restrained with Temperature field 1 & 2

As performed for the free expansion analysis, three cases are investigated to
evaluate the effect of the restraints:

1. Frame model with temperature field 1
2. Solid model with temperature field 1
3. Solid model with temperature field 2

The earlier deviations reported between the models are expected to still occur.
Axial forces and moments obtained from the three cases are shown in figure ??
and 7.22.

Figure 7.20: Axial forces in inner beam

Figure 7.21: Axial forces in outer beam
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The axial forces show low deviations between case 1 and case 2. Solely looking at
the solid model, the axial forces variate more over the sections compared to the
frame model. This is assumed to be a result of the more varying amount of rein-
forcement in addition to the local effects of the reinforcement in the solid model.

Figure 7.22: Total moment

The moments are very similar for case 2 and case 3 as seen in the free expansion
analysis. A relatively high deviation occurs between case 1 and case 2.

Case 1 vs Case 2

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation 0.8 7.6 -4.5 1.8 -0.5 -1.1 -11.7 -9.6 -12.8 -14.4

Table 7.10: Deviations [%] in the frame model compared to the solid model
Axial forces inner beam, temperature field 1

The deviations in axial forces are modest. This indicates that the different mod-
eling of reinforcement does not impact the resulting axial forces in a severe way.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation -22.3 -37.5 29.8 -41 -23.9 -46.3 18 -71.2 -24.1 49.6

Table 7.11: Deviations [%] in the frame model compared to the solid model
Total moment, temperature field 1

Table 7.11 shows high deviations in total bending moment. This is a conse-
quence of the preconditions of the models as explained earlier. As the frame
model consists of beams, the assumption of plane sections remaining plane by
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Navier’s hypothesis applies to the model. This leads to constant strains through-
out the transverse direction in the beam and no local effects due to the locations
of reinforcement. Since the solid model is not confined by this assumption, lo-
cal effects in the transverse direction due to the reinforcement occurs. This is
shown by figure 7.23 which shows the longitudinal strains in the model. Es-
pecially in the bridge deck where a lot of reinforcement is placed in the top
of the beam, these local effects occur when the reinforcement restrains to a
greater extent in the area of the beam web compared to the flanges. This might
influence the resulting moment in the solid model compared to the frame model.

Figure 7.23: Strains in longitudinal direction of the beams

This different behaviour in the two models leads to higher deviations in the
longitudinal strain, where the frame model differs with -2.8% in total strain
compared to the solid model. This is reasonable as the solid model is expected
to have a greater elongation due to the local effects of the reinforcement.

Another aspect to the deviations in the total bending moment is the difference
in the modeling of the reinforcement, such as more varying amount and posi-
tioning in the solid model, as explained earlier.

Results from case 2 and case 3 show the same deviations as earlier without the
reinforcement. This is expected and shows that adding reinforcement in the
model does not influence this. This also applies to case 1 compared to case 3.
Therefore, only the results from comparing case 1 and case 2 are reported.

7.3.4 Cracked Sections

The cracked sections are implemented in the model. The goal is to model non-
linearity in a linear model, which can be problematic. The cracked sections
are in stage II and will not have the same bending stiffness as the uncracked
concrete in stage I. To preserve this effect, the sections must be modified.

As explained in the previous sections in this chapter, the non-linearity approach
is executed differently in the two models. The solution in the solid model might
be more true to the expected behavior of the beam section, where the crack
creates an almost not-existing concrete stiffness in the tension zone.
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Two situations are analyzed to understand the effect of the non-linearity:

- Free expansion, temperature field 1, and cracked sections
- Restrained expansion, temperature 1 and cracked section

Free Expansion

Figure 7.24, 7.25 and figure 7.26 shows the axial force and moments obtained
in the frame and solid model.

Figure 7.24: Axial forces in inner beam
Free expansion with crack

Figure 7.25: Axial forces in outer beam
Free expansion situation with cracks
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Figure 7.26: Total moments
Free expansion situation with cracks

The percentage difference in axial force in the inner beams between the frame
model the solid model is shown in table 7.12.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation 3.1 2.7 5.4 9.1 15 7.6 3.9 -3.1 -8.4 -12.7

Table 7.12: Deviations [%] in the frame model compared to the solid model
Axial force in inner beam, temperature field 1

The deviations in the axial forces are within a range of approximately 10%,
which can be expected due to the many differences. What is interesting is that
the frame model now provides higher forces and moments in multiple sections
compared to the solid model. The free expansion analysis without cracks has a
majority of higher forces in the solid model. This implies that the axial forces
are reduced in a higher degree in the solid model compared to the frame model.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation -13.7 -0.4 21.5 45.5 41 50.5 26.4 -4.9 -1.8 -7.3

Table 7.13: Deviations [%] in the frame model compared to the solid model
Total moment, temperature field 1

Table 7.13 presents the deviation in the total moment between the two models.

In areas close to the simulated crack, moment deviations between the two mod-
els are increasing in a greater magnitude than the axial forces. This is a result
of the differences in simulation in the two models and can be explained by ide-
alizing the cross-section to a square cross-section. The axial stiffness is defined

by EA = E · bh, whereas bending stiffness depends on EI = E · bh
3

12 . If one
reduces the total stiffness by reducing E, which is done in the frame model, the
reduced stiffness will affect both axial and bending stiffness the same way. On
the contrary, if the height is reduced as done in the solid model, the bending
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stiffness will be reduced by a third exponent compared to the axial stiffness.

Restrained Expansion

The same simulation of cracks is implemented in the analysis with reinforcement
giving the resulting axial forces and moments as illustrated in figure 7.27, 7.28
and 7.29.

Figure 7.27: Axial forces in inner beams
Restrained expansion with cracks

Figure 7.28: Axial forces in outer beams
Restrained expansion with cracks
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Figure 7.29: Total moments
Restrained expansion with cracks

The percentage deviations between the axial force in the inner beam exposed
to temperature field 1 are reported in table 7.14.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation 3.5 9.6 2.2 12.9 12.3 4.7 0.3 -2.2 -6.6 -5.9

Table 7.14: Deviations [%] in the frame model compared to the solid model
Axial force inner beam, temperature field 1

When reinforcement is included in the analysis, the deviations between the mod-
els are in the same range as without reinforcement. These deviations are small
but are increasing around the area of the crack.

Section S7 ZM 7-8 F7 ZM 7-8 S8 ZM 8-9 F8 ZM 9-8 S9 F9
Deviation -28.7 38.4 38.2 -5.9 6.6 2.2 29.7 -63.9 -26.4 51.8

Table 7.15: Deviations [%] in the frame model compared to the solid model
Total moment, temperature field 1

When the analysis includes reinforcement, the deviation between the two mod-
els is smaller compared to the ones reported in table 7.13, especially in the area
close to the simulated crack. This is a result of two different types of deviation
canceling each other out. The deviations in moment between the two models
when reinforced and uncracked show that the frame model obtains about 20-
40% lower forces compared to the solid model. When the analysis includes a
cracked section, the frame model obtains about 40-50% higher forces.

As the cracks are modeled differently in the models, expected deviations occur
as was seen in the free expansion situation. The solid model is modeled with
almost zero stiffness in the tension zone, which in a section with small amounts
of reinforcement reduces the capacity significantly. Earlier analyses show that
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the reinforcement is already yielding without the simulation of the crack. When
the section is modeled with no tension capacity, the moment is reduced con-
siderably since the reinforcement is not able to incorporate additional tension
forces. A rearrangement of moment occurs in a much higher degree compared
to the frame model, since this model still has a concrete tension capacity. This
leads to smaller deviations between the two models compared to the uncracked
analysis. The assumption of a crack in the whole web of the beam is conserva-
tive and might result in a larger rearrangement in forces compared to the reality.

The deviations in the solid model between temperature field 1 and 2, is corre-
sponding with earlier deviations. This implies that the chosen temperature field
does not affect the results from the simulation of crack. This also implies that
the different temperature fields in the solid model and the frame model should
not affect the deviations in the simulation of crack.

7.4 Carbon Fiber Reinforcement in Abaqus

To comprehend the effects of the applied external fiber reinforcement in Elge-
seter Bridge, both models in Abaqus are implemented with CFRP. The appli-
cation of CFRP in the models differs from each other due to limitations in the
frame model. The most important aspect of this simulation is to see the global
effects in the model such as the redistribution of forces. By applying fiber re-
inforcement in the bridge, the stiffness in the beam with a crack has increased.
This might affect the global arrangement of forces, especially in further expan-
sion of the bridge.

Concerning global behavior, it is a possibility that the increase in stiffness due
to CFRP can attract more forces and moments. This leads to a rearrangement
of the forces and may cause a higher utilization in some sections compared to
an unstrengthened situation. This can contradict the intention of adding the
extra reinforcement and is therefore an interesting aspect to investigate.

In reality, the bridge is assumed to have a longitudinal extension of about 200
mm before the fiber reinforcement was applied. As explained earlier, reports
suggest that the bridge will additionally elongate about 50 mm during its esti-
mated lifetime [37]. As the fiber reinforcement was applied in 2014, it is assumed
that its stiffness does not contribute to the capacity until additional forces or
expansion is applied. Accordingly, an analysis including CFRP and a strain
field equivalent to the additional extension of 50 mm is submitted in Abaqus.
This would indicate the distribution of the forces in the bridge due to further
ASR expansion.

When total forces in the estimated lifetime of the bridge are calculated, the
steel is assumed to yield. To implement that the steel is ineffective in the areas
with CFRP, the analysis is run without any steel reinforcement in this section.
In this way, one can sum the resulting forces from the analysis with 200 mm
expansion without CFRP and the analysis with an expansion of 50 mm with
CFRP, without obtaining higher forces in the steel reinforcement than in reality.
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7.4.1 Modeling of CFRP in Frame model

The frame model is limited to the use of wire elements only. It is evaluated
that the best way to include the carbon fiber reinforcement is to increase the
stiffness in Young’s modulus rather than adding an extra wire element.

The mistakes made by only including the CFRP in the form of stiffness are ex-
pected to be small when investigation the global effects of local strengthening.
A more detailed analysis of the fiber’s behavior can be seen in the solid model.

The external shear reinforcement is neglected in this approach. The flexural
FRP is applied to both the inner beams in span 3 and span 6, whereas in field
8 only one of the beams is strengthened. This is to see how the unsymmetrical
behaviour impacts the results. The important properties are listed in table 7.16

Af 672 mm2

yf -0.7 mm
Ef 210 000 MPa

Table 7.16: Properties of flexural reinforcement

The strips cover almost the entire span except from 200 mm on each end, but
in the Abaqus model, it is simplified to cover the entire span between two axes
completely. The contribution to the stiffness in the cracked parts and the un-
cracked parts are calculated separately.

The increase in stiffness is found by comparing the equivalent bending stiffness
with and without the fiber reinforcement. For the cracked parts this is done in
stage II and for the rest of the field, it is done in stage I. The calculations are
shown in appendix D.B.

For the cracked section, the bending stiffness is increased with 23%. This is
implied as a 23% increase in Young’s modulus going from 1941 MPa to 2387
MPa.

Concerning the uncracked section, the increase in bending stiffness is only 3.1%.
The concrete contributes to most of the stiffness, so the additional carbon fibers
do not give the same impact on the total stiffness. Young’s modulus increases
from 7766 MPa to 7999 MPa.

The elements in the frame model are now separated into three different sets
which get different section assignments. One set representing the uncracked
part of the bridge, another representing the reinforced cracked sections and the
last set representing the uncracked, externally reinforced part of the beam. The
concrete material assigned to the sets is equal except the stiffness.
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Set Young’s modulus [MPa]
Strengthened cracked parts 2387

Strengthened fields 7999
Unstrengthened fields 7766

Table 7.17: Modified Young’s modulus

7.4.2 Modeling of CFRP in Solid model

Carbon fiber reinforcement was applied to the model in Abaqus according to
drawings from Aas-Jakobsen [34]. The fiber strips and sheets are modeled as
shells with their corresponding thickness. Mechanical properties of the CFRP
in the model is listed in table 7.18.

Ef,1[MPa] Ef,2[MPa] ffd[MPa] Plastic Strain Exp. coeff.[∆T−1]
Sika CarboDur M16 210000 500 2307 0.0 0

SikaWrap 231C 210000 500 2750 0.0 0

Table 7.18: Mechanical properties of CFRP in Abaqus

The CFRP is assigned lamina material and composite sections, whereas the
wrap is a composite of 5 layers and the strips of 4. According to product
brochures, both have fibers oriented in the longitudinal direction of the strips
and sheets [53]. This is implemented in the composite layers.

Figure 7.30: CFRP in the Solid model

When creating a lamina material in Abaqus, Young’s modulus parallel (Ef,1)
and perpendicular (Ef,2) to the fiber direction must be defined. As there is no
information about this in product brochures, all other directions are assumed
to have the same stiffness as epoxy. Young’s modulus of 500 MPa is chosen
according to table 3.2, which is considered to be conservative.

Modeling the CFRP wrap exactly according to drawings is difficult due to its
geometry. As an approximation, the wrap is modeled as in figure 7.31. This is
considered to retain its most important properties, such as its tension stiffness
in the inclined direction at the web to contribute to the shear capacity.
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Figure 7.31: U-wrap in the Solid model

Both strips and wrap are constrained to the concrete by tie constraint, without
rotational DOFs to resemble the behavior of the adhesive between the concrete
and CFRP. Still, Abaqus can not account for debonding issues and this must
be considered by calculation according to design rules.

Figure 7.32: CFRP connected to the beam in Solid model



Chapter 8

Influence of Modifications
in Abaqus

Modifying the models in Abaqus to reflect on the impacts cracked sections and
strengthened parts have on the structure is an interesting issue to exploit. How
the bridge reacts and redistributes forces due to changes of stiffness in certain
areas, can be simulated in Abaqus to obtain a greater insight into this matter.
Further in this chapter, this is investigated by looking at the results in each
model.

8.1 Influence of Simulation of Crack in Abaqus

A situation with reinforcement, ASR-load, and cracked sections is submitted.
The contribution from the reinforcement will be affected due to the stage II
condition in the concrete. When only some sections have a stage II condition,
a redistribution of the ASR-load is expected.

The procedure of calculating ASR effects from The Norwegian Public Roads
Administration [1] shows that the retaining due to the reinforcement is reduced
in a cracked section. In a cracked section, the steel is yielding and can not obtain
higher stresses, but will continue to be strained. At this point, the initial strain
will not be significant for the capacity in ULS. This means that less of the free
expansion is restrained and therefore a greater effect from the ASR is achieved
resulting in higher strains. The higher strains make the structure less stiff and
an increase in total elongation is assumed. Also, the increase in ductility will
theoretically result in lower axial forces and moments.

An overview of how the forces and moment decrease in both the models are
shown in figure 8.1 and figure 8.2. An interesting aspect is how the crack in a
section of zero moment affects the area around. This is observed mostly in the
result from the solid model, but also in the moment distribution from the frame
model. The closest support and the adjacent section of zero moment on the
other side get a lesser magnitude in forces. This makes the sections less utilized
and it can be discussed if this is why there are no cases of cracks on both sides
of a support.

91
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Figure 8.1: Decrease in axial forces

Figure 8.2: Decrease in total moment

Looking at the models separately, the decrease in forces due to cracks can be
visualized better.
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8.1.1 Influence of Cracks in the Frame Model

The frame model is studied and the results are visualised in the following graphs:

Figure 8.3: Axial forces in inner beam
Frame model

The axial force in the frame model is approximately reduced with 2 % evenly
over the beams, except in the cracked section in the inner beam where it is
reduced with approximately 3.2%. The impact on the concrete is reduced with
about 7%, but since the steel compensates by obtaining higher forces, the overall
axial force does not decrease significantly.

Figure 8.4: Axial forces in outer beam
Frame model

The outer beams have an even reduction of about 2% with a little higher reduc-
tion of 2.4% in the cracked section. The overall reduction is due to the general
lower stiffness of the structure.
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Figure 8.5: Moment distribution between the beams
Frame model

The change in the total moment over the inner and the outer beam is not very
significant, and the impact of the crack is rather small in the frame model con-
sidering the moments. The crack occurs in the section of zero moment to the
right of support 8 and makes the steel in the section yield which therefore in-
creases the steel’s contribution to the total moment. However, the crack affects
an area around the closest support. In support 8 and section of zero moment
8-7, there is a reduction of 3-4.5%. To get a deeper understanding of the crack’s
influence, it is beneficial to see how the moment is distributed over the inner
and outer beam, illustrated in figure 8.6.

Figure 8.6: Moment distribution between the beams
Frame model

The moment in the inner beam has a reduction of 4.7-6.7% in the area around
the cracked section. Considering the cracked section itself, the reduction in
stiffness gives a decrease in the concrete’s moment of about 6.9%. Still, the
compensating forces in the reinforcement increase the total moment of 2.6%.
This can be seen as the peek in figure 8.6.
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The weakness in the concrete due to the crack results in a rearrangement of the
bending moment, this is seen as a less significant change of moments in field 8
and 9. Due to the reduced stiffness in the bridge, the outer beams generally
have a small decrease in bending moment. The highest reduction is also seen
around support 8. This indicates that the crack impacts the outer beam as
well. There is a small increase in the moment after the cracked section and this
occurs because the outer beams need to assist the inner beams by taking more
forces.

8.1.2 Influence of Cracks in the Solid Model

The solid model gets a much higher reduction in both the axial forces and
bending moments in the entire model compared to the frame model. The results
from the solid model are reported in the following graphs.

Figure 8.7: Axial force in inner beam
Solid model

Figure 8.7 illustrates a relatively high drop in the axial force around support
8 in the inner beams. The reduction in axial force is about 13-15% between
the section of zero moment to the left of support 8 extending through field 8.
Further away from the crack, the deviation becomes smaller as the graph in
figure 8.7 clearly shows.



96 CHAPTER 8. INFLUENCE OF MODIFICATIONS IN ABAQUS

Figure 8.8: Axial force in outer beam
Solid model

The same trend as in the inner beam occurs for the outer beam as seen in figure
8.8. The reduction in axial force is greater in the same area surrounding the
crack, and the reduction decreases towards support 7 and support 9.

Figure 8.9: Total moment in outer beam
Solid model

The variation in the moment is presented in figure 8.9. The total moment over
the inner and outer beam gets a reduction of 33% in the cracked section. The
area around support 8 obtains a high impact of the crack, leading to a reduction
of about 28% in the same area the frame model showed a reduction. Also, a
reduction of about 13% is seen in both the fields close to the crack. Otherwise,
the reduction in the bending moment is quite small and fading out away from
the cracked section.

Generally, the solid model gets a greater impact of the crack. The reason for
this is probably the different ways the crack is modeled and how it is affecting
the global system as explained in section 7.3.
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8.2 Influence of Simulation of CFRP in Abaqus

The simulation of CFRP in the models will increase the stiffness locally in the
bridge. As seen previously, the reduction of stiffness due to cracks had a signif-
icant impact on the structure. The scope of implementing CFRP in the models
is to observe the possible effects on the bridge globally and locally.

8.2.1 Influence of CFRP in Frame Model

The adjustment in the stiffness is imposed in the Abaqus model and compared
to the situation without the fiber reinforcement. Both models are subjected to
a temperature field equivalent to an expansion of about 200 mm. This is a fic-
titious situation since the externally bonded fiber reinforcement is applied after
the expansion. Even though this is a wrong assumption, it can give a picture
of how an increase in stiffness can give an impact on ASR expansion.

In this case, there is only made a cracked section on the east-facing beam in
field 8 and not on both of the inner beams as the other cracked sections. This
reflects a realistic simulation of the situation and can indicate if the symmetry
assumptions made previously are reliable.

The change in moment given in percentage after application of CFRP is shown
in figure 8.10. As expected, it is some increase in the moment over the inner
beam where the carbon fiber reinforcement is applied. This is shown with dif-
ferent colors for span 3, span 6 and span 8. The non-strengthen span 1, 2, 4
and 5 gets a reduction, while span 7 in between two strengthened spans obtains
a small increase.

Figure 8.10: Impact on moment after application of CFRP on inner beams
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The alteration in the axial force shows similar behavior. Though, a small in-
crease can be seen in span 4 as well. The increased stiffness seems to have a
higher impact on the axial forces.

Figure 8.11: Impact on axial forces after application of CFRP

In span 8, a decrease in axial forces is observed. This could be explained by
the asymmetrical crack and strengthening imposed in this span. This can be
understood by comparing the inner beams to each other. Table 8.1 compares
the forces in the inner beams and gives an impression of the force distribution.

Section Meast[kNm] Mwest[kNm] Neast[kN ] Nwest[kN ]
Support 8 1966 1966 5052 5122

ZM 8-9 2183 2085 4921 5097
Field 8 4902 4945 4808 4833

Support 9 2977 2863 4278 4141

Table 8.1: M and N for both of the inner beams

The west faced beam is not cracked and even though the crack in the east-
facing beam is strengthened, it is not adequate to increase the stiffness to an
uncracked state. Therefore, the moments and axial forces are expected to be re-
duced in the cracked area compared to the same section in the other inner beam.

A decrease of about 170 kN in the axial force is seen in the actual cracked part
and some effects are imposed to support 8 and field 8, but with less impact.
Regarding the moment it is necessary to study the forces separately in the
concrete and the steel. In the cracked section the steel obtains higher stresses
which makes the contribution from the reinforcement greater. This increase
is greater than the observed decrease in the concrete and therefore the total
moment is greater. Regarding the other sections where the steel is not yielding,
the axial forces are reduced in both the steel and the concrete. The impact on
the moment is therefore rather small because the negative contribution coming
from the upper reinforcement is reduced as well. All in all, the effect of having
one cracked inner beam is not very significant. This can justify the simplification
of symmetry done previously.
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8.2.2 Influence of CFRP in Solid Model

To understand the influence of CFRP in Elgeseter bridge, a comparison with
and without CFRP is done. Both models are subjected to a temperature field
equivalent to an expansion of about 50 mm and have the simulation of a crack
at zero moment section 8-9. All reinforcement is active in this analysis. Results
are presented in figure 8.12, 8.13 and 8.14.

Figure 8.12: Impact on axial forces in inner beams after application of CFRP

Figure 8.13: Impact on axial forces in outer beams after application of CFRP

The deviations in axial forces are small. Some deviations can be explained by
errors when obtaining the stresses from reinforcement in Abaqus. This shows
that the application of CFRP in the model mainly does not affect the acting
axial forces in the bridge globally. The exceptions occur in ZM 8-9 and field 8,
where a local effect of the stiffness of the CFRP appears. An interesting aspect
is that the CFRP does not affect the axial forces in the outer beam. The in-
creased stiffness of the inner beams does not contribute to additional restraining
forces imposed by the ASR expansion.

Until the span between axis 8 and 9, where the CFRP is placed, the moment
distribution is quite similar in both models. However, in field 8 there is an
increase in the acting moment. This is expected since the moment capacity and
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Figure 8.14: Impact on total moment after application of CFRP

stiffness is increased when applying CFRP. In a statically indefinite structure
where parts of the structure become stiffer, a higher moment will occur in these
parts.

8.3 Evaluation of Global Behaviour

The simplicity in making a model of beam elements, such as in the frame model,
makes it possible to get a good overview of the global behavior in the bridge.
The assumed expansion field is evaluated for an uncracked, cracked and CFRP-
strengthened situation.

The model was verified in alignment with the solid model but is still a signif-
icantly simplified version of the reality. Despite this, the principles occurring
in the global model is evaluated to be representative of the bridge. The main
focus is to see how the crack and CFRP is changing the global behavior and the
total elongation.

The behavior of the bridge is very constant in field 1-6 in the uncracked sim-
ulation. The change towards the end of the bridge is due to an extra amount
of reinforcement and the impact of the expansion near the hinged end. For a
situation where the whole bridge is in stage I, the total elongation is 185.369
mm when reinforcement is included.

A symmetrical cracked situation is simulated. Here, both the inner beams are
cracked to the left of support 4, to the left of support 7 and the right of support
8. Since the sections gets a lower stiffness, less forces are imposed. This is seen
as the lighter fields in figure 8.15b. The cracks making the structure less stiff,
increase the bridge’s total strain with 0.354 mm, giving an elongation of 185.723
mm.
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(a) Moments for the uncracked bridge

(b) Moments for the cracked bridge

The output from Abaqus is visualized in the figures above. It is important to be
aware that these numbers only show the impact on the concrete as the contribu-
tions from the steel are added manually. The moment is therefore just the global
secondary moment coming from the gradient in the expansion field. However,
the elongation of the bridge will be affected directly by the steel retaining the
concrete’s expansion.

Carbon fiber reinforcement is then evaluated as a strengthening for ASR-damaged
concrete. The fictitious situation where the fiber was applied form the start of
the ASR-development, as explained in section 8.2.1, is submitted.

The elongation is reduced solely with 0.038mm. The effect of the crack has a
larger impact on the structure than the strengthening has. This is due to that
the stiffness is much more affected by cracks than it is from the increase due to
what the CFRP provides.

The observed effects of the CFRP strengthening do not have a significant im-
pact on preventing the ASR-expansion, nor reducing the load coming from it.
In reality, the CFRP at Elgeseter Bridge was applied after it was exposed to
the majority of the ASR expansion. Therefore, the CFRP has not yet really
been subjected to any significant expansion. Further expansion is still expected,
but interpreting the result from this model, the CFRP will most likely give no
preventing effect towards this.
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Chapter 9

Capacity Control in ULS

Capacity control for selected sections have been performed in the ultimate state
and only for the inner beams. The inner beam will be more utilized compared
to the outer beam. This is because the inner beam is subjected to higher traffic
loads and the restraint forces imposed by ASR expansion sets the inner beams
in tension. The tension force has a significantly negative impact on the moment
capacity, whereas the outer beam is exposed to a compression force which will
increase the moment capacity. Later in the report, the effect of carbon fiber
reinforcement will be evaluated and this only applies to the inner beam. Limit-
ing the capacity control to the inner beam is therefore concluded to be adequate.

Representative sections for support 2-8 and field 2-8 as well as for support 1
and 9 and field 1 and 9, have been controlled in regards to moment capacity.

The shear forces are higher towards the end of the bridge and therefore the
shear capacity will be the most critical in this part. According to Nordhaug
and Stemland, not any section of the bridge has a critical shear capacity utiliza-
tion [4]. As carbon fiber strengthening only has been performed at the sections
of zero moments, the calculated shear capacity is limited to these sections.

9.1 Moment Capacity in ULS

Elgeseter bridge is a beam bridge with beams carrying the bridge deck. The
beam and the plates are monolithically cast as one. This means that the plate
and the beam will act in a fully compatible way. Therefore, it is defined as a
T-cross section. When calculating the capacity of this section, the size of the
active part of the plate has a width limitation. This dimension must be found
to calculate the moment capacity.

Due to the variation in reinforcement throughout the bridge, the moment ca-
pacity will change within the beams. The reinforcement is shown in the original
drawings in appendix A. For the capacity control, the amount of active rein-
forcement has been chosen to represent the real situation. In addition to the
main reinforcement, the contribution from inclined bars and stirrup anchoring
bars is included.
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The inclined bars are most likely activated as tension reinforcement in the
bridge. Due to their inclination at 45◦, the total area will not be effective.
Therefore it is decided to include 70 % of the inclined bars in the lower face. In
addition, 70% of the inclined bars in the upper face are included, assuming that
these also contribute as tension reinforcement due to the small compression zone.

According to NS 3473, the strain in the reinforcement can not exceed 1 h. The
sections’ total capacity is decided from the capacity of the compression zone.
This is not valid if the strain of the steel exceeds 1h. If this occurs, it is required
to do another evaluation of the strain in the concrete. The strain control of the
steel must include the initial strain in the reinforcement coming from imposed
ASR deformation.

Under-reinforced cross sections are assumed which indicates that the reinforce-
ment will yield before the concrete crushes. The amount of reinforcement is
relatively low and εs is assumed to be larger than εcu for MRd. This assump-
tion must be verified.

9.1.1 Effective Flange Width

The effective flange width defines the part of the flange that is activated in the
ultimate state. This is only relevant when the flange is set in compression, where
the capacity is calculated for a T-cross section with the effective flange width.
On the contrary, when the flange is in tension, the capacity will be calculated
for a rectangular section with a width equal to the web, bw [50].

Figure 9.1: Illustration of beff

In accordance with NS 3473, beff = beff,1 · 2 + bw.
Where bw is the width of the web and beff,1 is the effective distance on one side
of the web. The distance is given by:

beff,1 = min


b1

0.1 · l0
8 · tf

(9.1)

Where b is the original width, l0 is the distance between the zero moment sec-
tions and tf is the thickness of the flange. l0 is set to 0.7 · l following NS EN
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1993, where l is the span length.

The size of the effective flange width is depending on the actual flange width,
the static system and the thickness of the flange. In this case, only the static
system varies for the sections giving different values of l0. Since all the fields
1-8 have identical boundary conditions, the effective flange width is calculated
equally even though field 1 is somewhat shorter. In field 9 there is a roller
support at the end and this changes the static system leading to a different
effective flange. The calculations are performed after NS 3473, section 9.5, and
is shown thoroughly in appendix C.A. This is resulting in the effective widths
reported in table 9.1

Effective flange width [mm]
Field 1-8 3950
Field 9 4412

Table 9.1: Effective flange widths

The sections over the supports will have tension in the flange and are therefore
calculated differently. However, an important aspect is that all the reinforce-
ment within the effective flange width shall be included in the capacity control
even though the width is set to the web’s dimension.

9.1.2 Sections over Supports

The sections over the supports are equally reinforced in support 2-8 and there-
fore obtains the same capacity. Support 1 and support 9 differs and are calcu-
lated separately.

The support sections are calculated as a rectangular cross-section with the width
bw and including all the tension reinforcement within beff . With the perma-
nent loads, a negative moment will be imposed with tension in the upper part,
illustrated in figure 9.2.

Figure 9.2: Strain in support sections
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The height of the compression zone, αd, is obtained by defining α from equation
(9.2).

α =
fydAs − fydA′s

0.8fcdbd
(9.2)

Where As is the tension reinforcement and A′s is the compression reinforcement.
It is assumed that all the reinforcement is yielding, and this must be verified.
Besides, the total strain can not exceed 10 h and verification including the
initial strain due to ASR must be performed.

The latter is controlled for the tensile reinforcement using the following equation:

εs =
εcu · (1− α)

α
+ εs,free ≤ 0.01 (9.3)

In addition, yielding in the compression reinforcement must be controlled also
including the initial strain:

ε′s =
αd− d′

αd
· εcu − ε′free ≥ 0.00136 (9.4)

Finally, the moment capacities for the support sections are obtained by taking
equilibrium of the cross section:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ (9.5)

The results are reported in table 9.2 and a thorough calculation is given in ap-
pendix C.C.1.

Inner beam [kNm] Outer beam [kNm]
Support 1 -9 557 -8 029

Support 2-8 -9 947 -9 654
Support 9 -12 302 -11 140

Table 9.2: Moment capacity over supports

9.1.3 Sections in Fields

Likewise, for the field sections, the amount of reinforcement is equal for field
2-8 and changes in field 1 and field 9.

In the field sections, the compression zone is in the upper part of the section,
illustrated in figure 9.3. Usually, in cases where it is a large T-cross section, the
compression zone is very small. The neutral axis is likely to lie within the flange
area. If the flange has a relatively large height, the section can be calculated as
a rectangular cross-section with the width beff . The demand for a thick flange
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for concrete B20-B45 is that t/d > 0.33 [50].

If the flange is rather thin, a small compression zone results in the strain of the
reinforcement becoming significantly large before the ultimate strain is achieved
in the concrete. If εs < εcu the neutral axis might be in the flange. To simplify
this, it can be assumed that there is constant compression in the flange with a
resulting compression force acting in the middle of the flange. This method is
applied if the strain of the steel exceeds 1h[50].

Figure 9.3: Strain in field sections

The compression zone is found by equilibrium:

α =
fydAs − fydA′s

0.8fcdbd
(9.6)

The strain in the reinforcement is controlled by:

εs =
εcu · (1− α)

α
+ εs,0 ≤ 0.01 (9.7)

In Elgeseter Bridge, all field sections have εs ≥ 1h, which indicates a thin flange.
The moment capacity in ULS is found by assuming constant compression in the
flange:

MRd = fydAs(d−
t

2
) + fydA

′
s(
t

2
− d′) (9.8)

An additional control of the stress in the concrete is performed, assuring that
σc ≤cd:

σc =
MRd

t · beff (d− t/2)
(9.9)

Results are presented in table 9.3. Calculations are shown in appendix C.C.2.
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Inner beam [kNm] Outer beam [kNm]
Span 1 5980 5682.7

Span 2-8 6400 5832
Span 9 9128.8 8300

Table 9.3: Moment capacity in fields

9.1.4 Zero Moment Sections

The zero moment section lies in the transition between the field area and the
support area. Ideally, the moment would be zero. Despite this, the reaction
from the ASR-load will set the lower part in tension and the upper part in com-
pression. Accordingly, the zero moment sections will be calculated by the same
procedure as the field sections.

Figure 9.4: Strain in zero moment sections

The zero moment section stands out as a section with a poor amount of re-
inforcement compared with the rest of the bridge. The demand for minimum
reinforcement was not a requirement at the time the structure was built and
the capacity is significantly lower than other sections.

The compression zone is found by equilibrium:

α =
fydAs − fydA′s

0.8fcdbd
(9.10)

The strain in the reinforcement is controlled by:

εs =
εcu · (1− α)

α
+ εs,0 ≤ 0.01 (9.11)

All zero moment sections have εs ≥ 1h, which indicates a thin flange. The
moment capacity in ULS is found by assuming constant compression in the
flange, as explained earlier:
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MRd = fydAs(d−
t

2
) + fydA

′
s(
t

2
− d′) (9.12)

An additional control of the stress in the concrete must be performed, assuring
that σc ≤cd:

σc =
MRd

t · beff (d− t/2)
(9.13)

Annex ?? shows thorough calculations. Results are presented in table 9.4.

Inner beam [kNm] Outer beam [kNm]
Zero moment section 1332 1377

Table 9.4: Moment capacity in zero moment sections

9.2 Capacity of Moment and Axial Force Combined in
ULS

As the inner beams are subjected to an axial tension force, it is essential to find
the capacity of both combined. The method is obtained by S.Sørensen [50].

The procedure involves using different strain failure criteria and finding the
equivalent moment and axial force that gives these strains. This results in a
diagram that presents different combinations of M and N at maximum capac-
ity. By drawing a line between the different combinations, one can obtain an
estimate of combinations that would give a failure. This diagram is called an
M-N diagram.

There are four main ultimate states which are controlled:

1. εc = εcu = 0.0035 and εs = εyd = 0.00136

Figure 9.5: Strain Failure 1
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2. εc = εcu = 0.0035 and εs = 0.01

Figure 9.6: Strain Failure 2

3. εc = 0 and εs = 0.01

Figure 9.7: Strain Failure 3
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4. ε′s = εyd = 0.00136 and εs = 0.01

Figure 9.8: Strain Failure 4

To preserve the effects due to ASR-loading, the capacity control is calculated as
a pre-stressed beam. The initial strain in the reinforcement is the strain from
free expansion caused by ASR-load. This is accounted for in the total strain in
the steel, but is not providing stress directly to the concrete.

By investigating relevant sections such as the field-section, support-section, and
section of zero moments, one can see how the axial force is influencing the mo-
ment capacity. A compression force is increasing the moment capacity for all
sections. The outer beams are subjected to such a compression force and this
will be beneficial for the entire beam. A tensile force will significantly decrease
the moment capacity. Consequently, the capacities found in section 9.1 are
changing due to the axial force.

The same amount of reinforcement is used as in section 9.1. The initial strain in
the steel depends on the steel’s location. The expansion decreases with 0.5 h
over the cross-section in the inner beam, giving a gradient of 2.92·10−4h pr mm.

The calculations done for each point are found in appendix C.C.4. This results
in the following MN-capacities for field sections 2-8, support sections 2-8 and
the zero moment sections. In these tables, a positive N indicates a tensile force
and a positive M gives tension at the lower face
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Field sections
Point N M

1 -16 057 8 663
2 -9 557 9 7867
3 4 689 4673
4 4 689 4673

Table 9.5: Combined moment and axial force
Field sections

Support sections
Point N [kN] M [kNm]

1 -7 288 -13 188
2 261 9 729
3 9 813 479
4 10 224 928

Table 9.6: Combined moment and axial force
Support sections

Support sections
Point N [kN] M [kNm]

1 -19 5886 5 265
2 -12 349 5 973
3 1 934 959
4 1 934 959

Table 9.7: Combined moment and axial force
Zero moment sections

Figure 9.9 shows clearly how the moment capacity is influenced as the axial
force is changing.
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Figure 9.9: Capacity with combined moment and axial force

A high additional tension force is crucial for the sections. The moment capacity
is strongly reduced with high axial forces. The sections of zero moments are the
most critical section. It only allows a tension force of 1 934 kN to still be in
equilibrium. With this force, the moment capacity is reduced to 960 kNm.

Looking at the field section, the maximum axial tension force is 4 968 kN with
the respective moment capacity of 4 673 kNm. Regarding the support sections,
a maximum tension force of about 9000 kN can be applied to section, but then
the moment capacity for negative moments (tension in the upper part) is ap-
proximately zero.

9.3 Shear Capacity in ULS

9.3.1 Shear Capacity in ULS without Axial Forces

The shear capacity is only calculated for the critical sections. Some of the zero
moment sections have been strengthened with shear carbon fiber reinforcement.
To understand the effect of this, the original shear-capacity must be investigated.
Shear capacity is only calculated for the inner beams, as they are strengthened.

Shear capacity is calculated by the design rules in NS 3473. Shear-tension ca-
pacity Vsd is obtained by three different contributions.

Vco is the contribution from the concrete and is calculated by:

Vco = 0.3 · (ftd +
kA ·As
γc · bw · d

)bw · d ≤ 0.6 · ftd · bw · d · kV (9.14)

Shear capacity contribution from stirrups Vsd,s is calculated by the following:



114 CHAPTER 9. CAPACITY CONTROL IN ULS

Vsd,s =
fyd ·As,s

Ss
z · (1 + cot α)sin α (9.15)

α is defined as the inclination of the stirrups. In this case, α = 90◦.

Contribution from the inclined longitudinal reinforcement Vsd,i is found by eq.
(9.16). Inclined longitudinal reinforcement is defined as the reinforcement in a
section at 45◦, at a point z = 0.9 · d from the bottom of the beam, see figure
9.10. θ is assumed to be 90◦.

Figure 9.10: Section to find the contribution from inclined reinforcement

Vsd,i =
∑

fyd ·As,i · sin θ (9.16)

Shear-compression capacity is calculated by:

Vccd = 0.3 · fcd · bw · (1 + cot α) (9.17)

With the following condition:

Vccd ≤ 0.45 · fcd · bw · z (9.18)

Detailed calculations are found in appendix C.D. Calculations give the follow-
ing results:

Vco = 441.9 kN
Vsd,s = 603 kN
Vsd,i = 1082.5 kN

Such that:

Vsd = Vco + Vsd,s + Vsd,i = 2127.4 kN

Shear-compression capacity:
Vccd = 2880 kN
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9.3.2 Combined Shear and Axial Force Capacity in ULS

According to NS 3473 section 12.3.2.3, a beam subjected to both shear and ten-
sile axial force should have the contribution from the concrete in shear-tension
capacity as the largest of the following:

Vcd,0 = Vco · (1−
Nf

1.5 · ftd ·Ac
) ≥ 0 (9.19)

Vcd,0 = Vco · (1−
εs
εyd

) (9.20)

Where εs is the strain of the longitudinal reinforcement when the beam is sub-
jected to all acting forces and εs ≤ εyd.

The beams subjected to axial compression will increase its capacity in ULS.
Since the capacity without axial force is assumed to be adequate, this is not
calculated for the outer beam. If the capacity of the outer beam is found to be
insufficient, this will be included.

There is assumed an axial tension force found in the results from the solid model.
By these calculations, it is found that Vcd,0 = 0. Detailed calculations can be
found in appendix C.D.1. This results in following shear capacity in ULS when
the section is subjected to both shear and axial tension force:

Vsd = Vsd,s + Vsd,i = 1685.5 kN
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Chapter 10

Capacity of CFRP in ULS

The carbon fiber reinforcement will contribute to additional strength. The ca-
pacity of the strengthening is calculated by using fib bulletin 90 [18]. The
methods are explained in chapter 6.

10.1 Moment Capacity

Moment capacity of strengthened beams is obtained according to 6.2. All failure
modes must be considered as discussed earlier. With externally bonded CFRP
the stiffness of the section increases, which leads to an increase in the design
bending moment capacity for the cross-sections. Still, the aspects of debonding
due to cracks and end-debonding are important to be considered. These failures
modes are brittle and rapid which is undesirable.

The capacity is obtained for field sections and zero moment sections. This is
due to the fact that these sections are critical and strengthened. To obtain
the moment capacity, only longitudinal reinforcement strips are included. The
mechanical properties of the CFRP strips can be found in table E.1.

10.1.1 Design Bending Moment Capacity in ULS

The method of finding moment capacity is obtained from fib bulletin [18] ap-
pendix 6.1. The method finds flexural resistance by taking moment equilibrium
about the attack point of the compression force. The compression zone is eval-
uated by force equilibrium and considers the compression distribution in the
concrete by the strain in the concrete.
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Figure 10.1: Section capacity in ULS

To find the flexural resistance of the cross-section, moment equilibrium is taken
about the attack point of the compression force.

MRd = As · σs · (ds − k2 · x) +Af · Ef · εf · (h− k2 · x) (10.1)

By taking equilibrium of the internal forces in the cross section, an expression
for the compression zone is found:

x =
As · σs +Af · ftd

k1 · fcd · b
(10.2)

Using the formulas below the factors k1 and k2 is obtained based on the con-
crete’s strain:

k1 =

{
1000εc · (0.5− 1000

12 εc) for εc ≤ 0.002

1− 2
3000εc

for 0.002 ≤ εc ≤ 0.0035
(10.3)

k2 =

{
8−1000εc

4·(6−1000εc) for εc ≤ 0.002
1000εc(3000εc−4)+2

2000εc(3000εc−2) for 0.002 ≤ εc ≤ 0.0035
(10.4)

Detailed calculations is found in appendix E.A.1. The moment capacity of the
cross sections is presented in the table below:

Section Moment capacity
Field sections 9048 kNm

Zero moment sections 4323 kNm

Table 10.1: Bending moment capacity of cross sections

10.1.2 Combined Moment and Axial Force Capacity

The same procedure as used in section 9.2 is executed to obtain the limitation
of the combined moment and axial force allowed in the sections with FRP.
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The estimated strain failures are:

1. εc = εcu = 0.0035 and εs = εyd = 0.00136

Figure 10.2: Strain Failure 1

2. εc = εcu = 0.0035 and εf = εfu = 0.01038

Figure 10.3: Strain Failure 2
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3. εc = 0 and εf = εfu = 0.01038

Figure 10.4: Strain Failure 3

4. ε′s = ε′yd = 0.00136 and εf = εfu = 0.01038

Figure 10.5: Strain Failure 4

Detailed calculations can be found in E.A.2. Results are presented below:

M [kNm] N [kN]
Strain failure 1 8705 -1620
Strain failure 2 11 569 -8178
Strain failure 3 6436 6154
Strain failure 4 6436 6154

Table 10.2: Combined moment and axial force capacity
Field sections
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M [kNm] N [kN]
Strain failure 1 5537 -1935.6
Strain failure 2 7802 -1124
Strain failure 3 2726 3399
Strain failure 4 2726 3399

Table 10.3: Combined moment and axial force capacity
Zero Moment Sections

The sections can sustain all combinations of M and N within the lines presented
in figure 10.6.

Figure 10.6: Combined moment and axial force capacity with CFRP

10.1.3 Intermediate Crack Debonding

The capacity of intermediate crack debonding is found by the design rules given
in 6.2.1. Detailed calculations can be found in appendix E.A.2.3.

To prevent intermediate crack debonding, the change of tensile force in FRP,
∆FfEd, must be lower than the change in resistance, ∆FfRd, at an element
between cracks as explained in section 6.2.1.

The acting bending moment due to live loads and self-weight between the axis
and zero moment section is negative and will therefore not be critical. As a
consequence, only an area between zero moment sections and field sections is
evaluated.
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Calculations in appendix E.A.2.3 gives the following properties:

bf 60 mm
nf 8
sr 400 mm
kb 1

Table 10.4: Properties in calculation of ∆Ffd

τb1d and τbFd is obtrained by eq. (10.5) and (10.6)

τb1d = 0.23 · k2
b · f2/3

cm /γBA (10.5)

τbFk = 10.8 · αcc · f−0.89
cm /γBA (10.6)

The intermediate crack debonding capacity is found to be:

∆Ffd,B = 36 kN

∆Ffd,F = 60.56 kN

∆Ffd,C = 4.14 kN

Summarizing all of the contributions, the resistance of change in tensile forces
at each element is:

∆FfRd = 100.7 kN

10.2 Shear capacity

10.2.1 Shear Strengthening due to Insufficient Shear Capacity

The contribution from the fiber reinforcement to the shear capacity is calculated
by following section 6.3.

As described in section 4.2.4 the carbon reinforcement used for shear strength-
ening is SIKA Wrap Hex-230C. It is applied with 5 layers and laid in eight strips
with bf = 300 mm. These are placed with an angle α = 45◦. Only four of the
strips are active over the existing crack and contribute to the shear capacity in
the cracked section [51].

The general increase in shear capacity is calculated for a hypothetical shear
crack and it is assumed to have an angle of θ = 45 to obtain the lowest shear
tension capacity the reinforcement can give. The situation is illustrated in figure
10.7
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Figure 10.7: Shear FRP over a 45◦ crack

The capacity is obtained by using equation (6.25) and is thoroughly shown in
appendix E.A.3.1. The following properties are defined:

Afw 301.6 mm
sf 0.503 mm
hf 1309.6 mm
θ 45 ◦

α 45 ◦

ffbwd 508.5 MPa

Table 10.5: Properties of shear CFRP

The effectiveness of each layer is reduced when multiple layers are applied. In
this case, there are five layers with a thickness of t0 = 0.128 mm. The total
thickness is reduced to an effective thickness of tf = 0.502. The total area con-
tributing to the shear capacity is given as Af = 2 ·bf ·tf since it is symmetrically
placed on both sides of the beam.

The application of the CFRP covers the entire web and is defined as a full-depth
FRP. The shear crack is assumed to extend over a height equal to hw − 0.1ds.
Due to the full-depth application, the height of the FRP strengthening crossed
by the shear crack is equal to the crack-height itself. Since there is no spac-
ing between the strips, it is considered to be a full area bond with spacing
sf = bf/sinα.

The application is not entirely closed and it is placed like an u-wrap. To find
the design strength of the fiber reinforcement ffwd, the bond strength ffbwd
must be controlled and compared to the strength of a closed system ffwd,c as
explained in section 6.3.2. The bond strength is found to be the decisive design
strength.

The bond strength is found by using equation (6.28). This assumes that all
the strips intersected by the shear crack have a bond length greater than the



124 CHAPTER 10. CAPACITY OF CFRP IN ULS

effective bond length le. This must be verified by calculating le.

Given the following properties in table 10.5 the shear capacity is found.

VRdf = 670 kN (10.7)

Exisiting crack

In the existing crack, it can be assumed that all the steel is ineffective, though
x-ray photos may indicate otherwise [51]. This means that only the shear re-
inforcement can carry the shear forces over the crack. It is assumed that the
structure is carrying the self-weight as this force is already exposed to the struc-
ture at the time of application. Thus, the fiber reinforcement in the cracked
section must carry all the other live loads.

This crack is most likely not caused by insufficient shear capacity as crack shows
more characteristics to a bending crack rather than a shear crack. Despite this,
the same method has been used to find the shear capacity as above, with some
modifications shown in appendix E.A.3.1. The shear force can only be transmit-
ted by the fiber reinforcement. Knowing that four of the strips is contributing
to the shear capacity, the total capacity in the cracked section can be found.

The same conditions for lb > le are controlled, resulting in that some of the
strips have a less bond length than the effective length. This is due that when
such a large vertical crack is spanning over the web, the upper strip most likely
has a lb < le in accordance to figure 10.8. The four activated straps are indi-
cated with a grey color. The lower strip is anchored further under the web and
this will have an adequate bond length. As the extent of the crack is uncertain,
it is on the safe side it is assumed that one strip has a bond length less than
the effective length. The strength of the fiber reinforcement is therefore reduced.

Figure 10.8: Shear FRP over the existing crack

The highest vertical shear force possible that can be sustained by one strip is
found to be VRd,s = 125.1 kN. Since the crack activates four of the strips, the
total shear capacity will be:

VRdf,zm = 500.4kN (10.8)
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10.2.2 Shear strengthening due to Flexural Debonding

The fiber shear reinforcement is placed locally at the beam over the cracked
sections. Thus, most parts of the regarded beam are without shear fiber rein-
forcement but still have flexural reinforcement. This can lead to the failures
described in section 6.3.3. A control for concrete cover separation and shear-
induced intermediate crack debonding must be performed.

If the shear capacity concerning concrete cover separation is exceeded there
should be transverse strips at the end of the flexural fiber reinforcement. While,
if the shear resistance against shear-induced intermediate debonding is exceeded,
transverse strips should be distributed over the entire span. This is to optimize
the flexural fiber reinforcement’s strength and prevent local failures.

The limit for the acting shear force preventing concrete cover debonding is
found by using equation (6.32), which is a reduced shear resistance VRd,c,fe.
The critical section is close to the column and properties for a support section
are used. The amount of tension reinforcement and the geometrical placement
is important. Table 10.6 shows the properties used for the calculations and the
steps are shown in Annex E.A.3.2.

af 200 m
ρs 1.9 ·10−2

Vco 441.9 kN

Table 10.6: Properties for concrete cover control

This leads to the acting shear force being limited to:

VRd,c,fe = 351.2 kN (10.9)

Intermediate debonding due to shear cracks may also occur when subjected to a
high shear force. Most likely it will occur in the field area. The limit preventing
shear induced flexural debonding is found by rearranging equation (6.35) to get
the highest allowed acting shear force. The calculations are reported in Annex
E.A.3.2 and important properties are listed in table 10.7.

Asw 265
s 175
z 1413
θ 45 ◦

α 45 ◦

VRd,max 288 kN

Table 10.7: Properties for shear induced intermeidate debonding

This gives an acting shear force restricted by the value of VEd,max :

VEd,max = 468kN (10.10)
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Chapter 11

Results

11.1 Resulting ASR-Loads

Both the frame model and the solid model have been evaluated thoroughly. The
models are considered to be representative of the acting forces in the bridge,
especially the axial forces. It is important to bear in mind that the assumptions
made in both models contribute to differences. This is discussed thoroughly in
section 7.3.

The areas of the bridge which are not modeled in the solid model are represented
by the results from the frame model. The solid model is inadequate to obtain
the difference in resulting moments in the inner and outer beam, whereas these
dissimilarities are easy to derive in the frame model.

Analyses including cracked sections are used when deriving forces in the models.
This results in lower acting forces in some sections. Nevertheless, it is considered
to be preferable since it takes into account the redistribution of forces, which is
reasonable to believe occurs in the bridge.

Temperature field 2 has a linear strain gradient in both directions and is consid-
ered to be the most accurate. In light of this, temperature field 2 is submitted
in the solid model to obtain the acting forces in the bridge. Since these results
give axial forces 20% higher compared to temperature field 1, it is considered
conservative to evaluate temperature field 2.

11.1.1 Elongation of Models

Simulation Frame Model TF 1 Solid Model TF 1 Solid Model TF 2
Free exp. 1.12h 1.112h 1.101h

Free exp. w/crack 1.1225h 1.124h not analyzed
Restrained exp. 0.9268 h 0.9547h 0.9526h

Restrained exp. w/crack 0.9286h 0.9675h 0.965h

Table 11.1: Strain from different simulations in Abaqus

127
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The strain obtained in a cracked and restrained situation gives an elongation of
185.72 mm in the frame model. Implying the strain in the solid model to the
whole bridge gives a total elongation of 193.5 mm for the same temperature field.

An interesting observation is the difference in strain between the two models
exposed to the same temperature field. If the two models were to have the same
elongation, different temperature fields must have been made for each model.

As previously mentioned, today’s elongation is measured to be 200 mm. That is
not achieved by the expansion field given above. To obtain this elongation, the
strain factor a must be calibrated and imposed in the model. By iterating and
using the same distribution as shown in figure 4.9, a is found to be 0.5385h for
the frame model. The following temperature field should have been used:

Part ∆T ε0

Inner beam, top 107.7 ◦C 0.001077
Inner beam, mass center 91.83 ◦C 0.0009183

Inner beam, bottom 53.85 ◦C 0.0005385
Outer beam, top 161.55 ◦C 0.0016155

Outer beam, mass center 145.68 ◦C 0.0014568
Outer beam, bottom 107.7 ◦C 0.0010707

Gradient 31.49◦C/m 0.0003149/m

Table 11.2: Temperature and strain providing u1 = 200mm

This is not been used further for modeling in the frame model. Still, just by
observing the impact on the concrete in a situation with symmetrical cracks,
it is clear that this affects the result. The maximum global imposed bending
moment occurring in the concrete has increased by 7.8 % and the maximum
tension force in the concrete has an increase of 7.7 %.

The solid model has greater expansion when modeled with reinforcement due to
the preconditions of the model. A solution for a temperature field that causes
an elongation of 200 mm and a strain of 0.001 is iterated in temperature field
2. Resulting temperature field to accommodate this condition is:

T = [175− (50/5500) · x− (50/1710) · y] · 1.0375 (11.1)

This results in a strain factor a = 0.51875h which gives a total elongation of
200.3 mm.
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11.1.2 Acting Axial Forces due to ASR

Frame model

Section Inner beam [kN] Outer beam [kN]
Support 1 5530 -5663

Support 2-7 5354 -5302
Support 8 5050 -5048
Support 9 4210 -4197

Field 1 5518 -5622
Field 2-7 5210 -5245
Field 8 4792 -4787
Field 9 2745 -2755
ZM 8-7 5130 -5131
ZM 8-9 4931 - 4933
ZM 9-8 4532 -4488

Table 11.3: Resulting ASR axial force
Frame model

Solid model

Section Inner beam [kN] Outer beam [kN]
Support 2-7 6058 -5487
Support 8 5398 -5158
Support 9 5468 -4905
Field 2-7 6077 -5652
Field 8 5744 -5331
Field 9 3793 -3788
ZM 8-7 5455 -5508
ZM 8-9 5421 -5414
ZM 9-8 5600 -5183

Table 11.4: Resulting ASR axial force
Solid model
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11.1.3 Acting Bending Moments Due to ASR

Frame model

Section Inner beam [kNm] Outer beam [kNm]
Support 1 1909 2176

Support 2-7 2111 1986
Support 8 1908 1905
Support 9 2913 2618

Field 1 4700 4466
Field 2-7 4808 4598
Field 8 4865 4783
Field 9 4740 5536
ZM 8-7 1931 2011
ZM 8-9 2122 2105
ZM 9-8 2404 2321

Table 11.5: Resulting ASR bending moment
Frame model

Solid model

Section Inner beam [kNm] Outer beam [kNm]
Support 7 2693 2693
Support 8 1770 1770
Support 9 3468 3468

Field 7 2870 2870
Field 8 3373 3373
Field 9 3468 3468
ZM 8-7 2076 2076
ZM 8-9 3373 3373
ZM 9-8 3848 3483

Table 11.6: Resulting ASR bending moment
Solid model

The total moment is divided equally over the two beams in the solid model.

11.1.4 Acting Shear Forces Due to ASR

The shear forces are only reported between support 8 and 9 in the inner beam.
This is because only this area is externally strengthened with CFRP.
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Section Inner beam [kN]
Support 8 19.5
Support 9 38

Field 8 115.4
ZM 8-9 605
ZM 9-8 761

CFRP edge 8 333
CFRP edge 9 547

Table 11.7: Resulting ASR shear force

11.2 Resulting ASR-Loads in the Future

To simulate the additional 50 mm expansion expected in the future, a modified
version of the frame model is used. Since it is known from the previous analysis
that the steel is yielding in the cracked sections, it can not contribute to the
additional expansion. The reinforcement is therefore removed in these parts.
The stiffness is increased in the parts with CFRP as previously explained. The
analysis is then submitted with a temperature field giving an elongation of 50
mm.

The forces from this analysis are superimposed to the analysis with the original
temperature field. The total results of the inner beam are reported in this sec-
tion.

The analysis of the solid model with no reinforcement in cracked sections was
unable to be solved in Abaqus. This might be due to insufficient capacity in the
structure. As a consequence, only results from the frame model are used.

11.2.1 Acting Axial Forces with Additional Expansion

Section Inner beam [kN]
Support 1 6 969

Support 2-7 6 790
Support 8 6 384
Support 9 5 350

Field 1 6 954
Field 2-7 6 631
Field 8 6 074
Field 9 3 491
ZM 8-7 6 496
ZM 8-9 6 243
ZM 9-8 5 740

Table 11.8: Resulting axial force with additional expansion

According to this analysis, the forces will increase by 27% in the future. This
is considered with the stiffness contribution from CFRP.
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11.2.2 Acting Moment with Additional Expansion

Section Inner beam [kN]
Support 1 1 999

Support 2-7 2 573
Support 8 2 494
Support 9 3 582

Field 1 5 760
Field 2-7 6 147
Field 8 6 149
Field 9 6 229
ZM 8-7 2 458
ZM 8-9 2 529
ZM 9-8 3 059

Table 11.9: Resulting moments with additional expansion

The moments will increase by approximately the same 27% in the future, except
for the cracked section which will only increase by about 18%.

11.3 Utilization of Elgeseter Bridge in ULS

The utilization is calculated for the inner beam.

The resulting ASR bending moments listed in section 11.1.3 are added to the
design moments reported in table 5.14 in section 5.5. This results in new design
moments. The ASR-moments gathered from Abaqus gives a positive moment
in all the sections. This leads to the ASR expansion having a positive impact
on the sections over the support and a negative impact on the zero moments
sections and the field sections.

As previously discussed, the inner beam obtains a reduction in moment capacity
in ULS due to the axial tensile forces. Due to the uncertainties regarding the
magnitude of the actual tensile force, it is interesting to evaluate the utilization
of the beam without being subjected to an axial force. The utilizations of the
sections are calculated with respect to the moment capacities found in sections
9.1. Besides, the highest axial force allowed acting together with MEd is re-
ported in additional tables.

The shear utilization of the zero moment section is also determined with and
without the effect of the axial force. The decisive load comes from the load
combination where traffic is dominating found in table 5.15. Furthermore, the
shear loads coming from ASR are added, which is shown in table 11.7.
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11.3.1 Without CFRP

Moment Capacity Utilization in ULS

Section MEd[kNm] MRd[kNm] UR
Support 1 -5 635 -9 557 0.59

Support 2-7 -4 563 -9 947 0.46
Support 8 -4 766 -9 547 0.50
Support 9 -4 654 -12 302 0.38

Field 1 9 797 5 980 1.64
Field 2-7 11 024 6 400 1.72
Field 8 11 081 6 400 1.73
Field 9 11 932 9 129 1.31
ZM 8-7 3 853 1 322 2.91
ZM 8-9 4 044 1 322 3.06
ZM 9-8 4 326 1 322 3.27

Table 11.10: Utilization of sections
Moments from Frame model

Section MEd[kNm] MRd[kNm] UR
Support 7 - 3 981 -9 947 0.40
Support 8 -4 904 -9 547 0.51
Support 9 -4 099 -12 302 0.33

Field 7 9 086 6 400 1.42
Field 8 9 589 6 400 1.50
Field 9 10 660 9 129 1.17
ZM 8-7 3 998 1 322 3.02
ZM 8-9 5 295 1 322 4.00
ZM 9-8 5 770 1 322 4.36

Table 11.11: Utilization of sections
Moments from Solid model

The sections of zero moment get a very high utilization, which shows the crit-
ical situations in these sections. Only considering the acting moment from the
temperature load, the capacity of the zero moment sections are utilized with a
ratio of 1.45.

However, it is important to evaluate the probability of the temperature load
acting with such a high magnitude. The large cracks appearing in the sections
of zero moments will most likely be from ASR-loads and not temperature loads,
due to the cracks local extent. The temperature loads may give moments in
both directions and is a short-term load that can contradict the negative ASR-
impact in the sections of zero moments. With this in mind, the case where
only ASR-loads work in the sections of zero moments is evaluated as well. This
argumentation was also made in the earlier investigation done by Stemland and
Nordhaug [4].
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Considering only the ASR-load, the zero moment sections still exceeds their
capacity, but the utilizations are reduced.

Section MASR[kNm] MRd[kNm] UR
ZM 8-7 1 921 1 322 1.45
ZM 8-9 2 122 1 322 1.61
ZM 9-8 2 404 1 322 1.82

Table 11.12: Utilization of sections only with ASR-load
Frame model

Section MASR[kNm] MRd[kNm] UR
ZM 8-7 2 076 1 322 1.57
ZM 8-9 3 373 1 322 2.55
ZM 9-8 3 848 1 322 2.91

Table 11.13: Utilization of sections only with ASR-load
Solid model

Combined Moment and Axial Force Utilization in ULS

The capacity of every section in the inner beam is reduced with a present axial
force. To be able to withstand the acting moments presented in this report, the
highest possible tensile force are presented below:

Frame model Solid model
Sections MEd NRd MEd NRd

Support 7 -4 563 5 500 - 3 981 6000
Support 8 -4 766 5 300 -4 904 5 000

Field 7 11 024 0 9 086 0
Field 8 11 081 0 9 589 0
ZM 8-7 3 853 0 3 998 0
ZM 8-9 4 044 0 5 295 0

Table 11.14: Maximum axial force combined with moment

As seen in section 11.1.2, the axial forces appearing in the beams are greater
than the ones shown here. In figure 11.1, sections with the obtained acting loads
are shown. Only the support sections can withstand both the bending moment
and the axial force.
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Figure 11.1: Utilization of representative sections

From the Abaqus modeling, both the frame model and the solid model provides a
tension force of approximately 5000 kN in the inner beam. The support sections
moment capacity will be reduced from MRd = −9547 kNm to MRd,N = −4500
kNm with a tension force of N = 5000 kN found in figure 11.1. Regarding the
other sections, the situations are more critical as the maximum axial force is
exceeded. If the beam in Elgeseter bridge is exposed to an axial force of this
magnitude, the field sections and the sections of zero moments have lost their
equilibrium, and failure will occur.

There are a lot of uncertainties connected to the magnitude of the expansions
and the distribution between the beams. The ASR effects can be very local and
have high divergence in reality compared to the linear expansion field assumed
in this report. The axial force obtained in the Abaqus analysis will most likely
not occur in every section in the entire bridge. The assumption that most parts
of the bridge are in a stage I condition, might be too conservative. Still, it is
realistic that some sections are exposed to high axial forces and this is a critical
aspect to take into consideration.

Shear Capacity Utilization without Axial Force

Section VEd[kN ] VRd[kN ] UR
ZM 8-9 1929 2127 0.91

Table 11.15: Utilization of sections
Solid model

The utilization is below 1 and the section is considered to be safe.
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Shear Capacity Utilization with Axial Force

Section VEd[kN ] VRd[kN ] UR
ZM 8-9 1929 1685.1 1.15

Table 11.16: Utilization of sections
Solid model

The utilization when considering the axial forces in the section exceeds 1. The
uncertainties regarding the axial forces in the bridge as discussed previously
applies to this utilization as well.

11.3.2 Including CFRP

Moment Capacity Utilization in ULS

By adding carbon fiber reinforcement, the moment capacity increases in field
3, field 6, and field 8 including the section of zero moments. A new utilization
ratio has been calculated to accommodate for this. It is only the field- and zero
moment section that will get an advantage with additional CFRP.

Section MEd[kNm] MRd[kNm] UR
Support 1 -5 635 -9 557 0.59

Support 2-7 -4 563 -9 947 0.46
Support 8 -4 766 -9 547 0.50
Support 9 -4 654 -12 302 0.38

Field 1 9 797 5 980 1.64
Field 3 and 6 11 024 9 048 1.22

Field 2, 4, 5 and 7 11 024 6 400 1.72
Field 8 11 081 9 048 1.22
Field 9 11 932 9 129 1.31
ZM 8-7 3 853 1 322 2.91
ZM 8-9 4 044 4 323 0.94
ZM 9-8 4 326 4 323 1.00

Table 11.17: Utilization of sections and CFRP
Moments from Frame model
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Section MEd[kNm] MRd[kNm] UR
Support 7 -3 981 -9 947 0.40
Support 8 -4 904 -9 547 0.51
Support 9 -4 099 -12 302 0.33

Field 3 and 6 9 086 9 048 1.00
Field 2, 4, 5 and 7 9 086 6 400 1.42

Field 8 9 589 9 048 1.06
Field 9 10 660 9 129 1.17
ZM 8-7 3 998 1 322 3.02
ZM 8-9 5 295 4 323 1.22
ZM 9-8 5770 4323 1.33

Table 11.18: Utilization of sections with CFRP
Moments from Solid model

Looking only at the ASR-load, the contribution from CFRP makes the utiliza-
tion less than 1 in the considered sections of zero moments.

Section MASR[kNm] MRd[kNm] UR
ZM 8-7 1 921 4 323 0.44
ZM 8-9 2 122 4 323 0.49
ZM 9-8 2 404 4 323 0.56

Table 11.19: Utilization of sections
Frame model

Section MASR[kNm] MRd[kNm] UR
ZM 8-7 2 076 4 323 0.48
ZM 8-9 3 373 4 323 0.78
ZM 9-8 3 848 4 323 0.89

Table 11.20: Utilization of sections with ASR-load
Solid model

Combined Moment and Axial Force Utilization in ULS

Considering the increased bending moment capacity, a larger axial force can be
sustained together with the moment. For the acting moments obtained, table
11.21 shows the maximum tensile force the section can sustain.

Frame model Solid model
Sections MEd NRd MEd NRd

Field 8 11 081 0 9 589 0
ZM 8-7 3 853 1 000 3 998 1 000
ZM 8-9 4 044 0 5 295 0

Table 11.21: Maximum Axial Force with Respective Moment
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Even when including CFRP, the sections can still not carry the acting moment
together with the acting load. This is clearly demonstrated in figure 11.2. De-
spite this, the capacity has increased and a higher axial force can be obtained
by both sections while still being in equilibrium. The section of zero moment
to the left of support 8 gets a tensile force resistance of about 1000 kN. If only
the ASR loads were considered for the sections of zero moments, a tensile force
of approximately 3000 kN could be subjected. In addition, the field sections do
have a tensile resistance enough to carry a force of 5-6000 kN, but only with an
acting moment of approximately 7000 kNm.

Figure 11.2: Utilization of representative sections with CFRP

Shear Capacity Utilization without Axial Force in ULS

The effect of CFRP in shear capacity is evaluated in the strengthened sections.

The contribution of the fiber shear reinforcement is found to be

VRd,f = 670 kN

This gives a total shear resistance of 2797 kN which is a significant increase.

Section VEd[kN ] VRd[kN ] UR
ZM 8-9 1929 2797 0.69

Table 11.22: Utilization of section with CFRP
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Shear Capacity Utilization with Axial Force

Section VEd[kN ] VRd[kN ] UR
ZM 8-9 1929 2351 0.82

Table 11.23: Utilization of section with CFRP and axial force

By including the additional capacity, the section can withstand the tensile force
in addition to a shear crack of 45 ◦.

Shear Capacity Utilization in Existing Crack

If the existing crack of 90 ◦ is evaluated, it is assumed that only the live loads
are carried by the fiber reinforcement. This is due to the self-weight and the
ASR-loads being imposed on the bridge at the time of the crack. Also, it is
assumed that the steel is inactive so that the only way the forces are transferred
is through the fiber.

The shear force coming solely from the self-weight is 631 kN, and gives a net
acting shear force of:

VEd = 1324− 631 = 693kN

The fiber reinforcement working over the existing crack has a capacity of:

VRd,frp = 520kN

Section VEd[kN ] VRd[kN ] UR
ZM 8-9 693 520 1.33

Table 11.24: Utilization of section with the existing crack

This is not sufficient to transfer the shear force. Despite this, some assumptions
have been made which could have increased the capacity if evaluated differently.

11.4 Utilization of Elgeseter Bridge in the Future

The ASR-loads are expected to increase. This is very critical as many sections
already have insufficient capacity. With these additional loads, a new consid-
eration of the moment utilization is performed. The evaluation has been made
with the increase in stiffness for field 3,6 and 8 due to CFRP.

Moment capacity utilization
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Section MEd[kNm] MRd[kNm] UR
Support 1 -5 545 -9 557 0.58

Support 2-7 -4 101 -9 947 0.41
Support 8 -5 073 -9 547 0.53
Support 9 -3 985 -12 302 0.32

Field 1 12 051 5 980 2.02
Field 2,4,5,7 12 847 6 400 2.00

Field 3,6 12 051 9 048 1.33
Field 8 12 365 9 048 1.37
Field 9 13 421 9 129 1.47
ZM 8-7 4 380 1 322 3.31
ZM 8-9 4 451 4 323 1.03
ZM 9-8 4 981 4 323 1.15

Table 11.25: Utilization of sections with ASR-load
Moments from Frame model

If the temperature loads are neglected in the sections of zero moments:

Section MASR[kNm] MRd[kNm] UR
ZM 8-7 2 458 1 322 1.86
ZM 8-9 2 529 4 323 0.59
ZM 9-8 3 059 4 323 0.71

11.5 Evaluation of Intermediate Crack Debonding

11.5.1 Moment Induced

The acting forces that cause moment induced intermediate crack debonding are
the shift in tensile forces at an element between two cracks. To estimate this,
the theoretical crack spacing is found and the tensile forces in the CFRP at each
crack are found depending on an estimated moment distribution. The method
of finding tensile forces in the CFRP is explained in section 6.2.1.

The moment distribution is estimated by results derived from the report of
Nordhaug and Stemland [4] and resulting ASR moment distribution.

Figure 11.3: Moment distribution in a beam restrained in both ends [52]
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Moment distribution from an evenly distributed load q in a beam with a length
L fixed in both ends is given as:

M(x) = −qx
2

2
+
qL · x

12
− qL2

12
(11.2)

As the distribution from ASR moment is more complex and difficult to obtain, a
linear approach between the axis and field section is assumed. This might con-
tribute to conservative results in some areas, especially around the field sections.
In other sections, such as closer to the zero moment sections, the estimated mo-
ment distribution might be unconservative. This can lead to yielding in the
steel reinforcement further away from the axis than in reality.

By eq. (6.19), FfEd depends on whether it is yielding or not, which is deter-
mined by:

σs(x) = σs,0(x) +
∆MEd(x)

zm
· ds · Es
EfAf + EsAs

(11.3)

Where

σs,0(x) =
MEd,0(x)

0.85 · ds ·As
(11.4)

and

zm ≈ 0.8 · dfEfAf + dsEsAs
EfAf + EsAs

(11.5)

Change in tensile force of the CFRP is found by eq. (6.15). The control is done
in MATLAB, and detailed calculations are found in appendix F. Resulting
∆FfEd is plotted from the zero moment section to the field section in figure
11.4.
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Figure 11.4: Shift in tension force including ASR-moment

Due to the uncertainties of the ASR moment distribution, an additional control
is done without the ASR moment.

Figure 11.5: Shift in tension force without ASR-moment

The point of yielding is shown as a peak in the graph. This is due to the dif-
ferent approaches to obtain ∆FfEd when the steel is yielding. The yield point
is moved further towards the field when not including ASR-loads.

Both controls result in elements with a higher shift in tensile force than the
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capacity, ∆FfRd = 100.7 kN. Due to the uncertainties of the ASR moment dis-
tribution, the location of which element that is retaining the highest shift in
tensile forces is unknown. However, the control without ASR moment shows
that the capacity is exceeded independently of the distribution of ASR moment.
This moment will only increase the acting forces.

The control of moment induced crack debonding is important when designing
externally bonded fiber reinforcement. It is to prevent that crack debonding
is the determinate failure mode of the CFRP. This does not imply that the
structure will fail at this load. As Elgeseter Bridge does not have cracks at each
400 mm as for today, the structure might not be in a critical stage considering
intermediate crack debonding induced by moment. Still, debonding failure is
undesirable and the analysis shows that if the CFRP fails it might be by inter-
mediate crack debonding as the utilization is this high.

11.5.2 Shear Induced

The member is controlled for shear-induced flexural debonding of the CFRP
strips and the support section is controlled for concrete cover separation. These
controls are done to prevent the detrimental influence on flexural debonding [18].

Concrete cover separation in support section

Concrete cover separation is a crucial control done at the edge of the CFRP. In
this case, it is critical near support 9. Here the acting shear force is

VEd = 1971 + 547 = 2518 kN

The concrete cover has no steel and solely the concrete contributes to the shear
resistance. The capacity to prevent separation is found to be

VRd,c,fe = 367.2 kN

This is a very small capacity compared to the acting force, and concrete cover
separation is likely to occur. Transverse strips should be designed to take the
shear force and applied at the end section of the flexural FRP reinforcement.
The strips are recommended to be designed after equation (6.33). Adding such
strips will generally increase the shear capacity as well.

Shear induced intermediate debonding

The possibility of shear-induced intermediate crack debonding is evaluated for
the whole beam with flexural reinforcement. Here the acting force can not ex-
ceed;

VEd,max = 466 kN

Looking at the shear forces from the decisive load combination and the addi-
tional ASR-load it is clear that this limit will be exceeded several places. The
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safest solution is to attach transverse FRP wrapping to ensure the tensile re-
sistance of the longitudinal reinforcement. The strips should be designed after
equation (6.36).



Chapter 12

Discussion

12.1 General Aspects

12.1.1 Models

Several assumptions need to be made when modeling in FEM software, as there
are many unknown properties of the real structure and the software often limits
the possibilities in modeling.

The frame model is based on a suggestion from The Norwegian Public Road
Administration [33]. This model consists of beam elements with transverse el-
ements that preserve compatibility between the four beams. The transverse
elements are constrained to the beam elements every 1.25 m. These elements
contribute to a discontinuous transverse force distribution between the beams.
The bridge is modeled as fully restrained in axis 1 and simply supported in axis
2-10. In reality, the bridge is somewhat constrained against elongation in axis
2-9 and rotation in axis 2-8 by the columns. Due to the observed total elonga-
tion of the bridge and the geometry of the columns, this effect is neglected in
the analyses.

The solid model includes two of the beams between axis 6-10 in solid elements.
This model preserves the effects of transverse stiffness and the behavior of the
continuous plate between the beams. The solid model is fixed in axis 6, which
is a simplification. In reality, the constraint of this axis is softer as the bridge
is continuous before support 6 and the analysis might obtain higher forces in
this section compared to reality. This effect is assumed to languish in span 6-7,
such that axis 7 is expected to be representative. In addition, it is assumed
that the bridge will have a repeating response to the ASR expansion after span
7-8, which is confirmed by the frame model. This leads to an assumption that
this span is representative of the behavior of the rest of the bridge and it is
not necessary to model more spans. The bridge is constrained with a symmetry
constraint longitudinal to the inner beam. This results in a symmetric behavior
of the bridge. In span 8-9 the bridge is cracked and externally reinforced in
only one beam, and this will not be preserved in the model due to its symmetry
condition. This might affect the results in the analyses. The solid model was
not able to obtain the resulting forces of each beam, which is undesirable when
modeling the non-linearity of the problem.

145
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The frame model seems to describe the axial forces satisfactorily after adjusting
the transverse elements’ shear stiffness and bending stiffness in plane to retain
the behavior of a continuous plate between the beam elements. The resulting
bending moments and total strain in the two models have small deviations in
analyses without reinforcement. Consequently, the two models are evaluated to
be satisfactory equivalent to each other in analyses without reinforcement and
non-linear modeling.

The reinforcement in the frame model was simplified by assembling it in a repre-
senting upper and lower reinforcement, which was connected to the beam at each
element every 1.25 m. The solid model was modeled with each rebar positioned
approximately according to the original drawings and connected continuously
to the concrete. The detailed placement preserves the local effects of the posi-
tioning of the reinforcement and its continuous restrain on the concrete. When
applying reinforcement in the analyses, relatively large deviations in longitudi-
nal strain and bending moment arose between the two models. The deviations
are assumed to be an effect of the preconditions of the beam elements and the
modeling of the reinforcement. This leads to the discussion about the level of
satisfaction the implementation of reinforcement has in the frame model, and if
it represents the real impact the reinforcement has on the concrete section.

When modeling non-linearity such as cracks in the bridge, different approaches
were made in the two models. The frame model was modeled with an adjusted
stiffness of the cross-section, whereas the solid model reduced the stiffness sig-
nificantly in only the web of the beam in the cracked area. The solution made
in the frame model might be un-conservative as the cross-section still attains
tensile strength, which the concrete does not have in a cracked state. On the
contrary, the assumptions made in the solid model might be too conservative.
With reducing the stiffness in the whole web, one assumes that the crack has
propagated to the bridge deck. In reality, some parts of the web might be active
and uncracked.

The frame model gets a much lower effect from the crack. This can be seen by
comparing the elongation, axial forces and moments in the two models before
and after the non-linearity is imposed. Although the impact of the crack is
greater in magnitude for the solid model, the general effect can be seen in both
the models. The forces decrease not only in the crack itself but also in the area
around the crack. The effects extend to the section of zero moment on the other
side of the support. The steel in the cracked sections gets more exposed as the
concrete is weaker and will yield in both of the models.

The fact that the frame model does not obtain the same magnitude in the de-
crease of forces, shows a severe weakness in the approach. It is recommended
to evaluate another way of modeling the non-linearity if a frame model is to be
used in further analysis.

To test different effects of implementing non-linearity, Young’s modulus has been
further reduced in the frame model. When imposing Young’s modulus equal to
5% of the original stiffness in the cracked section, the reduction in forces is
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about 27%. This is similar to the results obtained in the solid model analysis.
In addition, the solid model was submitted to an analysis with a 75% reduction
in Young’s modulus for the cracked section, as performed in the frame model.
The impact of the crack became significantly more modest and closer to what
was observed in the frame model. These investigations support the theory that
the different non-linearity approaches have a severe impact on the results.

In both analyses, this study assumed that the concrete is in stage II in the
cracked section and all other sections of the bridge are assumed to be in stage I.
Conducting an analysis assuming the majority of the bridge is in an uncracked
stage, is an important initial step. In reality, a more significant part of the bridge
may be in a stage II condition. As seen by the analyses, the ASR expansion
establishes severe forces in the bridge. This might lead to the conclusion that
these assumptions of the bridge’s condition are inadequate. Implementing this
effect in the analysis is a thorough process, and one could attempt to model this
non-linear situation by a linear elastic approach. Consequences of this would
be a varying stiffness in the whole bridge and a varying neutral axis in the
cross-sections. The solid model will sustain this effect, but it would have to
be implemented in the frame model and considered. Though, including this in
a linear elastic analysis with beam elements could create discontinuities in the
model, which do not occur in reality. Aas-Jakobsen has started a project to
evaluate the capacity of the bridge and is performing an ongoing investigation
about these circumstances. Optimally, a condition between stage I and stage
II would be ideal to model for global analyses. This is due to tension stiffening
between the cracks, where the concrete still can sustain tension stresses.

12.1.2 ASR Effects

In this report, the effect of ASR has shown a significant impact on the struc-
ture. To determine the actual influence of the ASR, the total expansion of the
structure must be known. The chosen expansion field is uniform over the en-
tire bridge but with linearly variations over the height and width. A uniform
expansion field is not necessarily the case as more variations are likely to occur
in the expansion caused by ASR. This is due to local accumulations of reactive
aggregates in the concrete.

From research projects, it is reported that the mechanical properties of the con-
crete get a significant impact form ASR, though it is hard to quantify. One of
the most essential results is that the reduction in properties of the concrete de-
pends on the crack’s orientation. The directional dependency of the properties
gives the concrete an anisotropic behaviour.

Generally, the tensile force gets considerably influenced, but this is also affected
by the appearance of cracks. The compression strength is believed not to get
significantly reduced before the expansion reaches a high value. Young’s mod-
ulus is decreasing considerably with greater exposure of ASR. Measuring the
reduction in stiffness is found to be the best way to evaluate the ASR-damage.
The relation is obtained by running SDT test and gives a good indication of the
severeness. Since the exposure from ASR can variate within the structure, so
will Young’s modulus. Neither this effect nor the general reduction in Young’s
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modulus is accounted for in this study. Including this effect, the forces obtained
from ASR-loads would variate more within the structure.

The anisotropic behavior of ASR-damaged concrete has been neglected in the
analysis. The occurrence of restrained parts within a structure provides local
compression. If the compression is about 2-3 MPa it is high enough to retain
the expansion in some directions. This can mean that the ASR-expansion is
dependent on the stress in the concrete. If so, the stress state of the section
from permanent loads must be evaluated and local expansions calculated. A
stress-dependent expansion would most likely lead to less resulting loads form
ASR than the ones reported in this study.

To find a representing expansion field accounting for the listed effects is very
challenging. The only property that is sure for existing ASR-damaged structures
is the total strain. The expansion field must be adjusted to this and modeled
in the best way preserving the effects mentioned above.

12.1.3 CFRP Effects

International guidelines regarding the design of carbon fiber reinforcement have
been insufficient in the past. As of today, a new annex to the Eurocode 2
is being developed based on design rules from Fib Bulletin 90. This provides
methods to optimize the contribution of the fibers to the capacity when de-
signing. When the current CFRP solution on Elgeseter bridge was designed,
the Eurocode guidelines did not exist. The new information and aspects of the
solution must be included when evaluating the strengthening.

A challenge with fiber reinforced polymers is to preserve the high strength in
the fibers when working together with the concrete. The strength of the com-
posite material is rarely able to reach its full potential before it reaches its bond
strength or rupture. The design rules provide controls to avoid such failure
modes and give a thorough demand for an application that takes advantage of
the fiber’s strength.

Debonding of FRP leads to a brittle failure mode, which is highly unwanted.
This can be initiated by cracks and there is therefore a danger in not knowing
the state of the concrete under the fiber material. The guidelines assume that
the FRP is applied to concrete being in an adequate condition. Knowing that
ASR leads to a formation of cracks in the concrete, it is discussed if FRP is
a beneficial solution for strengthening of ASR-damaged concrete. Also, if the
FRP is subjected to expansion, some researches show that it will harm the bond
strength, which would decrease the capacity significantly.

The effects on the properties of fiber reinforcement coming from cracks and
ASR-expansion are very uncertain. The applications of the fiber reinforcement
must be executed with high consideration. The bond length and the way the
external reinforcement is anchored serves as important by preventing rupture
and maintaining the strength.
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From another view, it can be discussed how fiber reinforcement gives a posi-
tive effect. If applied in a way that gives a confinement pressure, the CFRP
can retain the expansion and reduce the stresses. Furthermore, the FRP will
cover the surface preventing a moist environment. To prevent the expansion,
the fiber reinforcement must be applied in an early stage of the exposure. Still,
it is hard to achieve the confinement pressure unless the FRP is fully wrapped.
This means that FRP solutions might retain expansion in columns better than
in a beam.

The analysis of the global behavior of Elgeseter bridge showed approximately no
effect in the total strain when introducing CFRP locally on the bridge. The lay-
out will most likely not provide the necessary pressure to retain the expansion.
Another aspect regarding global behavior is the possibility of rearrangement of
forces due to the local increases of stiffness. The modeling in Abaqus showed
only a small increase of forces in the strengthened sections and it was not impos-
ing higher forces on the areas around. If the stiffness was significantly increased
over the whole bridge, it could be assumed a small decrease in expansion, but
also a considerable increase in forces.

Many aspects influence the strength of the fiber reinforcement and uncertainties
arise when designing an FRP solution. The new rules include conservative con-
trols so that unwanted failure modes are prevented. Still, cracks and inaccurate
applications may reduce the strength in ways that are not accounted for when
evaluating the capacity of the CFRP solution in this report.

12.2 Evaluation of Results and Utilization in ULS

The resulting loads used to determine the utilization of the bridge is a summa-
tion of the original loads found by Stemland and Nordhaug [?] and the ASR-load
obtained from the Abaqus analysis.

Regarding the original loads, they have been calculated by using The Norwegian
Public road administration’s guidelines for existing bridges. The loads occurring
today are probably deviating from what was common at the time the bridge was
designed and recalculating the capacities and utilization is interesting. These are
calculated by using NS3473 published in 2003, while the additional capacities
from the CFRP are calculated by using the guidelines in Fib bulletin 90 (2019).

12.2.1 Elongation due to ASR

The frame model and the solid model gives different elongations for the same
temperature field. This is due to that the beam model has a stiffer behavior
where the steel is retaining the whole cross-sections following Navier’s hypoth-
esis. The local variation in the reinforcement in the solid model gives a more
ductile behavior allowing a greater strain in the structure.

The elongation in the bridge is very similar when comparing the two models in
a situation with free expansion. When including the reinforcement the steel is
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restraining the expansion with 17.3% and 14.1% in the solid model. The devi-
ations show how the local reinforcement effect makes the solid model less stiff.

When imposing sections with non-linearity in the structure the elongation only
increased with 0.19 % in the frame model, whereas it increased with 1.3% in
the other model. The impact of the crack has almost 5 times more effect on
the elongation in the solid model. This shows the unconservative way the crack
is modeled in the frame model, but the generally stiffer behavior must also be
taken into account.

The measurement of the expansion in Elgeseter bridge is set to be 200 mm in the
year 2020. This was not verified at the beginning of the investigation leading to
this report where the expansion was set to be between 180-200 mm. Therefore,
the used temperature field does not give a correct elongation as it is reported
in the newest studies. By implementing the correlated temperature field giving
200 mm expansion, the forces would have become greater than the ones that
are found in this report.

In addition, it is assumed an extra expansion of 50mm during Elgester bridge’s
service life. As the expansion continues to increase, so will the resulting forces.
As earlier discussed, the elongation is not affected by introducing the effects
form CFRP.

12.2.2 Axial Forces

The axial forces reported in section 11.1.2 are in a severe magnitude, which
might affect the capacity of especially the inner beams in an unfavorable way.
The axial forces in the solid model are more varying compared to the frame
model, which has a smoother behavior. This is due to the more varying amount
of reinforcement in the solid model.

As seen from the results, the axial forces are built up during the first span
of the bridge from axis 10. This behavior is typical, as the bridge is less re-
strained in this area and the reinforcement needs to accumulate the restraining
forces gradually. This response can indicate how the bridge is handling the
axial forces. As the axial forces accumulate relatively quickly, it might indi-
cate that the structure’s response to the axial force is quite good. Still, this
part of the bridge is modeled by stage I concrete and a linear elastic analysis. It
is uncertain if the results from this project represent the reality in this response.

An essential aspect of the simulation in this project is the uncertainties about
the assumed variation and gradient along the width of the cross-section. The
resulting axial forces in the bridge depends mainly on this variation. Other gra-
dients could result in the same expansion as the bridge has experienced, which
would give higher or lower resulting axial forces.

The axial forces in the bridge strongly depend on the axial stiffness of the beams,
due to the relationship between strain and stiffness. When modeling the bridge
in stage I, the bridge has a great stiffness to obtain the large axial forces. As
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explained earlier, the bridge might be more damaged and have a lower axial
stiffness in reality. Furthermore, when capacity is reached in a section, a re-
arrangement of forces occurs. The results from modeling a crack in the solid
model clearly show that the bridge is capable to redistribute forces when weak
areas occur.

The effect of applying CFRP on the inner beams gives a modest influence in
the axial force. The increase is less than 13% in the solid model and only 1% in
frame model. The small effects can be because of the equivalent stiffness with
CFRP is not significantly higher than the stage I stiffness. So even if the inner
beam gets a small increase in stiffness compared to the outer beam, the axial
force arising due to the different expansion in the beams remains approximately
the same.

12.2.3 Bending Moments

The moments gathered from Abaqus show the secondary moments, including
the effects of internal and external constraints. These are deviating between the
two models in varying degrees. The highest deviation occurs in the last field
with up to 70 %.

As for axial forces, this can be explained by the local effects the reinforcement
imposes in the solid model. Besides, a greater amount of reinforcement is ac-
tivated in multiple sections in the solid model. Considering the field sections,
the two models have approximately the same amount of reinforcement. Here
the frame model provides higher moments, which indicates stiffer behavior as
explained before. In the support section and especially in the sections of zero
moment the solid model has a greater amount of reinforcement on the tension
side. This is activated by the imposed ASR-loads and the steel in tension will
give a higher contribution to the ASR-moments in these sections.

Adding the bending moments from the original loads, the acting moment ex-
ceeds the moment capacities in both the field sections and the sections of zero
moment. Only the support sections have sufficient capacity, due to the beneficial
effects of the ASR moment, illustrated with the utilization ratios in figure 12.1.
Considering the additional axial forces, the compression force in the outer beam
is beneficial for the utilization, whereas the inner beam gets an unfavorable im-
pact from the tensile force. As explained earlier, it is essential to remember
that the magnitudes of these axial forces and moments are undetermined due
to the uncertainties about the stage of the concrete. The scope of this capacity
control is to highlight the possible impacts of the acting moment and axial force
combined.
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Figure 12.1: Bending moment utilization ratio for support section 8

When assuming that the strength of the CFRP can be fully utilized, the effect
from the CFRP strengthening increases the moment capacity significantly. This
occurs both for the field sections and the sections of zero moment. The moment
capacity in the sections of zero moment has increased about 4 times, this is very
beneficial for the general capacity of the bridge. The frame model which has
higher field moments than the solid model still gets an over-utilized section in
these places, while the section of zero moments gets a considerably lower uti-
lization. Contrarily, in the solid model, the field section gets a utilization ratio
below 1, while the section of zero moments still has a high utilization in some
places. The utilization ratio is shown for field 8 and ZM 8-9 in figure 12.2 and
figure 12.3 illustrating the effect of CFRP.

Figure 12.2: Bending moment utilization ratio for field 8

Figure 12.3: Bending moment utilization ratio for ZM 8-9

The question is whether it is safe to calculate with this increase in capacity due
to the flexural reinforcement. The calculations reported shows that there is a
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Figure 12.4: Shear utilization for ZM 8-9

risk of intermediate debonding due to both shear forces and moments. This
would lead to a brittle failure mode for the CFRP and loss of the additional
capacity.

A way to reduce the risk of moment induced debonding would be to apply a
greater amount of flexural FRP. This can be executed at the sides of the web
as the beam’s width is already covered. To prevent the shear induced flexural
debonding, transverse shear straps should be attached to the flexural FRP. Also,
concrete cover separation is critical which is an unacceptable failure mode. Even
though the strips are anchored in the compression zone of the beam, additional
transverse strips can be necessary to optimize the end anchoring. This may
prevent concrete cover separation.

12.2.4 Shear Forces

The shear force capacity is adequate in the beam with both the original shear
force and the ASR-loads when not considering the axial forces. The CFRP
increases the capacity further. When including axial forces in ULS capacity,
the inner beams have exceeded their capacities. At strengthened sections, the
utilization ratio is satisfying due to the contribution from the CFRP. The uti-
lization ratio for the zero moment section with and without the axial force is
presented in figure 12.4. The same figure also shows the impact of strengthening.

The fibers also ensure a way to transfer the shear forces over the existing cracks.
Though, the shear force needed to be transferred over the crack is higher than
the CFRP can sustain. This evaluation has been done taking into account many
assumptions regarding the anchoring length and the bond strength utilized in
the fibers. The bond strength of the fibers is reduced and might be higher. As
well, some of the reinforcement may still be active and increase the capacity.
However, the crack was assumed to only span over the web, but most likely it
also extends over the deck. This would have a negative impact on the calculated
capacity.

12.2.5 Additional Considerations

In this study, the main focus has been the acting axial forces, bending moment,
and shear force in the strengthened parts. In addition to this, the expansion
due to ASR contributes to other acting forces that should be evaluated. This is
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not done in this report.

The opposing axial forces in the outer and inner beam creates large shear forces
in the longitudinal direction of the bridge. These shear stresses need to be trans-
ferred by the flanges of the T-section. As the area of the intersection between
the beams is significantly small, these stresses may be critically high. This
might be a critical situation concerning the possibility of punching shear failure
which is an undesirable failure mode. The possibility of this failure needs to be
evaluated for Elgeseter Bridge.

Furthermore, the bridge will experience a torsional moment. This is a conse-
quence of external restraining against the bending of the bridge in the transverse
direction. The solid model obtains high torsional moments in some locations.
By briefly analyzing the torsional resultants of the cross-section, it is obtained
torsional forces as high as about 1000 kNm. This occurs in between supports
sections and zero moment sections by the crack. The torsional moments drop
to about 100 kNm around the support sections. In field sections, the torsional
moment is relatively small, about 300 kNm. In the last span of the bridge, it
increases towards the end, where it is found a torsional moment about 1600
kNm. On the contrary, the frame model obtains significantly smaller torsional
forces, but the trend is similar to the solid model. Towards the end, the highest
torsional moment occurs having a magnitude of 20 kNm. Evaluating the global
response in the bridge, it seems that higher torsional moments occur around the
cracked areas.

The difference of resulting torsional moment in the two models might be a result
of the transverse beams in the frame model’s capability to transfer the torsional
forces adequately. This effect of the torsional moment needs to be evaluated
and the calculation of capacity needs to consider this as well. Also, one should
consider if the frame model is insufficient to obtain the acting torsional forces
in the bridge. The frame model insufficiency to obtain the torsional effects in
the bridge might also explain the high deviations in resulting bending moments
between the two models. Further investigation of the response in the frame
model is necessary to conclude the possible effect of these circumstances.
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Conclusion

Elgeseter Bridge is a concrete beam bridge located in Trondheim and is one
of many structures exposed to alkali-silica reactions in Norway. The scope of
this thesis has been to study the possible mechanical effects imposed on the
structure. The implementation of externally bonded fiber reinforcement at the
bridge is also thoroughly investigated. A condition assessment of the bridge is
performed according to NS 3473 (2003) and Fib Bulletin 90 (2019).

A structure subjected to ASR expansion may attain additional imposed forces.
The steel reinforcement will create an internal restraint and introduce axial
forces and bending moments. External constraints may establish additional
forces when a free expansion is prevented. If the magnitude of expansion varies
in the structure, adjoining parts of the structure provide an external restraint.
For Elgeseter Bridge, it is assumed that this effect creates compression forces
in the outer beams and tensile forces in the inner beams. The imposed bending
moment contributes to tensile stresses in the web of the beam and compression
in the flanges. Regarding the capacity in ULS, this is beneficial for the support
sections and detrimental for the field sections.

It was established two linear elastic FE models in Abaqus/CEA. Model 1 con-
sists of beam and truss elements, whereas model 2 is a volume model of solid
elements. Both models were imposed with a temperature field to simulate the
ASR expansion in the structure. Resulting axial forces in the two models were
coinciding. On the contrary, great deviations were found between the models
in resulting bending moments when internal reinforcement was included in the
analyses. These deviations are assumed to occur due to the preconditions of
the models. The implementation of the non-linearity was performed using two
different approaches, which resulted in deviating results.

To improve the load bearing capacity, Elgeseter Bridge is strengthened with
externally bonded carbon fiber reinforcement in several spans. Six severe cracks
are shear strengthened with CFRP wraps and five spans are flexurally strength-
ened with CFRP strips. The guidelines provided by Fib Bulletin 90 do not
consider the potential negative impact damaged concrete may have on the bond
strength. Consequently, the capacities derived in this study may be unconser-
vative.
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Considering the situation with cracked sections and external strengthening, the
most utilized section in bending moment provides a limit for the load bearing
capacity. In both models the critical section is the section of zero moment south
of support 8 in the inner beam, being in an unstrengthened span. The utiliza-
tion ratio obtained in the frame model was 2.91 in the frame model, whereas
it was 3.02 in the solid model. Regarding the strengthened parts, the CFRP
gave a favorable outcome, reducing the utilization significantly. Considering the
section of zero moment south of support 9, the utilization ratio dropped from
3.27 to 0.94 in the frame model and 4.36 to 1.22 in the solid model. Though,
the calculations assume full utilization of the strength in the CFRP, which is
challenging to achieve in reality. When considering debonding issues, calcula-
tions revealed that this is critical and the capacity is over-exceeded by a ratio
of approximately 5. Better optimization of the CFRP solution and additional
transverse strips could be necessary to avoid this failure mode.

The tensile force obtained in the inner beam has a disadvantageous influence on
the member’s capacity. The magnitude of the force is uncertain and may vary
locally in the beam. This study obtained a tensile force of approximately 5000
kN, which will reduce the moment capacity in ULS severely and the bending
moment capacity in all the field sections and sections of zero moment are in-
sufficient. When including the tensile force in ULS shear capacity calculations,
the utilization ratio is 1.15. At strengthened sections, utilization ratio is 0.82.

Studies assume that Elgeseter bridge will get an additional expansion during
the rest of its service life. The analyses performed indicated a higher utilization
ratio as the forces will continue to increase.

The results obtained in this study indicate that the bridge in general has ex-
ceeded its load bearing capacity. Performing an analysis by assuming an un-
cracked stage in the majority of the bridge is an important initial evaluation.
The results are in such a magnitude that it is reasonable to believe that the
majority of the concrete is in a cracked stage. Conducting an analysis including
this non-linearity might give more accurate and less detrimental results. Either
way, Elgeseter Bridge is a massive concrete bridge with the opportunity of re-
distributing forces.

This study has not included the possible negative impact the alkali-silica reac-
tions have on the concrete’s properties, nor the possible reduction of expansion
due to local compression stresses. Regarding the utilization of the bridge, tor-
sional moment and shear stresses in the bridge deck is not evaluated. Despite
this, the performed study is highlighting the important aspects of using carbon
fiber reinforcement on structures exposed to alkali-silica reactions.
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Appendix B

Reinforcement in Frame
Model

The reinforcement used in the different sections in the frame model is given
below in tables. The placement of the mass center of the steel is given as the
eccentricity from the concrete section’s mass center. The reinforcement is vary-
ing in the inner and outer beams and their reinforcement amounts are therefore
given in different tables.

To find the eccentricities, the same process is used as for the more detailed re-
inforcement calculations in appendix C.B. The only difference is that the frame
model only includes the main reinforcement for the upper and lower face.

2.1 Inner Beams

Support Sections

Support 1 Amount Area [mm2] Mass center [mm]
Upper face 28ø32 + 3ø22 23647 353
Lower face 13ø32 10445 -1096

Table B.1: Reinforcement support 1

Support 2-8 Amount Area [mm2] Mass center [mm]
Upper face 28ø32 + 3ø22 23647 366
Lower face 15ø32 12058 -1091

Table B.2: Reinforcement support 2-8
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Support 9 Amount Area [mm2] Mass center [mm]
Upper face 35ø32 + 4ø22 29654 354
Lower face 21ø32 16881 -1061

Table B.3: Reinforcement support 9

There is no cross-section drawing of support 10 and the reinforcement is taken
from the longitudinal sections.

Support 10 Amount Area [mm2] Mass center [mm]
Upper face 3ø32 2412 361
Lower face 11ø32 8842 -1104

Table B.4: Reinforcement support 10

Field Sections

Field 1 Amount Area [mm2] Mass center [mm]
Lower face 19ø32 15273 -1073

Table B.5: Reinforcement field 1

Field 2-8 Amount Area [mm2] Mass center [mm]
Lower face 20ø32 + 2ø16 16479 -1063

Table B.6: Reinforcement field 2-8

Field 9 Amount Area [mm2] Mass center [mm]
Lower face 30ø32 24115 -1026

Table B.7: Reinforcement field 9

2.2 Outer Beams

Support Sections

Support 1 Amount Area [mm2] Mass center [mm]
Upper face 26ø32 + 3ø22 22040 392
Lower face 13ø32 10450 1096

Table B.8: Reinforcement support 1
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Support 2-8 Amount Area [mm2] Mass center [mm]
Upper face 28ø32 + 3ø22 23647 399
Lower face 14ø32 11254 -1093

Table B.9: Reinforcement support 2-8

Support 9 Amount Area [mm2] Mass center [mm]
Upper face 34ø32 + 4ø22 28850 382
Lower face 19ø32 15273 -1073

Table B.10: Reinforcement support 9

There is no cross-section drawing of support 10 and the reinforcement is taken
from the longitudinal sections.

Support 10 Amount Area [mm2] Mass center [mm]
Upper face 6ø32 4823 433
Lower face 10ø32 8038 -1109

Table B.11: Reinforcement support 10

Field Sections

Field 1 Amount Area [mm2] Mass center [mm]
Lower face 18ø32 14469 -1077

Table B.12: Reinforcement field 1

Field 2-8 Amount Area [mm2] Mass center [mm]
Lower face 18ø32 + 2ø16 14872 -1071

Table B.13: Reinforcement field 2-8

Field 9 Amount Area [mm2] Mass center [mm]
Lower face 27ø32 21704 -1040

Table B.14: Reinforcement field 9

2.3 Zero moment section

In the zero moment sections, there is a small amount of reinforcement. These
sections are in the transition between a positive and negative moment and there-
fore it is only 3ø32 in these spots. This is set as equal for every beam and is
occurring 4 m from each side of the supports.
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Zero moment sections Amount Area [mm2] Mass center [mm]
Lower face 3ø32 2412 -1122

Table B.15: Reinforcement zero moment sections



Appendix C

Section Capacities in ULS

C.A Effective Flange Width

Following NS 3473 point 9.5, the effective flange width of the T-section is defined.
The guidelines state that if the flange is in the tension zone, the reinforcement,
which is within a certain width given for the compression zone, must be counted
as fully utilized. As of this, the effective flange width is equal for the support-
and the field-sections.

The effective width depends on the boundary conditions and the length of the
span. Span number 9 is the only one standing out as it is hinged. Even though
field 1 varies in length, all the other spans (1-8) are assumed similar.

Span 1-8

b1 = b−bw
2 = 5500 mm−800 mm

2 = 2350 mm
l = 22.5 m
l0 = 0.7 · l = 15.75 m
tf = 280 mm

beff,1 = min


2350 mm

1575 mm

2240 mm

(C.1)

The minimum value gives beff,1 = 1575 mm which result in beff = 1575 · 2 +
800 = 3950 mm

Span 9

b1 = b−bw
2 = 5500mm−800mm

2 = 2350 mm
l = 21.25 m
l0 = 0.85 · l = 18.06 m
tf = 280 mm
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beff,1 = min


2350 mm

1806 mm

2240 mm

(C.2)

The minimum value gives:
beff,1 = 1806 mm

which result in:
beff = 1806 · 2 + 800 = 4412 mm
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C.B Reinforcement

C.B.1 Inner Beams

Figure C.1: Reinforcement in support 1

Support 1 Upper face
nø32 = 20 + 8 = 28
nø22 = 3
nø32,inclined = 2

As,ø32 = 803, 84 mm2

As,ø22 = 379, 94 mm2

As,ø32,inclined = 563, 7 mm2

As = nø32 ·As,ø32 + nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 24772, 7 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 291 mm
d0,4 = 460 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 128 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 128 = 376 mm

Lower face
nø32 = 8 + 5 = 13

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 10450 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 110 mm from the lower face
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The cross section’s mass center is 1206 mm from the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 110) = −1096 mm
With a negative value as it is below the reference point.

Support 2-8

Figure C.2: Reinforcement in support 2-8

Upper face
nø32 = 22 + 6 = 28
nø22 = 2 + 3
nø32,inclined = 2

As,ø32 = 803, 84 mm2

As,ø22 = 379, 94 mm2

As,ø32,inclined = 563, 7mm2

As = nø32 ·As,ø32 + nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 25532.6 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 291 mm
d0,4 = 460 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 122.5 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 122.5 = 381.5 mm

Lower face
nø32 = 8 + 7 = 15

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 12058 mm2
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d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 124 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 124) = −1082 mm
With a negative value as it is below the reference point.

Support 9

Figure C.3: Reinforcement in support 9

Upper face
nø32 = 22 + 8 + 5 = 35
nø22 = 2 + 4 = 6
nø32,inclined = 2

As,ø32 = 803, 84 mm2

As,ø22 = 379, 94 mm2

As,ø32,inclined = 563, 7 mm2

As = nø32 ·As,ø32 + nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 31539.5 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 84 + 67 · 2 = 218 mm
d0,4 = 291 mm
d0,5 = 460 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 138 mm from the upper face

The cross section’s mass center is 504 mm from the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 138 = 366 mm

Lower face
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nø32 = 8 + 7 + 6 = 21

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 16881 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,2 = 84 + 67 · 2 = 218 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 145 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 145) = −1061 mm
With a negative value as it is below the reference point.

Support 10

Upper face
nø32 = 5

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 4019mm2

d0,1 = 84 mm
d0,2 = 375 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 143 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 143 = 361 mm

Lower face
nø32 = 8 + 3 = 11

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 8842 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 102 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 102) = −1104 mm
With a negative value as it is below the reference point.
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Field 1

Figure C.4: Reinforcement in field 1

Upper face
nø22 = 2

As,ø22 = 379.94 mm2

As = nø,22 ·As,ø22 = 760 mm2

d0,1 = 84 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420 mm

Lower face
nø32 = 8 + 8 + 3 = 19

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 15273 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,2 = 84 + 2 · 67 = 218 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 133 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 133) = −1073 mm
With a negative value as it is below the reference point.
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Field 2-8

Figure C.5: Reinforcement in field 2-8

Upper face

nø22 = 2

As,ø22 = 379.94 mm2

As = nø,22 ·As,ø22 = 760 mm2

d0,1 = 84 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420 mm

Lower face
nø32 = 8 + 6 + 6 = 20
nø16 = 2

As,ø32 = 803, 84 mm2

As,ø16 = 200, 96 mm2

As = nø,32 ·As,ø32 + nø,16 ·As,ø16 = 16479 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 84 + 2 · 67 = 218 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 144.5 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 144.5) = −1061.5 mm
With a negative value as it is below the reference point.
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Field 9

Figure C.6: Reinforcement in field9

Upper face

nø22 = 2

As,ø22 = 379.94 mm2

As = nø,22 ·As,ø22 = 760 mm2

d0,1 = 84 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420 mm

Lower face
nø32 = 8 + 8 + 7 + 7 = 30

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 24115 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 84 + 2 · 67 = 218 mm
d0,4 = 84 + 3 · 67 = 285 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 180 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 180) = −1026 mm
With a negative value as it is below the reference point.
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Zero Moment Section

Figure C.7: Reinforcement in ZM indicated by red line

The sections occur both in the inner and outer beams. The placement is set to
4m to 4.5m form each side of every support.

Upper face

nø22 = 2
nø32,inclined = 4

As,ø22 = 379, 94 mm2

As,ø32,inclined = 563, 7mm2

As = nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 3010.6 mm2

d0,1 = 84 mm
d0,2 = 430 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 342.7 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 342.7 = 161.3 mm

Lower face

nø32 = 3
nø32,inclined = 3

As,ø32 = 803, 84 mm2

As,ø32,inclined = 563, 7 mm2

As = nø32 ·As,ø32 + nø32,inclined ·As,ø32,inclined = 4099.5 mm2

d0,1 = 84 mm
d0,2 = 430 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 226.5 mm from the upper face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
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−(1206− 226.5) = −979.5 mm
With a negative value as it is below the reference point.

C.B.2 Outer beams

Support 1

Figure C.8: Reinforcement in support 1

Upper face
nø32 = 18 + 4 = 22
nø32,inclined = 4
nø22 = 3

As,ø32 = 803, 84 mm2

As,ø32,inclined = 563, 7 mm2

As,ø22 = 379, 94 mm2

As = nø,32 ·As,ø32 + nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 21075 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 291 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 112.6 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 112.6 = 391.4 mm

Lower face
nø32 = 6

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 4823 mm2
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d0,1 = 84 mm
deff = 6·84

6 = 84 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 84) = −1122 mm
With a negative value as it is below the reference point.

Support 2-8

Figure C.9: Reinforcement in support 2-8

Upper face
nø32 = 22 + 2 = 24
nø32,inclined = 4
nø22 = 3 + 2 = 5

As,ø32 = 803, 84 mm2

As,ø32,inclined = 563, 7 mm2

As,ø22 = 379, 94 mm2

As = nø,32 ·As,ø32 + nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 23442 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 291 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 105 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 105 = 399 mm

Lower face
nø32 = 8 + 6 = 14

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 11254 mm2
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d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 113 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 113) = −1093 mm
With a negative value as it is below the reference point.

Support 9

Figure C.10: Reinforcement in support 9

Upper face
nø32 = 22 + 8 = 30
nø32,inclined = 4
nø22 = 4 + 2 = 6

As,ø32 = 803, 84 mm2

As,ø32,inclined = 563, 7 mm2

As,ø22 = 379, 94 mm2

As = nø,32 ·As,ø32 + nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 28645, 6 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 84 + 67 · 2 = 218 mm
d0,4 = 291 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 120.6 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 120.6 = 383.4mm

Lower face
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nø32 = 8 + 8 + 3 = 19

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 15273 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,2 = 84 + 67 · 2 = 218 mm
deff = 8·84+8·151+3·218

19 = 133 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 133) = −1073mm
With a negative value as it is below the reference point.

Support 10

Upper face
nø32 = 6

As,ø32 = 803.84 mm2

As = nø,32 ·As,ø32 = 4823 mm2

d0,1 = 84 mm
deff = 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420mm

Lower face
nø32 = 8 + 2 = 10

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 8038 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
deff = 8·84+2·151

10 = 97 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 97) = −1109mm
With a negative value as it is below the reference point.

Field 1
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Figure C.11: Reinforcement in field 1

Upper face

nø22 = 2

As,ø22 = 379.94 mm2

As = nø,22 ·As,ø22 = 760 mm2

d0,1 = 84 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420 mm

Lower face

nø32 = 8 + 8 + 2 = 18

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 14469 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,2 = 84 + 2 · 67 = 218 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 129 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 129) = −1077mm
With a negative value as it is below the reference point.

Field 2-8
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Figure C.12: Reinforcement in field 2-8

Upper face

nø22 = 2

As,ø22 = 379.94 mm2

As = nø,22 ·As,ø22 = 760 mm2

d0,1 = 84 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420 mm

Lower face
nø32 = 8 + 8 + 2 = 18
nø16 = 2

As,ø32 = 803, 84 mm2

As,ø16 = 200, 96 mm2

As = nø,32 ·As,ø32 + nø,16 ·As,ø16 = 14871 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 84 + 2 · 67 = 218 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 131 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 131) = −1075 mm
With a negative value as it is below the reference point.

Field 9
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Figure C.13: 9

Upper face

nø22 = 2

As,ø22 = 379.94 mm2

As = nø,22 ·As,ø22 = 760 mm2

d0,1 = 84 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 84 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 84 = 420 mm

Lower face
nø32 = 8 + 8 + 8 + 3 = 27

As,ø32 = 803, 84 mm2

As = nø,32 ·As,ø32 = 24115 mm2

d0,1 = 84 mm
d0,2 = 84 + 67 = 151 mm
d0,3 = 84 + 2 · 67 = 218 mm
d0,4 = 84 + 3 · 67 = 285 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 166 mm from the lower face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 166) = −1040 mm
With a negative value as it is below the reference point.



188 APPENDIX C. SECTION CAPACITIES IN ULS

C.B.2.1 Zero Moment Sections

Figure C.14: Reinforcement in ZM indicated by red line

The sections occur both in the inner and outer beams. The placement is set to
4m to 4.5m form each side of every support.
Upper face

nø22 = 2
nø32,inclined = 3

As,ø22 = 379, 94 mm2

As,ø32,inclined = 563, 7mm2

As = nø22 ·As,ø22 + nø32,inclined ·As,ø32,inclined = 2448 mm2

d0,1 = 84 mm
d0,2 = 430 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 342.6 mm from the upper face

The cross section’s mass center is 504 mm form the upper face, so with respect
to the reference point, the reinforcement’s mass center is:
504− 342.6 = 161.3 mm

Lower face

nø32 = 3
nø32,inclined = 3

As,ø32 = 803, 84 mm2

As,ø32,inclined = 563, 7 mm2

As = nø32 ·As,ø32 + nø32,inclined ·As,ø32,inclined = 4099.5 mm2

d0,1 = 84 mm
d0,2 = 430 mm

deff =
∑
ni·As,i·d0,i∑
ni·As,i

= 226.5 mm from the upper face

The cross section’s mass center is 1206 mm form the lower face, so with respect
to the reference point, the reinforcement’s mass center is:
−(1206− 226.5) = −979.5 mm
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With a negative value as it is below the reference point.
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C.C Moment Capacity in ULS

The moment capacity is found for selected section being representative for the
bridge in the inner and outer beam.

• Support 1

• Support 5

• Support 9

• Field 1

• Field 5

• Field 9

• Section of zero moments

The properties listed in table C.1 will be used in the following calculations

Ec 23 300 MPa
Es 200 000 MPa
fcd 12 MPa
fyd 272 MPa
εcu 3.5 ·10−3

εyd 1.36 ·10−3

Table C.1: Properties in section

The controls are performed for an assumed situation with self-weight and other
live loads including ASR-loads causing the sections over the supports to have
tension at the upper face and sections in the fields to have tension at the lower
sides.

C.C.1 Sections over the Supports

Over the supports, the flange lies in the tension zone. Therefore the section is
calculated as a rectangular cross-section with the width bw and the height h.
All reinforcement placed within the effective flange width is counted as active
tension reinforcement in the upper face. The upper reinforcement is referred to
as As while the lower reinforcement being in the compression zone is referred
to as A′s.

C.C.1.1 Support 1

Inner Beam

bw = 800 mm
As = 24772.7mm2

d = 1582 mm
A′s = 10449.9 mm2
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d′ = 110mm
h′ = d− d′ = 1472 mm
εs,free = 0.0009626
ε′s,free = 0.0005321

The compression zone height αd is found by taking equilibrium of the cross
section and solving for α.

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.321

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.00741 + 0.0009626 = 0.008373 < 0.01

Then the moment capacity is found:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ = 9556.6 kNm

The compression reinforcement is assumed to yield. This must be verified such
that ε′s > εyd:

ε′s = αd−d′
αd · εcu − ε′free = 0.00274− 0.0005321 = 0.00221 > 0.00136

Outer Beam

bw = 800 mm
As = 21075 mm2

d = 1597.4 mm
A′s = 4823 mm2

d′ = 84 mm
h′ = d− d′ = 1513.4 mm
εs,free = 0.001467
ε′s,free = 0.001025

The compression zone height αd is found by taking equilibrium of the cross
section and solving for α.

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.360

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.00621 + 0.001467 = 0.007677 < 0.01

Then the moment capacity is found:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ = 8028.9 kNm

The compression reinforcement is assumed to yield. This must be verified such
that ε′s > εyd:
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ε′s = αd−d′
αd · εcu − ε′s,free = 0.00299− 0.001467 = 0.00152 > 0.00136

C.C.1.2 Support 2-8

Inner Beam
bw = 800 mm
As = 25532.6 mm2

d = 1587.5 mm
A′s = 12057.6 mm2

d′ = 115.3 mm
h′ = d− d′ = 1472.2 mm
εs,free = 0.0009642
ε′s,free = 0.0005337

The compression zone height αd is found by taking equilibrium of the cross
section and solving for α.

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.3

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.00814 + 0.0009642 = 0.00910 < 0.01

Then the moment capacity is found:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ = 9947.1 kNm

The compression reinforcement is assumed to yield. This must be verified such
that ε′s > εyd:

ε′s = αd−d′
αd · εcu − εs,free = 0.00265− 0.0005337 = 0.00212 > 0.00136

Outer Beam

bw = 800 mm
As = 24442.6 mm2

d = 1605 mm
A′s = 11253.8 mm2

d′ = 113 mm
h′ = d− d′ = 1132.6 mm
εs,free = 0.00147
ε′s,free = 0.001033

The compression zone height αd is found by taking equilibrium of the cross
section and solving for α.

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.291
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Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.00852 + 0.00147 = 0.00999 < 0.01

Then the moment capacity is found:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ = 9654.5

The compression reinforcement is assumed to yield. This must be verified such
that ε′s > εyd:

ε′s = αd−d′
αd · εcu − ε′s,free = 0.00265− 0.001033 = 0.00162 > 0.00136

C.C.1.3 Support 9

Inner Beam

bw = 800 mm
As = 32539.4 mm2

d = 1572 mm
A′s = 17684.5 mm2

d′ = 145 mm
h′ = d− d′ = 1427 mm
εs,free = 0.0009597
ε′s,free = 0.0005423

The compression zone height αd is found by taking equilibrium of the cross
section and solving for α.

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.353

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.00642 + 0.0009597 = 0.00738 < 0.01

Then the moment capacity is found:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ = 12302.6 kNm.

The compression reinforcement is assumed to yield. This must be verified such
that ε′s > εyd:

ε′s = αd−d′
αd · εcu − ε′s,free = 0.00258− 0.0005423 = 0.00204 > 0.00136

Outer Beam

bw = 800 mm
As = 28645.6 mm2

d = 1589.4 mm2
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A′s = 15273 mm2

d′ = 133.4 mm
h′ = d− d′ = 1456 mm
εs,free = 0.001464
ε′s,free = 0.001040

The compression zone height αd is found by taking equilibrium of the cross
section and solving for α.

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.298

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.00825 + 0.001464 = 0.00971 < 0.01

Then the moment capacity is found:

MRd = 0.8α · (1− 0.4α) · fcd · b · d2 + fyd ·A′s · h′ = 11140.7 kNm

The compression reinforcement is assumed to yield. This must be verified such
that ε′s > εyd:

ε′s = αd−d′
αd · εcu − ε′s,free = 0.00251− 0.001040 = 0.00147 > 0.00136

C.C.2 Field Sections

In the field section, the upper face is in compression and the lower face is in
tension.

The neutral axis is assumed to be in the flange and due to a relatively large
cross section, the strain in the steel will become significantly large before ob-
taining the ultimate strain in the concrete. This implies that the strain in the
steel will be decisive for the section’s capacity. For this case the entire flange is
assumed to has uniform compressive stresses. The section is calculated with the
effective width, beff and a resulting compression force working in the middle of
the flange. This method is used when the strain obtained in the steel is larger
than 10 h for εc = εcu

In the field sections, there is mainly reinforcement in the tension zone at the
lower face. In addition, there are 2ø22 in the upper face to anchor the shear
reinforcement. These are taken into account as active reinforcement.

C.C.2.1 Field 1

Inner Beam

beff = 3950 mm
As = 15273 mm2

d = 1576.6 mm
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A′s = 759.9 mm2

d′ = 84 mm
h′ = d− d′ = 1492.6 mm
εs,free = 0.0005390
ε′s,free = 0.0009755

where α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.066

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,0 = 0.0495 + 0.0005390 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1530 = 0.18 < 0.33, the compression zone is therefore assumed to be
covering the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 5979 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 3.76 < fcd

Outer Beam

beff = 3950 mm
As = 14469 mm2

d = 1581 mm
A′s = 759.9 mm2

d′ = 84 mm
h′ = d− d′ = 1497 mm
εs,free = 0.0005377
ε′s,free = 0.0009755

α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.0622

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.0528 + 0.000538 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1581 = 0.18 < 0.33, the compression zone is therefore assumed to be
covering the flange thickness with a constant stress distribution.
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MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 5682.7 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 3.57 < fcd

C.C.2.2 Field 2-8

Inner Beam
beff = 3950 mm
As = 16478 mm2

d = 1565.5 mm
A′s = 759.9 mm2

d′ = 84 mm
h′ = d− d′ = 1481.5 mm
εs,free = 0.0005422
ε′s,free = 0.0009755

α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.072

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.0451 + 0.0005422 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1565 = 0.18 < 0.33, the compression zone is assumed to be covering
the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 6400 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 4.06 < fcd

Outer Beam
beff = 3950 mm
As = 14871 mm2

d = 1579 mm
A′s = 759.9 mm2

d′ = 84 mm
h′ = d− d′ = 1495 mm
εs,free = 0.001038
ε′s,free = 0.001475

α is found by equilibrium:
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α =
fydAs−fydA

′
s

0.8fcdbd
= 0.0641

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.051 + 0.001038 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1572 = 0.18 < 0.33, the compression zone is assumed to be covering
the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 5832 kNm.

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 3.66 < fcd

C.C.2.3 Field 9

Inner Beam
beff = 3950 mm
As = 24115 mm2

d = 1530 mm
A′s = 759.9 mm2

d′ = 84 mm
h′ = d− d′ = 1446.0 mm
εs,free = 0.0005526
ε′s,free = 0.0009454

α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.098

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.032 + 0.0009474 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1530 = 0.18 < 0.33, the compression zone is assumed to be covering
the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 9128.8 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 5.94 < fcd

Outer Beam
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beff = 3950 mm
As = 21703.7 mm2

d = 1544 mm
A′s = 759.9 mm2

d′ = 84 mm
h′ = d− d′ = 1460 mm

εs,free = 0.001048
ε′s,free = 0.001475

α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.0871

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.0367 + 0.001452 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1544 = 0.18 < 0.33, the compression zone is assumed to be covering
the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 8300 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 5.34 < fcd

C.C.3 Zero Moment Sections

The zero moment section lies in the transition between the field and the support.
Ideally, the moment here is zero. Despite this, the reaction from the ASR-load
will set the lower part in tension and the upper part in compression.

Looking at the main reinforcement amount in the beam, the most critical section
has only 3ø32 in the lower face. In addition, the inclined bars will contribute as
explained earlier.

Inner Beam
beff = 3950 mm2

As = 4099.6 mm2

d = 1483.5 mm
A′s = 3010 mm2

d′ = 342.7 mm
h′ = d− d′ = 1140.8 mm
εs,free = 0.0005661
ε′s,free = 0.0008999
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α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.00526

Controlling the that the strain in the steel is less than 0.01:

εs = εcu·(1−α)
α + εs,free = 0.66 + 0.0005661 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1484 = 0.19 < 0.33, the compression zone is assumed to be covering
the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 1332 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 0.897 < fcd

Outer Beam
beff = 3950 mm2

A′s = 2448 mm2

d = 1483.5 mm
A′s = 2448 mm2

d′ = 322.6 mm
h′ = d− d′ = 1160.9 mm
αd = 11.85 mm
εs,free = 0.001066
ε′s,free = 0.001406

where α is found by equilibrium:

α =
fydAs−fydA

′
s

0.8fcdbd
= 0.00799

Controlling the that the strain in the steel is less than 0.001:

εs = εcu·(1−α)
α + εs,free = 0.435 + 0.001066 > 0.01

Since the strain in the steel is larger than 0.01 the compression zone is greater
than the one found above. The flange can be classified as a thin flange since
t/d = 280/1484 = 0.19 < 0.33, the compression zone is assumed to be covering
the flange thickness with a constant stress distribution.

MRd = fydAs(d− t
2 ) + fydA

′
s(
t
2 − d

′) = 1376.5 kNm

An additional control of the stresses in the flange is necessary, such that σc ≤ fcd:

σc = MRd

t·beff (d−t/2) = 0.926 < fcd
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ho 504 mm
hu 1206 mm
fcd 12 MPa
fyd 272 MPa
εcu 0.0035
εyd 0.00137

beff 3950 mm
bw 800 mm
tf 280 mm

εc,top,free 0.001
εc,bottom,free 0.0005

C.C.4 Combined Moment and Axial Force capacities

Combined moment and axial force capacity is found by obtaining the equivalent
forces of different strain failures. A compression force is defined as positive and
a positive moment gives tension at the lower face.

The estimated strain failures are:

1. εc = εcu = 0.0035 and εs = εyd = 0.00136

2. εc = εcu = 0.0035 and εs = εsu = 0.01

3. εc = 0 and εs = εsu = 0.01

4. ε′s = ε′yd = 0.00136 and εs = εsu = 0.01

The given properties of the cross section are relevant in the following calcula-
tions:

The expansion gradient over the cross section is 2.92 · 10−7 pr mm.

C.C.4.1 Field Sections 2-8

The field sections have tension in the lower part. As is the tension reinforcement
and A′s is the compression reinforcement.

As 16 478 mm2

A′s 159.6 mm2

d 1566 mm
d’ 84 mm

εs,free 0.0005421
ε′s,free 0.000975

Table C.2: Field sections 2-8
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Strain Failure 1

The failure criteria for this point is εc = εcu = 0.0035 and εs = εyd = 0.00136

This implies that the total strain in the steel is 0.00136. The initial stain is
0.0005421. The strain obtained in the steel due to external forces is:

∆εs = εs − εs,free = 0.0008179

This strain is used to find αd

αd =
εc

εc + ∆εs
· d = 1269.4 mm (C.3)

This is the compression zone in the section. Assuming a uniform stress distri-
bution, the adjusted compression zone is 0.8 · αd.

The strain in the compression reinforcement must be controlled:

∆ε′s =
αd− d′

αd
· εcu = 0.003268 in compression (C.4)

Including the initial tension strain, the total strain is obtained:
ε′s = ε′s,free −∆ε′s = −0.002293

The upper reinforcement has a strain in compression above 0.00136 and is yield-
ing.

The compression zone is placed in the web and for simplicity, the compression
forces are separated to Tf and Tw working over the flange and web respectively.

Tf = fcd · beff · tf = 13272 kN
Tw = (0.8 · αd− tf ) · fcd · bw = 7060.8 kN
Tc = Tf + Tw = 20332.8 kN

The steel is yielding both in the upper and lower face.

S = fyd ·As = 4482 kN
S′ = fyd ·A′s = 206.6 kN

Taking equilibrium of the cross section, N1 and M1 are obtained.

N1 = Tc + S′ − S = 16057 kN (C.5)

M1 = Tf (ho−
tf
2

)+Tw(ho−(0.4αd+
tf
2

))+S′(ho−d′)+S(d−ho) = 8662.7 kNm

(C.6)
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Strain Failure 2

The failure criteria for this point is εc = εcu = 0.0035 and εs = 0.01

Same procedure is used as for as point 1.

∆εs = εs − εs,free = 0.009458

This strain is used to find αd

αd =
εc

εc + ∆εs
· d = 422.9mm (C.7)

The strain in the compression reinforcement must be controlled:

∆ε′s =
αd− d′

αd
· εcu = 0.002804 in compression (C.8)

Including the initial tension strain, the total strain is obtained:

ε′s = ε′s,free −∆ε′s = −0.001829

The upper reinforcement has a strain in compression above 0.00136 and is yield-
ing.

Tf = fcd · beff · tf = 13272 kN
Tw = (0.8 · αd− tf ) · fcd · bw = 560.5 kN
Tc = Tf + Tw = 13832.5 kN

The steel is yielding both in the upper and lower face.

S = fyd ·As = 4482 kN
S′ = fyd ·A′s = 206.6 kN

Taking equilibrium of the cross section, N2 and M2 are obtained.

N2 = Tc + S′ − S = 9557.1kN (C.9)

M2 = Tf (ho−
tf
2

)+Tw(ho−(0.4αd+
tf
2

))+S′(ho−d′)+S(d−ho) = 9786.8kNm

(C.10)
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Strain Failure 3

The failure criteria for this point is εc = 0.0 and εs = 0.01

Same procedure is used as for earlier points.

∆εs = εs − εs,free = 0.009458

In this case there is no area in compression and αd is therefore not existing.

The strain in the upper reinforcement must be controlled for yielding. Now, the
steel is only subjected to tension.

∆ε′s =
∆εs
d
· d′ = 0.0005073 in tension (C.11)

Including the initial tension strain, the total strain is obtained:

ε′s = ε′s,free + ∆ε′s = 0.001427

The upper reinforcement has a strain in tension above 0.00136 and is yielding.

S = fyd ·As = 4482 kN
S′ = fyd ·A′s = 206.6 kN

Taking equilibrium of the cross section, N3 and M3 are obtained.

N3 = −S′ − S = −4688.6kN (C.12)

M3 = S(d− ho)− S′(ho − d′) = 4673.1kNm (C.13)

Strain Failure 4

The failure criteria for this point is ε′s = εyd = 0.00136 and εs = 0.01

Same procedure is used as earlier points.

∆εs = εs − εs,free = 0.009458

In this case there is no area in compression and αd is therefore not existing.

The total strain in the compression reinforcement is now known to be 0.00136
in tension and is yielding.
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S = fyd ·As = 4482 kN
S′ = fyd ·A′s = 206.6 kN

Taking equilibrium of the cross section, N4 and M4 are obtained.

N4 = −S′ − S = −4688.6kN (C.14)

M4 = S(d− ho)− S′(ho − d′) = 4673.1kNm (C.15)

Point 3 and 4 are equal for the field sections, beacause the compression rein-
forcement is already yielding in point 3. The four points lead to the following
M-N diagram:

Figure C.15: M-N diagram for field sections

C.C.4.2 Support sections 2-8

The support sections have tension in the upper part. As is the tension rein-
forcement and A′s is the compression reinforcement.

As 25 532.6 mm2

A′s 12 057.6 mm2

d 1587.5 mm
d’ 115.2 mm

εs,free 0.0009642
ε′s,free 0.0005337

Table C.3: Support sections 2-8

Strain Failure 1

The failure criteria for this point is εc = εcu = 0.0035 and εs = εyd = 0.00136
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This implies that the total strain in the steel is 0.00136. The initial stain is
0.0009642 as the tension reinforcement now lies at the upper face. The strain
obtained in the steel due to external forces is:

∆εs = εs − εs,free = 0.0003958

This strain is used to find αd

αd =
εc

εc + ∆εs
· d = 1426mm (C.16)

This is the compression zone in the section. Assuming a uniform stress distri-
bution, the adjusted compression zone is 0.8 · αd.

The strain in the compression reinforcement at the lower face must be controlled:

∆ε′s =
αd− d′

αd
· εcu = 0.003217 in compression (C.17)

Including the initial tension strain, the total strain is obtained:
ε′s = ε′s,free −∆ε′s = −0.002684

The upper reinforcement has a strain in compression above 0.00136 and is yield-
ing.

The compression force is found to be:
Tc = 0.8αd · fcd · bw = 10953.3 kN

The steel is yielding both in the upper and lower face.

S = fyd ·As = 6944.9 kN
S′ = fyd ·A′s = 3279.7 kN

Taking equilibrium of the cross section, N1 and M1 are obtained.

N1 = Tc + S′ − S = 7288kN (C.18)

M1 = −Tc(hu − 0.4αd)− S′(hu − d′)− S(d− ho) = −13187.9kNm (C.19)

Strain Failure 2

The failure criteria for this point is εc = εcu = 0.0035 and εs = 0.01
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Same procedure is used as for as point 1.

∆εs = εs − εs,free = 0.009036

This strain is used to find αd

αd =
εc

εc + ∆εs
· d = 443.2mm (C.20)

The strain in the compression reinforcement must be controlled:

∆ε′s =
αd− d′

αd
· εcu = 0.00259 in compression (C.21)

Including the initial tension strain, the total strain is obtained:

ε′s = ε′s,free −∆ε′s = −0.002057

The upper reinforcement has a strain in compression above 0.00136 and is yield-
ing.

The compression force in the concrete is found to be:

Tc = 0.8αd · fcd · bw = 3404.0 kN

The steel is yielding both in the upper and lower face.

S = fyd ·As = 6944.9 kN
S′ = fyd ·A′s = 3279.7 kN

Taking equilibrium of the cross section, N2 and M2 are obtained.

N2 = Tc + S′ − S = −261.2kN (C.22)

M2 = −Tc(hu − 0.4αd)− S′(hu − d′)− S(d− ho) = −9728.6kNm (C.23)

Strain Failure 3

The failure criteria for this point is εc = 0.0 and εs = 0.01

Same procedure is used as for earlier points.

∆εs = εs − εs,free = 0.009036
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In this case there is no area in compression and αd is therefore not existing.

The strain in the compression reinforcement must be controlled. Now, the re-
inforcement is only subjected to tension strains.

∆ε′s =
∆εs
d
· d′ = 0.0006557 in tension (C.24)

Including the initial tension strain, the total strain is obtained:

ε′s = ε′s,free + ∆ε′s = 0.001189

The lower reinforcement has a strain in tension below 0.00136 and is not yielding.

S = fyd ·As = 6944.9 kN
S′ = ε′s · Es ·A′s = 2868.3 kN

Taking equilibrium of the cross section, N3 and M3 are obtained.

N3 = −S′ − S = −9813.1kN (C.25)

M3 = −S(d− hu) + S′(hu − d′) = 479.2kNm (C.26)

Strain Failure 4

The failure criteria for this point is ε′s = εyd = 0.00136 and εs = 0.01

Same procedure is used as earlier points.

∆εs = εs − εs,free = 0.009036

In this case there is no area in compression and αd is therefore not existing.

The total strain in the compression reinforcement is now known to be 0.00136
in tension and is yielding.

S = fyd ·As = 6944.9 kN
S′ = fyd ·A′s = 3279.7 kN

Taking equilibrium of the cross section, N4 and M4 are obtained.

N4 = −S′ − S = −10224.5kN (C.27)

M4 = −S(d− hu) + S′(hu − d′) = 928.0kNm (C.28)
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This leads to the following M-N diagram for support sections.

Figure C.16: M-N diagram for support sections

C.C.4.3 Zero Moment Sections

The zero moment sections have tension in the lower part.As is the tension rein-
forcement and A′s is the compression reinforcement.

As 4 101.6 mm2

A′s 3 012.2 mm2

d 1486 mm
d’ 338.2 mm

εs,free 0.0005655
ε′s,free 0.0009011

Table C.4: Zero moment sections 2-8

Strain Failure 1

The failure criteria for this point is εc = εcu = 0.0035 and εs = εyd = 0.00136

This implies that the total strain in the steel is 0.00136. The initial stain is
0.0005421. The strain obtained in the steel due to external forces is:

∆εs = εs − εs,free = 0.0007945

This strain is used to find αd

αd =
εc

εc + ∆εs
· d = 1211.1mm (C.29)

This is the compression zone in the section. Assuming a uniform stress distri-
bution, the adjusted compression zone is 0.8 · αd.
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The strain in the compression reinforcement must be controlled:

∆ε′s =
αd− d′

αd
· εcu = 0.002523 in compression (C.30)

Including the initial tension strain, the total strain is obtained:
ε′s = ε′s,free −∆ε′s = −0.001728

The upper reinforcement has a strain in compression above 0.00136 and is yield-
ing.

The compression zone is placed in the web and for simplicity the compression
forces are separated to Tf and Tw working over the flange and web respectively.

Tf = fcd · beff · tf = 13272 kN
Tw = (0.8 · αd− tf ) · fcd · bw = 6613.1 kN
Tc = Tf + Tw = 19885.1 kN

The steel is yielding both in the upper and lower face.

S = fyd ·As = 1115.2 kN
S′ = fyd ·A′s = 818.7 kN

Taking equilibrium of the cross section, N1 and M1 are obtained.

N1 = Tc + S′ − S = 19588.6kN (C.31)

M1 = Tf (ho−
tf
2

)+Tw(ho−(0.4αd+
tf
2

))+S′(ho−d′)+S(d−ho) = 5265.4kNm

(C.32)

Strain Failure 2

The failure criteria for this point is εc = εcu = 0.0035 and εs = 0.01

Same procedure is used as for as point 1.

∆εs = εs − εs,free = 0.0094345

This strain is used to find αd

αd =
εc

εc + ∆εs
· d = 402.1mm (C.33)
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The strain in the compression reinforcement must be controlled:

∆ε′s =
αd− d′

αd
· εcu = 0.000556 in compression (C.34)

Including the initial tension strain, the total strain is obtained:

ε′s = ε′s,free −∆ε′s = 0.0003449

The upper reinforcement has a total strain in tension. So even though the
concrete in this area is compressed, the initial tension strain makes the upper
reinforcement stand in tension. It is below 0.00136 and therefore not yielding.

Tf = fcd · beff · tf = 13272 kN
Tw = (0.8 · αd− tf ) · fcd · bw = 400.2 kN
Tc = Tf + Tw = 13672.2 kN

The steel is yielding both in the lower part. The upper steel is strained in ten-
sion, but not yielding.

S = fyd ·As = 1115.2 kN
S′ = ε′s · Es ·A′s = 207.6 kN

Taking equilibrium of the cross section, N2 and M2 are obtained.

N2 = Tc − S′ − S = 12349.1kN (C.35)

M2 = Tf (ho−
tf
2

)+Tw(ho−(0.4αd+
tf
2

))−S′(ho−d′)+S(d−ho) = 5973.0kNm

(C.36)

Strain Failure 3

The failure criteria for this point is εc = 0.0 and εs = 0.01

Same procedure is used as for earlier points.

∆εs = εs − εs,free = 0.009435

In this case there is no area in compression and αd is therefore not existing.

The strain in the compression reinforcement must be controlled:

∆ε′s =
∆εs
d
· d′ = 0.002147 in tension (C.37)



C.C. MOMENT CAPACITY IN ULS 211

Including the initial tension strain, the total strain is obtained:

ε′s = ε′s,free + ∆ε′s = 0.003048

The upper reinforcement has a strain in tension above 0.00136 and is yielding.

S = fyd ·As = 1115.2 kN
S′ = fyd ·A′s = 818.7 kN

Taking equilibrium of the cross section, N3 and M3 are obtained.

N3 = −S′ − S = −1933kN (C.38)

M3 = S(d− ho)− S′(ho − d′) = 959.4kNm (C.39)

Strain Failure 4

The failure criteria for this point is ε′s = εyd = 0.00136 and εs = 0.01

Same procedure is used as for earlier points.

∆εs = εs − εs,free = 0.009435

In this case there is no area in compression and αd is therefore not existing.

The total strain in the compression reinforcement is now known to be 0.00136
in tension and is yielding.

S = fyd ·As = 1115.2 kN
S′ = fyd ·A′s = 818.7 kN

Taking equilibrium of the cross section, N4 and M4 are obtained.

N4 = −S′ − S = −1933.9kN (C.40)

M4 = S(d− ho)− S′(ho − d′) = 959.4kNm (C.41)

Point 3 and 4 are equal for the field sections, because the compression reinforce-
ment is already yielding in point 3. This leads to the following M-N diagram:



212 APPENDIX C. SECTION CAPACITIES IN ULS

Figure C.17: M-N diagram for sections of zero moment
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C.D Shear Capacity in ULS

Shear capacity is calculated by design rules in NS 3473 section 12.3.2 [38]. NS
3473 considers three contributions to the shear-tension capacity in the beam:

• Concrete contribution Vco

• Stirrups contribution Vsd,s

• Contribution from inclined longitudinal reinforcement Vsd,i

C.D.1 Zero Moment Section

Shear Capacity in ULS without Tensile Forces

In the zero moment section, longitudinal reinforcement is 3ø32 in the tension
zone. Inclined bars is defined as bars crossing a fictional shear-tension crack
which is 45◦, crossing the section at z = 0.9d from the bottom of the beam, see
figure ... Following, it is 7ø32 in this section. From the original reinforcement
drawing, ø13 stirrups is placed with a distance of 175 mm.

α is angle between the stirrups and the beam’s axis. This gives α = 90 ◦.

As = 2411, 5 mm2

d = 1626 mm
z = 0.9 · d = 1463 mm
As,s = 265 mm2

Ss = 175 mm
As,s

Ss
= 1.516 mm2/mm

As,i = 5627 mm2

εyd = 0.00136

fcd = 12 MPa
ftd = 1 MPa
α = 90◦

γc = 1.4
bw = 800 mm
Ac = 2250000 mm2

Shear-tension Capacity

Concrete contribution is found by:

Vco = 0.3 · (ftd + kA·As

γc·bw·d )bw · d ≤ 0.6 · ftd · bw · d · kV

Where

kA = 100 N/mm2

kV = 1.5− d/1.0 ≥ 1.0 = 1.0
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Vco = 0.3 · (1 + 100·2411.5
1.4·800·1626 )800 · 1626 ≤ 0.6 · 1 · 800 · 1626 · 1.0 = 441.9 kN

Contribution from stirrups:

Vsd,s =
fyd·As,s

Ss
z(1+cot α)sin α = 272·265

175 · 1463(1+cot 90◦)sin 90◦ = 603 kN

Since α = 90, the last factors do not contribute. cot α = 0 and sinα = 1

Contribution from longitudinal reinforcement with an inclination of 45 :

Vsd,i =
∑
fyd ·As,i·sin 45◦ = 272 · 5627· sin 45◦ = 1082.5 kN

Such that

Vcd = 2127 kN

Shear-compression Capacity

Vccd = 0.3 · 12 · 800 · (1+cot 90◦) = 2880 kN < 0.45 · 12 · 800 · 1463 kN

Combined Shear and Tension Capacity

It is assumed due to the poor amount of reinforcement in this section that
εs = εyd. It is assumed a axial tension force of 5421 kN, which is obtained from
results of the analysis with the solid model in Abaqus/CEA.

Vcd,0 = Vco · (1− Nf

1.5·ftd·Ac
) = −268.9 kN≥ 0

Such that Vcd,0 = 0.

The shear-tension capacity including tensile axial force is found by

Vcd = Vsd,i + Vsd,s = 1685.5 kN
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Equivalent Stiffness

D.A Stage 2 Stiffness

By using known principles it is possible to find the moment of inertia and there-
fore the bending stiffness of a cracked concrete section. The effective part of the
section will change due to the cracks and one must find the new effective parts
of both the concrete area and the reinforcement. This is done by following a
method provided by S. Sørensen [50]. Since the sections of zero moments are
where the largest cracks occur, the equivalent stiffness is found for this section.
The activated inclined bars which are set to 70% of the area are included as
well as the 2ø22 bars in the plate.

nbars Ai Yi

3ø32 2413 84
0.7·3ø32 1689 424
0.7·4ø32 2252 1286

2ø22 760 1626

Table D.1: Reinforcement in sections of zero moment, inner beam

It is assumed that the compression zone is small and lies within the flange.
Therefore the section is assumed to be a rectangular cross-section with the
effective flange width. This provides the following tension and compression
reinforcement with their respective mass center given from the lower face.

Reinforcement Area [mm2] Placement [mm] ]
Lower face, As 6534 600.4
Upper face, A′s 760 1626

Total, As,tot 7114 710.0

Table D.2: Upper and lower reinforcement

The effective arm d for the tension reinforcement is 1109.6 mm from the mass
center to the upper face. The effective arm d′ for the compression reinforcement

215
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is 84 mm, also measured to the upper face.

The compression zone of the section needs to be obtained. This is done with
the same method as for calculating the cross-section’s capacity. The concrete
section is separated into a contribution from the flange and a contribution from
the web. The areas and their respective center of mass is given below.

Part Area [mm2] Mass center [mm]
Flange 1106000 1570
Web 1144000 715
Total 2250000 1135.3

Table D.3: Properties of concrete section with effective flange width

Further, the longterm Young’s modulus is 7766 MPa and the steel’s Young’s
modulus is 200 000 MPa. The relationship between the material stiffness is
defined as:

η = Es

Ec
= 25.75

The reinforcement ratios are also defined:

ρ = As

beffd
= 0.00145

ρ′ =
A′

s

beffd
= 0.00173

Leading to the following properties:

ηρ = 0.03732
ηµ′ = (η − 1) · ρ′ = 0.00429
ηµ = (η − 1) · ρ = 0.0359

f =
tbf
bd = 0

f = 0 since a rectangular cross section is assumed and therefore bf = 0

The height of the compression zone αd is found by solving equation (D.1) for α

α2 + 2A · α− 2 · (A−B) = 0 (D.1)

where

A = η · (ρ+ µ′) + f = 0.04162 (D.2)

B = ηµ · (1− d′

d
) + f · (1− t

2d
) = 0.03316 (D.3)

Which gives α = 0.0949 and αd = 105.4 mm.
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Then the equivalent moment of inertia is found for a T-cross section with the
effective flange width.

Ic,2 =
1

12
bflh

3
fl+(bflhfl)·(

tfl
2
−αd)2+(η−1)A′s(αd−d′)2+ηAs(d−d)2 = 1.769·1015 mm4

(D.4)
The stage 2 bending stiffness is found to be EIc,2 = 1.374 · 1015 Nmm2

This must be compared to the stage 1 stiffness. The area and moment of iner-
tia is found for the same cross section with effective flange width. The whole
concrete area is considered as active.

Ac = 2250000 mm2

Ic = 6.1323 · 1011 mm4

Then the equivalent properties are found.

Aeq = Ac + (η − 1) ·As,tot = 2426067 mm2

yeq = (Ac · yc + (η − 1) ·As,tot · ys)/Aeq = 1104.4 mm

Ieq,c = Ic +Ac · (yeq − yc)2 = 6.154 · 1011 mm4∑
Ieq,s,i =

∑
As,i · (η − 1) · (yeq − ys,i)2 = 8.848 · 1010 mm2

The total equivalen stiffness is

Ieq,1 = Ic +
∑

Ieq,s,i = 7.038 · 1011 mm4 (D.5)

Which provides a stage 1 bending stiffness of EIc,1 = 5.466 · 1015 Nmm2.

The bending stiffness has been reduced by approximately 75%. Implementing
this in the Young’s modulus the stiffness will go from 7766 MPa to 1941 MPa.
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D.B Carbon Fiber Reinforcement

In the frame model the additional strength from the carbon fiber reinforcement
is modeled as an increase in stiffness in the strengthened spans. This applies to
field 3, field 6 and field 9.

The increase is stiffness is found by using the same principle as for modeling
the crack. The bending stiffness is compared between stage 2 concrete without
CFRP stage 2 concrete without CFRP. Since the strips cover most parts of the
spans, the increase for stage 1 is also found.

The area of the fiber reinforcement perpendicular to the fiber’s direction is 672
mm2. This is placed at the bottom and has a thickness of 1.4 mm. Which
means that the mass center is 0.7 mm below the lower face of the concrete. The
area is added to the total tension reinforcement and a new dsf is calculated.

dsf =

∑
As,i · ys,i · Es +Af · Ef
As · Es +Af · Ef

= 1169.7 mm

(D.6)

Reinforcement Area [mm2] Effective arm [mm]
Lower face, As 6354 ds = 1109.6
Lower face, Af 672 df = 1206.7
Lower face, Asf 7206 dsf = 1169.7
Upper face, A′s 760 d′s = 84

Table D.4: Upper and lower reinforcement with effective arm

The flexural reinforcement is SIKA M614 has a Young’s modulus of Ef = 210000
MPa. The material relationship is obtained:

ηf =
Ef

Ec
= 210000

7766 = 27.04

The reinforcement ratios are also defined and combined with the material prop-
erties:

ηρ =
ηsAs+ηfAf

beffdsf
= 0.0393

ηsµ
′ = (ηs − 1) · ρ′s = (ηs − 1) · A′

s

beffdsf
= 0.00407

ηµ =
(ηs−1)·As+(ηf )·Af

deffdsf
= 0.0380

The height of the compression zone

αd

is found by solving equation (D.7) for α.
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α2 + 2A · α− 2 · (A−B) = 0 (D.7)

where

A = η · (ρ+ µ′) = 0.0434 (D.8)

B = ηµ · (1− d′

d
) = 0.0352 (D.9)

Which gives α = 0.0916 and αdsf = 107.2 mm.

Then the equivalent moment of inertia is found for a T-cross section with the
effective flange width.

Ic,2 =
1

12
bflh

3
fl+(bflhfl)·(

tfl
2
−αd)2+(ηs−1)A′s(αd−d′)2+ηsAs(d−αd)2+ηfAf (d−αd)2

(D.10)
Which gives
Ic,2 = 2.171 · 1015 mm4

The stage 2 bending stiffness is found to be EIc,2 = 1.6863 · 1015 Nmm2

Compared to the stage 2 bending stiffness without CFRP it has increased with
23%. This implies that the E-module increases from 1941 MPa to 2387 MPa in
the cracked sections.

In addition, the rest of the span is investigated which is in stage 1.

The area and moment of inertia is found in section D.A

Ac = 2250000 mm2

Ic = 6.1323 · 1011 mm4

Aeq = Ac + (ηs − 1)As,tot + (ηf )Af = 2442701 mm2

yeq = (Ac · yc + (ηs − 1)As,tot · ys + ηfAf · yf )/Aeq = 1096.2 mm

Ieq,c = Ic +Ac · (yeq − yc)2 = 6.167 · 1011 mm4∑
Ieq,s,i+Ieq,f =

∑
As,i·(η−1)·(yeq−ys,i)2+Af ·nf (yeq−yf )2 = 1.092·1011 mm4

The total equivalent stiffness is

Ieq,1 = Ic +
∑

Ieq,s,i = 7.259 · 1011 mm4 (D.11)

Which provides a stage 1 bending stiffness of EIc,1 = 5.637 · 1015 Nmm2.



220 APPENDIX D. EQUIVALENT STIFFNESS

This is only a increase of 3.1 %. This is because the concrete being fully active,
is contributing to most of the stiffness. The additional stiffness from the CFRP
is small in comparison. Still, the Young’s modulus is increased from 7766 MPa
to 7999 MPa.



Appendix E

Capacity of CFRP in ULS

The capacity of beams including CFRP is found in inner beams in zero mo-
ment sections and in the middle of the span. This is because these beams are
strengthened and these sections are critical due to the acting forces in the bridge.

Mechanical properties is obtained by product brochures [53], [54] and are pre-
sented in table E.1 and E.2.

Table E.1: Mechanical properties of SIKA CarboDur M16

Ef ffk εfuk γf γBA
210000 MPa 3000 MPa 1.35% 1.3 1.3

Table E.2: Mechanical properties of SikaWrap 231C

Ef ffk εfuk γf γBA
210000 MPa 3850 MPa 1.91 % 1.4 1.3

γf and γBA is obtained from the proposal of the new annex in Eurocode 2 [44].
γf is safety factor for tensile strength of the CFRP, while γBA is safety factor
for bond strength.

For calculations, following properties have been used:
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Table E.3: Properties of concrete

fcd 12 MPa
fctd 1 MPa
fcm 28 MPa
Ec 7776 MPa
εcu 0.0035

εc,top,0 0.001
εc,bottom,0 0.0005

h 1710 mm
beff 3950 mm
bw 800 mm
t 280 mm
zc 504.4 mm

Table E.4: Properties of steel reinforcement

fyd 272 MPa
Es 200000 MPa
εyd 0.00136
εsu 0.01

E.A Moment capacity

To obtain the moment capacity, multiple situations needs to be verified, which
are explained detailed in chapter 6.

To calculate moment capacity, only longitudinal fiber reinforcement is included.
This is 8 strips of SIKA CarboDur M16 at the soffit of the beam. Mechanical
properties of SIKA CarboDur M16 is listed in E.1. Other properties of the sec-
tions are found in tables E.3 and E.4.

Table E.5: Properties of longitudinal fiber reinforcement

ffd 2307 MPa
Ef 210000 MPa
εfud 0.01038
εf,0 0.0001
bf 60 mm
tf 1.4 mm
nf 8
Af 672 mm2
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E.A.1 Bending Moment Capacity of Cross Section

E.A.1.1 Field Section

In the field section, only the reinforcement in the tension zone is included, such
that:

As = 16478 mm2

ds = 1565.5 mm

Initially, it is assumed that the concrete has reached its ultimate strain, εcu,
such that:

εc = 0.0035

k1 is found by eq. (10.3).

k1 = 1− 2/(3000 ∗ εc) = 0.8095

The height of the compression zone, x is found by eq. (10.2):

x =
As·fyd+Af ·ffd

k1·fcd·beff
= 157.2 mm

It is assumed that the steel and fiber reinforcement has reached its yield limit.
This needs to be checked. In addition, a control of strains is necessary to verify
that εs ≤ 0.01 and εf ≤ 0.0135:

εf = εc · h−xx + εf0 = 0.0347 > 0.0135

εs = εc · ds−xx = 0.031 > 0.01

Both fiber and steel reinforcement have exceeded its ultimate strains. This im-
plies that the concrete will not reach its ultimate strain before the capacity is
reached. Further, it is assumed that εc < 0.002 and we find the compression
zone by assuming that εf = εfu, such that:

εf = 0.01038

The strain in the concrete εc is found by a linear elastic approach:

εc = x · (εf−ε0)
h−x

By substitution of this in eq. (10.2) and eq. (10.3), and solving for x, we obtain
x = 220.7 mm.

Again, the strains in the concrete and steel reinforcement must be verified, such
that εc < 0.002 and 0.00136 ≤ εs ≤ 0.01.

εc =
x·(εf−ε0)
h−x = 0.00152 < 0.002

εs = εc · ds−xx = 0.093 < 0.01
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The precondition of the strain in the fiber reinforcement is valid, and the strains
is verified. Following, moment capacity of the zero moment section including
CFRP is calculated by eq. (10.4) and eq. (10.1):

k2 = 8−1000εc
4·(6−1000εc) = 0.0362

MRd = As · fyd · (ds − k2 · x) +Af · Ef · εf · (h− k2 · x) = 9048 kNm

E.A.1.2 Zero Moment Section

Reinforcement in the web of the beam is assumed to be in the tension zone and
compression reinforcement is included, such that:

As = 6350 mm2

ds = 1110 mm
A′s = 760 mm2

d′s = 84 mm
h′ = 1026 mm

Initially, it is assumed that the concrete has reached its ultimate strain, εcu,
such that:

εc = 0.0035

k1 is found by eq. (10.3).

k1 = 1− 2/(3000 · εc) = 0.8095

The height of the compression zone, x is found by eq (10.2):

x =
As·fyd+Af ·ffd−fyd·A′

s

k1·fcd·beff
= 80 mm

It is assumed that the steel and fiber reinforcement has reached its yield limit.
This needs to be checked. In addition, a control of strains is necessary to verify
that εs ≤ 0.01 and εf ≤ 0.0135:

εf = εc · h−xx + εf0 = 0.0714 > 0.0135

εs = εc · ds−xx = 0.045 > 0.01

ε′s = εc · x−dsx = −0.00017 < 0.00136

Both fiber and tension steel reinforcement have exceeded its ultimate strains.
This implies that the concrete will not reach its ultimate strain before the ca-
pacity is reached. Further, it is assumed that εc < 0.002 and we find the
compression zone by assuming that εf = εfu, such that:

εf = 0.01038

The strain in the concrete εc and compression reinforcement ε′s is found by a
linear elastic approach:
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εc = x · (εf−ε0)
h−x

ε′s = εc · x−dsx

The compression zone, x is found by:

x =
As·fyd+Af ·ftd−ε′s·Es·A′

s

k1·fcd·beff

By substitution of the linear elastic equations of εc, ε
′
s and eq. (10.2) in the

previous equation, and solving for x, we obatin x = 155 mm.

Again, the strains in the concrete and steel reinforcement must be verified, such
that εc < 0.002 and 0.00136 ≤ εs ≤ 0.01.

εc =
x·(εf−ε0)
h−x = 0.001 < 0.002

εs = εc · ds−xx = 0.0063 < 0.01 and > 0.00136

ε′s = εc · x−dsx = 0.00047 < 0.01

The precondition of the strain in the fiber reinforcement is valid, and the strains
is verified. Following, moment capacity of the zero moment section including
CFRP is calculated by eq. (10.4) and (10.1):

k2 = 8−1000εc
4·(6−1000εc) = 0.35

MRd = As · fyd · (ds− k2 ·x) +Af ·Ef · εf · (h− k2 ·x) + ε′s ·Es ·A′s = 4323 kNm

E.A.2 Combined Moment and Axial Force Capacity with
CFRP

As the inner beams is subjected to axial tension force, it is essential to find the
capacity of both combined. The method is obtained by S.Sørensen section 4.5.2
[50].

The estimated strain failures are:

1. εc = εcu = 0.0035 and εs = εyd = 0.00136

2. εc = εcu = 0.0035 and εf = εfu = 0.01038

3. εc = 0 and εf = εfu = 0.01038

4. ε′s = ε′yd = 0.00136 and εf = εfu = 0.01038

Properties of the sections is listed in table E.1, E.3, E.4 and E.5.
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E.A.2.1 Field Section

As this section is only subjected to a positive moment, only this is evaluated.
Reinforcement properties of this section:

As = 16478 mm2

ds = 1565.5 mm
A′s = 760 mm2

d′s = 84 mm

The initial strain of the reinforcement due to ASR expansion is:

εs,0 = 0.001− 0.005
h · ds = 0.000675

ε′s,0 = 0.001− 0.005
h · d′s = 0.000975

Strain Failure 1

Strain criteria of this failure is:

εc = εcu = 0.0035
εs = εyd = 0.00136

α = εc
εc+εs−εs,0 = 0.836

Strain in upper reinforcement:

ε′s = εc · α·ds−d
′
s

α·ds − ε′s,0 = 0.0023

Strain in fiber reinforcement:

εf = εc · h−α·dsα·ds + εf,0 = 0.00117

The compression zone αds is beneath the flange. Two compression forces is
found, one for the flanges and one for the web. It is assumed that it is yielding
in the flanges and stresses are reduced in the web. Compression forces in the
section is found by:

Tc,f = fcd · t · (beff − bw) = 10584 kN

Tc,w = 0.8 · fcd · αds · bw = 10055 kN

Ts = min (ε′s · Es, fyd) ·A′s = 206.7 kN

Tension forces in the reinforcements is found by:

S = min (εs · Es), fyd) ·As = 4482 kN

Sf = εf · Ef ·Af = 165.3 kN
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Finally, the axial force N1 and moment M1 is obtained by equilibrium:

N1 = Tc,f + Tc,s + Ts − S − Sf = 1620 kN

M1 = Tc,f (zc− t/2) +Tc,s(zc− 0.4 ·αds) +Ts(zc− d′s) +S(ds− zc) +Sf (h− zc)
= 8705 kNm

Strain Failure 2

Strain criteria of this failure is:

εc = εcu = 0.0035
εf = εfu = 0.01038

α = εc
εc+εf−εf,0 = 0.2539

Strain in steel reinforcement:

εs = εc · α·h−dsα·h + εs,0 = 0.0098

ε′s = εc · α·h−d
′
s

α·h − ε′s,0 = 0.00185

The compression zone αds is beneath the flange. Two compression forces is
found, one for the flanges and one for the web. It is assumed that it is yielding
in the flanges and stresses are reduced in the web. Compression forces in the
section is found by:

Tc,f = fcd · t · (beff − bw) = 10584 kN

Tc,w = 0.8 · fcd · α · h · bw = 3334.5 kN

Ts = min (ε′s · Es, fyd) ·A′s = 206.7 kN

Tension forces in the reinforcements is found by:

S = min (εs · Es, fyd) ·As = 4482 kN

Sf = εf · Ef ·Af = 1465.5 kN

Finally, the axial force N2 and moment M2 is obtained by equilibrium:

N2 = Tc,f + Tc,s + Ts − S − Sf = 8178 kN

M2 = Tc,f (zc− t/2) +Tc,s(zc− 0.4 ·αds) +Ts(zc− d′s) +S(ds− zc) +Sf (h− zc)
= 11569 kNm

Strain Failure 3

Strain criteria of this failure is:



228 APPENDIX E. CAPACITY OF CFRP IN ULS

εc = 0
εf = εfu = 0.01038

Strain in steel reinforcement is found by linear elastic approach:

εs = (εf − εf,0) · dsh + εs,0 = 0.010

ε′s = (εf − εf,0) · d
′
s

h + ε′s,0 = 0.00148

The upper reinforcement is in tension strain, ergo this will give tension. There
is no compression in the concrete at this strain failure. Forces is found by:

Ts = min (ε′s · Es, fyd) ·A′s = 206.7 kN

S = min (εs · Es, fyd) ·As = 4482 kN

Sf = εf · Ef ·Af = 1465.5 kN

Finally, the axial force N3 and moment M3 is obtained by equilibrium:

N3 = −Ts − S − Sf = −6154 kN

M3 = Ts(d
′
s − zc) + S(ds − zc) + Sf (h− zc) = 6436 kNm

Strain Failure 4

Strain criteria of this failure is:

ε′s = εyd = 0.00136
εf = εfu = 0.01038

Strain in steel reinforcement is found by linear elastic approach:

εs = (ε′s − ε′s,0) + [(εf − εf,0)− (ε′s − ε′s,0)] · ds−d
′
s

h−d′s
+ εs,0 = 0.010

The upper reinforcement is in tension strain, ergo this will give tension. There
is no compression in the concrete at this strain failure. Forces is found by:

Ts = min (ε′s · Es), fyd) ·A′s = 206.7 kN

S = min (εs · Es, fyd) ·As = 4482 kN

Sf = εf · Ef ·Af = 1465.5 kN

Finally, the axial force N4 and moment M4 is obtained by equilibrium:

N4 = −Ts − S − Sf = −6154 kN

M4 = Ts(d
′
s − zc) + S(ds − zc) + Sf (h− zc) = 6436 kNm
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These values gives the following M-N diagram for field sections:

Figure E.1: M-N diagram for field sections with CFRP

E.A.2.2 Zero Moment Section

As this section is only subjected to a positive moment with tension at the bot-
tom of the beam, only this is evaluated. Reinforcement properties of this section:

As = 4099 mm2

ds = 1483.5 mm
A′s = 3010 mm2

d′s = 342.7 mm

The initial strain of the reinforcement due to ASR expansion is:

εs,0 = 0.001− 0.005
h · ds = 0.000566

ε′s,0 = 0.001− 0.005
h · d′s = 0.0008998

Strain Failure 1

Strain criteria of this failure is:

εc = εcu = 0.0035
εs = εyd = 0.00136

α = εc
εc+εs−εs,0 = 0.815

Strain in upper reinforcement:

ε′s = εc · α·ds−d
′
s

α·ds − ε′s,0 = 0.0016

Strain in fiber reinforcement:
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εf = εc · h−α·dsα·ds + εf,0 = 0.00155

The compression zone αds is beneath the flange. Two compression forces is
found, one for the flanges and one for the web. It is assumed that it is yielding
in the flanges and stresses are reduced in the web. Compression forces in the
section is found by:

Tc,f = fcd · t · (beff − bw) = 10584 kN

Tc,w = 0.8 · fcd · αds · bw = 9287 kN

Ts = min (ε′s · Es, fyd) ·A′s = 818.7 kN

Tension forces in the reinforcements is found by:

S = min (εs · Es), fyd) ·As = 1115 kN

Sf = εf · Ef ·Af = 218.6 kN

Finally, the axial force N1 and moment M1 is obtained by equilibrium:

N1 = Tc,f + Tc,s + Ts − S − Sf = 1935.6 kN

M1 = Tc,f (zc− t/2) +Tc,s(zc− 0.4 ·αds) +Ts(zc− d′s) +S(ds− zc) +Sf (h− zc)
= 5537 kNm

Strain Failure 2

Strain criteria of this failure is:

εc = εcu = 0.0035
εf = εfu = 0.01038

α = εc
εc+εf−εf,0 = 0.2539

Strain in steel reinforcement:

εs = εc · α·h−dsα·h + εs,0 = 0.00902

ε′s = εc · α·h−d
′
s

α·h − ε′s,0 = −0.00016

The compression zone αds is beneath the flange. Two compression forces is
found, one for the flanges and one for the web. It is assumed that it is yielding
in the flanges and stresses are reduced in the web. Compression forces in the
section is found by:

Tc,f = fcd · t · (beff − bw) = 10584 kN

Tc,w = 0.8 · fcd · α · h · bw = 3334.5 kN
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Ts = min (ε′s · Es, fyd) ·A′s = −97.7 kN

As the strain in the upper reinforcement is in tension due to the initial strain,
it will give a tension force, hereby a negative force.

Tension forces in the reinforcements is found by:

S = min (εs · Es, fyd) ·As = 1115 kN

Sf = εf · Ef ·Af = 1465.5 kN

Finally, the axial force N2 and moment M2 is obtained by equilibrium:

N2 = Tc,f + Tc,s + Ts − S − Sf = 1124 kN

M2 = Tc,f (zc− t/2) +Tc,s(zc− 0.4 ·αds) +Ts(zc− d′s) +S(ds− zc) +Sf (h− zc)
= 7802 kNm

Strain Failure 3

Strain criteria of this failure is:

εc = 0
εf = εfu = 0.01038

Strain in steel reinforcement is found by linear elastic approach:

εs = (εf − εf,0) · dsh + εs,0 = 0.00949

ε′s = (εf − εf,0) · d
′
s

h + ε′s,0 = 0.00296

The upper reinforcement is in tension strain, ergo this will give tension. There
is no compression in the concrete at this strain failure. Forces is found by:

Ts = min (ε′s · Es, fyd) ·A′s = 818.7 kN

S = min (εs · Es, fyd) ·As = 1115 kN

Sf = εf · Ef ·Af = 1465.5 kN

Finally, the axial force N3 and moment M3 is obtained by equilibrium:

N3 = −Ts − S − Sf = −3399 kN

M3 = Ts(d
′
s − zc) + S(ds − zc) + Sf (h− zc) = 2726 kNm

Strain Failure 4

Strain criteria of this failure is:
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ε′s = εyd = 0.00136
εf = εfu = 0.01038

Strain in steel reinforcement is found by linear elastic approach:

εs = (ε′s − ε′s,0) + [(εf − εf,0)− (ε′s − ε′s,0)] · ds−d
′
s

h−d′s
+ εs,0 = 0.0096

The upper reinforcement is in tension strain, ergo this will give tension. There
is no compression in the concrete at this strain failure. Forces is found by:

Ts = min (ε′s · Es), fyd) ·A′s = 818.7 kN

S = min (εs · Es, fyd) ·As = 1115 kN

Sf = εf · Ef ·Af = 1465.5 kN

Finally, the axial force N4 and moment M4 is obtained by equilibrium:

N4 = −Ts − S − Sf = −3399 kN

M4 = Ts(d
′
s − zc) + S(ds − zc) + Sf (h− zc) = 2726 kNm

This leads to the following M-N diagram for the sections of zero moments:

Figure E.2: M-N diagram for field sections with CFRP

E.A.2.3 Intermediate Crack Debonding

Capacity for intermediate crack debonding is calculated as detailed in 6.2.1.

Intermediate Crack Debonding is evaluated at an area between zero moment
section and field sections. This area is assumed to have the same properties as
the field section.

Properties of field section:
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As = 16478 mm2

ds = 1565.5 mm
nØ32 = 20
nØ16 = 2

Properties of concrete, steel reinforcement and fiber reinforcement in found in
table E.3, E.4 and E.5, respectively.
The crack spacing, sr, is found by sr = 1.5 · le,0. le,0 is calculated as in formula
(6.16).

The cracking moment Mcr given by (6.17) is found by calculating the section
modulus Wc,0 for the uncracked T-cross section, whereas Iy = 6.1326 · 10(11).

Wc,0 =
Iy

h− zc
= 5.083 · 108mm3

κfl = (1.6− h/1000) < 1 leading to κfl = 1

Mcr = κfl ·Wc,0 · fctm = 1118 kNm

The bond force per length between the steel reinforcement and the concrete
Fbsm depends on the steel properties as given in (6.18). The mean bond stress
is determined as followed:

fbsm =

{
0.43 · κvb1 · f2/3

cm for ribbed bars

0.28 · κvb2 ·
√
fcm for smooth bars

(E.1)

Where κvb1 = κvb2 = 1 for good bond conditions, κvb1 = 0.7 and κvb2 = 0.5 for
medium bond conditions.

It is assumed to be smooth bars and good bond conditions because the rein-
forcement is at the bottom of the beam, such that κvb2 = 1, resulting in:

fbsm = 0.28 · κvb2 ·
√
fcm = 1.482 MPa

Fbsm = fbsm · π · (nØ32 · φ32 + n16 · φ16) = 3128 N/mm

Such that:

le,0 = Mcr

0.85·ds·Fbsm
= 246 mm

sr = 1.5 · le,0 = 369 mm which is larger than 400 mm, leading to sr = 400 mm.

With known crack spacing, the bond resistance transmission to the FRP be-
tween the cracks is calculated with equation (6.20).

kb =

√
2−nf ·

bf
b

1+nf ·
bf
b

≥ 1 = 1

τb1d and τbFd is obtained by:
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τb1k = 0.23 · k2
b · f

2/3
cm = 2.121 MPa

Such that τb1d = τb1k
γBA

= 1.63 MPa

τbFk = 10.8 · αcc · f−0.89
cm = 0.556 MPa whereas αcc = 0.8

Such that τbFd = τbFk

γBA
= 0.428 MPa

Which is leading to the following contributions:

∆Ffd,B = 2.3 · τb1d
√
sr · bf · nf = 36 kN

∆Ffd,F = 0.1 · τbFd · s4/3
r · bf · nf = 60.56 kN

∆Ffd,C = κh

h · s
1/3
r · bf · nf = 4.14 kN as κh = 2000

Summarizing all of the contributions, the resistance of change in tensile forces
at each element becomes:

∆FfRd = 100.7 kN
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E.A.3 Shear Capacity

E.A.3.1 Insufficient Shear Capacity

The following properties are used for calculating the additional shear capacity
due to the CFRP.

bf = 300mm
t0 = 0.128
tf = 0.503mm
Afw = 301.6mm2

ffk = 3850MPa
Ef = 210000MPa
sf = 424.4
hf = 1309.7mm
α = 45◦

θ = 21.8◦

at = 0.8
fcm = 28MPa
γfb = 1.3

The material properties are found in table E.2. The other properties are esti-
mated using Eurocode 2 and Fib Bulletin 90.

A full area bond have been assumed and since the strips are aligned continu-
ously, the spacing measured along the beams axis is given by sf = bf/sinα.

The design rules from the new Eurocode 2 annex is using bf as the fiber width
perpendicular to the fibers direction and an effective thickness when calculating
the area. The effective thickness is reduced due to the amount of layers. Since
the number of layers are above 4, the reduction is given as:

tf = n0.85 · t0 (E.2)

which gives an effective thickness of 50.85 · 0.128 = 0.503mm

To find the height of the crack, and adjustment of the effective arm of the steel
must be modified. The effective depth of the steel in the zero moment section is
1483.5 mm. The crack is assumed to only occur in the web which has a height of
1430 mm. With respect to the web, the steel has an effective height d = 1203.5
mm. Due to the full-depth application, hf = hw − 0.1ds = 1309.7 mm.

The capacity of a closed application must be compared to the the bond strength
and the smallest value is decisive:

ffwd = min(ffbwd, ffwd,c) (E.3)

Where ffwdc is found by using equation (6.26).
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The factor kr taking into account non-uniform stress distribution and fibres
around corner is found based on the corner’s radius R.

kr =

{
0.5 R50 · (2−

R
50 ) R < 50 mm

0.5 R ≥ 50 mm
(E.4)

It is assumed that the edges of the web has been rounded of before placing the
CFRP, but there is no documented value of R. Therefore it is assumed that R
is greater than 50 mm. kr is set to 0.5.

This gives:

ffwdc = 0.5 · 0.8 3850
1.3 MPa = 1185 MPa

To assume a full bond strength, the effective length must be larger than the
bond length. First, the effective bond length le is found. Recalling equation
(6.6):

le = 1.5 · π
kb
·
√
Ef · tf
8 · f2/3

cm

(E.5)

The characteristic value of k is used, kk = 0.017. kb is calculated by (6.4). Since
the shear-reinforcement is laid continuously, b = bf , and kb = 0.707. Then le is
found to be:

le = 1.5 · π
0.707 ·

√
210000·0.503

8·282/3 = 252 mm

To verify that the bond length is greater than the effective length, the following
conditions must be controlled:

hf/sinα > le and le <
sf

(cotθ+cotα)·sinα < hf/sinα.

hf/sinα = 1852 and
sf

(cotθ+cotα)·sinα = 285. This verifies that all the bond

lengths of the strips covering the crack are larger than the effective bond length.
This also gives a β1 = 1 from equation (6.9). The characteristic bond strength
is obtained by using equation (6.11)

ffbk = 0.17 · 0.707 · 1
√

2 · 210000

0.128
· 28(2/3) = 661MPa (E.6)

Which gives ffbwd =
ffbk

γfb
= 508.5 MPa. This is lower than ffwdc and the bond

strength will be the decisive strength of the fibre reinforcement.

Finally the shear capacity is found by using equation (6.25).
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Vrdf =
301.6

424.3
· 1309.7 · 508.5 · (1 + 1) · 0.707 = 669.7kN (E.7)

The shear capacity Vrdf = 669.7 kN is found for a fictitious shear crack with a
45◦ inclination which is the worst possible inclination concerning shear tension
capacity.

Existing Crack
Regarding the existing crack, it is assumed that all of the steel reinforcement
is ineffective. The same control for le > lb is done and this indicates that some
strips may have an effective length smaller than the bond length. The bond
strength is therefore reduced. In addition, the crack extends over the entire
height of the web, hf = 1430. The reduced bond strength can be found by
using equation (6.29):

ffbwd = (1− 1

3

252

1430/sin45
) · 661

1.3
(E.8)

This equation is derived for the case with full area bond and hf/sinα ≥ le. This
gives ffbwd = 487.4 MPa.

The shear force sustained in one strip is:

Swd = Afw · ffbwd · sinα = 301.6 mm2 · 487.4 MPa · 0.707 = 125.1 kN

The total shear capacity of all four strips is Vrdf,crack = 500.4 kN

E.A.3.2 Shear Strengthening due to Flexural Debonding

Two controls are preformed in regards to shear strengthening due to flexural
debonding:

- Detachment of concrete
- Shear induced intermediate debonding

This is performed in accordance with 6.3.3.

Investigating the possibility of concrete cover separation, the modified shear
strength is found by using equation (6.32) with the following properties:

af = 200mm
ρs = 24442.6

800·1605 = 1.90 · 10−2

af is found from the drawings of the fiber applications made by Aas-Jakobsen.
This shows that the fiber is placed 600 mm from the center of the column. The
column has a radius of 400 mm which gives a distance of af = 200 mm form
the edge of the column.
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ρs is taken from a section near the support, where As is the tension reinforcemnt.

VRdc is the design value for the shear resistance in members not requiring shear
reinforcement found in NS EN 1992-1-1. Though, for this calculation, NS 3437
is used. In NS 4347 the capacity in ULS is set equal to Vco = 441.9 kN found
in C.D.1

This gives a modified shear resistance of:

VRs,c,fe = 0, 75[1 + 19.6
(100 · 1.90 · 10−2)0.15

200
]441.9 kN = 367.2 kN (E.9)

The control for shear induced intermediate crack debonding is a control regard-
ing the whole memeber. To simplify the control, an average d for the sections
is set to 1570 mm.
z = 0.9d = 0.9 · 1570 = 1413 mm

A limit based on the steel’s stress is determined and given in eq. (6.34)

As the stirrups are assumed smooth, the limit of 25 MPa is used. The maxi-
mum shear compression resistance is found in appendix C.D.1. Eq. (6.35) is
substituted for σsw and the equation is solved for VEd obtaining the maximum
value:

VEd,max =

√
25 · Asw

s
· z · cotθ · VRd,max · (cotθ + cotα)sinα (E.10)

VEd,max =

√
25 · 265

175
· 1413 · 1 · 2880000 · (1 + 1) · 0.707 = 466 kN (E.11)

VRd,max is the same shear compression strength, Vccd found in section C.D.

The designing shear force due to shear induced intermediate debonding is VEd,max =
468 kN.
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Design Forces Intermediate
Crack Debonding

The design forces to impose intermediate crack debonding is the shift of tensile
forces at each element between cracks.

To evaluate the shift of tensile forces, the moment distribution must be found.
Live loads qQ and self weight qG is distributed loads. For a beam fixed at both
ends, the moment distribution is:

MG(x) = − qGx
2

2 + qGL·x
12 − qGL

2

12

MQ(x) = − qQx
2

2 +
qQL·x

12 − qQL
2

12

The maximum load combination gives MG = 1740 kNm and MQ = 4476 kNm
at field section. Inserting x = L/2 in the equations above, qG and qQ is obtained:

gG = MG(L/2)
L2 · 24 = 82.5 kN/m

gG =
MQ(L/2)

L2 · 24 = 212 kN/m

The moment distribution of ASR is assumed to be linear between the axis and
field section. With a moment of about 2450 kNm at axis 8 and 3913 kNm at
field 8, we obtain the ASR moment distribution:

MASR(x) = 2450 kNm+130 kN ·x

Calculations is done according to 6.2.1 and fib bulletin [18]. Properties are found
in Appendix C.C. FfEd depends on the tension of the steel reinforcement, which
is found by eq. (??) and (??), repeated below:

σs(x) = σs,0(x) + ∆MEd(x)
zm

· ds·Es

EfAf+EsAs

Where

239
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σs,0(x) =
MEd,0(x)
0.85·ds·As

∆MEd(x) is additional bending moment after strengthening, in this case live
load MQ(x). MEd,0(x) is the initial bending moment before strengthening, in
this case MASR(x) and MG(x). The weighted level arm zm is found by:

zm ≈ 0.8 · dfEfAf+dsEsAs

EfAf+EsAs
= 1257.15 mm

A MATLAB code is used to calculate the shift in tension force in the CFRP.
The tension force is found by eq. (6.19) and the shift in tension force is found
by eq. (6.15). Sr = 400 mm is calculated in E.A.2.3.

Due to uncertainties about the ASR imposed moment, a code without MASR(x)
is submitted.
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MATLAB Codes
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clear all 

  
q_Q = 212; %kN/m 
q_G=82.5; %kN/m 
sr=0.4; %m 
zm=1257.15; %mm 
zs=1453; %mm 
As=16478; %mm^2 
ds=1565.5; %mm 
Es=200000; %MPa 
h=1710; %mm 
Af=672; %mm^2 
Ef=210000; %MPa 
fyd=272; %MPa 
L=22.5; %m 
sigma_0 = []; 

  
Ffed=[]; 

  

  
i=1; 

  
for x=4.25:sr:11.05 

     
    M_nytte=-(q_Q*L^2)/12 - (q_Q*x^2)/2 + (q_Q*L*x)/2;  
    M_asr= 2450 + 130*x; 
    M_g=-(q_G*L^2)/12 - (q_G*x^2)/2 + (q_G*L*x)/2; 

  
    sigma_0 

(i)=(M_asr+M_g)*10^6/(zs*As)+M_nytte*10^6*ds*Es/(zm*(h*Ef*Af+ds*Es*As)); 

     
    if sigma_0 < fyd; 

    
        Ffed(i)=M_nytte*10^6*Af*h*Ef/(zm*(h*Ef*Af+ds*Es*As)); 
    else 
      Ffed(i)=((M_asr+M_g+M_nytte)*10^6/zm)-As*fyd;   
   end  
    i=i+1; 
end  

  
DeltaFfed=[]; 

  
for j=1:17; 

  
    DeltaFfed(j)=Ffed(j+1)-Ffed(j); 
end 

  
disp(Ffed) 
disp(DeltaFfed) 

  
x = 4.25:0.4:11.05; 

  
figure() 
plot (x,Ffed/10^3) 



  

figure() 
plot (DeltaFfed/10^3) 
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