2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o
>

=
(%]
—
[}

2
C

o)
C

ke
Bo
CIE)
o

zZ

bo
c
=
[}
()
c
o0
C
i
[
o
>
o
©
w

bo
c
=
(]
()
£
bo
C
|
0
n
[V
v]
o
—
o
e}
c
©
>
20
()
C
|
Y
o
=
c
()
£
t
©
[oR
[
[a]

Jonas Tveit Hinna

Modelica model of transient pipe
flow in hydraulic laboratory systems
using the method of characteristics

Master’s thesis in Energy and Environmental Engineering
Supervisor: Pal-Tore Selbo Storli

June 2021

e
— L L

T

; S
1 LOMARNTRARTALL B =8)

L L |

@ NTNU

Norwegian University of
Science and Technology

Jonas Tveit Hinna

Modelica model of transient pipe flow
in hydraulic laboratory systems using
the method of characteristics

Master’s thesis in Energy and Environmental Engineering
Supervisor: Pal-Tore Selbo Storli
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

@ NTNU

Kunnskap for en bedre verden

@ NTNU

1of2

Master's Agreement / Main Thesis Agreement

Faculty Faculty of Engineering

Institute Department of Energy and Process Engineering
Programme Code MTENERG

Course Code TEP4900

Personal Information

Surname, First Name

Hinna, Jonas Tveit

Date of Birth

22.07.1996

Email

jonasthi@stud.ntnu.no

Supervision and Co-authors

Supervisor

Pal-Tore Selbo Storli

Co-supervisors (if applicable)

Co-authors (if applicable)

The Master's thesis

Starting Date

11.01.2021

Submission Deadline

11.06.2021

Thesis Working Title

Modelica model of the Waterpower Laboratory

Problem Description

Laboratory measurements of properties of hydraulic turbine
models are very useful in many aspects. However, when
dynamical properties are of interest the measurements are not as
useful because the hydraulic system in a lab significantly differs
from the real powerplant system. Furthermore, the
interpretation of measurements is more difficult as one
sometimes doesn’t know if what is seen has origin in the
hydraulic system or in the turbine model itself. The hydraulic
system in the Waterpower laboratory is rather complex, at it
would be useful to have a model of this which can be used to
simulate the behaviour of the system. This would enable a better
understanding of the turbine model characteristics as the system
dynamic could be removed from the interpretation of results.
Furthermore, an ongoing work on coupling the physical system
to a emulsion of a grid in the NTNU Smartgrid lab will benefit
from a model of the Waterpower lab being available. A correct
representation of the turbine physics is also needed, made
available in a mathematical model of a turbine. The existing

@ NTNU 2or2

models are known have too many simplifications, and a new
model must be made. It is unlikely that this is possible within the
scope of a single master thesis, but the work needs to be initiated.
The student shall make elements in the Modelica language which
enable a future system to be simulated which include the effect of
pressure wave propagations. The more elements, the better.
Furthermore, a new mathematical model of a turbine should be
made, based on physics, which also enable pressure pulsations to
pass through the element. The following tasks are to be
considered: 1. Literature review of system dynamics, the
Modelica language and turbine models 2. Make elements in
Modelica which enable pressure wave propagation, starting from
open ended pipes to bends, conical sections and pipes with closed
ends. 3. Make a turbine model which includes all losses,
dynamics and pressure propagation.

adq
§OO 0 007%
> %@S’ A

WATERPOWER LABORATORY
NTNU

Abstract

Hydraulic laboratory systems often house complex experimental setups. Meas-
urements at certain locations, e.g. turbine inlet, may be affected by the hydraulic
system and the characteristics of the upstream flow. It is therefore desirable to have
sufficient modelling tools which can be used to simulate the dynamic behaviour of
such systems.

A programming library named OpenWPL has been created using the method of
characteristics. It was created in the open-source programming language Modelica
using the software OpenModelica. Simulations highlighting the utility of Open-
WPL have been performed, and the results have been compared to benchmarking
cases.

It was revealed that the method of characteristics was successfully implemented
into the pipe component of the library, both with and without friction. However, it
was also revealed that the boundary conditions represented an unidentified source
of error when comparing the results to the benchmarking cases. These errors were
most prevalent for a low resolution of steps in space. Simultaneously, it also became
evident that there was an issue when connecting pipes in series within the library.
It is unknown if this is related to the errors within the boundary conditions.

OpenWPL is currently not capable of revealing the system dynamics of hydraulic
laboratory systems. Rather, the library represents a good foundation that can be
further developed into a more complex and full-fledged library in the future.

iii

Sammendrag

Eksperimentelle oppsett i hydrauliske laboratoriesystemer er ofte avanserte. Malinger,
f.eks. ved innlgpet til turbiner, kan bli pavirket av det hydrauliske oppsettet og av
karakteristikken til strgmningen oppstrgms i systemet. Det er derfor gnskelig a
ha tilstrekkelige modelleringsverktgy som kan brukes til a simulere de dynamiske
effektene i slike systemer.

Et programmeringsbibliotek kalt OpenWPL har blitt bygget ved a bruke karakter-
istikkmetoden. Det ble laget i programmeringsspraket Modelica, som har apen
kildekode, ved hjelp av programvaren OpenModelica. Simuleringer som belyser
bruksomradet til OpenWPL har blitt utfgrt, og resultatene har blitt sammenlignet
med referanseverdier.

Det ble funnet ut at karakteristikkmetoden ble korrekt implementert i rgrkompon-
enten, bade med og uten friksjon. Nar resultatene ble sammenliknet med referan-
severdiene ble det imidlertidig avdekket at grensebetingelsene i rgret representerer
en feilkilde i ukjent omfang. Feilen som ble oppdaget var mest utbredt ved fa
simuleringssteg for lengde. Samtidig er det problemer tilknyttet seriekobling av rgr
i biblioteket, og det er usikkert om disse problemene har rot i samme feilkilde som
ved grensebetingelsene.

OpenWPL er forelgpig ikke i stand til a avdekke hvilke dynamiske effekter som
finnes i hydrauliske laboratoriesystemer. Biblioteket representerer i stedet et godt
fundament som kan videreutvikles til et mer komplekst og fullverdig bibliotek i
fremtiden.

Preface

This thesis was written at the Waterpower Laboratory in the spring of 2021 at the
Norwegian University of Science and Technology (NTNU). It is the result of a
degree at the Department of Energy and Process Engineering within the field of
engineering fluid mechanics.

I wish to express my gratitude towards my supervisor at NTNU associate professor
Pal-Tore Selbo Storli, as well as my fellow students at the laboratory and NTNU.

vii

Contents
Abstract i
Sammendrag iii
Preface v
Contents vii
List of Tables xii
List of Figures Xiv
List of Symbols XV
1 Introduction 1
1.1 Background information 1
1.2 Researchobjectives 3
2 Theory and software 5
2.1 Governing equations for fluid motion 5

2.1.1 Momentum equation 5

2.1.1.1 Friction

2.1.2 Continuity equation

2.2 Method of characteristics, .
2.2.1 Implementation into the pipe component

222 StepsSizes

2.2.3 Adjusted equations for non-uniform cross-sectional area .

2.3 Initial conditions oL
2.4 Boundary conditions
24.1 Reservoirs

242 Valveso

243 Pipesinseries

2.5 Modelica
2.5.1 Modelica Fluid Library

252 Connectors

253 Medium e

Model development and simulation settings
3.1 OpenModelicaand OMEdit.
32 OpenWPL e
32.1 Pipecomponent.
322 MOCcomponent
3.3 Simulation parameters and setup for instantaneous valve closure .
3.3.1 Single pipe without friction
3.3.1.1 Change of simulation location
3.3.1.2 Change of simulation spatial steps

3.3.2 Single pipe with friction

3.3.2.1 Change of friction coefficient

3.3.3 Single pipe with a non-uniform cross-sectional area without
friction oo oo Lo

4 Results and discussion

4.1 Benchmarking case: instantaneous valve closure
4.1.1 Single pipe without friction

4.1.1.1 Simulation validation

4.1.1.2 Change of simulation location

4.1.1.3 Change of simulation space steps

4.1.2 Single pipe with friction

4.1.2.1 Change of friction coefficient

4.1.3 Single pipe with a non-uniform cross-sectional area without
friction L
4.2 Overall observations
5 Conclusion
6 Further work
References
A Full calculation: the equation of motion for transient flow
B Full calculation: the continuity equation for transient flow
C Full calculation: the method of characteristics

D Diagram view of a setup from source to sink

E Diagram view of source to sink with intersection and blind flange sim-

30

33
33
33
34
36
38
39
41

44
46

49

51

53

55

57

59

63

ulation 65

Errors related to: source to sink with intersection and blind flange
simulation 67

Modelica code: functions implemented into OpenWPL 69

Modelica code: pipe component 79

xi

3.1
32

33

34

35

3.6

3.7

3.8

3.9

3.10

List of Tables

Table of global values which are valid for all simulations.

Parameter settings for a single pipe without friction where N=4.
Results in Figure 4.1.

Parameter settings for a single pipe without friction at the mid-
section where N; = 3. Results in Figure4.2.

Parameter settings for a single pipe without friction at the inlet
where N; = 2. Results in Figure 4.3.

Parameter settings for a single pipe without friction where N=8.
Results in Figure 4.4 L.

Parameter settings for a single pipe without friction where N=12.
Resultsin Figure 4.5.

Pressure drop along the pipe from inlet to the closed valve. Results
inFigure4.6.

Parameter settings for a single pipe with friction. Results in Fig-
ure 4.7. . .o e

Parameter settings for a single pipe with friction where N=4. The
friction factor has been multiplied by 100 in order to enhance the
visualization. Results in Figure 4.8.

Parameter settings for a single pipe with friction where N=8. The
friction factor has been multiplied by 100 in order to enhance the
visualization. Results in Figure 4.9.

23

24

24

25

25

26

27

28

3.11

3.12

3.13

3.14

4.1

Parameter settings for a single pipe with friction where N=12. The
friction factor has been multiplied by 100 in order to enhance the
visualization. Results in Figure 4.10.

A pressure pulse at the end of a single pipe with a non-uniform
cross-sectional area with N=4, where a closed valve is located.
Resultsin Figure 4.11

A pressure pulse at the end of a single pipe with a non-uniform
cross-sectional area with N=8, where a closed valve is located.
Resultsin Figure 4.12.

A pressure pulse at the end of a single pipe with a non-uniform
cross-sectional area with N=12, where a closed valve is located.
Resultsin Figure 4.13.

Comparison between T} cqicuiatea = 0.0833(s) and T' simuiated
for different spatial step N.

29

30

30

31

39

xiii

1.1

2.1
2.2

3.1

3.2

33
34
35

4.1

4.2

43

List of Figures

An example from the laboratory where the effects of transient flow
could affect measurements downstream.

Graphic display of the method of characteristics.

Graphic display of the boundary conditions in the method of char-
ACteristics.

OpenModelica software and GUI as used in this thesis in diagram
mode.

OpenModelica software and GUI as used in this thesis in text mode.
This is the underlying code of the graphics in Figure 3.1.

Hierarchy of software used in this thesis.
Parameter options of the pipe component.

OpenWPL and its sub-libraries.

Square pressure pulse at the end of the pipe, where a closed valve
is located. Simulation settings in Table 3.2.

Pressure pulse at the mid-section of the pipe, upstream of where a
closed valve is located. Simulation settings in Table 3.3.

Pressure pulse at the inlet of the pipe, upstream of where a closed
valve is located. Simulation settings in Table 3.4.

13

18

18
19
20
21

34

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

D.1

E.1

F.1

F2
E3

Square pressure pulse at the end of the pipe with N=8, where a
closed valve is located. Simulation settings in Table 3.5.

Square pressure pulse at the end of the pipe with N=12, where a
closed valve is located Simulation settings in Table 3.6.

Pressure drop along the pipe from inlet to the closed valve at 7" = 1.
Simulation settings in Table 3.7.

Pressure surges with friction at the end of a pipe, where a closed
valve is located. Simulation settings in Table 3.8.

Pressure surges with friction at the end of a pipe with N=4, where
a closed valve is located. Simulation settings in Table 3.9.

Pressure surges with friction at the end of a pipe with N=8, where
a closed valve is located. Simulation settings in Table 3.10.

Pressure surges with friction at the end of a pipe with N=12, where
a closed valve is located. Simulation settings in Table 3.11.

Pressure pulse at the end of a single pipe with a non-uniform cross-
sectional area with N=4, where a closed valve is located. Simula-
tion settings in Table 3.12.

Pressure pulse at the end of a single pipe with a non-uniform cross-
sectional area with N=8, where a closed valve is located. Simula-
tion settings in Table 3.13.

Pressure pulse at the end of a single pipe with a non-uniform cross-
sectional area with N=12, where a closed valve is located. Simula-
tion settings in Table 3.14.

A simple setup from source to sink via a single pipe.

A setup from source to sink with intersection and blind flange sim-
ulation.

Balanced Check Model message.
Imbalanced symbolicerror.

Imbalanced translationerror.

39

41

XV

List of Symbols

Latin Symbols

a Speed of sound in water m/g
A Pipe area m?
B Pipeline characteristic impedance $/m?
C Characteristic constant m
f Darcy-Weisbach friction factor

g Gravitational acceleration m/2
H Hydraulic head m
D Pipe diameter m
Q Volumetric flow rate m? /g
N Normal vector

P Pressure Pa
Da Pressure gradient Pa
R Pipeline resistance coefficient 8% /m?
t Time 5
Vv Velocity vector in the x-direction m/g

Vi Acceleration vector m/g?

Va Velocity gradient vector

Viw Laplacian of the velocity vector

R Volume

Greek Symbols

@ Angle of horizontal pipe slope
K Bulk modulus

€ Pipe surface roughness
L Dynamic viscosity

\Y Divergence

v Kinematic viscosity

p Density

Abbreviation

C- Minus characteristic
C+ Plus characteristic

CS Control surface

CV Control volume

MFL Modelica Fluid Library
MSL Modelica Standard Library

OMEdit OpenModelica Connection Editor

OpenHPL Open Hydropower Laboratory
OpenWPL Open Waterpower Laboratory

NTNU Norwegian University of Science and Technology

Re Reynolds number

USN University of South-Eastern Norway

/s
1/ms

2
m /s

kg/m3

Chapter I

Introduction

1.1 Background information

The Waterpower Laboratory at NTNU is a modern research and development facil-
ity housing several testing rigs for hydropower research including; Francis, Pelton
and pump turbines. Similar to other experimental setups, verification of results and
accuracy of measurement equipment is of vital importance to the facility.

Laboratory measurements of properties in regards to hydraulic turbine models are
useful in many aspects. However, when dynamic properties are of interest, down-
stream measurements may be affected by the hydraulic system and the character-
istics of the upstream flow.

The system at the laboratory is highly adaptive, and thus there exists several blind
flanges and closed valves due to idle experimental configurations, shown in Fig-
ure 1.1. These introduce further dynamic complexity into the system due to present
transient effects.

A

——

Flow direction

Figure 1.1: An example from the laboratory where the effects of transient flow could affect
measurements downstream.

2 1. Introduction

Figure 1.1 displays an example from the laboratory where the effects of transient
flow could affect measurements downstream. Valve A and B are open, and valve
C is closed. Even though the flow is going from valve A to valve B, a continuous
string of water is still present in the pipes leading up to valve C. This water has a
dynamic effect on the system and introduces pressure surges travelling back and
forth between the valve and junction, further propagating into the system due to the
compressibility of water and the pipe walls.

Induced pressure surges are affecting the measurements downstream. It is unknown
to which extent the measurements are affected, especially due to the complexity
of the system which includes pipe bends, intermediate tanks and other closed-off
valves. A common problem at the Waterpower Laboratory is differentiating the
frequencies of transient effects due to the system dynamics and the frequencies of
turbine vibrations and other expected transient effects. This means that it can be
difficult to filter the results of experimental testing.

The hydraulic system at the Waterpower Laboratory is rather complex, and it is
therefore desirable to have sufficient modelling tools which can be used to simulate
the behaviour of the system. This would enable a better understanding of the system
dynamics at the laboratory, which in turn could lead to more distinct measurements
and open up to new possibilities within hydropower research.

Similar modelling tools such as OpenHPL has been developed at the University of
South-Eastern Norway (USN), albeit custom-built for full-scale hydropower sys-
tems and without the implementation of the water hammer effect. Previous project
work suggests that neither OpenHPL nor the Modelica Standard Library is cap-
able of modelling the complex system dynamics at the Waterpower Laboratory[1],
which introduces a research gap worthwhile to investigate.

1.2. Research objectives 3

1.2 Research objectives

A library capable of modelling hydraulic laboratory systems with transient flow will
be created using the programming language Modelica. The library will be created
and utilized in the open-source simulation environment OpenModelica using the
graphical user interface OpenModelica Connection Editor.

The research question which will be answered is related to the capacity of the
library, henceforth known as OpenWPL, and whether it is capable of revealing the
system dynamics of hydraulic laboratory systems.

The first research objective will be to custom-build components which are required
to simulate transient flow in pipes. This thesis focuses on the method of character-
istics as presented in Fluid Transients in Systems [2], and will include customizable
pipe components which also can simulate blind flanges and closed valves.

Secondly, models of interesting sections of the hydraulic system at the Water-
power Laboratory will be created in OpenModelica, such as the case shown in
Figure 1.1. This includes intersections with blind flanges, pipes with non-uniform
cross-sectional areas and cases with instantaneous valve closure. The pipe com-
ponent as mentioned in the first research objective will be utilized to create said
models.

Lastly, the results of the simulated cases as mentioned in the second research
objective will be compared to benchmarking cases. This comparison will serve
as the basis for determining whether the library is capable of revealing the system
dynamics of hydraulic laboratory systems, and as such, answer the main research
objective. The rapport will finalize with a discussion on the results obtained, and a
section on suggested further work.

The scope of this thesis is restricted by time. Neither the turbine nor the surge
tank at the Waterpower Laboratory will be modelled as components due to time
restrictions. The hydraulic system should ideally have been modelled in its entirety,
from reservoir to sink, including all the components in-between. This will be
elaborated upon in chapter 6.

1. Introduction

Main research objective

A library named OpenWPL capable of modelling hydraulic laboratory
systems with transient flow will be created in Modelica using the method
of characteristics. Simulated results will be compared to benchmarking
cases to determine whether the library is capable of revealing the system
dynamics of hydraulic laboratory systems.

Chapter 11

Theory and software

This chapter will introduce the governing equations of transient flow, friction, the
method of characteristics and the associated boundary conditions. Finally, it will
transition into the next chapter by explaining how the theory was applied in Mod-
elica.

2.1 Governing equations for fluid motion

Transient flow is a term that describes unsteady flow where the properties change
with respect to both time and position. It is commonly used to describe the flow of
fluids in pipelines. This section will present both the equation of motion and the
continuity equation in one dimension for transient flow.

2.1.1 Momentum equation

The momentum equation, also known as the Navier-Stokes equation, is given in
Equation 2.1, and describes 1D incompressible flow in the x-direction[3]:

Vt+vvzz—%+g+uvm @.1)

where V; (m/s?) is the acceleration vector in the x-direction, V' (w/s) is the velocity
vector in the x-direction, V, (1/s) is the velocity gradient in the x-direction, p,
(Pa/m) is the pressure gradient of the fluid, p (k&/m?) is the density of the fluid, g
(m/s?) is the gravitational acceleration, v (m?/s) is the kinematic viscosity of the
fluid and V., (1/ms) is the Laplacian of the velocity vector, i.e., scalar divergence
to the velocity gradient in the x-direction.

6 2. Theory and software

By rearranging the terms one achieves:
Z%juvvgﬁvt—g—uvm:0 2.2)

A version of the Navier-Stokes equation is derived for fluid flow through a conical
or cylindrical tube. It is valid for any fluid, and given in Equation 2.3 which is
adjusted to angled pipes[2].

The viscous term has been replaced by a friction term utilizing the Darcy-Weisbach
friction factor. This assumes quasi-steady flow, i.e, flow that is changing so slowly
that the related friction effects are negligible. This assumption is elaborated on in
chapter 6.

z . |41%
%—f—VVm—i—V}—&—gsma—l—f V]

=0 2.3)

where « is the angle of a potential slope, f is the Darcy-Weisbach friction factor
and D (m) is the diameter of the pipe.

When looking at Equation 2.3 in terms of the hydraulic grade line, density is
considered to be substantially constant compared with the variations in H or z.
Equation 2.3 is therefore simplified to Equation 2.4, and only valid for less com-
pressible fluids, such as water. See Appendix A for detailed calculations.

Vvl
2D

gH, + Vi + 0 (2.4)

where H (m) is the hydraulic grade line.
2.1.1.1 Friction

Friction is the force that connects the modelled equations to the real world. It is
introduced in Equation 2.4 within the term LB/' where f is the Darcy-Weisbach

2
friction factor.

The friction factor can be directly approximated using the Haaland equation given
in Equation 2.5 below. It is an approximation of the Colebrook-White equation and
has the advantage of being explicitly solvable. This approximation introduces an
error deviance of 2% compared to the original Colebrook-White equation [3].

2.1. Governing equations for fluid motion 7

1 ¢\ 6.9
— 18log | (2 >
JT 8log [(3.7) " Re

where € (m) is the pipe surface roughness and Re is the Reynolds number.

2.5)

2.1.2 Continuity equation

Similarly, the continuity equation states that the rate at which mass flows into the
control volume minus the rate at which mass flows out of the control volume is
equal to the net rate of change of mass within the control volume[3]. It is given in
its general differential form for a control volume (CV) and control surface (CS) in
Equation 2.6.

1/ pd¥+/ p(V-N)dA =0 (2.6)
dt Jevy cs

where ¥ (m?) is the volume, @ (m/s) is the velocity vector and 7 is the normal
vector.

A version of the continuity equation is also derived for fluid flow through a conical
or cylindrical tube. It is valid for any unsteady fluid flow, and given in Equation 2.7
where the total derivative is indicated by a dot [2].

A)
R V) @7
A p

Equation 2.8 is valid for slightly compressible fluids, and is limited to low velo-
cities. While Equation 2.7 is a more general form of continuity, Equation 2.8 is
simplified and will be used in the following sections.

a®V,

+H;=0 (2.8)
where the wave velocity is given as;

a? = /o 2.9)
L+ (K/a)(2A/ap)

where £ (N/m?) is the bulk modulus.

8 2. Theory and software

2.2 Method of characteristics

The method of characteristics is a numerical method that transforms partial differ-
ential equations into total differential equations. These equations can be integrated
to yield finite difference equations, which in turn can be solved numerically.

The two PDEs Equation 2.4 and Equation 2.8 repeated below can be used to model
the flow in pipes. This section will explain how the method of characteristics is
applied to the equations in question.

gH, +V, + f‘;l‘)v‘ =0 (2.4 revisited)
2
V;z: -
¢ + H; =0 (2.8 revisited)

Equation 2.4 and Equation 2.8 are combined linearly as shown in Equation 2.10
below using an unknown A:

L=Li+A,=0 (2.10)

where

f
=gH, +Vi+ —=V|V|=
Li=yg tT 5D V=0

a2
Ly=Hi+—V, =0
g

The linear combination yields the two following equations as shown in Equa-
tion 2.11. See Appendix C for full calculations.

A= @2.11)

Next, Equation 2.12 and Equation 2.13 are achieved by substitution of Equation 2.11.
Either set of equations are valid as long as the other is not.

2.2. Method of characteristics

¥\

Figure 2.1: Graphic display of the method of characteristics.

gdH _dv fVIV|
ot)ad dt 2D
") dx

=a

- =

0

gdH a4V _fVIV|

o a dt dt 2D
") dx

= —a

pri

0

(2.12)

(2.13)

The finite difference equations are given below based on Equation 2.12 and Equa-

tion 2.13.

C*t:H;=Cp— BpQ;

C™:H;y=Cy — BuQ;

(2.14)

(2.15)

10 2. Theory and software

Notice that Cp, Cjs, Bp and Bj, are known constants at the time of calculation.
Furthermore, the constants are given as:

Cp=H;_ 1 +BQi (2.16)
Cy = Hiy1 — BQiqq (2.17)
and
Bp = B+ R|Q; 1] (2.18)
B = B+ R|Qii1] (2.19)

where B is a function of physical properties, and is known as the pipeline charac-
teristic impedance:

a
B=— 2.2
A (2.20)

Similarly, R is known as the pipeline resistance coefficient:

Az
R = 2§DA2 2.21)

where f is the Darcy-Weisbach friction factor given in Equation 2.5 in subsubsec-
tion 2.1.1.1. Now, by combining Equation 2.14 and Equation 2.15 one achieves the
final equations given below:

_ CpBy +CyBp

H; = 2.22

Bp + By (222)
Cp—Cy

= - 2.23

@ Bp + By (229

Equation 2.22 and Equation 2.23 describes the hydraulic head H and the volumetric
flow rate (). These equations are final and is valid at the point ¢, or P.

2.2. Method of characteristics 11

2.2.1 Implementation into the pipe component

The method of characteristics as shown in section 2.2 is applied to every point [J,]
where j = 2 : T'and ¢ = 2 : N — 1, i.e., wherever the initial and boundary
conditions do not apply. The method revolves around solving H and () based on
the previous time and space characteristics. Both IV and 7" are decided beforehand
using the equations given in subsection 2.2.2.

Arrays of Q, H, fp, fm. Rp, Rm, Bp, B, Cp and C,,, are solved in nested for-
loops using the equations given in section 2.2. All equations are transformed into
functions which is reused for all components. The functions are available in the
OpenWPL.Functions package, and shown in Appendix G.

The method starts by determining a linear space for area and diameter. Next,
velocity v, hydraulic head H and volumetric flow rate () are decided based on
previous values. The initial values are decided by the initial conditions, explained
in section 2.3. Equation 2.22 and Equation 2.23 are the main equation used to
calculate the head and volumetric flow rate.

If friction = true then Equation 2.5 is used to calculate the Darcy-Weisbach
friction factor. It is dependent on global values such as density, viscosity and
roughness of the pipe walls, as well as local values such as velocity and diameter.
If friction = false then all friction values are zero; one array for the plus
characteristic and one for the minus characteristic.

Finally, characteristic equations for both the plus characteristic and minus charac-
teristic are calculated in the next step in space and time.

2.2.2 Step sizes

The time step 7" and the spatial step N must be decided beforehand. 7' = 2 is a
requirement for the method of characteristics to be utilized, as 7' = 1 is initiated
by the initial condition as shown in section 2.3.

These will be used to calculate step sizes At and Ax in time and space, respect-
ively. Each boundary condition requires one step in space each, and the method of
characteristics require at least one step to be utilized. This means that N = 3 is a
minimum requirement. The step size in space Ax can thus be calculated based on
the pipe length L and the number of steps N:

Az = (2.24)

Next, the step size in time At (s) can thus be calculated based on the step size in

12 2. Theory and software

space Az (m) and speed of sound in water a (m):

Ar (2.25)
a

At

2.2.3 Adjusted equations for non-uniform cross-sectional area

The equations given in section 2.2 are only valid for a constant cross-sectional
area. The equations below, however, are adapted such that the area can gradually
change, making them more useful for real-life applications. The calculation of
Equation 2.26 and Equation 2.27 are not shown in this thesis, but can be found in
their entirety in Simulation and analysis of FCR operation of a Francis turbine [4].

9 (Ha— Hp)+3Qs (4 + 45) +30a (4 + 2
QP: 1 1 1 (2.26)
4, T oAy Taan

-~ a|lQp Qa 1 1 1
HPHAQ[APAAZ(QPJFQA)<APAA)] 2.27)

2.3 Initial conditions

Initial conditions are necessary to simulate a system with respect to time. In this
thesis, initial conditions are calculated based on steady-state conditions. Sub-
sequently, the method of characteristics uses the initial condition as a basis for
further iterations, and it is therefore important to start with accurate initial values.

They can be calculated using Equation 2.28 based on the previous hydraulic head
and current volumetric flow rate, e.g., using values from the upstream reservoir.

Al Q|Q)|
H = Hprevious — [2.28
P D 2gA2 (2.28)
where Al(m) is the change in pipe length from the previous iteration and Q (m"/s)
is the volumetric flow rate.

The initial conditions aims to set the values of H and @ for points [j = 1,7 = 1 :
N]. The first point in space and time [j = 1,7 = 1] is defined by using hydraulic
head H and volumetric flow rate () from port_a. This is valid both for upstream
reservoirs and upstream pipes in series.

2.4. Boundary conditions 13

Next, Equation 2.28 is used to calculate the values where [j = 1,7 = 2 : N] based
on the previously obtained H and current () over the displaced length L. This will
ensure that friction makes it so that H[j = 1,4 = 1] > [j = 1,7 = N], which is
what one would expect.

2.4 Boundary conditions

Boundary conditions are necessary to achieve a balanced system in terms of equa-
tions and variables. By inserting physical parameters which are known at the
boundaries into equations given in section 2.2, one gets equations that are valid
both on the left and the right side of the pipe.

In general, a boundary condition is derived from either knowing the hydraulic head
H or the volumetric flow rate () at the boundary itself, followed by calculating the
missing parameter of the two using Equation 2.29 and Equation 2.30.

th

At At

AX Ax

% A

Figure 2.2: Graphic display of the boundary conditions in the method of characteristics.

The boundary conditions aim to set the values of either H or) for points [j = 2 :
T,i = 1] at the left boundary and [j = 2 : T,i = N] at the right boundary. They
depend on which component is at either end of the pipe. If either end are connected
to pipes in series, H and @ are simply transferred between the ports. The following
subsections will describe boundary conditions as derived for different mechanical
equipment at either end of the pipe.

14 2. Theory and software

2.4.1 Reservoirs

For a large upstream reservoir the change in the hydraulic grade line can be assumed
constant at the connection, i.e., AP = 0 at the boundary. By applying Equa-
tion 2.15 where ¢ refers to the point at the boundary itself, i.e., H; = H,cservoirs
@; can be calculated by moving terms around as:

H’r‘eservoir - Cm
= —— 2.29
Q B, (2.29)

where all variables in Equation 2.29 are known, except @);, at the time of calcula-
tion. Now that both); and H; are known at the boundary, they can be used by the
method of characteristics to calculate (); 1 and H; 1. As such, Equation 2.29 will
be used to calculate the boundary condition at port_a

Note that the hydraulic head of the reservoir is assumed constant, which is an
assumption prone to errors, depending on the system simulated. In the case of
the Waterpower Laboratory, the tanks are continuously filled during experimental
testing by external pumps. In turn, this means that the error related to constant
reservoir pressure is acceptable.

2.4.2 Valves

Consider a valve downstream of a pipe. If the valve is closing, we can assume that
Q; = 0. By applying Equation 2.14 where i refers to the point at the boundary
itself, i.e. Q; = Qyaive, H; can be calculated by moving terms around as:

H;=C, (2.30)

where, similar to the reservoir, all variables in Equation 2.30 are known, except H;,
at the time of calculation. Now that both H; and @; are known at the boundary,
they can be used by the method of characteristics to calculate ();_1 and H;_;.

The right boundary condition at porz_b can be defined using Equation 2.30 if there
is a valve closing downstream of the pipe. This boundary condition is useful when
checking the validity of the library, as one can simulate cases where certain results
are expected, e.g. transient flow effect.

Blind flanges and closed valves are closely related, and the equations for a closing
valve is therefore applied to the blind flanges. As previously mentioned, this can
be activated as closedV alve = true in the pipe component parameter options. If
closedV alve = false then the right boundary conditions will simply transfer the

2.5. Modelica 15

last known H and Q to port_b.

2.4.3 Pipes in series

The boundary conditions for pipes in series are, quite simply, calculated as
Hleft,pipe = right,pipe and Qleft,pipe = Qright,pipe- This is only true if the
diameter of either pipe is identical at the connection, which is a requirement for the
model. If not, the continuity equations are not valid.

2.5 Modelica

Modelica is an object-oriented and equation-based programming language for mod-
elling complex systems. Models are described by differential, algebraic and dis-
crete equations, which is used to model the dynamic behaviour of technical systems

[5].

Modelica is an open-source language that, similar to MATLAB, is built to describe
mathematical models. It is often described as a modelling language, and highly
resembles other object-oriented programming languages, such as C' + +.

Classes are fundamental structuring units which are translated into objects, and
provide the basis for code instantiation. E.g., the library OpenWPL is a package
class and the pipe.mo component is a model class[6].

Being object-oriented, components can be re-used in the same simulation. ILe.,
models only have to be built once and can then be utilized again different config-
urations. This is an efficient way of modelling systems and is highly user-friendly
as the user do not need prerequisite knowledge of neither programming nor the
underlying physics of the component itself.

If the same simulations would be executed in say, MATLAB, one would have to
copy and paste the code which models the pipe component. This can be confusing,
especially if the user is not familiar with the underlying code for the components
in question. Also, lacking a user-friendly GUI, one would be forced to enter the
MATLAB scripts to specify pipe length and other parameters. Using Modelica,
this can be done on the canvas itself, without needing to alter the underlying code
and scripts, which require knowledge of the component modelling structure.

2.5.1 Modelica Fluid Library

In addition to developing the free Modelica programming language, The Modelica
Association also develops the open-source software Modelica Standard Library
(MSL) for multi-domain models. The MSL includes a plethora of sub-libraries
that can be utilized when modelling specific systems, e.g. Modelica.Thermal for

16 2. Theory and software

modelling heat transfer.

The components designed in this thesis have been programmed in such a way that
they can interact with the majority of components in the Modelica.Fluid library. It
is a comprehensive library that includes many functions and interfaces which can be
reused and modified. An advantage of Modelica.Fluid in terms of hydraulic model-
ling is the possibility of backwards and compressible flow, which is integrated into
several components.These components can interact with one another by drawing
blue lines between them. How this is possible is described in subsection 2.5.2
below.

2.5.2 Connectors

A major design element in modelling with Modelica is the use of connectors. Fluid
connectors are ports represented by nodes where flow enters or leaves, e.g. the
point of entry of pipes. Ports are similar to nodes in electrical engineering, and
as such, the laws of conservation must be valid at all time. OpenWPL utilizes the
standard connector FluidPort represented by the model PartialTwoPort within the
MFL. In turn, this leads to possible interaction between components in OpenWPL
and MFL.

When utilizing the connector FluidPort in components, they are automatically equipped
with a graphical node on either side of the component. This node is interactive in
diagram mode and can be utilized by drawing a blue line between either set of
components. When the line has been drawn, code that connects either node to each
other is automatically created in the text mode. In the case of the pipe component
created in this thesis, the nodes apply continuity in regards to volumetric flow rate

(@ and hydraulic head H. This means that the volumetric flow rate and hydraulic
head at the outlet of the Source component is transferred to the inlet of the pipe
component.

2.5.3 Medium

The MFL relies on the package Modelica. Media. Water to provide standardized set-
tings for the fluid medium, more specifically incompressible water with constants
properties. This makes it possible to easily change the medium of the modelled
system without changing fluid properties in each component. It is a feature of the
MFL which is required to be present, also in the custom made pipe component, to
be compatible with the standardized components.

Certain parameters, however, are required to be set manually. Such parameters can
be overwritten in the component moc and system as described in subsection 3.2.2
and section 3.3.

17

Chapter III

Model development and simulation settings

The research objectives of this thesis will be solved by performing transient simu-
lations of pipe sections. A library specifically designed for the Waterpower Labor-
atory named OpenWPL will be created using the programming language Modelica
to perform the necessary simulations. A key feature of OpenWPL will be a pipe
component named pipe.mo, henceforth known as the pipe component, which will
act as the centrepiece of transient simulations.

3.1 OpenModelica and OMEdit

The simulation environment used in this thesis is OpenModelica utilizing the graph-
ical user interface OpenModelica Connection Editor (OMEdit). To explain how
simulations were performed, this subsection will use a simulation in OpenModelica
and OMEdit as an example.

The GUI can be seen from Figure 3.1 which displays a model named Pipe_test_vi2
on the central canvas. The libraries are located on the left hand side, along with
sub-packages such as Tests and Components. In the case shown in Figure 3.1 and
Figure 3.2 the model Pipe_test_v12 is located under the sub-package 7ests. There
are five components on the canvas:

* A OpenTank component named Source.

e A Pipe component named pipe.

* A OpenTank component named Sink.

* A MOC component named moc.

e A System component named system.

18

3. Model development and simulation settings

A OVEdit- Openbodaica Comnection dtor

Ele Edt View Smulston Debug OMSmulstor Gt Jook

Heoeoe \ONOTR<SE 8- 998 -)»'DOW -
ex A

eBR

Ubraris eromser

e

ope_test 12

© [AIS @ [witabe [oce [oigrom vew |

etz | st 20

e
&) ot

« openFancis oop2

« Open Frndcoop.

© Openroncitoop.13

Open Fancis toop1d

© Openrmcitoons5

© OpenFrncs Loop. 6

+ Open FrndsLoon.

© Closed Fanci Loop.1
Open_Fancis oop 8 seed

OpenFranci Loop 10
Open Franci Loop 110

Open Franch Loop. 11

EER
i

k]
H

=
7
H

®
®
®
®
®
®
®
®
®
®
®

E\
5
E

system

N

Source Sink

level = level =

pipe

@weone | Avodrg | Bpoting @ Dcbugong

Figure 3.1: OpenModelica software and GUI as used in this thesis in diagram mode.

o OMEdit - OpenModelica Connection Editor . x
Fle Edt View Srmuston Debug OMSmuistor Gt Took Hep
* = >
JeBR Heoe \ONOTH <=H- 098 -)#‘Q\S\K
Ubrres srouser sx B e st 12
& © [l AT © [wrtabe [1oce [vextven | s viz | testvizmo @
A1 within openteL.Tests;
OpeneL
@ () nes nodel Pipe test iz
) extonds GpenWPL.Icons.Pipe;
O A e lobal variables and constants)
© Open Fanci Loop.2 System system(
+ Open Frnci tocp.r! 5,allowFlowReversal = false,
Modelica.Fluid.Types.Dynamics. FixedInitial, m_flow_start = 1)
@ Open Francs Loop 13 ®]
Open Franci Loop vt 1.® inner OpenWPL.MOC mec(N = 4, T = 100) annotation((1.7
® Opiace Lo s //medium declarations
4 replaceable package Medium = Nodelica.Media.Wat:
© Open Franis Loop 5 1 Mod p Partialiiedium "Medium in the component”;
« Open.Franci Loop.7 //upper tank
© Closed Francis Loop 11 Modelica. Fluid.Vessels.OpenTank Source(
1 redeclars package Medium wat
« Open Franci Loop 12 zaled H
(F) Open Fancis Loop.18
« Open Franci Locp 110 z
pen franca ece. 2 nPorts= 1,
« Open.Francis Loop.11 Fluid.Vessels 1 1PortsData (diameter= 1))
(P Pipe et 248 annotation((
//pipe between tan
© [P ppetet2
B o GpemiEL Compenents . Pipe NS V10 pipe(
@ (B) Pipesets redeclare package Hedi dia.wat, i ar 1 = false, closedvalve = true,
 (B) ppeestvt 2 1 imetor out = 1, expansion < Fale, Fricrion & fiteor
@ [B) Fipetes
®
@ (B) pipesest s 5
[P Pipetes? _Fluid.Vessels. OpenTank Sink(
& (B) st redeclare package Meditm = M Media.Wat. 1,
© [P pipetestoe
@ [B) Fipeseseaio
& (P) P et . spazacing 1a.vessel. 2 Vesselportepata (aianster = 1)))
@ [P) Junction_test vt o

© (D] Ppe etz
® () Components
(&) Funcions
© G aces
@ (D ons

&8 o

woc

42 equation
138 connect (Source.ports(i), pipe.porta) amnotation(|
& connect t b, 11y
protected
annotacion((.7

end Pipe_test_vi2;

it coizr @udone oAmocng Srotng @ Debugon

Figure 3.2: OpenModelica software and GUI as used in this thesis in text mode. This is the

underlying code of the graphics in Figure 3.1.

3.1. OpenModelica and OMEdit 19

The overall hierarchy of software used in this thesis is shown in the figure below.

Programming ; : I

/7
language MODELICA

Simulation

OpenModelica

environment

Graphical user
interface

Library

‘Waterpower laboratory
NTNU 4

Figure 3.3: Hierarchy of software used in this thesis.

20 3. Model development and simulation settings

Figure 3.2 displays the same model as in Figure 3.1, except in text mode, e.g., when
you double click a component on the canvas and set the length to 100(m), Open-
Modelica will automatically add length = 100 in the code. Text mode displays
the underlying lines of code automatically generated when each component was
dragged from the library onto the canvas. Similarly, the code was also altered when
each model was double-clicked to set the parameters.

Parameters
General Assumptions ~ Medifiers
Component
Mame: pipe
Class
Path: OpenWPL.Components.Pipe_MSL_v13
Comment:
Parameters
erath n Length

diameter_in m Inlet diameter of drcular pipe

diameter_out m Outlet diameter of circular pipe

dosedvalve = true if the right side of the pipe is dosed by a valve
El m/s Velocty of sound in water

friction true v = true if there s friction in the system

expansion = true if expansion equations are enabled. If not then A_outlet = A _inlet,

Figure 3.4: Parameter options of the pipe component.

Each component represents a model which contains separate lines of predefined
code, and each component can be double-clicked to configure its parameters as
shown in Figure 3.4. This is a simple way to alter parameters of pipes without the
need to alter code, simply accessed by double-clicking the component on the can-
vas. Notice how each physical element is connected with blue lines in Figure 3.1,
and be aware that also Pipe_test_vi2 is of the model class, i.e., the model itself
which includes the whole canvas. Observe that both components named Source
and Sink are of the same model named OpenTank. While Source and Sink can be
thought of as local names only applied in the current model named Pipe_test v12,
they are both coded as a OpenTank model. This means that the component has only
been coded once, but applied twice using two different configurations. This is the
main principle and forte of Modelica.

In the case of Figure 3.1 and Figure 3.2 the OpenTank model is a component
available in the Modelica Fluid Library, while Pipe is a component from the Open-
WPL libray. E.g. they are instantiated (or called) using the naming convention
Modelica.Fluid. Vessels.OpenTank and OpenWPL.Components. Pipe respectively.

3.2. OpenWPL 21

3.2 OpenWPL

OpenWPL is composed of several sub-packages as seen in Figure 3.5. Rigs and
Tests are packages containing complete and incomplete experimental setups, re-
spectively. Components mainly contains versions of the pipe component and Func-
tions contains all necessary functions as seen in Appendix G. Interfaces contain
definitions for the ports and Icons merely contain icons for other models. Data and
MOC on the other hand are not packages, but models. They are imported into other
models in order to set global parameters, as explained in subsection 3.2.2. Data
was imported from the OpenHPL library, but is currently not in use.

=]

|E| Rigs

@ Tests

|E| Compenents

B B B

|E| Functions

@ Interfaces

|I| lcons

£ Data
MOC

Figure 3.5: OpenWPL and its sub-libraries.

]

The pipe component and the MOC component are the most important models in
OpenWPL and were built using the approach as seen in chapter 2. Whenever a
new version of the pipe component was created, it was put into the sub-package
Components. Then, a new test rig from source to sink was created to test the pipe
components and their features, as seen in Figure D.1 in Appendix D.

3.2.1 Pipe component

The pipe component is extended upon Modelica.Fluid.Interfaces.PartialTwoPort
which defines an interface for components with two ports. I.e., everything that
is coded in Modelica.Fluid.Interfaces.PartialTwoPort is also included in the pipe
component in OpenWPL. This enables compatibility with the rest of the fluid lib-
rary and allows flow reversal as defined in the system-wide settings. The compon-
ent may transport fluids as defined by the medium.

The interface defines port_a and port_b which corresponds to the left and right
side of the pipe, respectively. They encapsulate the method of characteristics, and
acts as boundaries, simultaneously providing the pipe with access points that can

22 3. Model development and simulation settings

connect to other components. The creation of the pipe component is explained in
section 2.2, starting with the nested for-loops iterating in-between the boundary
conditions, followed by initial conditions and finally the boundary conditions at
port_a and port_b. Data is stored in arrays and vectors depending on whether they
change in respect to both time and space, or merely space, respectively. The vectors
are of size IV and the arrays of size N - T

3.2.2 MOC component

A model named moc has been created to make global simulation settings related to
the method of characteristics available to all components in the simulated model.
Most notably, the number of time steps 7" and the number of intervals N are set in
this component, which ensures that every component uses the same values during
the simulations.

For future versions of the library, it would be beneficial to add further compatibility
options in regards to the method of characteristics in this model. More specifically,
the moc component should decide the minimum amount of intervals NV for all pipes
in the model, based on the pipe with the smallest physical length. Currently, this
option is disabled, thus N must be manually set by the user.

3.3 Simulation parameters and setup for instantan-
eous valve closure

The system is simulated in OMEdit using the global parameters as shown in Table 3.1.
Similar to the moc component mentioned in subsection 3.2.2, a MFL specific com-
ponent named system is also used during the simulations. Several of the parameter
settings shown in Table 3.1 are set in this component.

The following simulations are all initialized by initial conditions occurring at time
step T' = 1, followed by an instantaneous valve closure occurring at 7' = 2. This
action induces dynamic pressure surges which will be presented and discussed in
section 4.1.

3.3.1 Single pipe without friction

This is the first simulation performed in this thesis. The settings of the simulations
are shown in Table 3.2, in addition to the parameter settings in Table 3.1 which
are valid for all simulations. The setup can also be seen in diagram mode in
Appendix D.

3.3. Simulation parameters and setup for instantaneous valve closure 23

This simulation checks if the method of characteristics is implemented correctly.
It assumes that the outlet of the pipe component is instantaneously closed by a
valve, while friction is disabled. One would expect to see a square pressure pulse,
which would confirm the functionality of the model [7]. The results can be found
in Figure 4.1 in subsection 4.1.1.

The following sections will present additional simulation settings for different con-
figurations. All results are discussed in chapter 4.

Table 3.1: Table of global values which are valid for all simulations.

Parameter Value Unit
Temperature 14 °C
Pipe roughness 0.000025 m
Fluid density 999.2 kg/m?
Dynamic viscosity ~ 0.0011684 Pa-s
Kinematic viscosity ~ 0.0000016934 m?/s
Gravity 9.81 m/g2

Table 3.2: Parameter settings for a single pipe without friction where N=4. Results in

Figure 4.1.
Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 4
Simulation location NNV, 4
Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f

Expansion expansion false

24 3. Model development and simulation settings

3.3.1.1 Change of simulation location

Table 3.3: Parameter settings for a single pipe without friction at the mid-section where
N; = 3. Results in Figure 4.2.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 4
Simulation location 1V, 3

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f
Expansion expansion false

Table 3.4: Parameter settings for a single pipe without friction at the inlet where N; = 2.
Results in Figure 4.3.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 4
Simulation location NN, 2

Inlet diameter diameter_in 1 m
Outlet diameter diameter out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f
Expansion expansion false

3.3. Simulation parameters and setup for instantaneous valve closure 25

3.3.1.2 Change of simulation spatial steps

Table 3.5: Parameter settings for a single pipe without friction where N=8. Results in

Figure 4.4
Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 8
Simulation location NN 8
Inlet diameter diameter_in 1 m
Outlet diameter diameter out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f
Expansion expansion false

Table 3.6: Parameter settings for a single pipe without friction where N=12. Results in

Figure 4.5.
Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 12
Simulation location 1V, 12
Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f

Expansion expansion false

26 3. Model development and simulation settings

3.3.2 Single pipe with friction

The next case which will be simulated is similar to the previous case, except with
friction. It would be feasible to expect that the overall hydraulic head is decreasing
over time. The setup can also be seen in diagram mode in Appendix D, and the
result can be found in subsection 4.1.2.

Even though the library is built for small-scale hydropower laboratory systems
with, say pipe lengths of L = 2(m), a pipe length of L = 50(m) is used instead
for all simulations. The reason is because friction is a function of length, and that
it is easier to visualize the effect friction has on the results for longer pipes.

Table 3.7: Pressure drop along the pipe from inlet to the closed valve. Results in Figure 4.6.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 1

Number of intervals N 4
Simulation location NNV, 1-4

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction true
Friction coefficient f f

Expansion expansion false

3.3. Simulation parameters and setup for instantaneous valve closure 27

Table 3.8: Parameter settings for a single pipe with friction. Results in Figure 4.7.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 4
Simulation location NN, 4

Inlet diameter diameter_in 1 m
Outlet diameter diameter out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction true
Friction coefficient f f
Expansion expansion false

28 3. Model development and simulation settings

3.3.2.1 Change of friction coefficient

Table 3.9: Parameter settings for a single pipe with friction where N=4. The friction factor
has been multiplied by 100 in order to enhance the visualization. Results in Figure 4.8.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 4
Simulation location NNV, 4

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction true
Friction coefficient f 100f
Expansion expansion false

Table 3.10: Parameter settings for a single pipe with friction where N=8. The friction factor
has been multiplied by 100 in order to enhance the visualization. Results in Figure 4.9.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 8
Simulation location 1V, 8

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction true
Friction coefficient f 100f
Expansion expansion false

3.3. Simulation parameters and setup for instantaneous valve closure

29

Table 3.11: Parameter settings for a single pipe with friction where N=12. The friction
factor has been multiplied by 100 in order to enhance the visualization. Results in

Figure 4.10.
Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 12
Simulation location NN 12
Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction true
Friction coefficient f 100f
Expansion expansion false

30 3. Model development and simulation settings

3.3.3 Single pipe with a non-uniform cross-sectional area without
friction

The setup can also be seen in diagram mode in Appendix D.

Table 3.12: A pressure pulse at the end of a single pipe with a non-uniform cross-sectional
area with N=4, where a closed valve is located. Results in Figure 4.11

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 4
Simulation location NNV, 4

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1.1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f
Expansion expansion false

Table 3.13: A pressure pulse at the end of a single pipe with a non-uniform cross-sectional
area with N=8, where a closed valve is located. Results in Figure 4.12.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 8
Simulation location 1V, 8

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1.1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f

Expansion expansion false

3.3. Simulation parameters and setup for instantaneous valve closure 31

Table 3.14: A pressure pulse at the end of a single pipe with a non-uniform cross-sectional
area with N=12, where a closed valve is located. Results in Figure 4.13.

Parameter Name Value Unit
Pipe length length 50 m
Time steps T 100
Number of intervals N 12
Simulation location NNV, 12

Inlet diameter diameter_in 1 m
Outlet diameter diameter_out 1.1 m
Velocity of sound a 1200 m/s
Valve closedValve true
Friction friction false
Friction coefficient f f

Expansion expansion false

32

3. Model development and simulation settings

33

Chapter IV

Results and discussion

This section will present results and affiliated discussions. Simulation parameters
and setting are presented in section 3.3, and each simulation result will be discussed
consecutively.

Simulation data have been extracted from OpenModelica and imported into MAT-
LAB for post-processing. Note that due to an unknown bug when extracting data
from OpenModelica to MATLAB, the first step in space have been excluded. This
only affects the visual results related to the graphs, not the numerical results.

4.1 Benchmarking case: instantaneous valve closure

The following simulations are cases of instantaneous valve closure. As previously
mentioned, the following simulations are all initialized by initial conditions occur-
ring at time step 7" = 1.

4.1.1 Single pipe without friction

This case is simulated to check if the method of characteristics is implemented cor-
rectly, and will be compared to the theoretical benchmarking case with an identical
setup.

By closing the downstream valve instantaneously at 7' = 2, one would expect to
observe a square pressure pulse propagating back and forth from the valve to the
reservoir. This is known as water hammer and can be seen from the point of view of
the valve from Figure 4.1, which indeed confirms that the method is implemented
correctly into the pipe component.

All graphs display the pressure at the valve for 7' = 100 time steps. Observe that
the peak hydraulic head is constant which is a result of friction being excluded in
this particular simulation.

34 4. Results and discussion

Square pressure pulse at the valve without friction

=TI

1500 b

1000 r| 7
500 b

-500 - b

Hydraulic head (m)
o

-1000 [b
-1500 - b

i O O O O

-2500 7

0 0.1 02 03 04 05 06 07 08 09 1
Time (s)

Figure 4.1: Square pressure pulse at the end of the pipe, where a closed valve is located.
Simulation settings in Table 3.2.

All figures also display absolute pressure, and the negative pressure is therefore
only valid as a numerical representation. Negative absolute pressure is nonphysical
in real systems, but the dynamic behaviour is nonetheless correct in terms of change
in pressure.

The initial pressure is H = 20.3034(m) due to the upstream water in the reservoir,
and the point of equilibrium between the upper and lower amplitude is therefore
not zero. The peak surge is Hpeqr = 2462.16(m) and the minimum surge is
H,in = —2421.55(m). The vertical lines are slightly sloped due to the pressure
being represented as an increase from one time step to the next. The latter is most
noticeable in Figure 4.3 in subsubsection 4.1.1.2.

4.1.1.1 Simulation validation

To check the validity of simulations one can calculate the expected hydraulic head
H and reflection time 7. using the Joukowsky equation and reflection time equation
as shown below.

Consider Equation 2.8 where the change in velocity Awv occurs over the character-
istic change in time At¢, which is a necessary assumption when using the method
of characteristics, such that:

4.1. Benchmarking case: instantaneous valve closure 35

2
A= -y (4.1)
g dx

Insert ‘fl—f = a as seen in Equation 2.12, and observe that:

alAv
g

AH = 4.2)

where H(m) is the hydraulic head, a(m/s) is the speed of sound, v(m/s) is the
velocity and g(m/s?) is the gravitational acceleration[7]. Equation 4.2 is known as
the Joukowsky equation which calculates peak transient pressure when a valve is
closed instantaneously. It is used to check if the hydraulic head in the simulations
concurs with the calculated value.

Apply Equation 4.2 to the simulation settings given in Table 3.2, and compare with
the amplitude of Figure 4.1:

1200.00 - 19.95
heatcutated = T 981 = 244090(m) 4.3)

hsimutated = _244186(m) “4.4)

This means that there is an 0.039% increased change in hydraulic the head from
the calculated values to the simulated values. This is a negligible error which is
most likely related to numerical round-off, considering the fact that Equation 4.2 is
based on the same equations as the method of characteristics.

Next, consider the commonly known velocity equation which relates velocity to
distance over time, v = %, and apply to the simulated setup. Equation 4.5 can then
determine the reflection time in a pipe at an instantaneous valve closure. It is used
to check if the time in the simulation concurs with the calculated value [7]:

T, === 4.5)

where T;. (s) is the reflection time, L (m) is the length of the pipe and a (m/s) is
the speed of sound in water. Observe that the equation is multiplied by two which
represents the wave travelling back and forth in the pipe, known as the half-period.

Apply Equation 4.5 to the simulation settings given in Table 3.2, and compare with
the half-period of Figure 4.1 in subsection 4.1.1:

36 4. Results and discussion

2-50 1
—— = —=0. 4.
1200 B 0.0833 (4.6)

Ty simulatea = 0.0677 4.7)

Tr,calculuted =

This means that there is an 18.72% decreased change in reflection time from the
calculated values to the simulated values.

The minuscule 0.039% change in the hydraulic head is negligible, however, the
major change in reflection time can be a significant source of error. The latter is
vulnerable to errors of the steady-state boundary conditions due to the small amount
of spatial steps V. Both boundary conditions occupy one step each, namely the first
and last. When N = 4, which is the setting used in the current simulation, only two
steps are left which are simulated using the full method of characteristics, namely
the second and third. It is therefore of interest to see if the increase of spatial steps
N leads to a decrease of change in the reflection time 7;.. This will be elaborated
on in subsubsection 4.1.1.3.

4.1.1.2 Change of simulation location

Figure 4.1 displays the classical representation of a frictionless water hammer [8].
It acts as the main benchmarking case due to its basic dynamic behaviour, which is
highly relatable to the governing equations.

In order to check if the method of characteristics is implemented correctly along the
whole length of the pipe, the pressure pulse has been plotted at different sections.
Figure 4.2 and Figure 4.3 shows the water hammer effect from the same simulation
from the point of view of the mid-section and inlet of the same pipe, respectively.

The figures display dynamic behaviour in accordance with what is to be expected
[8]. Observe how the middle section of the pipe experiences a shorter surge peak
in Figure 4.2, as well as a brief horizontal distribution at H = 20.3034(m).

Similarly, observe how the inlet of the pipe experiences a very brief surge peak in
Figure 4.3, as well as a wider horizontal distribution at H = 20.3034(m). The
general tendency concerning the surge peak is that it is occurring further away in
time, and appears shorter, for an increased distance from the valve. This can be
explained by the fact that it takes some time before the surge is propagating from
the closed valve up to the pipe inlet, and then back again.

4.1. Benchmarking case: instantaneous valve closure 37

Pressure pulse at the mid-section without friction

2500 - 7l
2000
1500 b
1000 b

500 b

-500 [b

Hydraulic head (m)
o
I
|

-1000 | ,
-1500 | .
-2000 | 1
-2500 g

0 0.1 02 03 04 05 06 07 08 09 1
Time (s)

Figure 4.2: Pressure pulse at the mid-section of the pipe, upstream of where a closed valve
is located. Simulation settings in Table 3.3.

Pressure pulse at the inlet without friction

2500 - g
2000 [1
1500
1000

500 [

-500 - b

Hydraulic head (m)
o
|
|

-1000 7
-1500 - b
-2000 [b

-2500 7

0 0.1 02 03 04 05 06 07 08 09 1
Time (s)

Figure 4.3: Pressure pulse at the inlet of the pipe, upstream of where a closed valve is
located. Simulation settings in Table 3.4.

38 4. Results and discussion

4.1.1.3 Change of simulation space steps

This section will be designated to increasing the amount of spatial steps up from
N = 4, in order to see if the change in calculated and simulated reflection time 7.
will diminish. Figure 4.4 and Figure 4.5 displays the square pressure surge as seen
in Figure 4.1, except with N = 8 and NV = 12, respectively.

First, observe how the x-axis gets smaller. This is a result of Equation 2.24 where
Ax decreases for an increasing N. Hence, At must also decrease due to a de-
creasing Az as seen in Equation 2.25. Since the simulations are based on a static
T = 100, the length of the x-axis is therefore reduced. This is an expected result
which further strengthens the validity of the component.

Square pressure pulse at the valve without friction

2500 |- — il
2000 -
1500
1000

500 [

oH———+ B I

-500 - b

Hydraulic head (m)

-1000 b
-1500 - b

-2000 b

-2500 b

0 005 01 015 02 025 03 035 04 045 05
Time (s)

Figure 4.4: Square pressure pulse at the end of the pipe with N=8, where a closed valve is
located. Simulation settings in Table 3.5.

Next, observe from Table 4.1 that the decrease from T} cqicuiated 10 Ty simulated
diminishes for a increasing N. This confirms the hypothesis that the model is more
accurate from an increasing amount of spatial steps. As previously mentioned,
this is likely due to the decreasing impact of the steady-state boundary conditions.
However, an increase of N will also lead to a longer simulation time, which is
undesirable. Nonetheless, Table 4.1 clearly shows that the simulations should run
on longer spatial steps [V, to increase the accuracy of the model.

4.1. Benchmarking case: instantaneous valve closure 39

Square pressure pulse at the valve without friction

2500 - e —
2000 [7
1500 b
1000 7

500 [b

-500 - b

Hydraulic head (m)
o

-1000 [b
-1500 - b
-2000 [b

-2500 7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)

Figure 4.5: Square pressure pulse at the end of the pipe with N=12, where a closed valve is
located Simulation settings in Table 3.6.

Table 4.1: Comparison between T caicutatea = 0.0833(s) and T simuiatea for different
spatial step N.

N Tr,simulatcd Decrease from Tr,calculated

4 0.0677(s) 18.72%
8 0.0729(s) 12.48%
12 0.0764(s) 8.28%

4.1.2 Single pipe with friction

This section will simulate cases to check if friction is implemented correctly. First,
it is desirable to see first-hand that the hydraulic head H is decreasing along the
pipe due to friction. Figure 4.6 displays a linear pressure drop acting in the initial
stages of the simulation at 7" = 1. Observe how the x-axis represents the length of
the pipe, contradictory to every other simulation where the point of view has thus
far been stationary.

Note that even though all cases in this thesis are set in a pipe where a valve is closed
instantaneously, this has not occurred in the case shown in Figure 4.6. Instead, the
figure displays how the initial conditions have correctly implemented friction using
Equation 2.28.

40

4. Results and discussion

Single pressure drop along the pipe with friction f

18.8 - b

©

Y
T
.

Hydraulic head (m)
&
[o2]

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026
Length (m)

Figure 4.6: Pressure drop along the pipe from inlet to the closed valve at 1" = 1.
Simulation settings in Table 3.7.

Semi-square pressure pulse at the valve with friction

o nnnnnnTn

-500 - b

Hydraulic head (m)
o
f
|
1
|
|
f
|
|
!
|
T
|
|
|
|
1
|
|
I
|
!
I
T
|
|
|

-1000 [7
-1500 - b

i T O A

-2500 7

0 0.1 02 03 04 05 06 07 08 09 1
Time (s)

Figure 4.7: Pressure surges with friction at the end of a pipe, where a closed valve is
located. Simulation settings in Table 3.8.

4.1. Benchmarking case: instantaneous valve closure 41

Now, by closing the downstream valve instantaneously at again time step 7' = 2,
one would expect to observe a semi-square pressure pulse propagating back and
forth from the valve to the reservoir.

At first glance, Figure 4.7 seems interchangeable from the frictionless square pres-
sure pulse in Figure 4.1. At the very least, this means that the core of the method
of characteristics is not corrupted by the inclusion of friction.

It is hypothesized that friction will impact the simulated results insignificantly. To
this effect, follow-up simulations have been performed to enhance the visual effect
of friction, where the friction factor has been multiplied by one hundred, i.e., f* =
100 - f where f is the correct friction factor. These simulations are discussed in the
following section.

4.1.2.1 Change of friction coefficient

The simulation results in this section have an increased friction factor to enhance
the visual effects while assessing the validity of the library.

3000 Semi-square pressure pulse at the valve with friction f*=100f

2000 ﬂ ﬂ

1000 1

Hydraulic head (m)
o
|
1
|
|
|
I
|
|

-1000 -

IEREN N |

0 0.1 02 03 04 05 06 07 08 09 1
Time (s)

Figure 4.8: Pressure surges with friction at the end of a pipe with N=4, where a closed
valve is located. Simulation settings in Table 3.9.

Figure 4.8 displays a change in values and behaviour. The pressure pulse is still
semi-square, and overall the hydraulic head is decreasing for increasing time, as
expected. In practice, this means that the hydraulic head is less than what it was
when the valve originally closed down, merely due to friction. It can be deduced

42 4. Results and discussion

that the hydraulic head would reach zero for a long period of time, naturally without
an inflow of water from the reservoir after valve closure.

Observe how the hydraulic head is increasing and decreasing piece-wise linearly for
each semi-square pulse on the positive and negative side of the y-axis respectively.
These slopes are results of the pressure surge moving upwards in the pipe, all the
while the hydraulic head is larger further upstream of the pipe.

The pressure increase at the valve is due to the friction in the upstream pipe dis-
appearing when the flow is stopped by the initiated pressure rise propagating up-
stream. This phenomenon is also known as line-packing.

It was hypothesized that the increase of hydraulic head at each semi-square pulse
would be linear, which is not the case seen from Figure 4.8. The head appears
to start and finish off with a section of non-changing head, while the section in-
between is increasing linearly. This could be a numerical error or an error with
the boundary conditions. Note that the method of characteristics is implemented
piece-wise, and not continuously at the boundaries. More specifically, it is only
the hydraulic head H and volumetric flow rate) which is transferred between
boundaries, and not the characteristics themselves. If implemented without sim-
plifications, the plus characteristic should be implemented at the left boundary and
the minus characteristic at the right boundary. This could also be a source of error
which could lead to faulty boundary conditions as seen in Figure 4.8. Other possible
sources of error could be that the boundary conditions are calculated based on the
steady-state inlet parameters.

Figure 4.9 and Figure 4.10 clearly displays that the hypothesized boundary condi-
tion errors which act as horizontal pressure surges are less prevalent in simulations
with an increasing amount of spatial steps /N. The slopes are smoother due to more
spatial steps, but still retain the horizontal head development at the beginning and
end of the slope. This confirms that the method is more accurate for a larger number
of N when friction is included.

4.1. Benchmarking case: instantaneous valve closure 43

Semi-square pressure pulse at the valve with friction f*=100f

2500
2000
1500
1000

al
o
o

0

-500

Hydraulic head (m)

-1000
-1500

-2000

-2500 b

0 005 01 015 02 025 O. 035 04 045 05
Time (s)

Figure 4.9: Pressure surges with friction at the end of a pipe with N=8, where a closed
valve is located. Simulation settings in Table 3.10.

Semi-square pressure pulse at the valve with friction f*=100f

2500
2000
1500
1000

500

-500 q

Hydraulic head (m)
o

-1000 - b

-1500 | :
-2000 RJ M 8

-2500 b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)

Figure 4.10: Pressure surges with friction at the end of a pipe with N=12, where a closed
valve is located. Simulation settings in Table 3.11.

44 4. Results and discussion

4.1.3 Single pipe with a non-uniform cross-sectional area without
friction

This section utilizes Equation 2.26 and Equation 2.27 in order to simulate a friction-
less pipe with a non-uniform cross-sectional area. It has previously been observed
that the accuracy of simulation results vastly depends on space step N. In addition,
it is easier to understand the behaviour of the pipe component when varying N, due
to its unique synergy with the boundary conditions.

Square pressure pulse at the valve without friction
T T T T T T T

6000
4000

2000

o

Hydraulic head (m;
8
8

-4000

-6000

| | | | | .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Figure 4.11: Pressure pulse at the end of a single pipe with a non-uniform cross-sectional
area with N=4, where a closed valve is located. Simulation settings in Table 3.12.

First of all, the results from these simulations are faulty and nonphysical. The first
indicator of this is the change in dynamic behaviour over time. Due to the absence
of friction, all pressure pulses should display the same dynamic behaviour, which
is not the case.

Secondly, the peak hydraulic head appears to increase over time. Simultaneously,
the initial values of each pulse appear to decrease over time. Both of these values
should be non-changing. As with all simulations, Figure 4.13 where N = 12
appear to be the most stable, even though the dynamic behaviour here is also
non-physical. These simulations show that the library is currently incapable of
simulating pipes with non-uniform cross-sectional area.

4.1. Benchmarking case: instantaneous valve closure 45

Pressure pulse at the valve for a non-uniform cross-sectional area without f
: : : . :

5000 N
4000
3000

2000

(m)

1000

0

-1000

Hydraulic head

-2000

-3000

-4000

0 005 01 015 02 025 O. 035 04 045 05
Time (s)

Figure 4.12: Pressure pulse at the end of a single pipe with a non-uniform cross-sectional
area with N=8, where a closed valve is located. Simulation settings in Table 3.13.

Pressure pulse at the valve for a non-uniform cross-sectional area without frictit
4000 F . : : . : . 1

3000
2000

E 1000

-1000

Hydraulic head (

-2000

-3000

-4000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)

Figure 4.13: Pressure pulse at the end of a single pipe with a non-uniform cross-sectional
area with N=12, where a closed valve is located. Simulation settings in Table 3.14.

46 4. Results and discussion

4.2 Overall observations

The results obtained has thus far been expected, except for the pipes with non-
uniform cross-sectional areas in subsection 4.1.3. The graphs display typical dy-
namic behaviour, and can in most cases easily be compared to benchmarking cases.
The classical representation of the frictionless water hammer effect as seen in
Figure 4.1 is the simplest example of this.

The simulation results were validated in subsubsection 4.1.1.1 and were in accord-
ance with the Joukowsky equation and the reflection time equation, with some
exceptions. Naturally, the results are more precise when simulating with a larger
spatial step IV, which revealed that the boundary conditions represent a source of
error. When comparing results for N € [4,8,12] it was revealed that the differ-
ence between simulated reflection time 7. simuiateq and calculated reflection time
T calculated Significantly diminishes for an increasing NV, at the cost of an increased
simulation real-time. Depending on the simulation which would be performed with
the library, it would be beneficial for the user to strive after a minimum value
of N = 8, and as large as possible, within the acceptable simulation time span
available to the user.

Simulations are limited to the simple geometry available in the parameter settings
of the pipe model. It has been revealed that neither the option for non-uniform
cross-sectional area nor the option for connecting pipes in series is currently not
functional. These are major limitations to the library which reduces the capabilities
for revealing the system dynamics of hydraulic laboratory systems.

Despite limitations and errors within the pipe component, a full library utilizing
the method of characteristics for pipe flow has nonetheless been created. The first
research objective related to the pipe component itself, including blind flanges, is
also completed. The pipes are easily customizable using the user-friendly graphical
user interface in OpenModelica.

The second research objective has only partially been completed. The initial case
as shown in Figure 1.1 in section 1.1 was not achieved. However, the method of
characteristics has successfully been implemented into the pipe component, which
enables the library to be applied to other sections of interest in hydraulic laboratory
systems.

The last research objective related to the comparison between simulated cases and
benchmarking cases has been fulfilled in its entirety. Each case has contributed to
a greater understanding of the capabilities, as well as illuminating the advantages
and disadvantages, of the library.

4.2. Overall observations 47

Errors related to the simulation results, especially concerning the boundary con-
ditions, decreases the scope of applicability of the library. Additionally, due to
Modelica-related errors, pipes are not able to be coupled in series. It is unknown
if the latter is related to the boundary conditions, which introduces an element of
uncertainty.

Simulations have been within the scope of the research objectives. Due to the time
restriction, these errors have not been fully ascertained. Suggestions for further
work, especially related to known errors and incomplete simulations, is presented
in chapter 6.

48

4. Results and discussion

49

Chapter V

Conclusion

A library named OpenWPL has been created using the method of characteristics. It
was created in the open-source programming language Modelica using the software
OpenModelica. As such, the first research question has been satisfied.

The simulated results have been compared to benchmarking cases of instantaneous
valve closure. The comparison revealed that the pipe component is capable of
simulating the classic representation of a frictionless water hammer along the whole
length of the pipe as a square pressure pulse. Hence the second and third research
questions have been investigated.

The simulations were validated using the Joukowsky equation and the reflection
time equation, and investigations revealed that there are non-negligible errors re-
lated to the boundary conditions. Also, friction was successfully implemented,
although significantly more accurate for higher resolution in space.

In conclusion, OpenWPL is currently not capable of revealing the system dynamics
of hydraulic laboratory systems. Rather, the library represents a good foundation
that can be further developed into a more complex and full-fledged library in the
future.

50

5. Conclusion

51

Chapter VI

Further work

The following chapter lists the most prominent suggestions for further work on the
library which would increase its preciseness and applicability. All suggestions in
this chapter were not carried through due to the restriction of time.

Most notably, it would be beneficial to fully implement the functions of connecting
pipes in series and the implementation of pipes with non-uniform cross-sectional
areas.

The former would enable the possibility of simulating the case as shown in Fig-
ure E.1 in Appendix E. The problem at hand, according to the error message as
shown in OpenModelica, is related to the imbalance of equations and variables
during the pre-optimization of the model. Although the system is balanced when
using OpenModelica’s built-in function Check Model as seen in Figure F.1, the
system is deemed under-determined during simulation as seen in Figure F.2 and
Figure F.3, all in Appendix F. This may be a result of imbalanced equations
within some part of the pipe model, or perhaps external functions that are used
within. Further work on this issue could potentially lead to the currently biggest
advancement of the library, namely the possibility to connect pipes in series.

The latter, i.e. the problems with the implementation of pipes with non-uniform
cross-sectional areas, is most likely related to faulty boundary conditions. It is
currently not clear as to why, or even if, the boundary conditions are not correctly
implemented. The only observation which relates to this effect is that several
simulations, e.g. Table 4.1, Figure 4.8 and Figure 4.12, display certain strange
elements where the boundary conditions could be the origin. A possible solution
to this problem could be to fully implement the method of characteristics at the
boundaries as well, i.e., obtain a plus characteristic at port_a at the left boundary
and transfer the minus characteristic at porz_b at the right boundary.

52 6. Further work

There are several other suggestions for further work which could prove beneficial
to the library, however, this chapter will finish with only a few mentions. First of
all, it would be beneficial if there was full compatibility between OpenWPL and the
MFL. This would enable the use of many useful components available within the
Modelica Fluid Library. Another step along the way would then be to fully develop
the MOC component. Currently, the values of N and 7" must be set manually, but,
if several pipes would be coupled in series it would be useful that both N and T’
would be computed automatically based on the shortest pipe and simulation time
set in Modelica, respectively.

Secondly, it would prove useful to design other hydropower-related components
neither available in the MFL nor OpenWPL, such as surge shafts and turbines. This
would enable the user of the library to simulate real-case scenarios of hydraulic
laboratory systems.

Lastly, the transient effects in the pipe component are simulated using a quasi-
steady friction model, which was an assumption used to implement friction in
Equation 2.3. Ideally, a model simulating unsteady friction should be included,
in addition to the quasi-steady simplification implemented in the pipe component.

REFERENCES 53

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

References

Hinna, J. T., 2020, “Modelica model of the Waterpower Laboratory,” Project
work, Norwegian University of Science and Technology, Trondheim.

Wylie, E. B. and Streeter, V. L., 1993, Fluid Transients in Systems, Prentice
Hall, Englewood Cliffs, NJ.

Cengel, Y. A. and Cimbala, J. M., 2014, Fluid Mechanics: Fundamentals and
applications, 3rd ed., McGraw-Hill Education, Boston.

Holm Aftret, A., 2017, “Simulation and analysis of FCR operation of a
Francis turbine,” Master’s thesis, Norwegian University of Science and Tech-
nology, Trondheim, accessed 2021-03-05, https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/2454894

Otter, M., 2013, “Modelica Overview,” accessed 2020-11-13,
https://modelica.org/education/educational-material/
lecture-material/english/ModelicaOverview.pdf/view.html

2021, “Modelica Language Specification,” accessed 2021-05-14, https://
specification.modelica.org/master/MLS.html

Nielsen, T., 1990, “Dynamisk dimensjonering av vannkraftverk,” Tech. Rep.
STF67 A 90038, SINTEF, ISBN: 82-595-5952-8.

Storli, P.-T., 2010, “Transient friction in pressurized pipes; the wate rhammer
phenomenon,” phd, Norwegian University of Science and Technology, Trond-
heim.

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2454894
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2454894
https://modelica.org/education/educational-material/lecture-material/english/ModelicaOverview.pdf/view.html
https://modelica.org/education/educational-material/lecture-material/english/ModelicaOverview.pdf/view.html
https://specification.modelica.org/master/MLS.html
https://specification.modelica.org/master/MLS.html

54

REFERENCES

55

Appendix - A

Full calculation: the equation of motion for transient

flow

This appendix will show calculations in regards to the simplification from Equa-
tion 2.3 to Equation 2.4 [2].

Vvl
2D

I% +VV, +V, +gsina + =0 (2.3 revisited)

Consider Equation 2.3 for steady flow, i.e. V; = 0, as a special case of unsteady
flow.

% +VV,+gsina+ f‘;l\)V\

=0 (2.3a)
Assume also constant fluid density and pipe area, i.e. V, = 0.

pfAzVIV] _

Ap = —pgAzxsina —
D pgAzsin « 5D

0 (2.3b)
The latter equation is equivalent to the Darcy-Weisbach equation, and it is therefore
consistent to exclude the term V'V, which is a common simplification for unsteady
flows. This leads to

Pa Vvl _

? + gsina + 5D 0 (2.3¢)

where the pressure term may be replaced with the piezometric head H and elevation
z at position x.

56 A. Full calculation: the equation of motion for transient flow

H, —si

Pg(He —sine) oo IVIVI g 23d)
P 2D

Which subsequently leads to
gH, +V, + VIV 0 (2.4 revisited)

2D

57

Appendix - B

Full calculation: the continuity equation for transient

flow

This appendix will show calculations in regards to the simplification from Equa-
tion 2.7 to Equation 2.8 [2].

A .
APy 2o (2.7 revisited)
A p

The second term in the latter equation can be replaced using the definition of bulk
modulus of elasticity for a fluid.

p_ D
-== 2.7
0K (2.7a)
Similarly the first term can be expressed as such
. dA
A=—p (2.7b)
dp
Substituting Equation 2.7a and Equation 2.7b into Equation 2.7 yields
D K dA
Vi==|14——7]=0 2.7
K < T dp> @7¢)

which can be re-written into

58 B. Full calculation: the continuity equation for transient flow

pa*Vy+p=0 (2.7d)

where the wave velocity is given as

a? = Ko (2.9 revisited)
14 (K/a)(2A/ap)

Consider Equation 2.7d for steady flow where p, = 0.

pa*Vy +Vp, =0 (2.7e)

Next, consider V,, = 0 where density and tube area variations are not considered
in steady flow of compressible fluids. In turn, this means that p, = 0. Substitute
Equation 2.3 into Equation 2.7d, and eliminate V.

VN Vv . v
D (1 (a) >+a2pt+th+pgsma+pJ;D0 (2.71)

The latter equation can be simplified by removing the term (V/a)? for low Mach
numbers.

pa*Vy +pr =0 2.79)
Finally, by replacing pressure using p; = pgHy, yields

a®V,

+H; =0 (2.8 revisited)

59

Appendix - C

Full calculation: the method of characteristics
This appendix will shown the calculation of the method of characteristics which
starts with Equation 2.10, and yields Equation 2.22 and Equation 2.23.
L=Li+XLs=0 (2.10 revisited)

Substitution of Equation 2.4 and Equation 2.8 into Equation 2.10 yields:

Vv
2D

g a?
L:Ll—s-)\Lg:/\(Hl.X—i-Ht) + (VE)\g+Vt> T —0 (2.10a)

Variables V' and H are functions of both x and ¢ which, for any two real and distinct
values of)\, means that:

dH dx
— =H,— + H, 2.10b
I Yt + Hy ()
1% dx
Observe that if
de g _\a? (2.10d)
a X g ’

then Equation 2.10a becomes

60 C. Full calculation: the method of characteristics

dH dv fV|V|
— — — T 2.1
‘Tt 7Y (2.10¢)

which yields

A==+= (2.11 revisited)

Now substitute Equation 2.11 into Equation 2.10d which yields

d
d—f — +a 2.11a)
2.11a refers to the change in position in relation to the change in time by the

wave velocity a. The substitution of the set of equations given in 2.11a into Equa-
tion 2.10d yields

gdH 4V fVIV]
ot gxdt dt 2D (2.12 revisited)
dt

=a

gdH _dvV [V

=0

c-.{ adt dt 2D (2.13 revisited)

dx
di

= —a

These equations are known as the characteristic equations. In order to obtain the
finite difference equations one must integrate along the characteristic lines. Now

multiply the first part of Equation 2.12 by a% = df, and integrate along the
positive characteristic line from point A to point P:
/ dH + 7/ 2 DA2 / QlQ|dx =0 (2.12a)

Now using integration by parts:

61

rp P'e rp z rp
/ Q2d$=Q2$’XZ—/ rdQ? = Q2x|wi—2/ xQ dQ
T A rA TA

~Qbrp — Q4za — 2 {T/PQP +2xA +Qa (Qp — QA)}

~ QplQal(rp —x4) (2.12b)

The same calculations can be performed for Equation 2.13. By completing the
integration for Equation 2.12a, and doing the same for the minus characteristic,
one achieves:

A
He = Hat 5(Qr = Qa) + 51200104l =0 (2.120)
A
HP*HBJngA(QP*QB)JrQ;DiZQQHQM =0 (2.13¢)
Solving for Hp yields:
CT:Hp=Ha—B(Qp—Qa) — RQp|QA| (2.12d)
Ct:Hp=Hp - B(Qp—Qp)+ RQp|Qs| (2.13d)

where it is now obvious that Equation 2.20 and Equation 2.21 are coefficients of
Equation 2.12d and Equation 2.13d:

B = I (2.20 revisited)
g
A
- 2f Dle (2.21 revisited)
9

As seen in section 2.2, Equation 2.12d and Equation 2.13d can be simplified to:

C+ : Hz = CP — Ble (214 revisited)

62 C. Full calculation: the method of characteristics

Cc™: Hz = C]W — B]wC?Z (215 revisited)
with constants
Cp=H; 1+ BQ;_1 (2.17 revisited)
C]w = Hi+1 — BQ'H—I (216 revisited)
and
Bp = B+ R|Q;_1| (2.18 revisited)
By = B+ R|Qi41] (2.19 revisited)

Finally Equation 2.22 is found by eliminating (); from Equation 2.14 and Equa-
tion 2.15. Equation 2.23 is found by inserting H; from Equation 2.22 into either
Equation 2.14 or Equation 2.15:

- CpBy +CyuBp
! Bp + Bm

(2.22 revisited)

_Cp—Cy

@i= Bp + By

(2.23 revisited)

63

Appendix - D

Diagram view of a setup from source to sink

This setup is used in several cases when simulating the instantaneous valve close.

moc system
ANIZ!
aq
A B ||~
Source Sink

pipe

Figure D.1: A simple setup from source to sink via a single pipe.

64

D. Diagram view of a setup from source to sink

65

Appendix - E

Diagram view of source to sink with intersection and
blind flange simulation

This setup did not compile. The intention was to observe the system dynamics in
pipe 1 and pipe 2 when the valve at pipe 3 closed.

moc system
A defaults L
/\ N
A Bl|777 7

Spill

Source

level =

; teeJunctionId. ..)
pipe_1 pipe_2

Figure E.1: A setup from source to sink with intersection and blind flange simulation.

66 E. Diagram view of source to sink with intersection and blind flange simulation

67

Appendix - F

Errors related to: source to sink with intersection and
blind flange simulation

ot OMEdit - Check Model - OpenWPL Tests Junction.. — O X

1 Check of
OpenWPL.Tests.Junction test wl
completed successfully.

Class OpenWPL.Tests.Junction test vl
has 402 eguation(s) and 402
variable(s).

128 of these are trivial equation(s).

CK

Figure F.1: Balanced Check Model message.

[1] 21:08:03 Symbolic Error
&n independent subset of the model has imbalanced number of equations (255) and variables (254).
variables:

Figure F.2: Imbalanced symbolic error.

[2] 21:08:03 Translation Error
pre-optimization module dockPartitioning (simulation) failed.

Figure F.3: Imbalanced translation error.

68 F. Errors related to: source to sink with intersection and blind flange simulation

69

Appendix - G

Modelica code: functions implemented into Open WPL

within OpenWPL;

package Functions "External functions"
extends Modelica.Icons.FunctionsPackage;
annotation (
version="1.0.0",
versionDate="08.06.21",
Protection (access = Access.packageDuplicate),
preferredview="info",
Documentation (info="<html>
<p> A package of external functions which is used in
the library. Most functions are based on the
method of characteristics. </p>
</html>"),
Icon);

function Re
extends Modelica.Icons.Function;
input Modelica.SIunits.Velocity v "Flow velocity"
7
input Modelica.SIunits.Diameter D "Pipe diameter"
;
input Modelica.SIunits.Density rho "Density";
input Modelica.SIunits.DynamicViscosity mu "
Dynamic viscosity of water";
output Modelica.SIunits.ReynoldsNumber Re_D "
Reynolds number";
algorithm

70 G. Modelica code: functions implemented into OpenWPL

Re_D := (rhoxabs (v) D) /mu;
end Re;

function f_Haaland
extends Modelica.Icons.Function;
input Modelica.SIunits.Velocity v "Flow velocity"
;
input Modelica.SIunits.Diameter D "Pipe diameter"
7
input Modelica.SIunits.Density rho "Density";
input Modelica.SIunits.DynamicViscosity mu "
Dynamic viscosity of water";
input Modelica.SIunits.Height eps "Pipe roughness
height";
output Real f "Friction factor";
protected
Modelica.SIunits.ReynoldsNumber Re_D "Reynolds
number";

algorithm
Re_D := Re(v, D, rho, mu);
£ := 100+ (1/(-1.8xlog(((eps/D)/3.7)"(1.11)+(6.9/
Re_D))))"2;
end f_Haaland;

function B_Impedance
extends Modelica.Icons.Function;
input Modelica.SIunits.Acceleration g "
Graviational accelleration";
input Modelica.SIunits.VelocityOfSound a "
Velocity of sound in water";
input Modelica.SIunits.Area A "Area";
output Real B;
algorithm
B := a/(g*A);
end B_Impedance;

function R_Resistance
extends Modelica.Icons.Function;
input Real f "Friction factor";
input Modelica.SIunits.Acceleration g "
Graviational accelleration";

71

input Modelica.SIunits
7

input Modelica.SIunits

input Modelica.SIunits

output Real R;
algorithm

R :=f »dx / (2 = g «
end R_Resistance;

function N_parts
extends Modelica.Icons

input Modelica.SIunits
input Modelica.SIunits
output Real Nj;
algorithm
N := L/dx;
end N_parts;

function T_step
extends Modelica.Icons

input Modelica.SIunits.
input Modelica.SIunits.

.Diameter D "Pipe diameter"

.Area A "Pipe area'";
.Distance dx;

D« A " 2);

.Function;

.Length L;
.Length dx;

.Function;

Length dx;
Velocity aj;

output Modelica.SIunits.Time dt;

algorithm
dt := dx/a;
end T_step;

function C_plus

extends Modelica.Icons.
/*

input Real Hb;

input Real B;

input Real Qb;

input Real R;

output Real Cp;

*/

Function;

input Real Ha "Hydraulic head at point A";

72 G. Modelica code: functions implemented into OpenWPL

input Real B "Impedance";
input Real Qa "Volumetric flow at point A";
output Real Cp "Plus characteristic given in
equation (3-23) in Wylie & Streeter";
algorithm
//1Cp := Hb - BxQb + R+«Qbxabs(Qb);
Cp := Ha + B=xQa;
end C_plus;

function C_minus
extends Modelica.Icons.Function;

/*

input Real Ha;
input Real B;
input Real Qa;
input Real R;
output Real Cm;
*/

input Real Hb "Hydraulic head at point B";
input Real B "Impedance";
input Real Qb "Volumetric flow at point B";
output Real Cm "Minus characteristic given in
equation (3-24) in Wylie & Streeter";
algorithm
//Cm := Ha + B+«Qa - R+Qaxabs(Qa) ;

Cm := Hb - BxQb;

end C_minus;

function H_head

extends Modelica.Icons.Function;

input Real Cp "Plus characteristic given in
equation (3-24) in Wylie & Streeter";

input Real Cm "Minus characteristic given in
equation (3-24) in Wylie & Streeter";

input Real Bm "Impedance at Cm given in equation
(3-24) in Wylie & Streeter";

input Real Bp "Impedance at Cp given in equation
(3-23) in Wylie & Streeter";

73

output Real H "Hydraulic head given in equation
(2-25) in Wylie & Streeter";
algorithm
H := (Cp*Bm+CmxBp) / (Bp+Bm) ;
end H_head;

function Q_ flow
extends Modelica.Icons.Function;
input Real Cp "Plus characteristic given in
equation (3-24) in Wylie & Streeter";
input Real Cm "Minus characteristic given in
equation (3-24) in Wylie & Streeter";
input Real Bm "Impedance at Cm given in equation
(3-24) in Wylie & Streeter";
input Real Bp "Impedance at Cp given in equation
(3-23) in Wylie & Streeter";
output Real Q "Volumetric flow given in equation
(2-26) in Wylie & Streeter";
algorithm
Q := (Cp—Cm)/ (Bp+Bm) ;
end Q_flow;

function v_Velocity
extends Modelica.Icons.Function;
input Real H "Hydraulic head";
input Modelica.SIunits.Acceleration g "
Graviational accelleration";
output Modelica.SIunits.Velocity v "Flow velocity

algorithm
v := sqgrt (2«gxabs (H));
end v_Velocity;

function H_expansion

extends Modelica.Icons.Function;

input Real Ha;

input Modelica.SIunits.Acceleration g "
Graviational accelleration";

input Modelica.SIunits.VelocityOfSound a "
Velocity of sound in water";

input Modelica.SIunits.Area Aa "Area at point A";

74

G. Modelica code: functions implemented into OpenWPL

input Modelica.SIunits.Area A "Area at point P";
input Real Qa "Volumetric flow at point A";
input Real Q "Volumetric flow at point P";
output Real H "Hydraulic head";
algorithm
H := Ha - (a/g)*(Q/A-Qa/Ra—((Q+Qa)/2)*(1/A - 1/Aa
)) i

end H_expansion;

function Q_expansion
extends Modelica.Icons.Function;
input Real Ha;
input Real Hb;
input Modelica.SIunits.Acceleration g "
Graviational accelleration";
input Modelica.SIunits.VelocityOfSound a "
Velocity of sound in water";
input Modelica.SIunits.Area Ab "Area at point B";
input Modelica.SIunits.Area Aa "Area at point A";
input Modelica.SIunits.Area A "Area at point P";
input Real Qa "Volumetric flow at point A";
input Real Qb "Volumetric flow at point B";
output Real Q "Hydraulic head";
algorithm
Q := ((g/a)*(Ha-Hb) + Qbx(1l/(2xA) + 1/(2%Ab)) + Qa
*(1/(2*A) + 1/(2xRa)))/(1/A + 1/(2+xBAb) + 1/ (2*Ra
))

end Q_expansion;

function H_initial
extends Modelica.Icons.Function;
input Real f "Friction factor";
input Real H_res "Head at reservoir";
input Real Q "Volumetric flow rate";
input Modelica.SIunits.Length L;
input Modelica.SIunits.Acceleration g "
Graviational accelleration";
input Modelica.SIunits.Diameter D "Pipe diameter"
;
input Modelica.SIunits.Area A "Pipe area';
output Real H;

75

algorithm
H := H_res - fx(L/D)+abs (Q)*Q/ (2«g*A"2);
end H_initial;

function v_Bernoulli

extends Modelica.Icons.Function;

input Modelica.SIunits.Height H_in "H. head at
reservoir";

input Modelica.SIunits.Height H_out "H. head at
sink";

input Modelica.SIunits.Diameter D "Pipe diameter"
;

input Modelica.SIunits.Acceleration g "
Graviational accelleration";

input Modelica.SIunits.Distance L "Length of pipe

”.
4

input Real k "loss coefficient";

input Real f "Friction factor";

output Real v "Flow velocity";
algorithm

v := sqrt((H_in-H_out)/ ((2*g)* (k+fxL/D)));
end v_Bernoulli;

function f_Bernoulli

extends Modelica.Icons.Function;

input Modelica.SIunits.Height H_in "H. head at
reservoir";

input Modelica.SIunits.Height H_out "H. head at
sink";

input Modelica.SIunits.Diameter D "Pipe diameter"
7

input Modelica.SIunits.Acceleration g "
Graviational accelleration";

input Modelica.SIunits.Distance L "Length of pipe

LU
4

input Real v "Friction factor";

output Real f "Flow velocity";
algorithm

f := (2+xDxg* (H_in-H_out))/ (L*xV"2);
end f_Bernoulli;

76 G. Modelica code: functions implemented into OpenWPL

function H_f
extends Modelica.Icons.Function;
input Modelica.SIunits.Diameter D "Pipe diameter"
7
input Modelica.SIunits.Acceleration g "
Graviational accelleration";
input Modelica.SIunits.Distance L "Length of pipe

LU
4

input Modelica.SIunits.Velocity V;
input Real f "Friction factor";
output Real H;

algorithm
H := £+ (L/D)* ((V"2)/(2%9));

end H_f;

function v_iterate
extends Modelica.Icons.Function;
input Modelica.SIunits.Diameter D "Pipe diameter"
7
input Modelica.SIunits.Density rho "Density";
input Modelica.SIunits.DynamicViscosity mu "
Dynamic viscosity of water";
input Modelica.SIunits.Height eps "Pipe roughness
height";
input Modelica.SIunits.Length L "Length";
input Modelica.SIunits.Acceleration g "
Graviational accelleration";
input Real v_guess "Guessed v using frictionless
Bernoulli";
input Real hf_guess "Change in h due to guessed
friction";
input Real dh "Real dh";
output Real v_out "Flow velocity";
protected
Real f_guess;
algorithm
while hf guess>=dh loop
v_guess :=v_guessx*0.95;
f_guess :=100%xOpenWPL.Functions.f_Haaland (
v_guess, D, rho,mu, eps) ;

77

hf_ guess:=0OpenWPL.Functions
v_guess, Jg) ;
end while;
v_out := v_guess;
end v_iterate;

end Functions;

.H_f (f_guess, L, D,

78

G. Modelica code: functions implemented into OpenWPL

79

Appendix - H

Modelica code: pipe component

model Pipe
/
Final model of a pipe using MOC to
simulate the waterhammer effect and
mass oscillations. Based on version

13.
Author: Jonas Tveit Hinna
Date: 10.06.2021
Version: 13

*/

extends Modelica.Fluid.Interfaces.PartialTwoPort;

import Modelica.Constants;

import Modelica.SIunits;

outer Modelica.Fluid.System system "System wide
properties";

outer OpenWPL.MOC moc "System wide storage of MOC
values";

extends OpenWPL.Icons.Waterhammer_ MOC;

/1 Geometry

final parameter Real nParallel (min = 1) =1 "
Number of identical parallel pipes" annotation

(

Dialog(group = "Geometry"));
parameter SI.Length length = 1 "Length"
annotation (

Dialog(tab = "General", group = "Geometry"));

80

H. Modelica code: pipe component

final parameter Boolean isCircular = true "= true
if cross sectional area is circular"
annotation (
Evaluate,
Dialog(tab = "General", group = "Geometry"));

parameter SI.Diameter diameter_in "Inlet diameter
of circular pipe" annotation (

Dialog(group = "Geometry", enable = isCircular)
) i
parameter SI.Diameter diameter_out = diameter_in
"Outlet diameter of circular pipe" annotation (
Dialog(group = "Geometry", enable = isCircular)

) i
final parameter SI.Area A_in = Modelica.Constants
.pi * diameter_in % diameter_in / 4 "Inlet
cross section area" annotation (
Dialog(tab = "General", group = "Geometry",
enable = not isCircular));
final parameter SI.Area A_out = Modelica.
Constants.pi % diameter_out x diameter_out / 4
"Oulet cross section area" annotation (

Dialog(tab = "General", group = "Geometry",
enable = not isCircular));
final parameter Modelica.Fluid.Types.Roughness
roughness = 2.5e-5 "Average height of surface
asperities" annotation (
Dialog(group = "Geometry"));

final parameter SI.Volume V = A_in * length x
nParallel "volume size";
// Boundary condition determination
parameter Boolean closedValve = true "= true if
the right side of the pipe is closed by a
valve" annotation (
Dialog(enable = true, tab = "General", group =
"Boundary condition"));
// Static head
final parameter SI.Length height_ab = 0 "Height (
port_Jb) - Height (port_a)" annotation (
Dialog(group = "Static head"));
/] Initialization
final parameter Medium.AbsolutePressure p_a_start

81

= system.p_start "Start value of pressure at
port a" annotation (
Dialog(tab = "Initialization"));
final parameter Medium.AbsolutePressure p_b_start
= p_a_start "Start value of pressure at port
b" annotation (
Dialog(tab = "Initialization"));
final parameter Medium.MassFlowRate m_flow_start
= system.m_flow_start "Start value for mass
flow rate" annotation

Evaluate = true,
Dialog(tab = "Initialization"));
/! Fluid parameters
final parameter SIunits.Density rho = 999.2 "
Fluid density" annotation (
Dialog(group = "Fluid properties"));

final parameter SIunits.DynamicViscosity mu =
0.0011684 "Dynamic viscosity" annotation (
Dialog(group = "Fluid properties"));
final parameter SIunits.KinematicViscosity nu =
mu / rho "Kinematic viscosity" annotation (
Dialog(group = "Fluid properties"));
parameter SIunits.VelocityOfSound a = 1200 "
Velocity of sound in water" annotation (
Dialog(group = "Fluid properties"));
/1 Method of Characteristics declarations
parameter Boolean friction = true "= true if
there is friction in the system" annotation (
Dialog(enable = true, tab = "General"));
final parameter Real dx = length / moc.N "Length
step calculated in this model";
final parameter Integer N = integer (length / dx)
"n parts";
final parameter Real dt = dx / a "Time step";
// final parameter Real dx_min = moc.dx_min;
final parameter Real dx_min = dx;
final parameter Integer T = moc.T;
/! Temporary time constant
/1 Local array storage declarations. Global
values are stored in the component "MOC.mo"
Real v_arrayl[T, NJ;

82

H. Modelica code: pipe component

//array for velocity

Real fp_array[T, NJ;

//array for friction at plus characteristic

Real fm_array[T, NJ;

//array for friction at minus characteristic

Real Rp_array[T, NJ;

//array for resistance at plus characteristic

Real Rm_array[T, NJ;

//array for resistance at minus characteristic

Real Bp_arrayl[T, NJ;

//array for impedance at plus characteristic

Real Bm_array[T, NJ;

// array for impedance at minus characteristic

Real Cp_arrayl[T, NJ;

/larray for plus characteristic

Real Cm_array[T, N];

//array for minus characteristic

Real H_array|[T, NJ];

//array for head

Real Q_array|[T, NJ];

//array for flow

Real A_vector[N];

//vector for area

Real D_vector([N];

//vector for diameter

// Initial condition declarations

Real Qa = port_a.m_flow / rho;

Real Qb Qa;

Real Ha = port_a.p / (rho * system.q);

// Real Hb = Ha;

Real v = sqgrt(2 x system.g % Ha);

parameter Boolean expansion = false "= true if
expansion equations are enabled. If not then
A_outlet = A_inlet.";

protected
equation
//moc.time_step[1] = dx; not imlemented yet
/
if diameter_out == diameter_in then

expansion = true;
elseif not diameter_out == diameter_in then

83

expansion = false;

end if;
Get translational warning: "In relation
diameter_out == diameter_in, == on Real

numbers is only allowed inside functions"
Get an unbalanced system with one more equation
than variables

*/

/! Area and diameter vectors
A_vector[:] = linspace(A_in, A_out, N);
D_vector([:] = linspace(diameter_in, diameter_out,

N);
// Initial condition loop
for k in 1:N loop
v_array[l, k] = OpenWPL.Functions.v_Velocity (H
= Ha, g = system.qg);
Q_array[l, k] = v_arrayl[l, k] = A_vector[k];

// Initial conditions for the plus characteristic
if friction then

fp_array[l, k] = OpenWPL.Functions.f_ Haaland(

v = v_arrayl[l, k], D = D_vectorl[k], rho =
rho, mu = mu, eps = roughness);
elseif not friction then
fp_array[l, k] = 0.0;
end if;

H_array[l, k] = OpenWPL.Functions.H_initial(f =
fp_array[l, k], H_res = Ha

k], L = dx * k, g
1, A A_vector[k]);

Rp_array[l, k] = OpenWPL.Functions.R_Resistance
(f = fp_arrayl[l, k], dx = dx_min, g = system
.g, D = D_vector[k], A = A_vectorl[k]);

Bp_array[l, k] = OpenWPL.Functions.B_Impedance (
a = a, A = A_vector[k], g = system.g) +
Rp_arrayl[l, k] * abs(Q_arrayl[l, kl);

, O = Q_arrayll,
system.g, D = D_vectorl[k

Cp_array[l, k] = OpenWPL.Functions.C_plus(Ha =
H_array[l, k], B = OpenWPL.Functions.
B_Impedance(a = a, A = A_vectorl[k], g =

system.g), Qa = Q_array([l, kl);
// Initial conditions for the minus characteristic

84 H. Modelica code: pipe component

if friction then

fm_array[l, k] = OpenWPL.Functions.f_Haaland (
v = v_arrayl[l, k], D = D_vector[k], rho =
rho, mu = mu, eps = roughness);
elseif not friction then
fm_array[l, k] = 0.0;
end if;
Rm_array[l, k] = OpenWPL.Functions.R_Resistance
(f = fm_arrayl[l, k], dx = dx_min, g = system
.9, D = D_vector[k], A = A_vectorl[k]);
Bm_array[l, k] = OpenWPL.Functions.B_Impedance (

a =a, A = A_vectorl[k], g = system.g) +
Rm_array[l, k] * abs(Q_arrayl[l, k]);
Cm_array[l, k] = OpenWPL.Functions.C_minus (Hb =
H_array[l, k], B = OpenWPL.Functions.
B_TImpedance(a = a, A = A_vectorl[k], g =
system.qg), Qb Q_arrayl[l, k]l);
end for;
// End I.C loop
// Time iteration loop
for j in 2:T loop
// BC left: open to reservoir with p equal to port.
p (should be dp/dt=0)

H_arrayl[3j, 1] = Ha;

v_array[j, 1] = OpenWPL.Functions.v_Velocity (H
= H_arrayl[]j, 1], g = system.q);

Q_arrayl[j, 1] = (H_arrayl[j, 1] - Cm_array[] -

1, 21) / Bm_arrayl[j - 1, 2];
if friction then

fp_array[j, 1] = OpenWPL.Functions.f_Haaland (
v = v_arrayl[j, 11, D = D_vector[l], rho =
rho, mu = mu, eps = roughness);
elseif not friction then
fp_array([j, 1] = 0.0;
end if;
Rp_array[j, 1] = OpenWPL.Functions.R_Resistance

(f = fp_arrayl[]j, 1], dx = dx_min, g = system
.g, D = D_vector[l], A = A_vector[l]);
Bp_array[]j, 1] = OpenWPL.Functions.B_Impedance (
a = a, A= A_vector[l], g = system.g) +
Rp_array[j, 1] = abs(Q_arrayl[j, 11);

85

Cp_array[j, 1] = OpenWPL.Functions.C_plus (Ha =
H_array[j, 1], B = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[l], g =
system.g), Qa Q_array([j, 11);

if friction then

fm_array[]j, 1] = OpenWPL.Functions.f_Haaland (
v = v_arrayl[j, 1], D = D_vector[l], rho =
rho, mu = mu, eps roughness) ;
elseif not friction then
fm_array([j, 1] = 0.0;
end if;
Rm_array[]j, 1] = OpenWPL.Functions.R_Resistance
(f = fm_arrayl[j, 1], dx = dx_min, g = system
.g, D D_vector[1l], A A_vector[1l]);
Bm_array[]j, 1] = OpenWPL.Functions.B_Impedance (

a =a, A=A _vector[l], g = system.g) +
Rm_array[]j, 11 = abs(Q_arrayl[j, 11);

Cm_array[]j, 1] = OpenWPL.Functions.C_minus (Hb =
H_array[j, 1], B = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[l], g =
system.qg), Qb = Q_arrayl[]j, 1]1);

// BC right: closed by valve with Q=0
if closedvValve then

Q_array[]j, N] = 0.0;

v_array[]j, N] = OpenWPL.Functions.v_Velocity(
H = H_array[]j, N], g = system.q);

H_array[j, N] = Cp_array[j - 1, N - 1] -

Bp_array[j - 1, N - 1] = Q_arrayl[]j, NI;
elseif not closedvValve then

Q_array[j, N] = Q_arrayl[]j, 1];
H_array[j, N] = Cp_array[j - 1, N - 1] -
Bp_array[j - 1, N - 1] = Q_array[]j, NI;
v_array[j, N] = OpenWPL.Functions.v_Velocity (
H = H_array[]j, N], g = system.qg);
end if;
if friction then
fp_array[j, N] = OpenWPL.Functions.f_Haaland(
v = v_arrayl[j, N], D = D_vector[N], rho =
rho, mu = mu, eps = roughness);

elseif not friction then
fp_array[j, N] = 0.0;

86

H. Modelica code: pipe component

end if;

Rp_array[j, N] = OpenWPL.Functions.R_Resistance
(f = fp_arraylj, N], dx = dx_min, g = system
.9, D = D_vector[N], A = A_vector[N]);

Bp_array[]j, N] = OpenWPL.Functions.B_Impedance (
a =a, A= A_vector[N], g = system.g) +
Rp_arrayl[]j, N] * abs(Q_arrayl[j, NI]);

Cp_array[]j, N] = OpenWPL.Functions.C_plus (Ha =
H_array[j, N], B = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[N], g =
system.qg), Qa = Q_arrayl[]j, NI]);

if friction then

fm_array[j, N] = OpenWPL.Functions.f_Haaland (
v v_array[j, N], D = D_vector[N], rho =
rho, mu = mu, eps = roughness);
elseif not friction then
fm_arrayl[]j, N] = 0.0;
end if;
Rm_array[j, N] = OpenWPL.Functions.R_Resistance
(f = fm_array[j, N], dx = dx_min, g = system
.9, D = D_vector[N], A = A_vector[N]);
Bm_array[]j, N] = OpenWPL.Functions.B_Impedance (

a =a, A = A_vector[N], g = system.g) +
Rm_array[]j, N] = abs(Q_arrayl[j, NJ]);
Cm_array[]j, N] = OpenWPL.Functions.C_minus (Hb =
H_array[j, N], B = OpenWPL.Functions.
B_TImpedance(a = a, A = A_vector[N], g =
system.g), Qb O_arrayl[j, NI);
/! Space iteration loop
for i in 2:N - 1 loop
if expansion then
Q_array[]j, 1] = scalar ({OpenWPL.Functions.
Q_expansion (g = system.g, Ha = H_array|[]
-1, i - 1], Hbo = H_array[j - 1, 1 +
1], a = a, Aa = A_vector[i - 1], Ab =
A_vector[i + 1], A = A_vector[i], Qa =
Q_array[j - 1, 1 - 1]
1, 1 +11)}h);
H_array[j, 1] = scalar ({OpenWPL.Functions.
H_expansion (g = system.g, Ha = H_arrayl[]
1, 1 - 1], a = a, Aa = A_vector[i -

, Ob = Q_arrayl[j -

87

1], A = A_vector[i], Qa = Q_array[]j - 1,
i - 1], Q = Q_arrayl[]j, il)});
elseif not expansion then

H_array[j, 1] = scalar ({OpenWPL.Functions.
H_head(Cp = Cp_arrayl[j - 1, i - 1], Cm =
Cm_array[j — 1, 1 + 1], Bm = Bm_arrayl[]
-1, i + 1], Bp = Bp_arrayl[j - 1, 1 -
110
Q_array[j, 1] = scalar ({OpenWPL.Functions.
Q _flow(Cp = Cp_arrayl[j - 1, 1 - 1], Cm =
Cm_arrayl[j - 1, i + 1], Bm = Bm_arrayl[]
-1, i + 1], Bp = Bp_arrayl[j - 1, 1 -
1) h) i
end if;
v_array[j, 1] = scalar (OpenWPL.Functions.

v_Velocity(H = H_arrayl[]j, 1], g = system.g
)) i
if friction then

fp_array[]j, 1] = OpenWPL.Functions.
f_Haaland(v = v_arrayl[j, 1i], D =
D_vector[i], rho = rho, mu = mu, eps =
roughness) ;
elseif not friction then
fp_arrayl[j, i1 = 0.0;
testing for a square pressure pulse
end if;
Rp_array[]j, 1] = OpenWPL.Functions.
R_Resistance(f = fp_arrayl[j, 1], dx =

dx_min, g = system.g, D = D_vector[i], A =
A_vector[i]);

Bp_array[j, 1] = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[i], g =
system.g) + Rp_array[j, 1] % abs(Q_arrayl[]
, 11);

Cp_array[]j, 1] = OpenWPL.Functions.C_plus (Ha
= H_array[j, 1], B = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[i], g =

system.g), Qa = Q_arrayl[j, i]);
if friction then
fm_array[j, 1] = OpenWPL.Functions.
f_Haaland(v = v_arrayl[j, 1], D =

H. Modelica code: pipe component

D_vector[i], rho = rho, mu = mu, eps =
roughness) ;

elseif not friction then

fm_array([j, 1] = 0.0;
/] if testing for a square pressure pulse

end if;

Rm_array[]j, 1] = OpenWPL.Functions.
R_Resistance(f = fm_array([j, 1], dx =
dx_min, g = system.g, D = D_vector[i], A =

A_vector[i]);

Bm_array[]j, 1] = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[i], g =
system.qg) + Rm_array[]j, 1] * abs(Q_arrayl[]j
, 11);

Cm_array[]j, 1] = OpenWPL.Functions.C_minus (Hb

= H_array[]j, 1], B = OpenWPL.Functions.
B_Impedance(a = a, A = A_vector[i], g =
system.qg), Qb = Q_arrayl([j, 1]);
end for;
/! End space loop
end for;

// End time loop

/! Port equations for mass flow rate

port_a.m_flow = system.m_flow_start;

0 = port_a.m_flow + port_b.m_flow;

//port_b.m_flow = Q_array[T,N]=rho;

//port_b.p = H_array[T,N]«rhoxsystem.g;

/*

/! Port equations for trace substance mass flow.
Not used, but implemented to be compatible
with the Fluid library.

port_a.C_outflow = inStream (port_b.C_outflow);

port_b.C_outflow = inStream(port_a.C_outflow);

*/

/! Port equations for enthalpy flow. Not used, but
implemented to be compatible with the Fluid
library .

port_b.h_outflow = inStream(port_a.h_outflow);

//- system.g=height_ab;

port_a.h_outflow = inStream(port_b.h_outflow);

//+ system.g~height_ab;

89

annotation (
defaultComponentName = "pipe",
Documentation (info = "<html>

<p>Model of a straight pipe modelled using the
method of characteristics.
version of the component

</p>

</html>"),

This is the newest
(same as v13).

__OpenModelica_commandLineOptions = "
matchingAlgorithm=PFPlusExt —-—
indexReductionMethod=dynamicStateSelection -

d=initialization,NLSanalyticJacobian,newInst

")

end Pipe;

@ NTNU

Norwegian University of
Science and Technology

sJnsI1eIeYD 10 poylaWw oyl Suisn swiaisAs Aiojesoge| dineldpAy ul moyl adid Jusisuey 10 [9pow edII9PoIA

	Hinna (841) - Masteravtale
	Masteroppgave, Jonas Tveit Hinna, uten omslag
	Abstract
	Sammendrag
	Preface
	Contents
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Background information
	Research objectives

	Theory and software
	Governing equations for fluid motion
	Momentum equation
	Continuity equation

	Method of characteristics
	Implementation into the pipe component
	Step sizes
	Adjusted equations for non-uniform cross-sectional area

	Initial conditions
	Boundary conditions
	Reservoirs
	Valves
	Pipes in series

	Modelica
	Modelica Fluid Library
	Connectors
	Medium

	Model development and simulation settings
	OpenModelica and OMEdit
	OpenWPL
	Pipe component
	MOC component

	Simulation parameters and setup for instantaneous valve closure
	Single pipe without friction
	Single pipe with friction
	Single pipe with a non-uniform cross-sectional area without friction

	Results and discussion
	Benchmarking case: instantaneous valve closure
	Single pipe without friction
	Single pipe with friction
	Single pipe with a non-uniform cross-sectional area without friction

	Overall observations

	Conclusion
	Further work
	References
	Full calculation: the equation of motion for transient flow
	Full calculation: the continuity equation for transient flow
	Full calculation: the method of characteristics
	Diagram view of a setup from source to sink
	Diagram view of source to sink with intersection and blind flange simulation
	Errors related to: source to sink with intersection and blind flange simulation
	Modelica code: functions implemented into OpenWPL
	Modelica code: pipe component

