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ABSTRACT

Plasma cell leukemia is a rare and aggressive plasma cell neoplasm that may 
either originate de novo (primary PCL) or by leukemic transformation of multiple 
myeloma (MM) to secondary PCL (sPCL). The prognosis of sPCL is very poor, and 
currently no standard treatment is available due to lack of prospective clinical 
studies. In an attempt to elucidate factors contributing to transformation, we have 
performed super-SILAC quantitative proteome profiling of malignant plasma cells 
collected from the same patient at both the MM and sPCL stages of the disease. 795 
proteins were found to be differentially expressed in the MM and sPCL samples. Gene 
ontology analysis indicated a metabolic shift towards aerobic glycolysis in sPCL as 
well as marked down-regulation of enzymes involved in glycan synthesis, potentially 
mediating altered glycosylation of surface receptors. There was no significant change 
in overall genomic 5-methylcytosine or 5-hydroxymethylcytosine at the two stages, 
indicating that epigenetic dysregulation was not a major driver of transformation 
to sPCL. The present study constitutes the first attempt to provide a comprehensive 
map of the altered protein expression profile accompanying transformation of MM to 
sPCL in a single patient, identifying several candidate proteins that can be targeted 
by currently available small molecule drugs. Our dataset furthermore constitutes a 
reference dataset for further proteomic analysis of sPCL transformation.

INTRODUCTION

Plasma cell leukemia (PCL) is a rare and aggressive 
lymphoproliferative disorder characterized by high 
levels of malignant plasma cells in the peripheral blood 
[1]. It can manifest either as de novo (primary) pPCL 
or as a secondary transformation (sPCL) of multiple 
myeloma (MM) and gene expression profiling suggests 
that the two forms constitute separate molecular entities 
[2]. The overall incidence rate in Europe of all PCL is 
approximately 1 case per 2.5 million persons/year [3] and 
of these generally 30 - 40% constitute sPCL [4]. sPCL 
is associated with poor prognosis and there is currently 

no standard treatment due to the lack of prospective 
data on treatment regimens and outcome in large trials. 
The mechanisms whereby MM transforms to sPCL 
remain elusive, but different secondary genomic events 
accumulating upon primary events present at the MM 
stage likely contribute [5]. Primary events commonly seen 
in MM are trisomies and IgH translocations with CCND1 
[6], CCND3 [7], MMSET/FGFR3 [8], cMAF [9] and 
MAFB [10]. Examples of secondary events are deletion 
or inactivation of TP53 and activation of proto-oncogenes 
c-MYC, N-RAS and K-RAS [11], deletion of PTEN [12] and 
Rb [13]. Interestingly, unlike MM, monoallelic or biallelic 
inactivation of TP53 does not correlate with survival [14, 
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15], suggesting ubiquitous targeting of the p53 pathway 
in sPCL [16]. Immunophenotypic profiling of PCL versus 
MM cells suggests that modulated expression of some 
surface antigens might contribute to the escape from the 
bone marrow environment and also from immunological 
surveillance, including down-regulation of CD11a/b 
and CD18 [17] and CD56. Moreover, CD28 is more 
frequently expressed in sPCL than in MM, consistent with 
the observation that increased CD28 expression in MM 
plasma cells correlates with increased proliferation and 
progression [18]. Finally, a longitudinal whole-genome 
sequencing study in a single patient progressing from MM 
to sPCL identified several loss-of function mutations only 
occurring at the final sPCL stage, including ZKSCAN3 and 
RB1, which, together with deletion of TP53 could lead to 
dysregulation of cell-cycle checkpoints [19].

Although the above studies have provided 
some clues towards understanding factors driving 
the progression from MM to sPCL, to the best of 
our knowledge no attempts have been made to study 
alterations at the whole-proteome level accompanying 
the transformation. Such studies are by no means trivial. 
sPCL is very rare, thus sufficient samples for robust 
statistical evaluation will be extremely hard to obtain. 
Moreover, by escaping the bone marrow into peripheral 
blood the malignant plasma cells will likely adapt to the 
novel environment by modulating expression of several 
proteins. Deciphering drivers and bystanders may thus be 
a challenging task. To initially address these questions we 
here present a super-SILAC [20] quantitative proteome 
analysis of purified malignant plasma cells obtained from 
a single patient at the MM and the sPCL stages. SILAC 
(stable isotope labeling with amino acids in cell culture) 
is an accurate and reliable quantitative proteomics method 
that detects differences in protein abundance among 
samples using non-radioactive isotopic labeling [21]. 
Reference cells are labeled through the incorporation 
of “heavy” versions of essential amino acids in the cell 
populations and mixed early in the sample preparation 
phase together with cells of interest and are analyzed 
together by LC-MS/MS (commonly 13C6

14N2-lysine and 
13C6

14N4-arginine are utilized, which produce a mass 
difference of 8.0142 Da and 10.00827 Da, respectively, 
for each tryptic peptide). The SILAC approach is mainly 
limited to proliferating cells that can be metabolically 
labeled with heavy amino acids. For studying e.g. patient 
samples, this can be circumvented by using a heavy-
labelled protein mixture as internal standard. In this 
approach, denoted super-SILAC, a mixture of proteins 
extracted from several SILAC-labeled cell lines serve 
together as the spike-in standard. By spiking the same 
amount of SILAC-labeled standard in each sample, a 
precise relative comparison of protein levels between 
samples can be indirectly obtained. Super-SILAC holds 
tremendous potential in e.g. clinical diagnosis. This 
was demonstrated by Deeb et al [22], who were able to 

segregate two histologically indistinguishable subtypes 
of diffuse large B-cell lymphoma (DLBCL), activated 
B-cell-like (ABC) and germinal-center B-cell-like (GCB) 
subtypes, by employing this method. A dataset has been 
created using Orbitrap Elite MS combined with a super-
SILAC experimental setup. This dataset is a first attempt 
to shed light on the transition from MM to sPCL from 
a proteomic point of view and can be used as future 
reference in the ongoing research on MM and sPCL.

RESULTS AND DISCUSSION

Generation of a multiple myeloma super-SILAC 
library

To accurately quantify proteome differences between 
multiple myeloma and sPCL, we generated a super-SILAC 
cell library consisting of three non-hyperdiploid (IH-1, INA-
6, RPMI8226-LR5) and three hyperdiploid (OH-2, KJON, 
VOLIN) MM cell lines, as well as two B-cell lymphoma 
cell lines (RAMOS, KARPAS-422). Importantly, about 
55-60% of multiple myelomas are hyperdiploid with 48-
74 chromosomes. They often contain trisomies of the odd 
numbered chromosomes 3, 5, 7, 9, 11, 15, 19, and 21 and 
less frequently IGH-translocations. However, nearly all 
available MM cell lines are derived from non-hyperdiploid 
myelomas, and would thus not fully represent the disease 
[23, 24]. We have been able to establish three multiple 
myeloma cell lines from hyperdiploid multiple myeloma 
patients, named OH-2 [25], KJON and VOLIN [26]. 
Of these, OH-2 and VOLIN only reached 71% and 80% 
incorporation of heavy amino acids, respectively, whereas 
all the other cell lines reached 94% incorporation or above. 
Notably, whereas near complete incorporation of heavy 
label is important to avoid skewing of quantitative data in 
standard SILAC experiments, this is less of a problem in 
super-SILAC since an equal amount of the heavy library is 
mixed with every patient sample. The final output represent 
“ratios of ratios” and there is little risk of introducing false 
positives (erroneously high differential expression) due to 
non-complete labelling. Despite suboptimal incorporation 
of heavy label in OH-1 and VOLIN, we thus decided to 
include them in the library to get equal representation of 
hyperdiploid and non-hyperdiploid cell lines. We included 
the two B-cell lymphoma cell lines since they express high 
levels of activation-induced deaminase (AID) [27], and 
which was not quantified in any of the MM cell lines used 
in the library. An AID/APOBEC mutational signature was 
recently shown in 3.8% of myeloma cases and linked to 
deregulated MAF, MAFB and MYC and poor prognosis 
[28]. Finally, the non-hyperdiploid cell line RPMI8226-
LR5 was included as a representative of a drug-resistant 
cell line, grown under continuous melphalan exposure [29]. 
The cell lines employed in the super-SILAC library, their 
characteristics, and the experimental outline are presented 
in Figure 1.
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To further characterize the cell lines we prepared 
duplicate protein extracts from each of their non-labelled 
versions and individually spiked these 1:1 with the super-
SILAC mixture. Each of the combined extracts was 
then analyzed by LC-MS/MS in at least two technical 
replicates as described in Materials and Methods. Joint 
analysis of the result files in MaxQuant identified a total 
of ~5270 different protein groups from the cell lines 
(on average ~3100 per cell line). To compare the cell 
line proteomes we quantified all measurements against 
each other based on the ratios to the super-SILAC mix 
and calculated their correlation coefficients. Further, 
we performed unsupervised hierarchical clustering of 
the quantified proteins using normalized SILAC-ratios 
to reveal the degree of pairwise differences in protein 
expression patterns at a global level (Figure 2; the 
complete list of pairwise correlation coefficients and 

P-values can be found in Supplementary Table 1). In each 
case the rows and columns of the matrix of coefficients 
co-clustered the replicates (biological and technical) in a 
tight fashion (Figure 2), indicating good reproducibility 
[20]. Moreover, the lack of significant overlap between 
the cell lines indicated that the library represented a 
broad coverage of the MM cancer proteome. Notably, 
this analysis also indicated that the two cell lines having 
the most pronounced hyperdiploidy, OH-2 and VOLIN, 
were found to be dissimilar from the rest of the cell lines, 
and segregated even further away from the other MM cell 
lines than the two B-cell lymphoma cell lines RAMOS 
and KARPAS422. A potential effect of non-complete 
labelling to the segregation of OH-1 and VOLIN was 
regarded less likely, since VOLIN segregated further 
away from the other MM cell lines than OH-1, despite 
having significantly higher incorporation of heavy label. 

Figure 1: Schematic illustration of the super-SILAC workflow. The table shows the cell lines included in the super-SILAC 
library, their sources as well as major genetic characteristics. Below is shown the timeline of the patient treatments and the collection 
of bone marrow (BM) and peripheral blood (PB) samples. CVD; cyclophosphamide, bortezomib, dexamethasone, VMP; bortezomib/
melphalan/prednisone, CVP; cyclophosphamide, bortezomib, prednisone, VGPR; very good partial remission, PR; partial remission, TR; 
treatment resistant.
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This supported that inclusion of these hyperdiploid cell 
lines in the library would increase coverage of potentially 
disease-relevant proteins.

Comparison of the multiple myeloma and 
plasma cell leukemia proteomes

In our super-SILAC analysis of MM and sPCL 
samples an average of 3659 ± 396 (SD) proteins were 
identified, amongst which 2784 ± 249 were quantified 
by super-SILAC. To extract as much information as 
possible from the RAW data, label-free quantification 
(LFQ) light channel from super-SILAC representing the 
sample were also used for quantitative analysis [22, 30]. 
Proteins quantified in at least two out of three biological 
replicates were considered for further analysis. The 
values were log2 transformed in order to have a better 
approximation to normal distribution. Further, median 
of technical replicates were calculated to represent the 
samples in order to be less sensitive to outliers. These 
are presented in Supplementary Table 2. The values were 
compared as groups representing MM and sPCL to find 

differentially expressed proteins (Student’s t-test). The 
p-values were then corrected by creating a background 
distribution through random assignment of values to each 
group. If the chance of getting a specific p-value is still 
< 5% after this permutation, the protein is marked as 
differentially expressed. This strategy has been shown to 
be robust to differing background distribution as empirical 
distributions are being created for each case. Further, it is 
less sensitive to number of comparisons like traditional 
Benjamini Hochberg correction [31].

Missing values were imputed following the 
guidelines from Deeb et al. [22] but with a down-shift of 
1.5 and standard deviation of 0.5 from the total data matrix, 
as it reflected the noise more smoothly in the histogram 
representation of our data. The values from super-SILAC 
ratios and label-free values with and without imputation 
were subjected to Student’s t-test with permutation-
based false discovery rate (FDR) of 0.05 as implemented 
in Perseus software v 1.5 [32] (Supplementary Table 
2). The distribution of the log2 super-SILAC ratios 
between the quantifications in MM and sPCL is shown 
in Figure 3A. These values show normal distribution 

Figure 2: Heat map of Pearson showing reproducibility between replicates as well as similarity between certain cell 
lines. Numbers succeeding each cell line indicate biological and technical replicates. The color bar represent the corresponding correlation 
coefficients.
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Figure 3: Super-SILAC quantitative profiling and pathway analysis of differentially expressed proteins. A. Histogram of 
log2 super-SILAC ratios between proteins in the sPCL and MM samples. Negative values represent proteins with increased expression in 
MM, whereas positive values represent proteins with increased expression in sPCL. B. Volcano plot of the entire set of proteins quantified 
during super-SILAC analysis. Each point represents the difference in expression (Log2 t-test difference) between the sPCL and the MM 
samples plotted against the level of statistical significance. Blue dots represent proteins whose expression is significantly (t-test, p < 0.05) 
different in the two samples and with an absolute log2 t-test difference >0.58. C. Top 10 canonical pathways [log10 (p-values)] significantly 
changed in sPCL compared to MM, according to IPA.
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around zero, supporting similar overall protein loads of 
the samples. 795 proteins were found to be differentially 
expressed in the MM and sPCL cells when using a log2 
cut-off of 0.58 and p < 0.05 (Supplementary Table 2, 
assigned the value 1 in column G) amongst which 728 
had FDR < 0.05 (assigned the value 1 in column F). Figure 
3B shows a volcano plot of the entire dataset indicating 
proteins whose expression was significantly different 
(t-test, p < 0.05) between the sPCL and MM samples. 
To analyze the subcellular location of the differentially 
expressed proteins, IDs Gene Ontology (GO) database 
annotations were analyzed. Here, 36.0 % of the proteins 
were reported to be localized to the cytosol, 30.6% to 
the nucleus and 16.2% to the mitochondria. Annotation 
enrichments analysis [33] over these 728 expression 
values showed that the nuclear proteins were significantly 
up-regulated (median log2 ~ 0.61 p-value < 2E-11 with 
FDR < 5E-9), while mitochondrial proteins were down-
regulated (median log2 ~ -0.76 p-value < 0.05) in the sPCL 
cells, indicating that the transformation was accompanied 
by increased nuclear and reduced mitochondrial function 
in general. Interestingly, reduced mitochondrial function 
and an increased glycolytic phenotype are often observed 
in tumor cells even when oxygen is present. This is 
commonly known as the “Warburg effect” [34] and is also 
associated with increased resistance to apoptosis, high 
invasiveness and metastasis [35]. A shift towards aerobic 
glycolytic metabolism was also recently associated with 
development of acquired resistance to Melphalan in 
multiple myeloma cells [29].

Enzymes involved in protein glycosylation are 
down-regulated in sPCL

To search for modified biological pathways 
associated with transformation to sPCL, gene identifiers 
in the SILAC dataset were mapped in the Ingenuity® 
Knowledge Base (IPA) and plotted onto their canonical 
pathways. The ten most significant pathways are 
presented in Figure 3C. Here, colanic acid building blocks 
biosynthesis was identified as the most significantly altered 
pathway (p~2.24×10-10) where 9 out of 14 associated 
proteins were found to be differentially expressed and 
seven of which were down-regulated in PCL. Colanic acid 
is an extracellular bacterial polysaccharide also known 
as M-antigen. In humans, the nucleotide sugar building 
blocks are instead used in other pathways such as the 
glycosylation of cell surface receptors. Manual inspection 
of the data indeed revealed that many of the enzymes 
involved in the formation of nucleotide-activated sugars 
for glycoprotein synthesis, including of GDP-mannose, 
GDP-fucose, UDP-N-acetylglucosamine (UDP-GlcNAc) 
and CMP-N-acetylneuraminic acid (CMP-Neu5Ac) were 
significantly down-regulated at the sPCL stage. In the 
GDP-mannose synthetic pathway PMM2, GMPPA and 
GMPPB were 1.75-, 1.92- and 2.13-fold down-regulated 

(p < 0.05), respectively (Supplementary Table 2). In the 
first step in the further conversion of GDP-mannose to 
GDP-fucose, GMDS was 1.52-fold down-regulated. 
Moreover, in the synthesis of UDP-GlcNAc from 
fructose-6-phosphate, all enzymes were down-regulated, 
although only two of these, GFPT1 (1.73-fold) and PGM3 
(2.40-fold) were statistically significant. In the further 
conversion of UDP-GlcNAc to CMP-Neu5Ac, NANS 
and CMAS were significantly down-regulated (2.3- and 
2.2-fold, respectively). These results suggested that the 
synthesis of glycoproteins could be compromised in the 
sPCL cells. This was corroborated by the levels of ALG1 
and ALG2, responsible for in initial transfer of GDP-
mannose to proteins at the ER, which was 1.57- and 
2.31-fold down-regulated, respectively. Furthermore, 
STT3B, the catalytic subunit of the complex transferring 
oligosaccharides to asparagines, was 2.5-fold down-
regulated. Aberrant glycosylation of surface antigens has 
been associated with poor prognosis of several cancers. 
Among the tumor-associated glycans, sialic acids have 
received special attention. These negatively charged 
monosaccharides are typically found terminally at cell 
surface glycoconjugates, and commonly constitutes 
N-acetylneuraminic acid (Neu5Ac) in humans. To our 
knowledge, only one study has addressed the potential 
involvement of altered sialylation in MM cell trafficking 
[36]. Here, high expression of the α-2,3-sialyltransferase 
ST3GAL6 was associated with inferior overall survival. 
Moreover, knockdown of ST3GAL6 mediated reduced 
binding of MM cells to bone marrow stromal cells and 
fibronectin as well as reduced transendothelial migration 
in vivo, thus establishing a role of sialylation in MM cell 
trafficking. Conversely, reduced α-2,3-sialylation was 
recently reported in colorectal tumors compared to normal 
tissues, indicating that the impact of sialylation is cancer-
specific. Unfortunately, ST3GAL6 was not quantified 
in our dataset. However, the α-2,6-sialyltransferase 
ST6GAL1 was 1.68-fold (p~0.001) down-regulated. 
Together with the reduced levels of enzymes involved in 
sialylation precursor synthesis, this strongly suggest that 
α-2,6-sialylation is reduced in the sPCL samples compared 
to the MM samples. The precise contribution of this as 
well as to the formation of other glycoconjugates to the 
disease progression in general must, however await further 
studies.

Aberrant expression of surface receptors may 
contribute to evasion from the bone marrow

After their affinity maturation in germinal centers, 
plasma cells home to mucosal surfaces, sites of inflammation 
as well as to the bone marrow. This is generally accompanied 
by down-regulation of lymphoid tissue receptors and up-
regulation of receptors for chemokines produced at the 
different sites. In the bone marrow, vascular cell-adhesion 
molecule 1 (VCAM-1) is an important mediator of plasma 
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cell homing, through interaction with the integrin VLA-4 
(ITGA4/ITGB1 dimer). Moreover, plasma cells express 
surface CXCR4 that migrates towards CXCL12 produced 
by bone marrow stromal cells as well as SDC1 (CD138, 
syndecan-1) that binds to fibronectin and collagen, and the 
adhesion molecule CD44. Intuitively, it would be expected 
that evasion of the malignant myeloma cells from the bone 
marrow is promoted by down-regulation of these surface 
proteins. However, no significant difference in SDC1-
expression was observed in the MM and sPCL cells, 
whereas CD44 was 2.3-fold up-regulated (p~4.3E-05). 
Variants of this protein (CD44v8-v10) apparently affects 
the endothelial cells of small blood vessels by promoting 
phosphorylation of vascular endothelial cadherin, junction 
disruption and transendothelial migration of melanoma 
cells [37]. Recently, expression of CD44v9 in circulating 
colorectal cancer cells was also associated with poor 
prognosis [38], corroborating increased metastatic potential 
of cells harboring this variant. ITGB1, which constitutes 
half of the heterodimeric VLA4, was also up-regulated 
in the sPCL cells (1.63-fold). However, VCAM-1 is also 
highly expressed by newly formed blood vessels in the 
bone marrow (reviewed in [39]) and increased VLA4 may 
thus allow preferential localization of the myeloma cells to 
such vessels and provide a passageway to the periphery. 
Notably, all of the above plasma cell surface antigens 
are heavily glycosylated [40, 41] and it is conceivable 
that their perturbed glycosylation may alter their matrix 
interaction properties to allow bone marrow evasion. This 
has been particularly studied for CD44, which needs specific 
sialofucosylations to act as a E-/L-selectin ligand and bone 
homing receptor, named HCELL [42]. Correct sialylation 
is also a prerequisite for another selectin ligand, SELPLG. 
This ligand was not quantified in the super-SILAC dataset, 
but was quantified by LFQ in all the sPCL samples whereas 
it was not detected in the MM samples (Supplementary 
Table 2).

A shift towards aerobic glycolytic metabolism in 
sPCL

The second most affected pathway in IPA was TCA 
cycle (p~1.7E-06), in which 8 out of 23 proteins (SDHA, 
SDHB, IDH3G, DHTKD1, ACO1, ACO2, DLST and 
MDH1) were differentially expressed, all of which were 
significantly down-regulated (Figure 4, Supplementary 
Table 2). This is in agreement with the observed overall 
down-regulation of mitochondrial proteins, and supports 
that mitochondrial oxidative metabolism is impaired 
in the sPCL cells. Two other mitochondrial pathways, 
leucine degradation and valine degradation were also 
among the top five most affected pathways according 
to IPA (Figure 3C). The degradation of these branched-
chain amino acids as well as isoleucine takes place in the 
mitochondria and donates substrates to the TCA cycle. As 
illustrated in Figure 4 (Supplementary Table 2), nearly 

all enzymes involved in mitochondrial degradation of 
leucine were significantly down-regulated, and this was 
also observed for enzymes involved in valine degradation 
(Supplementary Table 2). Somewhat surprisingly, the level 
of the mitochondrial fatty acid transporter CPT1, the rate-
limiting enzyme in mitochondrial fatty acid degradation, 
was 1.6-fold up-regulated in the sPCL cells. CPT1 activity 
is, however, inhibited by malonyl-CoA. In lipid-rich 
tissues including the bone marrow, hormones such as 
leptin inhibits formation of malonyl-CoA. Lower levels 
of adipokines in the bloodstream may thus contribute to 
inhibit CTP1 catalytic activity and mitochondrial fatty 
acid degradation in sPCL.

Down-regulation of mitochondrial respiration is 
commonly observed in tumor cells, with a concomitant 
increase in glycolytic metabolism. The Warburg effect 
was originally thought to be an adaption of cancer cells 
to the low oxygen tension in rapidly growing tumors 
[43]. However, the glycolytic metabolism of cancer cells 
is also observed under ample oxygen supply (aerobic 
glycolysis) and is often observed in leukemia [44, 45] and 
lung tumors [46, 47]. Thus the metabolic shift appears to 
be advantageous to the cancer cells via other pathways, 
which promote cell growth and survival [48] resistance to 
apoptosis [49] and contribute to chemotherapeutic drug 
resistance [29]. Although glycolysis was not among the 
pathways reported to be significantly affected in IPA, 
several key enzymes relevant to this pathway were found to 
be up-regulated, including the glucose importer SLC2A1 
(GLUT-1, 3.8-fold, p~0.008), the regulatory hexokinase 
HK1 (3.5-fold, p~0.0001) and LDHA (2.2-fold, 
p~0.0001) (Figure 4). The latter is crucial to regenerate 
NAD+ to drive glycolytic ATP production. Targeting of 
glycolytic enzymes has emerged as an attractive strategy 
to selectively kill tumor cells, and several drugs are now 
in various phases of clinical trials [50]. Blocking glucose 
transporters such as SLC2A1 (GLUT-1) to inhibit glucose 
uptake can be mediated by compounds like WZB117 and 
fasentin and has been demonstrated to be selectively toxic 
to cancer cells harboring glycolytic metabolism [51, 52]. 
Inhibition of hexokinase is another attractive strategy since 
this is the first commitment step of glycolysis. Moreover, 
HK1 and HK2 bind to the outer mitochondrial membrane 
and may counteract mitochondrial death pathways as well 
as excessive mitochondrial ROS [53]. Here, the glucose 
analog and HK inhibitor 2-deoxy-D-glucose (2-DG) has 
demonstrated promising anticancer effects in preclinical 
models and was recently shown to sensitize acute 
lymphoblastic leukemia B-cells to Dasatinib treatment 
[54] and has been implemented in phase-I clinical trials 
in patients with advanced solid tumors [55]. Finally, 
inhibition of LDHA by a small drug like molecule (FX11) 
was shown to induce oxidative stress and cell death 
in human lymphoma B-cells, and was able to induce 
lymphoma regression when combined with the NAD+ 
synthesis inhibitor FK866 [56].
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It is not likely that the apparent metabolic switch in 
the malignant cells at the sPCL stage compared to the MM 
stage is mediated by the change of microenvironment per 
se. There is a significantly higher mean oxygen tension 
in the peripheral blood (12%) compared to bone marrow 
(6.6%) [57], which should contribute to proteasomal 
degradation of the hypoxia-inducible transcription factors 
HIF-1 and HIF-2 ([58] and references therein) and thus 
decreased expression of e.g. SLC2A1, LDHA and HK1. 
We find, however, that these enzymes are >2-fold up-
regulated in the sPCL cells, suggesting that the metabolic 
shift is advantageous to the cells via other pathways 
and potentially contributing to sPCL transformation. 
In summary, the above findings suggest that inhibitors 
targeting glycolytic enzymes should be explored as 

potential novel adjuvants in the treatment of sPCL when a 
glycolytic cancer phenotype is evident.

Other factors potentially contributing to sPCL 
progression

In addition to the affected pathways as revealed 
by IPA analysis, several other proteins were found to be 
differentially expressed that potentially could contribute 
to progression from MM to sPCL. Table 1 highlights the 
10 most up- and down-regulated proteins identified in the 
super-SILAC dataset. Here serum amyloid A4 (SAA4) 
protein was found to be the most up-regulated protein 
(21-fold) at the sPCL stage. SAA1/2 proteins are acute-
phase proteins predominantly produced in the liver, but is 

Figure 4: Overview of differentially expressed proteins in the glycolytic and oxidative metabolic pathways. The observed 
up-regulation of factors in glycolytic glucose metabolism and down-regulation of factors in the mitochondrial oxidative metabolism 
conforms to an increased Warburg type metabolism in the sPCL cells.
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also found in diseased tissues, including cancer cells [59]. 
Their potential involvement in carcinogenesis and tumor 
progression has been subject to considerable interest due 
to their ability to rapidly induce cytokine production and 
ROS [60], cell migration and proliferation [61]. Less is 
known about the SAA4 protein, but some studies have 
reported abundant expression of SAA4 in tumorigenic 
tissues [62-64] and recent findings assign a likely role 
of the protein during cellular invasion [65]. The strong 
induction of apolipoprotein D (APOD, 9.75-fold) in the 
sPCL samples was somewhat surprising. Several studies 
have reported an inverse correlation between APOD 
expression and cell proliferation [66] as well as invasive 
cancer phenotype [67]. However, recent findings indicate 
that APOD is up-regulated under oxidative stress and 
plays a catalytic role in inhibiting lipid peroxidation chain 
reactions [68, 69]. Such a function of APOD in sPCL 
would conform to the observed shift in metabolic enzymes 
towards aerobic glycolysis that mediates decreased 
ROS, and could indicate a combined attempt to reduce 
oxidative stress. This could be especially important during 
detachment of myeloma cells from the extracellular matrix 
(ECM) of the bone marrow. Detachment of cells from the 
ECM is known to induce a programmed cell death process 

named anoikis [70]. Although the mechanisms whereby 
cancer cells evade anoikis remain poorly understood, 
detachment from the ECM is accompanied by striking 
increases in ROS and increased ROS tolerance was 
recently shown to promote anchorage-independent growth 
of breast cancer cells [71].

GBP2 (5.92-fold up-regulated in sPCL) is a member 
of the interferon-induced guanylate family of GTPases. 
It has been shown to induce proliferation in mouse 
fibroblasts [72] and to regulate hematopoietic lineage 
differentiation [73]. S100A4 (5.52-fold up-regulated in 
sPCL), also known as metastasin, is a calcium-binding 
protein found in a wide range of cells, and that is involved 
in many cellular processes including proliferation, 
differentiation and tumor cell invasion [74]. Interestingly, 
it has also been shown to be involved in metabolic 
regulation by down-regulating mitochondrial respiration 
and activating glycolytic flux in malignant melanoma cells 
[75]. Treatment of the cells with dichloroacetate (DCA) 
reversed the glycolytic phenotype and preferentially 
induced apoptosis in the S100A4-stimulated cells. 
Although DCA does not directly inhibit glycolytic flux, 
it inhibits pyruvate dehydrogenase kinase, and thus 
increases the catalytic activity of pyruvate dehydrogenases 

Table 1: List of ten most up- and down-regulated proteins in sPCL versus MM based on the super-SILAC data

Gene Protein Fold change P-value

SAA4 Serum amyloid A-4 protein 21.20 8.13E-05

Cd3APOD Apolipoprotein D 9.75 0.00060

GBP2 Interferon-induced guanylate-binding protein 2 5.92 0.00030

S100A4 Protein S100-A4 5.52 0.00006

MKI67 Antigen KI-67 4.41 0.00152

TAGLN2 Transgelin-2 4.41 4.55E-07

ANXA3 Annexin A3 4.35 0.00055

DEK Protein DEK 3.96 0.00016

TBCEL Tubulin-specific chaperone cofactor E-like protein 3.70 0.03610

FLNA Filamin-A 3.62 3.25E-07

IER3IP1 Immediate early response 3-interacting protein 1 0.161 0.03874

SERPINB6 Serpin B6 0.148 0.00036

FCER2 Low affinity immunoglobulin epsilon Fc receptor 0.136 0.00028

PLD4 Phospholipase D4 0.113 0.00096

RBP1 Retinol-binding protein 1 0.097 0.01287

CKB Creatine kinase B-type 0.079 3.13E-05

SYPL1 Synaptophysin-like protein 1 0.077 0.00187

H1F0 Histone H1.0 0.061 0.00510

CRP C-reactive protein 0.060 0.00047

MARCKS Myristoylated alanine-rich C-kinase substrate 0.045 3.93E-05
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and increases acetyl-CoA introduced into the TCA cycle. 
This increases ROS and reduces cytosolic regeneration of 
NAD+. The results from S100A-stimulated melanoma cells 
corroborate previous findings from our own laboratory in 
that DCA was selectively cytotoxic to melphalan-resistant 
myeloma cells with acquired Warburg metabolism [29]. 
Finally, increased proliferative potential of the sPCL cells 
was underscored by the 4.41-fold up-regulation of the 
proliferation-marker MKI67 (Ki-67) that is a marker for 
poor survival in multiple myeloma [76].

The most down-regulated protein in sPCL was 
MARCKS (22.2-fold). MARCKS plays an important 
role in cell adhesion, spreading and invasion of various 
tumor cells [77, 78] and elevated levels of the protein was 
recently associated with multidrug resistance in MM cell 
lines [79]. These findings are not easily reconciled with the 
strong down-regulation of MARCKS in sPCL. However, 
MARCKS may have other functions beyond regulating the 
actin cytoskeleton and cell motility. In BAF3 murine pro-
B-cells MARCKS apparently has a role in ROS signaling 
[80]. To what degree its down-regulation mediates 
protection against oxidative stress in sPCL remains, 
however, to be established. C-reactive protein (CRP) was 
16.7-fold down-regulated in the sPCL cells. This acute-
phase protein is produced in the liver and strongly binds 
to the surface of dead and dying cells. We thus speculate 
that CRP detected in our cell samples originate from its 
binding to the surface of dying malignant plasma cells, 
which likely constitute a larger fraction of the malignant 
plasma cells in the bone marrow than in the highly 
proliferating sPCL cells. The 16.1-fold reduction in histone 
H1.0 (Table 1) and a concomitant 4.5-5.7-fold increase in 
the other histone H1 isoforms (Supplementary Table 2) 
strongly conform to a more dedifferentiated state in the 
sPCL cells [81] in agreement with the observed increase 
in proliferation and motility markers. Moreover, low levels 
of histone H1.0 has been suggested as a prognostic marker 
for poor survival of patients with malignant gliomas [82]. 
Creatine kinase B (CKB, 12.7-fold down-regulated) has 
been found to be secreted by metastatic cells, potentially 
to convert extracellular creatine to phosphocreatine that 
can be imported and serve as an ATP-generating source 
and promote metastatic survival [83]. It is thus likely that 
the down-regulated expression of CKB is a result of the 
migration of the malignant plasma cells to a less hypoxic 
environment, and not a mediator of bone marrow evasion 
per se. The retinol-binding protein RBP1 (10.3-fold down-
regulated in sPCL) is a tumor suppressor protein that is 
involved in the intracellular retinoic acid (RA) metabolism 
and treatment with RA inhibitors has been shown to inhibit 
MM cell growth and to induce apoptosis [84]. Moreover, 
RBP1 is epigenetically inactivated in many cases of MM 
and is associated with an unfavorable prognosis [85]. The 
low-affinity immunoglobulin epsilon Fc factor FCER2 
(CD23) was 7.4-fold down-regulated in sPCL. Surface 
expression of CD23 has previously been observed in a 

subclass of MM with abnormalities at chromosome 11 and 
has been associated with primary PCL in this subgroup 
[86]. The clinical relevance of CD23 in this subgroup 
however remains to be established. CD23 exists in both 
a membrane-bound and soluble form. The soluble form 
originates from shedding of membrane bound CD23 
and displays pleotropic biological activities, including 
inhibition of apoptosis of germinal center B-cells [87] and 
proliferation of myeloid precursor cells [88]. Shedding of 
CD23 from MM cells has been shown to be induced by a 
disintegrin and metalloprotease ADAM10 [89]. Notably, 
we found that ADAM10 was 2.2-fold (p ~ 0.007) in sPCL 
(Supplementary Table 2), in accordance with the reduced 
levels of cellular CD23.

Differential protein expression was not 
accompanied by altered overall genomic 
methylation or hydroxymethylation

The relatively large number of differentially 
expressed proteins (795) in the malignant plasma cells 
from the MM and sPCL stages in the same patient was 
somewhat surprising and suggested the involvement 
of global epigenetic alterations. Moreover, among the 
differentially expressed proteins, the majority (64%, 505 
proteins) were down-regulated. Aberrant methylation of 
cytosine residues in the promotor regions is associated 
with transcriptional silencing [90] and epigenetic 
inactivation of tumor suppressor genes has been linked to 
altered microenvironment pathways and an unfavorable 
prognosis in multiple myeloma [85]. Moreover, we 
observed a 2.3-fold increase in the maintenance DNA 
methyltransferase DNMT1 at the sPCL stage in our 
dataset (Supplementary Table 2). Progressively increasing 
DNMT1 mRNA expression has previously been reported 
in a study encompassing healthy donors, MM and PCL 
[91]. To analyze whether aberrant cytosine methylation 
was involved in the transformation to sPCL, we subjected 
DNA samples from the MM and sPCL stages to mass-
spectrometry based overall 5-methylcytosine (5-mC) 
quantification. We also included quantification of 
5-hydroxymethylcytosine (5-OHmC) in the analyses, 
since it is an important intermediate in epigenetic 
reprogramming of 5-mC [92-94]. The analyses revealed 
no significant change in 5-mC at the MM and sPCL 
stages (0.72% and 0.76% of total deoxynucleosides, 
respectively). A moderate, but non-significant decrease 
was observed in global 5-OHmC (3.2 versus 2.7 residues 
per 106 deoxynucleosides in MM and sPCL, respectively). 
These results indicate that aberrant methylation is not a 
major cause of the significant shift in protein expression 
during progression to sPCL. Thus the increased expression 
in DNMT1 rather reflects increased proliferation at the 
sPCL stage, in agreement with previous studies in human 
cancers showing that DNMT1 is proliferation dependent 
[95, 96].



Oncotarget19437www.impactjournals.com/oncotarget

Concluding remarks

In summary, we present the first comprehensive 
protein profile highlighting differentially expressed 
proteins accompanying progression of MM to sPCL in a 
single patient. Many of these are amenable to targeting 
by small molecule inhibitors currently approved for 
clinical use. Further studies must be undertaken to verify 
whether our findings represent a common phenotype in the 
progression of MM to sPCL, or to what extent this holds 
true for subgroups harboring specific genetic alterations. 
In this respect, our super-SILAC library can be a valuable 
tool for other research groups conducting quantitative 
proteome profiling in MM and sPCL.

MATERIALS AND METHODS

Preparation of a super-SILAC multiple myeloma 
library

Six human multiple myeloma- and two human B-cell 
lymphoma cell lines were used to generate a heavy super-
SILAC library for quantitative proteome profiling. The 
multiple myeloma cell lines IH-1 [97], OH-2 [25], KJON 
and VOLIN [26] were established in the laboratory of the 
Myeloma group at the Department of Cancer Research 
and Molecular Medicine, NTNU. The human multiple 
myeloma cell line INA-6 [98] was a kind gift from Dr M. 
Gramatzki (University of Erlangen-Nurnberg, Erlangen, 
Germany). RPMI8226-LR5 [99] was kindly supplied 
by Prof. William S. Dalton at the H. Lee Moffitt Cancer 
Center & Research Institute, Tampa, USA. The germinal 
center B cell-like DLBCL cell line KARPAS-422 [100] 
was obtained from DSMZ (Braunschweig, Germany) and 
the human Burkitt`s lymphoma cell line RAMOS [101] 
was obtained from ATCC. None of these cell lines was 
reported to be mis-identified or contaminated according 
to the International Cell Line Authentication Committee 
(http://iclac.org/databases/cross-contaminations).

All cell lines were passaged twice weekly in SILAC 
medium consisting of RPMI-1640 (Sigma-Aldrich, 
Germany) medium with 13C6

15N2-lysine (K8; 13C6 99%, 
15N2 99%) and 13C6

15N4-arginine (R10;13C699%, 15N4 
99%) (Cambridge Isotope Laboratories, Andover, MA) 
instead of the natural amino acids, dialyzed fetal bovine 
or human serum as appropriate, L-glutamine (100 µg/
mL) and gentamicin (20 µg/mL). For IL-6 dependent 
cell lines (OH-2, VOLIN, KJON, IH-1, INA-6) 1 ng/
mL recombinant human interleukin IL-6 (Biosource, 
Camarillo, CA, USA) was added. The Melphalan-resistant 
RPMI8226-LR5 was maintained under constant selection 
through the addition of 1 μM melphalan (Sigma-Aldrich, 
St. Louis, MO) twice weekly. Cells were cultured for at 
least eight passages in the SILAC medium at 37 °C in 
a humidified atmosphere containing 5% CO2 in order to 
accomplish near complete labeling. Incorporation was 
examined by separate quantitative LC-MS/MS analysis 

and equal amounts of protein from each of the heavy 
lysates were premixed to generate the super-SILAC mix.

Patient material

At diagnosis her disease was characterized by Hgb 
11.3 mg/dl, M protein of IgG-kappa type 20,5 g/l, 62% 
plasma cells in the bone marrow, multiple osteolytic 
lesions, ISS stage 2. t(11;14) was detected whereas t(4;14), 
del 13 and del 17 were negative by FISH. During the 
initial four years she was sensitive to induction treatment 
with cyclophosphamide/bortezomib/dexamethasone 
followed by high dose melphalan with autologous 
stem cell transplantation (very good partial remission), 
bortezomib/melphalan/prednisone (partial remission) and 
cyclophosphamide/prednisone (partial remission) and 
resistant to thalidomide/prednisone and lenalidomide/
prednisone. After four years, plasma cell leukemia was 
diagnosed with 35% plasma cells in blood smears. She 
was then resistant to all drugs and died after two months. 
Malignant CD138+ cells were stored in DMSO at -80 oC 
in the Norwegian Myeloma Biobank at St. Olav’s Hospital 
prior to analysis. The study was approved by the Regional 
committee for medical and health research ethics in Mid-
Norway (REK 2011/2029, REK 2012/1501) and conforms 
to the Declaration of Helsinki

Sample preparation for mass spectrometry

A bone marrow sample was collected prior to the 
first treatment and blood samples were collected when 
sPCL had developed four years later. Plasma cells were 
purified by CD138+ magnetic-activated cell sorting 
(MACS) microbeads (Miltenyi, CA). For MM samples, 
two aliquots of CD138+ cells were individually isolated 
and each subjected to four technical MS replicate analyses. 
At the time of sPCL diagnosis, six blood samples were 
collected over a time span of four days, each from which 
two aliquots of CD138+ cells were individually isolated 
and each subjected to two technical MS replicate analyses.

We employed methanol/chloroform [102] protein 
precipitation method with modifications. In short, 500 000 
cells were homogenized in 25 µL 7 M urea, 2 M thiourea, 
2.5% CHAPS, 25 mM DTT using Kontes™ Pellet Pestle™ 
Motor. After mixing and thorough vortexing cells were 
incubated for 15 minutes at room temperature to solubilize 
proteins and the homogenate was clarified by centrifugation 
at 16 000 × g for 15 min at room temperature. 25 μg protein 
from each patient sample was mixed 1:1 with super-SILAC 
protein standard. For protein precipitation, the following (all 
volumes refer to the volume of the original patient sample/
super-SILAC mixture) were stepwise added with vortexing 
following each addition: Four volumes of methanol, one 
volume chloroform and three volumes of distilled water. 
The sample was centrifuged at 14 000 × g for 2 min at 
room temperature and the upper aqueous phase carefully 
removed. Four volumes of methanol were then added and 
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vortexed and the mixture centrifuged at 14 000 × g for 2 
min at room temperature. The supernatant was carefully 
removed and 100 µl trypsin (10 ng/µL in aqueous 50 mM 
ammonium bicarbonate) was added directly to the protein 
pellet. The sample was incubated at 37 °C with shaking at 
600 rpm for 16 h, evaporated to dryness and dissolved in 
0,1% formic acid. The resulting solution was centrifuged at 
16 000 × g for 1 min and the supernatant subjected to MS 
analysis.

Mass spectrometry and analysis of super-SILAC 
data

Peptides were analyzed on a LC-MS/MS platform 
consisting of an Easy-nLC 1000 UHPLC system 
(Thermo Scientific/Proxeon) interfaced with an LTQ-
Orbitrap Elite hybrid mass spectrometer (Thermo 
Scientific) via a nanospray ESI ion source (Proxeon, 
Odense). Peptides were injected onto a C-18 trap column 
(Acclaim PepMap100, 75 μm i. d. x 2 cm, C18, 5 μm, 
100 Å, Thermo Scientific) and further separated on a C-18 
analytical column (Acclaim PepMap100, 75 μm i. d. x 
50 cm, C18, 3 μm, 100 Å, Thermo Scientific). The LC 
was operated at 250 nL/min over 262 min with solvent A 
consisting of 0.1% formic acid in water and solvent B of 
0.1% formic acid in CH3CN. Peptides were eluted with a 
linear gradient of 0-30% solvent B over 252 min, followed 
by 5 min at 100% B and 5 min at 100% A. Peptides were 
analyzed on the mass spectrometer operating in positive 
ion- and data dependent acquisition (DDA) mode using 
the following parameters: Electrospray voltage 2.2 kV, 
CID fragmentation with normalized collision energy 
35, automatic gain control (AGC) target value of 1E6 
for Orbitrap MS and 1E4 for MS/MS scans. Each MS 
scan (m/z 400–1600) was acquired at a resolution of 
120,000 FWHM, followed by 20 MS/MS scans triggered 
for intensities above 500 and selected with an isolation 
window of 2 Th, at a maximum ion injection time of 
200 ms for MS and 50 ms for MS/MS scans. Raw files 
were analyzed with MaxQuant v 1.5 [103] using its 
default settings with multiplicity 2 (Arg10,Lys8), FTMS 
and ITMS MS/MS tolerance of 0.5 Da and 20 ppm, 
respectively. Search was performed against the June 
2014 version of Human proteome set with isoforms from 
Uniprot [104]. Values from technical replicates were 
transformed to log2 in order to have a better approximation 
to normal distribution of super-SILAC ratios. Further, the 
median of technical replicates were calculated to represent 
the samples in order to be less sensitive to outliers. These 
are presented in in Supplementary Table 2 from column 
V to AA representing three time points for MM and sPCL 
stages respectively.

The mass spectrometry proteomics data have been 
deposited to the ProteomeXchange Consortium [105] via 
the PRIDE partner repository with the dataset identifier 
PXD001963.
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