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Abstract
When performing wind tunnel experiments on bridge section models in the Fluid Mechan-
ics Laboratory at NTNU, unwanted high frequent vibrations may occur in the models, due
to wind and motion induced forces. This thesis discusses different actuators, sensors and
control algorithms for developing an active damping solution for reducing these high fre-
quent vibrations. This was done by carrying out experiments on an aluminum test beam
and develop a MATLAB simulation program for further testing. Both the experimental
and numerical results suggest that solenoids are well suited for vibration reduction in sys-
tems subjected to motions caused by an initial displacement. However, for experiments
with random induced forces - which are more relevant to the wind tunnel case - voice coil
actuators perform better than solenoids, based on simulations with the developed MAT-
LAB program. Further experimental testing with voice coil actuators are necessary to
optimize the application. A suggestion to how this can be done is included, with the use
of a CompactRIO, an accelerometer, a servo drive and a voice coil actuator.
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Chapter 1
Introduction

In order to secure that engineering applications operate as intended, it is important to be
familiar with the theory of mechanical vibrations. This covers a wide range of fields, from
vibration in precision tools to swaying of large buildings and bridges [18]. There are nu-
merous reasons to control the motion of structures, the most important being to prevent
failure in constructions, that may be dangerous to humans. This can occur due to fatigue
fractures, fractures caused by large strains in transient events (e.g strong wind gusts) or
fracture as a consequence of general system instability (e.g. fluttering) [18]. Securing
the comfort of people is also important. This concerns everything from reducing sway-
ing of skyscrapers to bike suspensions. At a smaller scale, precision applications, such
as metal machining tools, may not function optimally when exposed to large vibrations
[11]. Many of these problems may be addressed by introducing vibration reduction. In
general, this can be obtained through three main topics: stiffening, isolation and damping
[18]. By making constructions stiffer, one shifts the natural frequencies to higher values
with less energy (Equation 2.2). By isolation, one prevents vibrations in critical sections
of the construction. By damping, one dissipates the vibration energy, and thus reduces the
vibrating amplitude [18]. This master thesis will mainly discuss damping as the method
of vibration reduction. Passive and active are the two main methods of damping [18]. In
passive damping, one construct the application to damp out the motion of pre-calculated
frequencies. This may be achieved through material selection or dissipating the energy to
an additional construction part, for example a tuned mass damper (TMD) [18]. The main
disadvantage of passive damping methods is that only a defined range of frequencies can
be addressed. This works for constructions with well known and determinable dynamic
properties, but may be a problem for applications with varying properties under varying
conditions. Active damping is another approach which uses sensors, actuators and a regu-
lator with a control algorithm to reduce the response magnitude. The concept is depicted
in Figure 1.1. The sensors may provide data for strain, force, velocity, acceleration or
another physical measurement, while the actuators provide a force or another response to
the structure through the control algorithm [18].
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Chapter 1. Introduction

Figure 1.1: Concept of active damping.

Dynamic behaviour of bridges is an important research field in modern society, where
longer and slender bridges are built in more and more extreme environments. This con-
cerns both railway bridges, floating bridges, submerged tube bridges as well as long span
suspension bridges. The Department of Structural Engineering at NTNU is currently mon-
itoring several bridges on the west coast of Norway and is heavily involved in important
research on the project ”Ferjefri E39” between Trondheim and Kristiansand [3]. The goal
of this project is to substitute the use of ferries with different bridge concepts to cross the
numerous fjords on the existing road. As a part of the research on wind induced mechani-
cal vibrations on bridges, NTNU’s largest wind tunnel at the Fluid Mechanics Laboratory
is frequently used. This tunnel has a 2x3m section and can provide a maximum wind
velocity of 100km/h [3]. Figure 1.2 shows a bridge deck model mounted in the wind
tunnel.

Figure 1.2: Bridge girder section model mounted for experiments in the largest wind tunnel of the
Fluid Mechanics Laboratory of NTNU [19].

Experiments are important to obtain data on how mean wind, turbulence and vortex shed-
ding affect the behaviour of suspension bridges. The bridge decks for testing are typically
milled in gurit material around an aluminum pipe, to make it both stiff and light [20].
Figure 1.3 illustrates a section model construction, more specifically the model of the
Hardanger Bridge deck.

2



Figure 1.3: Modelling of Hardanger Bridge girder section model [19].

The models presented here are section models, which often are more convenient than full
bridge models when it comes to experiments, due to the possibility of testing in reasonably
sized wind tunnels [20]. This means that the test itself can be performed at a larger scale
[20]. To obtain aerodynamic properties of the bridge, one can perform tests in either free
or forced vibration. Figure 1.4 shows the forced vibration rig developed for wind tunnel
experiments at NTNU.

Figure 1.4: The forced vibration rig developed at NTNU [19].

This rig has the ability to induce motions in vertical and horizontal direction, as well as the
rotational direction of the pitching moment [20]. The rig may also measure the forces due
to wind in the same directions. The idea is to simulate real bridge section movements and
measure the above mentioned forces as a part of estimating the aerodynamic properties
[20]. However, the bridge section motion is not always fully controlled by the actuators
of the vibration rig. Unwanted high frequency vibrations may occur in the model, due to
the small scale section in a strong wind velocity field. These vibrations does not represent
a full scale dynamic effect. It is therefore desirable to test if the use of an active damping
application may reduce these high frequency vibrations, enabling more accurate tests in
the wind tunnel. This project will present active damping theory and perform tests on a
simple aluminum test rig to explore the use of actuators, algorithms and sensors to perform
this task.
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Chapter 2
Theory

2.1 Single Degree of Freedom System
In order to be familiar with the dynamic properties of the bridge models, some general
theory on structural dynamics need to be stated. Dynamic amplification may occur if the
frequency of the load gets close to one of the natural frequencies of the system. This could
lead the construction to deformation or failure due to increasing amplitude in the response.
The natural frequency of a system is the frequency a system tends to take in the absence
of any external forces [5], after first being set to motion. A system will always have equal
numbers of DOFs and natural frequencies. This means that the SDOF system of Figure
2.1 will have one single natural frequency.

Figure 2.1: SDOF system on a friction-free surface with damping and stiffness.

By studying the free body diagram of Figure 2.1, it is possible to establish the equation of
motion for a SDOF system as

mü+ cu̇+ ku = p(t), (2.1)

where m is the mass, c is the damping coefficient, k is the spring stiffness, p(t) is an

4



2.2 Damping Theory

external force, and u is the displacement with its derivatives. If the damping is set to zero,
the natural frequency is given by

ωn =

√
k

m
, (2.2)

and are dependent on mass and stiffness.

2.2 Damping Theory
In reality, all dynamic systems contain damping due to dissipation of energy, for example
in the form of heat. It is convenient to introduce the damping ratio, ξ, as

ξ =
c

ccr
, (2.3)

where ccr is the critical damping defined as

ccr = 2
√
km. (2.4)

The damping ratio tells immediately if the system is underdamped (ξ < 1), critically
damped (ξ = 1) or overdamped (ξ > 1) [21]. The meaning of this is illustrated in Figure
2.2, where the responses of a SDOF system with an initial displacement is presented for
the three different cases of damping.

Time [s]

R
e
s
p
o
n
s
e
 [
m

]

Underdamped,  < 1

Critically damped,  = 1

Overdamped,  > 1

Figure 2.2: Response of underdamped, critically damped and overdamped systems.
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Chapter 2. Theory

Underdamped systems will oscillate around a state of equilibrium, while overdamped sys-
tems never will reach the point of zero displacement due to high damping and dissipation
of energy. The critically damped case represent the state where the system will reach the
state of equilibrium with no oscillations. The systems studied in this thesis are under-
damped systems with a low damping ratio. The damped natural frequency, ωD, is related
to the natural frequency by

ωD = ωn
√

1− ξ2. (2.5)

The damped natural frequency will then be approximately equal to the natural frequency
for sufficiently low damping ratios. When measuring the response of a vibrating system, it
is possible to derive the value of ξ. A system in free vibration with a given damping ratio
will oscillate as

u(t) = A0e
−γtsin(ωnt+ φ), (2.6)

where γ = ξωn [12], A0 is the initial amplitude, t is time and φ is the phase angle. The
exponential term e−γt describes the decreasing amplitude due to damping in the system
and sin(ωnt + φ) describes the oscillation. By performing a curve fit on the peaks in the
data points of the response, one obtain the exponential coefficient γ. The natural frequency
can easily be found through a Fourier Transform of the response, which yields the damping
ratio ξ = γ/ωn. This curve fit is illustrated in Figure 2.3.

0 0.1 0.2 0.3 0.4

Time [s]

-1

-0.5

0

0.5

1

R
e
s
p
o
n
s
e
 [
m

]

10-3

Ae-  t sin(
n
 t + )

Ae-  t

Figure 2.3: Illustration of envelope function of an underdamped system.

The damping ratio may also be obtained through measured response with the method of
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2.3 Multi Degree of Freedom System

logarithmic decrement. The logarithmic decrement, δ, is given by

δ = ln(
xn
xn+1

), (2.7)

where xn and xn+1 are the values of two successive peaks of the signal. ξ is then given by
[13]

ξ =
1√

1 + ( 2π
δ )2

. (2.8)

2.3 Multi Degree of Freedom System
Structures are often too complex to be modeled as SDOF systems. Thus it is necessary
to expand the scalars of Equation 2.1 to matrices and a multi degree of freedom (MDOF)
system. The motion may now be described as

Mü + Cu̇ + Ku = P(t), (2.9)

where K, C and M represent stiffness, damping and mass matrices, respectively. This
yields a set of nDOF equations of motion, where nDOF represent the number of degrees
of freedom. An example closely related to the tuned mass damper later investigated, is the
2-DOF spring-damper system of Figure 2.4.

Figure 2.4: MDOF system on a friction-free surface with damping and stiffness.

The motions may now be described with matrices and Equation 2.9. For this particular
example the equation of motion is

m1 0
0 m2

ü1ü2
+

c1 + c2 −c2
−c2 c2

u̇1u̇2
+

k1 + k2 −k2
−k2 k2

u1u2
=

P1(t)
P2(t)

. (2.10)
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Chapter 2. Theory

2.4 Passive Damping with Tuned Mass Dampers
A classic approach to passively reduce the amplitude of vibrating structures is by utilizing
a dynamic vibration absorber, also called tuned mass dampers (TMD). This is a simple
system attached to the structure and contains a spring, damper and mass [7]. The idea
is to determine properties of the TMD to reduce the vibrations of a certain frequency,
so when that frequency is excited, the dynamic amplitude will reduce compared to the
case with no TMD present [7]. Introducing TMDs to reduce the deformations may be
a cheaper alternative than making the construction stiffer by increasing section area or
change material. The formula for the natural frequency of a beam is given by [23]

fn =
Kn

2π

√
EIy
ArρL4

, (2.11)

where fn is the natural frequency in Hz,E is young’s modulus, Iy is the second moment of
inertia, L is the length of the beam, ρ is the density, and Ar is the area of the cross section.
Kn is a constant dependent on beam boundary conditions and mode number. Multiplying
the stiffness EI by 2 only increases the natural frequency with a factor of 1.4. Tuned mass
dampers are today present in numerous well-known constructions, such as the Millennium
Bridge in London [17] and in Taipei 101 Tower in form of the famous 660-tonne heavy
pendulum [7]. Since TMD properties must be tuned to damp out one specific frequency,
they are well suited for constructions where its natural frequencies and general motion is
determinable and known. To further state important theory on tuned mass dampers, the
simple MDOF system in Figure 2.4 is again studied, where the massm2 serve as the TMD.
By applying a harmonic force of p0cos(ωt) to the structure, the equation of motion for the
main system is given by

m1ü1 + (c1 + c2)u̇1 − c2u̇2 + (k1 + k2)u1 − k2u2 = p0cos(ωt), (2.12)

and the equation of motion for the TMD,

m2ü2 − c2u̇1 + c2u̇2 − k2u1 + k2u2 = 0. (2.13)

This system can be solved to find the dynamic amplification factor of the primary mass.
This factor is defined as

Du1 =
u1,max
u1,stat

, (2.14)

where the static response simply is given by the relation p0/k1. A reduced dynamic am-
plification factor means reduced response amplitudes and deformations. It can be shown
that the dynamic amplification factor of the primary mass can be expressed as [24]

Du1
=

√
4ξ22β

2 + (β2 − β2
e )2

4ξ22β
2(β2 − 1 + µβ2)2[µβ2

eβ
2 − (β2 − 1)(β2 − β2

e )]2
, (2.15)

where β is the ratio of loading frequency to natural frequency of primary system,

β =
ω

ω1
, (2.16)

8



2.5 Active Vibration Control

βe is the ratio of natural frequency of TMD to natural frequency of primary system,

βe =
ω2

ω1
, (2.17)

µ is the mass ratio between TMD and primary system,

µ =
m2

m1
, (2.18)

and ξ2 is the damping ratio of the TMD,

ξ2 =
c2

2m2ω2
. (2.19)

The natural frequencies of the two components of the system are given by Equation 2.2.
After choosing a mass ratio, it can be shown that the optimal values of βe and ξ2 to mini-
mize Du1 are given as [9]

βe,opt =
1

1 + µ
(2.20)

and

ξ2,opt =

√
3µ

8(1 + µ)3
. (2.21)

2.5 Active Vibration Control
Passive damping systems are restricted to damp out frequencies within a limited range, and
can not be directly modified or changed after installation [7]. Correct and reliable values
of system properties and load are therefore of vital importance for the system to operate
effectively. The use of Active Vibration Control (AVC) addresses the issues of passive
damping by introducing the use of sensors and actuators to control the dynamic vibrations
in structures [18]. This makes it possible to control a wider range of frequencies, which is
convenient for systems with varying motions and dynamic properties. The key components
of an AVC system is typically a sensor, controller and actuator [7]. The sensor determines
the present state of the structure in terms of acceleration, velocity, displacement, force
or other physical property [7]. The controller analyzes this data and computes actions
needed to change the state of the structure, while the actuator performs these actions.
Connor & Laflamme [7] give the following accurate definition of an AVC system: ”An
active structural control system is one that has the ability to determine the present state
of the structure, decide on a set of actions that will change this state to a more desirable
one, and carry out these actions in a controlled manner and in a short period of time.”
This definition introduces some important aspects in AVC. Accurate instrumentation is
essential for determining the state of the structure correctly. This includes a known sensor
sensitivity (for example between voltage signal and acceleration), as well as sufficient
sampling frequency to be able to change the state in a short period of time. Reduction of

9



Chapter 2. Theory

the delay time between a signal is read and analyzed, and a command is carried out, is also
important. In AVC systems, the external force applied through the actuator could amplify
vibrations instead of damping them, if the system is inaccurate or the control algorithm is
mathematically incorrect [18].

2.5.1 Control Algorithms in Active Damping Vibration Control
The controller is the part of the AVC system that analyzes the input from sensors and de-
cide on actions for the actuator to perform to reduce the dynamic vibrations of the system.
A control algorithm is necessary. These algorithms are generally organized in two main
categories, feedforward and feedback [7]. Feedforward algorithms use signals from a pri-
mary DOF to predict the necessary output in other DOFs, based on knowledge about the
process and system [10]. This may apply to MDOF systems with coupled actuators and
sensors. SDOF systems usually use a feedback algorithm, which unlike feedforward con-
trol is error based [10]. A classic approach is the Linear Negative Feedback (LNF) control,
which determines actions of the actuators based directly on physical measurements, such
as acceleration, velocity and displacement [7]. To investigate the effects LNF controls, the
simple SDOF system of Figure 2.5 is studied.

Figure 2.5: SDOF system exposed to external force (p) and internal force from actuator (F ).

The mass is exposed to an external force p, as well as an internal force F from the actuator.
This yields the equation of motion

mü+ cu̇+ ku = F + p, (2.22)

which may be rewritten with aid of Eq. 2.2, 2.3 and 2.4 as

ü+ 2ξωu̇+ ω2u =
F

m
+

p

m
. (2.23)

F is now said to be a linear function of the acceleration, velocity and displacement of the
structure,

F = −kaü− kvu̇− kdu (2.24)
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2.5 Active Vibration Control

where ka, kv and kd are constants free of choice, that could be optimized to the current
application. This yields a new equation of motion

(1 +
ka
m

)ü+ (2ξω +
kv
m

)u̇+ (ω2 +
kd
m

)u =
p

m
, (2.25)

with equivalent fundamental frequency and damping ratio,

ωLNF =

√
k + kd
m+ ka

(2.26)

and

ξLNF =
1

ωeq

c+ kv
2(m+ ka)

, (2.27)

respectively [7]. It is possible to draw important conclusions on the different negative
feedback parameters through the equivalent dynamic properties above. Acceleration feed-
back will decrease both the fundamental frequency and damping ratio. Velocity feedback
will increase the damping ratio, while displacement feedback will increase the fundamen-
tal frequency. Considering linear velocity feedback only is therefore a natural approach,
and this is called Direct Velocity Feedback (DVF) control.

2.5.2 Actuators
The purpose of the actuator is to carry out action commands from the controller, based on
the measured values of the sensor. An ideal actuator is able to apply a large force in a short
period of time [7]. In general, one separates actuators in two main categories, grounded
and structure-borne [18]. Grounded actuators apply forces on supports, while structure-
borne actuators apply an internal force on the system [18]. The latter was used throughout
this project. Many different engineering applications can be used with the purpose of
applying forces to a system, for example hydraulic, electromechanical and electromagnetic
applications [18]. Semi-active devices is also an option, which modifies the output forces
by varying the dynamic properties of the actuator, meaning a constant energy input may
induce a varying output force [7]. This may be done by varying stiffnesses, fluids and
frictions in the device [7]. Piezoelectric actuators are another approach, which generates
strain in a plane of the material when subjected to a voltage in the direction perpendicular
to the plane. In this study, electromagnetic actuators were used, due to being reliable
and commercially available [7]. Figure 2.6 shows the principle of a voice coil actuator
(VCA) which operates as an electromagnetic transducer, converting electrical energy into
mechanical energy by coils and a moving magnet.

Figure 2.6: Schematic figure of voice coil actuator.
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Chapter 2. Theory

Lorentz’ force principle states that the mechanical force on the moving part is given as
[14]

F = kBLIN, (2.28)

where k is a design constant,B is the magnetic flux density, I is the current, L is the length
of the conductor and N is the number of conductors. This means that the input current
of the actuator is proportional to the output force moving the piston. This force will by
Newton’s third law create a counter force on the structure the actuator is mounted on, and
potentially damp out its motions. Changing the direction of the current will change the
direction of the moving piston, and thus the direction of the counter force working on the
structure. The induced voltage across the conductor is given as [14]

V = kBLvN, (2.29)

where v is the velocity of the magnet. This means that the moving voice coil actuator
will produce a force proportional to current and a voltage equally proportional to velocity
of the conductor, implying that the VCA can be controlled by the amount of current and
current direction [14]. Another possible approach is use of solenoids. A solenoid uses the
same technology, but differs from a VCA by operating in an on-off manner. Figure 2.7
shows a solenoid, as well as a schematic drawing. The solenoids of Figure 2.7 are shown
in off-state, that means that no current is sent through the coil.

(a) Solenoid in off-state. (b) Schematic in off-state.

Figure 2.7: Concept of solenoids.

By applying a current to the coil, the piston will be pushed to tension the spring. By turning
the current off, the stored forces of the springs will push the piston back to its off-state.
This makes it possible to obtain forces in both directions from a solenoid, but at a pre-
defined rate. Solenoids are cheap and an expedient alternative when making prototypes
to test active damping applications. The power of a solenoid is often given as a plot of
force as a function of stroke length. When the piston is fully placed inside the coil, the
stroke is said to be zero. This is the case when the solenoid is turned on. In Figure 2.7, the
solenoid is turned off, and the spring pushes the piston to its maximum range (in this case,
13 mm). In this particular state, the solenoid is said to be in a state of 13mm stroke. In
other words, stroke is a measurement of where in the coil the piston is placed. Figure 3.1
shows an estimated force-stroke plot for a solenoid, based on datasheet specifications [1].
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2.5 Active Vibration Control

The plot shows that the solenoid is most efficient at low stroke, this means at the end of
the process when turned from off to on. The efficiency is also dependent on the duty cycle,
that is the ratio of on-time in a cycle, the lower duty cycle, the more power the solenoid
may create.

2.5.3 Sensors and Signal Processing

The task of the sensor is to evaluate the state of the system, in order for the controller
to give accurate action commands to the actuator. A sensor is a device that reacts to a
physical stimulus and measures a property based on this signal [6]. Numerous types of
sensors (e.g. cameras, lasers, ultrasonic devices, thermal devices, load cells) may be used
to measure the desired physical property (e.g. acceleration, velocity, distance, heat, light,
humidity, pressure) [18]. An accelerometer can for example measure a voltage which is
proportional to a force (and thus acceleration) working on the sensor [2]. By calibrating
the accelerometer, the measured voltage can be converted into acceleration. The quality
of a sensor is defined by several characteristics, such as accuracy (precision and trueness),
detection range, sensitivity and for digital sensors, sampling frequency [8]. Figure 2.8
illustrates the meaning of the accuracy properties.

accurate 
precise and true

not accurate 
precise, but not true

not accurate 
not precise, but true

not accurate 
not precise, not true

x
x
xx
x

xx
xx x x x

x

x
x

x
x

x

x
x

Figure 2.8: Illustration of sensor accuracy.

A good sensor is sensitive to the measured property and insensitive to any other property
and does not influence the measured value when being used [8]. It will however some-
times be necessary to post-process the measured signal before passing it into the control.
This may be due to unwanted errors, noise or the fact that the measured property needs
to be post-processed to obtain data which is more expedient to further process (for exam-
ple integrating an acceleration signal to a velocity signal). This introduces the theory of
digital signal processing and filtering. A digital filter will in some manner perform math-
ematical operations on a signal to reduce or enhance properties of the signal [22], such
as system frequencies. The errors of noise and drift may be addressed by low-pass filters
(passes through low frequencies) and high-pass filters (passes through high frequencies),
respectively. Both filters are of interest since digital signals may be obtained using both
accelerometers and position measuring lasers. Drifting is a common problem when inte-
grating digital signals, as illustrated in Figure 2.9. This is due to accumulation of errors in
the integrating process.
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Figure 2.9: Example of drift phenomenon in signal integration from acceleration to velocity.

The derivative of a digital signal does not suffer from drifting since a constant error in the
original signal will not affect the resulting signal after derivation. However, the derivation
of a digital signal tends to enhance the effect of noise. Therefore, a low-pass filter is often
necessary when the signal from a position sensor is used to obtain velocity and acceleration
through derivation. Single pole filters are good overall recursive filters and may be used
to address several digital signal processing issues [22]. A recursive filter is a filter that
uses its own previously filtered values in the algorithm, and for single pole filters, one uses
the last point only. That makes them computational efficient and simple to implement in
programs. Since the output will have a smooth rise/fall towards the level of steady state,
they are well suited to cope with drifting [22].
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Figure 2.10: Example of how low-pass and high-pass filters (b) react to a digital input signal con-
sisting of high frequent noise and a low frequent wave.

Figure 2.10 shows how low-pass and high-pass single pole recursive filters react to a signal
exposed to high frequent noise and a low frequent wave. The high pass recursion filter
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2.6 Evaluating Energy in Vibrating Systems

which is used to filter the digital signals from accelerometers is given as [22]

y[n] = a0[n] + a1x[n− 1] + a2x[n− 2] + ...+ b1y[n− 1] + b2y[n− 2] + ..., (2.30)

where x is the input signal and y is the filtered signal. For a single pole high-pass filter,
the constants are given as

a0 = (1 + r)/2

a1 = −(1 + r)/2

b1 = r,

(2.31)

whereas for a low-pass filter:

a0 = 1− r
b1 = r,

(2.32)

where r is the filter coefficient given as

r = e−2πfc/fs , (2.33)

with fc and fs as cutoff frequency and sampling frequency, respectively [22]. The cutoff
frequency determines what threshold to set on the frequency content to pass through the
filter.

2.6 Evaluating Energy in Vibrating Systems
Loss of energy per time is a natural approach when evaluating the effect of dampers. The
energy of a vibrating system consists of potential energy, U , and kinetic energy, T . At any
given time, the energy in the system is given by

E = U + T =
1

2
ku(t)2 +

1

2
m

(
du

dt

)2

. (2.34)

The energy of the oscillating system may be estimated using the envelope function de-
scribing the general decrease of amplitude as a function of time. This is due to the fact that
the energy of the system at any point where the displacement is at a peak - meaning the
velocity is zero - the total energy of the system is only dependent on the potential energy
and hence the amplitude and stiffness of the system. Any time the system is between two
consecutive peaks, it is known that the energy of the system is smaller than that of the first
peak and larger than that of the second peak by the law of conservation of energy. This
means that the energy in the system can be approximated as

E ≈ 1

2
kA2. (2.35)

A = A(t) describes the envelope function passing through the peaks of u = u(t).
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Figure 2.11: Example of energy in a vibrating SDOF system.

The motivation for this simplification is that it makes it easier to compare the results for
different dampers. Furthermore, calculating the energy using Equation 2.34 requires high
accuracy when monitoring the vibrating system, since the method is sensitive to time delay,
especially for high frequencies. Figure 2.11 shows how the energy in an oscillating SDOF
system decreases over time due to damping in the system. It is clear from the figure
that the energy obtained using the envelope function as in Equation 2.35 gives a good
approximation of the total energy.
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Chapter 3
Methods

The approach for the project was as follows:

• Study general structural dynamics and active damping theory.

• Set up a physical test rig in the lab, for testing different types of active damping
applications. This included a cantilever beam as well as a beam fixed with respect
to translations and rotations in both ends.

• Develop a program in MATLAB, simulating the vibrating beams of the test rig,
simplified as SDOF systems. This could be used to predict the efficiency of different
actuators and control algorithms.

• Perform experiments on the test rig with sensors, actuators and control algorithms
to optimize the application.

3.1 MATLAB Simulation

In order to test numerous damping applications in a time efficient way, a simulation code
was written in MATLAB. The simulation made it possible to gain knowledge of which
parameters that affect the ability to damp out vibrations most efficiently. The code was
simplified as a SDOF system to simulate both the cantilever beam and fixed-ends beam of
the test rig described in Section 3.2.

3.1.1 Code Structure

The cantilever beam and fixed-ends beam were discretized with one node at each end, and
with one node at each end and a center node, respectively. The modal mass of the system
was calculated using mass lumping which yields half the mass of the beam in both cases.
Furthermore, the code was written with the ability to change the structural properties such
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Chapter 3. Methods

as the fundamental frequency and the damping ratio. The stiffness and damping coefficient
were calculated through the relations

k = mmodal(2πftarget)
2, (3.1)

c = 2ξ
√
km, (3.2)

where ftarget and ξ are the fundamental frequency and the damping ratio, respectively.
The modal mass depends on the length of the beam which again depends on the defined
natural frequency through Equation 3.9. To maintain a tidy structure of the simulation, the
code was developed with a main script (systSim.m) using functions with specific tasks. The
main script and its functions can be found in the Appendix. When using the simulation, one
may assign how the vibrations should be induced. This can be done by either specifying an
initial displacement, velocity or acceleration, or by assigning external loads throughout the
simulation. These external loads are assigned as a function of time and can be either a sine-
wave, a random signal or a combination of these. One can also decide what actuator to test,
which specifications are returned from the function getActuator or getSolenoid depending
on the choice of actuator. The specifications include mass, stroke length and maximum
acceleration, velocity and force. The system variables and the sample frequency may be
specified along with the constants of the feedback algorithm, described in Section 2.5.1.
The simulation is carried out by the Newmark-beta method where the time increment, ∆t,
is set sufficiently low to ensure convergence. The force from the actuator is included as
the external load F in the SDOF equation of motion solved by the Newmark-beta method
specified in the following equations:

ün+1 =
1

m
(−cu̇n − kun + F ), (3.3)

u̇n+1 = u̇n + (1− γnb)∆tün + γnb∆tün+1, (3.4)

un+1 = un + ∆tu̇n +
1

2
∆t2((1− 2βnb)ün + 2βnbün+1), (3.5)

where γnb = 0.5 and βnb = 0.25. The following list sums up the purposes and tasks of
the different scripts and functions of the simulation.

• systSim.m - The main script of the simulation. One can here specify loads and initial
conditions of the system. The result for the system and actuator movements are
plotted in the end.

• getSolenoid.m - The solenoid database. One may here add different solenoid models
with its specifications. This includes stroke range, mass of moving piston, total mass
and the force the solenoids may provide as a function of stroke.

• getActuator.m - The database for all actuators that are not solenoids. One may here
add different actuator models with its specifications. This includes stroke range,
mass of moving piston, total mass and maximum velocity, acceleration and force.
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3.1 MATLAB Simulation

• beamData.m - Calculates the beam properties with respect to desired fundamental
frequency and beam configuration (cantilever or fixed-ends).

• regulator.m - Calculates the recommended acceleration, later multiplied by the pis-
ton mass to obtain the force in accordance with Equation 2.24.

• actuator.m - This function implements the actuator restrictions in the simulation.

• newmark getResponse.m - This function includes the Newmark numerical method
described above and solves the system with respect to the dynamic parameters and
the input force of the actuator. The displacement, velocity and acceleration of the
system are calculated, thus this function also works as the sensor.

3.1.2 Experiments for Obtaining Solenoid Specifications

One particular solenoid was used for the experiments throughout this project. It was nec-
essary to investigate the amount of force this solenoid could provide to the structure when
turned on and off. By knowing the force curve one could predict the effect of solenoids as
AMD (active mass damper) in the MATLAB simulations for comparison with the physical
testing. Like described in Chapter 2, the solenoid will provide a varying force, depending
on duty cycle and stroke, that means the ratio of on-time, and where in the coil the piston
is placed. The stroke equals zero when the solenoid is in on-state, that means fully com-
pressed in the coil. This means that the piston will move from right to left in the graph of
Figure 3.1 when turned on and travels from off-state to on-state. With the data available,
the following method was used to predict the force curve when the solenoid contracted
from off-state to on-state:

• The maximum force value at 50% duty cycle and zero stroke was registered from
the solenoid datasheet [1].

• The force at the end of the stroke (towards the right side of the force-stroke plot)
was assumed to be 10% of the force at zero stroke, based on the solenoid datasheet
[1].

• This gave two points in the force-stroke plot, [stroke = 0,Force = Fmax] and
[stroke = strokemax,Force = 0.1Fmax].

• The curve fit function of MATLAB was used to predict the graph on an exponential
form, Force = α · eη·Stroke. The constants α and η were registered.

The estimated solenoid force as a function of stroke when traveling from off-state to on-
state are shown i Figure 3.1.
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Figure 3.1: Estimated solenoid force as a function of stroke when the piston travels from off-state
to on-state, not including gravitational force of the piston and spring force.

However, other forces come into play when calculating the total force induced on the
structure. When the solenoid is placed vertically, like in Figure 3.13a, the gravitational
force needs to be added, and the spring force needs to be subtracted. The latter demands
that the spring stiffness, k, is known, assuming a constant spring stiffness. This value was
also necessary in order to study the amount of force the solenoids provided to the structure
when going from on-state to off-state, with the aid of Hooke’s law,

Fspring = ku, (3.6)

where u is the spring displacement. When calculating the force created when going from
on-state to off-state, the gravitational force needs to be subtracted, since the piston now is
moving vertically upwards. The stiffness of the solenoid spring was found through testing.
Three different mass loads were put on the spring and the displacements were recorded.
The linear curve fit function of MATLAB was used to obtain kspring . Mathematically, the
forces induced on the structure when the solenoid travels from off-state to on-state, and
from on-state to off-state is described by:

FON = Fsolenoid(stroke) + Fgravitation − Fspring
FON = Fsolenoid(stroke) +mpistong − kspringu

(3.7)

FOFF = Fspring − Fgravitation
FOFF = kspringu−mpistong

(3.8)

kspring can not be calculated as strokemax − stroke, since the spring is compressed in
the off-position at strokemax. Figure 3.2 and 3.3 are the graphical solutions of Equations
3.7 and 3.8 and show the force from the solenoid on the structure, when the piston went
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3.1 MATLAB Simulation

from off-state to on-state, and from on-state to off-state, respectively. For this particular
solenoid, the maximum stroke was strokemax = 13mm. Note that the two forces FON
and FOFF in reality will act in opposite directions, thus implying that the forces presented
numerically and graphically here represent the absolute values.

0 2 4 6 8 10 12 14

Stroke [mm]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
o
rc

e
 [
N

]
Force induced, F

ON

Figure 3.2: Force induced as a function of stroke when solenoid is turned on.
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Figure 3.3: Force induced as a function of stroke when solenoid is turned off.

By studying Figure 3.2 and 3.3, it is evident that the solenoid is significantly more powerful
when going from off to on-state than the opposite way around. Considering this, it would
be more expedient to place the solenoids upside down so the gravitational force would
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be added to the on-off stroke and subtracted from the off-on stroke to even out the force
curves. However, due to the solenoids lack of power in the off-position at strokemax, it
was necessary to orient the solenoids like seen in Figure 3.13, to start the motion. Table
3.1 sums up the specifications obtained for the solenoid through testing and curve fitting.

- Solenoid
Spring Stiffness, k [N/mm] 0.0150
α 1.72
η -0.1771

Table 3.1: Experimental force parameters for solenoid.

The solenoid force data obtained by the methods described in this section was used in the
MALTAB code to accurately predict the forces from a solenoid in the simulations.

3.1.3 Verification

The main goal of the simulation code was to be able to test various actuators and their abil-
ity to damp out vibrations in structures with different dynamical properties, such as natural
frequency and damping ratio. To ensure that the results from the simulation were accurate
and represented a dynamical SDOF system correctly, the simulation was run with different
values for both the natural frequency and the damping ratio. All of the verification tests
were run with the SDOF system vibrating freely without interaction from an actuator. One
test of importance is where ξ = 0. This test ensures that the time increment chosen for
the simulation is sufficiently small to prevent divergence throughout the simulation. A
time increment of ∆t = 10−6s was found sufficiently small to ensure convergence. To
further verify the ability to simulate damping in a satisfactory manner, the results from a
simulation compared to a sine-wave as in Equation 2.6, is presented in Figure 3.4. The pa-
rameters of the sine-wave are A = 0.01 m, ω = 2π · 20 rad/s, ξ = 0.01 and φ = π/2. The
simulation was run with the same values and the results are close to identical, indicating
that the simulation is well suited to describe a naturally damped oscillating system. It is
also desirable that the simulation reproduces the defined natural frequency. In Figure 3.5,
the simulation result using ftarget = 20Hz and ξ = 0.02 is shown along with its spec-
tral density, calculated using the FFT (Fast Fourier Transform) function in MATLAB. It
can be seen that the simulation code generates good results regarding the system’s natural
frequency, which is important to ensure that the simulations run are accurate and reliable.

22



3.1 MATLAB Simulation

0 0.5 1 1.5

Time [s]

-0.01

-0.005

0

0.005

0.01

D
is

p
la

c
e

m
e

n
t 

[m
]

A e-  t sin(  t + )

Simulation Results

Figure 3.4: Simulation compared to a damped sine-wave.
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Figure 3.5: Verification of natural frequency of system in simulation.
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3.2 Test Rig

In order to test the active damping prototype and the different control algorithms, a test rig
was developed in the laboratory of the Department of Structural Engineering. The purpose
of this was to simulate the frequencies of vibration one typically observe when testing the
bridge models in the wind tunnel. The rig is depicted in Figure 3.6, and its properties can
be found in Table 3.2. The dimensions were chosen to be able to simulate frequencies
from 10 to 30Hz. As seen in Figure 3.6, the test rig consists of two beam configurations,
a cantilever beam and a beam fixed with respect to translations and rotations in both ends
(from now called a fixed-ends beam).

Figure 3.6: Test rig in the laboratory. The two dampers in purple casing show where the dampers
were placed when tested on fixed-ends and cantilever beam.

Property Value
Width 125mm
Height 8mm
Density 2700kg/m3

Young’s Modulus 69000MPa

Table 3.2: Properties of aluminum test beam.
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Aluminum was chosen in order to obtain a total mass of approximately 5kg for a beam
length with an analytical natural frequency of 20Hz. This weight was chosen in accor-
dance with a typical mass of a bridge section model [20]. In addition, aluminum is both
affordable, available and easy to machine to desired dimensions. By moving the orange
steel plates, it was possible to vary the length of both the fixed-ends and cantilever beam.
By varying the length of the beam, one can control the fundamental frequency of the beam
to correspond to the frequencies one obtain in the wind tunnel. The analytical formula for
the natural frequencies of a fixed-ends beam as well as a cantilever beam is given as [23]

fn =
Kn

2π

√
EIy
bhρL4

, (3.9)

where E is Young’s modulus, Iy is the moment of inertia, b and h are the width and
height of the cross section, ρ is the mass density, L is the length of the beam and Kn is a
constant depending on boundary conditions. Kn is given in Table 3.3 for the first 5 natural
frequencies of the two beam set ups.

Kn,fixed−ends Kn,cantilever

Mode 1 22.4 3.52
Mode 2 61.7 22.0
Mode 3 121 61.7
Mode 4 200 121
Mode 5 299 200

Table 3.3: Constants in Equation 3.9 for natural frequencies of fixed-ends and cantilever beam [23].

To test if the calculated natural frequencies corresponded to the measured frequencies
of the aluminum beam, an experiment was carried out on the fixed-ends beam, with no
damper present. A MPU-6050 accelerometer with a sampling frequency of 100 Hz was
attached to the midpoint and was used to measure the beam vibration in a time series of one
minute. This particular accelerometer was used since this test was carried out at an early
stage in the project, when applications for using a more expensive accelerometer with a
higher sampling frequency, were yet to be carried out. This accelerometer was however
considered to be sufficient to detect the fundamental frequency of the beam, and to deter-
mine its damping ratio. A gentle push was applied four times during this minute with a
15 second pause. A FFT function in MATLAB was used on the collected data to identify
the measured frequencies. Figure 3.7 shows the test series and the corresponding spec-
tral density of the test with L = 2.040m, meant to simulate a fundamental frequency of
10Hz. One can observe the dominating peak in the specter at approximately 11 Hz, which
is the experimental value of the fundamental frequency. The two other peaks represent the
second and third natural frequency of the beam with this particular length.
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Figure 3.7: Acceleration as a function of time and its Fourier Transform for a fixed-ends beam of
length L = 2.040m. The response specter is presented logarithmic on the y-axis.

Figure 3.8 illustrates how the analytically calculated natural frequencies of the beam varies
with the length of the beam. It is also compared to the experimentally values for the natural
frequencies.
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Figure 3.8: Comparison between analytical and measured values of fundamental frequencies of
fixed-ends beam in test rig.

It is evident from the figure that the natural frequencies obtained by FFT differs slightly
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from the analytically calculated natural frequencies. The figure also shows that the differ-
ence tends to increase as the beam length decreases. This can be explained by the fixed
ends which in reality not are perfectly fixed, which decreases the stiffness of the system.
As the beam lengths decreases, the effect of these non perfect fixed ends becomes more
significant to the dynamical properties of the beam. Further, it can be seen in Figure 3.6
that parts of the beam is sticking out as the cantilever beam. A shorter fixed-ends beam
means a longer cantilever beam. As the supports at the orange ends are not perfectly fixed,
a longer cantilever beam will increase damping of the fixed-ends beam and reduce its stiff-
ness. However, the results show that the beam lengths are sufficient to generate the natural
frequencies desired.
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Figure 3.9: Damping ratio calculated with curve fitting and logarithmic decrement.

To evaluate the damping of the fixed-ends beam of the test rig, the damping ratio was
calculated by curve fitting and by logarithmic decrement. As shown in Figure 3.9, the
amplitude of the oscillations are not strictly decreasing. This may be caused by the sam-
pling frequency being too low or the fact that multiple modes affect the displacement. The
logarithmic decrement was calculated for all pairs of successive peaks using Equation 2.7.
The average logarithmic decrement was then calculated to obtain a more accurate estimate
of ξld using Equation 2.8 with δ = δaverage. To calculate the damping ratio obtained by
curve fitting, ξfit, a built in function in MATLAB was used along the peaks of the beam
response. The fitted curve was constrained by the exponential contribution of Equation 2.6
to obtain the envelope function A(t) = A0e

−γt. The MATLAB function yields values for
A and γ, and the relation ξfit = γ/ωn was used to obtain the damping ratio. The results
of the damping estimation of the fixed-ends beam can be seen in Table 3.4.
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f1,a [Hz] f1,e [Hz] ξld [%] ξfit [%] Length [m]
10 10.99 0.6211 0.6160 2.040
15 14.27 0.5238 0.5825 1.666
20 19.34 0.4005 0.3925 1.443
25 22.81 1.0035 0.9922 1.290
30 26.14 0.4243 0.4347 1.178

Table 3.4: Fixed-ends beam frequencies and damping ratios for various lengths.

This shows that the analytical formula for the natural frequency of the beam is a good
prediction of which beam length to choose to predict pre defined natural frequencies. It is
reason to believe that this also applies to the cantilever beam design of the test rig. These
tests were performed with no damper mounted on the rig. Doing this will add mass to the
system and thus lower its fundamental frequency. As the formulas do not perfectly predict
the fundamental frequencies - and added mass of the dampers will impact the dynamic
properties - it is important to perform pretesting without the active damper acting, but still
mounted on the rig, to obtain information about the system of that particular configuration
in free vibration for reference to the damped vibration cases.

3.3 Solenoid as Active Damper
In order to gain practical experience of active damping, and test possible actuators for
the bridge model application, it was suggested to investigate the use of linear push pull
solenoids. Solenoids have several benefits. They are both cheap and easy accessible and
can be controlled by a simple control algorithm in the regulator. Figure 3.10 shows a
solenoid in off-state and on-state, respectively.

(a) Solenoid in off-state, stroke = strokemax. (b) Solenoid in on-state, stroke = 0.

Figure 3.10: Solenoid in off and on state.

When the coil is subjected to sufficient current, the piston will contract. This process will
both load the spring and subject a force on the construction the solenoid is mounted on.
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3.3 Solenoid as Active Damper

When the current is turned off, the spring will unleash its potential energy and accelerate
the piston back to its off-position, thus creating a force on the construction, in the oppo-
site direction of the first process. This is simply based on Newtons third law of equal and
opposite counter forces. This means that it will be possible to apply a force in opposite
directions to damp out the motion of a vibrating construction. These two forces are how-
ever restricted to specific values, depending on the specifications of the solenoid, implying
that a feedback algorithm where the force from the actuator is proportional to an obtained
signal is impossible. The control algorithm for solenoids is based on threshold values,
where the current is turned on or off if a physical instrumented property (e.g. position, ve-
locity and/or acceleration) exceeds a pre-defined value. It was necessary to set up a control
system that could both read a sensor signal and provide sufficient current to the solenoid.
This system is depicted in Figure 3.11.

Figure 3.11: Raspberry Pi setup for test of solenoid as AMD.

Raspberry Pi is a series of small computer boards which easily can be programmed to
the desired configuration. It is affordable and easy to set up. The model Raspberry Pi 3
Model B+ was used in this project and contains numerous general purpose input output
(GPIO) pins to connect the board to other components. The board was connected to a
power source, a sensor and a H-bridge. The H-bridge was again connected to one or two
solenoids, depending on the tested configuration. The purpose of the H-bridge was to
control the current from the power supply and the model called Dual H-Bridge L298N
was used. The model ODS USB-150 from DSE was chosen as sensor. This is a distance
measuring laser which provides data at a sampling rate of 1kHz. It provides both ASCII
and binary input to the system which easily can be derived to obtain the velocity and
acceleration of the structure. Unlike an accelerometer mounted on the structure, a laser
placed on solid ground measuring the distance to the structure, will not influence the total
mass of the structure, and thus its dynamic properties. The setup with Raspberry Pi, H-
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bridge and laser was chosen for the testing of solenoids since it was an efficient way to
familiarize with the concept of active damping and decide if more advanced equipment
was necessary for further testing. The distance measuring laser was chosen to exclude
drifting and potential measuring errors that may occur if an accelerometer is rotated out of
the orientation it was calibrated to operate in. The schematic setup is depicted in Figure
3.12. Note that the schematic illustration in Figure 3.12 contains two solenoids, unlike
Figure 3.11 with one solenoid only.

Figure 3.12: Schematic illustration of Raspberry Pi setup for test of solenoid as AMD.

It was decided to test two different solenoid configurations on the test rig. These were
use of one single solenoid and two solenoids in serial of the same type, namely the model
SD0630 from RS Components. The reason for testing two solenoids in serial is that the
force in each direction will be approximately the same, whereas with a single solenoid
the force by the electromagnet is much larger than the force created by the spring as was
discussed in Section 3.1.2. This solenoid has a maximum stroke of 13mm. The most
important specifications may be found in Table 3.5. The two configurations tested are
depicted in Figure 3.13.

- Solenoid Specs
Model Name SD0630
Total Mass 41.0g
Moving Mass 5.5g
Voltage 12V
Maximum Stroke (strokemax) 13mm
Max Force at 50% duty cycle 1.7N

Table 3.5: Specifications of the SD0630 solenoid [1].
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3.3 Solenoid as Active Damper

(a) Single solenoid. (b) Double solenoid in serial.

Figure 3.13: The two different solenoid configurations tested in their 3D-printed holders.

Holders for the different configurations were manufactured by 3D prints in order to mount
the solenoids on the test rig. Figure 3.14 shows an overview of the solenoid experiments.

Figure 3.14: Solenoid test plan.

Different control algorithms and threshold values were tested within these configurations
as well. As explained in Chapter 2, the direct velocity feedback seems to be the most
simple and effective algorithm for active damping configurations. Therefore, the action
of the solenoids were based on velocity threshold values. This means that the solenoid

31



Chapter 3. Methods

is turned on and contracts when the instrumented velocity reaches a defined value, and is
kept turned on until the velocity of the system reaches the same threshold value, but with
opposite sign. That gives a velocity threshold (VT) algorithm,

SolenoidSTATE =


ON, if v < −vthr
OFF, if v > vthr

UNCHANGED, Otherwise
(3.10)

where vthr is the defined velocity threshold in the algorithm, and v is the detected velocity
of the structure. The greater-than and less-than signs are set in accordance with a positive
direction upwards. When the structure moves vertically in positive direction, the solenoid
is turned off and the spring will accelerate the piston upwards in the same direction as the
structure. This will produce a counter-force from the piston to the solenoid and the struc-
ture the solenoid is mounted on, thus creating a downward force opposite to the direction
of movement. The exact same procedure happens as the structure is moving downwards,
except this time the solenoid will be turned on. The principle for the double solenoid in
serial is the same, but the upper solenoid is now placed upside down, meaning that one
solenoid will be turned on, while the other will be turned off when the velocity threshold
value is exceeded in either positive or negative direction.

Figure 3.15: Cantilever beam.
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3.3 Solenoid as Active Damper

Figure 3.16: Fixed-ends beam.

Figure 3.15 and 3.16 show the general setup for the two beam configurations. A 5kg
weight was used to set the beams into motion. This was done by attaching the weight to
the beam with cable ties and then cut the tie with a pliers at the beginning of each test.
This ensured a constant initial displacement for each beam configuration. The laser sensor
used for instrumentation can be seen in the blue 3D-printed casing underneath the beam,
measuring the distance from solid ground to the moving beam. Ideally, this should be
placed right under the point of the active damper, but this turned out to be difficult as space
was needed for the weight used for initial displacement. The point of instrumentation was
instead placed 5cm from the point underneath the damper - for all experiments performed.
Since the velocity threshold algorithm uses the derivative of measured displacement to
decide on action commands to the damper, filtering was necessary to obtain the desired
physical property. The signal from the position sensor was first filtered using the low-pass
filter as described in Section 2.5.3, before the velocity was calculated using the values
from the filtered position. At last, the acceleration was obtained using the same procedure
as used for the velocity. The derivatives are calculated from:

vi = v∗i−1 +
u∗i − u∗i−1

∆t
(3.11)

ai = a∗i−1 +
v∗i − v∗i−1

∆t
(3.12)

which assumes a constant acceleration from point i to i + 1. This was considered to be
a good approximation with a sampling frequency of 1kHz. u∗i , v∗i and a∗i denotes the
filtered values for the position, velocity and acceleration, respectively.

3.3.1 Cantilever Beam
The first experiments were carried out on a cantilever beam of four different lengths, 45cm,
50cm, 55cm and 60cm. Figure 3.17 shows the general setup.
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Chapter 3. Methods

Figure 3.17: Cantilever beam from experiments.

One of the advantages of experiments on a cantilever beam compared to a beam fixed in
both ends, is that the cantilever beam will have larger vibration amplitudes than a fixed-
ends beam with the same fundamental frequency. This gives a better opportunity to vi-
sually observe how effective the damper and its control algorithm really is. The orange
plates were attached to the beam with the aid of two clamps to make the fixed point as
tight and strong as possible. The leads of the solenoids were taped to the beam, rather
than attached straight to the Raspberry Pi, to not impact the system stiffness. The single
solenoid configuration was tested on all four lengths.
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Figure 3.18: Illustrative example of how the velocity threshold algorithm works on an undamped
system with an initial displacement of 1cm.
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3.3 Solenoid as Active Damper

The velocity threshold (VT) algorithm were used in all experiments, with a threshold
value, vthr, varying from 0 to 100mm/s. Figure 3.18 is presented as an example to
show how the VT algorithm works with an initial system displacement of 1cm. The yel-
low circles indicates where the solenoid will start acting when the velocity threshold is set
to 2cm/s. Note that the system presented is undamped and that the solenoid acting does
not contribute to damping. The plots presented are rather included to illustrate the concept
of the algorithm. The cantilever beam experiments were used for optimizing the control
algorithm before the tests on the fixed-ends beam, which was regarded as a more realistic
test rig setup with respect to the bridge section models.

3.3.2 Fixed-Ends Beam
The next experiments were carried out on a beam fixed in both ends with three different
lengths, 125cm, 145cm and 165cm. Figure 3.19 shows a closeup of the mounted solenoid,
the sensor and the 5kg weight connected to the beam with cable tie.

Figure 3.19: Fixed-ends beam from experiments.

This was regarded as a more relevant test compared to the bridge section models, due to
weight and boundary conditions. Based on the results of the cantilever beam experiments,
a constant velocity threshold of vthr = 0 was used throughout the fixed-ends experiments,
and the VT algorithm was tested on this configuration too. For the fixed-ends beam exper-
iments, the double solenoid configuration was introduced as well, to test if this was a more
efficient damping application. When using a velocity threshold of zero or close to zero, the
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solenoid may continue its operation after the vibrations are damped out, since the thresh-
old value is easily reached. This will again set the system in new unwanted vibrations. In
order to cut off the solenoid operation before its movements started to excite the bridge
more than damp out its vibrations, a velocity-displacement threshold (VDT) algorithm was
suggested. This works in the same way as the regular velocity threshold algorithm, except
for the introduction of a position threshold, dthr, which indicates a range of displacement
values around zero where the solenoid does not act. If the displacement signal registered
is within the range [−dthr, dthr] for the last 200 sample points, the solenoid stops acting
in accordance with the velocity threshold. 200 sample points are sufficient to detect at
least one period for the lowest beam frequencies tested, meaning that the displacement
values of the last period of oscillation, needs to be inside the displacement threshold range
[−dthr, dthr] before the solenoid stops acting.
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Figure 3.20: Illustration of how the velocity-displacement threshold algorithm stops the solenoid
from acting once a whole period of oscillation is within the range [−dthr, dthr]

Figure 3.20 illustrates how the VDT algorithm prevents the solenoid from acting and hence
from exiting the bridge when at least one whole period of oscillation is within the bound-
aries of the displacement threshold. The figure also shows how the behaviour of the
solenoid changes when the VDT is used in combination with vthr = 0 and vthr > 0.
The particular values for dthr and vthr was chosen for illustrative purposes.
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3.3 Solenoid as Active Damper

The experiments on the fixed-ends beam were carried out in the following way.

• Three beam lengths were used - 125cm, 145cm and 165cm. All experiments were
carried out for both the single and double solenoid configuration at each length
before changing the beam length.

• The VT algorithm with vthr = 0 was tested for all beam lengths with both the
initial displacement of the 5kg weight and with a random load. The random load
was induced by human force, by randomly tapping and shaking the beam for 8
seconds.

• The VDT algorithm was tested on all beam lengths, with both the initial displace-
ment of the 5kg weight and with a human induced random force. The value of the
displacement threshold, dthr, was varied with each beam length, since the displace-
ment range is smaller for shorter and stiffer beams. The velocity threshold was set
to vthr = 0 for all experiments on the fixed-ends beam, for both the VT and VDT
algorithm.

3.3.3 Evaluating the Damping Performance
Several calculations were carried out in the post-processing of results to quantify the
damper performance. The dissipation of energy for an oscillating system per time is not
constant. However, it is useful to look at the percentage of dissipated energy per time since
it is easy to obtain and provides an intuitive measurement of how good the active damper
performs. The following method was used.

• The beam displacement was logged. The value of the first peak was registered as
the value A0, at time t0 = 0.

• The time it took for the envelope function of the system (A(t)) to reach an amplitude
equal to 10% ofA0 was registered as t10%. The value of this amplitude was denoted
A10%.

• The difference in energy in these two points was simply calculated as

∆E = E0 − E10%, (3.13)

where the energy was calculated with Equation 2.35.

• The percentage of energy dissipated per unit time over this period was calculated as

%∆E =
100(E0 − E10%)

E0t10%
. (3.14)

The quantity %∆E will the have the unit [%/s].

The decision of evaluating the damper at a point of 90% reduction in amplitude was made
for two reasons. This amplitude was regarded large enough so the effect of sensor noise
could be neglected. Furthermore, a 90% reduction in amplitude means a 99% reduction
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in energy, since the energy is proportional to displacement squared, in accordance with
Equation 2.35. Commonly, the damping ratio is used to quantify the damping of an os-
cillating system. The damping ratio may however be hard to determine in a system with
forced damped vibration which does not necessarily vibrate with an exponential decay. To
be able to compare the damping of the system oscillating freely and the damping when the
system was damped by an actuator, an equivalent damping ratio, ξeq , was calculated based
on Equation 2.6. The envelope function of a free vibrating system is given as

A(t) = A0e
−ωnξt, (3.15)

whereas the energy is given as

E(t) =
1

2
kA(t)2. (3.16)

At time t = t10%, the energy is given as

E10% =
1

2
kA2

10%. (3.17)

Combining Equation 3.15 and 3.17 and solving for ξ gives the equivalent damping ratio as

ξeq = −
ln
(

2E10%

kA2
0

)
2ωnt10%

. (3.18)

This equivalent damping ratio describes what the damping ratio must be for the system to
have the same value for %∆E and A10% at time t10% if it was to oscillate as a system in
free vibration.
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Results

To analyze the solenoid’s ability to damp out vibrations, a series of tests were conducted.
The beam lengths were chosen to obtain fundamental frequencies around 15 − 25Hz.
Table 4.1 contains data about the structural and dynamical properties for each of the beam
configurations. For each beam setup, fn was obtained using FFT, and ξ through curve
fitting as described in Section 2.2. The modal mass, mm, was calculated using mass
lumping which for a cantilever or a fixed-ends beam simplified as a SDOF system, will
be half the total beam mass. The damping coefficient, c, was calculated by combining
Equation 2.3 and 2.4, and k was calculated by rearranging Equation 2.2 with ωn = 2πfn.
In the results presented in this chapter, uf and ua denotes displacement of a beam in free
vibration and a beam damped by an AMD, respectively. The same indices applies for the
corresponding amplitudes, Af and Aa.

Beam Type Length [m] fn[Hz] ξ[%] mm[kg] c[kg/s] k[N/m]

Cantilever 0.45 24.408 0.33 0.6075 0.6332 15504
Cantilever 0.50 20.129 0.34 0.6750 0.6215 12301
Cantilever 0.55 16.719 0.32 0.7425 0.4958 7873
Cantilever 0.60 14.870 0.25 0.8100 0.3495 5986

Fixed-Ends 1.25 23.471 0.24 1.6875 1.2353 38239
Fixed-Ends 1.45 18.111 0.28 1.9575 1.2535 25812
Fixed-Ends 1.65 14.800 0.25 2.2275 1.0313 19655

Table 4.1: Properties of the tested beam configurations when allowed to vibrate freely after a stable
initial load of 5 kg was removed instantaneously. The single solenoid was mounted on the beams in
these experiments, but turned off.
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4.1 Cantilever Beam of Length 45 cm
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Figure 4.1: Free vibrations and the most effective damping result using the single solenoid config-
uration with vthr = 0 in the VT algorithm on the cantilever beam of L = 45cm.

vthr[mm/s] A0[mm] t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Free 2.57 4.419 0.33 11.44 22.40
0 2.76 2.289 0.63 25.70 43.24
2 2.36 2.581 0.55 17.04 38.36
4 2.53 2.481 0.58 20.10 39.91
6 2.52 2.641 0.54 18.99 37.49
8 2.76 3.228 0.44 18.36 30.67
12 2.60 3.726 0.38 14.20 26.57
20 2.58 N/A N/A N/A N/A
30 2.51 N/A N/A N/A N/A
40 2.62 N/A N/A N/A N/A
50 2.82 5.360 0.27 11.47 18.47
60 2.45 4.859 0.30 9.57 20.37
80 2.51 3.389 0.42 14.41 29.21
100 2.77 3.485 0.41 17.04 28.41

Table 4.2: A selection of data obtained on the cantilever beam of L = 45cm using the single
solenoid configuration and the VT algorithm.
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4.1 Cantilever Beam of Length 45 cm
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Figure 4.2: Average percentage of energy damped out for a selection of values for vthr in the VT
algorithm for the cantilever beam of L = 45cm.

Figure 4.1 shows the beam vibrating freely, compared to the best damping result for the
VT algorithm which was obtained with a threshold value of vthr = 0. 90% reduction
in amplitude was obtained in half the time for the most effective algorithm compared
to free vibration. Table 4.2 shows the performance of a selection of threshold values in
the VT algorithm. For a set of values, the point of 90% reduction in amplitude was not
obtained. For certain values, the application even performs worse than the system in free
vibration. Figure 4.2 shows the average percentage energy decay per second in the time
period between t0 and t10%. Lower values of vthr seems to be more efficient than higher
values of vthr.
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4.2 Cantilever Beam of Length 50 cm
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Figure 4.3: Free vibrations and the most effective damping result using the single solenoid config-
uration with vthr = 6mm/s in the VT algorithm on the cantilever beam of L = 50cm.

vthr[mm/s] A0[mm] t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Free 3.66 5.003 0.34 16.35 19.79
0 3.95 1.771 0.96 54.25 55.90
2 3.94 2.028 0.83 47.60 48.82
4 3.58 1.875 0.90 42.70 52.79
6 3.59 1.572 1.07 51.32 62.99
12 3.52 2.183 0.77 35.33 45.35
20 3.50 2.798 0.60 27.58 35.38
30 3.51 N/A N/A N/A N/A
40 3.34 N/A N/A N/A N/A
50 3.44 N/A N/A N/A N/A
60 3.53 N/A N/A N/A N/A
80 3.60 4.862 0.35 16.46 20.36
100 3.66 4.406 0.38 18.89 22.47

Table 4.3: A selection of data obtained on the cantilever beam of L = 50cm using the single
solenoid configuration and the VT algorithm.
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4.2 Cantilever Beam of Length 50 cm
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Figure 4.4: Average percentage of energy damped out for selected values for vthr for the cantilever
beam of L = 50cm.

Figure 4.3 shows the beam vibrating freely, compared to the best damping result for the VT
algorithm which was obtained with a threshold value of vthr = 6mm/s. 90% reduction
in amplitude was obtained in 1.57s for the most effective algorithm compared to 5.00s for
the free vibration case. This is a reduction of more than 65%. The red displacement curve
ua does not reach a state of rest at zero displacement in the logged period. This is because
the solenoid continues to be turned on and off after damping out the initial vibrations.
Table 4.3 shows the performance of a selection of threshold values in the VT algorithm.
For a large set of values, the point of 90% reduction in amplitude was not obtained. Figure
4.4 shows the average percentage energy decay per second in the time period between t0
and t10%. Lower values of vthr seems to be more efficient than higher values of vthr.
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4.3 Cantilever Beam of Length 55 cm
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Figure 4.5: Free vibrations and the most effective damping result using the single solenoid config-
uration with vthr = 2mm/s in the VT algorithm on the cantilever beam of L = 55cm.

vthr[mm/s] A0[mm] t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Free 6.59 6.897 0.32 24.55 14.35
0 6.14 1.803 1.23 83.62 54.91
2 5.80 1.801 1.23 73.93 54.97
4 6.04 1.840 1.20 79.00 53.82
6 5.73 1.796 1.23 72.75 55.14
12 6.19 1.966 1.13 76.77 50.37
20 5.97 1.922 1.15 74.21 51.52
30 6.19 2.038 1.08 75.29 48.59
40 6.30 2.236 0.99 71.25 44.28
50 5.83 N/A N/A N/A N/A
60 6.01 N/A N/A N/A N/A
80 6.22 N/A N/A N/A N/A
100 6.16 4.493 0.49 33.97 22.04

Table 4.4: A selection of data obtained on the cantilever beam of L = 55cm using the single
solenoid configuration and the VT algorithm.
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4.3 Cantilever Beam of Length 55 cm
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Figure 4.6: Average percentage of energy damped out for a selection of values for vthr in the VT
algorithm for the cantilever beam of L = 55cm.

Figure 4.5 shows the beam vibrating freely, compared to the best damping result for the VT
algorithm which was obtained with a threshold value of vthr = 2mm/s. 90% reduction
in amplitude was obtained in 1.80s for the most effective algorithm compared to 6.90s for
the free vibration case. This is a reduction of approximately 75%. The red displacement
curve ua does not reach a state of rest at zero displacement in the logged period. This
is because the solenoid continues to be turned on and off after damping out the initial
vibrations. Table 4.4 shows the performance of a selection of threshold values in the VT
algorithm. For a set of values, the point of 90% reduction in amplitude was not obtained.
The algorithm seems to be performing well for a large range of threshold values up to
approximately 40mm/s. One then observe a significant drop in performance for higher
threshold values. Figure 4.6 shows the average percentage energy decay per second in the
time period between t0 and t10%. Lower values of vthr seems to be more efficient than
higher values of vthr.
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4.4 Cantilever Beam of Length 60 cm
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Figure 4.7: Free vibrations and the most effective damping result using the single solenoid config-
uration with vthr = 2mm/s in the VT algorithm on the cantilever beam of L = 60cm.

vthr[mm/s] A0[mm] t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Free 8.48 10.676 0.25 19.94 9.27
0 8.09 2.647 1.01 73.89 37.40
2 7.95 2.372 1.12 79.83 41.74
4 8.57 2.703 0.98 82.54 36.63
6 8.39 2.726 0.97 78.89 36.32
12 8.54 2.726 0.98 80.78 36.32
20 8.58 2.877 0.92 77.39 34.41
30 8.87 2.838 0.94 83.22 34.89
40 8.07 2.839 0.93 70.43 34.88
50 7.25 2.689 0.98 59.67 36.82
60 8.48 2.997 0.88 73.40 33.04
80 8.62 4.012 0.66 56.36 24.68
100 9.02 4.656 0.57 53.35 21.26

Table 4.5: A selection of data obtained on the cantilever beam of L = 60cm using the single
solenoid configuration and the VT algorithm.
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4.4 Cantilever Beam of Length 60 cm
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Figure 4.8: Average percentage of energy damped out for a selection of values for vthr in the VT
algorithm for the cantilever beam of L = 60cm.

Figure 4.7 shows the beam vibrating freely, compared to the best damping result for the VT
algorithm which was obtained with a threshold value of vthr = 2mm/s. 90% reduction
in amplitude was obtained in 2.37s for the most effective algorithm compared to 10.68s
for the free vibration case. This is a reduction of more than 75%. Table 4.5 shows the
performance of a selection of threshold values in the VT algorithm. 90% reduction in
amplitude were obtained for all threshold values tested. Figure 4.8 shows the average
percentage energy decay per second in the time period between t0 and t10%. Lower values
of vthr seems to be more efficient than higher values of vthr.
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4.5 Fixed-Ends Beam of Length 125 cm
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(a) Single solenoid with dthr = 0.1mm.
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(b) Double solenoid with dthr = 0.2mm.

Figure 4.9: Comparison between the system in free vibration and the best damping result for the
single(a) and double(b) solenoid configuration with the VDT algorithm at the fixed-ends beam of
length L = 125cm. The free vibration tests were carried out with the current solenoid mounted on
the rig, but turned off.
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Figure 4.10: Comparison between the best damping result for the single and double solenoid con-
figuration at the fixed-ends beam of length L = 125cm.
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4.5 Fixed-Ends Beam of Length 125 cm

Config. dthr A0 t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Single Free 1.02 6.291 0.24 3.10 15.74
Single 0.1 0.96 4.436 0.35 3.93 22.32
Double Free 1.10 4.200 0.37 5.17 23.57
Double 0.2 1.01 1.385 1.11 13.82 71.48

Table 4.6: Damping data for the fixed-ends beam of length L = 125cm for the single and double
solenoid configuration. A0 and dthr are presented in mm.
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Figure 4.11: FFT analysis of the fixed-ends beam of L = 125cm, in undamped vibration and
damped by the best double solenoid algorithm. The beam were exposed to random human induced
forces and was therefore not identical between the two experiments.

Figure 4.9 shows the fixed-ends beam of length L = 125cm in free vibration compared
to the most efficient damping algorithm for the single(a) and double(b) solenoid configu-
ration. The free vibration results of Figure 4.9a and 4.9b are different because the exper-
iments were carried out with the different solenoid configurations mounted on the beam,
but turned off. Table 4.6 shows the free vibration experiments compared to the damped
experiments. The tests show a significantly better result for the double solenoid config-
uration, with a 90% reduction in amplitude obtained after t10% = 1.39s, compared to
t10% = 4.44s for the single solenoid configuration. Figure 4.11 shows the FFT analysis
for random induced force with the beam in free vibration and the beam damped by the best
algorithm with the double solenoid configuration. The plot shows that the damper reduced
the maximum value of the spectral density and shift this maximum value to a lower fre-
quency. The improvement is however considered to be small. It is important to emphasize
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that the latter experiments were carried out with human induced force. The forces induced
on the systems were tried to be similar between the different experiments, but these tests
include high uncertainty in the input force.
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4.6 Fixed-Ends Beam of Length 145 cm

4.6 Fixed-Ends Beam of Length 145 cm
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(a) Single solenoid with dthr = 0.05mm.
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(b) Double solenoid with dthr = 0.1mm.

Figure 4.12: Comparison between the system in free vibration and the best damping result for the
single(a) and double(b) solenoid configuration with the VDT algorithm at the fixed-ends beam of
length L = 145cm. The free vibration tests were carried out with the current solenoid mounted on
the rig, but turned off.
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Figure 4.13: Comparison between the best damping result for the single and double solenoid con-
figuration at the fixed-ends beam of length L = 145cm.
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Config. dthr A0 t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Single Free 1.79 7.194 0.28 5.69 13.76
Single 0.05 1.64 2.580 0.77 13.77 38.37
Double Free 1.75 6.668 0.30 5.77 14.85
Double 0.1 1.76 1.799 1.12 22.18 55.04

Table 4.7: Damping data for the fixed-ends beam of length L = 145cm for the single and double
solenoid configuration. A0 and dthr are presented in mm.
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Figure 4.14: FFT analysis of the fixed-ends beam of L = 145cm, in undamped vibration and
damped by the best double solenoid algorithm. The beam were exposed to random human induced
forces and was not identical between the two experiments.

Figure 4.12 shows the fixed-ends beam of length L = 145cm in free vibration compared
to the most efficient damping algorithm for the single(a) and double(b) solenoid configu-
ration. The free vibration results of Figure 4.12a and 4.12b are different because the exper-
iments were carried out with the different solenoid configurations mounted on the beam,
but turned off. Table 4.7 shows the free vibration experiments compared to the damped
experiments. The tests show a better result for the double solenoid configuration, with a
90% reduction in amplitude obtained after t10% = 1.80s, compared to t10% = 2.58s for
the single solenoid configuration. Figure 4.14 shows the FFT analysis for random induced
force with the beam in free vibration and the beam damped by the best algorithm with
the double solenoid configuration. The plot shows that the damper reduced the maximum
value of the spectral density and shift this maximum value to a lower frequency. In this
case, the improvement is also considered to be small.
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4.7 Fixed-Ends Beam of Length 165 cm
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(a) Single solenoid with dthr = 0.02mm.
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(b) Double solenoid with dthr = 0.04mm.

Figure 4.15: Comparison between the system in free vibration and the best damping result for the
single(a) and double(b) solenoid configuration with the VDT algorithm at the fixed-ends beam of
length L = 165cm. The free vibration tests were carried out with the current solenoid mounted on
the rig, but turned off.

0 1 2 3 4 5 6

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

D
is

p
la

c
e

m
e

n
t 

[m
]

10-3

u
a
 - Single Solenoid

A
a
 - Single Envelope

u
a
 - Double Solenoid

A
a
 - Double Envelope

A
10%

 = 0.1A
0

Figure 4.16: Comparison between the best damping result for the single and double solenoid con-
figuration at the fixed-ends beam of length L = 165cm.
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Config. dthr A0 t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Single Free 2.38 9.947 0.25 5.56 9.95
Single 0.02 2.19 3.020 0.81 15.82 32.78
Double Free 2.15 9.652 0.26 4.57 10.26
Double 0.04 2.10 1.961 1.26 21.73 50.49

Table 4.8: Damping data for the fixed-ends beam of length L = 165cm for the single and double
solenoid configuration. A0 and dthr are presented in mm.
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Figure 4.17: FFT analysis of the fixed-ends beam of L = 165cm, in undamped vibration and
damped by the best double solenoid algorithm. The beam were exposed to random human induced
forces and was not identical between the two experiments.

Figure 4.15 shows the fixed-ends beam of length L = 165cm in free vibration compared
to the most efficient damping algorithm for the single(a) and double(b) solenoid configu-
ration. The free vibration results of Figure 4.15a and 4.15b are different because the exper-
iments were carried out with the different solenoid configurations mounted on the beam,
but turned off. Table 4.8 shows the free vibration experiments compared to the damped
experiments. The tests show a better result for the double solenoid configuration, with a
90% reduction in amplitude obtained after t10% = 1.96s, compared to t10% = 3.02s for
the single solenoid configuration. Figure 4.14 shows the FFT analysis for random induced
force with the beam in free vibration and the beam damped by the best algorithm with
the double solenoid configuration. The plot shows that the damper reduced the maximum
value of the spectral density and shift this maximum value to a lower frequency. The
improvements shown in the spectral density plot is again considered to be small.
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Discussion

5.1 Discussion of Experiments

The majority of the experiments in this study were carried out with motion induced by an
initial displacement. This is different from the conditions of the test tunnel where wind
sets the construction into motion. It is reason to believe that the bridge model motions
in the wind tunnel will be more varying and random than the test rig. This requires the
opportunity to vary the amount of force to put in the system through the actuator to damp
out the vibrations. A solenoid with a given force curve may therefore perform better in an
experiment where the motion is induced by an initial displacement than by a continuous
random force.

5.1.1 Experimental Results
It is evident from the results that low threshold values give a better damping performance
than high threshold values in the VT algorithm. This may be explained by studying the
time the solenoid piston uses from off-state to on-state and from on-state to off-state. These
values proved to be tON = 21ms and tOFF = 25ms, respectively, when the solenoid was
placed on solid ground. The piston will most likely use an even longer time when placed
on a rig. This is due to the forces from the vibrating beam acting on the solenoid, and
hence the electromagnetic coil will have to work harder to accelerate the piston in the
same direction as the velocity of the beam. After the solenoid is set into state changing
action, two things may cause it to stop:

• The piston reaches its maximum or minimum stroke.

• The piston reaches a threshold value which changes the state of the solenoid.

The highest beam frequency tested was approximately 25Hz, which gives a period of
T = 0.04s and half a period of T/2 = 0.02s. This means that the solenoid piston travel
for this frequency will be terminated by reaching a new threshold value, since the time
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Chapter 5. Discussion

between two threshold values (T/2) are smaller than the solenoid’s travel time (tON and
tOFF ) between states. Figure 5.1 illustrates one cycle for the beam vibrating at 25Hz and
of what sections of the period the solenoid will act with threshold values of vthr = 0 and
vthr = 100.
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Figure 5.1: Illustration of when the solenoid piston travels between states.

The beam reaches its maximum displacement and obtains zero velocity. This means that
the piston of the solenoid will be turned on and start to contract when the threshold value
is set to vthr = 0. Some time later, the beam will reach a velocity of 100mm/s, and the
solenoid would have been turned on if the threshold value was set to vthr = 100mm/s.
When the beam reaches its minimum position, the velocity is zero again, and for vthr = 0
- the solenoid will be turned off and the piston will start moving in the opposite direction.
This action will be delayed when vthr = 100mm/s, and in the period 0.03− 0.035s, the
solenoid will induce a force in the same direction as the beam velocity, thus contributing
to excitation, rather than damping. This is relevant when half of the oscillation period is
smaller than the traveling time of the solenoid, which happens for higher frequencies. This
may explain why a VT algorithm performs worse for higher threshold values, and that this
effect is stronger for high frequent beams. This may also explain why the double solenoid
configuration performs better than the single solenoid configuration. The piston uses a
shorter time when traveling from off-state to on-state than the opposite way around, but for
the double solenoid configuration, the solenoids are able to have equal travel time in both
directions. This increases the ability for the damper to induce forces within the appropriate
time window. The main reason that the double solenoid configuration performs better
seems however to be that higher force may be induced to the system in both directions.
The force curve from the damper will in this case be described by a graph close to Figure
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5.1 Discussion of Experiments

3.2 in both directions. This obviously gives a higher total force to damp out vibrations
than the case where the force graph is described by Figure 3.2 in one direction and Figure
3.3 in the other direction.
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(a) Cantilever, L = 50cm, VT algorithm.
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Figure 5.2: Selection of beam displacement plots for different damping applications to explain pros
and cons with the VT and VDT algorithm. The red and green graphs indicate single and double
solenoid configuration, respectively. For the VDT algorithm, vthr was set to zero.

Figure 5.2a shows the single solenoid configuration on the cantilever beam of L = 50cm
with vthr = 6mm/s in the velocity threshold algorithm, and is a good example on a
common problem encountered when using the VT algorithm. The motion is effectively
damped the first two seconds, but when it is suppose to stop moving at zero displacement,
the solenoid continues to act due to the low velocity threshold. This will excite the beam
into new motion and the threshold values will be exceeded again and again. This was
as explained in Chapter 3 the reason for introducing the VDT algorithm. Introducing
the displacement threshold, dthr, at the right value was important for improved damper
function. Figure 5.2b shows the fixed-ends beam of L = 125cm, where the displacement
threshold by mistake was set too high. The damper works effectively to a point between 1
and 2 seconds before it is turned off too early and the natural damping of the beam takes
over. Figure 5.2c shows an example where vthr is set correctly. The test of Figure 5.2b did
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however prove to be very effective with the measurements presented in this study, since
a displacement amplitude at 10% of the initial amplitude was achieved right around the
point where the solenoid was turned off. This indicates that the quantification method
of measuring energy dissipation until an amplitude 10% of the initial amplitude have a
weakness, because no data after this point is being analyzed.

5.2 Discussion of MATLAB Simulation

As the results show, solenoids may in some cases be used with an active damping algorithm
and give adequate results. However, a solenoid has the obvious limitation that it only has
two states and that it either acts with full force or it exerts no force at all. This gives
motivation to test more advanced actuators, for example a voice coil actuator. A VCA may
exert any force lower than its maximum capability and should therefore damp vibrations at
least as good, and likely a lot better than a solenoid. VCAs are expensive, more advanced
and hence requires more resources to use. As was presented in Section 3.1, a MATLAB
simulation was made to simulate the bridge response when damped by both a solenoid
and by a VCA. Before using the simulation to predict the performance of a voice coil
actuator, it is interesting to compare how the simulation predicts the use of solenoid as
active damper to the experimental results of Chapter 4.
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Figure 5.3: Comparison between the results obtained from the initial displacement experiment on
the fixed-ends beam of length 145cm and the simulation with input A0 = 1.76mm, f = 18.11Hz
and ξ = 0.003, which were the values obtained for the fixed-ends beam with L = 145cm.

Figure 5.3 compares the results from the experiment carried out on the fixed-ends beam
of length 145cm, damped by the double solenoid configuration - to the results from the
simulation using the natural frequency, damping ratio and initial displacement as obtained
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5.2 Discussion of MATLAB Simulation

from that particular experiment. As can be seen, the results are very similar. The point
at witch 90% of the amplitude is damped out is almost exactly the same. However, once
this point is reached, the results differ. Where the amplitude of the real beam continues to
decrease to the point where there is no movement, the simulation results keep oscillating.
The simulation does indeed account for the damping ratio of ξ = 0.003, but what it does
not account for is the fact that the solenoid may still damp out vibrations when turned off.
When the solenoid is off, the piston is still able to move, held only in place by the spring
and may therefore contribute with some damping. Since the purpose of this simulation is to
predict how well an active damper performs, this effect was not included in the simulation.

Config. dthr A0 t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

Real 0.1 1.76 1.799 1.12 22.18 55.04
Sim. 0.1 1.76 1.833 1.11 23.06 54.03

Table 5.1: Damping data as obtained from the experiment on the fixed ends beam of L = 145cm
compared with the damping data predicted by the simulation.

Table 5.1 shows how close the damping data obtained from the simulation are to the data
obtained from the experiment. The simulation gives a slightly lower damping than the
results from the experiment. However, the simulation is considered to approximate the
behaviour of the solenoid and how it affects the beam quite well.
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Figure 5.4: Simulation using a random load with zero mean on a system with ω and ξ as obtained
from the fixed-ends beam of L = 145cm. A0 was set to 0.
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Figure 5.4 presents the simulation results when the same beam analysed in Figure 5.3 is
subjected to a random force. This random force was stored as an array so when simulating
the response of the beam with no active damper, it would be subjected to the exact same
randomly generated force as when simulating the response when damped by the double
solenoid configuration. This simulation was made to approximate the conditions when the
beam was subjected to a random load as presented in Figure 4.14 in Chapter 4. Consid-
ering that the experiment was carried out with a human induced force and the force used
in the simulation was generated by a random number generator in MATLAB, the results
from the experiment and the simulation should be compared with caution. With that being
said, Figure 5.4 and Figure 4.14 from Chapter 4 both show that the solenoid damps the
vibrations to some extent. Furthermore, the prominence of the peak corresponding to the
natural frequency of the system is reduced and shifted slightly to the left, meaning the nat-
ural frequency is lower when the system is damped by an active damper. The similarities
between the two figures indicate that the simulation is able to predict the impact the double
solenoid configuration has on the fixed-ends beam when subjected to a random load.

The fact that the solenoid has limited damping abilities motivates the use of more ad-
vanced actuators, such as voice coil actuators.

Range[mm] Total mass[g] Piston mass[g] Fmax[N ]
6.36 127 17.7 15.57

Table 5.2: Specifications of the Bei Kimco LAS13-18 VCA used in the simulation.

In Table 5.2, some of the specifications of the actuator used in the simulation is presented.
The data is collected from the datasheet of the actuator Bei Kimco LAS13-18 [4]. This
actuator has a maximum force which far exceeds that of the solenoids used in the exper-
iments. Furthermore, it is not limited to an on or off state, meaning it can be controlled
with varying piston acceleration. These properties makes it suitable to use with the Linear
Negative Feedback control algorithm as presented in Section 2.5.1. This algorithm may
use the structure’s position, velocity and acceleration to determine the force the actuator
should impose on the structure, in order to damp the vibrations in the most efficient man-
ner. However, by examining the equations in Section 2.5.1, it is suggested that kd and
ka both are set to zero, leaving kv as the only non-zero coefficient. This yields the Direct
Velocity Feedback (DVF) algorithm as the most effective algorithm to damp the vibrations
of an oscillating system.
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Figure 5.5: Simulation result of the damping by the double solenoid compared to the damping
by a voice coil actuator with an initial displacement of A0 = 1.76mm on a fixed-ends beam of
L = 145cm. For the double solenoid configuration, the VDT algorithm was used with the values
vthr = 0 and dthr = 0.1mm. The VCA was used with the DVF algorithm with kv = 2500s−1.

Config. dthr/kv A0 t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

DSC dthr = 0.1 1.76 1.833 1.11 23.06 54.03
VCA kv = 2500 1.76 0.569 3.57 75.83 173.98

Table 5.3: Data obtained from the simulations of Figure 5.5. dthr is given in the unit mm and kv
in s−1. DSC denotes the double solenoid configuration.

By studying Figure 5.5, it is obvious that the VCA is much more efficient in terms of
damping vibrations compared to the double solenoid configuration. Looking at Table 5.3,
one observe that the energy dissipates more than three times faster when using the VCA
compared to the use of solenoids. In addition, the VCA is able to damp the vibrations to
the point where the structure is at complete rest, whereas the solenoid is forced to stop to
prevent it from exiting the vibrations rather than damping them out. This is as expected,
considering that both the VCA and the DVF algorithm are a lot more sophisticated than
the double solenoid configuration and the VDT algorithm.
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Figure 5.6: Simulation result of a VCA damping vibrations due to a random load for a fixed-ends
beam of length L = 145cm. The case of free vibration is included.

Figure 5.6 shows the same beam as in Figure 5.5, this time induced by a random force, in
both free vibration and with VCA as active damper. The VCA is capable of significantly
reducing the structure response. By looking at the spectral density, the prominence of the
peak corresponding to the natural frequency is significantly smaller when the structure is
damped by the VCA. The natural frequency of the system has also reduced by approx-
imately 1Hz. This reduction is also expected, based on the theory described in Section
2.5.1.

The parameters kd, kv and ka from the Linear Negative Feedback algorithm discussed
in Section 2.5.1, are scalar numbers that often are obtained through experimental testing.
These parameters serve as weights so the algorithm can balance the effect of position, ve-
locity and acceleration differently. The Linear Negative Feedback algorithm yields Equa-
tion 2.26 and Equation 2.27 which are both restated here:

ωLNF =

√
k + kd
m+ ka

(5.1)

ξLNF =
1

ωeq

c+ kv
2(m+ ka)

(5.2)
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5.2 Discussion of MATLAB Simulation

In Equation 5.2, one may observe that increasing kv , also increases ξLNF . Furthermore,
if ka is assigned a negative value, this will also increase the value of ξLNF . This gives
motivation to test a positive value for kv , in combination with a negative value of ka.
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Figure 5.7: The effect of using only kv compared to combining the use of kv and ka in the LNF
algorithm with a VCA as active damper, on a fixed-ends beam of L = 145cm.

Config. kv ka A0 t10%[s] ξeq[%] ∆E/s[mJ/s] %∆E[%/s]

kv only 2500 0 1.76 0.569 3.57 75.83 173.98
kv and ka 2500 −50 1.76 0.409 4.96 105.57 242.20

Table 5.4: Data obtained when using only kv , compared to optimized values of kv and ka in the
LNF algorithm with a VCA as active damper, on a fixed-ends beam of L = 145cm.

Figure 5.7 and Table 5.4 both show that assigning a negative value for ka improves the per-
formance of the VCA when damping vibrations caused by an initial displacement. From
Figure 5.8, it is however evident that the prominence of the peak corresponding to the
natural frequency in the spectral density plot increases when ka < 0. The same plot also
reveal that the natural frequency increases, which is expected from Equation 5.1.
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Figure 5.8: The effect in spectral density when using only kv compared to combining the use of kv
and ka when damping vibration caused by a random force, on a fixed-ends beam of L = 145cm.

The results from the simulation show that a voice coil actuator performs far better than
a solenoid, in terms of damping the system when the oscillations are exited by both an
initial displacement and random forces. The simulation is able to predict how the structure
responds when damped by a solenoid, and might therefore serve as an indicator of how
one can expect a similar structure will behave when subjected to a VCA damper. The
simulation could produce results that are better than the results one would obtain in a real
experiment using a VCA or even faulty results due to simplifications and approximations
made when creating the simulation. If treated with caution, the simulation may however
serve as an effective way to test various algorithms, experiment with different values for
kd, kv and ka and test actuators before purchasing expensive equipment or performing
time consuming experiments in a laboratory.
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5.3 Suggestions for Further Work

5.3 Suggestions for Further Work
As previously discussed, it is reason to believe that a VCA would be better suited for
damping out wind induced vibrations, given the opportunity to vary the amount of force
applied from the actuator. This also makes it possible to control the system with the direct
velocity feedback algorithm discussed in Chapter 2. Regrettably, VCA along with the De-
velopers Kit was available too late in this project in order to be tested in the laboratory. A
suggestion on how to set up a VCA active damping application with equipment now avail-
able at the Department of Structural Engineering is therefore presented. The following list
summarizes necessary equipment and their purposes.

• A Kistler accelerometer may be mounted on the bridge to measure the vibration.

• If a direct velocity feedback is to be used, the acceleration signal needs to be post-
processed by integration and filtering before passed into the control. These calcu-
lations must be carried out in a short period of time to prevent critical delay time
between a measured signal and the desired action is carried out. A CompactRIO
contains a FPGA (field programmable gate array), well suited for fast calculations.
The CompactRIO may be programmed with the aid of LabVIEW to perform the
desired integration and filtering in a short period of time before the analog signal is
passed on to the control.

• VCA Developer’s kit from Bei Kimco contains a voice coil actuator and a Pluto
Motion Control Digital Servo Drive. The servo drive may be used as the controller
by passing in the filtered analog signal from the CompactRIO and give output for
action to the VCA. The control algorithm may be programmed with the aid of the
software MotionLAB.

Figure 5.9 illustrates the setup explained above.

Figure 5.9: Illustration of a active damping application with accelerometer and voice coil actuator.

5.3.1 CompactRIO for Signal Processing
CompactRIO is a real-time industrial controller system developed by National Instruments
and consists of both a microcontroller and a programmable FPGA to carry out signal pro-
cessing. A FPGA is a data chip containing numerous logic blocks and configurable con-
nections between them, which makes it possible to program several algorithms to be exe-
cuted simultaneously. This is different from a regular CPU which carries out commands
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sequentially. This makes the CompactRIO ideal to process data in a limited amount of
time. National Instruments offers several models of the CompactRIO, the NI cRIO-9035
was used for research in this project. The CompactRIO model has USB ports which makes
it possible to save logged data directly to a memory stick for post-processing. By adding
modules to the device, one may process input and output signals. In this project, the analog
input module NI 9234, and analog output module NI 9263 were used. The fundamental
specifications of these modules can be obtained in Table 5.5.

- NI 9234 NI 9263
Input/Output Input Output
Nr. of Channels 4 4
Voltage Range ±5V ±10V
Connection Coaxial BNC Screw/Spring Terminal
Max. Data Rate 51.2kS/s 100kS/s

Table 5.5: CompactRIO modules specifications [16] [15].

Both the input and output modules operate with voltage signals. Calibration of sensors
is therefore necessary in order to relate the physical property to the correct corresponding
voltage value. Figure 5.10 shows the the CompactRIO model with the two analog modules.

Figure 5.10: National Instruments CompactRIO 9035.

The CompactRIO can be connected to a computer via a WiFi router connected by Ethernet
cable to the CompactRIO device. This makes it possible to program the CPU and FPGA of
the device and develop a signal processing application based on voltage signals from the
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5.3 Suggestions for Further Work

input module. LabVIEW is the software from National Instruments used for this purpose.
It uses a graphical block programming interface with a number of pre-configured function
blocks. This includes everything from basic numeric operations to PID controls, digital
philters and data type converters. This makes it simple to develop the desired application
and monitoring important parameters in real-time. The FPGA may be used to acquire data
from the four channels of the input module through a FPGA FIFO (First-in First-Out). The
concept of the FIFO configuration is illustrated in Figure 5.11.

Figure 5.11: Concept of FIFO.

The FIFO may take values of the four channels from the AI module in accordance with
the specified sampling frequency. This makes a time efficient data acquiring process.

5.3.2 Servo Drive and VCA as Regulator and Actuator

The VCA Developer’s Kit from BEI Kimco is a set including a Pluto servo drive, a LAS13-
18-000A-P01 voice coil actuator and configuration setup in the software MotionLab. With
this software, it is possible to program the servo drive to operate the VCA in the desired
way, based on an analog input signal or directly from the software on the computer. The
specifications of the VCA available may be obtained in Table 5.6. This particular VCA
also includes a position sensor which makes it possible to always know where in the coil
the piston is placed. This information is highly useful and can identify when the piston for
example is positioned at minimum or maximum stroke, thus indicating that no more force
may be induced to the system in one particular direction.

- LAS13-18-000A-P01
Peak Force [N] 15.57
Total Stroke [mm] 6.36
Voltage at Peak Force [V] 27.2
Current at Peak Force [A] 1.59
Piston Mass [g] 17.7
Total Mass [g] 127

Table 5.6: Specifications for the voice coil actuator LAS13-18-000A-P01 from BEI Kimco [4].

Figure 5.12 shows the servo drive, the VCA and a to the right, an electrical fuse, preventing
current overload to the actuator.
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Chapter 5. Discussion

Figure 5.12: Pluto servo drive and LAS13-18-000A-P01 voice coil actuator.

From Table 5.6 it is evident that the VCA is more powerful and may provide a higher
force to the system than the solenoid tested in this project. At maximum stroke, the total
length of the actuator from bottom to piston tip is 61.6mm [4]. This size is small enough
to for example be placed inside the section model of the Hardanger Bridge, which have a
maximum height of 65mm [20]. It would be interesting to further study how the suggested
setup works when mounting the VCA inside the bridge deck. Where this project have
focused on experiments with an initial system displacement, tests with continuous wind
load needs to be further investigated. Experiments are needed to optimize the application
and the parameters of the feedback algorithm.
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Chapter 6
Conclusion

The experimental and numerical results of this project indicates that solenoids are effec-
tive for damping out vibrations in beams caused by an initial displacement. The solenoids
used have a maximum output force of only 1.72N , but are still able to significantly re-
duce the time it takes for the amplitude of the vibrations to reach 10% of its initial value.
Experiments reveal that a double solenoid configuration is more effective than a single
solenoid, since the most powerful and fast-responding direction of the traveling piston
may be used in both directions. The most effective solenoid algorithm seems to be a
velocity-displacement threshold algorithm, where the velocity threshold is set to zero or
close to zero, and the displacement threshold is set sufficiently low to ensure that the
solenoid stops acting when the vibrations are damped out. These conclusions are based
on the results from the experiments and when compared to the simulation results it was
confirmed that the MATLAB simulation was very accurate. This Indicates that the project
was successful in developing a program that simulates a vibrating single degree of free-
dom system subjected to different active damping configurations.

Experiments and MATLAB simulation indicates that the solenoids used in this project
perform poorly when the system they are mounted on are subjected to random forces. A
system subjected to random forces is more relevant to wind tunnel testing than a system
set in motion by an initial displacement with no external loads. Voice coil actuators are
therefore suggested as actuators in the active damping configuration, since they have the
ability to vary the output force subjected to the system. Simulation with the VCA model
Bei Kimco LAS13-18-000A-P0 shows significant reduction in the power spectral density
of a system subjected to random forces, compared to the double solenoid configuration.
Regrettably, this VCA was not available in time for experimental testing. Future testing
with the VCA as active damper - both on the test rig and in the wind tunnel - is therefore
necessary to verify that VCAs are better suited as active damping actuators on the bridge
section models of the wind tunnel.
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Appendix

MATLAB Simulation Code
systSim.m

1 %% System S i m u l a t i o n
2 %{
3 $Author : D a n i e l Harper & Lar s Maukon Muren
4 $Date : 2 0 1 9 / 1 2 / 0 1
5
6 SYSTSIM :
7 The p u r p a s e o f t h i s s c r i p t us t o s i m u l a t e t h e r e s p o n c e o f a
8 C a n t i l e v e r orma Fixed Ends Beam bo th f o r f r e e v i b r a t i o n s o r
9 when damped by a Voice C o i l A c t u a t o r o r a S o l e n o i d .

10
11 USAGE:
12 Under t h e s e c t i o n ” C o n f i g u r e A n a l y s i s ” t h e a n a l y s t may s e t
13 d e s i r e d p a r a m e t e r s f o r t h e s i m u l a t i o n . No o t h e r changes
14 s h o u l d be n e c e s s a r y .
15
16 CALLS :
17 s y s t S i m c a l l s t h e f o l l o w i n g f u n c t i o n s :
18 1 . g e t S o l e n o i d ( a c t u a t o r T y p e , p i s t o n P o s i t i o n , s t a t e ) ; o r
19 g e t A c t u a t o r ( a c t u a t o r T y p e )
20 Depends on s i m u l a t i o n c o n f i g u r a t i o n ,
21 r e t u r n s a c t u a t o r i n f o r m a t i o n .
22 2 . beamData ( f n t a r g e t , beamType )
23 r e t u r n s i n f o r m a t i o n a b o u t beam
24 3 . r e g u l a t o r ( ddU ( i ) , dU ( i ) , U( i ) , Ka , Kv , Kd )
25 r e t u r n s t h e o p t i m a l a c c e l e r a t i o n f o r t h e a c t u a t o r p i s t o n
26 Note : n o t i n use i f t h e a c t u a t o r i s a s o l e n o i d
27 4 . a c t u a t o r ( acc recomended , ddU a ( i ) , dU a ( i ) , U a ( i ) , . . .
28 dt , a c t u a t o r T y p e , dU ( i ) , v t h r ) ;
29 C a l c u l a t e s and r e t u r n s t h e f o r c e and k i n e t i c r e s p o n c e
30 of t h e a c t u a t o r
31 5 . Newmark getResponse (U( i ) , dU ( i ) , ddU ( i ) , . . .
32 dt , m, c , k , F a c t ( i ) + F e x t ( i ) ) ;
33 C a l c u l a t e s t h e b r i d g e r e s p o n c e based on
34 p o s i t i o n , v e l o c i t y , a c c e l e r a t i o n and e x t e r n a l f o r c e s
35 ( i . e from t h e a c t u a t o r ) f o r one t ime i n c r e m e n t
36
37 The r e s u l t s a r e p l o t t e d a t t h e end of a s i m u l a t i o n .
38 %}
39
40 c l e a r a l l %#ok<CLALL>
41 c l o s e a l l
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42 c l c
43 %% C o n f i g u r e A n a l y s i s
44
45 % S i m u l a t i o n d u r a t i o n i n s e c o n d s
46 d u r a t i o n = 3 ; % s e c o n d s
47
48 % Sample f r e q u e n c y
49 FS = 1000 ; % Sample f r e q u e n c y
50 %NOTE: i f FS<0, r e g u l a t o r i s c a l l e d e v e r y d t
51
52 % Load and i n i t i a l d i s p l a c e m e n t
53 savedRand = f a l s e ; % A saved random f o r c e v e c t o r
54 r a n d S i g = f a l s e ; % Random s i g n a l i f t r u e
55 randAmp = 500 ; % Ampl i tude o f random s i g n a l
56 wave = f a l s e ; % Wave l o a d wi th f r e q u e n c y e q u a l t o omega 1
57 waveAmp = 1 ; % Ampl i tude o f s i n u s o i d a l wave
58 s t e p = t r u e ; % Use an i n i t i a l d i s p l a c e m e n t
59 i n i t i a l D i s p l a c e m e n t = −0.00176; % m e t e r s
60
61 % S t r u c t u r e p r o p e r t i e s
62 beamType = ” d o u b l e f i x e d ” ; %” c a n t i l i v e r ” o r ” d o u b l e f i x e d ”
63 f n t a r g e t = 1 8 . 1 7 ; % N a t u r a l f r e q u e n c y of sys tem
64 x i t a r g e t = 0 . 0 0 3 ; % Damping r a t i o o f t h e sys tem
65
66 % A c t u a t o r
67 a c t u a t o r T y p e = ”NONE” ;
68 % ”SOLENOID DOUBLE” , ”LAH13−18−000A−DASH” , ”NONE”
69 % See g e t A c t u a t o r o r g e t S o l e n o i d f o r more
70 v t h r = 0 ; % V e l o c i t y t h r e s h o l d f o r s o l e n o i d
71 p t h r = 0 . 0 0 ; % m e t e r s p o s i t i o n t h r e s h o l d form l a s t p e r i o d s
72
73 % R e g u l a t o r V a r i a b l e s ( Not r e l e v a n t f o r s o l e n o i d s )
74 Ka = 0 ; % wei gh t o f s t r u c t u r e a c c e l e r a t i o n
75 Kv = 2500 ; % wei gh t o f s t r u c t u r e v e l o c i t y
76 Kd = 0 ; % wei gh t o f s t r u c t u r e d i s p l a c e m e n t
77
78 %% Time scope
79 t e n d = d u r a t i o n ;% s e c o n d s
80 t s t a r t = 0 ; % s e c o n d s
81 d t = 0 . 0 0 0 0 0 1 ; % seconds , d t =0.000001 i s s u f f i s i e n t f o r fn<40 Hz
82 t v e c = t s t a r t : d t : t e n d ;
83 t = t s t a r t ;
84
85 %% Get A c t u a t o r Mass
86 i f c o n t a i n s ( a c t u a t o r T y p e , ” SOLENOID” )
87 [ m add , ˜ , ˜ , ˜ , ˜ , ˜ , ˜ ] = g e t S o l e n o i d ( a c t u a t o r T y p e , . . .
88 0 , . . .
89 ” s t i l l ” ) ;
90 e l s e
91 [ m add , ˜ , ˜ , ˜ , ˜ , ˜ ] = g e t A c t u a t o r ( a c t u a t o r T y p e ) ;

73



92 end
93
94 %% System v a r i a b e l s
95 wn = 2∗ p i ∗ f n t a r g e t ;
96 [ L , b , h , ro , m beam ] = beamData ( f n t a r g e t , beamType ) ;
97 m modal = m beam / 2 ; %mass lumping
98 m = m modal + m add ;
99 k = m∗ (2∗ p i ∗ f n t a r g e t ) ˆ 2 ;

100 c = x i t a r g e t ∗2∗ s q r t ( k∗m) ;
101
102 %% P r e p a r e S o l e n o i d p t h r v e c t o r i f VDT a l g o r i t h m
103 i f ( c o n t a i n s ( a c t u a t o r T y p e , ”SOLENOID” ) && p t h r ˜= 0)
104 T = 1 / f n t a r g e t ;
105 p e r i o d P o i n t s = f i x ( T / d t ) +1 ;
106 l a s t P e r i o d = ones ( 1 , p e r i o d P o i n t s ) ∗ i n f ;
107 e l s e
108 l a s t P e r i o d = i n f ;
109 end
110 %% I n i t i a l c o n d i t i o n s :
111 u0 = 0 ; % m e t e r s
112 du0 = 0 ; % m e t e r s p r second
113 ddu0 = 0 ; % m e t e r s p r second ˆ2
114 u a0 = 0 ; % m e t e r s
115 du a0 = 0 ; % m e t e r s p r second
116 ddu a0 = 0 ; % m e t e r s p r second ˆ2
117 i f ( s t e p == t r u e )
118 u0 = i n i t i a l D i s p l a c e m e n t ;
119 end
120
121 %% Value V e c t o r s
122 U = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % Beam D i s p l a c e m e n t
123 dU = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % Beam V e l o c i t y
124 ddU = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % Beam A c c e l e r a t i o n
125 U a = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % A c t u a t o r Pos . r e l a t i v e t o beam
126 dU a = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % A c t u a t o r Vel . r e l . t o beam
127 ddU a = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % A c t u a t o r Acc . r e l . t o beam
128 F a c t = z e r o s ( 1 , l e n g t h ( t v e c ) ) ; % Force from t h e a c t u a t o r
129
130
131 %% I n i t i a l C o n n c i t i o n s p l a c e d i n t h e v e c t o r s
132 U( 1 ) = u0 ;
133 dU ( 1 ) = du0 ;
134 ddU ( 1 ) = ddu0 ;
135 U a ( 1 ) = u a0 ;
136 dU a ( 1 ) = du a0 ;
137 ddU a ( 1 ) = ddu a0 ;
138
139 %% Add E x t e r n a l f o r c e
140 F r a n d s a v e d = z e r o s ( 1 , l e n g t h ( t v e c ) ) ;
141 F r a n d = z e r o s ( 1 , l e n g t h ( t v e c ) ) ;
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142 F wave = z e r o s ( 1 , l e n g t h ( t v e c ) ) ;
143
144 % C r e a t e random f o r c e v e c t o r
145 i f ( r a n d S i g == t r u e )
146 F r a n d = 2∗ randAmp∗ ones ( . . .
147 1 , l e n g t h ( t v e c ) ) .∗ r and ( 1 , l e n g t h ( F r a n d ) ) − randAmp ;
148 end
149 % C r e a t e s i n e wave wi th f r e q u e n c y w n
150 i f ( wave == t r u e )
151 F wave = waveAmp∗ s i n ( wn .∗ t v e c ) ;
152 end
153 % Load saved random f o r c e v e c t o r
154 i f ( savedRand == t r u e )
155 F l o a d e d = l o a d ( ” Saved Random Force ” ) ;
156 F r a n d s a v e d = F l o a d e d . F r a n d s a v e d ;
157 end
158 % Add e x t e r n a l f o r c e s t o g e t h e r
159 F e x t = F wave + F r a n d + F r a n d s a v e d ( 1 : l e n g t h ( t v e c ) ) ;
160
161 %% Perform S i m u l a t i o n
162 s a m p l e L i m i t = f i x ( 1 / ( FS∗ d t ) ) ;
163 sampleCoun te r = s a m p l e L i m i t −1;
164 acc recomended = 0 ;
165 i f ( c o n t a i n s ( a c t u a t o r T y p e , ”SOLENOID” ) && p t h r ˜= 0)
166 l a s t P e r i o d ( end ) = U( 1 ) ;
167 p e r i o d P l a c e = 1 ;
168 u p d a t e P e r i o d = t r u e ;
169 e l s e
170 u p d a t e P e r i o d = f a l s e ;
171 end
172 f o r i = 1 : ( l e n g t h ( t v e c )−1)
173
174 % Only u p d a t e a c t u a t o r FS t i m e s p r second
175 i f ( s amp leCoun te r == s a m p l e L i m i t | | FS < 0)
176 sampleCoun te r = 0 ;
177 %Get recommended a c t u a t o r a c c e l e r a t i o n
178 acc recomended = r e g u l a t o r ( ddU ( i ) , . . .
179 dU ( i ) , . . .
180 U( i ) , . . .
181 Ka , . . .
182 Kv , . . .
183 Kd ) ;
184 end
185 sampleCoun te r = sampleCoun te r + 1 ;
186
187 % Get f o r c e and r e s p o n c e from a c t u a t o r
188 [ F a , acc a , v e l a , p o s a ] = a c t u a t o r ( acc recomended , . . .
189 ddU a ( i ) , . . .
190 dU a ( i ) , . . .
191 U a ( i ) , . . .
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192 dt , . . .
193 a c t u a t o r T y p e , . . .
194 dU ( i ) , . . .
195 v t h r , . . .
196 p t h r , . . .
197 max ( abs ( l a s t P e r i o d ) ) ) ;
198
199
200 % S t o r e a c t u a t o r r e s p o n c e
201 F a c t ( i +1) = F a ;
202 ddU a ( i +1) = a c c a ;
203 dU a ( i +1) = v e l a ;
204 U a ( i +1) = p o s a ;
205
206 % C a l c u l a t e b r i d g e r e s p o n s e
207 F e x t t o t = F a c t ( i ) + F e x t ( i ) ;
208 [U( i +1) , dU ( i +1) , ddU ( i +1) ] = newmark ge tResponse (U( i ) , . . .
209 dU ( i ) , . . .
210 ddU ( i ) , . . .
211 dt , . . .
212 m, c , k , . . .
213 F e x t t o t ) ;
214 %% a r r a n g e l a s t p e r i o d
215 i f ( u p d a t e P e r i o d )
216 i f p e r i o d P l a c e > l e n g t h ( l a s t P e r i o d )
217 p e r i o d P l a c e = 1 ;
218 end
219 l a s t P e r i o d ( p e r i o d P l a c e ) = U( i +1) ;
220 p e r i o d P l a c e = p e r i o d P l a c e +1;
221 end
222
223 end
224
225 %% P l o t R e s u l t s
226
227 % P l o t f o r c e from a c t u a t o r ;
228 f i g u r e
229 p l o t ( t v e c , F a c t )
230 t i t l e ( ” Force from t h e a c t u a t o r ” )
231 x l a b e l ( ” t [ s ] ” )
232 y l a b e l ( ” F [N] ” )
233
234 % P l o t A c c t u a t o r mass Pos , Vel and Acc
235 f i g u r e
236 s u b p l o t ( 3 , 1 , 1 )
237 p l o t ( t v e c , ddU a )
238 t i t l e ( ” A c t u a t o r Response ” )
239 y l a b e l ( ” Acc [m/ s ˆ 2 ] ” )
240 x l a b e l ( ” t [ s ] ” )
241
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242 s u b p l o t ( 3 , 1 , 2 )
243 p l o t ( t v e c , dU a )
244 y l a b e l ( ” Vel [m/ s ] ” )
245 x l a b e l ( ” t [ s ] ” )
246
247 s u b p l o t ( 3 , 1 , 3 )
248 p l o t ( t v e c , U a )
249 y l a b e l ( ” Pos [m] ” )
250 x l a b e l ( ” t [ s ] ” )
251
252 % P l o t B r i dg e Pos , Vel and Acc
253 f i g u r e
254 s u b p l o t ( 3 , 1 , 1 )
255 p l o t ( t v e c , ddU )
256 t i t l e ( ” B r i dg e Response ” )
257 y l a b e l ( ” Acc [m/ s ˆ 2 ] ” )
258 x l a b e l ( ” t [ s ] ” )
259 g r i d on
260
261 s u b p l o t ( 3 , 1 , 2 )
262 p l o t ( t v e c , dU )
263 y l a b e l ( ” Vel [m/ s ] ” )
264 x l a b e l ( ” t [ s ] ” )
265 g r i d on
266
267 s u b p l o t ( 3 , 1 , 3 )
268 p l o t ( t v e c ,U)
269 y l a b e l ( ” Pos [m] ” )
270 x l a b e l ( ” t [ s ] ” )
271 g r i d on
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getSolenoid.m

1 f u n c t i o n [ m add , F , m a , maxAcc , maxVel , range , maxForce ] =
g e t S o l e n o i d ( type , p i s t o n p o s , upORdown )

2 %{
3 R e t u r n s s o l e n o i d f o r c e and k i n e t i c s and s p e c s .
4 %}
5 s w i t c h t y p e
6 c a s e ”SOLENOID SINGLE”
7 m a = 0 . 0 0 5 5 ;
8 m add = 0 . 0 4 1 ; % Get more a c c u r a t e e s t i m a t e
9 r a n g e = 0 . 0 1 3 ;

10 % Below , a l l l e n g t h u n i t s a r e i n mm
11 r e l P o s = ( p i s t o n p o s + r a n g e / 2 ) ∗1000; % Now i n m i l l i m e t e r
12 maxU spr ing = 1 7 . 3 ;
13 u S p r i n g = maxU spring−r e l P o s ;
14 k S p r i n g = 0 . 0 1 5 ;
15 i f upORdown == ” up ”
16 F = −k S p r i n g ∗ u S p r i n g + m a ∗ 9 . 8 1 ;
17 e l s e i f upORdown == ”down”
18 F = 1 .72∗ exp (−0.1771∗ r e l P o s ) + m a ∗9 .81 − k S p r i n g ∗

u S p r i n g ;
19 e l s e
20 F = 0 ;
21 end
22
23 c a s e ”SOLENOID DOUBLE”
24 m a = 0 . 0 0 5 5∗2 ;
25 m add = 0 . 0 8 2 ;
26 r a n g e = 0 . 0 0 3 ;
27 % Below , a l l l e n g t h u n i t s a r e i n mm
28 r e l P o s l o w e r = ( r a n g e / 2 + p i s t o n p o s ) ∗1000;
29 r e l P o s u p p e r = ( r a n g e / 2 − p i s t o n p o s ) ∗1000;
30 maxU spr ing = 1 7 . 3 ;
31 u S p r i n g u p p e r = maxU spring−r e l P o s u p p e r ;
32 u S p r i n g l o w e r = maxU spring−r e l P o s l o w e r ;
33 k S p r i n g = 0 . 0 1 5 ;
34 i f upORdown == ” up ”
35 F = −1.72∗ exp (−0.1771∗ r e l P o s u p p e r ) + k S p r i n g ∗ (

u S p r i n g u p p e r−u S p r i n g l o w e r ) + m a ∗ 9 . 8 1 ;
36 e l s e i f upORdown == ”down”
37 F = 1 .72∗ exp (−0.1771∗ r e l P o s l o w e r ) + k S p r i n g ∗ (

u S p r i n g u p p e r−u S p r i n g l o w e r ) + m a ∗ 9 . 8 1 ;
38 e l s e
39 F = 0 ;
40 end
41
42 end
43 maxAcc = i n f ;
44 maxVel = i n f ;
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45 maxForce = i n f ;
46 end
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getActuator.m

1 % a c t u a t o r t y p e s
2 f u n c t i o n [ m to t , m move , maxAcc , maxVel , range , maxForce ] =

g e t A c t u a t o r ( t y p e )
3 %{
4 R e t u r n s a c t u a t o r s p e c s .
5 %}
6
7 s w i t c h t y p e
8 c a s e ”NONE”
9 r a n g e = i n f ;

10 m move = 0 ;
11 m t o t = 0 ;
12 maxVel = i n f ;
13 maxAcc = i n f ;
14 maxForce = i n f ;
15
16 c a s e ”MICA50CS”
17 r a n g e = 0 . 0 0 4 ;
18 m move = 0 . 1 5 ;
19 m t o t = 1 . 2 ;
20 maxVel = i n f ;
21 maxAcc = i n f ;
22 maxForce = 8 0 ;
23
24 c a s e ”MICA20CS”
25 r a n g e = 0 . 0 0 1 ;
26 m move = 0 . 1 4 ;
27 m t o t = 0 . 3 5 ;
28 maxAcc = 5 0∗9 . 8 1 ;
29 maxVel = i n f ;
30 maxForce = 3 0 ;
31
32 c a s e ”MICA300CM”
33 r a n g e = 0 . 0 1 2 ;
34 m move = 0 . 5 8 ;
35 m t o t = 3 . 2 ;
36 maxAcc = 9 5∗9 . 8 1 ;
37 maxVel = 1 . 9 6 ;
38 maxForce = 540 ;
39
40 c a s e ”LAH13 MINSPEC”
41 r a n g e = 0 . 0 0 4 ;
42 m move = 0 . 0 0 3 4 9 ;
43 m t o t = 0 . 0 1 0 ;
44 maxAcc = i n f ;
45 maxVel = i n f ;
46 maxForce = 1 . 8 9 ;
47
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48 c a s e ”LAH13−18−000A−DASH”
49 r a n g e = 2∗0 . 0 0 3 1 8 ;
50 m move = 0 . 0 1 7 7 ;
51 m t o t = 0 . 1 2 7 ;
52 maxAcc = 8 7 9 . 7 ;
53 maxVel = i n f ;
54 maxForce = 1 5 . 5 7 ;
55
56 c a s e ”IDEAL”
57 r a n g e = i n f ;
58 m move = 0 . 0 1 ;
59 m t o t = 0 . 0 1 ;
60 maxAcc = i n f ;
61 maxVel = i n f ;
62 maxForce = i n f ;
63
64
65
66 end
67
68 end
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beamData.m

1
2 f u n c t i o n [ L fn , b , h , ro , m] = beamData ( fn wan ted , beamType )
3 %{
4 R e t u r n s beam s p e s s i f i c a t i o n s i n a c c o r d a n c e wi th t h e i n p u t .
5 %}
6 %% B r i dg e Dimens ions
7 h = 0 . 0 0 8 ; % m e t e r s
8 b = 0 . 1 2 5 ; % m e t e r s
9 I = 1 /12 ∗ b∗h ˆ 3 ; % m e t e r s ˆ4

10
11 %% M a t e r i a l p r o p e r t i e s f o r aluminum
12 ro = 2700 ; % kg /mˆ3
13 E = 69 e9 ; % Pa
14
15 %% Der ived e x p r e s s i o n f o r L ( fn )
16 i f beamType == ” c a n t i l i v e r ”
17 Kn = 3 . 5 2 ;
18 e l s e i f beamType == ” d o u b l e f i x e d ”
19 Kn = 2 2 . 4 ;
20 end
21 L fn = ( ( Kn / ( 2 ∗ p i ∗ f n w a n t e d ) ) ˆ2 ∗ E∗ I / ( ro ∗b∗h ) ) ˆ ( 1 / 4 ) ;
22
23 %% C a l c u l a t e Br i dg e Mass
24 m = ro ∗h∗b∗L fn ;
25
26
27
28
29
30 end
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regulator.m

1 f u n c t i o n acc = r e g u l a t o r ( a , v , d , Ka , Kv , Kd )
2 %{
3 R e t u r n s a c t u a t o r p i s t o n a c c e l e r a t i o n based on i n p u t
4 %}
5 acc = Kd∗d + Kv∗v + Ka∗a ;
6 end
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actuator.m

1 f u n c t i o n [ F , acc , ve l , pos ] = a c t u a t o r ( a c c r e c , a c c l a s t , v e l l a s t
, p o s l a s t , d t , type , beamVel , v t h r , p t h r , l a s t P e r i o d m a x )

2 %{
3 Hande l s a c t u a t o r r e s p o n c e :
4 C a l l s c o r r e c t a c t u a t o r and e n s u r e s t h a t t h e a c t u a t o r o u t p u t
5 does n o t exceed t h e l i m i t a t i o n o f t h e a c t u a t o r i n q u e s t i o n .
6 Th i s f u n c t i o n s h a n d e l s t h e a c t i o n s o f bo th s o l e n o i d and v o i c e

c o i l
7 a c t u a t o r s .
8
9 NOTE 1 : F t r y and F i s t h e f o r c e from t h e a c t u a t o r a c t i n g

10 on t h e b r i d g e and hence has t h e o p p o s i t e s i g n as t h e a c c e l e r a t i o n
11 of t h e p i s t o n .
12
13 NOTE 2 : The k i n e t i c s o f t h e a c t u a t o r a r e a lways l o c a l .
14 Tha t i s , t h e a c t u a t o r p o s i t i o n , v e l o c i t y and a c c e l e r a t i o n i s

r e l a t i v e t o
15 t h e b r i d g e and n o t g l o b a l c o o r d i n a t e s .
16 %}
17
18 %% C a l c u l a t e c o r r e c t r e s p o n c e
19 i f c o n t a i n s ( type , ” SOLENOID” )
20 i f l a s t P e r i o d m a x > p t h r
21 i f beamVel > v t h r
22 [ ˜ , F s o l , m a , maxAcc , maxVel , range , maxForce ] = . . .
23 g e t S o l e n o i d ( type , p o s l a s t , ” up ” ) ;
24 e l s e i f beamVel < −v t h r
25 [ ˜ , F s o l , m a , maxAcc , maxVel , range , maxForce ] = . . .
26 g e t S o l e n o i d ( type , p o s l a s t , ”down ” ) ;
27 e l s e
28 i f v e l l a s t > 0
29 [ ˜ , F s o l , m a , maxAcc , maxVel , range , maxForce ]

= . . .
30 g e t S o l e n o i d ( type , p o s l a s t , ” up ” ) ;
31 e l s e
32 [ ˜ , F s o l , m a , maxAcc , maxVel , range , maxForce ]

= . . .
33 g e t S o l e n o i d ( type , p o s l a s t , ”down ” ) ;
34 end
35 end
36 e l s e
37 [ ˜ , F s o l , m a , maxAcc , maxVel , range , maxForce ] = . . .
38 g e t S o l e n o i d ( type , p o s l a s t , ” up ” ) ;
39 end
40 acc = −F s o l / m a ;
41 v e l = v e l l a s t + acc ∗ d t ;
42 pos = p o s l a s t + v e l l a s t ∗ d t +0 .5∗ acc ∗ d t ˆ 2 ;
43 F t r y = F s o l ;
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44
45 e l s e
46 [ ˜ , m a , maxAcc , maxVel , range , maxForce ] = g e t A c t u a t o r ( t y p e ) ;
47 acc = a c c r e c ;
48 v e l = v e l l a s t + acc ∗ d t ;
49 pos = p o s l a s t + v e l l a s t ∗ d t +0 .5∗ acc ∗ d t ˆ 2 ;
50 F t r y = −m a∗ acc ;
51 end
52
53 %% Ensure t h a t a c t u a t o r does n o t exeed s p e c s
54 % Force
55 i f ( abs ( F t r y ) > maxForce )
56 acc = −s i g n ( F t r y ) ∗maxForce / m a ;
57 v e l = v e l l a s t + acc ∗ d t ;
58 pos = p o s l a s t + v e l l a s t ∗ d t +0 .5∗ acc ∗ d t ˆ 2 ;
59 end
60
61 % A c c e l e r a t i o n ( s h o u l d be h a n d e l e d by f o r c e and hence n e v e r t r u e )
62 i f ( abs ( acc ) > maxAcc )
63 acc = s i g n ( acc ) ∗maxAcc ;
64 v e l = v e l l a s t + acc ∗ d t ;
65 pos = p o s l a s t + v e l l a s t ∗ d t +0 .5∗ acc ∗ d t ˆ 2 ;
66 end
67
68 % V e l o c i t y
69 i f abs ( v e l ) > maxVel
70 acc = 0 ;
71 v e l = v e l l a s t ;
72 pos = p o s l a s t + v e l l a s t ∗ d t +0 .5∗ acc ∗ d t ˆ 2 ;
73 end
74
75 % P o s i t i o n
76 i f abs ( pos ) > r a n g e / 2
77 acc = 0 ;
78 v e l = 0 ;
79 pos = p o s l a s t ;
80 end
81
82 % C a l c u l a t e f o r c e from a c t u a t o r
83 F = −m a∗ acc ;
84
85 end
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newmarkGetResponse.m

1 f u n c t i o n [ u , du , ddu ] = Newmark getResponse ( u0 , du0 , ddu0 , dt , m,
c , k , F )

2 %{
3 C a l c u l a t e s t h e r e s p o n c e f o r one t ime i n c r e m e n t u s i n g t h e
4 Newmark Method
5 %}
6
7
8 gamma = 1 / 2 ;
9 b e t a = 1 / 4 ;

10
11 ddu = 1 /m∗(−c∗du0 − k∗u0 + F ) ;
12
13 du = du0 + (1−gamma ) ∗ d t ∗ddu0 + gamma∗ d t ∗ddu ;
14
15 ddu b = (1−2∗ b e t a ) ∗ddu0 + 2∗ b e t a ∗ddu ;
16
17 u = u0 + d t ∗du0 + 1 /2∗ d t ˆ2∗ ddu b ;
18
19 end
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