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ABSTRACT

Surface gravity waves in coastal waters are broadband and multi-directional, whose quadratic properties are of considerable engineering and
scientific interest. Based on a Stokes expansion and an envelope-type framework, a new semi-analytical approach is proposed in this paper
for the description of weakly nonlinear broadband and multi-directional surface waves. This approach proposes solving for the second-order
wave fields through the separation of harmonics, by using a Fast Fourier transform and a time integration method. Different from some
other methods, e.g., the High-Order Spectral method, the approach introduces a spectral shift for the superharmonic waves, leading to com-
putationally efficient and accurate spectral predictions. The approach has been validated through comparisons with the results based on
Dalzell [“A note on finite depth second-order wave–wave interactions,” Appl. Ocean Res. 21, 105–111 (1999)]. An envelope-type framework
for the fast prediction of particle trajectories and Stokes drifts up to the second order in wave steepness is also derived in this paper, based on
the semi-analytical approach. This paper shows that the results based on a narrowband assumption lead to underestimates of Stokes
drift velocities driven by broadband unidirectional focused wave groups. The cases, examined for particle trajectories below broadband
unidirectional focused wave groups, show that a larger bandwidth and water depth can enhance the differences in the net mean horizontal
displacement of particles at water surface relative to these at seabed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057215

I. INTRODUCTION

Surface gravity waves in the open ocean and coastal regions inter-
act with their ambient environment, e.g., varying bathymetries, cur-
rents, turbulence, and wind actions, and are essential to energy and
momentum transfers and vertical mixing in the upper ocean. They
lead to extreme forces and contribute to fatigue loads on offshore
structures under different sea states. Therefore, good understanding of
wave properties can contribute to a range of subjects, such as fluid
dynamics and hydrodynamics.

Wave properties have been extensively investigated in experimen-
tal, numerical, and theoretical studies; a majority of which have focused
on long-crested waves on water of different depths. For waves on a
finite depth, wave properties are affected by a seabed in various man-
ners, such as altering the dispersion relation1,2 and wave amplitude,3

and triggering wave breaking.4–6 In recent years, an enhanced occur-
rence probability of extremely large wave events has been attributed to
depth transitions.6–11 This paper focuses on weakly nonlinear waves on
waters of an intermediate uniform depth, i.e., for 0:5� kh and
kh � Oð1Þ where k and h are the characteristic wavenumber and water
depth, respectively.

A second-order expansion of wave fields in wave steepness
can capture the effects of weak nonlinearity and has been demon-
strated to work effectively in the last decades. For the description
of monochromatic waves, the Stokes second-order theory has been
well understood on an arbitrary constant depth.12 Forcing of the
second-order superharmonic wave leads to an increase in wave
crest and a decrease in wave trough without a change in the wave
height.13 For irregular waves, second-order effects lead to the
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forcing of superharmonic and subharmonic waves, which do not
obey the linear dispersion relation and, therefore, are bound to the
linear free contents (see, e.g., Phillips14 and Longuet-Higgins15).
These second-order waves can lead to expanding the linear wave
energy spectrum and are also responsible for the quadratic forces
on offshore structures, which are important for the fatigue and
extreme wave loads (see, e.g., Newman,16 Molin,17 and Grue18).

For examining the properties of second-order waves and their
roles for different purposes, theoretical approaches have been pro-
posed for the description of second-order irregular waves. Table I
shows a summary of these theoretical works in different regimes of
applicability, in addition to the well-known Stokes second-order the-
ory for monochromatic waves,29 waves in shallow water, and the
Boussinesq-type approximations (see, e.g., Wei et al.30). The theory for
the interaction of two waves is presented by Longuet-Higgins15 for
deep water and by Hasselmann,26 Sharma and Dean,27 and Dalzell28

for a finite depth. This permits the analysis of weakly nonlinear irregu-
lar waves of an arbitrary bandwidth, i.e., the so-called broadband wave
theory.31 With leading order approximations to the linear dispersion
relation under the so-called narrowband assumption, the slow modu-
lation of Stokes waves can be investigated with second-order wave
fields being expressed in an envelope-type form.3,19,20,25,32–34 The nar-
rowband approximation to the description of second-order waves has
been widely used in wave modeling based on high-order nonlinear
Schr€odinger equations (NLSEs) for the spatial and temporal modula-
tions of the wave envelope of linear surface elevation.35 Comparing
alternative numerical methods like the High-Order Spectral (HOS)
method (see, e.g., Dommermuth and Yue36 and West et al.37), a key
feature of the NLSE-based models is its low computational cost as it
allows for the computational parameters chosen according to the scal-
ing of the wave envelope (see, e.g., Lo and Mei38) and, hence, it
demands a much smaller number of the discrete points in the compu-
tational domain. Second-order statistical models for the statistical
properties of irregular random waves are developed,39–41 and the roles
of water depth on the statistical properties are examined in papers,
e.g., Tang and Adcock,42 Myrhaug,43 Myrhaug et al.,44 and references
therein.

In recent years, attempts have been made into accounting for the
interaction of surface waves with ambient environments, e.g., coastal
bathymetries, currents, turbulence, and wind actions, which often
requires a fast and accurate prediction of the spatial and temporal evo-
lution of the three-dimensional fields driven by broadband directional
spread surface waves. This makes the aforementioned broadband the-
ory (e.g., Dalzell28) a less favored candidate due to its relatively low
efficiency in computations. The same reason prohibits using numerical
solvers (cf. e.g., Zheng et al.,8 Engsig-Karup et al.,45 and Bihs et al.46),
which apply direct numerical solutions of the fully nonlinear potential
flow equations and which have been increasingly used in recent years.
The prediction of waves of a broad bandwidth is obviously beyond the
regime of applicability of the NLSE-based models due to the narrow-
band assumption.20,25,33 Therefore, the development of the novel the-
ory that can offer accurate and computationally efficient prediction
would be beneficial. To this end, the first objective of this paper is to
propose a novel semi-analytical approach where low-order wave fields
are expressed in an envelope-type form. Specifically, this method
shares the same advantage as the narrowband NLSE-based models in
terms of the computational efficiency. It can also permit a straightfor-
ward generalization to a high-order NLS equation that contributes to
relax the narrowband assumption used in previous papers (e.g., Davey
and Stewartson20 and Slunyaev25). This will be addressed in future
work.

A noticeable quadratic property of linear surface waves is the
Stokes drift, which is widely known.29 It is essential for transporting
fluid particles in the upper ocean and driving Langmuir circu-
lations.47–50 Approximations to the vertical profile of Stokes drift
underneath broadband surface waves on deep water have been pro-
posed based on the results for monochromatic waves.51,52 Webb and
Fox-Kemper53 examined the impact of wave directionality on estimat-
ing Stokes drift. Lagrangian paths of particles driven by steep mono-
chromatic and irregular waves on a finite depth are experimentally
examined by Grue and Kolass54 and Grue and Jensen,55 respectively.
Below short wave groups (or wave packets), the net Lagrangian dis-
placement of fluid particles is driven primarily by Stokes drift velocity
and the second-order Eulerian return flows.47,56 With a narrowband

TABLE I. A summary of the theoretical frameworks of different regimes of applicability for the prediction of second-order irregular waves with 0:5� kh, where k denotes the
characteristic wavenumber and h is the water depth, in addition to the Boussinesq-type equations. In the table, N denotes the total number of the discrete points (or Fourier
modes) chosen in the computational domain and d denotes the dimensionless bandwidth of a wave spectrum.

Bandwidth (d) Depth regime Computational complexity Order of accuracy

Dysthe19 Narrowband Deep (p� kh) OðNInNÞ Up to OðdÞ

Davey and Stewartson20 Narrowband
Arbitrary
ð0:5� khÞ OðNInNÞ Up to OðdÞ

Trulsen et al.21

Gramstad22 and Calvert et al.23

Brinch-Nielsen and Jonsson24 Narrowband Arbitrary OðNInNÞ Up to Oðd2Þ
Slunyaev25

Longuet-Higgins15 Arbitrary Deep OðN2Þ Arbitrary order in d
Hasselmann26 Arbitrary Arbitrary OðN2Þ Arbitrary order in d
Sharma and Dean27

Dalzell28

This paper Arbitrary Arbitrary OðNInNÞ Arbitrary order in d
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wave assumption, the particle trajectories below wave packets have
been examined analytically on finite depth57 and measured experi-
mentally on deep water58 and finite water.23

To the authors’ knowledge, studies on the particle trajectories
and Stokes drift profiles below a broadband short wave group on a
finite depth are scarce. This is likely due to challenges in the studies
based on the measurements in both a numerical and laboratory wave
tank, as explained in the following. The wave generation by a wave-
maker can lead to spurious waves, which would trigger additional
physics, posing big challenges in the post-processing of data (see, e.g.,
Sch€affer59 and Paprota60). The limited length of a wave tank may be
another source of challenge since it may lead to a rapid reflection of
the second-order subharmonic contents from the end of a tank, which,
as a result, significantly affects the mean flow fields driven by waves on
a finite depth, as reflected in a number of papers, e.g., Calvert et al.,23

Paprota,60 and Li et al.61 This paper intends to fill in this gap through
deriving a framework for the particle trajectories below broadband
surface waves, which can simply conquer these aforementioned chal-
lenges. Specifically, the roles of water depth, bandwidth, and spatial
evolution of wave groups in the net mean horizontal displacements
and trajectories of particles and Stokes drift velocity are assessed in
this paper.

The paper is laid out as follows. The problem definition and lin-
ear wave fields are presented in Sec. II. A novel semi-analytical
approach for the second-order broadband waves on an intermediate
water depth is derived in Sec. III. This approach proposes solving for
the second-order wave fields through the separation of harmonics, by
using a Fast Fourier transform (FFT) and a time integration method.
Based on the semi-analytical approach, the description of the trajecto-
ries of fluid particles and Stokes drift profile is presented in Sec. IV.
The results are shown in Sec. V where the validations of the new
approach through comparisons with the exact approach by Dalzell28

are given and the roles of water depth, spatial evolution of a short
focused wave group, and the wave bandwidth in Stokes drift and parti-
cle trajectories are examined. Conclusions of this paper are drawn in
Sec. VI.

II. MATHEMATICAL FORMULATION
A. Problem definition

We consider ocean surface waves propagating in water of a finite
constant depth in the framework of potential-flow theory, assuming
incompressible inviscid flows, irrotational fluid motions, and negligible
effects of surface tension. A Cartesian coordinate system is chosen
with the undisturbed water surface located at z¼ 0. The system of sur-
face waves on a finite depth can be described as a boundary value
problem governed by the Laplace equation

r2
3U ¼ 0 for �h < z < fðx; tÞ; (1)

where Uðx; z; tÞ denotes the velocity potential, fðx; tÞ is the free sur-
face elevation, x is the position vector in the horizontal plane, t is the
time, h denotes the constant water depth, and r3 ¼ ðr; @zÞ with
r ¼ ð@x; @yÞ is the gradient in the horizontal plane. Equation (1)
should be solved subject to the nonlinear kinematic and combined
boundary conditions (see, e.g., Davey and Stewartson20) at the free
water surface z ¼ fðx; tÞ,

@tfþrU � rf� @zU ¼ 0

CUþ @tðr3UÞ2 þ 1
2
r3U � r3ðr3UÞ2 ¼ 0;

(2)

where the operator C is defined as C ¼ @tt þ g@z with g the gravita-
tional acceleration; a seabed boundary condition

@zU ¼ 0 for z ¼ �h: (3)

B. Stokes expansion and separation of harmonics

In order to solve the boundary value problem (1)–(3), we seek
the solutions of unknowns U and f in a form of power series in wave
steepness � ¼ kA0 (a so-called Stokes expansion), with the characteris-
tic wavenumber k and wave amplitude A0, respectively,

U ¼ �Uð1Þ þ �2Uð2Þ þ Oð�3Þ (4a)

f ¼ �fð1Þ þ �2fð2Þ þ Oð�3Þ; (4b)

where we consider up to the second order and the superscripts denote
the order in �. Substituting (4a) and (4b) into the boundary value
problem (1)–(3) leads to the decomposition of the fully nonlinear sys-
tem into different problems through a collection of the terms at the
same order in �. The decomposed problems can be solved successively
from the lowest to higher orders, as presented in Secs. II C and III. For
later reference, we define an inverse Fourier transform with respect to
k for an arbitrary field vðxÞ as follows:

vðxÞ ¼
ð1

�1
v̂ðkÞeik�xdk; (5)

where v̂ denotes the expression for the arbitrary parameter v in the
Fourier k space. Following Trulsen et al.,62 linear surface elevation fð1Þ

is expressed in two different but equating forms as follows:

fð1Þðx; tÞ ¼ 1
2
Aðx; tÞeiðk0�x�x0tÞ þ c:c:; (6a)

or

fð1Þðx; tÞ ¼ 1
2

ð1
�1

f̂
ð1Þðk; tÞeik�xdk þ c:c:

with f̂ðk; tÞ ¼ f̂ðk; t0Þe�ixðkÞðt�t0Þ;

(6b)

in which c:c: denotes the complex conjugates, t0 denotes an initial
instant, A denotes the linear (complex) wave envelope of the carrier
wave of vector k0 ¼ ðk0; 0Þ chosen along the x direction in the hori-
zontal plane, x0 denotes the angular frequency of the carrier wave that
is obtained from the linear dispersion relation x0 ¼ xðk0Þ with
xðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gk tanh kh
p

, where k ¼ ðkx; kyÞ (k ¼ jkj) denotes a wave
vector in the horizontal plane. Equation (6a) for fð1Þ denotes an
envelope-type form, and Eq. (6b) denotes a form through the linear
superposition of monochromatic waves in the Fourier k plane. This
paper focuses on the former and derives second-order solutions based
on it for both U and f. This would permit straightforward extension to
higher order problems that are based on harmonic expansions, such as
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a third-order nonlinear Schr€odinger equation for the envelope of the
elevation of the first-harmonic, A.

Equating (6a) and (6b), we obtain an explicit expression for linear
envelope [Aðx; tÞ] that is valid for waves of an arbitrary bandwidth as
follows:

Aðx; tÞ ¼
ð1

�1
Âðk; tÞeik�xdk (7a)

with

Âðk; tÞ ¼ Âðk; t0Þe�i xðkþk0Þ�x0½ �ðt�t0Þ

Âðk; t0Þ ¼ f̂ðk þ k0; t0Þeix0t0 ;
(7b)

where the integral variable was first replaced with k0 ¼ k � k0 and the
prime was subsequently removed. Using an envelope-type form simi-
lar to (6a), f andU can be expressed in a form of harmonic expansions
as follows:

Uðx; z; tÞ ¼ 1
2
�Bðx; z; tÞeiðk0�x�x0tÞ þ c:c:

� �
þ �2Uð20Þðx; z; tÞ

þ �2 Uð22Þðx; z; tÞ þ c:c:
h i

þOð�3Þ; (8a)

fðx; tÞ ¼ 1
2
�Aeiðk0�x�x0tÞ þ c:c:

� �
þ �2fð20Þ

þ �2 fð22Þ þ c:c:
� �

þOð�3Þ; (8b)

in which superscripts “(ij)” denote Oð�iÞ and j-th harmonic and B
denotes the linear (complex) envelope of the carrier wave potential.
For later reference in Sec. III, we express the second-order superhar-
monic component of f andU in a form as follows, respectively:

fð22Þðx; tÞ ¼ 1
2
Að22Þðx; tÞe2iðk0�x�x0tÞ (9a)

and

Uð22Þðx; z; tÞ ¼ 1
2
Bð22Þðx; z; tÞe2iðk0�x�x0tÞ; (9b)

where Að22Þðx; tÞ and Bð22Þðx; z; tÞ denote the envelope of the second-
order superharmonic elevation and potential, respectively.

C. Linear velocity and potential

For convenience, we introduce the envelope-type expression for
linear velocity Vð1Þðx; z; tÞ ¼ ½uð1Þðx; z; tÞ;wð1Þðx; z; tÞ�, where uð1Þ

and wð1Þ denote the velocity in the horizontal plane and the vertical
direction, respectively,

Vð1Þðx; z; tÞ ¼ 1
2
�Vðx; z; tÞeiðk0�x�x0tÞ þ c:c: (10a)

with

�V � �uðx; z; tÞ; �wðx; z; tÞ½ �; (10b)

where �V denotes the linear velocity envelope (vector) of carrier
wave k0 without adding the superscript “(1)” for simplicity,
whose components in the horizontal plane and vertical direction

are defined as �u and �w, respectively. The linearized boundary
value problem (1)–(3) can be readily solved for the linear wave
fields in the Fourier k plane. Without the detailed derivations
(see, e.g., Sec. 13 in Mei et al.63), we obtain the expression for lin-
ear velocity envelope, �V, and potential, B, in the Fourier k plane
as a function of the linear envelope [ÂðkÞ] in the Fourier plane as
follows:

B̂ðk; z; tÞ ¼ �i
xðk þ k0Þ
jk þ k0j

coshjk þ k0jðz þ hÞ
sinhjk þ k0jh Âðk; tÞeik�x; (11a)

�̂u ðk; z; tÞ ¼ ðk þ k0Þxðk þ k0Þ
jk þ k0j

coshjk þ k0jðz þ hÞ
sinhjk þ k0jh Âðk; t; tÞ

(11b)

and

ŵðk; z; tÞ ¼ �iÂðk; tÞxðk þ k0Þ sinh jk þ k0jðz þ hÞ½ �
sinhðjk þ k0jhÞ ; (11c)

where B̂; �̂u , and ŵ denote B, �u, and �w in the Fourier k plane, respec-
tively. Therefore, with (11a), (11b), and (11c), if linear elevation
fð1Þðx; tÞ is given at an initial instant t0, linear velocity envelope,
�Vðx; z; tÞ, and potential envelope, B, can be readily obtained from an
inverse Fourier transform.

III. SECOND-ORDER SOLUTIONS

With linear solutions to the linearized boundary value problem
(1)–(3) given in Sec. II, this section seeks the solutions for unknowns
fð2Þ and Uð2Þ. The insertion of unknowns U and f described by (8a)
and (8b), respectively, into the boundary value problem (1)–(3) and
the collection of the terms at the second order in wave steepness leads
to a boundary value problem for the second-order potential, Uð2Þ, as
follows:

r2
3U

ð2Þ ¼ 0 for � h < z < f (12a)

ð@tt þ g@zÞUð2Þ ¼ Fð2Þðx; z; tÞ for z ¼ 0; (12b)

@zU
ð2Þ ¼ 0 for z ¼ �h; (12c)

where Fð2Þ denotes the forcing at the second order by linear waves,
defined as

Fð2Þðx; z; tÞ ¼ �fð1ÞCzU
ð1Þ � @tðr3U

ð1ÞÞ2 with Cz ¼ @zC: (13)

Inserting the expression for the linear wave fields presented in Sec. IIC
into (13) leads to the forcing term, Fð2Þ, in a form of the superposition
of two different wave harmonics as follows:

Fð2Þðx; z; tÞ ¼ Fð22Þðx; z; tÞe2iðk0�x�x0tÞ þ c:c:
h i

þFð20Þðx; z; tÞ; (14a)

with

Fð22Þðx; z; tÞ ¼ � 1
4

AðC� 2ix0@t � x2
0Þ�w þ ð@t � 2ix0Þð�V � �VÞ� �

;

(14b)

and
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Fð20Þðx; z; tÞ ¼ � 1
4
ðA�ðC� 2ix0@t � x2

0Þ�w þ c:c:Þ � 1
2
@tð�V � �V�Þ;

(14c)

where the asterisk denotes the complex conjugates, the superscripts
“22” and “20” denote the superharmonic and subharmonic, respec-
tively. Due to (14a), the solution to the boundary value problem (12)
for the second-order potential, Uð2Þ, can be expressed as the superposi-
tion of two independent parts: one for superharmonic potential, Uð22Þ,
and the other for subharmonic potential Uð20Þ. Therefore, the bound-
ary value problems for the two contents are described by

r2
3U

ð2jÞ ¼ 0 for � h < z < f; (15a)

ð@tt þ g@zÞUð2jÞ ¼ Fð2jÞðx; z; tÞe2jiðk0�x�x0tÞ for z ¼ 0 (15b)

@zU
ð2jÞ ¼ 0 for z ¼ �h; (15c)

where j denotes j-th harmonic with j¼ 0 and j¼ 2 for the second-
order subharmonic [Uð20Þ] and superharmonic potential [Uð22Þ],
respectively.

A. A novel semi-analytical approach

Using the linear wave fields presented in Secs. II B and IIC, this
section proposes solving the boundary value problem (15a), (15b), and
(15c) for the second-order potentials [Uð2jÞ] by using a semi-analytical
approach. The semi-analytical approach is composed of the following
three consecutive steps for numerical implementations that are based
on a pseudospectral method,64 Fourier transform with respect to x,
and a numerical time integration method. Specifically, the first step is
to evaluate the forcing term, Fð2Þ, on still water surface by using a
pseudospectral method.64 The next step is to seek an explicit structure
for the second-order potentials [i.e., Uð22Þ and Uð20Þ] with respect to z
in the Fourier k space. The last step is to solve a second-order differen-
tial equation with respect to time with a time integration method. We
explain separately the solution for superharmonic and subharmonic
waves in Secs. IIIA 1 and IIIA 2.

1. Superharmonic waves

Following the procedures of the semi-analytical approach, we
first apply a Fourier transform with respect to x for the terms on both
sides of the boundary condition at still water surface described in (15)
and obtain

ð@t � 2ix0Þ2 þ g@z
� �

B̂
ð22Þðk; z; tÞ ¼ 2F̂

ð22Þðk; z; tÞ for z ¼ 0;

(16)

where F̂
ð22Þ

denotes the Fourier transform for Fð22Þ with respect to x.
Due to that the Laplace equation for the superharmonic potential
[Uð22Þ], an explicit expression for the envelope of the superharmonic
potential in the Fourier plane, B̂

ð22Þðk; z; tÞ, can be assumed in a form
as follows:

B̂
ð22Þðk; z; tÞ ¼ B̂

ð22Þðk; 0; tÞ coshjk þ 2k0jðz þ hÞ
coshjk þ 2k0jh : (17)

Inserting (17) into (16) leads to

ð@t � 2ix0Þ2 þ gjk þ 2k0jtanhjk þ 2k0jh
� �

B̂
ð22Þðk; 0; tÞ

¼ 2F̂
ð22Þðk; 0; tÞ: (18)

The third step is to solve the second-order differential equation (18)

for B̂
ð22Þðk; 0; tÞ by numerical integration methods for the time deriva-

tives, given that homogeneous solutions of (18) are not admitted for
stationary waves [see, e.g., Phillips14 and page 848, Eq. (14.3.4) in Mei
et al.63]. For numerical implementations, additional initial conditions
at an instant, t0, are required. We remark here that multiple choices
are available for different purposes of wave generation. For instance, a
second-order wavemaker theory is based on Sch€affer,59 periodic
boundary conditions as in Dommermuth and Yue,36 the framework
by Bonnefoy et al.65 for the wave making in a numerical wave tank,
and stationary waves based on Dalzell.28 In this paper, we assume that
initial conditions for second-order wave fields are given and we use
the inputs based on Dalzell28 for numerical implementations for the
results presented in Sec. V.

The boundary condition at the still water surface (18) suggests a
major difference of the semi-analytical approach from the HOS
method (see, e.g., Dommermuth and Yue36 and West et al.37).
Equation (18) has facilitated a shift of 2k0 for the superharmonic wave
spectrum toward the origin of the Fourier k space. This is a clear
achievement since it permits a computational domain chosen accord-
ing to the scaling of the linear wave envelope, not the smallest length of
the superharmonic bound waves but the length of 2p=ð2kmax � 2k0Þ,
with kmax (> k0) the maximum wavenumber of the linear wave spec-
trum that can play a role. Hence, the semi-analytical approach would
require less computational cost for the accurate spectral predictions of
second-order superharmonic waves, as demonstrated in Sec. VA.

Eventually, the second-order superharmonic potential is obtained
from

Uð22Þðx; z; tÞ ¼ 1
2
Bð22Þðx; z; tÞe2iðk0�x�x0tÞ with

Bð22Þðx; z; tÞ ¼
ð1

�1
B̂
ð22Þðk; z; tÞ exp ðik � xÞdk;

(19)

which satisfies, clearly, the boundary value problem described by (15).

2. Subharmonic waves

Due to the properties of the second-order subharmonic potential
[Uð20Þ] for the evolution of a wave group that vanishes slowly in space
away from the center of the group, it is proposed to solve for @zzU

ð20Þ

that denotes the vertical gradient of the second-order subharmonic
vertical velocity instead. This can lead to the improvement of perform-
ances in numerical implementations. Introducing wð20Þ

z ¼ @zzU
ð20Þ,

the boundary value problem for wð20Þ
z can be derived from (12), given

by

r2
3w

ð20Þ
z ¼ 0 for �h < z < f; (20a)

ð@tt þ g@zÞwð20Þ
z ¼ �r2Fð20Þ for z ¼ 0

@zw
ð20Þ
z ¼ 0 for z ¼ �h:

(20b)

In order to avoid nonphysical homogeneous solutions in numerical
implementations and also to obtain the solution for stationary waves,
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the vertical gradient of the subharmonic vertical velocity [wð20Þ
z ] is

expressed in a form as

wð20Þ
z ðx; z; tÞ ¼ 2R

ð1
�1

ð1
0

ŵð20Þ
z ðk; z; tÞeik�x�ik0�cg0tdkxdky

2
64

3
75 (21a)

with

ŵð20Þ
z ðk; z; tÞ ¼ ŵð20Þ

z;0 ðk; tÞ coshjkjðz þ hÞ
coshjkjh ; (21b)

in whichR denotes the real component, cg0 denotes the group velocity
of the carrier wave k0, and ŵð20Þ

z;0 ¼ ŵð20Þ
z ðk; 0; tÞ. Mathematically, the

introduced factor exp ð�ik0 � cg0tÞ denotes a radiation condition
needed for stationary waves following Lighthill.66 It is evident that the
vertical gradient of the subharmonic vertical velocity, wð20Þ

z ðx; z; tÞ,
expressed as (21a) obeys the Laplace equation and the seabed bound-
ary condition. The insertion of (21a) for unknown wð20Þ

z ðx; z; tÞ into
the boundary condition at still water surface leads to a second-order
differential equation for ŵð20Þ

z;0 ðk; tÞ as follows:

@tt � 2ik0 � cg0 � ðk0 � cg0Þ2 þ gjkjtanhðjkjhÞ
h i

ŵð20Þ
z;0 ðk; tÞ

¼ jkj2F̂ ð20Þ
exp ðik0 � cg0tÞ for kx � 0; (22)

which can be readily solved for numerically with two additional initial
conditions that are assumed to be known.

B. Wave elevation fð2Þ at the second order

With second-order potential Uð2Þ given by the semi-analytical
approach presented in Sec. IIIA, the surface elevation at the second
order is obtained from [see Eq. (13.2.3) in Mei et al.,63]

fð2Þðx; tÞ ¼ � 1
g

@tU
ð2Þ þ fð1Þ@tzUð1Þ þ 1

2
jr3U

ð1Þj2
� �

for z ¼ 0:

(23)

Inserting the envelope-type expression for the first- and second-order
potentials [i.e., Uð1Þ and Uð2Þ] into (23), we arrive at

fð2Þ ¼ fð20Þ þ ðfð22Þ þ c:c:Þ; (24a)

with

fð22Þ ¼ � 1
g

�
1
2
ð@t � 2ix0ÞBð22Þðx; 0; tÞ

þ 1
4

Að@t � ix0Þ�w þ 1
2
�V � �V

� ��
e2iðk0�x�x0tÞ (24b)

and

fð20Þ ¼ � 1
g

@tU
ð20Þ þ 1

4
�V � �V� þ 1

4
ðA�ð@t � ix0Þ�w þ c:c:Þ

� �
for z ¼ 0: (24c)

IV. TRAJECTORIES OF FLUID PARTICLES

In this section, we seek an explicit expression for the trajectories
of fluid particles, which, denoted by rpðtÞ ¼ ½xpðtÞ; zpðtÞ� with xp and

zp the displacement in the horizontal plane and vertical direction,
respectively, follow the definition:

drp
dt

¼ VpðrpðtÞ; tÞ; (25)

where the subscript “p” denotes the wave parameters that follow the
particle motions (i.e., in the Lagrangian framework). Equation (25)
denotes an implicit equation for rpðtÞ as it is obvious that V½rpðtÞ; t�
needs to be evaluated at the location [i.e., rpðtÞ] of the particles in an
instant. Due to this, it is challenging to obtain an expression for par-
ticles trajectories rpðtÞ using (25) in its present form. To resolve this,
we first seek an approximate expression for the particle velocity, Vp, in
a form of power series in wave steepness and, subsequently, for par-
ticles trajectories rpðtÞ. Taylor expanding V½rpðtÞ; t� about rp ¼ r0
gives, to leading order,

VpðrpðtÞ; tÞ ¼ Vpðr0; tÞ þ ðrpðtÞ � r0Þ � r3
� �

Vpjr¼r0 þOð�3Þ;
(26)

where r0 ¼ ðx0; z0Þ, denoting the initial position of a fluid particle,
is defined as r0 ¼ rpðt0Þ with an initial instant t0, and we kept the
terms up to the second order. Equation (26) suggests that the par-
ticle velocity is composed of two different velocity components;
the first term on the right-hand side of the equation denotes the
velocity evaluated at a fixed initial location r0 in the Eulerian
framework, defined as VEðr0; tÞ � Vpðr0; tÞ, and the second term
denotes the definition of the well-known Stokes drift velocity
without averaging in the wave phase, denoted by Vst . Therefore,
the two different velocity components are given, to leading order,
by

VEðr0; tÞ ¼ Vð1Þðr0; tÞ þ Vð2Þðr0; tÞ;
Vstðr0; tÞ ¼ ðrpðtÞ � r0Þ � r3

� �
Vpðrp; tÞjrp¼r0 ;

(27)

where the subscript “E” denotes the Eulerian flow velocity and the
subscript “st” denotes the Stokes drift, which is at least at the sec-
ond order and a function of the particle trajectories. The expres-
sion for the Eulerian velocities Vð1Þ and Vð2Þ is presented in
Secs. II C and III, respectively. Similarly, inserting (26) and (27)
into (25) leads to the expression for the particle trajectories rp, to
leading order, as follows:

rpðtÞ � r0 ¼ �Drð1Þp þ �2Drð2Þp (28a)

where

Drð1Þp ¼
ðt
t0

Vð1Þðrð1Þ0 ; sÞds and (28b)

Drð2Þp ¼
ðt
t0

Vð2Þðr0; sÞ þ Vstðr0; sÞ
h i

ds; (28c)

with Drð1Þp and Drð2Þp the net Lagrangian displacement of particles at
the first order and second order, respectively. Substituting the expres-
sion for the linear velocity, i.e., Vð1Þ described by (10), into the expres-
sion for Drð1Þ described by (28b) leads to the net linear displacement
of particles, Drð1Þ, in an envelope-type form as a function of the linear
wave envelope Âðk; tÞ as follows:
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Drð1Þp ðtÞ ¼ 1
2

xpðrð1Þ0 ; tÞ
zpðrð1Þ0 ; tÞ

2
4

3
5eiðk0�x0�x0tÞ þ c:c: with

xp
zp

" #
¼
ð1

�1

x̂pðk; z0; tÞ
ẑpðk; z0; tÞ

" #
eik0�x0dk;

(29a)

and

x̂p
ẑp

� �
¼

iðk þ k0Þ
jk þ k0j cosh jk þ k0jðz0 þ hÞ½ �

sinhjk þ k0jðz0 þ hÞ

2
64

3
75 Âðk; tÞ
sinhjk þ k0jh ;

(29b)

where x0 and z0 denote the component of rð1Þ0 [i.e., ½x0; z0� ¼ rð1Þ0 ]
in the horizontal plane and vertical direction, respectively.
Equations (29a) and (29b) suggest that, if the linear envelope
Âðk; tÞ is known, the net first-order Lagrangian displacement of
particles can be readily obtained by using an inverse Fourier trans-
form. With a first-order approximation to the particle trajectories
(rp) and the velocity of particles (Vp), the Stokes drift velocity is
obtained, to the second order,

Vstðr0; tÞ ¼ Drð1Þp � r3

h i
Vð1Þðxp; tÞ þ Oð�3Þ; (30)

which leads to

Vstðr0; tÞ ¼ Vð20Þ
st þ Vð22Þ

st ðr0; tÞ þ c:c:
h i

; (31a)

with

Vð20Þ
st ðr0; tÞ ¼ 1

4
�r�p � ðr3 þ ikð3dÞ0 Þ
h i

�V þ c:c: (31b)

and

Vð22Þ
st ðr0; tÞ ¼ 1

4
e2iðk0�x�x0tÞ �rp � ðr3 þ ikð3dÞ0 Þ

h i
�V; (31c)

where the wavenumber vector kð3dÞ0 is defined as kð3dÞ0 ¼ ½k0; 0; 0� that
denotes the carrier wavenumber vector in three dimensions. It is

simple to notice that the second-order Stokes drift velocities are func-
tions of linear wave fields, suggesting that they can be easily evaluated
by using a pseudospectral method64 with given linear wave fields
described in Sec. II C. With the narrowband assumption, a leading
order approximation to the second-order mean Stokes drift velocity
can be readily obtained from (31b) (see, e.g., Calvert et al.23 and
Longuet-Higgins47),

Vð20Þ
st ¼ k0x0

2
cosh2k0ðz þ hÞ

sinh2k0h
jAðx; tÞj2; 0; 0

� �
: (32)

The two expressions for the mean Stokes drift velocity profile, i.e.,
(31b) for Vð20Þ

st and (32), will be used in Sec. VB for examining the
effects of wave bandwidth on the second-order mean Eulerian flow
velocity and the mean Stokes drift velocity profile beneath short
focused wave groups.

Inserting the second-order velocity of the Eulerian flows, i.e.,

Vð2Þ
E ¼ Vð22Þ þ Vð20Þ, and (31a) for Vð2Þ

st into (28b) for Drð2Þp leads to
the net Lagrangian displacement of particles at the second order,

Drð2Þp ðr0; tÞ ¼ Drð20Þðr0; tÞ þ Drð22Þðr0; tÞ ; (33a)

with

Drð20Þp ¼
ðt
t0

Vð20Þðr0; sÞ þ Vð20Þ
st ðr0; sÞds; (33b)

and

TABLE II. Matrix of cases examined for unidirectional wave groups. The linear waves in all cases start to propagate at t0 ¼ �15T0 with T0 the peak wave period; kp and
k0 ¼ 2p=kp denote the wavenumber and length of the spectrum peak wave, respectively. In the table, � ¼ kpAp denotes the wave steepness with the peak amplitude Ap of a
wave group at linear focus at the prescribed position, x¼ xf, and time, t¼ tf, based on (34b); h denotes constant water depth; kw;1 and kw;2 denote the standard deviation of an
asymmetrical Gaussian (amplitude) spectrum in the lower (i.e., k < kp) and upper (i.e., HTML translation failed) sideband, respectively; d ¼ Dk=kp denotes the dimensionless
bandwidth of a spectrum with Dk defined as Dk ¼ 3maxðkw;1; kw;2Þ.

Case No. A B C D E F G
Spectrum Gauss. Jonswap Gauss. Gauss. Gauss. Gauss. Gauss.

kp (m
−1) 0.0277 0.0277 0.0277 0.0277 0.0277 0.0277 0.0277

� ¼ kpAp 0.3 0.3 0.3 0.3 0.3 0.3 0.3
xf (m) �12k0 �12k0 �12k0 �12k0 �12k0 �12k0 �12k0
tf (s) �10T0 �10T0 �10T0 �10T0 �10T0 �10T0 �10T0

kph 1 1.5 1.5 1.5 1.5 2 p
kw;1 (m

−1) 0:27kp … 0:27kp 0:27kp 0:27kp 0:27kp 0:27kp
kw;2 (m

−1) 4kw;1 … kw;1 4kw;1 8kw;1 4kw;1 4kw;1
d 3.24 … 0.81 3.24 6.48 3.24 3.24

FIG. 1. Amplitude spectra against wavenumber for case B–E in Table II. It is worth
noting that the integral of each spectrum shown in the figure is equal to kp and the
spectra for case A, D, F, and G are identical.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 076609 (2021); doi: 10.1063/5.0057215 33, 076609-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


FIG. 2. Comparison of the elevation for second-order superharmonic [(a)–(f)] and subharmonic waves [(g)–(l)] at three different times between the results predicted by the
semi-analytical approach from (24b) and (24c) and by Dalzell28 in both the physical plane [(a)–(c) and (g)–(i)] and Fourier plane [(d)–(f) and (j)–(l)]. For the results based on
this paper, N2 	 17 was chosen for the finer grid (red dashed) for the second-order elevations and N2 ¼ 4 was chosen for the coarse mesh (circles) for the superharmonic
elevation, where N2 denotes the number of discrete points chosen per wavelength of the superharmonic wave. kp ¼ 2p=ko denotes the spectrum peak wavenumber, where
k0 is the spectrum peak wavelength. The linear envelope of the short wave group was obtained based on a JONSWAP spectrum, i.e., case B in Table II; Panels (a), (d), (g),
and (j) t ¼ �14T0 with T0 the period of the spectrum peak wave; (b), (e), (h), and (k) t ¼ �10T0 for the wave group at linear focus; (c), (f), (i), and (l) t ¼ 10T0.

FIG. 3. For details [panels (a)–(l)], see the caption for Fig. 2 except that case D in Table II was used for this figure, instead. For the results based on this paper, N2 	 20 was
chosen for the finer grid (red dashed) and N2 ¼ 5 was chosen for the coarse mesh (circles).
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Drð22Þp ¼
ðt
t0

Vð22Þðr0; sÞ þ Vð22Þ
st ðr0; sÞdsþ c:c:; (33c)

where Drð20Þ and Drð22Þ denote the second-order mean and superhar-
monic displacement of particles measured from their initial positions,
respectively. The former contributes to an overall non-zero displace-
ment of particles in space as it does not give a zero mean in time.

V. RESULTS

In this section, we present the second-order results derived in
Secs. III and IV by numerically implementing the semi-analytical
approach. The approach is first validated through comparisons with
Dalzell28 in Sec. VA for the evolution of unidrectional broadband
(short) focused wave groups. We examine the Stokes drift velocity pro-
file and the trajectories of fluid particles below unidrectional short
focused wave groups in Secs. VB and VC, respectively.

For the results obtained in this section, we primarily use Gaussian
amplitude spectra, denoted by S(k), for linear wave elevations in wave-
number. The amplitude spectra are expressed in a form as

SðkÞ ¼ exp �ðk� kpÞ2
2k2w

 !
for k > 0 (34a)

yielding

fð1Þðx; t0Þ ¼ Ap

2

ð1
0
SðkÞei kðx�xf Þ�xðkÞðt0�tf Þ½ �dkð1

0
SðkÞdk

þ c:c:; (34b)

where kp and kw denote the peak wavenumber and the dimensional
bandwidth of a spectrum, respectively, and Ap, xf, and tf denote the

FIG. 4. Comparison of the elevation for second-order superharmonic [(a)–(f)] and subharmonic waves [(g)–(l)] at three different times between the results predicted by the
semi-analytical approach from (24b) and (24c) and by Dalzell28 in both the physical plane [(a)–(c) and (g)–(i)] and Fourier plane [(d)–(f) and (j)–(l)]. For the results based on
this paper, N2 	 17 was chosen for the finer grid (red dashed) for the second-order elevations and N2 ¼ 4 was chosen for the coarse mesh (circles) for the superharmonic
elevation, where N2 denotes the number of discrete points chosen per wavelength of the superharmonic wave, k0=2, where k0 is the spectrum peak wavelength. kp ¼ 2p=k0
denotes the spectrum peak wavenumber. The linear envelope of the short wave group was obtained based on a JONSWAP spectrum, i.e., case B in Table II; Panels (a), (d),
(g), and (j) t ¼ �14T0 with T0 the period of the spectrum peak wave; (b), (e), (h), and (k) t ¼ �10T0 for the wave group at linear focus; (c), (f), (i), and (l) t ¼ 10T0.
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amplitude, position, and time for the group at linear focus, respec-
tively, which are prescribed for the cases examined (see, e.g., Jonathan
and Taylor67 and Orszaghova et al.68 for the definition of a focused
wave group). In this section, asymmetrical Gaussian (amplitude) spec-
tra are used with kw ¼ kw;1 for k < kp and kw ¼ kw;2 for k � kp where
kw;1 and kw;2 denote the bandwidth in the lower and upper bands,
respectively. A good estimate of the bandwidth for an asymmetrical
Gaussian spectrum is d ¼ 3maxðkw;1; kw;2Þ=kp in which the factor 3 is
used as it corresponds to the sidebands at which the spectrum drops
by� 99% relative to the peak magnitude. The parameters for the cases
examined in this section are shown in Table II, in which we note that
the JONSWAP spectrum for case B denotes the frequency (amplitude)
spectrum with the peak enhancement factor c ¼ 3:3.69 The spectra for
the cases in Table II are shown in Fig. 1 for illustration. Trulsen et al.62

and Trulsen and Dysthe70 suggest that the frameworks based on a nar-
rowband assumption can be applicable for waves of a bandwidth in
the regime d� 1. Due to this, the cases except for case C in Table II
were chosen such that d > 1 for demonstrating the capability of the
semi-analytical approach for broadband waves, in contrast to the nar-
rowband frameworks.

A. Comparisons with Dalzell28

We validate the semi-analytical approach in this section through
comparisons with the exact predictions by Dalzell.28 For completeness,
the coefficients from Dalzell28 for the second-order elevations due to
the cross interaction of two regular waves are presented in Appendix A.
Comparisons of the second-order elevations between the semi-
analytical approach and Dalzell28 are shown in Figs. 2 and 3 for a
JONSWAP frequency spectrum (case B) and an asymmetrical
Gaussian spectrum (case D), respectively. For a fair comparison and
simplicity, the inputs at the instant t¼ t0 for the semi-analytical
approach are from the exact results by Dalzell.28

As shown in Figs. 2 and 3, the agreement between the semi-
analytical approach and Dalzell28 is obvious for both the second-order
superharmonic and subharmonic elevation. Figures 2(a), 2(g), 3(a),
and 3(g) show the spatial distribution of the second-order elevations at
the instant four carrier wave periods before the group at linear focus.
Examining the two groups at linear focus [i.e., Figs. 2(b) and 2(h) and
Figs. 3(b) and 3(h)], the JONSWAP spectrum [Figs. 2(b) and 2(h)] is
about 50% larger in the peak crest for the superharmonic elevation,
� 30% larger in the trough of the set-down, and has a shorter group
length, compared to the group from the asymmetrical Gaussian spec-
trum [Figs. 3(b) and 3(h)]. This suggests the JONSWAP spectrum is
of a larger bandwidth as expected. Figures 2(c), 2(i), 3(c), and 3(i)
show the spatial distribution of the second-order elevations 20 periods
after the group at linear focus, where agreement between the semi-
analytical and Dalzell28 is also clear. Comparisons for the other cases
in Table II were also carried out and not shown in this section to avoid
unnecessary repetitions in results. For completeness, additional com-
parisons for the spatial and temporal evolution of a short directional
spread focused wave group are shown in Appendix B. It is demon-
strated, particularly by Figs. 2 and 3, that the semi-analytical approach
is capable of providing exact predictions of weakly nonlinear waves of
an arbitrary bandwidth.

Introduce N2 to denote the number of discrete points per wave-
length (i.e., p=kp) of the second-order superharmonic wave of the spec-
trum peak. It is known that a discrete grid in a spatial domain of a
limited length would lead to the truncation of wave spectrum in the end
of high wavenumbers. Due to the features of fast Fourier transform
(FFT) and inverse FFT, the maximum wavenumber, denoted by kcut,
that can be taken into account for computations, depends on the choice
of N2 due to kcut ¼ N2kp. In Figs. 2 and 3, the results predicted by
the semi-analytical approach using a coarse mesh are also shown,
where N2 ¼ 4 and N2 ¼ 5 were chosen for the evaluations of the

FIG. 5. Comparisons of the vertical profiles of the mean horizontal Stokes drift velocity [uð20Þst ] below unidirectional focused wave groups between the results predicted by the semi-
analytical approach [i.e., (31), black dashed], and by the expression (read dotted-dashed) for narrowband waves (32) for three cases with an increasing bandwidth, d: (a)–(c) case C
with d ¼ 0:81; (d)–(f) case D with d ¼ 3:24; (g)–(i) case E with d ¼ 6:48; all panels predict for the time when the magnitude of A reaches the maximum, i.e., for jAðx0; tÞj
¼ maxðjAðx0; tÞjÞ; the panels in the first column: xpðt0Þ ¼ xf with xf ¼ �12k0 the position at linear focus, the second column: xpðt0Þ ¼ �5k0, and the third column: xpðt0Þ ¼ 0.
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second-order superharmonic elevation. Comparing the results with these
by Dalzell,28 it is clearly seen in Figs. 2(d)–2(f) and 3(d)–3(f) that the
results based on a coarse mesh can provide sufficiently accurate predic-
tions for wavenumbers up to k ¼ 4kp, indicating the potential of the
semi-analytical approach in achieving a high computational efficiency in
the spectral prediction of superharmonic waves, as noted in Sec. IIIA1.
This advantage would be more outstanding for waves of a narrower
bandwidth, which corresponds to a longer group (smaller sideband,
kmax � kp) and, hence, a smaller number of discrete points needed per
wavelength. A limiting case for this is the second-order Stokes waves for
which, due to jkj ¼ 0 in (18), the semi-analytical approach only requires
a sufficiently large spatial domain such that kcut ! 0 to provide the
accurate prediction of the wave spectrum around 2kp.

B. Stokes drift velocity

We examine the roles of the wave bandwidth, spatiotemporal
evolution, and water depth on the Stokes drift velocity beneath a short
unidirectional wave group in this section. Figures 4 and 5 show the
mean horizontal Stokes drift velocity predicted by using (31b) and the
narrowband expression, (32), for three cases of an increasing band-
width, d. We proceed to the comparisons between the results by (31b)

and (32) shown in Fig. 4. Comparing Figs. 4(a)–4(c) to Figs. 4(d)–4(f)
for case C with d ¼ 0:81, differences between the broadband and nar-
rowband predictions are minor in both the vertical structure and mag-
nitudes, which is clearly seen in Figs. 5(a)–5(c). As the bandwidth
increases, the differences become clearer, as shown in Figs. 4(g)–4(r)
and 5(d)–5(i) where the predictions based on the narrowband expres-
sion show generally much weaker vertical profile shear and underesti-
mated magnitudes of Stokes drift velocity for both case D and case E
with d ¼ 3:24 and d ¼ 6:48, respectively. Specifically, the magnitudes
of surface Stokes drift velocity from the broadband exact predictions
are much larger than that predicted by the narrowband results, by a
factor of 2–3, as seen in Figs. 4(h), 4(k), 4(m), 4(p), and 5(d)–5(i).
Similarly, the profile shear at surface beneath the group peak shown in
Figs. 5(d)–5(i) indicates an increase by a factor of � 3 and � 6 for
case C and case D, respectively, based on the broadband exact predic-
tions compared to the narrowband assumption. These suggest the
need for taking into account the cross interaction of different wave
components at the second order since it is neglected by the narrow-
band theory.

For examining the effects of the bandwidth and spatiotemporal
evolution, we focus on the panels in the first, third, and fifth rows in
Fig. 4, which are predicted by the semi-analytical approach. It is seen

FIG. 6. The vertical-temporal distribution of the mean horizontal Stokes drift velocity below a unidirectional focused wave group predicted based on (31) by the semi-analytical
approach on four different depths, kph, where kp and h are the wavenumber of the spectrum peak wave and water depth, respectively. Panels (a)–(c) case A with kph¼ 1;
(d)–(f) case D with kph ¼ 1:5; (g)–(i) case F with kph¼ 2; (j)–(l) case G with kph ¼ p. The panels in the first column for xpðt0Þ ¼ xf with xf ¼ �12k0, the second column:
xpðt0Þ ¼ �5k0, and the third column: xpðt0Þ ¼ 0. All contour levels are scaled by x0jAjmaxðx0; tÞ with jAjmax ¼ max½jAðx0; tÞj� the maximum amplitude.
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that, with an increasing bandwidth, an increase and a decrease in the
magnitude of Stokes drift velocity are seen at linear focus [Figs. 4(a),
4(g), and 4(m)] and post-focus times [Figs. 4(b), 4(c), 4(h), 4(i), 4(n),
and 4(o)], respectively. The panels in the second and third columns, i.e.,
Figs. 4(b), 4(c), 4(h), 4(i), 4(n), and 4(o), show that the largest Stokes
drift velocities at surface are observed at a later time for a group of a
larger bandwidth, suggesting the importance of short waves in this since
they generally travel slower and should be observed at a later time.

Figure 6 shows the vertical and temporal distribution of the
mean Stokes drift velocity underneath a unidirectional focused wave
group on four different depths, kph, varying from finite to deep water.
It is clearly seen in Fig. 6 that the depth on the mean Stokes drifts plays
an important role in both the vertical profile shear and the temporal
distribution of the Stokes drift velocity. As the water depth (kph)
increases, Figs. 6(b), 6(e), 6(h), and 6(k) show that the degree of the
temporal asymmetry in the vertical profile of Stokes drift velocity tends
to decrease, similar to Figs. 6(c), 6(f), 6(i), and 6(l), likely owing to lin-
ear dispersion that leads to larger discrepancies between longer and
shorter waves. For the shallowest water case, Figs. 6(b) and 6(c) show
that the vertical profile of the mean Stokes drift velocity observed at

earlier times [e.g., around t=T0 ¼ 0 in panel (b) and around t=T0 ¼ 8
in panel (c)] is nearly independent of water depth, indicating the fea-
tures of longer waves since they propagate faster and lead to a less
depth-dependent profile of Stokes drift velocity. In contrast, stronger
vertical shear of Stokes drift velocity at surface is shown at later times
[e.g., around t=T0 ¼ 10 in panel (b) and around t=T0 ¼ 25 in panel
(c)], which indicates features of shorter waves as they propagate slower
and alter more the water layer at the surface.

C. Trajectories and net mean Lagrangian
displacement of particles

1. The mean particle velocities at the second order

Next we examine the mean particle velocities, below a propagating
wave group, that determine the non-zero net displacement of particles.
As derived in Sec. IV, the mean particle velocities comprise of two com-
ponents: the Eulerian flows, Vð20Þðx0; z0; tÞ, measured at a fixed initial
position, and the mean Stokes drift velocity, Vð20Þ

st , due to the linear dis-
placement and linear velocity of the particles. We take a look at the two

FIG. 7. Vertical structure of second-order mean Eulerian return flows (a)–(c), mean Stokes drift velocity (d)–(f), and the leading-order mean particle velocities (g)–(i) in the
form of the sum of the two varying in time (t=T0) underneath a short unidirectional focused wave group for particles at three different initial locations; (a), (d), and (g) xpðt0Þ ¼
xf with xf ¼ �12k0 and (b), (e), and (h) xpðt0Þ ¼ �5k0, and (c), (f), and (i) xpðt0Þ ¼ 0. All contour levels are scaled by x0jAjmaxðx0; tÞ with jAjmax ¼ max½jAðx0; tÞj� the
maximum amplitude. Case D in Table II (d ¼ 3:24) was used for computations.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 076609 (2021); doi: 10.1063/5.0057215 33, 076609-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


different components in Fig. 7. Figure 7 shows the spatiotemporal
evolution of the vertical structure of the mean horizontal Eulerian
flows [Figs. 7(a)–7(c)], mean Stokes drift velocities [Figs. 7(d)–7(f)],
and the summation of the two that denotes the mean particle velocity
[Figs. 7(g)–7(i)] underneath a unidirectional broadband focused
wave group. As seen in Figs. 7(a)–7(c) and as expected, the mean
horizontal Eulerian velocity appears as return flows since it has a
negative sign and propagates in the opposing direction to the main
propagation direction of the group. Comparing the position at linear
focus [Fig. 7(a)] with the other two positions [Figs. 7(b) and 7(c)],
the Eulerian velocity is more dependent on z0 and has generally a
larger magnitude.

In contrast, the mean Stokes drift velocity [Figs. 7(d)–7(f)] holds
a positive sign throughout the water column and decreases quickly
with depth (i.e., the profile has a strong shear near the surface). Figures
7(d)–7(f) show that the magnitude and vertical structure of the Stokes
drift velocity vary with the initial particle positions, x0. Due to the dif-
ferent signs and vertical structures of the Stokes drift and Eulerian

return flows, Figs. 7(g)–7(i) show that the mean velocity of the par-
ticles is positive in a layer near the water surface, whereas it is negative
in a layer near the seabed. Therefore, there exists a depth z0 ¼ �ht ,
with the depth ht at which the mean particle velocity is zero. The mag-
nitude, temporal evolution, and vertical structures of the particle veloc-
ities vary at different initial positions x0, which determine the key
features of the net displacement of particles examined in Sec. VC2.

2. Particle trajectories and displacements below
focused wave groups

Figure 8 shows the trajectories of particles [panels (a)–(d), (f)–(j),
and (l)–(o)] beneath a short wave group starting from rest at different
depths, z0, and initial horizontal positions, x0, and the net mean dis-
placements [panels (e), (k), and (p)] of these particles after the group
has passed. Examining the vertical profile of the trajectories initially at
a position x0, we see from Figs. 8(a)–8(d) that the particles near sur-
face, i.e., Figs. 8(a) and 8(b), and at depths, i.e., Figs. 8(c) and 8(d),

FIG. 8. Particle trajectories [(a)–(d), (f)–(j), and (l)–(o)] underneath a short unidirectional focused wave group and the net mean horizontal displacement of particles at different
depths (z0); Panels (a)–(e) xpðt0Þ ¼ xf with xf ¼ �12k0; (f)–(k) xpðt0Þ ¼ �5k0, and (l)–(p) xpðt0Þ ¼ 0. This figure used case D for computations. All particles start to propa-
gate at rest, indicated by marker “+” in red before the wave group arrives, and they stop moving after the group has passed, indicated by marker “+” in blue.
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show a positive and negative net mean horizontal displacement,
respectively, as also seen in Fig. 8(e). The trajectories of the particles
near surface are shown to be of a larger magnitude in the oscillating
motion. For the particles starting downstream the position at linear
focus, shown in Figs. 8(f)–8(j), more rounds of oscillations at a smaller
magnitude in motion can be observed as the group passes, which is
more so for the particles further downstream shown in Figs. 8(l)–8(o).
Comparing the panels (e), (k), and (p) in Fig. 8, no clear differences
are shown in the vertical structure as well as magnitudes in the net
mean horizontal displacements evaluated at the three different initial
horizontal positions. This is surprising as the corresponding particle
velocities in Figs. 7(g)–7(i) have demonstrated clear differences in both
magnitude and vertical-temporal distributions for particles at different
positions, based on which one would expect, as a result, differences in
the vertical structures of the net mean horizontal velocities. The
unchanged vertical profile in the net mean horizontal displacements of

particles below a group may be understood from that the developed
wave fields are within a conserved and stationary system that would
lead to conserved kinetic energy due to particle motions in space.

Next we examine the effects of the wave bandwidth and depth on
the trajectories and the net mean horizontal displacements of particles,
as shown in Figs. 9 and 10 where cases of an increasing bandwidth
and depth are chosen, respectively, with the other parameters remain-
ing the same for all the cases. Focusing on the particle trajectories, it is
seen in Fig. 9 that an increased bandwidth leads to opposing effects on
the oscillating motions of particles starting at a position at linear focus
and downstream; an enhanced (decreased) magnitude but reduced
(increased) periods in the oscillating motions are observed for the sur-
face particles starting at linear focus (downstream). We remark that
the total horizontal mass transport is not assumed zero, different from
that in Longuet-Higgins47 [i.e., Eqs. (2)–(4) therein]. This explains the
obvious nonzero integral for the net mean horizontal displacements

FIG. 9. Particle trajectories (panels in the top and middle row) underneath short unidirectional focused wave groups and the net mean horizontal displacement [panels (c), (f),
and (i)] of the particles at different depths (z0); the panels in the top row: xpðt0Þ ¼ xf with xf ¼ �12k0, the second row: xpðt0Þ ¼ �5k0. Panels (a)–(c) were calculated based
on case C; (d)–(f): case D; (g)–(i): case E. All particles start to propagate at rest, indicated by marker “+” in red before the wave group arrives and they stop to move after the
group has passed, indicated by marker “+” in blue.
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over the water column shown in Figs. 9(c), 9(f), and 9(i). As a result,
this would lead to a constant shift of the net mean horizontal displace-
ments of all particles throughout the water column, which does not
affect the observation in Figs. 9(c), 9(f), and 9(i) that an increased
bandwidth leads to larger differences between the net displacements of
the particles at still water surface and at seabed, indicating that the
bandwidth of waves on a finite depth plays an important role in both
particle velocities and mean horizontal displacements at different
depths.

The trajectories of the surface particles in the first and second col-
umns in Fig. 10 indicate that the depth leads to negligible effects in the
oscillating magnitudes and periods in the motion of the surface par-
ticles. In contrast, it is clearly shown in Figs. 10(c), 10(f), 10(j), and 10
(m) that, as water depth (i.e., kph) increases, the particles near water
surface experience an increased net mean horizontal displacement rel-
ative to the particles at seabed.

VI. CONCLUSIONS

In this paper, a semi-analytical approach has been proposed for
the description of weakly nonlinear multi-directional surface waves.
Based on a Stokes and harmonic expansion, an envelope-type frame-
work for second-order wave fields in wave steepness has been derived
and the approach proposes solving for the wave fields by using a pseu-
dospectral method and a numerical scheme for the superharmonic
and subharmonic wave fields at still water surface. The approach per-
mits computational operations of order NInðNÞ due to the pseudo-
spectral method, where N denotes the total number of the discrete
points in space chosen according to the scaling of the envelope of lin-
ear wave elevation. This suggests that N can be chosen of a much
smaller value than some other numerical methods, such as the High-
Order Spectral method (see, e.g., Dommermuth and Yue36 and
West et al.37). Comparisons between the results predicted by the

FIG. 10. Surface particles trajectories (panels in the left and middle column) underneath short unidirectional focused wave groups and the net mean horizontal displacements
[panels (c), (f), (j), and (m)] of the particles at different depths (z0); the panels in the left column: xpðt0Þ ¼ xf with xf ¼ �12k0, the middle column: xpðt0Þ ¼ �5k0. Panels
(a)–(c) were calculated based on case A with kph¼ 1 where kp and h denote the wavenumber of a spectrum peak wave and water depth, respectively; (d)–(f): case D with
kph ¼ 1:5; (h) and (i): case F with kph¼ 2; (k)–(m): case G with kph ¼ p. All particles start to propagate at rest, indicated by marker “+” in red before the wave group arrives
and they stop moving after the group has passed, indicated by marker “+” in blue.
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semi-analytical approach and the exact results by Dalzell28 are pre-
sented for the evolution of focused wave groups generated from broad-
band asymmetrical Gaussian and JONSWAP spectrum. It has been
demonstrated that the semi-analytical approach can provide exact
results as that by Dalzell28 and that four or five discrete points per
wavelength of the second-order superharmonic peak wave can provide
sufficiently accurate spectral predictions of superharmonic waves for
wavenumbers up to four times the peak wavenumber for truly broad-
band wave spectra. This approach allows for general extensions for the
description of fully nonlinear waves as well as for the interaction of
waves with ambient environments, e.g., subsurface currents, turbulence,
and varying seabed. These aspects will be addressed in future work.

Based on the semi-analytical approach, an envelope-type frame-
work for the trajectories of particles up to the second order in wave
steepness has also been derived in this paper. The effects of wave band-
width, water depth, and the spatiotemporal evolution of unidirectional
wave groups on the particle trajectories, net mean horizontal displace-
ments of particles, and Stokes drift velocities underneath broadband
unidirectional focused wave groups have been examined. It is found
that the spatiotemporal evolution of a wave group plays an important
role in the linear trajectories of particles and the vertical profiles and
magnitudes of the Stokes drift velocity. It has negligible effects on the
vertical (depth) structure of the net mean horizontal displacement of
particles. In contrast, an increased bandwidth and depth can lead to an

increased mean horizontal displacement of particles at the surface rela-
tive to the particles at the seabed. Comparing the results obtained
from a narrowband assumption with these by the semi-analytical
approach, this paper has shown that the narrowband assumption leads
to large discrepancies in the estimates of the second-order mean
Eulerian return flow and the velocity profile of Stokes drift beneath
wave groups of dimensionless bandwidth larger than 1, i.e., for
Dk=kp > 1 with the side bandwidth in wavenumber Dk and the spec-
trum peak wavenumber kp, confirming the applicability regime of nar-
rowband theory suggested by Trulsen et al.62
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APPENDIX A: COEFFICIENTS FOR THE
SECOND-ORDER WAVE ELEVATIONS28

Based on Dalzell,28 the second-order superharmonic and sub-
harmonic wave elevation can be given by

FIG. 11. Comparison of the second-order superharmonic potential Uð22Þ [panels (a)–(c)] between the results predicted by the semi-analytical approach, by Dalzell28 (exact),
and Stokes second-order theory (cf. Davey and Stewartson20) and comparison of wð20Þ

z [panels (d)–(f)] between the results predicted by the semi-analytical approach, by
Dalzell28 (exact), and by Calvert et al.23 that is based on a narrowband assumption. All panels show the results at still water surface and follow the center of the group for
y¼ 0. The linear envelope of the short wave group was obtained based on a symmetrical directional spread Gaussian spectrum, where kp ¼ 0:027 69 m−1 is the peak wave-
number, kw;1 ¼ kw;2 ¼ 0:0046 m−1 is the bandwidth in wavenumber, h0 ¼ 0
, hw ¼ 10
, xf ¼ 0� k0, and tf ¼ 0� T0, where k0 and T0 denotes the wavelength and period
of the spectrum peak wave. The group starts to propagate at t ¼ �15T0. Panels (a) and (d) t ¼ �10T0; (b) and (e) t ¼ 0� T0 for the wave group at linear focus; (c) and (f)
t ¼ 10T0.
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FIG. 12. Comparisons of second-order ele-
vations for case A (a)–(f), case C (g)–(l),
case E (m)–(r), case F (s)–(x), and case G
(y)–(dd). Other parameters are the same
as Fig. 2.
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where wiðx; tÞ ¼ ki � x � xit þ hi and wjðx; tÞ ¼ kj � x � xjt þ hj
denote the wave phase functions, where xi ¼ xðjkijÞ and
xj ¼ xðjkjjÞ are the angular frequencies of linear free waves, hi and
hj are the initial free wave phases; li and lj denote the direction of
wave vector ki and kj, respectively; and jf̂ij and jf̂jj denote the
amplitude of linear free wave ki and kj, respectively,

D6 ¼ ðxi6xjÞ2 � gjki6kjjtanhðjki6kjjhÞ; (A2a)

and

Q6 ¼ ðxi6xjÞ2 þ gjki6kjjtanhðjki6kjjhÞ: (A2b)

APPENDIX B: ADDITIONAL RESULTS

In this section, additional results for the evolution of a multi-
directional wave group are examined. The angular distribution of
the linear wave group is expressed as a Gaussian distribution

NðlÞ ¼ exp �ðl� l0Þ2
2l2w

 !
; (B1)

where l0 and lw denote the propagation direction of the spectrum
peak wave and the directional width, respectively. Together with the
amplitude spectrum presented in Sec. VA, the linear elevation is
given by

fð1Þðx; tÞ ¼ Ap

2SRNR

XN
n¼1

XM
m¼1

Sðjkn;mjÞNðlmÞeiðkn;m�ðx�xf Þ�xðjkn;mjÞðt0�tf ÞÞ

(B2a)

with

SR ¼
XN
n¼1

Sðjkn;mjÞ and NR ¼
XM
m¼1

SðlmÞ; (B2b)

where kn;m ¼ ½jknj cos ðlmÞ; jknj sin ðlmÞ� denotes the wave vector
of a free wave and jknj and lm denote evenly spaced discrete points
in wavenumber and directions, respectively.

Figure 11 shows the comparison of the evolution of a direc-
tional spread focused wave group between the predictions by the
semi-analytical approaches, by Dalzell,28 and narrowband approxi-
mations (i.e., the Stokes second-order theory and Calvert et al.23).
Good agreement between the semi-analytical approach and
Dalzell28 is clear, whereas the differences between the approximate
results and the other two exact methods can be clearly seen.

Figure 12 shows the comparison of second-order wave eleva-
tions between the predictions by the semi-analytical approach and
by Dalzell28 for the evolution of two dimensional focused wave
groups through input based on case A, C, E, F, and G in Table II,
where good agreement between the semi-analytical approach and
Dalzell28 has been confirmed, in addition to Figs. 2 and 3.
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The data that support the findings of this study and the numeri-
cal functions that implement the semi-analytical approach are avail-
able from the corresponding author upon reasonable request.
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